1
|
Mishra Y, Kumar A, Kaundal RK. Mitochondrial Dysfunction is a Crucial Immune Checkpoint for Neuroinflammation and Neurodegeneration: mtDAMPs in Focus. Mol Neurobiol 2025; 62:6715-6747. [PMID: 39115673 DOI: 10.1007/s12035-024-04412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 01/03/2025]
Abstract
Neuroinflammation is a pivotal factor in the progression of both age-related and acute neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and stroke. Mitochondria, essential for neuronal health due to their roles in energy production, calcium buffering, and oxidative stress regulation, become increasingly susceptible to dysfunction under conditions of metabolic stress, aging, or injury. Impaired mitophagy in aged or injured neurons leads to the accumulation of dysfunctional mitochondria, which release mitochondrial-derived damage-associated molecular patterns (mtDAMPs). These mtDAMPs act as immune checkpoints, activating pattern recognition receptors (PRRs) and triggering innate immune signaling pathways. This activation initiates inflammatory responses in neurons and brain-resident immune cells, releasing cytokines and chemokines that damage adjacent healthy neurons and recruit peripheral immune cells, further amplifying neuroinflammation and neurodegeneration. Long-term mitochondrial dysfunction perpetuates a chronic inflammatory state, exacerbating neuronal injury and contributing additional immunogenic components to the extracellular environment. Emerging evidence highlights the critical role of mtDAMPs in initiating and sustaining neuroinflammation, with circulating levels of these molecules potentially serving as biomarkers for disease progression. This review explores the mechanisms of mtDAMP release due to mitochondrial dysfunction, their interaction with PRRs, and the subsequent activation of inflammatory pathways. We also discuss the role of mtDAMP-triggered innate immune responses in exacerbating both acute and chronic neuroinflammation and neurodegeneration. Targeting dysfunctional mitochondria and mtDAMPs with pharmacological agents presents a promising strategy for mitigating the initiation and progression of neuropathological conditions.
Collapse
Affiliation(s)
- Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - SAS Nagar, SAS Nagar, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - SAS Nagar, SAS Nagar, Punjab, India.
| | - Ravinder Kumar Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
2
|
Sabaie H, Taghavi Rad A, Shabestari M, Habibi D, Saadattalab T, Seddiq S, Saeidian AH, Zahedi AS, Sanoie M, Vahidnezhad H, Zarkesh M, Foroutani L, Hakonarson H, Azizi F, Hedayati M, Daneshpour MS, Akbarzadeh M. Mitochondrial DNA Copy Number as a Hidden Player in the Progression of Multiple Sclerosis: A Bidirectional Two-Sample Mendelian Randomization Study. Mol Neurobiol 2025:10.1007/s12035-025-04980-9. [PMID: 40307428 DOI: 10.1007/s12035-025-04980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/18/2025] [Indexed: 05/02/2025]
Abstract
The relationship between mitochondrial DNA copy number (mtDNA-CN) and multiple sclerosis (MS) progression remains unclear, as previous observational studies have reported conflicting results. This study aimed to clarify the association between mtDNA-CN and MS progression using a bidirectional two-sample Mendelian randomization (MR) approach. MR analyses were conducted using the latest summary statistics from genome-wide association studies (GWAS) on mtDNA-CN and MS progression. Single-nucleotide polymorphisms (SNPs) associated with mtDNA-CN were extracted from 383,476 participants of European ancestry in the UK Biobank, while SNPs associated with MS severity were obtained from the International Multiple Sclerosis Genetics Consortium (IMSGC), comprising 12,584 cases of European ancestry. The inverse variance weighted (IVW) method was used as the primary analysis. Potential heterogeneity and pleiotropy were evaluated, and sensitivity analyses were performed to ensure the robustness of the results. The forward MR analysis using the IVW method revealed no significant association between mtDNA-CN and MS progression (P = 0.487). However, reverse MR analysis identified a causal association between MS progression and mtDNA-CN (β = - 0.010, 95% CI = - 0.019 to - 0.001, P = 0.036). No evidence of heterogeneity or horizontal pleiotropy was found in the analyses. Sensitivity analyses yielded consistent results. Our findings suggest that MS progression may causally influence mtDNA-CN, highlighting the crucial role of mitochondria in the pathophysiology of MS. However, further research is needed to confirm mtDNA-CN as a reliable biomarker and a deeper understanding of the molecular mechanisms is necessary to develop targeted therapeutic interventions.
Collapse
Affiliation(s)
- Hani Sabaie
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Molecular Biology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Taghavi Rad
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Molecular Biology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Motahareh Shabestari
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Danial Habibi
- Department of Epidemiology and Biostatistics, School of Public Health, Babol University of Medical Sciences, Babol, Iran
| | - Toktam Saadattalab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Seddiq
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Saeidian
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Asiyeh Sadat Zahedi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Molecular Biology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Sanoie
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Molecular Biology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Vahidnezhad
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Molecular Biology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laleh Foroutani
- Department of Surgery, University of California, San Francisco, CA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics (CAG), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Disorders, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Molecular Biology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Molecular Biology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahdi Akbarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Molecular Biology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Marček P, Kadlic P, Adamová LM, Tóthova Ľ, Pastorek M, Kovalčíkova AG, Valkovič P, Minár M, Slezáková D. Extracellular DNA and Deoxyribonuclease Activity as Potential Biomarkers of Inflammation in Multiple Sclerosis. Mol Neurobiol 2025:10.1007/s12035-025-04907-4. [PMID: 40198446 DOI: 10.1007/s12035-025-04907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
Neuroinflammation plays a critical role in the pathophysiology of multiple sclerosis (MS), involving complex interactions between reactive oxygen species (ROS), cytokines, chemokines, and immune cells. Among these, neutrophils contribute to sustained inflammation through degranulation, ROS production, and the release of neutrophil extracellular traps (NETs). Extracellular DNA (ecDNA), a key component of NETs, may act as an autoantigen, promoting chronic inflammation and tissue damage. Additionally, impaired NETs and ecDNA degradation by deoxyribonucleases (DNases) may contribute to persistence of inflammation. The aim of the present study was to determine the levels of ecDNA and DNase activity in both blood plasma and cerebrospinal fluid (CSF) in newly diagnosed, treatment-naïve adult patients with relapsing-remitting MS and whether it correlates with disease severity and inflammatory activity in MS. Fifty-one treatment-naïve relapsing-remitting MS patients without disease-modifying therapy and 16 healthy controls (HC) were included in our study. Blood and CSF samples were analyzed for ecDNA, mitochondrial DNA (mtDNA) levels, and DNase activity. Correlations with inflammatory cytokines, oxidative stress, MRI lesion burden, and the expanded disability status scale (EDSS) were analyzed. MS patients exhibited significantly elevated ecDNA levels and reduced DNase activity in blood plasma compared to HC. EcDNA levels positively correlated with inflammatory cytokines, oxidative stress, and disease severity (EDSS). Furthermore, ecDNA and mtDNA levels in CSF positively correlated with inflammatory gadolinium-enhancing MRI lesions. Interestingly, no DNase activity was detected in CSF in both MS patients and HC. Our findings demonstrate that MS patients exhibit significantly elevated ecDNA levels and reduced DNase activity in blood plasma, which correlate with inflammatory cytokines, oxidative stress, and disease severity (EDSS). Additionally, increased ecDNA and mtDNA levels in CSF are associated with higher inflammatory activity, as reflected by gadolinium-enhancing MRI lesions. Considering the pro-inflammatory nature of ecDNA in perpetuating sterile inflammation, these results suggest a potential role of circulating nucleic acids in MS pathogenesis. Furthermore, impaired DNase activity may contribute to the persistence of ecDNA, potentially sustaining pro-inflammatory state in MS. Nevertheless, it remains unclear whether elevated ecDNA actively contributes to neuroinflammation or simply reflects ongoing immune activation. Further research is needed to elucidate the mechanisms underlying ecDNA release and degradation and its implications in MS progression.
Collapse
Affiliation(s)
- Peter Marček
- Second Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Pavol Kadlic
- Second Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Louise-Mária Adamová
- Second Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ľubomíra Tóthova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Michal Pastorek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Alexandra Gaál Kovalčíkova
- Department of Pediatrics, National Institute of Children's Diseases and Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Peter Valkovič
- Second Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Minár
- Second Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia.
| | - Darina Slezáková
- Second Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
4
|
Yu H, Ren K, Jin Y, Zhang L, Liu H, Huang Z, Zhang Z, Chen X, Yang Y, Wei Z. Mitochondrial DAMPs: Key mediators in neuroinflammation and neurodegenerative disease pathogenesis. Neuropharmacology 2025; 264:110217. [PMID: 39557152 DOI: 10.1016/j.neuropharm.2024.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are increasingly linked to mitochondrial dysfunction and neuroinflammation. Central to this link are mitochondrial damage-associated molecular patterns (mtDAMPs), including mitochondrial DNA, ATP, and reactive oxygen species, released during mitochondrial stress or damage. These mtDAMPs activate inflammatory pathways, such as the NLRP3 inflammasome and cGAS-STING, contributing to the progression of neurodegenerative diseases. This review delves into the mechanisms by which mtDAMPs drive neuroinflammation and discusses potential therapeutic strategies targeting these pathways to mitigate neurodegeneration. Additionally, it explores the cross-talk between mitochondria and the immune system, highlighting the complex interplay that exacerbates neuronal damage. Understanding the role of mtDAMPs could pave the way for novel treatments aimed at modulating neuroinflammation and slowing disease progression, ultimately improving patient outcome.
Collapse
Affiliation(s)
- Haihan Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yage Jin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Li Zhang
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Zhen Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Ziheng Zhang
- College of Life Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, PR China
| | - Xing Chen
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
5
|
Risi B, Imarisio A, Cuconato G, Padovani A, Valente EM, Filosto M. Mitochondrial DNA (mtDNA) as fluid biomarker in neurodegenerative disorders: A systematic review. Eur J Neurol 2025; 32:e70014. [PMID: 39831374 PMCID: PMC11744304 DOI: 10.1111/ene.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Several studies evaluated peripheral and cerebrospinal fluid (CSF) mtDNA as a putative biomarker in neurodegenerative diseases, often yielding inconsistent findings. We systematically reviewed the current evidence assessing blood and CSF mtDNA levels and variant burden in Parkinson's disease (PD), Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Multiple sclerosis (MS) was also included as a paradigm of chronic neuroinflammation-driven neurodegeneration. METHODS Medline, Embase, Scopus and Web of Science were searched for articles published from inception until October 2023. Studies focused on mtDNA haplogroups or hereditary pathogenic variants were excluded. Critical appraisal was performed using the Quality Assessment for Diagnostic Accuracy Studies criteria. RESULTS Fifty-nine original studies met our a priori-defined inclusion criteria. The majority of CSF-focused studies showed (i) decreased mtDNA levels in PD and AD; (ii) increased levels in MS compared to controls. No studies evaluated CSF mtDNA in ALS. Results focused on blood cell-free and intracellular mtDNA were contradictory, even within studies evaluating the same disease. This poor reproducibility is likely due to the lack of consideration of the many factors known to affect mtDNA levels. mtDNA damage and methylation levels were increased and reduced in patients compared to controls, respectively. A few studies investigated the correlation between mtDNA and disease severity, with conflicting results. CONCLUSIONS Additional well-designed studies are needed to evaluate CSF and blood mtDNA profiles as putative biomarkers in neurodegenerative diseases. The identification of "mitochondrial subtypes" of disease may enable novel precision medicine strategies to counteract neurodegeneration.
Collapse
Affiliation(s)
- Barbara Risi
- NeMO‐Brescia Clinical Center for Neuromuscular DiseasesBresciaItaly
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Alberto Imarisio
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics Research CentreIRCCS Mondino FoundationPaviaItaly
| | - Giada Cuconato
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics Research CentreIRCCS Mondino FoundationPaviaItaly
| | - Alessandro Padovani
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
- Unit of NeurologyASST Spedali CiviliBresciaItaly
| | - Enza Maria Valente
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics Research CentreIRCCS Mondino FoundationPaviaItaly
| | - Massimiliano Filosto
- NeMO‐Brescia Clinical Center for Neuromuscular DiseasesBresciaItaly
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| |
Collapse
|
6
|
Ying C, Li Y, Zhang H, Pang S, Hao S, Hu S, Zhao L. Probing the diagnostic values of plasma cf-nDNA and cf-mtDNA for Parkinson's disease and multiple system atrophy. Front Neurosci 2024; 18:1488820. [PMID: 39687490 PMCID: PMC11647036 DOI: 10.3389/fnins.2024.1488820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Background Cell loss and mitochondrial dysfunction are key pathological features of idiopathic Parkinson's disease (PD) and multiple system atrophy (MSA). It remains unclear whether disease-specific changes in plasma circulating cell-free nuclear DNA (cf-nDNA) and mitochondrial DNA (cf-mtDNA) occur in patients with PD and MSA. In this study, we investigated whether plasma cf-nDNA, cf-mtDNA levels, as well as cf-mtDNA integrity, are altered in patients with PD and MSA. Methods TaqMan probe-based quantitative PCR was employed to measure plasma cf-nDNA levels, cf-mtDNA copy numbers, and cf-mtDNA deletion levels in 171 participants, including 76 normal controls (NC), 62 PD patients, and 33 MSA patients. A generalized linear model was constructed to analyze differences in circulating cell-free DNA (cfDNA) biomarkers across clinical groups, while a logistic regression model was applied to assess the predictive values of these biomarkers for developing PD or MSA. Spearman correlations were used to explore associations between the three cfDNA biomarkers, demographic data, and clinical scales. Results No significant differences in plasma cf-nDNA levels, cf-mtDNA copy numbers, or cf-mtDNA deletion levels were observed among the PD, MSA, and NC groups (all P > 0.05). Additionally, these measures were not associated with the risk of developing PD or MSA. In PD patients, cf-nDNA levels were positively correlated with Hamilton Anxiety Rating Scale scores (Rho = 0.382, FDR adjusted P = 0.027). In MSA patients, cf-nDNA levels were positively correlated with International Cooperative Ataxia Rating Scale scores (Rho = 0.588, FDR adjusted P = 0.011) and negatively correlated with Montreal Cognitive Assessment scores (Rho = -0.484, FDR adjusted P = 0.044). Subgroup analysis showed that PD patients with constipation had significantly lower plasma cf-mtDNA copy numbers than those without constipation (P = 0.049). MSA patients with cognitive impairment had significantly higher cf-nDNA levels compared to those without (P = 0.008). Conclusion Plasma cf-nDNA level, cf-mtDNA copy number, and cf-mtDNA deletion level have limited roles as diagnostic biomarkers for PD and MSA. However, their correlations with clinical symptoms support the hypothesis that cell loss and mitochondrial dysfunction are involved in PD and MSA development.
Collapse
Affiliation(s)
- Chao Ying
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson’s Disease, Parkinson’s Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson’s Disease, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuan Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hui Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shimin Pang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuwen Hao
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Songnian Hu
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson’s Disease, Parkinson’s Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson’s Disease, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lifang Zhao
- Department of Clinical Biobank and Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Verhoeven JE, Wolkowitz OM, Satz IB, Conklin Q, Lamers F, Lavebratt C, Lin J, Lindqvist D, Mayer SE, Melas PA, Milaneschi Y, Picard M, Rampersaud R, Rasgon N, Ridout K, Veibäck GS, Trumpff C, Tyrka AR, Watson K, Wu GWY, Yang R, Zannas AS, Han LK, Månsson KNT. The researcher's guide to selecting biomarkers in mental health studies. Bioessays 2024; 46:e2300246. [PMID: 39258367 PMCID: PMC11811959 DOI: 10.1002/bies.202300246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 09/12/2024]
Abstract
Clinical mental health researchers may understandably struggle with how to incorporate biological assessments in clinical research. The options are numerous and are described in a vast and complex body of literature. Here we provide guidelines to assist mental health researchers seeking to include biological measures in their studies. Apart from a focus on behavioral outcomes as measured via interviews or questionnaires, we advocate for a focus on biological pathways in clinical trials and epidemiological studies that may help clarify pathophysiology and mechanisms of action, delineate biological subgroups of participants, mediate treatment effects, and inform personalized treatment strategies. With this paper we aim to bridge the gap between clinical and biological mental health research by (1) discussing the clinical relevance, measurement reliability, and feasibility of relevant peripheral biomarkers; (2) addressing five types of biological tissues, namely blood, saliva, urine, stool and hair; and (3) providing information on how to control sources of measurement variability.
Collapse
Affiliation(s)
- Josine E. Verhoeven
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
| | - Owen M. Wolkowitz
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, CA USA 94107
| | - Isaac Barr Satz
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Quinn Conklin
- Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA
- Center for Health and Community, University of California, San Francisco, San Francisco, CA 94107 USA
| | - Femke Lamers
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158, United States
| | - Daniel Lindqvist
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, Lund, Sweden
| | - Stefanie E. Mayer
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, CA USA 94107
| | - Philippe A. Melas
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics, Amsterdam, The Netherlands
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- New York State Psychiatric Institute, New York, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Ryan Rampersaud
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, CA USA 94107
| | - Natalie Rasgon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathryn Ridout
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
- Department of Psychiatry, Kaiser Permanente, Santa Rosa Medical Center, Santa Rosa, CA 95403, USA
| | - Gustav Söderberg Veibäck
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, Lund, Sweden
| | - Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
| | - Audrey R. Tyrka
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI 02885, USA
| | - Kathleen Watson
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Gwyneth Winnie Y Wu
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, CA USA 94107
| | - Ruoting Yang
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Anthony S. Zannas
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA; 438 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill
| | - Laura K.M. Han
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Kristoffer N. T. Månsson
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Ferreira T, Rodriguez S. Mitochondrial DNA: Inherent Complexities Relevant to Genetic Analyses. Genes (Basel) 2024; 15:617. [PMID: 38790246 PMCID: PMC11121663 DOI: 10.3390/genes15050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Mitochondrial DNA (mtDNA) exhibits distinct characteristics distinguishing it from the nuclear genome, necessitating specific analytical methods in genetic studies. This comprehensive review explores the complex role of mtDNA in a variety of genetic studies, including genome-wide, epigenome-wide, and phenome-wide association studies, with a focus on its implications for human traits and diseases. Here, we discuss the structure and gene-encoding properties of mtDNA, along with the influence of environmental factors and epigenetic modifications on its function and variability. Particularly significant are the challenges posed by mtDNA's high mutation rate, heteroplasmy, and copy number variations, and their impact on disease susceptibility and population genetic analyses. The review also highlights recent advances in methodological approaches that enhance our understanding of mtDNA associations, advocating for refined genetic research techniques that accommodate its complexities. By providing a comprehensive overview of the intricacies of mtDNA, this paper underscores the need for an integrated approach to genetic studies that considers the unique properties of mitochondrial genetics. Our findings aim to inform future research and encourage the development of innovative methodologies to better interpret the broad implications of mtDNA in human health and disease.
Collapse
Affiliation(s)
- Tomas Ferreira
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SL, UK
| | - Santiago Rodriguez
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| |
Collapse
|
9
|
Pavlovic I, Zjukovskaja C, Nazir FH, Müller M, Wiberg A, Burman J. Cerebrospinal fluid mtDNA concentrations are increased in multiple sclerosis and were normalized after intervention with autologous hematopoietic stem cell transplantation. Mult Scler Relat Disord 2024; 84:105482. [PMID: 38341978 DOI: 10.1016/j.msard.2024.105482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) is a pro-inflammatory damage-associated molecular pattern molecule and could be an early indicator for inflammation and disease activity in MS. Autologous hematopoietic stem cell transplantation (aHSCT) is a potent treatment for MS, but its impact on mtDNA levels in cerebrospinal fluid (CSF) remains unexplored. OBJECTIVES To verify elevated CSF mtDNA concentrations in MS patients and assess the impact of aHSCT on mtDNA concentrations. METHODS Multiplex droplet digital PCR (ddPCR) was used to quantify mtDNA and nuclear DNA in 182 CSF samples. These samples were collected from 48 MS patients, both pre- and post-aHSCT, over annual follow-ups, and from 32 healthy controls. RESULTS CSF ccf-mtDNA levels were higher in patients with MS, correlated to multiple clinical and analytical factors and were normalized after intervention with aHSCT. Differences before aHSCT were observed with regard to MRI-lesions, prior treatment and number of relapses in the last year prior to aHSCT. CONCLUSION Our findings demonstrate elevated CSF mtDNA levels in MS patients, which correlate with disease activity and normalize following aHSCT. These results position mtDNA as a potential biomarker for monitoring inflammatory activity and response to treatment in MS.
Collapse
Affiliation(s)
- Ivan Pavlovic
- Neurology, Department of Medical Sciences, Uppsala University, 752 37 Uppsala, Sweden
| | - Christina Zjukovskaja
- Neurology, Department of Medical Sciences, Uppsala University, 752 37 Uppsala, Sweden
| | - Faisal Hayat Nazir
- Neurology, Department of Medical Sciences, Uppsala University, 752 37 Uppsala, Sweden
| | - Malin Müller
- Neurology, Department of Medical Sciences, Uppsala University, 752 37 Uppsala, Sweden
| | - Anna Wiberg
- Neurology, Department of Medical Sciences, Uppsala University, 752 37 Uppsala, Sweden; Clinical Immunology, Department of Immunology, Genetics & Pathology, Uppsala University, 752 37 Uppsala, Sweden
| | - Joachim Burman
- Neurology, Department of Medical Sciences, Uppsala University, 752 37 Uppsala, Sweden.
| |
Collapse
|
10
|
Xie J, Cheng J, Ko H, Tang Y. Cytosolic DNA sensors in neurodegenerative diseases: from physiological defenders to pathological culprits. EMBO Mol Med 2024; 16:678-699. [PMID: 38467840 PMCID: PMC11018843 DOI: 10.1038/s44321-024-00046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Cytosolic DNA sensors are a group of pattern recognition receptors (PRRs) that vary in structures, molecular mechanisms, and origins but share a common function to detect intracellular microbial DNA and trigger the innate immune response like type 1 interferon production and autophagy. Cytosolic DNA sensors have been proven as indispensable defenders against the invasion of many pathogens; however, growing evidence shows that self-DNA misplacement to cytoplasm also frequently occurs in non-infectious circumstances. Accumulation of cytosolic DNA causes improper activation of cytosolic DNA sensors and triggers an abnormal autoimmune response, that significantly promotes pathological progression. Neurodegenerative diseases are a group of neurological disorders characterized by neuron loss and still lack effective treatments due to a limited understanding of pathogenesis. But current research has found a solid relationship between neurodegenerative diseases and cytosolic DNA sensing pathways. This review summarizes profiles of several major cytosolic DNA sensors and their common adaptor protein STING. It also discusses both the beneficial and detrimental roles of cytosolic DNA sensors in the genesis and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiatian Xie
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Jinping Cheng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics & Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
11
|
Gao Y, Gong B, Chen Z, Song J, Xu N, Weng Z. Damage-Associated Molecular Patterns, a Class of Potential Psoriasis Drug Targets. Int J Mol Sci 2024; 25:771. [PMID: 38255845 PMCID: PMC10815563 DOI: 10.3390/ijms25020771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Psoriasis is a chronic skin disorder that involves both innate and adaptive immune responses in its pathogenesis. Local tissue damage is a hallmark feature of psoriasis and other autoimmune diseases. In psoriasis, damage-associated molecular patterns (DAMPs) released by damaged local tissue act as danger signals and trigger inflammatory responses by recruiting and activating immune cells. They also stimulate the release of pro-inflammatory cytokines and chemokines, which exacerbate the inflammatory response and contribute to disease progression. Recent studies have highlighted the role of DAMPs as key regulators of immune responses involved in the initiation and maintenance of psoriatic inflammation. This review summarizes the current understanding of the immune mechanism of psoriasis, focusing on several important DAMPs and their mechanisms of action. We also discussed the potential of DAMPs as diagnostic and therapeutic targets for psoriasis, offering new insights into the development of more effective treatments for this challenging skin disease.
Collapse
Affiliation(s)
| | | | | | | | - Na Xu
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.G.); (B.G.); (Z.C.); (J.S.)
| | - Zhuangfeng Weng
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.G.); (B.G.); (Z.C.); (J.S.)
| |
Collapse
|
12
|
Sharma R, Malviya R, Srivastava S, Ahmad I, Rab SO, Uniyal P. Targeted Treatment Strategies for Mitochondria Dysfunction: Correlation with Neurological Disorders. Curr Drug Targets 2024; 25:683-699. [PMID: 38910425 DOI: 10.2174/0113894501303824240604103732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024]
Abstract
Mitochondria are an essential intracellular organelle for medication targeting and delivery since they seem to create energy and conduct many other cellular tasks, and mitochondrial dysfunctions and malfunctions lead to many illnesses. Many initiatives have been taken to detect, diagnose, and image mitochondrial abnormalities, and to transport and accumulate medicines precisely to mitochondria, all because of special mitochondrial aspects of the pathophysiology of cancer. In addition to the negative membrane potential and paradoxical mitochondrial dynamics, they include high temperatures, high levels of reactive oxygen species, high levels of glutathione, and high temperatures. Neurodegenerative diseases represent a broad spectrum of debilitating illnesses. They are linked to the loss of certain groups of neurons based on an individual's physiology or anatomy. The mitochondria in a cell are generally accepted as the authority with respect to ATP production. Disruption of this system is linked to several cellular physiological issues. The development of neurodegenerative disorders has been linked to mitochondrial malfunction, according to pathophysiological studies. There seems to be substantial evidence connecting mitochondrial dysfunction and oxidative stress to the development of neurodegenerative disorders. It has been extensively observed that mitochondrial malfunction triggers autophagy, which plays a role in neurodegenerative disorders. In addition, excitotoxicity and mitochondrial dysfunction have been linked to the development of neurodegenerative disorders. The pathophysiology of neurodegenerative illnesses has been linked to increased apoptosis and necrosis, as well as mitochondrial malfunction. A variety of synthetic and natural treatments have shown efficacy in treating neurodegenerative illnesses caused by mitochondrial failure. Neurodegenerative illnesses can be effectively treated with existing drugs that target mitochondria, although their precise formulations are poorly understood. Therefore, there is an immediate need to focus on creating drug delivery methods specifically targeted at mitochondria in the treatment and diagnosis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Rishav Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Saurabh Srivastava
- School of Pharmacy, KPJ Healthcare University College (KPJUC), Nilai, Malaysia
- Era College of Pharmacy, Era University, Lucknow, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
13
|
Choong CJ, Mochizuki H. Involvement of Mitochondria in Parkinson's Disease. Int J Mol Sci 2023; 24:17027. [PMID: 38069350 PMCID: PMC10707101 DOI: 10.3390/ijms242317027] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondrial dysregulation, such as mitochondrial complex I deficiency, increased oxidative stress, perturbation of mitochondrial dynamics and mitophagy, has long been implicated in the pathogenesis of PD. Initiating from the observation that mitochondrial toxins cause PD-like symptoms and mitochondrial DNA mutations are associated with increased risk of PD, many mutated genes linked to familial forms of PD, including PRKN, PINK1, DJ-1 and SNCA, have also been found to affect the mitochondrial features. Recent research has uncovered a much more complex involvement of mitochondria in PD. Disruption of mitochondrial quality control coupled with abnormal secretion of mitochondrial contents to dispose damaged organelles may play a role in the pathogenesis of PD. Furthermore, due to its bacterial ancestry, circulating mitochondrial DNAs can function as damage-associated molecular patterns eliciting inflammatory response. In this review, we summarize and discuss the connection between mitochondrial dysfunction and PD, highlighting the molecular triggers of the disease process, the intra- and extracellular roles of mitochondria in PD as well as the therapeutic potential of mitochondrial transplantation.
Collapse
Affiliation(s)
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan;
| |
Collapse
|
14
|
Vardar Acar N, Özgül RK. A big picture of the mitochondria-mediated signals: From mitochondria to organism. Biochem Biophys Res Commun 2023; 678:45-61. [PMID: 37619311 DOI: 10.1016/j.bbrc.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Mitochondria, well-known for years as the powerhouse and biosynthetic center of the cell, are dynamic signaling organelles beyond their energy production and biosynthesis functions. The metabolic functions of mitochondria, playing an important role in various biological events both in physiological and stress conditions, transform them into important cellular stress sensors. Mitochondria constantly communicate with the rest of the cell and even from other cells to the organism, transmitting stress signals including oxidative and reductive stress or adaptive signals such as mitohormesis. Mitochondrial signal transduction has a vital function in regulating integrity of human genome, organelles, cells, and ultimately organism.
Collapse
Affiliation(s)
- Neşe Vardar Acar
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - R Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
15
|
Hovhannisyan G, Harutyunyan T, Aroutiounian R, Liehr T. The Diagnostic, Prognostic, and Therapeutic Potential of Cell-Free DNA with a Special Focus on COVID-19 and Other Viral Infections. Int J Mol Sci 2023; 24:14163. [PMID: 37762464 PMCID: PMC10532175 DOI: 10.3390/ijms241814163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cell-free DNA (cfDNA) in human blood serum, urine, and other body fluids recently became a commonly used diagnostic marker associated with various pathologies. This is because cfDNA enables a much higher sensitivity than standard biochemical parameters. The presence of and/or increased level of cfDNA has been reported for various diseases, including viral infections, including COVID-19. Here, we review cfDNA in general, how it has been identified, where it can derive from, its molecular features, and mechanisms of release and clearance. General suitability of cfDNA for diagnostic questions, possible shortcomings and future directions are discussed, with a special focus on coronavirus infection.
Collapse
Affiliation(s)
- Galina Hovhannisyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
16
|
Pogoda-Wesołowska A, Dziedzic A, Maciak K, Stȩpień A, Dziaduch M, Saluk J. Neurodegeneration and its potential markers in the diagnosing of secondary progressive multiple sclerosis. A review. Front Mol Neurosci 2023; 16:1210091. [PMID: 37781097 PMCID: PMC10535108 DOI: 10.3389/fnmol.2023.1210091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Approximately 70% of relapsing-remitting multiple sclerosis (RRMS) patients will develop secondary progressive multiple sclerosis (SPMS) within 10-15 years. This progression is characterized by a gradual decline in neurological functionality and increasing limitations of daily activities. Growing evidence suggests that both inflammation and neurodegeneration are associated with various pathological processes throughout the development of MS; therefore, to delay disease progression, it is critical to initiate disease-modifying therapy as soon as it is diagnosed. Currently, a diagnosis of SPMS requires a retrospective assessment of physical disability exacerbation, usually over the previous 6-12 months, which results in a delay of up to 3 years. Hence, there is a need to identify reliable and objective biomarkers for predicting and defining SPMS conversion. This review presents current knowledge of such biomarkers in the context of neurodegeneration associated with MS, and SPMS conversion.
Collapse
Affiliation(s)
| | - Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Karina Maciak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Adam Stȩpień
- Clinic of Neurology, Military Institute of Medicine–National Research Institute, Warsaw, Poland
| | - Marta Dziaduch
- Medical Radiology Department of Military Institute of Medicine – National Research Institute, Warsaw, Poland
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
17
|
Kunze R, Fischer S, Marti HH, Preissner KT. Brain alarm by self-extracellular nucleic acids: from neuroinflammation to neurodegeneration. J Biomed Sci 2023; 30:64. [PMID: 37550658 PMCID: PMC10405513 DOI: 10.1186/s12929-023-00954-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/22/2023] [Indexed: 08/09/2023] Open
Abstract
Neurological disorders such as stroke, multiple sclerosis, as well as the neurodegenerative diseases Parkinson's or Alzheimer's disease are accompanied or even powered by danger associated molecular patterns (DAMPs), defined as endogenous molecules released from stressed or damaged tissue. Besides protein-related DAMPs or "alarmins", numerous nucleic acid DAMPs exist in body fluids, such as cell-free nuclear and mitochondrial DNA as well as different species of extracellular RNA, collectively termed as self-extracellular nucleic acids (SENAs). Among these, microRNA, long non-coding RNAs, circular RNAs and extracellular ribosomal RNA constitute the majority of RNA-based DAMPs. Upon tissue injury, necrosis or apoptosis, such SENAs are released from neuronal, immune and other cells predominantly in association with extracellular vesicles and may be translocated to target cells where they can induce intracellular regulatory pathways in gene transcription and translation. The majority of SENA-induced signaling reactions in the brain appear to be related to neuroinflammatory processes, often causally associated with the onset or progression of the respective disease. In this review, the impact of the diverse types of SENAs on neuroinflammatory and neurodegenerative diseases will be discussed. Based on the accumulating knowledge in this field, several specific antagonistic approaches are presented that could serve as therapeutic interventions to lower the pathological outcome of the indicated brain disorders.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Hugo H. Marti
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
18
|
Gaitsch H, Franklin RJM, Reich DS. Cell-free DNA-based liquid biopsies in neurology. Brain 2023; 146:1758-1774. [PMID: 36408894 PMCID: PMC10151188 DOI: 10.1093/brain/awac438] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
This article reviews recent developments in the application of cell-free DNA-based liquid biopsies to neurological diseases. Over the past few decades, an explosion of interest in the use of accessible biofluids to identify and track molecular disease has revolutionized the fields of oncology, prenatal medicine and others. More recently, technological advances in signal detection have allowed for informative analysis of biofluids that are typically sparse in cells and other circulating components, such as CSF. In parallel, advancements in epigenetic profiling have allowed for novel applications of liquid biopsies to diseases without characteristic mutational profiles, including many degenerative, autoimmune, inflammatory, ischaemic and infectious disorders. These events have paved the way for a wide array of neurological conditions to benefit from enhanced diagnostic, prognostic, and treatment abilities through the use of liquid biomarkers: a 'liquid biopsy' approach. This review includes an overview of types of liquid biopsy targets with a focus on circulating cell-free DNA, methods used to identify and probe potential liquid biomarkers, and recent applications of such biomarkers to a variety of complex neurological conditions including CNS tumours, stroke, traumatic brain injury, Alzheimer's disease, epilepsy, multiple sclerosis and neuroinfectious disease. Finally, the challenges of translating liquid biopsies to use in clinical neurology settings-and the opportunities for improvement in disease management that such translation may provide-are discussed.
Collapse
Affiliation(s)
- Hallie Gaitsch
- NIH-Oxford-Cambridge Scholars Program, Wellcome-MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | | | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Kayhanian S, Glynos A, Mair R, Lakatos A, Hutchinson PJ, Helmy AE, Chinnery PF. Cell-Free Mitochondrial DNA in Acute Brain Injury. Neurotrauma Rep 2022; 3:415-420. [PMID: 36204389 PMCID: PMC9531878 DOI: 10.1089/neur.2022.0032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Traumatic brain injury and aneurysmal subarachnoid haemorrhage are a major cause of morbidity and mortality worldwide. Treatment options remain limited and are hampered by our understanding of the cellular and molecular mechanisms, including the inflammatory response observed in the brain. Mitochondrial DNA (mtDNA) has been shown to activate an innate inflammatory response by acting as a damage-associated molecular pattern (DAMP). Here, we show raised circulating cell-free (ccf) mtDNA levels in both cerebrospinal fluid (CSF) and serum within 48 h of brain injury. CSF ccf-mtDNA levels correlated with clinical severity and the interleukin-6 cytokine response. These findings support the use of ccf-mtDNA as a biomarker after acute brain injury linked to the inflammatory disease mechanism.
Collapse
Affiliation(s)
- Saeed Kayhanian
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Neurosurgery, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Angelos Glynos
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Richard Mair
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Department of Neurosurgery, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Andras Lakatos
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Department of Neurology, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Peter J.A. Hutchinson
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Department of Neurosurgery, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Adel E. Helmy
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Department of Neurosurgery, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Patrick F. Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Neurology, Cambridge University Hospitals, Cambridge, United Kingdom
| |
Collapse
|
20
|
Kwilasz AJ, Clements MA, Larson TA, Harris KM, Litwiler ST, Woodall BJ, Todd LS, Schrama AEW, Mitten EH, Maier SF, Van Dam AM, Rice KC, Watkins LR. Involvement of TLR2-TLR4, NLRP3, and IL-17 in pain induced by a novel Sprague-Dawley rat model of experimental autoimmune encephalomyelitis. FRONTIERS IN PAIN RESEARCH 2022; 3:932530. [PMID: 36176709 PMCID: PMC9513159 DOI: 10.3389/fpain.2022.932530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Up to 92% of patients suffering from multiple sclerosis (MS) experience pain, most without adequate treatment, and many report pain long before motor symptoms associated with MS diagnosis. In the most commonly studied rodent model of MS, experimental autoimmune encephalomyelitis (EAE), motor impairments/disabilities caused by EAE can interfere with pain testing. In this study, we characterize a novel low-dose myelin-oligodendrocyte-glycoprotein (MOG)-induced Sprague-Dawley (SD) model of EAE-related pain in male rats, optimized to minimize motor impairments/disabilities. Adult male SD rats were treated with increasing doses of intradermal myelin-oligodendrocyte-glycoprotein (MOG1-125) (0, 4, 8, and 16 μg) in incomplete Freund's adjuvant (IFA) vehicle to induce mild EAE. Von Frey testing and motor assessments were conducted prior to EAE induction and then weekly thereafter to assess EAE-induced pain and motor impairment. Results from these studies demonstrated that doses of 8 and 16 μg MOG1-125 were sufficient to produce stable mechanical allodynia for up to 1 month in the absence of hindpaw motor impairments/disabilities. In the follow-up studies, these doses of MOG1-125, were administered to create allodynia in the absence of confounded motor impairments. Then, 2 weeks later, rats began daily subcutaneous injections of the Toll-like receptor 2 and 4 (TLR2-TLR4) antagonist (+)-naltrexone [(+)-NTX] or saline for an additional 13 days. We found that (+)-NTX also reverses EAE-induced mechanical allodynia in the MOG-induced SD rat model of EAE, supporting parallels between models, but now allowing a protracted timecourse to be examined completely free of motor confounds. Exploring further mechanisms, we demonstrated that both spinal NOD-like receptor protein 3 (NLRP3) and interleukin-17 (IL-17) are necessary for EAE-induced pain, as intrathecal injections of NLRP3 antagonist MCC950 and IL-17 neutralizing antibody both acutely reversed EAE-induced pain. Finally, we show that spinal glial immunoreactivity induced by EAE is reversed by (+)-NTX, and that spinal demyelination correlates with the severity of motor impairments/disabilities. These findings characterize an optimized MOG-induced SD rat model of EAE for the study of pain with minimal motor impairments/disabilities. Finally, these studies support the role of TLR2-TLR4 antagonists as a potential treatment for MS-related pain and other pain and inflammatory-related disorders.
Collapse
Affiliation(s)
- Andrew J. Kwilasz
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States
- The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Madison A. Clements
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States
- The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Tracey A. Larson
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States
- The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Kevin M. Harris
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States
- The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Scott T. Litwiler
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States
- The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Brodie J. Woodall
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States
- The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Laurel S. Todd
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States
- The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Anouk E. W. Schrama
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States
- The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Eric H. Mitten
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States
- The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Steven F. Maier
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States
- The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Anne-Marie Van Dam
- Department of Anatomy and Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Kenner C. Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States
- The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| |
Collapse
|
21
|
Bronkhorst AJ, Ungerer V, Oberhofer A, Gabriel S, Polatoglou E, Randeu H, Uhlig C, Pfister H, Mayer Z, Holdenrieder S. New Perspectives on the Importance of Cell-Free DNA Biology. Diagnostics (Basel) 2022; 12:2147. [PMID: 36140548 PMCID: PMC9497998 DOI: 10.3390/diagnostics12092147] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
Body fluids are constantly replenished with a population of genetically diverse cell-free DNA (cfDNA) fragments, representing a vast reservoir of information reflecting real-time changes in the host and metagenome. As many body fluids can be collected non-invasively in a one-off and serial fashion, this reservoir can be tapped to develop assays for the diagnosis, prognosis, and monitoring of wide-ranging pathologies, such as solid tumors, fetal genetic abnormalities, rejected organ transplants, infections, and potentially many others. The translation of cfDNA research into useful clinical tests is gaining momentum, with recent progress being driven by rapidly evolving preanalytical and analytical procedures, integrated bioinformatics, and machine learning algorithms. Yet, despite these spectacular advances, cfDNA remains a very challenging analyte due to its immense heterogeneity and fluctuation in vivo. It is increasingly recognized that high-fidelity reconstruction of the information stored in cfDNA, and in turn the development of tests that are fit for clinical roll-out, requires a much deeper understanding of both the physico-chemical features of cfDNA and the biological, physiological, lifestyle, and environmental factors that modulate it. This is a daunting task, but with significant upsides. In this review we showed how expanded knowledge on cfDNA biology and faithful reverse-engineering of cfDNA samples promises to (i) augment the sensitivity and specificity of existing cfDNA assays; (ii) expand the repertoire of disease-specific cfDNA markers, thereby leading to the development of increasingly powerful assays; (iii) reshape personal molecular medicine; and (iv) have an unprecedented impact on genetics research.
Collapse
Affiliation(s)
- Abel J. Bronkhorst
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| | | | | | | | | | | | | | | | | | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| |
Collapse
|
22
|
Trumpff C, Rausser S, Haahr R, Karan KR, Gouspillou G, Puterman E, Kirschbaum C, Picard M. Dynamic behavior of cell-free mitochondrial DNA in human saliva. Psychoneuroendocrinology 2022; 143:105852. [PMID: 35834882 PMCID: PMC9880596 DOI: 10.1016/j.psyneuen.2022.105852] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/20/2022] [Accepted: 06/23/2022] [Indexed: 01/31/2023]
Abstract
Mitochondria contain their own genome that can be released in multiple biofluids such as blood and cerebrospinal fluid, as cell-free mitochondrial DNA (cf-mtDNA). In clinical studies, blood cf-mtDNA predicts mortality and higher cf-mtDNA levels are associated with mental and physical stress. However, the dynamics of cf-mtDNA has not been defined, and whether it can be measured non-invasively like other neuroendocrine markers in saliva has not been examined. Here we report cf-mtDNA in human saliva and establish its natural within-person dynamic behavior across multiple weeks. In a small proof-of-principle cohort of healthy adults, we first develop an approach to rapidly quantify salivary cf-mtDNA without DNA isolation, and demonstrate the existence of salivary cf-mtDNA. We then deploy this approach to perform an intensive repeated-measures analysis of two healthy men studied at 4 daily timepoints over 53-60 consecutive days (n = 212-220 observations each) with parallel measures of steroid hormones, self-reported daily mood, and health-related behaviors. Salivary cf-mtDNA exhibited a robust awakening response reaching up to two orders of magnitude 30-45 min after awakening, varied from day-to-day, and moderately correlated with the cortisol awakening response. In exploratory analyses, no consistent association with self-reported daily mood/health-related behaviors were found, although this requires further examination in future studies. Dynamic variation in cf-mtDNA was inversely related with salivary interleukin 6 (IL-6), inconsistent with a pro-inflammatory effect of salivary cf-mtDNA. The highly dynamic behavior of salivary cf-mtDNA opens the door to non-invasive studies examining the relevance of mtDNA signaling in relation to human health.
Collapse
Affiliation(s)
- Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
| | - Shannon Rausser
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
| | - Rachel Haahr
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
| | - Kalpita R Karan
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
| | - Gilles Gouspillou
- Département des Sciences de l'Activité Physique, Faculté des Sciences, Université du Québec à Montréal (UQAM), Montreal, Québec, Canada
| | - Eli Puterman
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | | | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA; Department of Neurology, H. Houston Merritt Center, Columbia University Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, USA; New York State Psychiatric Institute, New York, USA.
| |
Collapse
|
23
|
Bronkhorst AJ, Ungerer V, Oberhofer A, Holdenrieder S. The rising tide of cell-free DNA profiling: from snapshot to temporal genome analysis. J LAB MED 2022; 46:207-224. [DOI: 10.1515/labmed-2022-0030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Abstract
Genomes of diverse origins are continuously shed into human body fluids in the form of fragmented cell-free DNA (cfDNA). These molecules maintain the genetic and epigenetic codes of their originating source, and often carry additional layers of unique information in newly discovered physico-chemical features. Characterization of cfDNA thus presents the opportunity to non-invasively reconstruct major parts of the host- and metagenome in silico. Data from a single specimen can be leveraged to detect a broad range of disease-specific signatures and has already enabled the development of many pioneering diagnostic tests. Moreover, data from serial sampling may allow unparalleled mapping of the scantily explored landscape of temporal genomic changes as it relates to various changes in different physiological and pathological states of individuals. In this review, we explore how this vast dimension of biological information accessible through cfDNA analysis is being tapped towards the development of increasingly powerful molecular assays and how it is shaping emerging technologies. We also discuss how this departure from traditional paradigms of snapshot genetic testing may pave the way for an onrush of new and exciting discoveries in human biology.
Collapse
Affiliation(s)
- Abel Jacobus Bronkhorst
- Munich Biomarker Research Center , Institute of Laboratory Medicine , German Heart Centre Munich , Technical University Munich , Munich , Germany
| | - Vida Ungerer
- Munich Biomarker Research Center , Institute of Laboratory Medicine , German Heart Centre Munich , Technical University Munich , Munich , Germany
| | - Angela Oberhofer
- Munich Biomarker Research Center , Institute of Laboratory Medicine , German Heart Centre Munich , Technical University Munich , Munich , Germany
| | - Stefan Holdenrieder
- Munich Biomarker Research Center , Institute of Laboratory Medicine , German Heart Centre Munich , Technical University Munich , Munich , Germany
| |
Collapse
|
24
|
Park SS, Jeong H, Andreazza AC. Circulating cell-free mitochondrial DNA in brain health and disease: A systematic review and meta-analysis. World J Biol Psychiatry 2022; 23:87-102. [PMID: 34096821 DOI: 10.1080/15622975.2021.1938214] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Circulating cell-free mitochondrial DNA (ccf-mtDNA) are detectable fragments of mtDNA released from the cell as a result of mitochondrial dysfunction or apoptosis. The brain is one of the most energy demanding organs in the human body, and many neuropsychiatric and non-psychiatric neurological diseases have mitochondrial dysfunction associated with disease pathophysiology. Thus, we aimed to assess ccf-mtDNA as a potential biomarker for brain diseases. METHODS We conducted a systematic review and meta-analyses of studies that examined peripheral and/or cerebrospinal fluid (CSF) ccf-mtDNA relevant to neuropsychiatric conditions, which we define as disorders of affect, behaviour and mood, and non-psychiatric neurological diseases, which consist of neurological diseases not related to psychiatry including neurodegenerative diseases. RESULTS The results of the sensitivity analysis investigating the levels of peripheral ccf-mtDNA in neuropsychiatric studies showed no significant difference between cases and controls (Z = 1.57; p = 0.12), whereas the results of the sensitivity analysis investigating the levels of CSF ccf-mtDNA in non-psychiatric neurological diseases showed a decreasing trend in cases compared with controls (Z = 2.32; p = 0.02). Interestingly, the results indicate an overall mitochondrial stress associated mainly with non-psychiatric neurological diseases. CONCLUSIONS Our study supports the involvement of mitochondrial stress, here defined as ccf-mtDNA, in brain diseases and encourage further investigation of ccf-mtDNA among patients with brain diseases.
Collapse
Affiliation(s)
- Sarah Sohyun Park
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada.,Women's College Research Institute, Women's College Hospital, Toronto, Canada
| | - Hyunjin Jeong
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.,Centre for Addiction and Mental Health, Toronto, Canada
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.,Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
25
|
Circulating Level of Myelin Basic Protein Predicts Postherpetic Neuralgia: A Prospective Study. Clin J Pain 2021; 37:429-436. [PMID: 33883415 DOI: 10.1097/ajp.0000000000000937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Patients with herpes zoster (HZ) would benefit from accurate prediction of whether they are likely to develop postherpetic neuralgia (PHN). We investigated whether a circulating biomarker of neuronal damage could be a predictor of PHN in this nonmatched prospective, nested, case-control study. MATERIALS AND METHODS We included patients with HZ who were within 90 days after rash onset. Volunteers without a history of HZ were recruited as controls. We evaluated epidemiologic factors and circulating neuronal damage biomarkers, including cell-free DNA, myelin basic protein (MBP), and soluble protein-100B (S100B). We conducted logistic regression analyses to develop a prediction model of PHN. RESULTS We found that cell-free DNA and MBP levels were higher in patients with HZ (n=71) than in controls (n=37). However, only MBP level was higher in patients who developed PHN (n=25), in comparison with those who did not (n=46). MBP level and 3 clinical factors, age, acute pain severity, and response to treatment drugs were identified as independent predictors of PHN. Receiver operating characteristic (ROC) curve analysis showed that the prediction made using a combination of MBP level and clinical factors had an area under ROC curve of 0.853 (95% confidence interval: 0.764 to 0.943), which was better than prediction using clinical factors alone (area under ROC curve: 0.823, 95% confidence interval: 0.728 to 0.917). DISCUSSION Our results indicate that circulating MBP level in patients with HZ is a predictor for PHN. The combination of clinical predictors and MBP level enhanced the prediction performance.
Collapse
|
26
|
Trumpff C, Michelson J, Lagranha CJ, Taleon V, Karan KR, Sturm G, Lindqvist D, Fernström J, Moser D, Kaufman BA, Picard M. Stress and circulating cell-free mitochondrial DNA: A systematic review of human studies, physiological considerations, and technical recommendations. Mitochondrion 2021; 59:225-245. [PMID: 33839318 PMCID: PMC8418815 DOI: 10.1016/j.mito.2021.04.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/23/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
Cell-free mitochondrial DNA (cf-mtDNA) is a marker of inflammatory disease and a predictor of mortality, but little is known about cf-mtDNA in relation to psychobiology. A systematic review of the literature reveals that blood cf-mtDNA varies in response to common real-world stressors including psychopathology, acute psychological stress, and exercise. Moreover, cf-mtDNA is inducible within minutes and exhibits high intra-individual day-to-day variation, highlighting the dynamic regulation of cf-mtDNA levels. We discuss current knowledge on the mechanisms of cf-mtDNA release, its forms of transport ("cell-free" does not mean "membrane-free"), potential physiological functions, putative cellular and neuroendocrine triggers, and factors that may contribute to cf-mtDNA removal from the circulation. A review of in vitro, pre-clinical, and clinical studies shows conflicting results around the dogma that physiological forms of cf-mtDNA are pro-inflammatory, opening the possibility of other physiological functions, including the cell-to-cell transfer of whole mitochondria. Finally, to enhance the reproducibility and biological interpretation of human cf-mtDNA research, we propose guidelines for blood collection, cf-mtDNA isolation, quantification, and reporting standards, which can promote concerted advances by the community. Defining the mechanistic basis for cf-mtDNA signaling is an opportunity to elucidate the role of mitochondria in brain-body interactions and psychopathology.
Collapse
Affiliation(s)
- Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, USA
| | - Jeremy Michelson
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, USA
| | - Claudia J Lagranha
- University of Pittsburgh, School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, United States
| | - Veronica Taleon
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, USA
| | - Kalpita R Karan
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, USA
| | - Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, USA
| | - Daniel Lindqvist
- Faculty of Medicine, Department of Clinical Sciences, Psychiatry, Lund University, Lund, Sweden; Office of Psychiatry and Habilitation, Region Skåne, Sweden
| | - Johan Fernström
- Faculty of Medicine, Department of Clinical Sciences, Psychiatry, Lund University, Lund, Sweden
| | - Dirk Moser
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Brett A Kaufman
- University of Pittsburgh, School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, United States
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, USA; New York State Psychiatric Institute, NY, USA.
| |
Collapse
|
27
|
Elevated Mitochondrial Reactive Oxygen Species within Cerebrospinal Fluid as New Index in the Early Detection of Lumbar Spinal Stenosis. Diagnostics (Basel) 2021; 11:diagnostics11050748. [PMID: 33922090 PMCID: PMC8143471 DOI: 10.3390/diagnostics11050748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 01/08/2023] Open
Abstract
Lumbar spinal stenosis (LSS) is a common neurodegenerative condition. However, how neurogenic claudication develops with severe leg pain has not yet been clearly elucidated. Moreover, cerebrospinal fluid (CSF) physiology at the lumbosacral level is poorly understood because of the difficulties involved in quantification and visualization. Recent studies have suggested that assessment of mitochondrial function in CSF provides an indirect way to assess neurological disorders and an important feature of disease progression. In this study, we assessed the relevance of endogenous extracellular mitochondria in the CSF of rats after LSS. Mitochondrial changes within the CSF were analyzed following LSS at 1 week using flow cytometry. An increase in cell size and number was observed in CSF with LSS, and reactive oxygen species (ROS) levels were also increased within the CSF at 1 week in the LSS group. Elevated mitochondrial ROS and functional changes in the CSF are hallmarks of LSS. The present study is the first to demonstrate that elevated mitochondrial ROS within the CSF is a new index for the early detection of LSS. Moreover, it may represent a potential novel treatment target for LSS.
Collapse
|
28
|
Kwilasz AJ, Green Fulgham SM, Duran-Malle JC, Schrama AEW, Mitten EH, Todd LS, Patel HP, Larson TA, Clements MA, Harris KM, Litwiler ST, Harvey LO, Maier SF, Chavez RA, Rice KC, Van Dam AM, Watkins LR. Toll-like receptor 2 and 4 antagonism for the treatment of experimental autoimmune encephalomyelitis (EAE)-related pain. Brain Behav Immun 2021; 93:80-95. [PMID: 33358978 PMCID: PMC8475740 DOI: 10.1016/j.bbi.2020.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
Neuropathic pain is a major symptom of multiple sclerosis (MS) with up to 92% of patients reporting bodily pain, and 85% reporting pain severe enough to cause functional disability. None of the available therapeutics target MS pain. Toll-like receptors 2 and 4 (TLR2/TLR4) have emerged as targets for treating a wide array of autoimmune disorders, including MS, as well as having demonstrated success at suppressing pain in diverse animal models. The current series of studies tested systemic TLR2/TLR4 antagonists in males and females in a low-dose Myelin oligodendrocyte glycoprotein (MOG) experimental autoimmune encephalomyelitis (EAE) model, with reduced motor dysfunction to allow unconfounded testing of allodynia through 50+ days post-MOG. The data demonstrated that blocking TLR2/TLR4 suppressed EAE-related pain, equally in males and females; upregulation of dorsal spinal cord proinflammatory gene expression for TLR2, TLR4, NLRP3, interleukin-1β, IkBα, TNF-α and interleukin-17; and upregulation of dorsal spinal cord expression of glial immunoreactivity markers. In support of these results, intrathecal interleukin-1 receptor antagonist reversed EAE-induced allodynia, both early and late after EAE induction. In contrast, blocking TLR2/TLR4 did not suppress EAE-induced motor disturbances induced by a higher MOG dose. These data suggest that blocking TLR2/TLR4 prevents the production of proinflammatory factors involved in low dose EAE pathology. Moreover, in this EAE model, TLR2/TLR4 antagonists were highly effective in reducing pain, whereas motor impairment, as seen in high dose MOG EAE, is not affected.
Collapse
Affiliation(s)
- Andrew J Kwilasz
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States.
| | - Suzanne M Green Fulgham
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Julissa Chante Duran-Malle
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Anouk E W Schrama
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Eric H Mitten
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Laurel S Todd
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Hardik P Patel
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Tracey A Larson
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Madison A Clements
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Kevin M Harris
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Scott T Litwiler
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Lewis O Harvey
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | | | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Anne-Marie Van Dam
- Department of Anatomy and Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Linda R Watkins
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| |
Collapse
|
29
|
Circulating Free DNA and Its Emerging Role in Autoimmune Diseases. J Pers Med 2021; 11:jpm11020151. [PMID: 33672659 PMCID: PMC7924199 DOI: 10.3390/jpm11020151] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Liquid biopsies can be used to analyse tissue-derived information, including cell-free DNA (cfDNA), circulating rare cells, and circulating extracellular vesicles in the blood or other bodily fluids, representing a new way to guide therapeutic decisions in cancer. Among the new challenges of liquid biopsy, we found clinical application in nontumour pathologies, including autoimmune diseases. Since the discovery of the presence of high levels of cfDNA in patients with systemic lupus erythaematosus (SLE) in the 1960s, cfDNA research in autoimmune diseases has mainly focused on the overall quantification of cfDNA and its association with disease activity. However, with technological advancements and the increasing understanding of the role of DNA sensing receptors in inflammation and autoimmunity, interest in cfDNA and autoimmune diseases has not expanded until recently. In this review, we provide an overview of the basic biology of cfDNA in the context of autoimmune diseases as a biomarker of disease activity, progression, and prediction of the treatment response. We discuss and integrate available information about these important aspects.
Collapse
|
30
|
Liu Y, Shen Q, Li H, Xiang W, Zhang L. Cell-free mitochondrial DNA increases granulosa cell apoptosis and reduces aged oocyte blastocyst development in the mouse. Reprod Toxicol 2020; 98:278-285. [PMID: 33144175 DOI: 10.1016/j.reprotox.2020.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/19/2022]
Abstract
Cell-free mitochondrial DNA (cf-mtDNA) released into the extracellular environment can cause cellular inflammatory responses and damage. Here, we investigated the effects of cf-mtDNA on mouse ovarian granulosa cell function and on the developmental competence of oocytes matured in vitro. Granulosa cells in the cf-mtDNA treatment group had a lower ATP content (P < 0.05), a higher apoptotic cell percentage (P < 0.01), and higher mRNA and protein levels of apoptosis-related factors than the control group (P < 0.01). TLR9, NF-кB p65 and MAPK p38 expression levels in granulosa cells were significantly increased in the cf-mtDNA treatment group (P < 0.05). The blastocyst formation rate of aged mice oocytes matured in vitro decreased significantly (P < 0.05) when cf-mtDNA was added to the media, compared with the control. However, the oocytes from young mice were not affected. Our results suggest that cf-mtDNA may impair granulosa cell function and induce granulosa cell apoptosis, subsequently decreasing blastocyst development in aged oocytes. This role of cf-mtDNA may be associated with the binding to TLR9 and the activation of NF-кB p65 and MAPK p38 signaling pathways.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Qiuzi Shen
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Huiying Li
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Wenpei Xiang
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Ling Zhang
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
31
|
Lowes H, Kurzawa-Akanbi M, Pyle A, Hudson G. Post-mortem ventricular cerebrospinal fluid cell-free-mtDNA in neurodegenerative disease. Sci Rep 2020; 10:15253. [PMID: 32943697 PMCID: PMC7499424 DOI: 10.1038/s41598-020-72190-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Cell-free mitochondrial DNA (cfmtDNA) is detectable in almost all human body fluids and has been associated with the onset and progression of several complex traits. In-life assessments indicate that reduced cfmtDNA is a feature of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease and multiple sclerosis. However, whether this feature is conserved across all neurodegenerative diseases and how it relates to the neurodegenerative processes remains unclear. In this study, we assessed the levels of ventricular cerebrospinal fluid-cfmtDNA (vCSF-cfmtDNA) in a diverse group of neurodegenerative diseases (NDDs) to determine if the in-life observations of reduced cfmtDNA seen in lumbar CSF translated to the post-mortem ventricular CSF. To investigate further, we compared vCSF-cfmtDNA levels to known protein markers of neurodegeneration, synaptic vesicles and mitochondrial integrity. Our data indicate that reduced vCSF-cfmtDNA is a feature specific to Parkinson's and appears consistent throughout the disease course. Interestingly, we observed increased vCSF-cfmtDNA in the more neuropathologically severe NDD cases, but no association to protein markers of neurodegeneration, suggesting that vCSF-cfmtDNA release is more complex than mere cellular debris produced following neuronal death. We conclude that vCSF-cfmtDNA is reduced in PD, but not other NDDs, and appears to correlate to pathology. Although its utility as a prognostic biomarker is limited, our data indicate that higher levels of vCSF-cfmtDNA is associated with more severe clinical presentations; suggesting that it is associated with the neurodegenerative process. However, as vCSF-cfmtDNA does not appear to correlate to established indicators of neurodegeneration or indeed indicators of mitochondrial mass, further work to elucidate its exact role is needed.
Collapse
Affiliation(s)
- Hannah Lowes
- Biosciences Institute, 4th Floor Cookson Building, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Marzena Kurzawa-Akanbi
- Biosciences Institute, 4th Floor Cookson Building, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Angela Pyle
- Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Gavin Hudson
- Biosciences Institute, 4th Floor Cookson Building, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
32
|
Boyko AN, Melnikov MV, Kozin MS, Kulakova OG. [The role of mitochondria in pathological mechanisms of innate immunity in multiple]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:32-37. [PMID: 32844627 DOI: 10.17116/jnevro202012007232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The review discusses the role of mitochondria in multiple sclerosis (MS). Previously, damage to the mitochondria was regarded as a manifestation of secondary damage to axons and neurons, i.e. as a marker of neurodenegation. Recently, the role of mitochondria in the early stages of MS development, when they could participate in the activation of innate immunity and trigger activation of autoimmune responses of acquired immunity, has been increasingly discussed. The role of polymorphism mitochondrial DNA changes in MS is discussed.
Collapse
Affiliation(s)
- A N Boyko
- Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Center of Brain Research and Neurotechnologies of FMBA, Moscow, Russia
| | - M V Melnikov
- Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Center of Brain Research and Neurotechnologies of FMBA, Moscow, Russia.,Institute of Immunology of FMBA, Moscow, Russia
| | - M S Kozin
- Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Center of Brain Research and Neurotechnologies of FMBA, Moscow, Russia.,National Medical Research Center of Cardiology, Moscow, Russia
| | - O G Kulakova
- Pirogov Russian National Research Medical University, Moscow, Russia.,National Medical Research Center of Cardiology, Moscow, Russia
| |
Collapse
|
33
|
Chaudhry A, Houlden H, Rizig M. Novel fluid biomarkers to differentiate frontotemporal dementia and dementia with Lewy bodies from Alzheimer's disease: A systematic review. J Neurol Sci 2020; 415:116886. [PMID: 32428759 DOI: 10.1016/j.jns.2020.116886] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
RATIONALE Frontotemporal dementia (FTD) and dementia with Lewy bodies (DLB) are two common forms of neurodegenerative dementia, subsequent to Alzheimer's disease (AD). AD is the only dementia that includes clinically validated cerebrospinal fluid (CSF) biomarkers in the diagnostic criteria. FTD and DLB often overlap with AD in their clinical and pathological features, making it challenging to differentiate between these conditions. AIM This systematic review aimed to identify if novel fluid biomarkers are useful in differentiating FTD and DLB from AD. Increasing the certainty of the differentiation between dementia subtypes would be advantageous clinically and in research. METHODS PubMed and Scopus were searched for studies that quantified and assessed diagnostic accuracy of novel fluid biomarkers in clinically diagnosed patients with FTD or DLB, in comparison to patients with AD. Meta-analyses were performed on biomarkers that were quantified in 3 studies or more. RESULTS The search strategy yielded 614 results, from which, 27 studies were included. When comparing bio-fluid levels in AD and FTD patients, neurofilament light chain (NfL) level was often higher in FTD, whilst brain soluble amyloid precursor protein β (sAPPβ) was higher in patients with AD. When comparing bio-fluid levels in AD and DLB patients, α-synuclein ensued heterogeneous findings, while the noradrenaline metabolite (MHPG) was found to be lower in DLB. Ratios of Aβ42/Aβ38 and Aβ42/Aβ40 were lower in AD than FTD and DLB and offered better diagnostic accuracy than raw amyloid-β (Aβ) concentrations. CONCLUSIONS Several promising novel biomarkers were highlighted in this review. Combinations of fluid biomarkers were more often useful than individual biomarkers in distinguishing subtypes of dementia. Considering the heterogeneity in methods and results between the studies, further validation, ideally with longitudinal prospective designs with large sample sizes and unified protocols, are fundamental before conclusions can be finalised.
Collapse
Affiliation(s)
- Aiysha Chaudhry
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
| | - Henry Houlden
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
| | - Mie Rizig
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom.
| |
Collapse
|
34
|
Peng Y, Chen J, Dai Y, Jiang Y, Qiu W, Gu Y, Wang H. NLRP3 level in cerebrospinal fluid of patients with neuromyelitis optica spectrum disorders: Increased levels and association with disease severity. Mult Scler Relat Disord 2020; 39:101888. [PMID: 31869599 DOI: 10.1016/j.msard.2019.101888] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) and MS are the most common autoimmune inflammatory demyelinating diseases of the CNS. However, the mechanisms of pathogenesis are still unclear. nucleotide-binding leucine-rich repeat (NLR) family pyrin domain containing 3 (NLRP3), an important protein of the innate immune system that is activated by mitochondrial DNA (mtDNA), has been reported to be associated with various autoimmune disorders. OBJECTIVE To assess the levels of cerebrospinal fluid (CSF) NLRP3, mtDNA and inflammation-associated cytokines (IL-1β, IL-6 and IL-17) in patients with NMOSD and MS, and to examine the correlations between these factors. METHODS 28 NMOSD patients, 15 MS patients, and 16 controls with non-inflammatory neurological diseases were recruited. NLRP3 inflammasome, IL-1β, IL-6 and IL-17 were measured by ELISA. CSF extracellular mtDNA was measured by qPCR. The severity of clinical presentation was evaluated by EDSS score. RESULTS CSF levels of NLRP3, mtDNA, IL-1β, IL-6 and IL-17 were higher in NMOSD patients than in controls. Elevated CSF NLRP3, mtDNA and IL-6 were found in MS patients compared with controls. CSF NLRP3 and IL-6 levels were significantly higher in NMOSD patients than in MS patients. The EDSS scores of NMOSD patients during relapse were positively correlated with CSF NLRP3 and mtDNA. CONCLUSION Our findings suggest that CSF levels of the NLRP3 inflammasome may serve as a diagnostic biomarker for distinguishing NMOSD and MS. Pyroptosis mediated by the NLRP3 inflammasome following mitochondrial damage may play an important role in the pathogenesis of these neuroinflammatory disorders, especially NMOSD.
Collapse
|
35
|
Smolina N, Khudiakov A, Knyazeva A, Zlotina A, Sukhareva K, Kondratov K, Gogvadze V, Zhivotovsky B, Sejersen T, Kostareva A. Desmin mutations result in mitochondrial dysfunction regardless of their aggregation properties. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165745. [PMID: 32105824 DOI: 10.1016/j.bbadis.2020.165745] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 02/15/2020] [Accepted: 02/21/2020] [Indexed: 12/31/2022]
Abstract
Desmin, being a major intermediate filament of muscle cells, contributes to stabilization and positioning of mitochondria. Desmin mutations have been reported in conjunction with skeletal myopathies accompanied by mitochondrial dysfunction. Depending on the ability to promote intracellular aggregates formation, mutations can be considered aggregate-prone or non-aggregate-prone. The aim of the present study was to describe how expression of different desmin mutant isoforms effects mitochondria and contributes to the development of myocyte dysfunction. To achieve this goal, two non-aggregate-prone (Des S12F and Des A213V) and four aggregate-prone (Des L345P, Des A357P, Des L370P, Des D399Y) desmin mutations were expressed in skeletal muscle cells. We showed that all evaluated mutations affected the morphology of mitochondrial network, suppressed parameters of mitochondrial respiration, diminished mitochondrial membrane potential, increased ADP/ATP ratio, and enhanced mitochondrial DNA (mtDNA) release. mtDNA was partially secreted through exosomes as demonstrated by GW4869 treatment. Dysfunction of mitochondria was observed regardless the type of mutation: aggregate-prone or non-aggregate-prone. However, expression of aggregate-prone mutations resulted in more prominent phenotype. Thus, in this comparative study of six pathogenic desmin mutations that cause skeletal myopathy development, we confirmed a role of mitochondrial dysfunction and mtDNA release in the pathogenesis of desmin myopathies, regardless of the aggregation capacity of the mutated desmin.
Collapse
Affiliation(s)
- Natalia Smolina
- Almazov National Medical Research Centre, Saint Petersburg, Russia; Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.
| | | | | | - Anna Zlotina
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Kseniya Sukhareva
- Almazov National Medical Research Centre, Saint Petersburg, Russia; University of Verona, Verona, Italy
| | - Kirill Kondratov
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Vladimir Gogvadze
- Faculty of medicine, Lomonosov Moscow State University, Moscow, Russia; Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Boris Zhivotovsky
- Faculty of medicine, Lomonosov Moscow State University, Moscow, Russia; Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Thomas Sejersen
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Anna Kostareva
- Almazov National Medical Research Centre, Saint Petersburg, Russia; Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
36
|
Lowes H, Pyle A, Santibanez-Koref M, Hudson G. Circulating cell-free mitochondrial DNA levels in Parkinson's disease are influenced by treatment. Mol Neurodegener 2020; 15:10. [PMID: 32070373 PMCID: PMC7029508 DOI: 10.1186/s13024-020-00362-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Several studies have linked circulating cell-free mitochondrial DNA (ccf-mtDNA) to human disease. In particular, reduced ccf-mtDNA levels in the cerebrospinal fluid (CSF) of both Alzheimer's and Parkinson's disease (PD) patients have raised the hypothesis that ccf-mtDNA could be used as a biomarker for neurodegenerative disease onset and progression. However, how a reduction of CSF ccf-mtDNA levels relates to neurodegeneration remains unclear. Many factors are likely to influence ccf-mtDNA levels, such as concomitant therapeutic treatment and comorbidities. In this study we aimed to investigate these factors, quantifying CSF ccf-mtDNA from the Parkinson's Progression Markers Initiative in 372 PD patients and 159 matched controls at two time points. We found that ccf-mtDNA levels appear significantly reduced in PD cases when compared to matched controls and are associated with cognitive impairment. However, our data indicate that this reduction in ccf-mtDNA is also associated with the commencement, type and duration of treatment. Additionally, we found that ccf-mtDNA levels are associated with comorbidities such as depression and insomnia, however this was only significant if measured in the absence of treatment. We conclude that in PD, similar to reports in HIV and sepsis, comorbidities and treatment can both influence ccf-mtDNA homeostasis, raising the possibility that ccf-mtDNA may be useful as a biomarker for treatment response or the development of secondary phenotypes. Given that, clinically, PD manifests often decades after neurodegeneration begins, predicting who will develop disease is important. Also, identifying patients who will respond to existing treatments or develop secondary phenotypes will have increased clinical importance as PD incidence rises.
Collapse
Affiliation(s)
- Hannah Lowes
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 3BZ UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | | | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 3BZ UK
| |
Collapse
|
37
|
Increased plasma levels of mitochondrial DNA and pro-inflammatory cytokines in patients with progressive multiple sclerosis. J Neuroimmunol 2019; 338:577107. [PMID: 31726376 DOI: 10.1016/j.jneuroim.2019.577107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022]
Abstract
The role of damage-associated molecular patterns in multiple sclerosis (MS) is under investigation. Here, we studied the contribution of circulating high mobility group box protein 1 (HMGB1) and mitochondrial DNA (mtDNA) to neuroinflammation in progressive MS. We measured plasmatic mtDNA, HMGB1 and pro-inflammatory cytokines in 38 secondary progressive (SP) patients, 35 primary progressive (PP) patients and 42 controls. Free mtDNA was higher in SP than PP. Pro-inflammatory cytokines were increased in progressive patients. In PP, tumor necrosis factor-α correlated with MS Severity Score. Thus, in progressive patients, plasmatic mtDNA and pro-inflammatory cytokines likely contribute to the systemic inflammatory status.
Collapse
|
38
|
Boyko AN, Kozin MS, Osmak GZ, Kulakova OG, Favorova OO. Mitochondrial genome and risk of multiple sclerosis. ACTA ACUST UNITED AC 2019. [DOI: 10.14412/2074-2711-2019-3-43-46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mitochondrial DNA (mtDNA) polymorphism makes a certain contribution to the formation of a genetic risk of multiple sclerosis (MS).Objective: to analyze the frequency of mtDNA variants in patients with MS and control individuals in the Russian population. A similar study was conducted for the first time.Patients and methods. The polymorphism of mtDNA was studied in the Russian population: in 283 unrelated patients with relapsing-remitting MS and in 290 unrelated healthy controls matched for gender and age.Results and discussion. The frequency of haplogroup J in the patients with MS was twice higher than that in the control group (p=0.0055) (odds ratio (OR) 2.00; 95% confidence interval (CI). 1.21–3.41). This association was mostly observed in women (p=0.0083) (OR 2.20; 95% CI, 1.19–4.03). There was also a significant association of the A allele of MT-ND5 (m. 13708G>A) with MS (p=0.03) (OR 1.89; 95% CI 1.11–3.32). Sex stratification showed that the association with MS was significant only in women (p=0.009; OR, 2.52; 95% CI, 1.29–5.14). Further investigations will aim to analyze mtDNA variability (at the level of individual polymorphisms, haplogroups, and whole genome) in patients with relapsing-remitting MS and in those with primary progressive MS versus healthy individuals and patients with relapsing-remitting MS according to disease severity.Conclusion. The data obtained in the Russian population suggest that mtDNA variations are involved in MS risk, to a greater extent in women.
Collapse
Affiliation(s)
- A. N. Boyko
- N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia;
Federal Center of Cerebrovascular Disease and Stroke, Ministry of Health of Russia
| | - M. S. Kozin
- N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia;
Federal Center of Cerebrovascular Disease and Stroke, Ministry of Health of Russia
| | - G. Zh. Osmak
- N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia;
Federal Center of Cerebrovascular Disease and Stroke, Ministry of Health of Russia
| | - O. G. Kulakova
- N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
| | - O. O. Favorova
- N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
| |
Collapse
|
39
|
Varhaug KN, Kråkenes T, Alme MN, Vedeler CA, Bindoff LA. Mitochondrial complex IV is lost in neurons in the cuprizone mouse model. Mitochondrion 2019; 50:58-62. [PMID: 31678601 DOI: 10.1016/j.mito.2019.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND Cuprizone administration in mice leads to oligodendrocyte death and demyelination. The effect is thought to reflect copper-chelation that leads to inhibition of complex IV of the mitochondrial respiratory chain. The effects this drug has on neurons are less well known. OBJECTIVE To investigate the toxic effects of cuprizone on mitochondria in neurons. METHODS Male c57Bl/6 mice were fed 0.2% cuprizone for up to 5 weeks. Cuprizone-fed and control mice were examined at week 1, 3, 5 and 4 weeks after cessation of cuprizone exposure. The brain was examined for myelin, complex I, complex IV and for COX/SDH activities. Mitochondrial-DNA was investigated for deletions and copy number variation. RESULTS We found decreased levels of complex IV in the cerebellar Purkinje neurons of mice exposed to cuprizone. This decrease was not related to a general decrease in mitochondrial volume or mass, as there were no differences in the levels of complex I or TOMM20. CONCLUSION Neurons are affected by cuprizone-treatment. Whether this mitochondrial dysfunction acts as a subclinical trigger for demyelination and the long-term axonal degeneration that proceeds after cuprizone treatment stops remains unclear.
Collapse
Affiliation(s)
- Kristin N Varhaug
- Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway.
| | - Torbjørn Kråkenes
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Maria N Alme
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway; Department of Health and Functioning, Western Norway University of Applied Sciences, Norway
| | - Christian A Vedeler
- Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Laurence A Bindoff
- Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| |
Collapse
|
40
|
Fetisova EK, Muntyan MS, Lyamzaev KG, Chernyak BV. Therapeutic Effect of the Mitochondria-Targeted Antioxidant SkQ1 on the Culture Model of Multiple Sclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2082561. [PMID: 31354902 PMCID: PMC6636568 DOI: 10.1155/2019/2082561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/18/2019] [Accepted: 06/09/2019] [Indexed: 01/04/2023]
Abstract
Multiple sclerosis (MS) is a heterogeneous autoimmune disease of unknown etiology characterized by inflammation, demyelination, and axonal degeneration that affects both the white and gray matter of CNS. Recent large-scale epidemiological and genomic studies identified several genetic and environmental risk factors for the disease. Among them are environmental factors of infectious origin, possibly causing MS, which include Epstein-Barr virus infection, reactivation of some endogenous retrovirus groups, and infection by pathogenic bacteria (mycobacteria, Chlamydia pneumoniae, and Helicobacter pylori). However, the nature of the events leading to the activation of immune cells in MS is mostly unknown and there is no effective therapy against the disease. Amazingly, whatever the cause of the disease, signs of damage to the nerve tissue with MS lesions were the same as with infectious leprosy, while in the latter case nitrozooxidative stress was suggested as the main cause of the nerve damage. With this in mind and following the hypothesis that excessive production of mitochondrial reactive oxygen species critically contributes to MS pathogenesis, we studied the effect of mitochondria-targeted antioxidant SkQ1 in an in vitro MS model of the primary oligodendrocyte culture of the cerebellum, challenged with lipopolysaccharide (LPS). SkQ1 was found to accumulate in the mitochondria of oligodendrocytes and microglial cells, and it was also found to prevent LPS-induced inhibition of myelin production in oligodendrocytes. The results implicate that mitochondria-targeted antioxidants could be promising candidates as components of a combined therapy for MS and related neurological disorders.
Collapse
Affiliation(s)
- Elena K. Fetisova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria S. Muntyan
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Konstantin G. Lyamzaev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Boris V. Chernyak
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
41
|
Lowes H, Pyle A, Duddy M, Hudson G. Cell-free mitochondrial DNA in progressive multiple sclerosis. Mitochondrion 2019; 46:307-312. [PMID: 30098422 PMCID: PMC6509276 DOI: 10.1016/j.mito.2018.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/24/2018] [Accepted: 07/31/2018] [Indexed: 01/03/2023]
Abstract
Recent studies have linked cell-free mitochondrial DNA (ccf-mtDNA) to neurodegeneration in both Alzheimer's and Parkinson's disease, raising the possibility that the same phenomenon could be seen in other diseases which manifest a neurodegenerative component. Here, we assessed the role of circulating cell-free mitochondrial DNA (ccf-mtDNA) in end-stage progressive multiple sclerosis (PMS), where neurodegeneration is evident, contrasting both ventricular cerebral spinal fluid ccf-mtDNA abundance and integrity between PMS cases and controls, and correlating ccf-mtDNA levels to known protein markers of neurodegeneration and PMS. Our data indicate that reduced ccf-mtDNA is a component of PMS, concluding that it may indeed be a hallmark of broader neurodegeneration.
Collapse
Affiliation(s)
- Hannah Lowes
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; The Wellcome Centre for Mitochondrial Research, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Angela Pyle
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; The Wellcome Centre for Mitochondrial Research, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Martin Duddy
- Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
| | - Gavin Hudson
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; The Wellcome Centre for Mitochondrial Research, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
42
|
DNA threads released by activated CD4 + T lymphocytes provide autocrine costimulation. Proc Natl Acad Sci U S A 2019; 116:8985-8994. [PMID: 30988194 DOI: 10.1073/pnas.1822013116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The extrusion of DNA traps contributes to a key mechanism in which innate immune cells clear pathogens or induce sterile inflammation. Here we provide evidence that CD4+ T cells, a critical regulator of adaptive immunity, release extracellular threads of DNA on activation. These DNA extrusions convey autocrine costimulatory signals to T lymphocytes and can be detected in lymph nodes isolated during the priming phase of experimental autoimmune encephalomyelitis (EAE), a CD4+ T cell-driven mouse model of multiple sclerosis. Pharmacologic inhibition of mitochondrial reactive oxygen species (mtROS) abolishes the extrusion of DNA by CD4+ T cells, reducing cytokine production in vitro and T cell priming against myelin in vivo. Moreover, mtROS blockade during established EAE markedly ameliorates disease severity, dampening autoimmune inflammation of the central nervous system. Taken together, these experimental results elucidate a mechanism of intrinsic immune costimulation mediated by DNA threads released by activated T helper cells, and identify a potential therapeutic target for such disorders as multiple sclerosis, neuromyelitis optica, and CD4+ T cell-mediated disorders.
Collapse
|
43
|
Venter M, Tomas C, Pienaar IS, Strassheim V, Erasmus E, Ng WF, Howell N, Newton JL, Van der Westhuizen FH, Elson JL. MtDNA population variation in Myalgic encephalomyelitis/Chronic fatigue syndrome in two populations: a study of mildly deleterious variants. Sci Rep 2019; 9:2914. [PMID: 30814539 PMCID: PMC6393470 DOI: 10.1038/s41598-019-39060-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
Myalgic Encephalomyelitis (ME), also known as Chronic Fatigue Syndrome (CFS) is a debilitating condition. There is growing interest in a possible etiologic or pathogenic role of mitochondrial dysfunction and mitochondrial DNA (mtDNA) variation in ME/CFS. Supporting such a link, fatigue is common and often severe in patients with mitochondrial disease. We investigate the role of mtDNA variation in ME/CFS. No proven pathogenic mtDNA mutations were found. We then investigated population variation. Two cohorts were analysed, one from the UK (n = 89 moderately affected; 29 severely affected) and the other from South Africa (n = 143 moderately affected). For both cohorts, ME/CFS patients had an excess of individuals without a mildly deleterious population variant. The differences in population variation might reflect a mechanism important to the pathophysiology of ME/CFS.
Collapse
Affiliation(s)
- Marianne Venter
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Cara Tomas
- Institute of Cellular Medicine & NIHR Biomedical Research Centre in Ageing and Chronic Disease, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Ilse S Pienaar
- School of Life Sciences, University of Sussex, Falmer, BN1 9PH, United Kingdom
- Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, United Kingdom
| | - Victoria Strassheim
- Institute of Cellular Medicine & NIHR Biomedical Research Centre in Ageing and Chronic Disease, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, United Kingdom
| | - Elardus Erasmus
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Wan-Fai Ng
- Institute of Cellular Medicine & NIHR Biomedical Research Centre in Ageing and Chronic Disease, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Neil Howell
- Department of Radiation Therapy, UTMB, Galveston, Texas, USA
| | - Julia L Newton
- Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | | | - Joanna L Elson
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom.
| |
Collapse
|
44
|
Peng Y, Zheng D, Zhang X, Pan S, Ji T, Zhang J, Shen HY, Wang HH. Cell-Free Mitochondrial DNA in the CSF: A Potential Prognostic Biomarker of Anti-NMDAR Encephalitis. Front Immunol 2019; 10:103. [PMID: 30792710 PMCID: PMC6375341 DOI: 10.3389/fimmu.2019.00103] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/14/2019] [Indexed: 01/17/2023] Open
Abstract
Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is an autoimmune inflammatory brain disease that can develop a variety of neuropsychiatric presentations. However, the underlying nature of its inflammatory neuronal injury remains unclear. Mitochondrial DNA (mtDNA) is recently regarded as a damage-associated molecular pattern molecule (DAMP) that can initiate an inflammatory response. In the presenting study, we aimed to evaluate the levels of cell-free mtDNA in cerebrospinal fluid (CSF) of patients with anti-NMDAR encephalitis and to determine a potential role of cell-free mtDNA in the prognosis of anti-NMDAR encephalitis. A total of 33 patients with NMDAR encephalitis and 17 patients with other non-inflammatory disorders as controls were included in this study. The CSF levels of cell-free mtDNA were measured by quantitative polymerase chain reaction (qPCR). Cytokines including interleukin (IL)-6, IL-10, and tumor necrosis factor alpha (TNF-α) were measured by ELISA. The modified Rankin scale (mRS) score was evaluated for neurologic disabilities. Our data showed that the CSF levels of cell-free mtDNA and inflammation-associated cytokines were significantly higher in the patients with anti-NMDAR encephalitis compared with those in controls. Positive correlations were detected between the CSF levels of cell-free mtDNA and mRS scores of patients with anti-NMDAR encephalitis at both their admission and 6-month follow up. These findings suggest that the CSF level of cell-free mtDNA reflects the underlying neuroinflammatory process in patients with anti-NMDAR encephalitis and correlates with their clinical mRS scores. Therefore, cell-free mtDNA may be a potential prognostic biomarker for anti-NMDAR encephalitis.
Collapse
Affiliation(s)
- Yu Peng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dong Zheng
- Department of Neurology, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomei Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Teng Ji
- Department of Neurology, Randall Children's Hospital, Legacy Health, Portland, OR, United States
| | - Jun Zhang
- Department of Surgical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Hai-Ying Shen
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Legacy Health, Portland, OR, United States
| | - Hong-Hao Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Temporal profile of serum mitochondrial DNA (mtDNA) in patients with aneurysmal subarachnoid hemorrhage (aSAH). Mitochondrion 2018; 47:218-226. [PMID: 30529453 DOI: 10.1016/j.mito.2018.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a highly complex disease. Majority of aSAH survivors confront post-SAH complications including cerebral vasospasm (CVS) and delayed cerebral ischemia (DCI) that mainly influence the clinical outcome. Tissue damage during early brain injury may lead to release of damage associated molecular pattern molecules (DAMPs) that may initiate and sustain inflammation during the course of aSAH through activation of pattern recognition receptors. Mitochondrial DNA (mtDNA) due to unmethylated CpG motifs acts as a DAMP via binding to toll-like receptor-9. The aim of this study was to investigate the cell free circulating mtDNA in the systemic circulation of aSAH patients and its association with post-SAH complications and clinical outcome. The DNA was extracted from the serum of 80 aSAH patients at days 1, 3, 5, 7, 9, 11, 13 and from 18 healthy controls. Three representative mitochondrial gene fragments including Cytochrome B (CytB), D-Loop and Cytochrome c oxidase subunit-1 (COX-1) were quantified using a Taqman-probes based qPCR. Levels of mtDNA were quantified from standard curves generated using mtDNA extracted from HepG2 cell mitochondria. Clinical outcome of the patients was assessed by Glasgow outcome scale (GOS) and modified Rankin scale (mRS). Clinical data and post-SAH complications were recorded from patient's record file. Serum D-Loop and COX-1 were significantly elevated early after aSAH and remained high over first 2 weeks. CytB levels were however, initially unchanged but elevated later at day 7 as compared to healthy controls. Cumulative levels measured over two weeks showed significant correlations with post-SAH complications including a negative correlation of D-Loop with pneumonia infection, hydrocephalus and occurrence of epilepsy, a positive correlation of Cyt B with occurrence of CVS and a negative correlation of COX-1 with occurrence of systemic infections and seizures. Cumulative D-Loop values negatively correlated with clinical outcome. Our data suggest that mtDNA may directly or indirectly influence post-SAH complications and clinical outcome.
Collapse
|
46
|
Analytics of Cerebrospinal Fluid MicroRNA Quantitative PCR Studies. Mol Neurobiol 2018; 56:4988-4999. [PMID: 30430409 DOI: 10.1007/s12035-018-1422-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate post-transcriptional gene expression. Recent studies have shown that human disease states correlate with measurable differences in the level of circulating miRNAs relative to healthy controls. Thus, there is great interest in developing clinical miRNA assays as diagnostic or prognostic biomarkers for diseases, and as surrogate measures for therapeutic outcomes. Our studies have focused on miRNAs in human cerebral spinal fluid (CSF) as biomarkers for central nervous system (CNS) diseases. Our objective here was to examine factors that may affect the outcome of quantitative PCR (qPCR) studies on CSF miRNAs, in order to guide planning and interpretation of future CSF miRNA TaqMan® low-density array (TLDA) studies. We obtained CSF from neurologically normal (control) donors and used TLDAs to measure miRNA expression. We examined sources of error in the TLDA outcomes due to (1) nonspecific amplification of products in total RNA, (2) variations in RNA isolations performed on different days, (3) miRNA primer probe efficiency, and (4) variations in individual TLDA cards. We also examined the utility of card-to-card TLDA corrections and use of an unchanged "reference standard" to remove batch processing effects in large-scale studies.
Collapse
|
47
|
Role of Damage Associated Molecular Pattern Molecules (DAMPs) in Aneurysmal Subarachnoid Hemorrhage (aSAH). Int J Mol Sci 2018; 19:ijms19072035. [PMID: 30011792 PMCID: PMC6073937 DOI: 10.3390/ijms19072035] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) represents only a small portion of all strokes, but accounts for almost half of the deaths caused by stroke worldwide. Neurosurgical clipping and endovascular coiling can successfully obliterate the bleeding aneurysms, but ensuing complications such as cerebral vasospasm, acute and chronic hydrocephalus, seizures, cortical spreading depression, delayed ischemic neurological deficits, and delayed cerebral ischemia lead to poor clinical outcomes. The mechanisms leading to these complications are complex and poorly understood. Early brain injury resulting from transient global ischemia can release molecules that may be critical to initiate and sustain inflammatory response. Hence, the events during early brain injury can influence the occurrence of delayed brain injury. Since the damage associated molecular pattern molecules (DAMPs) might be the initiators of inflammation in the pathophysiology of aSAH, so the aim of this review is to highlight their role in the context of aSAH from diagnostic, prognostic, therapeutic, and drug therapy monitoring perspectives. DAMPs represent a diverse and a heterogenous group of molecules derived from different compartments of cells upon injury. Here, we have reviewed the most important DAMPs molecules including high mobility group box-1 (HMGB1), S100B, hemoglobin and its derivatives, extracellular matrix components, IL-1α, IL-33, and mitochondrial DNA in the context of aSAH and their role in post-aSAH complications and clinical outcome after aSAH.
Collapse
|
48
|
Fissolo N, Cervera-Carles L, Villar Guimerans LM, Lleó A, Clarimón J, Drulovic J, Dujmovic I, Voortman M, Khalil M, Gil E, Navarro L, Álvarez-Cermeño JC, Montalban X, Comabella M. Cerebrospinal fluid mitochondrial DNA levels in patients with multiple sclerosis. Mult Scler 2018; 25:1535-1538. [PMID: 29985092 DOI: 10.1177/1352458518786055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The role of cerebrospinal fluid (CSF) mitochondrial DNA (mtDNA) levels as biomarker in multiple sclerosis (MS) is unknown. We determined CSF mtDNA levels in a cohort of 237 individuals, including patients with MS and clinically isolated syndrome (CIS), inflammatory and non-inflammatory neurological controls, and cognitively healthy controls (HC). mtDNA concentration was measured by droplet digital polymerase chain reaction. CSF mtDNA levels were increased in all pathological conditions compared with HC, though no differences were observed between relapse-onset and progressive MS clinical forms, CIS patients and neurological controls. These findings do not support the determination of CSF mtDNA levels as a useful biomarker in MS clinical practice.
Collapse
Affiliation(s)
- Nicolas Fissolo
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Cervera-Carles
- Memory Unit, Department of Neurology, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Alberto Lleó
- Memory Unit, Department of Neurology, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Clarimón
- Memory Unit, Department of Neurology, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jelena Drulovic
- Department of Neurology, Clinic of Neurology, Clinical Center of Serbia, University of Belgrade School of Medicine, Belgrade, Serbia
| | - Irena Dujmovic
- Department of Neurology, Clinic of Neurology, Clinical Center of Serbia, University of Belgrade School of Medicine, Belgrade, Serbia/ Department of Neurology, UNC School of Medicine, Chapel Hill, NC, USA
| | | | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Elia Gil
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Navarro
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
49
|
Yamashita K, Kinoshita M, Miyamoto K, Namba A, Shimizu M, Koda T, Sugimoto T, Mori Y, Yoshioka Y, Nakatsuji Y, Kumanogoh A, Kusunoki S, Mochizuki H, Okuno T. Cerebrospinal fluid mitochondrial DNA in neuromyelitis optica spectrum disorder. J Neuroinflammation 2018; 15:125. [PMID: 29703264 PMCID: PMC5924507 DOI: 10.1186/s12974-018-1162-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
Background Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disease of the central nervous system. Although complement-dependent astrocyte damage mediated by anti-aquaporin 4 autoantibody (AQP4-Ab) is well acknowledged to be the core of NMOSD pathogenesis, additional inflammatory cascades may contribute to the establishment of lesion formation. Thus, in this study, we investigated the possible pathogenic role of immune-reactive mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) of NMOSD patients. Methods Using quantitative polymerase chain reaction, we measured extracellular mtDNA levels in CSF of NMOSD patients positive for AQP4-Ab. Patients with multiple sclerosis or other neurological diseases were examined as controls. Pre- and post-treatment extracellular mtDNA levels were also compared in the NMOSD group. Extracellular mtDNA release from human astrocytes was analyzed in vitro utilizing NMOSD sera, and interleukin (IL)-1β production was measured in supernatants of mixed glial cells stimulated with DNA fraction of CSF derived from NMOSD patients. Furthermore, specific innate immune pathways mediating the IL-1β production by mtDNA were investigated in peripheral blood mononuclear cells with selective inhibitors of Toll-like receptor 9 (TLR9) and NOD-like receptor protein 3 (NLRP3) inflammasomes. Results Extracellular mtDNA level was specifically elevated in acute phase of NMOSD CSF. In vitro studies provided the evidence that mtDNA is released from human astrocytes by NMOSD sera. In addition, DNA fraction isolated from NMOSD CSF promoted secretion of IL-1β from mixed glial cells. Selective inhibition of TLR9 and NLRP3 inflammasomes revealed that mtDNA-mediated IL-1β production depends on specific innate immune pathways. Conclusion Extracellular mtDNA is specifically elevated in the CSF of patients with acute phase NMOSD, and mtDNA released by AQP4-Ab-mediated cellular damage elicits the innate immune cascades via TLR9 and NLRP3 inflammasomes pathways. Our study highlights mtDNA-mediated innate immune pathways as a novel therapeutic target for future treatment of NMOSD patients. Electronic supplementary material The online version of this article (10.1186/s12974-018-1162-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kazuya Yamashita
- Department of Neurology, Osaka University Graduate School of Medicine, D4, 2-2 Yamadaoka, Osaka, 565-0871, Japan
| | - Makoto Kinoshita
- Department of Neurology, Osaka University Graduate School of Medicine, D4, 2-2 Yamadaoka, Osaka, 565-0871, Japan.,Department of Neurology, Osaka General Medical Center, Osaka, Japan
| | - Katsuichi Miyamoto
- Department of Neurology, Kinki University Graduate School of Medicine, Osaka, Japan
| | - Akiko Namba
- Department of Neurology, Osaka University Graduate School of Medicine, D4, 2-2 Yamadaoka, Osaka, 565-0871, Japan
| | - Mikito Shimizu
- Department of Neurology, Osaka University Graduate School of Medicine, D4, 2-2 Yamadaoka, Osaka, 565-0871, Japan
| | - Toru Koda
- National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomoyuki Sugimoto
- Department of Mathematics and Computer Science, Kagoshima University Graduate School of Science and Technology, Kagoshima, Japan
| | - Yuki Mori
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka University, Osaka, Japan
| | - Yoshichika Yoshioka
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka University, Osaka, Japan
| | - Yuji Nakatsuji
- Department of Neurology, Toyama University, Toyama, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Susumu Kusunoki
- Department of Neurology, Kinki University Graduate School of Medicine, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, D4, 2-2 Yamadaoka, Osaka, 565-0871, Japan.
| | - Tatsusada Okuno
- Department of Neurology, Osaka University Graduate School of Medicine, D4, 2-2 Yamadaoka, Osaka, 565-0871, Japan.
| |
Collapse
|