1
|
Duša F, Šalplachta J, Horká M, Lunerová K, Čermáková V, Dřevínek M, Kubíček O. Isoelectric Focusing Fractionation Method for Signal Enhancement in Detection of Inactivated Biological Agents Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Electrophoresis 2025; 46:212-220. [PMID: 39748447 PMCID: PMC11865691 DOI: 10.1002/elps.202400052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
Timely identification of highly pathogenic bacteria is crucial for efficient mitigation of the connected harmful health effects. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of intact cells enables fast identification of the microorganisms based on their mass spectrometry protein fingerprint profiles. However, the MALDI-TOF MS examination must be preceded by a time-demanding cultivation of the native bacteria to isolate representative cell samples to obtain indicative fingerprints. Isoelectric focusing (IEF) is capable of separating bacterial cells according to their isoelectric point while effectively removing other non-focusing compounds from sample matrix. In this work, we present a divergent-flow IEF chip (DF-IEF chip) fractionation as an alternative way for sample clean-up and concentration of bacterial cells to prepare samples usable for following MALDI-TOF MS analysis without the need of time-demanding cultivation. By means of DF-IEF chip method, we processed four species of highly pathogenic bacteria (Bacillus anthracis, Brucella abortus, Burkholderia mallei, and Yersinia pestis) inactivated with H2O2 vapors or by heat treatment at 62.5°C for 24 h. The DF-IEF chip method continually separated and concentrated the inactivated bacterial cells for subsequent detection using MALDI-TOF MS. The content of the inactivated bacteria in the DF-IEF chip fractions was evaluated with the MS analysis, where inactivated Y. pestis was found to be the most efficiently focusing species. Sensitivity analysis showed limits as low as 2 × 105 colony forming units per mL for inactivated B. anthracis.
Collapse
Affiliation(s)
- Filip Duša
- Institute of Analytical Chemistry of the Czech Academy of SciencesBrnoCzech Republic
| | - Jiří Šalplachta
- Institute of Analytical Chemistry of the Czech Academy of SciencesBrnoCzech Republic
| | - Marie Horká
- Institute of Analytical Chemistry of the Czech Academy of SciencesBrnoCzech Republic
| | - Kamila Lunerová
- National Institute for Nuclear, Chemical and Biological ProtectionKamennaCzech Republic
| | - Veronika Čermáková
- National Institute for Nuclear, Chemical and Biological ProtectionKamennaCzech Republic
| | - Michal Dřevínek
- National Institute for Nuclear, Chemical and Biological ProtectionKamennaCzech Republic
| | - Oldřich Kubíček
- National Institute for Nuclear, Chemical and Biological ProtectionKamennaCzech Republic
| |
Collapse
|
2
|
Feng M, Ma J, Zhang Y, Wang D, Zhu L, Pan C, Wang H, Liu X, Wang Y, Meng Y, Lyu Y. Rapid detection assays for Bacillus anthracis, Yersinia pestis, and Brucella spp. via triplex-recombinase polymerase amplification. Mol Biol Rep 2025; 52:149. [PMID: 39841309 DOI: 10.1007/s11033-025-10265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Bacillus anthracis (B. anthracis), Yersinia pestis (Y. pestis), and Brucella spp. are zoonotic bacteria that cause anthrax, plague, and brucellosis, respectively. Outbreaks typically occur in remote regions with poor transportation and limited laboratory testing. Therefore, a simple, sensitive, multiplex nucleic acid detection method is essential for effective disease management and control. METHODS Primers and probes for the three pathogens were designed to reduce interference from related strains. Three recombinase polymerase amplification (RPA) reactions were conducted at 39 °C for 10 min to produce species-specific fluorescence signals for the three pathogens. These were integrated, and conditions were optimized for rapid, sensitive triplex-RPA assays without cross-reactivity. A triplex-RPA reaction with lateral flow dipsticks (LFDs) was developed and applied to blood samples, newly isolated strains, and simulated samples. RESULTS Highly sensitive and specific primers and probes were developed, achieving a maximum sensitivity of 1 copy/µL in single-reaction RPA. The optimized triplex RPA detection technique, combined with fluorescence, effectively identified B. anthracis, Y. pestis, and Brucella spp. within 20 min, whereas LFDs achieved detection in 10 min. The assay also performed comparably to conventional polymerase chain reaction techniques when tested on blood samples, newly isolated strains, and simulated samples. CONCLUSIONS This study offers reliable methods for detecting B. anthracis, Y. pestis, and Brucella spp. in rural hospitals and public health initiatives.
Collapse
Affiliation(s)
- Meijie Feng
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Lingang New City, Shanghai, 201306, China
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Jinping Ma
- Wuzhong People's Hospital, 143 Xinmin Road, Litong District, Wuzhong City, Ningxia Hui Autonomous Region, 751100, China
| | - Yan Zhang
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Lingang New City, Shanghai, 201306, China
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Dongshu Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Li Zhu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Chao Pan
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Hengliang Wang
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Lingang New City, Shanghai, 201306, China
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Xiankai Liu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Yuanzhi Wang
- School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, 832002, China.
| | - Ying Meng
- Tongliao Center of Disease Control and Prevention, Keerqin District, Tongliao City, Inner Mongolia Autonomous Region, 028005, China.
| | - Yufei Lyu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
3
|
Ortatatli M, Saatci E, Kilic Z, Kenar L. Development of an amperometric biosensor for the detection of Bacillus anthracis spores. Diagn Microbiol Infect Dis 2024; 110:116473. [PMID: 39128207 DOI: 10.1016/j.diagmicrobio.2024.116473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Due to most likely use of Bacillus anthracis in biological terrorism agents, the rapid and sensitive detection of its spores is crucial in both taking prophylactic measures and proper treatment. This study aimed to develop an amperometric electrochemical immunosensor for the detection of B. anthracis spores. METHODS A new amperometric biosensor was designed using a combination of magnetic beads and multiplex screen-printed electrodes. This method measures changes in current intensity resulting from oxidation and reduction in the working electrode directly to spore concentrations. RESULTS A standard curve was formed to test the number of live spores between 2 × 102-2 × 104 spores/ml concentrations. LOD and LOQ values were found to be 92 and 272 spores/ml, respectively. No cross-reactions were seen for Bacillus subtilis, Bacillus cereus and Bacillus thuringiencis spores. CONCLUSIONS It is shown that the designed Anthrax immunosensor has high sensitivity and selectivity with rapid detection results.
Collapse
Affiliation(s)
- Mesut Ortatatli
- Department of Medical CBRN Defense, University of Health Sciences, 06018, Ankara Türkiye.
| | - Ebru Saatci
- Department of Biology, Faculty of Science, Erciyes University, 38039, Kayseri, Türkiye
| | - Zahir Kilic
- Department of Medical CBRN Defense, University of Health Sciences, 06018, Ankara Türkiye
| | - Levent Kenar
- Department of Medical CBRN Defense, University of Health Sciences, 06018, Ankara Türkiye
| |
Collapse
|
4
|
Norouzi S, Dashtian K, Amourizi F, Zare-Dorabei R. Red-emissive carbon nanostructure-anchored molecularly imprinted Er-BTC MOF: a biosensor for visual anthrax monitoring. Analyst 2023. [PMID: 37366050 DOI: 10.1039/d3an00865g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Investigating effective fluorescence strategies for real-time monitoring of dipicolinic acid (DPA) is of paramount importance in safeguarding human health. Herein, we present the design of a desirable red-emissive carbon nanostructure anchoring a molecularly imprinted Er-BTC MOF as a fluorescence biosensor for the visual determination of DPA. DPA is a biomarker of Bacillus anthracis, a subcategory of serious infectious diseases and bioweapons. We introduce a paper test strip sensitized with the aforementioned nanostructure, which is integrated with online UV excitation and smartphone digital imaging, resulting in a DPA signal-off sensing platform. The proposed fluorometric visual paper-based biosensor demonstrates wide linear ranges for DPA (10-125 μM) with a LOQ and LOD of 4.32 and 1.28 μM, respectively. The designed platform exhibits impressive emission properties and adaptable surface functional groups, which confirm its desirable selective sensing capabilities against other biological molecules and DPA isomers. As a proof of concept, DPA monitoring is successfully applied to real samples of tap water and urine. This integrated selective paper-based nano-biosensor, coupled with smartphone signal recording, holds great promise for state-of-the-art practical applications including fluorometric/colorimetric detection in healthcare and environmental monitoring, food safety analysis, and point-of-care testing.
Collapse
Affiliation(s)
- Solmaz Norouzi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Kheibar Dashtian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Fereshteh Amourizi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
5
|
Xu M, Selvaraj GK, Lu H. Environmental sporobiota: Occurrence, dissemination, and risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161809. [PMID: 36702282 DOI: 10.1016/j.scitotenv.2023.161809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Spore-forming bacteria known as sporobiota are widespread in diverse environments from terrestrial and aquatic habitats to industrial and healthcare systems. Studies on sporobiota have been mainly focused on food processing and clinical fields, while a large amount of sporobiota exist in natural environments. Due to their persistence and capabilities of transmitting virulence factors and antibiotic resistant genes, environmental sporobiota could pose significant health risks to humans. These risks could increase as global warming and environmental pollution has altered the life cycle of sporobiota. This review summarizes the current knowledge of environmental sporobiota, including their occurrence, characteristics, and functions. An interaction network among clinical-, food-related, and environment-related sporobiota is constructed. Recent and effective methods for detecting and disinfecting environmental sporobiota are also discussed. Key problems and future research needs for better understanding and reducing the risks of environmental sporobiota and sporobiome are proposed.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ganesh-Kumar Selvaraj
- Department of Microbiology, St. Peter's Institute of Higher Education and Research, Chennai 600054, Tamil Nadu, India.
| | - Huijie Lu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety, Zhejiang, China.
| |
Collapse
|
6
|
Carvalho JLC, Dadachova E. Radioimmunotherapy for the treatment of infectious diseases: a comprehensive update. Expert Rev Anti Infect Ther 2023; 21:365-374. [PMID: 36815406 DOI: 10.1080/14787210.2023.2184345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
INTRODUCTION Corona Virus Disease of 2019 (COVID-19) pandemic has renewed interest in monoclonal antibodies for treating infectious diseases. During last two decades experimental data has been accumulated showing the potential of radioimmunotherapy (RIT) of infectious diseases. In addition, COVID-19 pandemic has created a novel landscape for opportunistic fungal infections in post-COVID-19 patients resulting from severe immune suppression. AREAS COVERED We analyze recent results on targeting "pan-antigens" shared by fungal pathogens in mouse models and in healthy dogs; on developing RIT of prosthetic joint infections (PJI); examine RIT as potential human immunodeficiency virus (HIV) cure strategy and analyze its mechanisms and safety. Literature review was performed using PubMed and Google Scholar and includes relevant articles from 2000 to 2022. EXPERT OPINION Some of the RIT of infection applications can, hopefully, be moved into the clinic earlier than others after preclinical development: (1) RIT of opportunistic fungal infections might contribute to saving lives as current antifungal drugs do not work in severely immunocompromised patients; (2) RIT of patients with PJI. Success of RIT in these patients will allow to expand the application of RIT to other similarly vulnerable patients' populations such as cancer patients with weakened immune system and organ transplant recipients.
Collapse
|
7
|
Ratliff K, Abdel-Hady A, Monge M, Mikelonis A, Touati A. Impact of filter material and holding time on spore sampling efficiency in water. Lett Appl Microbiol 2023; 76:ovad005. [PMID: 36705271 PMCID: PMC10599418 DOI: 10.1093/lambio/ovad005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Bacillus anthracis and other environmentally persistent pathogens pose a significant threat to human and environmental health. If contamination is spread over a wide area (e.g. resulting from a bioterrorism or biowarfare incident), readily deployable and scalable sample collection methods will be necessary for rapidly developing and implementing effective remediation strategies. A recent surge in environmental (eDNA) sampling technologies could prove useful for quantifying the extent and levels of contamination from biological agents in environmental and drinking water. In this study, three commonly used membrane filtration materials (cellulose acetate, cellulose nitrate, and nylon) were evaluated for spore filtration efficiency, yielding recoveries from 17%-68% to 25%-117% for high and low titer samples, respectively, where cellulose nitrate filters generated the highest recoveries. A holding time test revealed no statistically significant differences between spore recoveries when analyzed at the specified timepoints, suggesting that eDNA filter sampling techniques can yield and maintain a relatively high recovery of spores for an extended period of time between filtration and analysis without a detrimental impact on spore recoveries. The results shown here indicate that emerging eDNA technologies could be leveraged for sampling following a wide-area contamination incident and for other microbiological water sampling applications.
Collapse
Affiliation(s)
- Katherine Ratliff
- Center for Environmental Solutions and Emergency Response, Office of Research and Developmen, Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | | | - Mariela Monge
- Consolidated Safety Services, Inc., Research Triangle Park, NC 27709, USA
| | - Anne Mikelonis
- Center for Environmental Solutions and Emergency Response, Office of Research and Developmen, Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
8
|
Wang D, Chen G, Lyu Y, Feng E, Zhu L, Pan C, Zhang W, Liu X, Wang H. A CRISPR/Cas12a-based DNAzyme visualization system for rapid, non-electrically dependent detection of Bacillus anthracis. Emerg Microbes Infect 2021; 11:428-437. [PMID: 34842509 PMCID: PMC8812752 DOI: 10.1080/22221751.2021.2012091] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As next-generation pathogen detection methods, CRISPR-Cas-based detection methods can perform single-nucleotide polymorphism (SNP) level detection with high sensitivity and good specificity. They do not require any particular equipment, which opens up new possibilities for the accurate detection and identification of Bacillus anthracis. In this study, we developed a complete detection system for B. anthracis based on Cas12a. We used two chromosomally located SNP targets and two plasmid targets to identify B. anthracis with high accuracy. The CR5 target is completely new. The entire detection process can be completed within 90 min without electrical power and with single-copy level sensitivity. We also developed an unaided-eye visualization system based on G4-DNAzyme for use with our CRISPR-Cas12a detection system. This visualization system has good prospects for deployment in field-based point-of-care detection. We used the antisense nucleic acid CatG4R as the detection probe, which showed stronger resistance to interference from components of the solution. CatG4R can also be designed as an RNA molecule for adaptation to Cas13a detection, thereby broadening the scope of the detection system.
Collapse
Affiliation(s)
- Dongshu Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Gang Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Yufei Lyu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Erling Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Weicai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xiankai Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| |
Collapse
|
9
|
Han H, Li M, Peng Y, Zhang Z, Yue X, Zheng Y. Microbial Diversity and Non-volatile Metabolites Profile of Low-Temperature Sausage Stored at Room Temperature. Front Microbiol 2021; 12:711963. [PMID: 34512589 PMCID: PMC8430334 DOI: 10.3389/fmicb.2021.711963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
Sausage is a highly perishable food with unique spoilage characteristics primarily because of its specific means of production. The quality of sausage during storage is determined by its microbial and metabolite changes. This study developed a preservative-free low-temperature sausage model and coated it with natural casing. We characterized the microbiota and non-volatile metabolites in the sausage after storage at 20°C for up to 12 days. Bacillus velezensis was the most prevalent species observed after 4 days. Lipids and lipid-like molecules, organoheterocyclic compounds, and organic acids and their derivatives were the primary non-volatile metabolites. The key non-volatile compounds were mainly involved in protein catabolism and β-lipid oxidation. These findings provide useful information for the optimization of sausage storage conditions.
Collapse
Affiliation(s)
- Hongjiao Han
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yanqi Peng
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhenghan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yan Zheng
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
10
|
Manohar Raju V, Bhavana V, Gayathri G, Suryan S, Reddy R, Reddy N, Ravikumar C, Sridhar Santosh M. A novel disposable electrochemical DNA biosensor for the rapid detection of Bacillus thuringiensis. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Pillai SP, Prentice KW, Ramage JG, DePalma L, Sarwar J, Parameswaran N, Bell M, Plummer A, Santos A, Singh A, Pillai CA, Thirunavvukarasu N, Manickam G, Avila JR, Sharma SK, Hoffmaster A, Anderson K, Morse SA, Venkateswaran KV, Hodge DR. Rapid Presumptive Identification of Bacillus anthracis Isolates Using the Tetracore RedLine Alert™ Test. Health Secur 2020; 17:334-343. [PMID: 31433282 DOI: 10.1089/hs.2019.0038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A comprehensive laboratory evaluation of the Tetracore RedLine Alert test, a lateral flow immunoassay (LFA) for the rapid presumptive identification of Bacillus anthracis, was conducted at 2 different test sites. The study evaluated the sensitivity of this assay using 16 diverse strains of B. anthracis grown on sheep blood agar (SBA) plates. In addition, 83 clinically relevant microorganisms were tested to assess the specificity of the RedLine Alert test. The results indicated that the RedLine Alert test for the presumptive identification of B. anthracis is highly robust, specific, and sensitive. RedLine Alert is a rapid test that has applicability for use in a clinical setting for ruling-in or ruling-out nonhemolytic colonies of Bacillus spp. grown on SBA medium as presumptive isolates of B. anthracis.
Collapse
Affiliation(s)
- Segaran P Pillai
- Segaran P. Pillai, PhD, is Director, Office of Laboratory Science and Safety, FDA Office of the Commissioner, Department of Health and Human Services, Silver Spring, MD
| | - Kristin W Prentice
- Kristin W. Prentice, MS, is an Associate, and Lindsay DePalma, MS, is a Staff Life Scientist; both at Booz Allen Hamilton, Rockville, MD
| | - Jason G Ramage
- Jason G. Ramage, MS, MBA, PMP, is Assistant Vice Chancellor for Research and Innovation and Director of Research Compliance, University of Arkansas, Fayetteville, AR
| | - Lindsay DePalma
- Kristin W. Prentice, MS, is an Associate, and Lindsay DePalma, MS, is a Staff Life Scientist; both at Booz Allen Hamilton, Rockville, MD
| | - Jawad Sarwar
- Jawad Sarwar, MS, is a Senior Research Scientist, and Nishanth Parameswaran is a Research Scientist; both at Omni Array Biotechnology, Rockville, MD
| | - Nishanth Parameswaran
- Jawad Sarwar, MS, is a Senior Research Scientist, and Nishanth Parameswaran is a Research Scientist; both at Omni Array Biotechnology, Rockville, MD
| | - Melissa Bell
- Melissa Bell, MS, is a Microbiologist, and Alex Hoffmaster, PhD, is Chief, Bacterial Special Pathogens Branch; both in the National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Andrea Plummer
- Andrea Plummer and Alan Santos are Microbiologists, and Kodumudi Venkat Venkateswaran, PhD, is Chief Scientist; all at Tetracore, Inc., Rockville, MD
| | - Alan Santos
- Andrea Plummer and Alan Santos are Microbiologists, and Kodumudi Venkat Venkateswaran, PhD, is Chief Scientist; all at Tetracore, Inc., Rockville, MD
| | - Ajay Singh
- Ajay Singh, PhD, is a Research Scientist, Laulima Government Solutions, Contractor Support to USAMRICD Neurobiological Toxicology Branch, Analytical Toxicology Division, Aberdeen Proving Ground, MD
| | - Christine A Pillai
- Christine A. Pillai, Nagarajan Thirunavvukarasu, PhD, and Gowri Manickam, PhD, are ORISE Fellow Research Scientists, and Shashi K. Sharma, PhD, is a Research Microbiologist; all with the FDA Center for Food Safety and Applied Nutrition, Molecular Methods Development Branch, Division of Microbiology, Office of Regulatory Science, College Park, MD
| | - Nagarajan Thirunavvukarasu
- Christine A. Pillai, Nagarajan Thirunavvukarasu, PhD, and Gowri Manickam, PhD, are ORISE Fellow Research Scientists, and Shashi K. Sharma, PhD, is a Research Microbiologist; all with the FDA Center for Food Safety and Applied Nutrition, Molecular Methods Development Branch, Division of Microbiology, Office of Regulatory Science, College Park, MD
| | - Gowri Manickam
- Christine A. Pillai, Nagarajan Thirunavvukarasu, PhD, and Gowri Manickam, PhD, are ORISE Fellow Research Scientists, and Shashi K. Sharma, PhD, is a Research Microbiologist; all with the FDA Center for Food Safety and Applied Nutrition, Molecular Methods Development Branch, Division of Microbiology, Office of Regulatory Science, College Park, MD
| | - Julie R Avila
- Julie R. Avila, MS, is a Scientific Associate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA
| | - Shashi K Sharma
- Christine A. Pillai, Nagarajan Thirunavvukarasu, PhD, and Gowri Manickam, PhD, are ORISE Fellow Research Scientists, and Shashi K. Sharma, PhD, is a Research Microbiologist; all with the FDA Center for Food Safety and Applied Nutrition, Molecular Methods Development Branch, Division of Microbiology, Office of Regulatory Science, College Park, MD
| | - Alex Hoffmaster
- Melissa Bell, MS, is a Microbiologist, and Alex Hoffmaster, PhD, is Chief, Bacterial Special Pathogens Branch; both in the National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Kevin Anderson
- Kevin Anderson, PhD, and David R. Hodge, PhD, are Program Managers, Science and Technology Directorate, US Department of Homeland Security, Washington, DC
| | - Stephen A Morse
- Stephen A. Morse, MSPH, PhD, is a Senior Advisor, CDC Division of Select Agents and Toxins, and is currently with IHRC, Inc., Atlanta, GA
| | - Kodumudi Venkat Venkateswaran
- Andrea Plummer and Alan Santos are Microbiologists, and Kodumudi Venkat Venkateswaran, PhD, is Chief Scientist; all at Tetracore, Inc., Rockville, MD
| | - David R Hodge
- Kevin Anderson, PhD, and David R. Hodge, PhD, are Program Managers, Science and Technology Directorate, US Department of Homeland Security, Washington, DC
| |
Collapse
|
12
|
Magriñá I, Jauset-Rubio M, Ortiz M, Tomaso H, Simonova A, Hocek M, O’Sullivan CK. Duplex Electrochemical DNA Sensor to Detect Bacillus anthracis CAP and PAG DNA Targets Based on the Incorporation of Tailed Primers and Ferrocene-Labeled dATP. ACS OMEGA 2019; 4:21900-21908. [PMID: 31891068 PMCID: PMC6933787 DOI: 10.1021/acsomega.9b02890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/21/2019] [Indexed: 05/08/2023]
Abstract
We report the duplex amplification of two plasmid DNA markers involved in the virulence of Bacillus anthracis, CAP and PAG, and the direct electrochemical detection of these amplicons. The method consists of the simultaneous amplification of the two targets in a single-pot reaction via polymerase chain reaction (PCR) using tailed primers and ferrocene-labeled dATP. Following amplification, the PCR products hybridize to probes immobilized on electrodes in a microfabricated electrode array chip. The incorporated ferrocene labeled dATP is then detected using square wave voltammetry. We evaluated the effect of electrolyte cations, anions, and concentration to condense, bend, and shrink double-stranded DNA and their effect on the intensity of the ferrocene signal. We obtained detection limits of 0.8 and 3.4 fM for CAP and PAG targets, respectively. We successfully developed a method to detect the presence of both targets in genomic DNA extracted from real samples.
Collapse
Affiliation(s)
- Ivan Magriñá
- INTERFIBIO
Consolidated Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, 43007 Tarragona, Spain
| | - Miriam Jauset-Rubio
- INTERFIBIO
Consolidated Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, 43007 Tarragona, Spain
| | - Mayreli Ortiz
- INTERFIBIO
Consolidated Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, 43007 Tarragona, Spain
| | - Herbert Tomaso
- Friedrich-Loeffler-Institut, Naumburger Str. 96a, 07743 Jena, Germany
| | - Anna Simonova
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Michal Hocek
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Ciara K. O’Sullivan
- INTERFIBIO
Consolidated Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, 43007 Tarragona, Spain
- Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
13
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
14
|
Kim YH, Hang L, Cifelli JL, Sept D, Mayer M, Yang J. Frequency-Based Analysis of Gramicidin A Nanopores Enabling Detection of Small Molecules with Picomolar Sensitivity. Anal Chem 2018; 90:1635-1642. [DOI: 10.1021/acs.analchem.7b02961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | | | | | - David Sept
- Department
of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2110, United States
| | - Michael Mayer
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | |
Collapse
|
15
|
Differential MicroRNA Analyses of Burkholderia pseudomallei- and Francisella tularensis-Exposed hPBMCs Reveal Potential Biomarkers. Int J Genomics 2017; 2017:6489383. [PMID: 28791299 PMCID: PMC5534298 DOI: 10.1155/2017/6489383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence that microRNAs (miRNAs) play important roles in the immune response against infectious agents suggests that miRNA might be exploitable as signatures of exposure to specific infectious agents. In order to identify potential early miRNA biomarkers of bacterial infections, human peripheral blood mononuclear cells (hPBMCs) were exposed to two select agents, Burkholderia pseudomallei K96243 and Francisella tularensis SHU S4, as well as to the nonpathogenic control Escherichia coli DH5α. RNA samples were harvested at three early time points, 30, 60, and 120 minutes postexposure, then sequenced. RNAseq analyses identified 87 miRNAs to be differentially expressed (DE) in a linear fashion. Of these, 31 miRNAs were tested using the miScript miRNA qPCR assay. Through RNAseq identification and qPCR validation, we identified differentially expressed miRNA species that may be involved in the early response to bacterial infections. Based upon its upregulation at early time points postexposure in two different individuals, hsa-mir-30c-5p is a miRNA species that could be studied further as a potential biomarker for exposure to these gram-negative intracellular pathogens. Gene ontology functional analyses demonstrated that programmed cell death is the first ranking biological process associated with miRNAs that are upregulated in F. tularensis-exposed hPBMCs.
Collapse
|
16
|
Ramage JG, Prentice KW, DePalma L, Venkateswaran KS, Chivukula S, Chapman C, Bell M, Datta S, Singh A, Hoffmaster A, Sarwar J, Parameswaran N, Joshi M, Thirunavkkarasu N, Krishnan V, Morse S, Avila JR, Sharma S, Estacio PL, Stanker L, Hodge DR, Pillai SP. Comprehensive Laboratory Evaluation of a Highly Specific Lateral Flow Assay for the Presumptive Identification of Bacillus anthracis Spores in Suspicious White Powders and Environmental Samples. Health Secur 2017; 14:351-65. [PMID: 27661796 DOI: 10.1089/hs.2016.0041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We conducted a comprehensive, multiphase laboratory evaluation of the Anthrax BioThreat Alert(®) test strip, a lateral flow immunoassay (LFA) for the rapid detection of Bacillus anthracis spores. The study, conducted at 2 sites, evaluated this assay for the detection of spores from the Ames and Sterne strains of B. anthracis, as well as those from an additional 22 strains. Phylogenetic near neighbors, environmental background organisms, white powders, and environmental samples were also tested. The Anthrax LFA demonstrated a limit of detection of about 10(6) spores/mL (ca. 1.5 × 10(5) spores/assay). In this study, overall sensitivity of the LFA was 99.3%, and the specificity was 98.6%. The results indicated that the specificity, sensitivity, limit of detection, dynamic range, and repeatability of the assay support its use in the field for the purpose of qualitatively evaluating suspicious white powders and environmental samples for the presumptive presence of B. anthracis spores.
Collapse
|
17
|
Silvestri EE, Yund C, Taft S, Bowling CY, Chappie D, Garrahan K, Brady-Roberts E, Stone H, Nichols TL. Considerations for estimating microbial environmental data concentrations collected from a field setting. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2017; 27:141-151. [PMID: 26883476 PMCID: PMC5318663 DOI: 10.1038/jes.2016.3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
In the event of an indoor release of an environmentally persistent microbial pathogen such as Bacillus anthracis, the potential for human exposure will be considered when remedial decisions are made. Microbial site characterization and clearance sampling data collected in the field might be used to estimate exposure. However, there are many challenges associated with estimating environmental concentrations of B. anthracis or other spore-forming organisms after such an event before being able to estimate exposure. These challenges include: (1) collecting environmental field samples that are adequate for the intended purpose, (2) conducting laboratory analyses and selecting the reporting format needed for the laboratory data, and (3) analyzing and interpreting the data using appropriate statistical techniques. This paper summarizes some key challenges faced in collecting, analyzing, and interpreting microbial field data from a contaminated site. Although the paper was written with considerations for B. anthracis contamination, it may also be applicable to other bacterial agents. It explores the implications and limitations of using field data for determining environmental concentrations both before and after decontamination. Several findings were of interest. First, to date, the only validated surface/sampling device combinations are swabs and sponge-sticks on stainless steel surfaces, thus limiting availability of quantitative analytical results which could be used for statistical analysis. Second, agreement needs to be reached with the analytical laboratory on the definition of the countable range and on reporting of data below the limit of quantitation. Finally, the distribution of the microbial field data and statistical methods needed for a particular data set could vary depending on these data that were collected, and guidance is needed on appropriate statistical software for handling microbial data. Further, research is needed to develop better methods to estimate human exposure from pathogens using environmental data collected from a field setting.
Collapse
Affiliation(s)
- Erin E Silvestri
- United States Environmental Protection Agency, National Homeland Security Research Center, Threat Consequence Assessment Division, Cincinnati, Ohio, USA
| | - Cynthia Yund
- United States Environmental Protection Agency, National Homeland Security Research Center, Threat Consequence Assessment Division, Cincinnati, Ohio, USA
| | - Sarah Taft
- United States Environmental Protection Agency, National Homeland Security Research Center, Threat Consequence Assessment Division, Cincinnati, Ohio, USA
| | - Charlena Yoder Bowling
- United States Environmental Protection Agency, National Homeland Security Research Center, Threat Consequence Assessment Division, Cincinnati, Ohio, USA
| | | | | | - Eletha Brady-Roberts
- United States Environmental Protection Agency, National Homeland Security Research Center, Threat Consequence Assessment Division, Cincinnati, Ohio, USA
| | - Harry Stone
- Battelle Memorial Institute, Columbus, Ohio, USA
| | - Tonya L Nichols
- United States Environmental Protection Agency, National Homeland Security Research Center, Threat Consequence Assessment Division, Washington DC, USA
| |
Collapse
|
18
|
Schwarz NG, Loderstaedt U, Hahn A, Hinz R, Zautner AE, Eibach D, Fischer M, Hagen RM, Frickmann H. Microbiological laboratory diagnostics of neglected zoonotic diseases (NZDs). Acta Trop 2017; 165:40-65. [PMID: 26391646 DOI: 10.1016/j.actatropica.2015.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/03/2015] [Accepted: 09/04/2015] [Indexed: 02/06/2023]
Abstract
This review reports on laboratory diagnostic approaches for selected, highly pathogenic neglected zoonotic diseases, i.e. anthrax, bovine tuberculosis, brucellosis, echinococcosis, leishmaniasis, rabies, Taenia solium-associated diseases (neuro-/cysticercosis & taeniasis) and trypanosomiasis. Diagnostic options, including microscopy, culture, matrix-assisted laser-desorption-ionisation time-of-flight mass spectrometry, molecular approaches and serology are introduced. These procedures are critically discussed regarding their diagnostic reliability and state of evaluation. For rare diseases reliable evaluation data are scarce due to the rarity of samples. If bio-safety level 3 is required for cultural growth, but such high standards of laboratory infrastructure are not available, serological and molecular approaches from inactivated sample material might be alternatives. Multiple subsequent testing using various test platforms in a stepwise approach may improve sensitivity and specificity. Cheap and easy to use tests, usually called "rapid diagnostic tests" (RDTs) may impact disease control measures, but should not preclude developing countries from state of the art diagnostics.
Collapse
|
19
|
Waller DF, Hew BE, Holdaway C, Jen M, Peckham GD. Rapid Detection of Bacillus anthracis Spores Using Immunomagnetic Separation and Amperometry. BIOSENSORS-BASEL 2016; 6:bios6040061. [PMID: 27999382 PMCID: PMC5192381 DOI: 10.3390/bios6040061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/09/2016] [Accepted: 12/14/2016] [Indexed: 01/04/2023]
Abstract
Portable detection and quantitation methods for Bacillus anthracis (anthrax) spores in pure culture or in environmental samples are lacking. Here, an amperometric immunoassay has been developed utilizing immunomagnetic separation to capture the spores and remove potential interferents from test samples followed by amperometric measurement on a field-portable instrument. Antibody-conjugated magnetic beads and antibody-conjugated glucose oxidase were used in a sandwich format for the capture and detection of target spores. Glucose oxidase activity of spore pellets was measured indirectly via amperometry by applying a bias voltage after incubation with glucose, horseradish peroxidase, and the electron mediator 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid). Target capture was mediated by polyclonal antisera, whereas monoclonal antibodies were used for signal generation. This strategy maximized sensitivity (500 target spores, 5000 cfu/mL), while also providing a good specificity for Bacillus anthracis spores. Minimal signal deviation occurs in the presence of environmental interferents including soil and modified pH conditions, demonstrating the strengths of immunomagnetic separation. The simultaneous incubation of capture and detection antibodies and rapid substrate development (5 min) result in short sample-to-signal times (less than an hour). With attributes comparable or exceeding that of ELISA and LFDs, amperometry is a low-cost, low-weight, and practical method for detecting anthrax spores in the field.
Collapse
Affiliation(s)
- David F Waller
- Black Ivory Biotech, Inc., P.O. Box 893128, Mililani, HI 96789, USA.
| | - Brian E Hew
- Black Ivory Biotech, Inc., P.O. Box 893128, Mililani, HI 96789, USA.
| | - Charlie Holdaway
- Holatron Systems, LLC., 833 Ilaniwai Street, Suite 2, Honolulu, HI 96813, USA.
| | - Michael Jen
- Mike Jen Software Services, 1035 Aster Ave #2103, Sunnyvale, CA 94086, USA.
| | - Gabriel D Peckham
- Black Ivory Biotech, Inc., P.O. Box 893128, Mililani, HI 96789, USA.
| |
Collapse
|
20
|
The effect of growth temperature on the nanoscale biochemical surface properties of Yersinia pestis. Anal Bioanal Chem 2016; 408:5585-91. [PMID: 27259520 DOI: 10.1007/s00216-016-9659-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
Abstract
Yersinia pestis, the causative agent of plague, has been responsible for several recurrent, lethal pandemics in history. Currently, it is an important pathogen to study owing to its virulence, adaptation to different environments during transmission, and potential use in bioterrorism. Here, we report on the changes to Y. pestis surfaces in different external microenvironments, specifically culture temperatures (6, 25, and 37 °C). Using nanoscale imaging coupled with functional mapping, we illustrate that changes in the surfaces of the bacterium from a morphological and biochemical standpoint can be analyzed simultaneously using atomic force microscopy. The results from functional mapping, obtained at a single cell level, show that the density of lipopolysaccharide (measured via terminal N-acetylglucosamine) on Y. pestis grown at 37 °C is only slightly higher than cells grown at 25 °C, but nearly three times higher than cells maintained at 6 °C for an extended period of time, thereby demonstrating that adaptations to different environments can be effectively captured using this technique. This nanoscale evaluation provides a new microscopic approach to study nanoscale properties of bacterial pathogens and investigate adaptations to different external environments.
Collapse
|
21
|
Hutchison JR, Erikson RL, Sheen AM, Ozanich RM, Kelly RT. Reagent-free and portable detection of Bacillus anthracis spores using a microfluidic incubator and smartphone microscope. Analyst 2016; 140:6269-76. [PMID: 26266749 DOI: 10.1039/c5an01304f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bacillus anthracis is the causative agent of anthrax and can be contracted by humans and herbivorous mammals by inhalation, ingestion, or cutaneous exposure to bacterial spores. Due to its stability and disease potential, B. anthracis is a recognized biothreat agent and robust detection and viability methods are needed to identify spores from unknown samples. Here we report the use of smartphone-based microscopy (SPM) in combination with a simple microfluidic incubation device (MID) to detect 50 to 5000 B. anthracis Sterne spores in 3 to 5 hours. This technique relies on optical monitoring of the conversion of the ∼1 μm spores to the filamentous vegetative cells that range from tens to hundreds of micrometers in length. This distinguishing filament formation is unique to B. anthracis as compared to other members of the Bacillus cereus group. A unique feature of this approach is that the sample integrity is maintained, and the vegetative biomass can be removed from the chip for secondary molecular analysis such as PCR. Compared with existing chip-based and rapid viability PCR methods, this new approach reduces assay time by almost half, and is highly sensitive, specific, and cost effective.
Collapse
Affiliation(s)
- Janine R Hutchison
- Chemical Biological Signatures Science, National Security Directorate, Pacific Northwest National Laboratory, P. O. Box 999, Richland, Washington 99352, USA.
| | | | | | | | | |
Collapse
|
22
|
Differential detection of a surrogate biological threat agent ( Bacillus globigii ) with a portable surface plasmon resonance biosensor. Biosens Bioelectron 2016; 78:160-166. [DOI: 10.1016/j.bios.2015.11.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/23/2022]
|
23
|
D'Amelio E, Gentile B, Lista F, D'Amelio R. Historical evolution of human anthrax from occupational disease to potentially global threat as bioweapon. ENVIRONMENT INTERNATIONAL 2015; 85:133-146. [PMID: 26386727 DOI: 10.1016/j.envint.2015.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
PURPOSE Anthrax is caused by Bacillus anthracis, which can naturally infect livestock, wildlife and occupationally exposed humans. However, for its resistance due to spore formation, ease of dissemination, persistence in the environment and high virulence, B. anthracis has been considered the most serious bioterrorism agent for a long time. During the last century anthrax evolved from limited natural disease to potentially global threat if used as bioweapon. Several factors may mitigate the consequences of an anthrax attack, including 1. the capability to promptly recognize and manage the illness and its public health consequences; 2. the limitation of secondary contamination risk through an appropriate decontamination; and 3. the evolution of genotyping methods (for microbes characterization at high resolution level) that can influence the course and/or focus of investigations, impacting the response of the government to an attack. METHODS A PubMed search has been done using the key words “bioterrorism anthrax”. RESULTS Over one thousand papers have been screened and the most significant examined to present a comprehensive literature review in order to discuss the current knowledge and strategies in preparedness for a possible deliberate release of B. anthracis spores and to indicate the most current and complete documents in which to deepen. CONCLUSIONS The comprehensive analysis of the two most relevant unnatural anthrax release events, Sverdlovsk in the former Soviet Union (1979) and the contaminated letters in the USA (2001), shows that inhalational anthrax may easily and cheaply be spread resulting in serious consequences. The damage caused by an anthrax attack can be limited if public health organization, first responders, researchers and investigators will be able to promptly manage anthrax cases and use new technologies for decontamination methods and in forensic microbiology.
Collapse
Affiliation(s)
| | - Bernardina Gentile
- Histology and Molecular Biology Section, Army Medical Research Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Florigio Lista
- Histology and Molecular Biology Section, Army Medical Research Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Raffaele D'Amelio
- Sapienza University of Rome, Department of Clinical and Molecular Medicine, S. Andrea University Hospital, Via di Grottarossa 1039, 00189 Rome, Italy.
| |
Collapse
|
24
|
Płaza G, Chojniak J, Rudnicka K, Paraszkiewicz K, Bernat P. Detection of biosurfactants in Bacillus species: genes and products identification. J Appl Microbiol 2015; 119:1023-34. [PMID: 26171834 DOI: 10.1111/jam.12893] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/15/2015] [Accepted: 06/22/2015] [Indexed: 11/30/2022]
Abstract
AIM To screen environmental Bacillus strains for detection of genes encoding the enzymes involved in biosurfactant synthesis and to evaluate their products e.g. surfactin, iturin and fengycin. MATERIALS AND RESULTS The taxonomic identification of isolated from the environment Bacillus strains was performed by Microgene ID Bacillus panel and GEN III Biolog system. The polymerase chain reaction (PCR) strategy for screening of genes in Bacillus strains was set up. Liquid chromatography-mass spectrometry (LC-MS/MS) method was used for the identification of lipopeptides (LPs). All studied strains exhibited the presence of srfAA gene and produced surfactin mostly as four homologues (C13 to C16). Moreover, in 2 strains (KP7, T'-1) simultaneous co-production of 3 biosurfactants: surfactin, iturin and fengycin was observed. Additionally, it was found out that isolate identified as Bacillus subtilis ssp. subtilis (KP7), beside LPs co-production, synthesizes surfactin with the efficiency much higher than other studied strains (40·2 mg l(-1) ) and with the yield ranging from 0·8 to 8·3 mg l(-1) . CONCLUSION We showed that the combined methodology based on PCR and LC-MS/MS technique is an optimal tool for the detection of genes encoding enzymes involved in biosurfactant synthesis as well as their products, e.g. surfactin, iturin and fengycin. This approach improves the screening and the identification of environmental Bacillus co-producing biosurfactants-stimulating and facilitating the development of this area of science. SIGNIFICANCE AND IMPACT OF THE STUDY The findings of this work will help to improve screening of biosurfactant producers. Discovery of novel biosurfactants and biosurfactants co-production ability has shed light on their new application fields and for the understanding of their interactions and properties.
Collapse
Affiliation(s)
- G Płaza
- Department of Environmental Microbiology, Institute for Ecology of Industrial Areas, Katowice, Poland
| | - J Chojniak
- Department of Environmental Microbiology, Institute for Ecology of Industrial Areas, Katowice, Poland
| | - K Rudnicka
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - K Paraszkiewicz
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - P Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
25
|
Kempsell KE, Kidd SP, Lewandowski K, Elmore MJ, Charlton S, Yeates A, Cuthbertson H, Hallis B, Altmann DM, Rogers M, Wattiau P, Ingram RJ, Brooks T, Vipond R. Whole genome protein microarrays for serum profiling of immunodominant antigens of Bacillus anthracis. Front Microbiol 2015; 6:747. [PMID: 26322022 PMCID: PMC4534840 DOI: 10.3389/fmicb.2015.00747] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/07/2015] [Indexed: 01/26/2023] Open
Abstract
A commercial Bacillus anthracis (Anthrax) whole genome protein microarray has been used to identify immunogenic Anthrax proteins (IAP) using sera from groups of donors with (a) confirmed B. anthracis naturally acquired cutaneous infection, (b) confirmed B. anthracis intravenous drug use-acquired infection, (c) occupational exposure in a wool-sorters factory, (d) humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups. Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However, a number of other chromosomally-located and plasmid encoded open reading frame proteins were also recognized by infected or exposed groups in comparison to controls. Some of these antigens e.g., BA4182 are not recognized by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo that are not currently found in the UK licensed Anthrax Vaccine (AVP). These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis “infectome.” These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesized, tested in mouse immunogenicity studies and validated in parallel using human sera from the same study.
Collapse
Affiliation(s)
| | | | | | | | - Sue Charlton
- Public Health England Porton Down, Salisbury, UK
| | | | | | | | - Daniel M Altmann
- Department of Medicine, University College London, Hammersmith Hospital London, UK
| | - Mitch Rogers
- Public Health England Porton Down, Salisbury, UK
| | - Pierre Wattiau
- Department of Bacterial Diseases, CODA-CERVA (Veterinary and Agrochemical Research Centre) Brussels, Belgium
| | - Rebecca J Ingram
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast Belfast, UK
| | - Tim Brooks
- Public Health England Porton Down, Salisbury, UK
| | | |
Collapse
|
26
|
Wang C, Ehrhardt CJ, Yadavalli VK. Single cell profiling of surface carbohydrates on Bacillus cereus. J R Soc Interface 2015; 12:rsif.2014.1109. [PMID: 25505137 DOI: 10.1098/rsif.2014.1109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell surface carbohydrates are important to various bacterial activities and functions. It is well known that different types of Bacillus display heterogeneity of surface carbohydrate compositions, but detection of their presence, quantitation and estimation of variation at the single cell level have not been previously solved. Here, using atomic force microscopy (AFM)-based recognition force mapping coupled with lectin probes, the specific carbohydrate distributions of N-acetylglucosamine and mannose/glucose were detected, mapped and quantified on single B. cereus surfaces at the nanoscale across the entire cell. Further, the changes of the surface carbohydrate compositions from the vegetative cell to spore were shown. These results demonstrate AFM-based 'recognition force mapping' as a versatile platform to quantitatively detect and spatially map key bacterial surface biomarkers (such as carbohydrate compositions), and monitor in situ changes in surface biochemical properties during intracellular activities at the single cell level.
Collapse
Affiliation(s)
- Congzhou Wang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Christopher J Ehrhardt
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
27
|
Advances in Anthrax Detection: Overview of Bioprobes and Biosensors. Appl Biochem Biotechnol 2015; 176:957-77. [PMID: 25987133 DOI: 10.1007/s12010-015-1625-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 04/08/2015] [Indexed: 12/22/2022]
Abstract
Anthrax is an infectious disease caused by Bacillus anthracis. Although anthrax commonly affects domestic and wild animals, it causes a rare but lethal infection in humans. A variety of techniques have been introduced and evaluated to detect anthrax using cultures, polymerase chain reaction, and immunoassays to address the potential threat of anthrax being used as a bioweapon. The high-potential harm of anthrax in bioterrorism requires sensitive and specific detection systems that are rapid, field-ready, and real-time monitoring. Here, we provide a systematic overview of anthrax detection probes with their potential applications in various ultra-sensitive diagnostic systems.
Collapse
|
28
|
Muller J, Gwozdz J, Hodgeman R, Ainsworth C, Kluver P, Czarnecki J, Warner S, Fegan M. Diagnostic performance characteristics of a rapid field test for anthrax in cattle. Prev Vet Med 2015; 120:277-82. [PMID: 25956134 DOI: 10.1016/j.prevetmed.2015.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
Although diagnosis of anthrax can be made in the field with a peripheral blood smear, and in the laboratory with bacterial culture or molecular based tests, these tests require either considerable experience or specialised equipment. Here we report on the evaluation of the diagnostic sensitivity and specificity of a simple and rapid in-field diagnostic test for anthrax, the anthrax immunochromatographic test (AICT). The AICT detects the protective antigen (PA) component of the anthrax toxin present within the blood of an animal that has died from anthrax. The test provides a result in 15min and offers the advantage of avoiding the necessity for on-site necropsy and subsequent occupational risks and environmental contamination. The specificity of the test was determined by testing samples taken from 622 animals, not infected with Bacillus anthracis. Diagnostic sensitivity was estimated on samples taken from 58 animals, naturally infected with B. anthracis collected over a 10-year period. All samples used to estimate the diagnostic sensitivity and specificity of the AICT were also tested using the gold standard of bacterial culture. The diagnostic specificity of the test was estimated to be 100% (99.4-100%; 95% CI) and the diagnostic sensitivity was estimated to be 93.1% (83.3-98.1%; 95% CI) (Clopper-Pearson method). Four samples produced false negative AICT results. These were among 9 samples, all of which tested positive for B. anthracis by culture, where there was a time delay between collection and testing of >48h and/or the samples were collected from animals that were >48h post-mortem. A statistically significant difference (P<0.001; Fishers exact test) was found between the ability of the AICT to detect PA in samples from culture positive animals <48h post-mortem, 49 of 49, Se=100% (92.8-100%; 95% CI) compared with samples tested >48h post-mortem 5 of 9 Se=56% (21-86.3%; 95% CI) (Clopper-Pearson method). Based upon these results a post hoc cut-off for use of the AICT of 48h post-mortem was applied, Se=100% (92.8-100%; 95% CI) and Sp=100% (99.4-100%; 95% CI). The high diagnostic sensitivity and specificity and the simplicity of the AICT enables it to be used for active surveillance in areas with a history of anthrax, or used as a preliminary tool in investigating sudden, unexplained death in cattle.
Collapse
Affiliation(s)
- Janine Muller
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, La Trobe University Research and Development Park, Bundoora, VIC 3086, Australia
| | - Jacek Gwozdz
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, La Trobe University Research and Development Park, Bundoora, VIC 3086, Australia
| | - Rachel Hodgeman
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, La Trobe University Research and Development Park, Bundoora, VIC 3086, Australia
| | - Catherine Ainsworth
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, La Trobe University Research and Development Park, Bundoora, VIC 3086, Australia
| | - Patrick Kluver
- Livestock Biosecurity Networks, National Farmers Federation House, Canberra, ACT 2601, Australia
| | - Jill Czarnecki
- Biological Defense Research Directorate, Naval Medical Research Center-Frederick, 8400 Research Plaza, Fort Detrick, MD 21702, USA
| | - Simone Warner
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, La Trobe University Research and Development Park, Bundoora, VIC 3086, Australia
| | - Mark Fegan
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, La Trobe University Research and Development Park, Bundoora, VIC 3086, Australia.
| |
Collapse
|
29
|
In Silico Genomic Fingerprints of the Bacillus anthracis Group Obtained by Virtual Hybridization. MICROARRAYS 2015; 4:84-97. [PMID: 27600214 PMCID: PMC4996382 DOI: 10.3390/microarrays4010084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 11/17/2022]
Abstract
In this study we evaluate the capacity of Virtual Hybridization to identify between highly related bacterial strains. Eight genomic fingerprints were obtained by virtual hybridization for the Bacillus anthracis genome set, and a set of 15,264 13-nucleotide short probes designed to produce genomic fingerprints unique for each organism. The data obtained from each genomic fingerprint were used to obtain hybridization patterns simulating a DNA microarray. Two virtual hybridization methods were used: the Direct and the Extended method to identify the number of potential hybridization sites and thus determine the minimum sensitivity value to discriminate between genomes with 99.9% similarity. Genomic fingerprints were compared using both methods and phylogenomic trees were constructed to verify that the minimum detection value is 0.000017. Results obtained from the genomic fingerprints suggest that the distribution in the trees is correct, as compared to other taxonomic methods. Specific virtual hybridization sites for each of the genomes studied were also identified.
Collapse
|
30
|
Zasada AA, Formińska K, Zacharczuk K, Jacob D, Grunow R. Comparison of eleven commercially available rapid tests for detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis. Lett Appl Microbiol 2015; 60:409-13. [PMID: 25598285 DOI: 10.1111/lam.12392] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 11/30/2022]
Abstract
UNLABELLED Yersinia pestis, Bacillus anthracis and Francisella tularensis cause serious zoonotic diseases and have the potential to cause high morbidity and mortality in humans. In case of natural outbreaks and deliberate or accidental release of these pathogens rapid detection of the bacteria is crucial for limitation of negative effects of the release. In the present study, we evaluated 11 commercially available rapid test kits for the detection of Y. pestis, B. anthracis and F. tularensis in terms of sensitivity, specificity and simplicity of the procedure. The results revealed that rapid and easy-to-perform lateral flow assays for detection of highly pathogenic bacteria have very limited sensitivity. In contrast, the immunofiltration assays showed high sensitivity but limited specificity and required a too complicated procedure to be applied in the field by nonlaboratory workers (e.g. First Responders like fire, police and emergency medical personnel). Each sample - whether tested negative or positive by the rapid tests - should be retested in a reference laboratory using validated methods. SIGNIFICANCE AND IMPACT OF THE STUDY Rapid detection of highly pathogenic bacteria causing anthrax, plague and tularemia is crucial for the limitation of negative effects of a potential release (natural, accidental or deliberate). In the study, commercially available rapid tests for detection of Bacillus anthracis, Yersinia pestis and Francisella tularensis were investigated in terms of sensitivity, specificity and ease-to-perform. The study showed problems which could be faced during testing and results interpretation. Conclusions from this study should be helpful not only in selection of the most appropriate test for particular group of First Responders but also in undertaking decisions in situation of a contamination suspicion which have high social and economical impacts.
Collapse
Affiliation(s)
- A A Zasada
- Department of Bacteriology, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | | | | | | | | |
Collapse
|
31
|
Jończyk-Matysiak E, Kłak M, Weber-Dąbrowska B, Borysowski J, Górski A. Possible use of bacteriophages active against Bacillus anthracis and other B. cereus group members in the face of a bioterrorism threat. BIOMED RESEARCH INTERNATIONAL 2014; 2014:735413. [PMID: 25247187 PMCID: PMC4163355 DOI: 10.1155/2014/735413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/25/2014] [Accepted: 07/25/2014] [Indexed: 12/14/2022]
Abstract
Anthrax is an infectious fatal disease with epidemic potential. Nowadays, bioterrorism using Bacillus anthracis is a real possibility, and thus society needs an effective weapon to neutralize this threat. The pathogen may be easily transmitted to human populations. It is easy to store, transport, and disseminate and may survive for many decades. Recent data strongly support the effectiveness of bacteriophage in treating bacterial diseases. Moreover, it is clear that bacteriophages should be considered a potential incapacitative agent against bioterrorism using bacteria belonging to B. cereus group, especially B. anthracis. Therefore, we have reviewed the possibility of using bacteriophages active against Bacillus anthracis and other species of the B. cereus group in the face of a bioterrorism threat.
Collapse
Affiliation(s)
- Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Marlena Kłak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, The Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
- Department of Clinical Immunology, Transplantation Institute, The Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| |
Collapse
|
32
|
Yang F, Zuo X, Li Z, Deng W, Shi J, Zhang G, Huang Q, Song S, Fan C. A bubble-mediated intelligent microscale electrochemical device for single-step quantitative bioassays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:4671-6. [PMID: 24729272 DOI: 10.1002/adma.201400451] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/09/2014] [Indexed: 05/14/2023]
Abstract
An intelligent microscale electrochemical device (iMED) for one-step, quantitative and multiplexed electrochemical detection of biomarkers for infectious diseases and tumors is developed. A "plug-in-cartridge" technology is introduced and adapted for use in screen-printed electrodes (SPEs) in electrochemical devices. Using this iMED, biomarkers for two types of tumors and one infectious disease are detected at sub-ng/mL levels in less than 30 min.
Collapse
Affiliation(s)
- Fan Yang
- Division of Physical, Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Microscale Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China; School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Recent literature review of soil processing methods for recovery of Bacillus anthracis spores. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0932-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
34
|
van Tongeren SP, Roest HIJ, Degener JE, Harmsen HJM. Bacillus anthracis-like bacteria and other B. cereus group members in a microbial community within the International Space Station: a challenge for rapid and easy molecular detection of virulent B. anthracis. PLoS One 2014; 9:e98871. [PMID: 24945323 PMCID: PMC4063717 DOI: 10.1371/journal.pone.0098871] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/08/2014] [Indexed: 11/18/2022] Open
Abstract
For some microbial species, such as Bacillus anthracis, the etiologic agent of the disease anthrax, correct detection and identification by molecular methods can be problematic. The detection of virulent B. anthracis is challenging due to multiple virulence markers that need to be present in order for B. anthracis to be virulent and its close relationship to Bacillus cereus and other members of the B. cereus group. This is especially the case in environments where build-up of Bacillus spores can occur and several representatives of the B. cereus group may be present, which increases the chance for false-positives. In this study we show the presence of B. anthracis-like bacteria and other members of the B. cereus group in a microbial community within the human environment of the International Space Station and their preliminary identification by using conventional culturing as well as molecular techniques including 16S rDNA sequencing, PCR and real-time PCR. Our study shows that when monitoring the microbial hygiene in a given human environment, health risk assessment is troublesome in the case of virulent B. anthracis, especially if this should be done with rapid, easy to apply and on-site molecular methods.
Collapse
Affiliation(s)
- Sandra P. van Tongeren
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| | - Hendrik I. J. Roest
- Department of Bacteriology & TSEs, Central Veterinary Institute (CVI), part of Wageningen UR, Lelystad, The Netherlands
| | - John E. Degener
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hermie J. M. Harmsen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
35
|
Hohnadel M, Felden L, Fijuljanin D, Jouette S, Chollet R. A new ultrasonic high-throughput instrument for rapid DNA release from microorganisms. J Microbiol Methods 2014; 99:71-80. [DOI: 10.1016/j.mimet.2014.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 11/25/2022]
|
36
|
Srinath R, Siva R, Babu S. B
acillus anthracis
-Like Strain-Carrying P
seudomonas
FPVA
Gene Occurs as Endophyte in Vegetables. J Food Saf 2014. [DOI: 10.1111/jfs.12095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- R. Srinath
- School of Biosciences and Technology; VIT University; Vellore 632014 India
| | - R. Siva
- School of Biosciences and Technology; VIT University; Vellore 632014 India
| | - S. Babu
- School of Biosciences and Technology; VIT University; Vellore 632014 India
| |
Collapse
|
37
|
Chenau J, Fenaille F, Caro V, Haustant M, Diancourt L, Klee SR, Junot C, Ezan E, Goossens PL, Becher F. Identification and validation of specific markers of Bacillus anthracis spores by proteomics and genomics approaches. Mol Cell Proteomics 2013; 13:716-32. [PMID: 24379445 DOI: 10.1074/mcp.m113.032946] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bacillus anthracis is the causative bacteria of anthrax, an acute and often fatal disease in humans. The infectious agent, the spore, represents a real bioterrorism threat and its specific identification is crucial. However, because of the high genomic relatedness within the Bacillus cereus group, it is still a real challenge to identify B. anthracis spores confidently. Mass spectrometry-based tools represent a powerful approach to the efficient discovery and identification of such protein markers. Here we undertook comparative proteomics analyses of Bacillus anthracis, cereus and thuringiensis spores to identify proteoforms unique to B. anthracis. The marker discovery pipeline developed combined peptide- and protein-centric approaches using liquid chromatography coupled to tandem mass spectrometry experiments using a high resolution/high mass accuracy LTQ-Orbitrap instrument. By combining these data with those from complementary bioinformatics approaches, we were able to highlight a dozen novel proteins consistently observed across all the investigated B. anthracis spores while being absent in B. cereus/thuringiensis spores. To further demonstrate the relevance of these markers and their strict specificity to B. anthracis, the number of strains studied was extended to 55, by including closely related strains such as B. thuringiensis 9727, and above all the B. cereus biovar anthracis CI, CA strains that possess pXO1- and pXO2-like plasmids. Under these conditions, the combination of proteomics and genomics approaches confirms the pertinence of 11 markers. Genes encoding these 11 markers are located on the chromosome, which provides additional targets complementary to the commonly used plasmid-encoded markers. Last but not least, we also report the development of a targeted liquid chromatography coupled to tandem mass spectrometry method involving the selection reaction monitoring mode for the monitoring of the 4 most suitable protein markers. Within a proof-of-concept study, we demonstrate the value of this approach for the further high throughput and specific detection of B. anthracis spores within complex samples.
Collapse
Affiliation(s)
- Jérôme Chenau
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, 91191 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cable ML, Kirby JP, Gray HB, Ponce A. Enhancement of anion binding in lanthanide optical sensors. Acc Chem Res 2013; 46:2576-84. [PMID: 24032446 DOI: 10.1021/ar400050t] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the design of molecular sensors, researchers exploit binding interactions that are usually defined in terms of topology and charge complementarity. The formation of complementary arrays of highly cooperative, noncovalent bonding networks facilitates protein-ligand binding, leading to motifs such as the "lock-and-key". Synthetic molecular sensors often employ metal complexes as key design elements as a way to construct a binding site with the desired shape and charge to achieve target selectivity. In transition metal complexes, coordination number, structure and ligand dynamics are governed primarily by a combination of inner-sphere covalent and outer-sphere noncovalent interactions. These interactions provide a rich variable space that researchers can use to tune structure, stability, and dynamics. In contrast, lanthanide(III)-ligand complex formation and ligand-exchange dynamics are dominated by reversible electrostatic and steric interactions, because the unfilled f shell is shielded by the larger, filled d shell. Luminescent lanthanides such as terbium, europium, dysprosium, and samarium display many photophysical properties that make them excellent candidates for molecular sensor applications. Complexes of lanthanide ions act as receptors that exhibit a detectable change in metal-based luminescence upon binding of an anion. In our work on sensors for detection of dipicolinate, the unique biomarker of bacterial spores, we discovered that the incorporation of an ancillary ligand (AL) can enhance binding constants of target anions to lanthanide ions by as much as two orders of magnitude. In this Account, we show that selected ALs in lanthanide/anion systems greatly improve sensor performance for medical, planetary science, and biodefense applications. We suggest that the observed anion binding enhancement could result from an AL-induced increase in positive charge at the lanthanide ion binding site. This effect depends on lanthanide polarizability, which can be established from the ionization energy of Ln(3+) → Ln(4+). These results account for the order Tb(3+) > Dy(3+) > Eu(3+) ≈ Sm(3+). As with many lanthanide properties, ranging from hydration enthalpy to vaporization energy, this AL-induced enhancement shows a large discrepancy between Tb(3+) and Eu(3+) despite their similarity in size, a phenomenon known as the "gadolinium break". This discrepancy, based on the unusual stabilities of the Eu(2+) and Tb(4+) oxidation states, results from the half-shell effect, as both of these ions have half-filled 4f-shells. The high polarizability of Tb(3+) explains the extraordinarily large increase in the binding affinity of anions for terbium compared to other lanthanides. We recommend that researchers consider this AL-induced enhancement when designing lanthanide-macrocycle optical sensors. Ancillary ligands also can reduce the impact of interfering species such as phosphate commonly found in environmental and physiological samples.
Collapse
Affiliation(s)
- Morgan L. Cable
- Jet Propulsion Laboratory, Pasadena, California 91109, United States
| | | | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Adrian Ponce
- Jet Propulsion Laboratory, Pasadena, California 91109, United States
| |
Collapse
|
39
|
Comparative evaluation of eleven commercial DNA extraction kits for real-time PCR detection of Bacillus anthracis spores in spiked dairy samples. Int J Food Microbiol 2013; 170:29-37. [PMID: 24291177 DOI: 10.1016/j.ijfoodmicro.2013.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 09/02/2013] [Accepted: 10/26/2013] [Indexed: 11/23/2022]
Abstract
Spores of Bacillus anthracis are highly resistant and can survive conditions used for food preservation. Sample size and complexity represent the major hurdles for pathogen detection in food-related settings. Eleven commercial DNA extraction kits were evaluated for detection of B. anthracis spores by quantitative real-time PCR (qPCR) in dairy products. DNA was extracted from serial dilutions of B. anthracis spores in milk powder, cream cheese, whole milk and buttermilk. Three kits (QIAamp DNA mini kit, Invisorb Food kit I and II) were determined to produce the lowest limit of detections (LODs) with equally good performance. These kits employed lysozyme and proteinase K treatments or proteinase K in combination with cethyltrimethylamonium bromide-mediated (CTAB) precipitation of cell debris for cell disruption and DNA release. The LODs for these three kits were determined as 10(2) spores/ml of distilled water, 10(3)s pores/20 mg of powdered milk and 10(4) spores/100 mg of cream cheese, respectively. Performance testing of the QIAamp DNA mini kit demonstrated a good reproducibility and appropriate detection limits from 10(3)/ml for butter milk, 10(4)/ml for whole milk and 10(4)/100 mg for low fat cream cheese. However, DNA extraction efficiency was strongly inhibited by cream cheese with higher fat contents with an increased LOD of 10(6)/100 mg spores. This study demonstrated that qPCR detection depends directly on the appropriate DNA extraction method for an individual food matrix and bacterial agent.
Collapse
|
40
|
Kim DJ, Park HC, Sohn IY, Jung JH, Yoon OJ, Park JS, Yoon MY, Lee NE. Electrical graphene aptasensor for ultra-sensitive detection of anthrax toxin with amplified signal transduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3352-3360. [PMID: 23589198 DOI: 10.1002/smll.201203245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 01/23/2013] [Indexed: 06/02/2023]
Abstract
Detection of the anthrax toxin, the protective antigen (PA), at the attomolar (aM) level is demonstrated by an electrical aptamer sensor based on a chemically derived graphene field-effect transistor (FET) platform. Higher affinity of the aptamer probes to PA in the aptamer-immobilized FET enables significant improvements in the limit of detection (LOD), dynamic range, and sensitivity compared to the antibody-immobilized FET. Transduction signal enhancement in the aptamer FET due to an increase in captured PA molecules results in a larger 30 mV/decade shift in the charge neutrality point (Vg,min ) as a sensitivity parameter, with the dynamic range of the PA concentration between 12 aM (LOD) and 120 fM. An additional signal enhancement is obtained by the secondary aptamer-conjugated gold nanoparticles (AuNPs-aptamer), which have a sandwich structure of aptamer/PA/aptamer-AuNPs, induce an increase in charge-doping in the graphene channel, resulting in a reduction of the LOD to 1.2 aM with a three-fold increase in the Vg,min shift.
Collapse
Affiliation(s)
- Duck-Jin Kim
- Department of Chemistry, Hanyang University, Seoul 133-791, Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ågren J, Hamidjaja RA, Hansen T, Ruuls R, Thierry S, Vigre H, Janse I, Sundström A, Segerman B, Koene M, Löfström C, Van Rotterdam B, Derzelle S. In silico and in vitro evaluation of PCR-based assays for the detection of Bacillus anthracis chromosomal signature sequences. Virulence 2013; 4:671-85. [PMID: 24005110 DOI: 10.4161/viru.26288] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, is a zoonotic pathogen that is relatively common throughout the world and may cause life threatening diseases in animals and humans. There are many PCR-based assays in use for the detection of B. anthracis. While most of the developed assays rely on unique markers present on virulence plasmids pXO1 and pXO2, relatively few assays incorporate chromosomal DNA markers due to the close relatedness of B. anthracis to the B. cereus group strains. For the detection of chromosomal DNA, different genes have been used, such as BA813, rpoB, gyrA, plcR, S-layer, and prophage-lambda. Following a review of the literature, an in silico analysis of all signature sequences reported for identification of B. anthracis was conducted. Published primer and probe sequences were compared for specificity against 134 available Bacillus spp. genomes. Although many of the chromosomal targets evaluated are claimed to be specific to B. anthracis, cross-reactions with closely related B. cereus and B. thuringiensis strains were often observed. Of the 35 investigated PCR assays, only 4 were 100% specific for the B. anthracis chromosome. An interlaboratory ring trial among five European laboratories was then performed to evaluate six assays, including the WHO recommended procedures, using a collection of 90 Bacillus strains. Three assays performed adequately, yielding no false positive or negative results. All three assays target chromosomal markers located within the lambdaBa03 prophage region (PL3, BA5345, and BA5357). Detection limit was further assessed for one of these highly specific assays.
Collapse
Affiliation(s)
- Joakim Ågren
- National Veterinary Institute; Department of Bacteriology; Uppsala, Sweden; Department of Biomedical Sciences and Veterinary Public Health; Swedish University of Agricultural Sciences (SLU); Uppsala, Sweden
| | - Raditijo A Hamidjaja
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven, the Netherlands
| | - Trine Hansen
- National Food Institute; Technical University of Denmark; Søborg, Denmark
| | - Robin Ruuls
- Central Veterinary Institute of Wageningen University and Research Centre; Lelystad, the Netherlands
| | - Simon Thierry
- University Paris-Est Anses; Animal Health Laboratory; Maisons-Alfort, France
| | - Håkan Vigre
- National Food Institute; Technical University of Denmark; Søborg, Denmark
| | - Ingmar Janse
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven, the Netherlands
| | - Anders Sundström
- National Veterinary Institute; Department of Bacteriology; Uppsala, Sweden
| | - Bo Segerman
- National Veterinary Institute; Department of Bacteriology; Uppsala, Sweden
| | - Miriam Koene
- Central Veterinary Institute of Wageningen University and Research Centre; Lelystad, the Netherlands
| | - Charlotta Löfström
- National Food Institute; Technical University of Denmark; Søborg, Denmark
| | - Bart Van Rotterdam
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven, the Netherlands
| | - Sylviane Derzelle
- University Paris-Est Anses; Animal Health Laboratory; Maisons-Alfort, France
| |
Collapse
|
42
|
Be NA, Thissen JB, Gardner SN, McLoughlin KS, Fofanov VY, Koshinsky H, Ellingson SR, Brettin TS, Jackson PJ, Jaing CJ. Detection of Bacillus anthracis DNA in complex soil and air samples using next-generation sequencing. PLoS One 2013; 8:e73455. [PMID: 24039948 PMCID: PMC3767809 DOI: 10.1371/journal.pone.0073455] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 07/03/2013] [Indexed: 11/19/2022] Open
Abstract
Bacillus anthracis is the potentially lethal etiologic agent of anthrax disease, and is a significant concern in the realm of biodefense. One of the cornerstones of an effective biodefense strategy is the ability to detect infectious agents with a high degree of sensitivity and specificity in the context of a complex sample background. The nature of the B. anthracis genome, however, renders specific detection difficult, due to close homology with B. cereus and B. thuringiensis. We therefore elected to determine the efficacy of next-generation sequencing analysis and microarrays for detection of B. anthracis in an environmental background. We applied next-generation sequencing to titrated genome copy numbers of B. anthracis in the presence of background nucleic acid extracted from aerosol and soil samples. We found next-generation sequencing to be capable of detecting as few as 10 genomic equivalents of B. anthracis DNA per nanogram of background nucleic acid. Detection was accomplished by mapping reads to either a defined subset of reference genomes or to the full GenBank database. Moreover, sequence data obtained from B. anthracis could be reliably distinguished from sequence data mapping to either B. cereus or B. thuringiensis. We also demonstrated the efficacy of a microbial census microarray in detecting B. anthracis in the same samples, representing a cost-effective and high-throughput approach, complementary to next-generation sequencing. Our results, in combination with the capacity of sequencing for providing insights into the genomic characteristics of complex and novel organisms, suggest that these platforms should be considered important components of a biosurveillance strategy.
Collapse
Affiliation(s)
- Nicholas A. Be
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - James B. Thissen
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Shea N. Gardner
- Global Security Directorates, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Kevin S. McLoughlin
- Global Security Directorates, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | | | | | - Sally R. Ellingson
- Department of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Thomas S. Brettin
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Paul J. Jackson
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Crystal J. Jaing
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Gonçalves LCP, Da Silva SM, DeRose PC, Ando RA, Bastos EL. Beetroot-pigment-derived colorimetric sensor for detection of calcium dipicolinate in bacterial spores. PLoS One 2013; 8:e73701. [PMID: 24019934 PMCID: PMC3760816 DOI: 10.1371/journal.pone.0073701] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 07/20/2013] [Indexed: 12/04/2022] Open
Abstract
In this proof-of-concept study, we describe the use of the main red beet pigment betanin for the quantification of calcium dipicolinate in bacterial spores, including Bacillus anthracis. In the presence of europium(III) ions, betanin is converted to a water-soluble, non-luminescent orange 1∶1 complex with a stability constant of 1.4 × 10(5) L mol(-1). The addition of calcium dipicolinate, largely found in bacterial spores, changes the color of the aqueous solution of [Eu(Bn)(+)] from orange to magenta. The limit of detection (LOD) of calcium dipicolinate is around 2.0 × 10(-6) mol L(-1) and the LOD determined for both spores, B. cereus and B. anthracis, is (1.1 ± 0.3)× 10(6) spores mL(-1). This simple, green, fast and low cost colorimetric assay was selective for calcium dipicolinate when compared to several analogous compounds. The importance of this work relies on the potential use of betalains, raw natural pigments, as colorimetric sensors for biological applications.
Collapse
Affiliation(s)
| | - Sandra Maria Da Silva
- Biosystems and Biomaterials Division, Chemical Science Technology Laboratory, National Institute of Standards and Technology. Gaithersburg, Maryland, United States of America
| | - Paul C. DeRose
- Biosystems and Biomaterials Division, Chemical Science Technology Laboratory, National Institute of Standards and Technology. Gaithersburg, Maryland, United States of America
| | - Rômulo Augusto Ando
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Erick Leite Bastos
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
44
|
Tevell Åberg A, Björnstad K, Hedeland M. Mass Spectrometric Detection of Protein-Based Toxins. Biosecur Bioterror 2013; 11 Suppl 1:S215-26. [DOI: 10.1089/bsp.2012.0072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Annica Tevell Åberg
- Annica Tevell Åberg, PhD, is a Senior Researcher; Kristian Björnstad, PhD, is a Senior Researcher; and Mikael Hedeland, PhD, is an Associate Professor and Deputy Head of Department; all at the Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), Uppsala, Sweden. Dr. Åberg and Dr. Hedeland are also affiliated with the Division of Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| | - Kristian Björnstad
- Annica Tevell Åberg, PhD, is a Senior Researcher; Kristian Björnstad, PhD, is a Senior Researcher; and Mikael Hedeland, PhD, is an Associate Professor and Deputy Head of Department; all at the Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), Uppsala, Sweden. Dr. Åberg and Dr. Hedeland are also affiliated with the Division of Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| | - Mikael Hedeland
- Annica Tevell Åberg, PhD, is a Senior Researcher; Kristian Björnstad, PhD, is a Senior Researcher; and Mikael Hedeland, PhD, is an Associate Professor and Deputy Head of Department; all at the Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), Uppsala, Sweden. Dr. Åberg and Dr. Hedeland are also affiliated with the Division of Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
45
|
Optimizing SNP microarray probe design for high accuracy microbial genotyping. J Microbiol Methods 2013; 94:303-10. [PMID: 23871857 DOI: 10.1016/j.mimet.2013.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 07/09/2013] [Accepted: 07/09/2013] [Indexed: 11/21/2022]
Abstract
Microarrays to characterize single nucleotide polymorphisms (SNPs) provide a cost-effective and rapid method (under 24h) to genotype microbes as an alternative to sequencing. We developed a pipeline for SNP discovery and microarray design that scales to 100's of microbial genomes. Here we tested various SNP probe design strategies against 8 sequenced isolates of Bacillus anthracis to compare sequence and microarray data. The best strategy allowed probe length to vary within 32-40 bp to equalize hybridization free energy. This strategy resulted in a call rate of 99.52% and concordance rate of 99.86% for finished genomes. Other probe design strategies averaged substantially lower call rates (94.65-96.41%) and slightly lower concordance rates (99.64-99.80%). These rates were lower for draft than finished genomes, consistent with higher incidence of sequencing errors and gaps. Highly accurate SNP calls were possible in complex soil and blood backgrounds down to 1000 copies, and moderately accurate SNP calls down to 100 spiked copies. The closest genome to the spiked strain was correctly identified at only 10 spiked copies. Discrepancies between sequence and array data did not alter the SNP-based phylogeny, regardless of the probe design strategy, indicating that SNP arrays can accurately place unsequenced isolates on a phylogeny.
Collapse
|
46
|
Makam SS, Majumder S, Kingston JJ, Urs RM, Tuteja U, Sripathi MH, Batra HV. Immuno capture PCR for rapid and sensitive identification of pathogenic Bacillus anthracis. World J Microbiol Biotechnol 2013; 29:2379-88. [PMID: 23793942 DOI: 10.1007/s11274-013-1406-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/17/2013] [Indexed: 11/26/2022]
Abstract
Immuno capture PCR (IPCR) is a technique capable of detecting the pathogens with high specificity and sensitivity. Rapid and accurate detection of Bacillus anthracis was achieved using anti-EA1 antibodies to capture the cells and two primer sets targeting the virulence factors of the pathogen i.e., protective antigen (pag) and capsule (cap) in an IPCR format. Monoclonal antibodies specific to B. anthracis were generated against extractable antigen 1 protein and used as capture antibody onto 96 well polystyrene plates. Following the binding of the pathogen, the DNA extraction was carried out in the well itself and further processed for PCR assay. We compared IPCR described here with conventional duplex PCR using the same primers and sandwich ELISA using the monoclonal antibodies developed in the present study. IPCR was capable of detecting as few as 10 and 100 cfu ml⁻¹ of bacterial cells and spores, respectively. IPCR was found to be 2-3 logs more sensitive than conventional duplex PCR and the sandwich ELISA. The effect of other bacteria and any organic materials on IPCR was also analyzed and found that this method was robust with little change in the sensitivity in the presence of interfering agents. Moreover, we could demonstrate a simple process of microwave treatment for spore disruption which otherwise are resistant to chemical treatments. Also, the IPCR could clearly distinguish the pathogenic and nonpathogenic strains of B. anthracis in the same assay. This can help in saving resources on unnecessary decontamination procedures during false alarms.
Collapse
Affiliation(s)
- Shivakiran S Makam
- Microbiology Division, Defence Food Research Laboratory, Siddartha Nagar, Mysore, 570011, Karnataka, India
| | | | | | | | | | | | | |
Collapse
|
47
|
The use of colorimetric sensor arrays to discriminate between pathogenic bacteria. PLoS One 2013; 8:e62726. [PMID: 23671629 PMCID: PMC3650032 DOI: 10.1371/journal.pone.0062726] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/25/2013] [Indexed: 11/19/2022] Open
Abstract
A colorimetric sensor array is a high-dimensional chemical sensor that is cheap, compact, disposable, robust, and easy to operate, making it a good candidate technology to detect pathogenic bacteria, especially potential bioterrorism agents like Yersinia pestis and Bacillus anthracis which feature on the Center for Disease Control and Prevention's list of potential biothreats. Here, a colorimetric sensor array was used to continuously monitor the volatile metabolites released by bacteria in solid media culture in an Advisory Committee on Dangerous Pathogen Containment Level 3 laboratory. At inoculum concentrations as low as 8 colony-forming units per plate, 4 different bacterial species were identified with 100% accuracy using logistic regression to classify the kinetic profile of sensor responses to culture headspace gas. The sensor array was able to further discriminate between different strains of the same species, including 5 strains of Yersinia pestis and Bacillus anthracis. These preliminary results suggest that disposable colorimetric sensor arrays can be an effective, low-cost tool to identify pathogenic bacteria.
Collapse
|
48
|
Double-color fluorescence in situ hybridization (FISH) for the detection of Bacillus anthracis spores in environmental samples with a novel permeabilization protocol. J Microbiol Methods 2013; 93:177-84. [PMID: 23523967 DOI: 10.1016/j.mimet.2013.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/10/2013] [Accepted: 03/10/2013] [Indexed: 11/22/2022]
Abstract
For anti-bioterrorism measures against the use of Bacillus anthracis, a double-color fluorescence in situ hybridization (FISH) is proposed, for the rapid and specific detection of B. anthracis. The probes were designed based on the differences in 16S and 23S rRNA genes of B. cereus group. A new permeabilization protocol was developed to enhance the permeability of FISH probes into B. anthracis spores. The highest detection rate (90.8 ± 0.69) of B. anthracis spores by FISH was obtained with successive incubation steps with 50% ethanol at 80 °C, a mixture of SDS/DTT solution (10mg/ml SDS, 50mM DTT) at 65 °C and finally in a lysozyme solution (20mg/ml) at 37 °C for 30 min each. This protocol was evaluated for the detection of B. anthracis spores in soil and air samples after adding formalin-fixed spores at different densities. The results have proven the success of double-color FISH in detecting B. anthracis spores in air samples in the range of 10(3) spores/m(3) and above. Conversely, for detecting B. anthracis spores in a soil sample, the lowest detection limit was found to be 10(7) spores/g dry soils. These results confirm the applicability of the developed permeabilization protocol, combined with the double-color FISH technique in specific detection of B. anthracis in soil and air samples.
Collapse
|
49
|
Liu D. Technical Advances in Veterinary Diagnostic Microbiology. ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY 2013. [PMCID: PMC7121739 DOI: 10.1007/978-1-4614-3970-7_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Forming a significant part of biomass on earth, microorganisms are renowned for their abundance and diversity. From submicroscopic infectious particles (viruses), small unicellular cells (bacteria and yeasts) to multinucleate and multicellular organisms (filamentous fungi, protozoa, and helminths), microorganisms have found their way into virtually every environmental niche, and show little restrain in making their presence felt. While a majority of microorganisms are free-living and involved in the degradation of plant debris and other organic materials, others lead a symbiotic, mutually beneficial life within their hosts. In addition, some microorganisms have the capacity to take advantage of temporary weaknesses in animal and human hosts, causing notable morbidity and mortality. Because clinical manifestations in animals and humans resulting from infections with various microorganisms are often nonspecific (e.g., general malaise and fever), it is necessary to apply laboratory diagnostic means to identify the culprit organisms for treatment and prevention purposes.
Collapse
|
50
|
Ghosh N, Gupta G, Boopathi M, Pal V, Singh AK, Gopalan N, Goel AK. Surface Plasmon Resonance Biosensor for Detection of Bacillus anthracis, the Causative Agent of Anthrax from Soil Samples Targeting Protective Antigen. Indian J Microbiol 2012; 53:48-55. [PMID: 24426078 DOI: 10.1007/s12088-012-0334-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/31/2012] [Indexed: 01/29/2023] Open
Abstract
Bacillus anthracis, the causative agent of anthrax is one of the most important biological warfare agents. In this study, surface plasmon resonance (SPR) technology was used for indirect detection of B. anthracis by detecting protective antigen (PA), a common toxin produced by all live B. anthracis bacteria. For development of biosensor, a monoclonal antibody raised against B. anthracis PA was immobilized on carboxymethyldextran modified gold chip and its interaction with PA was characterized in situ by SPR and electrochemical impedance spectroscopy. By using kinetic evaluation software, KD (equilibrium constant) and Bmax (maximum binding capacity of analyte) were found to be 20 fM and 18.74, respectively. The change in Gibb's free energy (∆G = -78.04 kJ/mol) confirmed the spontaneous interaction between antigen and antibody. The assay could detect 12 fM purified PA. When anthrax spores spiked soil samples were enriched, PA produced in the sample containing even a single spore of B. anthracis could be detected by SPR. PA being produced only by the vegetative cells of B. anthracis, confirms indirectly the presence of B. anthracis in the samples. The proposed method can be a very useful tool for screening and confirmation of anthrax suspected environmental samples during a bio-warfare like situation.
Collapse
Affiliation(s)
- N Ghosh
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474 002 India
| | - G Gupta
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474 002 India
| | - M Boopathi
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474 002 India
| | - V Pal
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474 002 India
| | - A K Singh
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474 002 India
| | - N Gopalan
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474 002 India
| | - A K Goel
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474 002 India
| |
Collapse
|