1
|
Lee CM, Chien TCR, Wang JS, Chen YW, Chen CY, Kuo CC, Chiang LT, Wu KK, Hsu WT. 5-Methoxytryptophan attenuates oxidative stress-induced downregulation of PINK1 and mitigates mitochondrial damage and apoptosis in cardiac myocytes. Free Radic Biol Med 2025; 232:398-411. [PMID: 40074188 DOI: 10.1016/j.freeradbiomed.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/14/2025]
Abstract
Mitochondrial dysfunction is a hallmark of the pathogenesis of various cardiovascular diseases. 5-Methoxytryptophan (5-MTP), an intrinsic amino acid metabolite, exerts cardioprotective effects potentially through the preservation of mitochondrial integrity. This study investigates the mechanisms and contexts in which 5-MTP positively impacts mitochondrial function using cultured human cardiac myocyte cells and HL-1 cardiac cells subjected to oxidative stress (OS). We first demonstrated that 5-MTP up-regulates the expression of PINK1, a key regulator of mitochondrial homeostasis. PINK1 knockdown attenuated the beneficial effects of 5-MTP on cardiomyocyte apoptosis. Furthermore, in cells exposed to OS, 5-MTP pretreatment led to a notable decrease in mitochondrial superoxide generation. Fluorescence imaging and network analysis showed that 5-MTP preserved mitochondrial membrane potential and enhanced mitochondrial network integrity. Reduced phosphorylation of dynamin-related protein 1, which is involved in mitochondrial fission, uncovered the role of 5-MTP in maintaining mitochondrial dynamics. Notably, 5-MTP attenuated OS-induced mitophagy, as evidenced by reduced mitophagy detection dye fluorescence and lower mitochondrial Parkin levels, suggesting that mechanisms beyond the PINK1/Parkin pathway are involved. Restoration of AKT phosphorylation and reduced mitochondrial Bax localization further revealed an additional pathway contributing to mitochondrial protection. Moreover, 5-MTP attenuated pro-apoptotic Bax levels and enhanced PINK1 expression in a rat model of ischemic cardiomyopathy, corroborating its cardioprotective role. Collectively, these findings demonstrate that 5-MTP mitigates mitochondrial dysfunction through coordinated regulation of PINK1, AKT, and Bax, offering potential as a therapeutic agent to enhance cellular resilience in OS-driven mitochondrial damage.
Collapse
Affiliation(s)
- Chii-Ming Lee
- Department of Cardiovascular Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Tung-Chun Russell Chien
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Juo-Shan Wang
- Department of Cardiovascular Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yu-Wei Chen
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chin-Yu Chen
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Liang-Ting Chiang
- Department of Cardiovascular Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Kenneth K Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan; College of Life Sciences, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Wan-Tseng Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Kim HJ, Han CW, Jeong MS, Kwon TJ, Choi JY, Jang SB. Cryo-EM structure of HMGB1-RAGE complex and its inhibitory effect on lung cancer. Biomed Pharmacother 2025; 187:118088. [PMID: 40306174 DOI: 10.1016/j.biopha.2025.118088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025] Open
Abstract
Mitochondrial dysfunction and mitophagy are closely linked with human diseases such as neurodegenerative diseases, metabolic diseases, and cancer. High-mobility group box 1 (HMGB1) has been shown to mediate a wide range of pathological responses by binding with the receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLRs). Extracellular HMGB1 and its ligand RAGE stimulate the growth, metastasis, invasiveness, and treatment resistance of different cancer cells. Through extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, HMGB1 and RAGE lead to the phosphorylation of Drp1-S616 and Drp1-mediated mitochondrial fission, which consequently causes autophagy. Although the structure of the RAGE and HMGB1 complex is not clearly known, the complex has emerged as a potential therapeutic target. In the present study, the structure of the RAGE and HMGB1 complex was determined at a resolution of 5.19 Å using cryogenic electron microscopy. The structure revealed that the residues P66, G70, P71, S74, and R77 in RAGE and E145, K146, E153, and E156 in HMGB1 were the sites of interaction between the two proteins. Additionally, an HMGB1 peptide (151 LKEKYEK 157) was synthesized based on the RAGE-HMGB1 complex. We investigated the inhibitory function of the HMGB1 peptide and demonstrated that it inhibits tumor growth, metastasis, and invasion by binding to the RAGE protein in lung cancers. The HMGB1 peptide significantly suppressed mitochondrial dysfunction and the initiation of autophagy. Furthermore, the HMGB1 peptide dramatically reduced cell viability, migration, and mitophagy in the colorectal and pancreatic cancer cell lines HCT-116 and AsPC-1, respectively.
Collapse
Affiliation(s)
- Hyeon Jin Kim
- Insitute of Systems Biology, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Chang Woo Han
- Insitute of Systems Biology, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Mi Suk Jeong
- Insitute of Systems Biology, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Tae-Jun Kwon
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), 80, Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Jun Young Choi
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), 80, Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Insitute of Systems Biology, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
3
|
Bauer JR, Robinson TL, Strich R, Cooper KF. Quitting Your Day Job in Response to Stress: Cell Survival and Cell Death Require Secondary Cytoplasmic Roles of Cyclin C and Med13. Cells 2025; 14:636. [PMID: 40358161 PMCID: PMC12071894 DOI: 10.3390/cells14090636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Following unfavorable environmental cues, cells reprogram pathways that govern transcription, translation, and protein degradation systems. This reprogramming is essential to restore homeostasis or commit to cell death. This review focuses on the secondary roles of two nuclear transcriptional regulators, cyclin C and Med13, which play key roles in this decision process. Both proteins are members of the Mediator kinase module (MKM) of the Mediator complex, which, under normal physiological conditions, positively and negatively regulates a subset of stress response genes. However, cyclin C and Med13 translocate to the cytoplasm following cell death or cell survival cues, interacting with a host of cell death and cell survival proteins, respectively. In the cytoplasm, cyclin C is required for stress-induced mitochondrial hyperfission and promotes regulated cell death pathways. Cytoplasmic Med13 stimulates the stress-induced assembly of processing bodies (P-bodies) and is required for the autophagic degradation of a subset of P-body assembly factors by cargo hitchhiking autophagy. This review focuses on these secondary, a.k.a. "night jobs" of cyclin C and Med13, outlining the importance of these secondary functions in maintaining cellular homeostasis following stress.
Collapse
Affiliation(s)
| | | | | | - Katrina F. Cooper
- Department of Cell and Molecular Biology, School of Osteopathic Medicine, Rowan-Virtua College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084, USA; (J.R.B.); (T.L.R.); (R.S.)
| |
Collapse
|
4
|
Wang N, Wang X, Lan B, Gao Y, Cai Y. DRP1, fission and apoptosis. Cell Death Discov 2025; 11:150. [PMID: 40195359 PMCID: PMC11977278 DOI: 10.1038/s41420-025-02458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 03/15/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Mitochondrial fission is a critical physiological process in eukaryotic cells, participating in various vital activities such as mitosis, mitochondria quality control, and mitophagy. Recent studies have revealed a tight connection between mitochondrial fission and the mitochondrial metabolism, as well as apoptosis, which involves multiple cellular events and interactions between organelles. As a pivotal molecule in the process of mitochondrial fission, the function of DRP1 is regulated at multiple levels, including transcription, post-translational modifications. This review follows the guidelines for Human Gene Nomenclature and will focus on DRP1, discussing its activity regulation, its role in mitochondrial fission, and the relationship between mitochondrial fission and apoptosis.
Collapse
Affiliation(s)
- Nan Wang
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xinwai Wang
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Beiwu Lan
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yufei Gao
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Yuanyuan Cai
- The First Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
Li X, Wu Y, Peng J, Li B, Li X, Yan Z, Li G, Zhang Y, He H, Luo J, Guo X. Porcine epidemic diarrhea virus induces mitophagy to inhibit the apoptosis and activation of JAK/STAT1 pathway. Vet Microbiol 2025; 303:110427. [PMID: 39961163 DOI: 10.1016/j.vetmic.2025.110427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 03/16/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) infection leads to immunosuppression and clinical symptoms in piglets, including vomiting, watery diarrhea, dehydration, and even death. Mitophagy sustains mitochondrial energy homeostasis and quality through the removal of damaged mitochondria. However, PEDV disrupts mitochondrial homeostasis, which affects cellular energy supply and reproduction. Despite existing research, the mechanisms underlying PEDV pathogenesis and its interaction with the innate immune system remain largely unclear. Therefore, we aimed to clarify the mechanism of PEDV-induced mitophagy and its relationship with apoptosis and Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway after PEDV infection. We infected Vero and IPEC-J2 cells with PEDV. Then, we evaluated mitochondrial morphology, structural proteins of PEDV, reactive oxygen species (ROS) levels, and mitochondrial membrane potential using transmission electron microscopy, confocal laser scanning microscopy, and flow cytometry. We identified mitophagy-related proteins through immunoprecipitation and western blotting. We examined the effects of mitophagy on PEDV proliferation and JAK1-STAT1 signaling via western blotting and indirect immunofluorescence. PEDV infection led to mitochondrial damage and the production of mitophagosome-like vesicles. Subsequently, the PEDV structural N protein initiated mitophagy through ubiquitinating mitofusin 2 (MNF2) via the PINK1/Parkin pathway. Moreover, mitophagy promoted PEDV replication. In the early stage of PEDV infection, PEDV infection inhibits apoptosis by promoting mitophagy. PEDV infection significantly decreased the expression of JAK1, STAT1, interferon regulatory factor 9, and phosphorylated STAT1, inhibiting nuclear translocation and promoting replication. Overall, PINK1/Parkin-mediated mitophagy regulated PEDV-induced apoptosis and JAK/STAT1 expression. These findings provide a scientific basis for elucidating the pathogenic and immune escape mechanisms of PEDV.
Collapse
Affiliation(s)
- Xin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Yiwan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Jin Peng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Bingjie Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - XiaoLong Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhibin Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Gen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - HongLing He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China.
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China.
| |
Collapse
|
6
|
Marino Y, Inferrera F, Genovese T, Cuzzocrea S, Fusco R, Di Paola R. Mitochondrial dynamics: Molecular mechanism and implications in endometriosis. Biochimie 2025; 231:163-175. [PMID: 39884375 DOI: 10.1016/j.biochi.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Endometriosis affects about 10 % of women of reproductive age, leading to a disabling gynecologic condition. Chronic pain, inflammation, and oxidative stress have been identified as the molecular pathways involved in the progression of this disease, although its precise etiology remains uncertain. Although mitochondria are considered crucial organelles for cellular activity, their dysfunction has been linked to the development of this disease. The purpose of this review is to examine the functioning of the mitochondrion in endometriosis: in particular, we focused on the mitochondrial dynamics of biogenesis, fusion, and fission. Since excessive mitochondrial activity is reported to affect cell proliferation, we also considered mitophagy as a mechanism involved in limiting disease development. To better understand mitochondrial activity, we also considered alterations in circadian rhythms, the gut microbiome, and estrogen receptors: indeed, these mechanisms are also involved in the development of endometriosis. In addition, we focused on recent research about the impact of numerous substances on mitochondrial activity; some of them may offer a future breakthrough in endometriosis treatment by acting on mitochondria and inhibiting cell proliferation.
Collapse
Affiliation(s)
- Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Francesca Inferrera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy; Link Campus University, Via del Casale di San Pio V, 44, Italy.
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Rosanna Di Paola
- Department of Veterinary Sciences, 98168, University of Messina, Messina, Italy.
| |
Collapse
|
7
|
Xiao HP, Du MY, Sun XB, Xu RF, Li DM, Yue SN, Cai PW, Sun RZ, Zhang ZZ, Huang X, Li XX, Gao Y, Zheng ST. A Highly Biocompatible Polyoxotungstate with Fenton-like Reaction Activity for Potent Chemodynamic Therapy of Tumors. Angew Chem Int Ed Engl 2025; 64:e202422949. [PMID: 39679939 DOI: 10.1002/anie.202422949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/17/2024]
Abstract
Integrating Fenton chemistry and nanomedicine into cancer therapy has significantly promoted the development of chemodynamic therapy (CDT). Nanoscale polyoxometalates (POMs), with their reversible redox properties, exhibit promising potential in developing outstanding CDT drugs by exploring their Fenton-like catalytic reactivity in tumor environments. However, such research is still in its infancy due to the challenges of acquiring POMs that are both easily prepared and possess ideal therapeutic effects, physiological solubility, biocompatibility and safety. In this work, we report the synthesis of a new crystalline antimonotungstate {Dy2Sb2W7O23(OH)(DMF)2(SbW9O33)2} (1, DMF=N, N-dimethylformamide) with gram-scale high yield via a facile "one-pot" solvothermal reaction. 1 exhibits not only a soluble and water-stable POM nanocluster, but also excellent catalytic activity for hydroxyl radical-generating Fenton-like reactions. Further biomedical studies reveal that 1 can trigger cell apoptosis and promote lipid peroxidation, exhibiting high cytotoxicity and selectivity towards B16-F10 mouse melanoma cancer cells with an IC50 value of 4.75 μM. Especially, 1 can inhibit melanoma growth in vivo with favorable biosafety, achieving a 5.2-fold reduction in tumor volume and a weight loss of 76.0 % at the dose of 70 μg/kg. This research not only demonstrates the immense potential of antimonotungstates in CDT drug development for the first time but also provides new insights and directions for the development of novel anticancer drugs.
Collapse
Affiliation(s)
- Hui-Ping Xiao
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, Fuzhou University, Fuzhou, Fujian, 350108, China
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Man-Yi Du
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xian-Bin Sun
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Ruo-Fei Xu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Dong-Miao Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Sheng-Nan Yue
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Ping-Wei Cai
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Rong-Zhi Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zi-Zhong Zhang
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xing Huang
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xin-Xiong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yu Gao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
8
|
Zhang W, Ding F, Rong X, Ren Q, Hasegawa T, Liu H, Li M. Aβ -induced excessive mitochondrial fission drives type H blood vessels injury to aggravate bone loss in APP/PS1 mice with Alzheimer's diseases. Aging Cell 2025; 24:e14374. [PMID: 39411913 PMCID: PMC11822656 DOI: 10.1111/acel.14374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 02/14/2025] Open
Abstract
Alzheimer's diseases (AD) patients suffer from more serious bone loss than cognitively normal subjects at the same age. Type H blood vessels were tightly associated with bone homeostasis. However, few studies have concentrated on bone vascular alteration and its role in AD-related bone loss. In this study, APP/PS1 mice (4- and 8-month-old) and age-matched wild-type mice were used to assess the bone vascular alteration and its role in AD-related bone loss. Transmission electron microscopy, immunofluorescence staining and iGPS 1.0 software database were utilized to investigate the molecular mechanism. Mitochondrial division inhibitor (Mdivi-1) and GSK-3β inhibitor (LiCl) were used to rescue type H blood vessels injury and verify the molecular mechanism. Our results revealed that APP/PS1 mice exhibited more serious bone blood vessels injury and bone loss during ageing. The bone blood vessel injury, especially in type H blood vessels, was accompanied by impaired vascularized osteogenesis in APP/PS1 mice. Further exploration indicated that beta-amyloid (Aβ) promoted the apoptosis of vascular endothelial cells (ECs) and resulted in type H blood vessels injury. Mechanistically, Aβ-induced excessive mitochondrial fission was found to be essential for the apoptosis of ECs. GSK-3β was identified as a key regulatory target of Aβ-induced excessive mitochondrial fission and bone loss. The findings delineated that Aβ-induced excessive mitochondrial fission drives type H blood vessels injury, leading to aggravate bone loss in APP/PS1 mice and GSK-3β inhibitor emerges as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Weidong Zhang
- Department of Bone MetabolismSchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanChina
- Center of Osteoporosis and Bone Mineral ResearchShandong UniversityJinanChina
| | - Fan Ding
- Department of Bone MetabolismSchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanChina
- Center of Osteoporosis and Bone Mineral ResearchShandong UniversityJinanChina
| | - Xing Rong
- Department of Bone MetabolismSchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanChina
- Center of Osteoporosis and Bone Mineral ResearchShandong UniversityJinanChina
| | - Qinghua Ren
- Department of Bone MetabolismSchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanChina
- Center of Osteoporosis and Bone Mineral ResearchShandong UniversityJinanChina
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental MedicineHokkaido UniversitySapporoJapan
| | - Hongrui Liu
- Department of Bone MetabolismSchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanChina
- Center of Osteoporosis and Bone Mineral ResearchShandong UniversityJinanChina
| | - Minqi Li
- Department of Bone MetabolismSchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanChina
- Center of Osteoporosis and Bone Mineral ResearchShandong UniversityJinanChina
- School of Clinical Medicine, Jining Medical UniversityJiningChina
| |
Collapse
|
9
|
Yan R, Chen L, Cai Z, Tang J, Zhu Y, Li Y, Wang X, Ruan Y, Han Q. NIPSNAP3A regulates cellular homeostasis by modulating mitochondrial dynamics. Gene 2025; 933:148976. [PMID: 39362349 DOI: 10.1016/j.gene.2024.148976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/07/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Mitochondria are essential for cell metabolism and survival as they produce the majority of cellular ATP through oxidative phosphorylation as well as regulate critical processes such as cell proliferation and apoptosis. NIPSNAP family of proteins are predominantly mitochondrial matrix proteins. However, the molecular and cellular functions of the NIPSNAPs, particularly NIPSNAP3A, have remained elusive. Here, we demonstrated that NIPSNAP3A knockdown in HeLa cells inhibited their proliferation and migration and attenuated apoptosis induced by Actinomycin D (Act-D). These findings suggested a complex relationship between cellular processes and mitochondrial functions, mediated by NIPSNAP3A. Further investigations revealed that NIPSNAP3A knockdown not only inhibited mitochondrial fission through reduction of DRP1-S616, but also suppressed cytochrome c release in apoptosis. Collectively, our findings highlight the critical role of NIPSNAP3A in coordinating cellular processes, likely through its influence on mitochondrial dynamics.
Collapse
Affiliation(s)
- Run Yan
- Department of Emergency and Critical Disease, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liting Chen
- Department of Emergency and Critical Disease, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zimu Cai
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiyao Tang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315302, China
| | - Yanlin Zhu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315302, China
| | - Yanping Li
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Xuemin Wang
- Department of Emergency and Critical Disease, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China.
| | - Yu Ruan
- Department of Emergency and Critical Disease, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Qi Han
- Department of Emergency and Critical Disease, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
10
|
Ge W, Zhang X, Lin J, Wang Y, Zhang X, Duan Y, Dai X, Zhang J, Zhang Y, Jiang M, Qiang H, Zhao Z, Zhang X, Sun D. Rnd3 protects against doxorubicin-induced cardiotoxicity through inhibition of PANoptosis in a Rock1/Drp1/mitochondrial fission-dependent manner. Cell Death Dis 2025; 16:2. [PMID: 39755713 DOI: 10.1038/s41419-024-07322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025]
Abstract
Doxorubicin, a representative drug of the anthracycline class, is widely used in cancer treatment. However, Doxorubicin-induced cardiotoxicity (DIC) presents a significant challenge in its clinical application. Mitochondrial dysfunction plays a central role in DIC, primarily through disrupting mitochondrial dynamics. This study aimed to investigate the impact of Rnd3 (a Rho family GTPase 3) on DIC, with a focus on mitochondrial dynamics. Cardiomyocyte-specific Rnd3 transgenic mice (Rnd3-Tg) and Rnd3LSP/LSP mice (N-Tg) were established for in vivo experiments, and adenoviruses harboring Rnd3 (Ad-Rnd3) or negative control (Ad-Control) were injected in the myocardium for in vitro experiments. The DIC model was established using wild-type, N-Tg, and Rnd3-Tg mice, with subsequent intraperitoneal injection of Dox for 4 weeks. The molecular mechanism was explored through RNA sequencing, immunofluorescence staining, co-immunoprecipitation assay, and protein-protein docking. Dox administration induced significant mitochondrial injury and cardiac dysfunction, which was ameliorated by Rnd3 overexpression. Further, the augmentation of Rnd3 expression mitigated mitochondrial fragmentation which is mediated by dynamin-related protein 1 (Drp1), thereby ameliorating the PANoptosis (pyroptosis, apoptosis, and necroptosis) response induced by Dox. Mechanically, the interaction between Rnd3 and Rho-associated kinase 1 (Rock1) may impede Rock1-induced Drp1 phosphorylation at Ser616, thus inhibiting mitochondrial fission and dysfunction. Interestingly, Rock1 knockdown nullified the effects of Rnd3 on cardiomyocytes PANoptosis, as well as Dox-induced cardiac remodeling and dysfunction elicited by Rnd3. Rnd3 enhances cardiac resilience against DIC by stabilizing mitochondrial dynamics and reducing PANoptosis. Our findings suggest that the Rnd3/Rock1/Drp1 signaling pathway represents a novel target for mitigating DIC, and modulating Rnd3 expression could be a strategic approach to safeguarding cardiac function in patients undergoing Dox treatment. The graphical abstract illustrated the cardioprotective role of Rnd3 in DIC. Rnd3 directly binds to Rock1 in cytoplasm and ameliorates mitochondrial fission by inhibiting Drp1 phosphorylation at ser616, thereby alleviating PANoptosis (apoptosis, pyroptosis, and necroptosis) in DIC.
Collapse
Affiliation(s)
- Wen Ge
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaohua Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yangyang Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiao Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu Duan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xinchun Dai
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiye Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huanhuan Qiang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhijing Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Xuebin Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
11
|
Tian B, Wu Y, Du X, Zhang Y. Osteosarcoma stem cells resist chemotherapy by maintaining mitochondrial dynamic stability via DRP1. Int J Mol Med 2025; 55:10. [PMID: 39513621 PMCID: PMC11554380 DOI: 10.3892/ijmm.2024.5451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Osteosarcoma malignancy exhibits significant heterogeneity, comprising both osteosarcoma stem cells (OSCs) and non‑OSCs. OSCs demonstrate increased resistance to chemotherapy due to their distinctive cellular and molecular characteristics. Alterations in mitochondrial morphology and homeostasis may enhance chemoresistance by modulating metabolic and regulatory processes. However, the relationship between mitochondrial homeostasis and chemoresistance in OSCs remains to be elucidated. The present study employed high‑resolution microscopy to perform multi‑layered image reconstructions for a quantitative analysis of mitochondrial morphology. The results indicated that OSCs exhibited larger mitochondria in comparison with non‑OSCs. Furthermore, treatment of OSCs with cisplatin (CIS) or doxorubicin (DOX) resulted in preserved mitochondrial morphological stability, which was not observed in non‑OSCs. This finding suggested a potential association between mitochondrial homeostasis and chemoresistance. Further analysis indicated that dynamin‑related protein 1 (DRP1) might play a pivotal role in maintaining the stability of mitochondrial homeostasis in OSCs. Depletion of DRP1 resulted in the disruption of mitochondrial stability when OSCs were treated with CIS or DOX. Additionally, knocking out DRP1 in OSCs led to a reduction in chemoresistance. These findings unveil a novel mechanism underlying chemoresistance in osteosarcoma and suggest that targeting DRP1 could be a promising therapeutic strategy to overcome chemoresistance in OSCs. This provided valuable insights for enhancing treatment outcomes among patients with osteosarcoma.
Collapse
Affiliation(s)
- Boren Tian
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Yaxuan Wu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Xiaoyun Du
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Yan Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, P.R. China
| |
Collapse
|
12
|
Zhao B, Shi C, Wang X, Sun Z, Ruan Y, Wang X, Zhang Z, Xie T, Shan J, Wang J, Qian G. Kechuan Decoction mitigates apoptosis of airway epithelial cells by improving lipid metabolism disorders and mitochondria dysfunction in HDM-induced asthma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156299. [PMID: 39671785 DOI: 10.1016/j.phymed.2024.156299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/16/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND The airway epithelium serves as the first line of defense between the lung's internal environment and the external environment, functioning through physical barriers and mucus-ciliary clearance to protect against external allergens and other harmful substances. Airway epithelial damage is a common feature of asthma, and research has shown that apoptosis plays a significant role in airway injury and inflammation in asthma. Although Kechuan Decoction (KCD) has demonstrated clinical efficacy in treating pediatric asthma, its precise mechanism of action remains unclear. OBJECTIVE To elucidate the therapeutic mechanism of KCD in mitigating apoptosis of airway epithelial cells (AECs) in a house dust mite (HDM)-induced asthma mouse model. METHODS To evaluate the effects of KCD on asthma-associated airway inflammation and AECs apoptosis, an asthma model was established in C57BL/6 J mice using HDM. The major chemical constituents of KCD were analyzed using LC-MS. Subsequently, we utilized network pharmacology approaches to predict the potential targets and mechanisms of KCD in asthma. Additionally, we conducted lipidomics analysis of lung tissue and mitochondria in the lung was conducted using LC-MS. Finally, the mechanisms underlying the effects of KCD on AECs apoptosis in asthmatic mice were investigated through Western blotting, qPCR, and Transmission electron microscopy (TEM) examination techniques. RESULTS The efficacy of KCD has been shown to improve lung function, reduce airway inflammation, and prevent apoptosis of AECs in a HDM-induced asthma model. Through the use of UPLC-LTQ-Orbitrap-MS, we identified 24 potential active components of KCD. Network pharmacology analysis revealed that KCD shares 102 core targets with asthma. GO enrichment analysis, in conjunction with a literature review, indicated that the targets of KCD treatment for AECs apoptosis primarily focus on the mitochondrial membrane. Furthermore, lipidomics analysis of lung tissue and mitochondria in the lungs of mice with HDM-induced asthma revealed disruptions in lipid metabolism, with a decrease in phosphatidylcholine (PC) content in asthmatic mice, which was effectively restored by KCD treatment. KCD reinstates the expression of START domain-containing protein 7 (StarD7) and START domain-containing protein 10 (StarD10) in lung tissue, leading to increase in PC within the mitochondrial membrane. This regulation indirectly influences mitochondrial fusion and fission proteins, promoting mitochondrial membrane stability and reducing cytochrome c (Cyt c) release into the cytoplasm. Ultimately, this process helps mitigate mitochondria-mediated apoptosis of AECs. CONCLUSION KCD can restore the content of PC in the mitochondria of AECs by regulating StarD7 and StarD10. It also restores proteins associated with mitochondrial fusion and fission, stabilizing mitochondrial structure, effectively reducing the release of Cyt c into the cytoplasm, and ultimately inhibiting mitochondria-mediated apoptosis of AECs induced by HDM in asthmatic mice.
Collapse
Affiliation(s)
- Binshu Zhao
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Chen Shi
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xuan Wang
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhengpeng Sun
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yuyuan Ruan
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xi Wang
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhitong Zhang
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Tong Xie
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jin Wang
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; College of literature in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Guiying Qian
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, PR China.
| |
Collapse
|
13
|
Li X, He Y, Yan Q, Kuai D, Zhang H, Wang Y, Wang K, Tian W. Dihydrotestosterone induces reactive oxygen species accumulation and mitochondrial fission leading to apoptosis of granulosa cells. Toxicology 2024; 509:153958. [PMID: 39332622 DOI: 10.1016/j.tox.2024.153958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
Dihydrotestosterone (DHT), which has significant androgenic activity,is a major player in follicle development and ovary function in females. However, an excess of androgens may result in increased follicular apoptosis with adverse effects on female fertility. This study aimed to explore the mechanism by which DHT induces apoptosis in human ovarian granulosa cells (GCs). The association between DHT and GC apoptosis was explored by the construction of rat models of polycystic ovary syndrome (PCOS). It was found that serum DHT levels were negatively correlated with thickness of the GC layer in PCOS model rats (R2=0.8342, p<0.0001), compared with control rats, together with significant increases in cofactors (Fis1: p=0.008; MFF: p=0.044). The GC SVOG cell line was used to clarify the mechanism by which DHT influenced GC apoptosis in in vitro experiments. The results confirmed that apoptosis in SVOG cells was positively associated with the DHT dose. The expression of the autophagy-related proteins LC3A/B (p=0.027) and the proapoptotic protein Bax (p=0.0095) were increased, while that of the anti-apoptotic protein Bcl-2 (p=0.0005) was decreased in the high-dose DHT group. ROS levels were significantly increased (p=0.0237) and the mitochondrial membrane potential ΔΨm was decreased (p=0.0194). Moreover, ultrastructural analysis of the mitochondria indicated significant damage. The results of RT-qPCR and western blotting showed that two fission cofactor-Fis1(p=0.034) and MFF (p=0.039) were significantly increased after treatment with high doses of DHT. Even though the overall expression of Drp1 did not change significantly (p=0.5961), that of activated Phosphor-Drp1(Ser616) was significantly increased (p=0.046), while the expression of Phosphor-Drp1 (Ser637) was markedly reduced (p=0.007) following exposure to high concentrations of DHT. All these effects could be reversed by the Drp1 inhibitor Mdivi-1. These findings indicated the impact of DHT on ROS aggregation and mitochondrial fission, resulting in GC apoptosis. An imbalance in Drp1 phosphorylation may be the key link in DHT-induced excessive mitochondrial fission.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying He
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Qi Yan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Dan Kuai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Huiying Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Kan Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China.
| | - Wenyan Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
14
|
Ni J, Zhang Q, Jiang L, Wang H, Zhang C, Deng J. Catalpol regulates apoptosis and proliferation of endothelial cell via activating HIF-1α/VEGF signaling pathway. Sci Rep 2024; 14:28327. [PMID: 39550364 PMCID: PMC11569138 DOI: 10.1038/s41598-024-78126-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024] Open
Abstract
Burn injuries, especially severe ones, causes microcirculation disorders in local wounds and distant tissues, leading to ischemia and hypoxia of body tissues and organs. The key to prevent and treat complications and improve prognosis after burns is to improve the state of ischemia and hypoxia of tissue and restore the blood supply of organs. Catalpol is an iridoid glycoside compound isolated from Rehmannia radix, which has been widely reported to have various of functions, including antioxidative stress, anti-inflammation, anti-apoptosis, and neuroprotection. However, the pharmacologic action and underlying mechanism of Catalpol in angiogenesis after burn injury remains unclear. The study investigated whether Catalpol regulates apoptosis and proliferation following vascular injury induced by burns using an in vitro model of oxygen-glucose deprivation (OGD) with a human umbilical vein endothelial (HUVE) cell line. The results showed that treatment with Catalpol reduces the level of apoptosis and promotes proliferation of endothelial cell. Mechanistically, Catalpol increases the expression of vascular endothelial growth factor (VEGF) by activating Hypoxia-inducible factor-1α (Hif-1α), resulting in increased expression of related downstream effector molecules. The current study suggested that Catalpol is a promising compound for endothelial protection in burns. It may be an efficient Hif-1α activator for endothelial cell deprived of oxygen and glucose.
Collapse
Affiliation(s)
- Jinrong Ni
- Department of Orthopedics, Suqian First Hospital, Suqian, China.
- Suqian First Hospital, No. 120 Suzhi Road, Suqian, Jiangsu, China.
| | - Qunhu Zhang
- Department of Orthopedics, Suqian First Hospital, Suqian, China
- Suqian First Hospital, No. 120 Suzhi Road, Suqian, Jiangsu, China
| | - Luetao Jiang
- Department of Orthopedics, Suqian First Hospital, Suqian, China
- Suqian First Hospital, No. 120 Suzhi Road, Suqian, Jiangsu, China
| | - Haihu Wang
- Department of Orthopedics, Suqian First Hospital, Suqian, China
- Suqian First Hospital, No. 120 Suzhi Road, Suqian, Jiangsu, China
| | - Chengji Zhang
- Department of Orthopedics, Suqian First Hospital, Suqian, China
- Suqian First Hospital, No. 120 Suzhi Road, Suqian, Jiangsu, China
| | - Jielin Deng
- Department of Orthopedics, Suqian First Hospital, Suqian, China.
- Suqian First Hospital, No. 120 Suzhi Road, Suqian, Jiangsu, China.
| |
Collapse
|
15
|
Palominos C, Fuentes-Retamal S, Salazar JP, Guzmán-Rivera D, Correa P, Mellado M, Araya-Maturana R, Urra FA. Mitochondrial bioenergetics as a cell fate rheostat for responsive to Bcl-2 drugs: New cues for cancer chemotherapy. Cancer Lett 2024; 594:216965. [PMID: 38788967 DOI: 10.1016/j.canlet.2024.216965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Pro-survival BCL-2 proteins prevent the initiation of intrinsic apoptosis (mitochondria-dependent pathway) by inhibiting the pro-apoptotic proteins BAX and BAK, while BH3-only proteins promote apoptosis by blocking pro-survival BCL-2 proteins. Disruptions in this delicate balance contribute to cancer cell survival and chemoresistance. Recent advances in cancer therapeutics involve a new generation of drugs known as BH3-mimetics, which are small molecules designed to mimic the action of BH3-only proteins. Promising effects have been observed in patients with hematological and solid tumors undergoing treatment with these agents. However, the rapid emergence of mitochondria-dependent resistance to BH3-mimetics has been reported. This resistance involves increased mitochondrial respiration, altered mitophagy, and mitochondria with higher and tighter cristae. Conversely, mutations in isocitrate dehydrogenase 1 and 2, catalyzing R-2-hydroxyglutarate production, promote sensitivity to venetoclax. This evidence underscores the urgency for comprehensive studies on bioenergetics-based adaptive responses in both BH3 mimetics-sensitive and -resistant cancer cells. Ongoing clinical trials are evaluating BH3-mimetics in combination with standard chemotherapeutics. In this article, we discuss the role of mitochondrial bioenergetics in response to BH3-mimetics and explore potential therapeutic opportunities through metabolism-targeting strategies.
Collapse
Affiliation(s)
- Charlotte Palominos
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile
| | - Sebastián Fuentes-Retamal
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile; Universidad Andrés Bello. Escuela de Química y Farmacia, Facultad de Medicina, 8320000, Santiago, Chile
| | - Juan Pablo Salazar
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile
| | - Daniela Guzmán-Rivera
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Universidad Andrés Bello. Escuela de Química y Farmacia, Facultad de Medicina, 8320000, Santiago, Chile
| | - Pablo Correa
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile
| | - Mathias Mellado
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile; Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, 3460000, Chile
| | - Félix A Urra
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile; Interuniversity Center for Healthy Aging (CIES), Consortium of Universities of the State of Chile (CUECH), Santiago, 8320216, Chile.
| |
Collapse
|
16
|
Borkar NA, Thompson MA, Bartman CM, Khalfaoui L, Sine S, Sathish V, Prakash YS, Pabelick CM. Nicotinic receptors in airway disease. Am J Physiol Lung Cell Mol Physiol 2024; 326:L149-L163. [PMID: 38084408 PMCID: PMC11280694 DOI: 10.1152/ajplung.00268.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024] Open
Abstract
With continued smoking of tobacco products and expanded use of nicotine delivery devices worldwide, understanding the impact of smoking and vaping on respiratory health remains a major global unmet need. Although multiple studies have shown a strong association between smoking and asthma, there is a relative paucity of mechanistic understanding of how elements in cigarette smoke impact the airway. Recognizing that nicotine is a major component in both smoking and vaping products, it is critical to understand the mechanisms by which nicotine impacts airways and promotes lung diseases such as asthma. There is now increasing evidence that α7 nicotinic acetylcholine receptors (α7nAChRs) are critical players in nicotine effects on airways, but the mechanisms by which α7nAChR influences different airway cell types have not been widely explored. In this review, we highlight and integrate the current state of knowledge regarding nicotine and α7nAChR in the context of asthma and identify potential approaches to alleviate the impact of smoking and vaping on the lungs.
Collapse
Affiliation(s)
- Niyati A Borkar
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Steven Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
17
|
Borkar NA, Thompson MA, Bartman CM, Sathish V, Prakash YS, Pabelick CM. Nicotine affects mitochondrial structure and function in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2023; 325:L803-L818. [PMID: 37933473 PMCID: PMC11068407 DOI: 10.1152/ajplung.00158.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
Exposure to cigarette smoke and e-cigarettes, with nicotine as the active constituent, contributes to increased health risks associated with asthma. Nicotine exerts its functional activity via nicotinic acetylcholine receptors (nAChRs), and the alpha7 subtype (α7nAChR) has recently been shown to adversely affect airway dynamics. The mechanisms of α7nAChR action in airways, particularly in the context of airway smooth muscle (ASM), a key cell type in asthma, are still under investigation. Mitochondria have garnered increasing interest for their role in regulating airway tone and adaptations to cellular stress. Here mitochondrial dynamics such as fusion versus fission, and mitochondrial Ca2+ ([Ca2+]m), play an important role in mitochondrial homeostasis. There is currently no information on effects and mechanisms by which nicotine regulates mitochondrial structure and function in ASM in the context of asthma. We hypothesized that nicotine disrupts mitochondrial morphology, fission-fusion balance, and [Ca2+]m regulation, with altered mitochondrial respiration and bioenergetics in the context of asthmatic ASM. Using human ASM (hASM) cells from nonasthmatics, asthmatics, and smokers, we examined the effects of nicotine on mitochondrial dynamics and [Ca2+]m. Fluorescence [Ca2+]m imaging of hASM cells with rhod-2 showed robust responses to 10 μM nicotine, particularly in asthmatics and smokers. In both asthmatics and smokers, nicotine increased the expression of fission proteins while decreasing fusion proteins. Seahorse analysis showed blunted oxidative phosphorylation parameters in response to nicotine in these groups. α7nAChR siRNA blunted nicotine effects, rescuing [Ca2+]m, changes in mitochondrial structural proteins, and mitochondrial dysfunction. These data highlight mitochondria as a target of nicotine effects on ASM, where mitochondrial disruption and impaired buffering could permit downstream effects of nicotine in the context of asthma.NEW & NOTEWORTHY Asthma is a major healthcare burden, which is further exacerbated by smoking. Recognizing the smoking risk of asthma, understanding the effects of nicotine on asthmatic airways becomes critical. Surprisingly, the mechanisms of nicotine action, even in normal and especially asthmatic airways, are understudied. Accordingly, the goal of this research is to investigate how nicotine influences asthmatic airways in terms of mitochondrial structure and function, via the a7nAChR.
Collapse
Affiliation(s)
- Niyati A Borkar
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
18
|
Kasikasetsiri J, Apaijai N, Aschaitrakool Y, Kerdphoo S, Sriyaranya N, Chattipakorn N, Chattipakorn SC. Hyperbaric oxygen therapy restores wound healing in irradiated gingiva to a similar level to that in healthy gingiva. J Wound Care 2023; 32:676-684. [PMID: 37830829 DOI: 10.12968/jowc.2023.32.10.676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
OBJECTIVE This study aimed to investigate the involvement of mitochondrial biogenesis, and determine the extent of fibroblast proliferation and cellular apoptosis, in the gingiva of patients who had undergone head and neck radiation, after receiving hyperbaric oxygen therapy (HBOT), in comparison with normal gingiva. METHOD A total of 16 patients who had undergone head and neck radiation with HBOT and six healthy subjects were included in the study. After the completion of radiation therapy, patients received HBOT at 2 ATA for 90 minutes per session, and for 20 sessions per patient. Samples of gingival tissues were then taken. The levels of: transforming growth factor beta (TGF-β); phospho-nuclear factor kappa-light-chain-enhancer of activated B cells (p-NFϰB); nuclear factor kappa-light-chain-enhancer of activated B cells (NFϰB); proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α); phospho-dynamin-related protein 1 at ser616 (p-Drp1ser616); dynamin-related protein 1 (Drp1); Bcl-2-associated X-protein (Bax); and B-cell lymphoma 2 (Bcl-2) were determined using a Western blot. Independent t-test and Chi-squared tests were used in the study. RESULTS There were no differences in the levels of TGF-β, p-NFϰB, NFϰB, p-Drp1ser616, Drp1, Bax and Bcl-2 between the two groups. However, the level of PGC-1α was greater in irradiated gingival tissues with HBOT than in the healthy gingiva. CONCLUSION Radiation-induced impaired wound healing can be improved by HBOT as indicated by levels of apoptosis, mitochondrial dynamics, cell proliferation and inflammation in irradiated gingiva with HBOT to a similar level to normal healthy gingiva. These findings may occur through an increase in mitochondrial biogenesis following HBOT.
Collapse
Affiliation(s)
- Juthathip Kasikasetsiri
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Yuthakran Aschaitrakool
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Sasiwan Kerdphoo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nutchada Sriyaranya
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
19
|
Chen W, Zhao H, Li Y. Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduct Target Ther 2023; 8:333. [PMID: 37669960 PMCID: PMC10480456 DOI: 10.1038/s41392-023-01547-9] [Citation(s) in RCA: 314] [Impact Index Per Article: 157.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/29/2023] [Accepted: 06/24/2023] [Indexed: 09/07/2023] Open
Abstract
Mitochondria are organelles that are able to adjust and respond to different stressors and metabolic needs within a cell, showcasing their plasticity and dynamic nature. These abilities allow them to effectively coordinate various cellular functions. Mitochondrial dynamics refers to the changing process of fission, fusion, mitophagy and transport, which is crucial for optimal function in signal transduction and metabolism. An imbalance in mitochondrial dynamics can disrupt mitochondrial function, leading to abnormal cellular fate, and a range of diseases, including neurodegenerative disorders, metabolic diseases, cardiovascular diseases and cancers. Herein, we review the mechanism of mitochondrial dynamics, and its impacts on cellular function. We also delve into the changes that occur in mitochondrial dynamics during health and disease, and offer novel perspectives on how to target the modulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Wen Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
20
|
Pugliese LA, De Lorenzi V, Bernardi M, Ghignoli S, Tesi M, Marchetti P, Pesce L, Cardarelli F. Unveiling nanoscale optical signatures of cytokine-induced β-cell dysfunction. Sci Rep 2023; 13:13342. [PMID: 37587148 PMCID: PMC10432522 DOI: 10.1038/s41598-023-40272-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023] Open
Abstract
Pro-inflammatory cytokines contribute to β-cell failure in both Type-1 and Type-2 Diabetes. Data collected so far allowed to dissect the genomic, transcriptomic, proteomic and biochemical landscape underlying cytokine-induced β-cell progression through dysfunction. Yet, no report thus far complemented such molecular information with the direct optical nanoscopy of the β-cell subcellular environment. Here we tackle this issue in Insulinoma 1E (INS-1E) β-cells by label-free fluorescence lifetime imaging microscopy (FLIM) and fluorescence-based super resolution imaging by expansion microscopy (ExM). It is found that 24-h exposure to IL-1β and IFN-γ is associated with a neat modification of the FLIM signature of cell autofluorescence due to the increase of either enzyme-bound NAD(P)H molecules and of oxidized lipid species. At the same time, ExM-based direct imaging unveils neat alteration of mitochondrial morphology (i.e. ~ 80% increase of mitochondrial circularity), marked degranulation (i.e. ~ 40% loss of insulin granules, with mis-localization of the surviving pool), appearance of F-actin-positive membrane blebs and an hitherto unknown extensive fragmentation of the microtubules network (e.g. ~ 37% reduction in the number of branches). Reported observations provide an optical-microscopy framework to interpret the amount of molecular information collected so far on β-cell dysfunction and pave the way to future ex-vivo and in-vivo investigations.
Collapse
Affiliation(s)
- Licia Anna Pugliese
- NEST Laboratory - Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy.
| | - Valentina De Lorenzi
- NEST Laboratory - Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy
| | - Mario Bernardi
- NEST Laboratory - Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy
| | - Samuele Ghignoli
- NEST Laboratory - Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy
| | - Marta Tesi
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Luca Pesce
- NEST Laboratory - Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy.
| | - Francesco Cardarelli
- NEST Laboratory - Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy.
| |
Collapse
|
21
|
Cheon Y, Yoon S, Lee JH, Kim K, Kim HJ, Hong SW, Yun YR, Shim J, Kim SH, Lu B, Lee M, Lee S. A Novel Interaction between MFN2/Marf and MARK4/PAR-1 Is Implicated in Synaptic Defects and Mitochondrial Dysfunction. eNeuro 2023; 10:ENEURO.0409-22.2023. [PMID: 37550059 PMCID: PMC10444538 DOI: 10.1523/eneuro.0409-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/09/2023] Open
Abstract
As cellular energy powerhouses, mitochondria undergo constant fission and fusion to maintain functional homeostasis. The conserved dynamin-like GTPase, Mitofusin2 (MFN2)/mitochondrial assembly regulatory factor (Marf), plays a role in mitochondrial fusion, mutations of which are implicated in age-related human diseases, including several neurodegenerative disorders. However, the regulation of MFN2/Marf-mediated mitochondrial fusion, as well as the pathologic mechanism of neurodegeneration, is not clearly understood. Here, we identified a novel interaction between MFN2/Marf and microtubule affinity-regulating kinase 4 (MARK4)/PAR-1. In the Drosophila larval neuromuscular junction, muscle-specific overexpression of MFN2/Marf decreased the number of synaptic boutons, and the loss of MARK4/PAR-1 alleviated the synaptic defects of MFN2/Marf overexpression. Downregulation of MARK4/PAR-1 rescued the mitochondrial hyperfusion phenotype caused by MFN2/Marf overexpression in the Drosophila muscles as well as in the cultured cells. In addition, knockdown of MARK4/PAR-1 rescued the respiratory dysfunction of mitochondria induced by MFN2/Marf overexpression in mammalian cells. Together, our results indicate that the interaction between MFN2/Marf and MARK4/PAR-1 is fine-tuned to maintain synaptic integrity and mitochondrial homeostasis, and its dysregulation may be implicated in neurologic pathogenesis.
Collapse
Affiliation(s)
- Yeongmi Cheon
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Korea
- Laboratory of Molecular Biochemistry, Chonnam National University, Gwangju 61186, Korea
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Sunggyu Yoon
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Korea
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Korea
| | - Jae-Hyuk Lee
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Korea
| | - Kiyoung Kim
- Department of Medical Science, Soonchunhyang University, Asan 31538, Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu 41068, Korea
| | - Sung Wook Hong
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Korea
| | - Ye-Rang Yun
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Korea
| | - Jiwon Shim
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Korea
| | - Sung-Hak Kim
- Laboratory of Molecular Biochemistry, Chonnam National University, Gwangju 61186, Korea
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305
| | - Mihye Lee
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Korea
| |
Collapse
|
22
|
Choe JH, Kawase T, Xu A, Guzman A, Obradovic AZ, Low-Calle AM, Alaghebandan B, Raghavan A, Long K, Hwang PM, Schiffman JD, Zhu Y, Zhao R, Lee DF, Katz C, Prives C. Li-Fraumeni Syndrome-Associated Dimer-Forming Mutant p53 Promotes Transactivation-Independent Mitochondrial Cell Death. Cancer Discov 2023; 13:1250-1273. [PMID: 37067901 PMCID: PMC10287063 DOI: 10.1158/2159-8290.cd-22-0882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/11/2023] [Accepted: 03/02/2023] [Indexed: 04/18/2023]
Abstract
Cancer-relevant mutations in the oligomerization domain (OD) of the p53 tumor suppressor protein, unlike those in the DNA binding domain, have not been well elucidated. Here, we characterized the germline OD mutant p53(A347D), which occurs in cancer-prone Li-Fraumeni syndrome (LFS) patients. Unlike wild-type p53, mutant p53(A347D) cannot form tetramers and exists as a hyperstable dimeric protein. Further, p53(A347D) cannot bind or transactivate the majority of canonical p53 target genes. Isogenic cell lines harboring either p53(A347D) or no p53 yield comparable tumorigenic properties, yet p53(A347D) displays remarkable neomorphic activities. Cells bearing p53(A347D) possess a distinct transcriptional profile and undergo metabolic reprogramming. Further, p53(A347D) induces striking mitochondrial network aberration and associates with mitochondria to drive apoptotic cell death upon topoisomerase II inhibition in the absence of transcription. Thus, dimer-forming p53 demonstrates both loss-of-function (LOF) and gain-of-function (GOF) properties compared with the wild-type form of the protein. SIGNIFICANCE A mutant p53 (A347D), which can only form dimers, is associated with increased cancer susceptibility in LFS individuals. We found that this mutant wields a double-edged sword, driving tumorigenesis through LOF while gaining enhanced apoptogenic activity as a new GOF, thereby yielding a potential vulnerability to select therapeutic approaches. See related commentary by Stieg et al., p. 1046. See related article by Gencel-Augusto et al., p. 1230. This article is highlighted in the In This Issue feature, p. 1027.
Collapse
Affiliation(s)
- Joshua H. Choe
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Tatsuya Kawase
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - An Xu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Asja Guzman
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Aleksandar Z. Obradovic
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Ana Maria Low-Calle
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Bita Alaghebandan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Ananya Raghavan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Kaitlin Long
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Paul M. Hwang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Joshua D. Schiffman
- Department of Pediatrics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Peel Therapeutics, Inc., Salt Lake City, UT 84112, USA
| | - Yan Zhu
- Department of Biological Sciences, St. John’s University, New York, NY 11439, USA
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chen Katz
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
23
|
Kamitsuka PJ, Ghanem MM, Ziar R, McDonald SE, Thomas MG, Kwakye GF. Defective Mitochondrial Dynamics and Protein Degradation Pathways Underlie Cadmium-Induced Neurotoxicity and Cell Death in Huntington's Disease Striatal Cells. Int J Mol Sci 2023; 24:ijms24087178. [PMID: 37108341 PMCID: PMC10139096 DOI: 10.3390/ijms24087178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Exposure to heavy metals, including cadmium (Cd), can induce neurotoxicity and cell death. Cd is abundant in the environment and accumulates in the striatum, the primary brain region selectively affected by Huntington's disease (HD). We have previously reported that mutant huntingtin protein (mHTT) combined with chronic Cd exposure induces oxidative stress and promotes metal dyshomeostasis, resulting in cell death in a striatal cell model of HD. To understand the effect of acute Cd exposure on mitochondrial health and protein degradation pathways, we hypothesized that expression of mHTT coupled with acute Cd exposure would cooperatively alter mitochondrial bioenergetics and protein degradation mechanisms in striatal STHdh cells to reveal novel pathways that augment Cd cytotoxicity and HD pathogenicity. We report that mHTT cells are significantly more susceptible to acute Cd-induced cell death as early as 6 h after 40 µM CdCl2 exposure compared with wild-type (WT). Confocal microscopy, biochemical assays, and immunoblotting analysis revealed that mHTT and acute Cd exposure synergistically impair mitochondrial bioenergetics by reducing mitochondrial potential and cellular ATP levels and down-regulating the essential pro-fusion proteins MFN1 and MFN2. These pathogenic effects triggered cell death. Furthermore, Cd exposure increases the expression of autophagic markers, such as p62, LC3, and ATG5, and reduces the activity of the ubiquitin-proteasome system to promote neurodegeneration in HD striatal cells. Overall, these results reveal a novel mechanism to further establish Cd as a pathogenic neuromodulator in striatal HD cells via Cd-triggered neurotoxicity and cell death mediated by an impairment in mitochondrial bioenergetics and autophagy with subsequent alteration in protein degradation pathways.
Collapse
Affiliation(s)
- Paul J Kamitsuka
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Marwan M Ghanem
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Rania Ziar
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Sarah E McDonald
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Morgan G Thomas
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Gunnar F Kwakye
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| |
Collapse
|
24
|
Hu Z, Liao J, Zhang K, Huang K, Li Q, Lei C, Han Q, Zhang H, Guo J, Hu L, Pan J, Li Y, Tang Z. Effects of Long-Term Exposure to Copper on Mitochondria-Mediated Apoptosis in Pig Liver. Biol Trace Elem Res 2023; 201:1726-1739. [PMID: 35666388 DOI: 10.1007/s12011-022-03303-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
Abstract
Copper (Cu) is listed as one of the main heavy metal pollutants, which poses potential health risks to humans. Excessive intake of Cu has shown toxic effects on the organs of many animals, and the liver is one of the most important organs to metabolize it. In this study, pigs, the mammal with similar metabolic characteristics to humans, were selected to assess the effects of long-term exposure to Cu on mitochondria-mediated apoptosis, which are of great significance for studying the toxicity of Cu to humans. Pigs were fed a diet with different contents of Cu (10, 125, and 250 mg/kg) for 80 days. Samples of blood and liver tissue were collected on days 40 and 80. Experimental results demonstrated that the accumulation of Cu in the liver was increased in a dose-dependent and time-dependent manner. Meanwhile, the curve of pig's body weight showed that a 125 mg/kg Cu diet promoted the growth of pigs during the first 40 days and then inhibited it from 40 to 80 days, while the 250 mg/kg Cu diet inhibited the growth of pigs during 80 days of feeding. Additionally, the genes and protein expression levels of Caspase-3, p53, Bax, Bak1, Bid, Bad, CytC, and Drp1 in the treatment group were higher than that in the control group, while Bcl-2, Bcl-xL, Opa1, Mfn1, and Mfn2 were decreased. In conclusion, these results indicated that long-term excessive intake of Cu could inhibit the growth of pigs and induced mitochondria-mediated apoptosis by breaking the mitochondrial dynamic balance. Synopsis: Long-term exposure to high doses of Cu could lead to mitochondrial dysfunction by breaking the mitochondrial dynamic balance, which ultimately induced mitochondria-mediated apoptosis in the liver of pigs. This might be closely related to the growth inhibition and liver damage in pigs.
Collapse
Affiliation(s)
- Zhuoying Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Kai Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Kunxuan Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Chaiqin Lei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
25
|
Silva Dos Santos F, Neves RAF, Bernay B, Krepsky N, Teixeira VL, Artigaud S. The first use of LC-MS/MS proteomic approach in the brown mussel Perna perna after bacterial challenge: Searching for key proteins on immune response. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108622. [PMID: 36803779 DOI: 10.1016/j.fsi.2023.108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The brown mussel Perna perna is a valuable fishing resource, primarily in tropical and subtropical coastal regions. Because of their filter-feeding habits, mussels are directly exposed to bacteria in the water column. Escherichia coli (EC) and Salmonella enterica (SE) inhabit human guts and reach the marine environment through anthropogenic sources, such as sewage. Vibrio parahaemolyticus (VP) is indigenous to coastal ecosystems but can be harmful to shellfish. In this study, we aimed to assess the protein profile of the hepatopancreas of P. perna mussel challenged by introduced - E. coli and S. enterica - and indigenous marine bacteria - V. parahaemolyticus. Bacterial-challenge groups were compared with non-injected (NC) and injected control (IC) - that consisted in mussels not challenged and mussels injected with sterile PBS-NaCl, respectively. Through LC-MS/MS proteomic analysis, 3805 proteins were found in the hepatopancreas of P. perna. From the total, 597 were significantly different among conditions. Mussels injected with VP presented 343 proteins downregulated compared with all the other conditions, suggesting that VP suppresses their immune response. Particularly, 31 altered proteins - upregulated or downregulated - for one or more challenge groups (EC, SE, and VP) compared with controls (NC and IC) are discussed in detail in the paper. For the three tested bacteria, significantly different proteins were found to perform critical roles in immune response at all levels, namely: recognition and signal transduction; transcription; RNA processing; translation and protein processing; secretion; and humoral effectors. This is the first shotgun proteomic study in P. perna mussel, therefore providing an overview of the protein profile of the mussel hepatopancreas, focused on the immune response against bacteria. Hence, it is possible to understand the immune-bacteria relationship at molecular levels better. This knowledge can support the development of strategies and tools to be applied to coastal marine resource management and contribute to the sustainability of coastal systems.
Collapse
Affiliation(s)
- Fernanda Silva Dos Santos
- Graduate Program in Sciences and Biotechnology, Institute of Biology, Fluminense Federal University (UFF), R. Mario Santos Braga, S/n. Centro, Niterói, RJ, CEP 24.020-141, Brazil; Research Group of Experimental and Aquatic Ecology, Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458-307, Urca, Rio de Janeiro, RJ, CEP: 22.290-240, Brazil.
| | - Raquel A F Neves
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458, Urca, Rio de Janeiro, RJ, CEP: 22.290-255, Brazil; Research Group of Experimental and Aquatic Ecology, Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458-307, Urca, Rio de Janeiro, RJ, CEP: 22.290-240, Brazil.
| | - Benoît Bernay
- Plateforme Proteogen, SFR ICORE 4206, Université de Caen Basse-Normandie, Esplanade de la paix, 14032, Caen cedex, France.
| | - Natascha Krepsky
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458, Urca, Rio de Janeiro, RJ, CEP: 22.290-255, Brazil.
| | - Valéria Laneuville Teixeira
- Graduate Program in Sciences and Biotechnology, Institute of Biology, Fluminense Federal University (UFF), R. Mario Santos Braga, S/n. Centro, Niterói, RJ, CEP 24.020-141, Brazil; Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458, Urca, Rio de Janeiro, RJ, CEP: 22.290-255, Brazil.
| | - Sébastien Artigaud
- Université de Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzané, France.
| |
Collapse
|
26
|
Budi YP, Hsu MC, Lin YC, Lee YJ, Chiu HY, Chiu CH, Jiang YF. The injections of mitochondrial fusion promoter M1 during proestrus disrupt the progesterone secretion and the estrous cycle in the mouse. Sci Rep 2023; 13:2392. [PMID: 36765080 PMCID: PMC9918500 DOI: 10.1038/s41598-023-29608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
After ovulation, the mitochondrial enzyme CYP11A1 cleavage the cholesterol into pregnenolone for progesterone synthesis, suggesting that mitochondrial dynamics play a vital role in the female reproductive system. The changes in the mitochondria dynamics throughout the ovarian cycle have been reported in literature, but the correlation to its role in the ovarian cycle remains unclear. In this study, mitochondrial fusion promotor, M1, was used to study the impact of mitochondria dynamics in the female reproductive system. Our results showed that M1 treatment in mice can lead to the disruptions of estrous cycles in vagina smears. The decrease in serum LH was recorded in the animal. And the inhibitions of progesterone secretion and ovulations were observed in ovarian culture. Although no significant changes in mitochondrial networks were observed in the ovaries, significant up-regulation of mitochondrial respiratory complexes was revealed in M1 treatments through transcriptomic analysis. In contrast to the estrogen and steroid biosynthesis up-regulated in M1, the molecules of extracellular matrix, remodeling enzymes, and adhesion signalings were decreased. Collectively, our study provides novel targets to regulate the ovarian cycles through the mitochondria. However, more studies are still necessary to provide the functional connections between mitochondria and the female reproductive systems.
Collapse
Affiliation(s)
- Yovita Permata Budi
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Rm. 104-1, No.1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Meng-Chieh Hsu
- Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Chun Lin
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yue-Jia Lee
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsin-Yi Chiu
- Division of Thoracic Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, 11031, Taiwan.,Department of Medical Education, Taipei Medical University Hospital, Taipei, 11031, Taiwan.,Department of Education and Humanities in Medicine, School of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.,Department of Surgery, School of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chih-Hsien Chiu
- Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Fan Jiang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Rm. 104-1, No.1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan. .,School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
27
|
Koç A, De Storme N. Structural regulation and dynamic behaviour of organelles during plant meiosis. Front Cell Dev Biol 2022; 10:925789. [DOI: 10.3389/fcell.2022.925789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Eukaryotes use various mechanisms to maintain cell division stability during sporogenesis, and in particular during meiosis to achieve production of haploid spores. In addition to establishing even chromosome segregation in meiosis I and II, it is crucial for meiotic cells to guarantee balanced partitioning of organelles to the daughter cells, to properly inherit cellular functions. In plants, cytological studies in model systems have yielded insights into the meiotic behaviour of different organelles, i.e., clearly revealing a distinct organization at different stages throughout meiosis indicating for an active regulatory mechanism determining their subcellular dynamics. However, how, and why plant meiocytes organize synchronicity of these elements and whether this is conserved across all plant genera is still not fully elucidated. It is generally accepted that the highly programmed intracellular behaviour of organelles during meiosis serves to guarantee balanced cytoplasmic inheritance. However, recent studies also indicate that it contributes to the regulation of key meiotic processes, like the organization of cell polarity and spindle orientation, thus exhibiting different functionalities than those characterized in mitotic cell division. In this review paper, we will outline the current knowledge on organelle dynamics in plant meiosis and discuss the putative strategies that the plant cell uses to mediate this programmed spatio-temporal organization in order to safeguard balanced separation of organelles. Particular attention is thereby given to putative molecular mechanisms that underlie this dynamic organelle organization taken into account existing variations in the meiotic cell division program across different plant types. Furthermore, we will elaborate on the structural role of organelles in plant meiosis and discuss on organelle-based cellular mechanisms that contribute to the organization and molecular coordination of key meiotic processes, including spindle positioning, chromosome segregation and cell division. Overall, this review summarizes all relevant insights on the dynamic behaviour and inheritance of organelles during plant meiosis, and discusses on their functional role in the structural and molecular regulation of meiotic cell division.
Collapse
|
28
|
Kim HJ, Cho HB, Lee S, Lyu J, Kim HR, Lee S, Park JI, Park KH. Strategies for accelerating osteogenesis through nanoparticle-based DNA/mitochondrial damage repair. Am J Cancer Res 2022; 12:6409-6421. [PMID: 36168629 PMCID: PMC9475457 DOI: 10.7150/thno.77089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/18/2022] [Indexed: 11/05/2022] Open
Abstract
The efficiency of gene therapy is often dictated by the gene delivery system. Cationic polymers are essential elements of gene delivery systems. The relatively cheap cationic polymer, polyethyleneimine, has high gene delivery efficiency and is often used for gene delivery. However, the efficiency of gene therapy with polyethyleneimine-pDNA polyplex (PEI) is low. Human mesenchymal stem cells transfected with polyethyleneimine and a plasmid carrying the important osteogenic differentiation gene runt-related transcription factor 2 (RUNX2) accumulated DNA double-strand breaks and mitochondrial damage proportional to the amount of polyethyleneimine, reducing viability. Genomic/cellular stabilizer mediating RUNX2 delivery (GuaRD), a new reagent incorporating RS-1 NPs developed in this study, promoted DNA repair and prevented the accumulation of cell damage, allowing the delivery of pRUNX2 into hMSCs. while maintaining genome and mitochondrial stability. DNA damage was significantly lower and the expression of DNA repair-related genes significantly higher with GuaRD than with PEI. In addition, GuaRD improved mitochondrial stability, decreased the level of reactive oxygen species, and increased mitochondrial membrane potential. Osteogenic extracellular matrix (ECM) expression and calcification were higher with GuaRD than with PEI, suggesting improved osteogenic differentiation. These results indicate that lowering the cytotoxicity of PEI and improving cell stability are key to overcoming the limitations of conventional gene therapy, and that GuaRD can help resolve these limitations.
Collapse
Affiliation(s)
- Hye Jin Kim
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Hui Bang Cho
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Sujin Lee
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Jiyon Lyu
- School of Medicine, CHA University, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Hye-Ryoung Kim
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Sujeong Lee
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Ji-In Park
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Keun-Hong Park
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| |
Collapse
|
29
|
Jiang C, Okazaki T. Control of mitochondrial dynamics and apoptotic pathways by peroxisomes. Front Cell Dev Biol 2022; 10:938177. [PMID: 36158224 PMCID: PMC9500405 DOI: 10.3389/fcell.2022.938177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Peroxisomes are organelles containing different enzymes that catalyze various metabolic pathways such as β-oxidation of very long-chain fatty acids and synthesis of plasmalogens. Peroxisome biogenesis is controlled by a family of proteins called peroxins, which are required for peroxisomal membrane formation, matrix protein transport, and division. Mutations of peroxins cause metabolic disorders called peroxisomal biogenesis disorders, among which Zellweger syndrome (ZS) is the most severe. Although patients with ZS exhibit severe pathology in multiple organs such as the liver, kidney, brain, muscle, and bone, the pathogenesis remains largely unknown. Recent findings indicate that peroxisomes regulate intrinsic apoptotic pathways and upstream fission-fusion processes, disruption of which causes multiple organ dysfunctions reminiscent of ZS. In this review, we summarize recent findings about peroxisome-mediated regulation of mitochondrial morphology and its possible relationship with the pathogenesis of ZS.
Collapse
Affiliation(s)
- Chenxing Jiang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiko Okazaki
- Laboratory of Molecular Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- *Correspondence: Tomohiko Okazaki,
| |
Collapse
|
30
|
Ren L, Xu P, Yao J, Wang Z, Shi K, Han W, Wang H. Targeting the Mitochondria with Pseudo-Stealthy Nanotaxanes to Impair Mitochondrial Biogenesis for Effective Cancer Treatment. ACS NANO 2022; 16:10242-10259. [PMID: 35820199 DOI: 10.1021/acsnano.1c08008] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The clinical success of anticancer therapy is usually limited by drug resistance and the metastatic dissemination of cancer cells. Mitochondria are essential generators of cellular energy and play a crucial role in sustaining cell survival and metastatic escape. Selective drug strategies targeting mitochondria are able to rewire mitochondrial metabolism and may provide an alternative paradigm to treat many aggressive cancers with high efficiency and low toxicity. Here, we present a pseudo-stealthy mitochondria-targeted pro-nanotaxane and test it against recurrent and metastatic tumor xenografts. The nanoparticle encapsulates a mitochondria-targetable pro-taxane agent, which can be converted into the chemically unmodified cabazitaxel drug, with further surface cloaking with a low-density lipophilic triphenylphosphonium cation. The resultant nanotaxane could be effectively taken up by cells and consequently specifically localized to the mitochondria. The in situ activated cabazitaxel causes mitochondrial dysfunction and ultimately results in potent cell apoptosis. After intravenous administration to animals, pro-nanotaxane mimics the stealthy behavior of polyethylene glycol-cloaked nanoparticles to provide a long circulation time. The antitumor efficacy of this mitochondria-targeted system was validated in multiple preclinical drug-resistant tumor models. Notably, in a patient-derived metastatic melanoma model that was initially pretreated with cabazitaxel, nanotaxane administration not only produced durable tumor reduction but also substantially suppressed metastatic recurrence. Taken together, these results demonstrate that this combination of a pseudo-stealthy platform with a rationally designed pro-drug is an attractive approach to target mitochondria and enhance drug efficacy.
Collapse
Affiliation(s)
- Lulu Ren
- NHC Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, People's Republic of China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, People's Republic of China
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Peirong Xu
- NHC Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, People's Republic of China
- Department of Chemical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Jie Yao
- NHC Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, People's Republic of China
- Department of Chemical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Zihan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Kewei Shi
- NHC Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, People's Republic of China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Hangxiang Wang
- NHC Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, People's Republic of China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, People's Republic of China
| |
Collapse
|
31
|
Kumar M, Sharma S, Haque M, Kumar J, Hathi UPS, Mazumder S. TLR22-Induced Pro-Apoptotic mtROS Abets UPRmt-Mediated Mitochondrial Fission in Aeromonas hydrophila-Infected Headkidney Macrophages of Clarias gariepinus. Front Immunol 2022; 13:931021. [PMID: 35860264 PMCID: PMC9292580 DOI: 10.3389/fimmu.2022.931021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 11/15/2022] Open
Abstract
Toll-like receptors (TLRs) are epitomized as the first line of defense against pathogens. Amongst TLRs, TLR22 is expressed in non-mammalian aquatic vertebrates, including fish. Using headkidney macrophages (HKM) of Clarias gariepinus, we reported the pro-apoptotic and microbicidal role of TLR22 in Aeromonas hydrophila infection. Mitochondria act as a central scaffold in the innate immune system. However, the precise molecular mechanisms underlying TLR22 signaling and mitochondrial involvement in A. hydrophila-pathogenesis remain unexplored in fish. The aim of the present study was to investigate the nexus between TLR22 and mitochondria in pro-apoptotic immune signaling circuitry in A. hydrophila-infected HKM. We report that TLR22-induced mitochondrial-Ca2+ [Ca2+]mt surge is imperative for mtROS production in A. hydrophila-infected HKM. Mitigating mtROS production enhanced intracellular bacterial replication implicating its anti-microbial role in A. hydrophila-pathogenesis. Enhanced mtROS triggers hif1a expression leading to prolonged chop expression. CHOP prompts mitochondrial unfolded protein response (UPRmt) leading to the enhanced expression of mitochondrial fission marker dnml1, implicating mitochondrial fission in A. hydrophila pathogenesis. Inhibition of mitochondrial fission reduced HKM apoptosis and increased the bacterial burden. Additionally, TLR22-mediated alterations in mitochondrial architecture impair mitochondrial function (ΔΨm loss and cytosolic accumulation of cyt c), which in turn activates caspase-9/caspase-3 axis in A. hydrophila-infected HKM. Based on these findings we conclude that TLR22 prompts mtROS generation, which activates the HIF-1α/CHOP signalosome triggering UPRmt-induced mitochondrial fragmentation culminating in caspase-9/-3-mediated HKM apoptosis and bacterial clearance.
Collapse
Affiliation(s)
- Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shagun Sharma
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Munira Haque
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, Delhi, India
| | - Jai Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Umesh Prasad Sah Hathi
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, Delhi, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, Delhi, India
- *Correspondence: Shibnath Mazumder,
| |
Collapse
|
32
|
Carmona-Carmona CA, Dalla Pozza E, Ambrosini G, Errico A, Dando I. Divergent Roles of Mitochondria Dynamics in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14092155. [PMID: 35565283 PMCID: PMC9105422 DOI: 10.3390/cancers14092155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma is one of the most lethal neoplasia due to the lack of early diagnostic markers and effective therapies. The study of metabolic alterations of PDAC is of crucial importance since it would open the way to the discovery of new potential therapies. Mitochondria represent key organelles that regulate energy metabolism, and they remodel their structure by undergoing modifications by fusing with other mitochondria or dividing to generate smaller ones. The alterations of mitochondria arrangement may influence the metabolism of PDAC cells, thus supporting the proliferative needs of cancer. Shedding light on this topic regarding cancer and, more specifically, PDAC may help identify new potential strategies that hit cancer cells at their “core,” i.e., mitochondria. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors; it is often diagnosed at an advanced stage and is hardly treatable. These issues are strictly linked to the absence of early diagnostic markers and the low efficacy of treatment approaches. Recently, the study of the metabolic alterations in cancer cells has opened the way to important findings that can be exploited to generate new potential therapies. Within this scenario, mitochondria represent important organelles within which many essential functions are necessary for cell survival, including some key reactions involved in energy metabolism. These organelles remodel their shape by dividing or fusing themselves in response to cellular needs or stimuli. Interestingly, many authors have shown that mitochondrial dynamic equilibrium is altered in many different tumor types. However, up to now, it is not clear whether PDAC cells preferentially take advantage of fusion or fission processes since some studies reported a wide range of different results. This review described the role of both mitochondria arrangement processes, i.e., fusion and fission events, in PDAC, showing that a preference for mitochondria fragmentation could sustain tumor needs. In addition, we also highlight the importance of considering the metabolic arrangement and mitochondria assessment of cancer stem cells, which represent the most aggressive tumor cell type that has been shown to have distinctive metabolic features to that of differentiated tumor cells.
Collapse
Affiliation(s)
| | | | | | | | - Ilaria Dando
- Correspondence: (C.A.C.-C.); (I.D.); Tel.: +39-045-802-7174 (C.A.C.-C.); +39-045-802-7169 (I.D.)
| |
Collapse
|
33
|
Sharma VK, Stark M, Fridman N, Assaraf YG, Gross Z. Doubly Stimulated Corrole for Organelle-Selective Antitumor Cytotoxicity. J Med Chem 2022; 65:6100-6115. [PMID: 35434997 DOI: 10.1021/acs.jmedchem.1c02085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Balancing between safety and efficacy of cancer chemotherapeutics is achievable by relying on internal and/or external stimuli for selective and on-demand antitumor cytotoxicity. We now introduce the difluorophosphorus(V) corrole PC-Im, a theranostic agent with a pH-sensitive N-methylimidazole moiety. Structure/activity relationships, via comparison with the permanently charged PC-ImM+ and the lipophilic PC, uncovered the exceptional features of PC-Im: nanoparticular and monomeric at neutral and low pH, respectively, 10-fold increased light-induced singlet oxygen production at acidic pH, internalization into malignant cells within minutes, and selective accumulation within lysosomes. Submillimolar PC-Im concentrations are tolerable in the dark, while illumination induces nanomolar cytotoxic effects due to a multiplicity of cellular deleterious events: endoplasmic reticulum fragmentation, lysosome fusion and exocytosis, calcium leakage, mitochondrial fission, and swelling. PC-Im emerges as an antitumor agent, whose potency is triggered by endogenous and exogenous stimuli, assuring its cytotoxicity will occur selectively upon lysosomal accumulation and solely upon light activation.
Collapse
Affiliation(s)
- Vinay K Sharma
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Michal Stark
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
34
|
Yin X, Li Z, Lyu C, Wang Y, Ding S, Ma C, Wang J, Cui S, Wang J, Guo D, Xu R. Induced Effect of Zinc oxide nanoparticles on human acute myeloid leukemia cell apoptosis by regulating mitochondrial division. IUBMB Life 2022; 74:519-531. [PMID: 35383422 DOI: 10.1002/iub.2615] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/28/2022] [Accepted: 03/31/2022] [Indexed: 11/11/2022]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have exhibited excellent anti-tumor, the present study aimed to elucidate the underlying mechanism of ZnO NPs induced apoptosis in acute myeloid leukemia (AML) cells by regulating mitochondrial division. THP-1 cells, an AML cell line, were first incubated with different concentrations ZnO NPs for 24 h. Next, the expression of Drp-1, Bcl-2, Bax mRNA and protein was detected, and the effects of ZnO NPs on the levels of reactive oxygen species (ROS), mitochondrial membrane potential (Δψm), apoptosis and ATP generation in THP-1 cells were measured. Moreover, the effect of Drp-1 inhibitor Mdivi-1 and ZnO NPs on THP-1 cells was also detected. The results showed that the THP-1 cells survival rate decreased with the increment of ZnO NPs concentration and incubation time in a dose- and time-dependent manner. ZnO NPs can reduce the cell Δψm and ATP levels, induce the ROS production, and increase the levels of mitochondrial division and apoptosis. In contrast, the apoptotic level was significantly reduced after intervention of Drp-1 inhibitor, suggesting that ZnO NPs can induce the apoptosis of THP-1 cells by regulating mitochondrial division. Overall, ZnO NPs may provide a new basis and idea in treating human acute myeloid leukemia in clinical practice. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xuewei Yin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zonghong Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunyi Lyu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Wang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Shumin Ding
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Chenchen Ma
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Jingyi Wang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Siyuan Cui
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Jinxin Wang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruirong Xu
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| |
Collapse
|
35
|
Babaei-Abraki S, Karamali F, Nasr-Esfahani MH. The Role of Endoplasmic Reticulum and Mitochondria in Maintaining Redox Status and Glycolytic Metabolism in Pluripotent Stem Cells. Stem Cell Rev Rep 2022; 18:1789-1808. [PMID: 35141862 DOI: 10.1007/s12015-022-10338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
Pluripotent stem cells (PSCs), including embryonic stem cells and induced pluripotent stem cells (iPSCs), can be applicable for regenerative medicine. They strangely rely on glycolysis metabolism akin to aerobic glycolysis in cancer cells. Upon differentiation, PSCs undergo a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS). The metabolic shift depends on organelles maturation, transcriptome modification, and metabolic switching. Besides, metabolism-driven chromatin regulation is necessary for cell survival, self-renewal, proliferation, senescence, and differentiation. In this respect, mitochondria may serve as key organelle to adapt environmental changes with metabolic intermediates which are necessary for maintaining PSCs identity. The endoplasmic reticulum (ER) is another organelle whose role in cellular identity remains under-explored. The purpose of our article is to highlight the recent progress on these two organelles' role in maintaining PSCs redox status focusing on metabolism. Topics include redox status, metabolism regulation, mitochondrial dynamics, and ER stress in PSCs. They relate to the maintenance of stem cell properties and subsequent differentiation of stem cells into specific cell types.
Collapse
Affiliation(s)
- Shahnaz Babaei-Abraki
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.,Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Fereshteh Karamali
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
36
|
Duroux-Richard I, Apparailly F, Khoury M. Mitochondrial MicroRNAs Contribute to Macrophage Immune Functions Including Differentiation, Polarization, and Activation. Front Physiol 2021; 12:738140. [PMID: 34803730 PMCID: PMC8595120 DOI: 10.3389/fphys.2021.738140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022] Open
Abstract
A subset of microRNA (miRNA) has been shown to play an important role in mitochondrial (mt) functions and are named MitomiR. They are present within or associated with mitochondria. Most of the mitochondrial miRNAs originate from the nucleus, while a very limited number is encoded by mtDNA. Moreover, the miRNA machinery including the Dicer and Argonaute has also been detected within mitochondria. Recent, literature has established a close relationship between miRNAs and inflammation. Indeed, specific miRNA signatures are associated with macrophage differentiation, polarization and functions. Nevertheless, the regulation of macrophage inflammatory pathways governed specifically by MitomiR and their implication in immune-mediated inflammatory disorders remain poorly studied. Here, we propose a hypothesis in which MitomiR play a key role in triggering macrophage differentiation and modulating their downstream activation and immune functions. We sustain this proposition by bioinformatic data obtained from either the human monocytic THP1 cell line or the purified mitochondrial fraction of PMA-induced human macrophages. Interestingly, 22% of the 754 assayed miRNAs were detected in the mitochondrial fraction and are either exclusively or highly enriched cellular miRNA. Furthermore, the in silico analysis performed in this study, identified a specific MitomiR signature associated with macrophage differentiation that was correlated with gene targets within the mitochondria genome or with mitochondrial pathways. Overall, our hypothesis and data suggest a previously unrecognized link between MitomiR and macrophage function and fate. We also suggest that the MitomiR-dependent control could be further enhanced through the transfer of mitochondria from donor to target cells, as a new strategy for MitomiR delivery.
Collapse
Affiliation(s)
| | - Florence Apparailly
- IRMB, INSERM, Université de Montpellier, CHU Montpellier, Montpellier, France.,Clinical Department for Osteoarticular Diseases, University Hospital of Montpellier, Montpellier, France
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile.,IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| |
Collapse
|
37
|
Luan Y, Luan Y, Feng Q, Chen X, Ren KD, Yang Y. Emerging Role of Mitophagy in the Heart: Therapeutic Potentials to Modulate Mitophagy in Cardiac Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3259963. [PMID: 34603595 PMCID: PMC8483925 DOI: 10.1155/2021/3259963] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
The normal function of the mitochondria is crucial for most tissues especially for those that demand a high energy supply. Emerging evidence has pointed out that healthy mitochondrial function is closely associated with normal heart function. When these processes fail to repair the damaged mitochondria, cells initiate a removal process referred to as mitophagy to clear away defective mitochondria. In cardiomyocytes, mitophagy is closely associated with metabolic activity, cell differentiation, apoptosis, and other physiological processes involved in major phenotypic alterations. Mitophagy alterations may contribute to detrimental or beneficial effects in a multitude of cardiac diseases, indicating potential clinical insights after a close understanding of the mechanisms. Here, we discuss the current opinions of mitophagy in the progression of cardiac diseases, such as ischemic heart disease, diabetic cardiomyopathy, cardiac hypertrophy, heart failure, and arrhythmia, and focus on the key molecules and related pathways involved in the regulation of mitophagy. We also discuss recently reported approaches targeting mitophagy in the therapy of cardiac diseases.
Collapse
Affiliation(s)
- Yi Luan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
| | - Xing Chen
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
38
|
Xie Y, Chen R, Yan L, Jia Z, Liang G, Wang Q. Transcription factor HOXC10 activates the expression of MTFR2 to regulate the proliferation, invasion and migration of colorectal cancer cells. Mol Med Rep 2021; 24:797. [PMID: 34523692 PMCID: PMC8456344 DOI: 10.3892/mmr.2021.12437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/25/2021] [Indexed: 12/09/2022] Open
Abstract
HOXC10 and mitochondrial fission regulator 2 (MTFR2) have been reported to be abnormally expressed in multiple types of cancer tissues. However, the effects of HOXC10 and MTFR2 on colorectal cancer (CRC) remain poorly understood. Therefore, the present study aimed to investigate the expression of HOXC10 and MTFR2 in CRC tissues and cells, and analyze their effects on CRC cell proliferation, invasion and migration. Reverse transcription‑quantitative PCR and western blotting were used to detect the expression levels of MTFR2 and HOXC10 in tissues and cells. To investigate the association between MTFR2 and HOXC10, short hairpin RNA‑MTFR2 and overexpression vector‑HOXC10 were transfected into the cells, respectively. Furthermore, western blotting was performed to detect the expression levels of invasion‑associated proteins. The proliferation, clone formation, invasion and migration of colorectal cancer cells were in turn analyzed by the Cell Counting Kit‑8, clone formation, wound healing and Transwell assays. Japan Automotive Software Platform and Architecture software predicted the binding sites between HOXC10 and MTFR2, which was confirmed by the dual‑luciferase reporter assay and chromatin immunoprecipitation. The present study demonstrated that HOXC10 and MTFR2 mRNA and protein expression levels were significantly upregulated in CRC tissues and cells. MTFR2 knockdown significantly inhibited CRC cell proliferation, clone formation, invasion and migration. Furthermore, HOXC10 was shown to interact with MTFR2. HOXC10 overexpression was able to significantly reverse the inhibitory effects of MTFR2 knockdown on CRC cells. In conclusion, HOXC10 overexpression activated MTFR2 expression to enhance the proliferation, clone formation, invasion and migration of CRC cells.
Collapse
Affiliation(s)
- Ying Xie
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Ran Chen
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Liujia Yan
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Zhangjun Jia
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Guangshu Liang
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Qin Wang
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
39
|
Liao J, Yang F, Bai Y, Yu W, Qiao N, Han Q, Zhang H, Guo J, Hu L, Li Y, Pan J, Tang Z. Metabolomics analysis reveals the effects of copper on mitochondria-mediated apoptosis in kidney of broiler chicken (Gallus gallus). J Inorg Biochem 2021; 224:111581. [PMID: 34419760 DOI: 10.1016/j.jinorgbio.2021.111581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023]
Abstract
Copper (Cu) is one of the ubiquitous environmental pollutants which have raised wide concerns about the potential toxic effects and public health threat. For deeply investigating the nephrotoxicity induced by Cu, the effects of Cu on mitochondria-mediated apoptosis in kidney were first to analyze by combining metabolomics and molecular biology techniques. In this study, broiler chicks were fed with different contents of Cu (11, 110, 220, and 330 mg/kg Cu) for 49 d. The results of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining and transmission electron microscope showed that Cu could induce apoptosis in kidney, characterized by the increasing of TUNEL-positive cells and mitochondrial vacuolation. Additionally, a total of 62 differential metabolites were detected by liquid chromatography-mass spectrometry (LC-MS), and mainly enriched in the metabolic pathways including riboflavin metabolism, glutathione metabolism, sphingolipid metabolism, and glycerophospholipid metabolism, which were closely to mitochondrial metabolism. Meanwhile, the decreased mitochondrial membrane potential (MMP), increased mitochondrial membrane permeability and the change of mRNA and protein expression levels associated with mitochondria-mediated apoptosis and mitochondrial dynamics confirmed that Cu could induce mitochondria-mediated apoptosis. Therefore, our results demonstrated that Cu induced mitochondria-mediated apoptosis in kidney. Moreover, this study highlighted the metabolic characteristics of Cu to kidney, which suggested that mitochondrial metabolism could be considered as an important factor influencing toxicity.
Collapse
Affiliation(s)
- Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Yuman Bai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Na Qiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
40
|
Li J, Chang X, Shang M, Niu S, Zhang W, Li Y, Sun Z, Wu T, Kong L, Zhang T, Tang M, Xue Y. The crosstalk between DRP1-dependent mitochondrial fission and oxidative stress triggers hepatocyte apoptosis induced by silver nanoparticles. NANOSCALE 2021; 13:12356-12369. [PMID: 34254625 DOI: 10.1039/d1nr02153b] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Previous studies have revealed that the liver is the main target organ of deposition for engineered nanoparticles. The hepatotoxicity of silver nanoparticles (AgNPs), the widely used antimicrobial nanoparticles, has been of great interest. However, little is known about the regulatory mechanism of the mitochondria in AgNP-induced hepatotoxicity. In the present study, we found that AgNPs, rather than silver ions, induced mitochondrial dynamics disorders, oxidative stress, and mitochondria-dependent hepatocyte apoptosis in mice. Using human hepatocellular carcinoma (HepG2) cells, we confirmed that the interaction between dynamin-related protein 1 (DRP1)-dependent mitochondrial fission and oxidative stress promoted mitochondrial damage and mitochondria-dependent apoptosis induced by AgNPs, as determined by the elimination of DRP1 or addition of N-acetylcysteine (NAC). Interestingly, the crosstalk between DRP1-dependent mitochondrial fission and oxidative stress also activated mitophagy and autophagy flux blocking. Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) gene silencing contributed to the aggravation of mitochondrial damage, oxidative stress, and apoptosis. These results revealed that the interplay between mitochondrial fission and oxidative stress induced mitophagy defects and triggered AgNP-induced mitochondria-dependent apoptosis in liver cells both in vivo and in vitro. Our findings provide a perspective for the mechanism of hepatotoxicity induced by exposure to metal NPs.
Collapse
Affiliation(s)
- Jiangyan Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sunitinib with photoirradiation-mediated reactive oxygen species generation induces apoptosis of renal cell carcinoma cells. Photodiagnosis Photodyn Ther 2021; 35:102427. [PMID: 34216806 DOI: 10.1016/j.pdpdt.2021.102427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Photodynamic therapy is a clinically approved, minimally invasive,therapeutic procedure used for the treatment of several cancers. In recent years, sunitinib, one of the tyrosine kinase inhibitors, has also attracted attention as a novel photosensitizer. However, there is currently no data available on the combined cytotoxic effects of sunitinib and photoirradiation on renal cell carcinoma including how the treatment induced cellular toxicity. METHODS In the present study, we used sunitinib as a photosensitizer and evaluated the effects of sunitinib and photodynamic therapy treatment on renal cancer cell lines, including the induction of cell death. RESULTS Our study showed that treatment with sunitinib and photoirradiation at 8 mW/cm2 for 30 min resulted in the production intracellular reactive oxygen species (ROS), which is indicated by the increase in mRNA expression levels of PAI-1, NF-κβ, and Caspase-3. An increase in rate of apoptotic reaction and increase in the expression level of apoptotic marker were also observed when cells undergo treatment with sunitinib and photoirradiation. CONCLUSIONS Our findings suggest that combining photodynamic therapy with sunitinib represents a minimally invasive therapeutic procedure with cancer selectivity for renal cell carcinoma.
Collapse
|
42
|
Bader S, Wilmers J, Pelzer M, Jendrossek V, Rudner J. Activation of anti-oxidant Keap1/Nrf2 pathway modulates efficacy of dihydroartemisinin-based monotherapy and combinatory therapy with ionizing radiation. Free Radic Biol Med 2021; 168:44-54. [PMID: 33775773 DOI: 10.1016/j.freeradbiomed.2021.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/12/2021] [Accepted: 03/21/2021] [Indexed: 01/18/2023]
Abstract
The efficacy of radiotherapy depends not only on DNA damage but also on ROS production, both induced by ionizing radiation. Massive ROS production can induce cell death or activate protective pathways such as Keap1/Nrf2 pathway, which regulates intracellular cysteine availability through upregulation of SLC7A11, a subunit of xCT transporter, and subsequently glutathione synthesis, thus improving antioxidative defense. The anti-malaria drug dihydroartemisinin (DHA) shows anti-neoplastic potential. Previous publications suggested that DHA increased ROS production. We intended to enhance oxidative stress with DHA to improve the efficacy of radiotherapy. Therefore, we first analyzed the oxidative response to DHA in HCT116 colorectal and NCI-H460 lung adenocarcinoma cells. In response to DHA, we detected lipid peroxidation and protein oxidation, which resulted in mitochondrial damage and eventually in iron-dependent cell death. Concurrently, DHA activated Keap1/Nrf2 pathway in HCT116 cells, leading to increased SLC7A11 expression and glutathione level. In Keap1-mutant NCI-H460 cells, Nrf2 was constantly activated and responsible for high SLC7A11 and glutathione levels. Pancancer analysis revealed that lung cancer is the tumor entity with the most frequent Keap1 alterations. Although NCI-H460 cells reacted more refractory to DHA-induced cell death than HCT116 cells, eradication of clonogenic cells by DHA was more efficient in both cell lines when Keap1/Nrf2 pathway was inhibited. When applied simultaneously, radiotherapy and DHA more efficiently eradicated clonogenic cells than either therapy alone, but treatment schedule can mitigate the combinatory effect in HCT116 cells. In summary, DHA improved efficacy of radiotherapy, but treatment schedule must be considered with care especially in Keap1-wildtype cells.
Collapse
Affiliation(s)
- Sina Bader
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Julia Wilmers
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Pelzer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Justine Rudner
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
43
|
Johnson J, Mercado‐Ayón E, Clark E, Lynch D, Lin H. Drp1-dependent peptide reverse mitochondrial fragmentation, a homeostatic response in Friedreich ataxia. Pharmacol Res Perspect 2021; 9:e00755. [PMID: 33951329 PMCID: PMC8099044 DOI: 10.1002/prp2.755] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Friedreich ataxia is an autosomal recessive, neurodegenerative disease characterized by the deficiency of the iron-sulfur cluster assembly protein frataxin. Loss of this protein impairs mitochondrial function. Mitochondria alter their morphology in response to various stresses; however, such alterations to morphology may be homeostatic or maladaptive depending upon the tissue and disease state. Numerous neurodegenerative diseases exhibit excessive mitochondrial fragmentation, and reversing this phenotype improves bioenergetics for diseases in which mitochondrial dysfunction is a secondary feature of the disease. This paper demonstrates that frataxin deficiency causes excessive mitochondrial fragmentation that is dependent upon Drp1 activity in Friedreich ataxia cellular models. Drp1 inhibition by the small peptide TAT-P110 reverses mitochondrial fragmentation but also decreases ATP levels in frataxin-knockdown fibroblasts and FRDA patient fibroblasts, suggesting that fragmentation may provide a homeostatic pathway for maintaining cellular ATP levels. The cardiolipin-stabilizing compound SS-31 similarly reverses fragmentation through a Drp1-dependent mechanism, but it does not affect ATP levels. The combination of TAT-P110 and SS-31 does not affect FRDA patient fibroblasts differently from SS-31 alone, suggesting that the two drugs act through the same pathway but differ in their ability to alter mitochondrial homeostasis. In approaching potential therapeutic strategies for FRDA, an important criterion for compounds that improve bioenergetics should be to do so without impairing the homeostatic response of mitochondrial fragmentation.
Collapse
Affiliation(s)
- Joseph Johnson
- Department of Pediatrics and NeurologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | | | - Elisia Clark
- Department of Pediatrics and NeurologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - David Lynch
- Department of Pediatrics and NeurologyUniversity of PennsylvaniaPhiladelphiaPAUSA
- Children’s Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Hong Lin
- Department of Pediatrics and NeurologyUniversity of PennsylvaniaPhiladelphiaPAUSA
- Children’s Hospital of PhiladelphiaPhiladelphiaPAUSA
| |
Collapse
|
44
|
Salman M, Kaushik P, Tabassum H, Parvez S. Melatonin Provides Neuroprotection Following Traumatic Brain Injury-Promoted Mitochondrial Perturbation in Wistar Rat. Cell Mol Neurobiol 2021; 41:765-781. [PMID: 32468441 PMCID: PMC11448575 DOI: 10.1007/s10571-020-00884-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
Excessive mitochondrial fission has been implicated in the etiology of neuronal cell death in traumatic brain injury (TBI). In the present study, we examined the efficacy of melatonin (Mel) as a neuroprotective agent against TBI-induced oxidative damage and mitochondrial dysfunction. We assessed the impact of Mel post-treatment (10 mg/kg b.wt., i.p.) at different time intervals in TBI-subjected Wistar rats. We found that the Mel treatment significantly attenuated brain edema, oxidative damage, mitochondrial fission, and promoted mitochondrial fusion. Additionally, Mel-treated rats showed restoration of mitochondrial membrane potential and oxidative phosphorylation with a concomitant reduction in cytochrome-c release. Further, Mel treatment significantly inhibited the translocation of Bax and Drp1 proteins to mitochondria in TBI-subjected rats. The restorative role of Mel treatment in TBI rats was supported by the mitochondrial ultra-structural analysis, which showed activation of mitochondrial fusion mechanism. Mel enhanced mitochondrial biogenesis by upregulation of PGC-1α protein. Our results demonstrated the remedial role of Mel in ameliorating mitochondrial dysfunctions that are modulated in TBI-subjected rats and provided support for mitochondrial-mediated neuroprotection as a putative therapeutic agent in the brain trauma.
Collapse
Affiliation(s)
- Mohd Salman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Pooja Kaushik
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Government of India, V. Ramalingaswamy Bhawan, P.O. Box No. 4911, New Delhi, 110029, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
45
|
Wang HL, Xing GD, Qian Y, Sun XF, Zhong JF, Chen KL. Dihydromyricetin attenuates heat stress-induced apoptosis in dairy cow mammary epithelial cells through suppressing mitochondrial dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112078. [PMID: 33676053 DOI: 10.1016/j.ecoenv.2021.112078] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
It is well known that the dairy cow production is very sensitive to environmental factors, including high temperature, high humidity and radiant heat sources. High temperature-induced heat stress is the main environmental factor that causes oxidative stress and apoptosis, which affects the development of mammary glands in dairy cows. Dihydromyricetin (DMY) is a nature flavonoid compound extracted from Ampelopsis grossedentata; it has been shown to have various pharmacological functions, such as anti-inflammation, antitumor and liver protection. The present study aims to evaluate the protective effect of DMY on heat stress-induced dairy cow mammary epithelial cells (DCMECs) apoptosis and explore the potential mechanisms. The results show that heat stress triggers heat shock response and reduces cell viability in DCMECs; pretreatment of DCMECs with DMY (25 μM) for 12 h significantly alleviates the negative effects of heat stress on cells. DMY can provide cytoprotective effects by suppressing heat stress-caused mitochondrial membrane depolarization and mitochondrial dysfunction, Bax and Caspase 3 activity, and modulation of oxidative enzymes, thereby preventing ROS production and apoptosis in DCMECs. Importantly, DMY treatment could attenuate heat stress-induced mitochondrial fragmentation through mediating the expression of mitochondrial fission and fusion-related genes, including Dynamin related protein 1 (Drp1), Mitochondrial fission 1 protein (Fis1), and Mitofusin1, 2 (Mfn1, 2). Above all, our findings demonstrate that DMY could protect DCMECs against heat stress-induced injury through preventing oxidative stress, the imbalance of mitochondrial fission and fusion, which provides useful evidence that DMY can be a promising therapeutic drug for protecting heat stress-induced mammary glands injury and mastitis.
Collapse
Affiliation(s)
- Hui-Li Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guang-Dong Xing
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yong Qian
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xue-Feng Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ji-Feng Zhong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Kun-Lin Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
46
|
Zhu H, Wang G, Zhu H, Xu A. MTFR2, A Potential Biomarker for Prognosis and Immune Infiltrates, Promotes Progression of Gastric Cancer Based on Bioinformatics Analysis and Experiments. J Cancer 2021; 12:3611-3625. [PMID: 33995638 PMCID: PMC8120185 DOI: 10.7150/jca.58158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Mitochondrial fission regulator 2 (MTFR2) which can promote mitochondrial fission, has recently been reported to be involved in tumorigenesis. However, little is known about its expression levels and function in gastric cancer (GC). This study aims to clarify the role of MTFR2 in GC. Methods:We firstly determined the expression level and prognostic value of MTFR2 in GC by integrated bioinformatics (Oncomine, GEPIA, Kaplan-Meier Plotter database) and experimental approaches (RT-qPCR, western blot, immunohistochemistry). After constructing stable down-regulated GC cells, the biological functions of MTFR2 in vitro and in vivo were studied through cell clone formation, wound healing, transwell and tumor formation experiments.To understand the reason for the high expression of MTFR2 in GC, copy number alternation, promoter methylation and mutation of MTFR2 were detected by UALCAN and cBioPortal. TargetScanHuman and PROMO databases were also used to explore the miRNAs and transcription factors of MTFR2, and the regulatory network was visualized by Cytoscape. LinkedOmics was used to detect the co-expression profile, and then these co-expressed genes were used for gene oncology function and pathway enrichment analysis to deepen the understanding of MTFR2 mechanism. The protein interaction network of MTFR2 was constructed by the GeneMANIA platform. Docking study of the binding mode was conducted by H DOCK webserver, and PYMOL is used for visualization, and analysis. TIMER database was used to explore the correlation between MTFR2 expression level and immune cells infiltration and gene markers of tumor infiltrating immune cells. Results: We demonstrated that MTFR2 was up-regulated in GC, and its overexpression led to poorer prognosis. MTFR2 downregulation inhibited the proliferation, migration, and invasion of GC cells in vitro and in vivo. By bioinformatics analysis, we identified the possible factors in MTFR2 overexpression. Moreover, function and pathway enrichment analyses found that MTFR2 was involved in chromosome segregation, catalytic activity, cell cycle, and ribonucleic acid transport. A MTFR2-protein interaction network revealed a potential direct protein interaction between MTFR2 and protein kinase adenosine-monophosphate-activated catalytic subunit alpha 1 (PRKAA1), and their potential binding site was predicted in a molecular docking model. In addition, we also found that MTFR2 may be correlated with immune infiltration in GC. Conclusions: Our study has effectively revealed the expression, prognostic value, potential functional networks, protein interactions and immune infiltration of MTFR2 in GC. Altogether, our data identify the possible underlying mechanisms of MTFR2 and suggest that MTFR2 may be a prognostic biomarker and therapeutic target in GC.
Collapse
Affiliation(s)
- Hai Zhu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, People's Republic of China
| | - Gang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230001, People's Republic of China
| | - Haixing Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, People's Republic of China
| | - Aman Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, People's Republic of China.,Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230001, People's Republic of China
| |
Collapse
|
47
|
Boulton C. Provocation: all yeast cells are born equal, but some grow to be more equal than others. JOURNAL OF THE INSTITUTE OF BREWING 2021. [DOI: 10.1002/jib.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Elorza AA, Soffia JP. mtDNA Heteroplasmy at the Core of Aging-Associated Heart Failure. An Integrative View of OXPHOS and Mitochondrial Life Cycle in Cardiac Mitochondrial Physiology. Front Cell Dev Biol 2021; 9:625020. [PMID: 33692999 PMCID: PMC7937615 DOI: 10.3389/fcell.2021.625020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
The most common aging-associated diseases are cardiovascular diseases which affect 40% of elderly people. Elderly people are prone to suffer aging-associated diseases which are not only related to health and medical cost but also to labor, household productivity and mortality cost. Aging is becoming a world problem and it is estimated that 21.8% of global population will be older than 65 years old in 2050; and for the first time in human history, there will be more elderly people than children. It is well accepted that the origin of aging-associated cardiovascular diseases is mitochondrial dysfunction. Mitochondria have their own genome (mtDNA) that is circular, double-stranded, and 16,569 bp long in humans. There are between 500 to 6000 mtDNA copies per cell which are tissue-specific. As a by-product of ATP production, reactive oxygen species (ROS) are generated which damage proteins, lipids, and mtDNA. ROS-mutated mtDNA co-existing with wild type mtDNA is called mtDNA heteroplasmy. The progressive increase in mtDNA heteroplasmy causes progressive mitochondrial dysfunction leading to a loss in their bioenergetic capacity, disruption in the balance of mitochondrial fusion and fission events (mitochondrial dynamics, MtDy) and decreased mitophagy. This failure in mitochondrial physiology leads to the accumulation of depolarized and ROS-generating mitochondria. Thus, besides attenuated ATP production, dysfunctional mitochondria interfere with proper cellular metabolism and signaling pathways in cardiac cells, contributing to the development of aging-associated cardiovascular diseases. In this context, there is a growing interest to enhance mitochondrial function by decreasing mtDNA heteroplasmy. Reduction in mtDNA heteroplasmy is associated with increased mitophagy, proper MtDy balance and mitochondrial biogenesis; and those processes can delay the onset or progression of cardiovascular diseases. This has led to the development of mitochondrial therapies based on the application of nutritional, pharmacological and genetic treatments. Those seeking to have a positive impact on mtDNA integrity, mitochondrial biogenesis, dynamics and mitophagy in old and sick hearts. This review covers the current knowledge of mitochondrial physiopathology in aging, how disruption of OXPHOS or mitochondrial life cycle alter mtDNA and cardiac cell function; and novel mitochondrial therapies to protect and rescue our heart from cardiovascular diseases.
Collapse
Affiliation(s)
- Alvaro A Elorza
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Juan Pablo Soffia
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
49
|
Xu J, Huang Y, Zhao J, Wu L, Qi Q, Liu Y, Li G, Li J, Liu H, Wu H. Cofilin: A Promising Protein Implicated in Cancer Metastasis and Apoptosis. Front Cell Dev Biol 2021; 9:599065. [PMID: 33614640 PMCID: PMC7890941 DOI: 10.3389/fcell.2021.599065] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Cofilin is an actin-binding protein that regulates filament dynamics and depolymerization. The over-expression of cofilin is observed in various cancers, cofilin promotes cancer metastasis by regulating cytoskeletal reorganization, lamellipodium formation and epithelial-to-mesenchymal transition. Clinical treatment of cancer regarding cofilin has been explored in aspects of tumor cells apoptosis and cofilin related miRNAs. This review addresses the structure and phosphorylation of cofilin and describes recent findings regarding the function of cofilin in regulating cancer metastasis and apoptosis in tumor cells.
Collapse
Affiliation(s)
- Jing Xu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Huang
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jimeng Zhao
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luyi Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Qi
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanan Liu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guona Li
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Li
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huirong Liu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huangan Wu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
50
|
Shen S, Luo J, Ye J. Artesunate alleviates schistosomiasis-induced liver fibrosis by downregulation of mitochondrial complex Ⅰ subunit NDUFB8 and complex Ⅲ subunit UQCRC2 in hepatic stellate cells. Acta Trop 2021; 214:105781. [PMID: 33264632 DOI: 10.1016/j.actatropica.2020.105781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/08/2020] [Accepted: 11/21/2020] [Indexed: 01/03/2023]
Abstract
Hepatic stellate cells (HSCs) play a key role in the pathogenesis of hepatic fibrosis. Inhibition of the HSCs activity is an ideal strategy in the treatment of fibrosis, but there is no drug yet for this strategy. Artesunate (ART) has been shown to protect liver from fibrosis through inhibition of HSCs activity. However, the mechanism of ART activity remains to be fully uncovered. In this study, we tested ART in a mouse model of hepatic fibrosis established in the schistosomiasis-infected mice. The mechanism of ART action was investigated in the HSC cell line LX-2. ART significantly inhibited hepatic fibrosis. In LX-2 cells, ART efficiently inhibited the cell activity in proliferation and mRNA expression of fibrosis marker genes including Col1a1 and Col3a1. An impact of ART on mitochondria was observed for suppression of enzymes in the citric acid cycle (TCA), such as citrate synthase (CS), isocitrate dehydrogenase (IDH2), and alpha ketoglutarate dehydrogenase (OGDH) in a dose-dependent manner. ART decreased the mitochondrial oxygen consumption rate (OCR) and the protein levels of mitochondrial complex Ⅰ subunit NDUFB8 and complex Ⅲ subunit UQCRC2 in HSCs. All of these alterations were observed with an increase in HSC apoptosis. This study suggests that ART may alleviate liver fibrosis by downregulation of HSC activity through suppression of NDUFB8 and UQCRC2 in mitochondria. This study provides a new insight into the mechanism of the ART activity in the inhibition of schistosomiasis-induced liver fibrosis.
Collapse
Affiliation(s)
- Shuang Shen
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Central laboratory, Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine & Health Sciences, Shanghai, China.
| | - Juntao Luo
- Central laboratory, Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine & Health Sciences, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Jianping Ye
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Central laboratory, Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|