1
|
Tammineni ER, Manno C, Oza G, Figueroa L. Skeletal muscle disorders as risk factors for type 2 diabetes. Mol Cell Endocrinol 2025; 599:112466. [PMID: 39848431 PMCID: PMC11886953 DOI: 10.1016/j.mce.2025.112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/27/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The incidence and prevalence of muscular disorders and of type 2 diabetes (T2D) is increasing and both represent highly significant healthcare problems, both economically and compromising quality of life. Interestingly, skeletal muscle dysfunction and T2D share some commonalities including dysregulated glucose homeostasis, increased oxidative stress, dyslipidemia, and cytokine alterations. Several lines of evidence have hinted to a relationship between skeletal muscle dysfunction and T2D. For instance, T2D affects skeletal muscle morphology, functionality, and overall health through altered protein metabolism, impaired mitochondrial function, and ultimately cell viability. Conversely, humans suffering from myopathies and their experimental models demonstrated increased incidence of T2D through altered muscle glucose disposal function due to abnormal calcium homeostasis, compromised mitochondrial function, dyslipidemia, increased inflammatory cytokines and fiber size alterations and disproportions. Lifestyle modifications are essential for improving and maintaining mobility and metabolic health in individuals suffering from myopathies along with T2D. In this review, we updated current literature evidence on clinical incidence of T2D in inflammatory, mitochondrial, metabolic myopathies, and muscular dystrophies and further discussed the molecular basis of these skeletal muscle disorders leading to T2D.
Collapse
Affiliation(s)
| | - Carlo Manno
- Department of Physiology and Biophysics, Rush University, Chicago, USA
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Queretaro, Mexico
| | - Lourdes Figueroa
- Department of Physiology and Biophysics, Rush University, Chicago, USA
| |
Collapse
|
2
|
Du X, Nakanishi H, Yamada T, Sin Y, Minegishi K, Motohashi N, Aoki Y, Itaka K. Polyplex Nanomicelle-Mediated Pgc-1α4 mRNA Delivery Via Hydrodynamic Limb Vein Injection Enhances Damage Resistance in Duchenne Muscular Dystrophy Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409065. [PMID: 40051178 PMCID: PMC12021044 DOI: 10.1002/advs.202409065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/30/2024] [Indexed: 04/26/2025]
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, leading to the absence of dystrophin and progressive muscle degeneration. Current therapeutic strategies, such as exon-skipping and gene therapy, face limitations including truncated dystrophin production and safety concerns. To address these issues, a novel mRNA-based therapy is explored using polyplex nanomicelles to deliver mRNA encoding peroxisome proliferator-activated receptor gamma coactivator 1 alpha isoform 4 (PGC-1α4) via hydrodynamic limb vein (HLV) administration. Using an in vivo muscle torque measurement technique, it is observed that nanomicelle-delivered Pgc-1α4 mRNA significantly improved muscle damage resistance and mitochondrial activity in mdx mice. Specifically, HLV administration of Pgc-1α4 mRNA in dystrophic muscles significantly relieved the torque reduction and myofiber injury induced by eccentric contraction (ECC), boosted metabolic gene expression, and enhanced muscle oxidative capacity. In comparison, lipid nanoparticles (LNPs), a widely used mRNA delivery system, does not achieve similar protective effects, likely due to their intrinsic immunogenicity. This foundational proof-of-concept study highlights the potential of mRNA-based therapeutics for the treatment of neuromuscular diseases such as DMD and demonstrates the capability of polyplex nanomicelles as a safe and efficient mRNA delivery system for therapeutic applications.
Collapse
Affiliation(s)
- Xuan Du
- Department of Biofunction ResearchLaboratory for Biomaterials and Bioengineering, Institute of Integrated ResearchInstitute of Science TokyoTokyo101‐0062Japan
| | - Hideyuki Nakanishi
- Department of Biofunction ResearchLaboratory for Biomaterials and Bioengineering, Institute of Integrated ResearchInstitute of Science TokyoTokyo101‐0062Japan
- Clinical Biotechnology TeamCenter for Infectious Disease Education and Research (CiDER)Osaka UniversityOsaka565‐0871Japan
| | - Takashi Yamada
- Department of Physical TherapySapporo Medical UniversitySapporo060‐8556Japan
| | - Yooksil Sin
- Department of Biofunction ResearchLaboratory for Biomaterials and Bioengineering, Institute of Integrated ResearchInstitute of Science TokyoTokyo101‐0062Japan
- Clinical Biotechnology TeamCenter for Infectious Disease Education and Research (CiDER)Osaka UniversityOsaka565‐0871Japan
| | - Katsura Minegishi
- Department of Molecular TherapyNational Institute of NeuroscienceNational Center of Neurology and Psychiatry (NCNP)Tokyo187‐8502Japan
| | - Norio Motohashi
- Department of Molecular TherapyNational Institute of NeuroscienceNational Center of Neurology and Psychiatry (NCNP)Tokyo187‐8502Japan
| | - Yoshitsugu Aoki
- Department of Molecular TherapyNational Institute of NeuroscienceNational Center of Neurology and Psychiatry (NCNP)Tokyo187‐8502Japan
| | - Keiji Itaka
- Department of Biofunction ResearchLaboratory for Biomaterials and Bioengineering, Institute of Integrated ResearchInstitute of Science TokyoTokyo101‐0062Japan
- Clinical Biotechnology TeamCenter for Infectious Disease Education and Research (CiDER)Osaka UniversityOsaka565‐0871Japan
| |
Collapse
|
3
|
Bonato A, Raparelli G, Caruso M. Molecular pathways involved in the control of contractile and metabolic properties of skeletal muscle fibers as potential therapeutic targets for Duchenne muscular dystrophy. Front Physiol 2024; 15:1496870. [PMID: 39717824 PMCID: PMC11663947 DOI: 10.3389/fphys.2024.1496870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the gene encoding dystrophin, a subsarcolemmal protein whose absence results in increased susceptibility of the muscle fiber membrane to contraction-induced injury. This results in increased calcium influx, oxidative stress, and mitochondrial dysfunction, leading to chronic inflammation, myofiber degeneration, and reduced muscle regenerative capacity. Fast glycolytic muscle fibers have been shown to be more vulnerable to mechanical stress than slow oxidative fibers in both DMD patients and DMD mouse models. Therefore, remodeling skeletal muscle toward a slower, more oxidative phenotype may represent a relevant therapeutic approach to protect dystrophic muscles from deterioration and improve the effectiveness of gene and cell-based therapies. The resistance of slow, oxidative myofibers to DMD pathology is attributed, in part, to their higher expression of Utrophin; there are, however, other characteristics of slow, oxidative fibers that might contribute to their enhanced resistance to injury, including reduced contractile speed, resistance to fatigue, increased capillary density, higher mitochondrial activity, decreased cellular energy requirements. This review focuses on signaling pathways and regulatory factors whose genetic or pharmacologic modulation has been shown to ameliorate the dystrophic pathology in preclinical models of DMD while promoting skeletal muscle fiber transition towards a slower more oxidative phenotype.
Collapse
Affiliation(s)
| | | | - Maurizia Caruso
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Monterotondo (RM), Italy
| |
Collapse
|
4
|
Casati SR, Cervia D, Roux-Biejat P, Moscheni C, Perrotta C, De Palma C. Mitochondria and Reactive Oxygen Species: The Therapeutic Balance of Powers for Duchenne Muscular Dystrophy. Cells 2024; 13:574. [PMID: 38607013 PMCID: PMC11011272 DOI: 10.3390/cells13070574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic progressive muscle-wasting disorder that leads to rapid loss of mobility and premature death. The absence of functional dystrophin in DMD patients reduces sarcolemma stiffness and increases contraction damage, triggering a cascade of events leading to muscle cell degeneration, chronic inflammation, and deposition of fibrotic and adipose tissue. Efforts in the last decade have led to the clinical approval of novel drugs for DMD that aim to restore dystrophin function. However, combination therapies able to restore dystrophin expression and target the myriad of cellular events found impaired in dystrophic muscle are desirable. Muscles are higher energy consumers susceptible to mitochondrial defects. Mitochondria generate a significant source of reactive oxygen species (ROS), and they are, in turn, sensitive to proper redox balance. In both DMD patients and animal models there is compelling evidence that mitochondrial impairments have a key role in the failure of energy homeostasis. Here, we highlighted the main aspects of mitochondrial dysfunction and oxidative stress in DMD and discussed the recent findings linked to mitochondria/ROS-targeted molecules as a therapeutic approach. In this respect, dual targeting of both mitochondria and redox homeostasis emerges as a potential clinical option in DMD.
Collapse
Affiliation(s)
- Silvia Rosanna Casati
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via Fratelli Cervi 93, 20054 Segrate, Italy; (S.R.C.); (C.D.P.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy;
| | - Paulina Roux-Biejat
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy; (P.R.-B.); (C.M.)
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy; (P.R.-B.); (C.M.)
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy; (P.R.-B.); (C.M.)
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via Fratelli Cervi 93, 20054 Segrate, Italy; (S.R.C.); (C.D.P.)
| |
Collapse
|
5
|
Hong S, Kim S, Kim K, Lee H. Clinical Approaches for Mitochondrial Diseases. Cells 2023; 12:2494. [PMID: 37887337 PMCID: PMC10605124 DOI: 10.3390/cells12202494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Mitochondria are subcontractors dedicated to energy production within cells. In human mitochondria, almost all mitochondrial proteins originate from the nucleus, except for 13 subunit proteins that make up the crucial system required to perform 'oxidative phosphorylation (OX PHOS)', which are expressed by the mitochondria's self-contained DNA. Mitochondrial DNA (mtDNA) also encodes 2 rRNA and 22 tRNA species. Mitochondrial DNA replicates almost autonomously, independent of the nucleus, and its heredity follows a non-Mendelian pattern, exclusively passing from mother to children. Numerous studies have identified mtDNA mutation-related genetic diseases. The consequences of various types of mtDNA mutations, including insertions, deletions, and single base-pair mutations, are studied to reveal their relationship to mitochondrial diseases. Most mitochondrial diseases exhibit fatal symptoms, leading to ongoing therapeutic research with diverse approaches such as stimulating the defective OXPHOS system, mitochondrial replacement, and allotropic expression of defective enzymes. This review provides detailed information on two topics: (1) mitochondrial diseases caused by mtDNA mutations, and (2) the mechanisms of current treatments for mitochondrial diseases and clinical trials.
Collapse
Affiliation(s)
- Seongho Hong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Medicine, Korea University College of Medicine, Seoul 02708, Republic of Korea
| | - Sanghun Kim
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea;
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyunji Lee
- Department of Medicine, Korea University College of Medicine, Seoul 02708, Republic of Korea
| |
Collapse
|
6
|
Kumar A, Narkar VA. Nuclear receptors as potential therapeutic targets in peripheral arterial disease and related myopathy. FEBS J 2023; 290:4596-4613. [PMID: 35942640 PMCID: PMC9908775 DOI: 10.1111/febs.16593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 12/31/2022]
Abstract
Peripheral arterial disease (PAD) is a prevalent cardiovascular complication of limb vascular insufficiency, causing ischemic injury, mitochondrial metabolic damage and functional impairment in the skeletal muscle, and ultimately leading to immobility and mortality. While potential therapies have been mostly focussed on revascularization, none of the currently available pharmacological treatments are fully effective in PAD, often leading to amputations, particularly in chronic metabolic diseases. One major limitation of focussed angiogenesis and revascularization as a therapeutic strategy is a limited effect on metabolic restoration and muscle regeneration in the affected limb. Therefore, additional preclinical investigations are needed to discover novel treatment options for PAD preferably targeting multiple aspects of muscle recovery. In this review, we propose nuclear receptors expressed in the skeletal muscle as potential candidates for ischemic muscle repair in PAD. We review classic steroid and orphan receptors that have been reported to be involved in the regulation of paracrine muscle angiogenesis, oxidative metabolism, mitochondrial biogenesis and muscle regeneration, and discuss how these receptors could be critical for recovery from ischemic muscle damage. Furthermore, we identify existing gaps in our understanding of nuclear receptor signalling in the skeletal muscle and propose future areas of research that could be instrumental in exploring nuclear receptors as therapeutic candidates for treating PAD.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204
| | - Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, UTHealth McGovern Medical School, Houston, TX, 77030
- University of Texas MD Anderson and UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030
| |
Collapse
|
7
|
Emerging therapies for Duchenne muscular dystrophy. Lancet Neurol 2022; 21:814-829. [DOI: 10.1016/s1474-4422(22)00125-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/21/2022] [Accepted: 03/18/2022] [Indexed: 12/11/2022]
|
8
|
Rocha GLD, Rupcic IF, Mizobuti DS, Hermes TDA, Covatti C, Silva HNMD, Araujo HN, Lourenço CCD, Silveira LDR, Pereira ECL, Minatel E. Cross-talk between TRPC-1, mTOR, PGC-1α and PPARδ in the dystrophic muscle cells treated with tempol. Free Radic Res 2022; 56:245-257. [PMID: 35549793 DOI: 10.1080/10715762.2022.2074842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Ca2+ dysregulation and oxidative damage appear to have a central role in Duchenne muscular dystrophy (DMD) progression. The current study provides muscle cell-specific insights into the effect of Tempol on the TRPC 1 channel; on the positive and negative regulators of muscle cell differentiation; on the antioxidant enzymatic system; on the activators of mitochondrial biogenesis; and on the inflammatory process in the dystrophic primary muscle cells in culture. METHODS Mdx myotubes were treated with Tempol (5 mM) for 24 h. Untreated mdx myotubes and C57BL/10 myotubes were used as controls. RESULTS The Trypan Blue, MTT and Live/Dead Cell assays showed that Tempol (5 mM) presented no cytotoxic effect on the dystrophic muscle cells. The Tempol treated-mdx muscle cells showed significantly lower levels in the fluorescence intensity of intracellular calcium; TRPC-1 channel; MyoD; H2O2 and O2•- production; 4-HNE levels; SOD2, CAT and GPx levels; and TNF levels. On the other hand, SOD, CAT and GR mRNA relative expression were significantly higher in Tempol treated-mdx muscle cells. In addition, higher levels of Myogenin, MHC-Slow, mTOR, PGC-1α and PPARδ were also observed in Tempol treated-mdx muscle cells. CONCLUSION Our findings demonstrated that Tempol decreased intracellular calcium and oxidative stress in primary dystrophic muscle cells, promoting a cross-talk between TRPC-1, mTOR, PGC-1α and PPARδ.
Collapse
Affiliation(s)
- Guilherme Luiz da Rocha
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Ian Feller Rupcic
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Daniela Sayuri Mizobuti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Túlio de Almeida Hermes
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Caroline Covatti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | | | - Hygor Nunes Araujo
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Caroline Caramano de Lourenço
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Leonardo Dos Reis Silveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Elaine Cristina Leite Pereira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil.,Universidade de Brasília (UnB), Faculdade de Ceilândia, Brasília, Brazil
| | - Elaine Minatel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
9
|
Angelini G, Mura G, Messina G. Therapeutic approaches to preserve the musculature in Duchenne Muscular Dystrophy: The importance of the secondary therapies. Exp Cell Res 2022; 410:112968. [PMID: 34883113 DOI: 10.1016/j.yexcr.2021.112968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/15/2021] [Accepted: 12/04/2021] [Indexed: 02/07/2023]
Abstract
Muscular dystrophies (MDs) are heterogeneous diseases, characterized by primary wasting of skeletal muscle, which in severe cases, such as Duchenne Muscular Dystrophy (DMD), leads to wheelchair dependency, respiratory failure, and premature death. Research is ongoing to develop efficacious therapies, particularly for DMD. Most of the efforts, currently focusing on correcting or restoring the primary defect of MDs, are based on gene-addition, exon-skipping, stop codon read-through, and genome-editing. Although promising, most of them revealed several practical limitations. Shared knowledge in the field is that, in order to be really successful, any therapeutic approach has to rely on spared functional muscle tissue, restricting the number of patients eligible for clinical trials to the youngest and less compromised individuals. In line with this, many therapeutic strategies aim to preserve muscle tissue and function. This Review outlines the most interesting and recent studies addressing the secondary outcomes of DMD and how to better deliver the therapeutic agents. In the future, the effective treatment of DMD will likely require combinations of therapies addressing both the primary genetic defect and its consequences.
Collapse
Affiliation(s)
- Giuseppe Angelini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Giada Mura
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Graziella Messina
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
10
|
Ito M, Tauscher-Wisniewski S, Smulders RA, Wojtkowski T, Yamada A, Koibuchi A, Uz T, Marek GJ, Goldwater RD. Single- and multiple-dose safety, tolerability, pharmacokinetic, and pharmacodynamic profiles of ASP0367, or bocidelpar sulfate, a novel modulator of peroxisome proliferator-activated receptor delta in healthy adults: Results from a phase 1 study. Muscle Nerve 2021; 65:110-120. [PMID: 34642949 PMCID: PMC9298414 DOI: 10.1002/mus.27436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 01/24/2023]
Abstract
Introduction/Aims ASP0367, or bocidelpar sulfate, is an orally administered small molecule that potently and selectively modulates peroxisome proliferator–activated receptor δ (PPARδ) to address mitochondrial dysfunction occurring in diseases including primary mitochondrial myopathy and Duchenne muscular dystrophy. The objectives of this first‐in‐human trial were to evaluate the safety/tolerability, pharmacokinetics, and pharmacodynamics of ASP0367 in healthy participants. Methods In this double‐blind phase 1 study, adult participants were randomized to single or multiple ascending oral doses of ASP0367 or placebo. The study duration was 1 and 14 days, respectively. Pharmacokinetic parameters under fed conditions were also evaluated. Results A total of 64 (single‐dose cohort) and 37 (multiple‐dose cohort) participants were included in the study. After single doses of 1 to 120 mg, ASP0367 was rapidly absorbed, with median time to maximum plasma concentration (tmax) of 1.50 to 2.24 hours under fasting conditions; ASP0367 concentrations declined in a multiphasic manner after reaching maximum plasma concentration. Under fed conditions, tmax was delayed 1.7 hours. After multiple once‐daily doses, mean half‐life of ASP0367 10 to 75 mg ranged from 14.1 to 17.5 hours; steady state was reached after 4 days. Negligible accumulation was observed after repeated dosing. No participants receiving ASP0367 discontinued treatment, and all treatment‐emergent adverse events were mild to moderate in severity; none were considered drug‐related. No clinically significant changes were observed on laboratory or electrocardiographic evaluation. Treatment‐ and dose‐dependent upregulation of six PPARδ target genes was observed with single and multiple doses of ASP0367. Discussion ASP0367, or bocidelpar sulfate, was well tolerated; rapid absorption, roughly dose‐proportional bioavailability, and effects on PPARδ target genes were demonstrated in healthy adult participants.
Collapse
Affiliation(s)
- Mototsugu Ito
- Astellas Pharma Global Development, Inc., Northbrook, Illinois, USA
| | | | | | | | | | | | - Tolga Uz
- Astellas Pharma Global Development, Inc., Northbrook, Illinois, USA
| | - Gerard J Marek
- Astellas Pharma Global Development, Inc., Northbrook, Illinois, USA
| | | |
Collapse
|
11
|
da Silva HNM, Covatti C, da Rocha GL, Mizobuti DS, Mâncio RD, Hermes TDA, Kido LA, Cagnon VHA, Pereira ECL, Minatel E. Oxidative Stress, Inflammation, and Activators of Mitochondrial Biogenesis: Tempol Targets in the Diaphragm Muscle of Exercise Trained- mdx Mice. Front Physiol 2021; 12:649793. [PMID: 33981250 PMCID: PMC8107395 DOI: 10.3389/fphys.2021.649793] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
The mdx mouse phenotype aggravated by chronic exercise on a treadmill makes this murine model more reliable for the study of muscular dystrophy. Thus, to better assess the Tempol effect on dystrophic pathways, the analyses in this study were performed in the blood samples and diaphragm muscle from treadmill trained adult (7–11-weeks old) mdx animals. The mdx mice were divided into three groups: mdxSed, sedentary controls (n = 28); mdxEx, exercise-trained animals (n = 28); and mdxEx+T, exercise-trained animals with the Tempol treatment (n = 28). The results demonstrated that the Tempol treatment promoted muscle strength gain, prevented muscle damage, reduced the inflammatory process, oxidative stress, and angiogenesis regulator, and up regulated the activators of mitochondrial biogenesis. The main new findings of this study are that Tempol reduced the NF-κB and increased the PGC1-α and PPARδ levels in the exercise-trained-mdx mice, which are probably related to the ability of this antioxidant to scavenge excessive ROS. These results reinforce the use of Tempol as a potential therapeutic strategy in DMD.
Collapse
Affiliation(s)
| | - Caroline Covatti
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme Luiz da Rocha
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniela Sayuri Mizobuti
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Rafael Dias Mâncio
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Túlio de Almeida Hermes
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Larissa Akemi Kido
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Valéria Helena Alves Cagnon
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Elaine Cristina Leite Pereira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil.,Faculty of Ceilândia, University of Brasília (UnB), Brasília, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
12
|
Joseph J, Doles JD. Disease-associated metabolic alterations that impact satellite cells and muscle regeneration: perspectives and therapeutic outlook. Nutr Metab (Lond) 2021; 18:33. [PMID: 33766031 PMCID: PMC7992337 DOI: 10.1186/s12986-021-00565-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
Many chronic disease patients experience a concurrent loss of lean muscle mass. Skeletal muscle is a dynamic tissue maintained by continuous protein turnover and progenitor cell activity. Muscle stem cells, or satellite cells, differentiate (by a process called myogenesis) and fuse to repair and regenerate muscle. During myogenesis, satellite cells undergo extensive metabolic alterations; therefore, pathologies characterized by metabolic derangements have the potential to impair myogenesis, and consequently exacerbate skeletal muscle wasting. How disease-associated metabolic disruptions in satellite cells might be contributing to wasting is an important question that is largely neglected. With this review we highlight the impact of various metabolic disruptions in disease on myogenesis and skeletal muscle regeneration. We also discuss metabolic therapies with the potential to improve myogenesis, skeletal muscle regeneration, and ultimately muscle mass.
Collapse
Affiliation(s)
- Josiane Joseph
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | - Jason D Doles
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
13
|
Ziemba M, Barkhouse M, Uaesoontrachoon K, Giri M, Hathout Y, Dang UJ, Gordish-Dressman H, Nagaraju K, Hoffman EP. Biomarker-focused multi-drug combination therapy and repurposing trial in mdx mice. PLoS One 2021; 16:e0246507. [PMID: 33617542 PMCID: PMC7899329 DOI: 10.1371/journal.pone.0246507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/20/2021] [Indexed: 01/04/2023] Open
Abstract
Duchenne muscular dystrophy is initiated by dystrophin deficiency, but downstream pathophysiological pathways such as membrane instability, NFĸB activation, mitochondrial dysfunction, and induction of TGFβ fibrosis pathways are thought to drive the disability. Dystrophin replacement strategies are hopeful for addressing upstream dystrophin deficiency; however, all methods to date use semi-functional dystrophin proteins that are likely to trigger downstream pathways. Thus, combination therapies that can target multiple downstream pathways are important in treating DMD, even for dystrophin-replacement strategies. We sought to define blood pharmacodynamic biomarkers of drug response in the mdx mouse model of Duchenne muscular dystrophy using a series of repurposed drugs. Four-week-old mdx mice were treated for four weeks with four different drugs singly and in combination: vehicle, prednisolone, vamorolone, rituximab, β-aminoisobutyric acid (BAIBA) (11 treatment groups; n = 6/group). Blood was collected via cardiac puncture at study termination, and proteomic profiling was carried out using SOMAscan aptamer panels (1,310 proteins assayed). Prednisolone was tested alone and in combination with other drugs. It was found to have a good concordance of prednisolone-responsive biomarkers (56 increased by prednisolone, 39 decreased) focused on NFκB and TGFβ cascades. Vamorolone shared 45 (80%) of increased biomarkers and 13 (33%) of decreased biomarkers with prednisolone. Comparison of published human corticosteroid-responsive biomarkers to our mdx data showed 14% (3/22) concordance between mouse and human. Rituximab showed fewer drug-associated biomarkers, with the most significant being human IgG. On the other hand, BAIBA treatment (high and low dose) showed a drug-associated increase in 40 serum proteins and decreased 5 serum proteins. Our results suggest that a biomarker approach could be employed for assessing drug combinations in both mouse and human studies.
Collapse
Affiliation(s)
- Michael Ziemba
- Department of Biomedical Engineering, Binghamton University–State University of New York, Binghamton, NY, United States of America
| | | | | | - Mamta Giri
- Department of Genetics and Genomic Sciences, Mount Sinai Hospital, New York, NY, United States of America
| | - Yetrib Hathout
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University–State University of New York, Binghamton, NY, United States of America
| | - Utkarsh J. Dang
- Department of Health Outcomes and Administrative Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University–State University of New York, Binghamton, NY, United States of America
| | - Heather Gordish-Dressman
- Center for Translational Sciences, Children’s National Medical Center, Washington, DC, United States of America
| | - Kanneboyina Nagaraju
- AGADA Biosciences, Halifax, Nova Scotia, Canada
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University–State University of New York, Binghamton, NY, United States of America
- * E-mail:
| | - Eric P. Hoffman
- AGADA Biosciences, Halifax, Nova Scotia, Canada
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University–State University of New York, Binghamton, NY, United States of America
| |
Collapse
|
14
|
Rybalka E, Timpani CA, Debruin DA, Bagaric RM, Campelj DG, Hayes A. The Failed Clinical Story of Myostatin Inhibitors against Duchenne Muscular Dystrophy: Exploring the Biology behind the Battle. Cells 2020; 9:E2657. [PMID: 33322031 PMCID: PMC7764137 DOI: 10.3390/cells9122657] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Myostatin inhibition therapy has held much promise for the treatment of muscle wasting disorders. This is particularly true for the fatal myopathy, Duchenne Muscular Dystrophy (DMD). Following on from promising pre-clinical data in dystrophin-deficient mice and dogs, several clinical trials were initiated in DMD patients using different modality myostatin inhibition therapies. All failed to show modification of disease course as dictated by the primary and secondary outcome measures selected: the myostatin inhibition story, thus far, is a failed clinical story. These trials have recently been extensively reviewed and reasons why pre-clinical data collected in animal models have failed to translate into clinical benefit to patients have been purported. However, the biological mechanisms underlying translational failure need to be examined to ensure future myostatin inhibitor development endeavors do not meet with the same fate. Here, we explore the biology which could explain the failed translation of myostatin inhibitors in the treatment of DMD.
Collapse
Affiliation(s)
- Emma Rybalka
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Cara A. Timpani
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Danielle A. Debruin
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Ryan M. Bagaric
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Dean G. Campelj
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Alan Hayes
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
- Department of Medicine—Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, 3021 Victoria, Australia
| |
Collapse
|
15
|
van Westering TLE, Johansson HJ, Hanson B, Coenen-Stass AML, Lomonosova Y, Tanihata J, Motohashi N, Yokota T, Takeda S, Lehtiö J, Wood MJA, El Andaloussi S, Aoki Y, Roberts TC. Mutation-independent Proteomic Signatures of Pathological Progression in Murine Models of Duchenne Muscular Dystrophy. Mol Cell Proteomics 2020; 19:2047-2068. [PMID: 32994316 PMCID: PMC7710136 DOI: 10.1074/mcp.ra120.002345] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/23/2022] Open
Abstract
The absence of the dystrophin protein in Duchenne muscular dystrophy (DMD) results in myofiber fragility and a plethora of downstream secondary pathologies. Although a variety of experimental therapies are in development, achieving effective treatments for DMD remains exceptionally challenging, not least because the pathological consequences of dystrophin loss are incompletely understood. Here we have performed proteome profiling in tibialis anterior muscles from two murine DMD models (mdx and mdx52) at three ages (8, 16, and 80 weeks of age), all n = 3. High-resolution isoelectric focusing liquid chromatography-tandem MS (HiRIEF-LC-MS/MS) was used to quantify the expression of 4974 proteins across all 27 samples. The two dystrophic models were found to be highly similar, whereas multiple proteins were differentially expressed relative to WT (C57BL/6) controls at each age. Furthermore, 1795 proteins were differentially expressed when samples were pooled across ages and dystrophic strains. These included numerous proteins associated with the extracellular matrix and muscle function that have not been reported previously. Pathway analysis revealed multiple perturbed pathways and predicted upstream regulators, which together are indicative of cross-talk between inflammatory, metabolic, and muscle growth pathways (e.g. TNF, INFγ, NF-κB, SIRT1, AMPK, PGC-1α, PPARs, ILK, and AKT/PI3K). Upregulation of CAV3, MVP and PAK1 protein expression was validated in dystrophic muscle by Western blot. Furthermore, MVP was upregulated during, but not required for, the differentiation of C2C12 myoblasts suggesting that this protein may affect muscle regeneration. This study provides novel insights into mutation-independent proteomic signatures characteristic of the dystrophic phenotype and its progression with aging.
Collapse
Affiliation(s)
| | - Henrik J Johansson
- Department of Oncology/Pathology, Cancer Proteomics Mass Spectrometry, SciLifeLab Stockholm, Karolinska Institutet, Stockholm, Sweden
| | - Britt Hanson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Yulia Lomonosova
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Norio Motohashi
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Toshifumi Yokota
- Department of Medical, Genetics, School of Human Development Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Janne Lehtiö
- Department of Oncology/Pathology, Cancer Proteomics Mass Spectrometry, SciLifeLab Stockholm, Karolinska Institutet, Stockholm, Sweden
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK; MDUK Oxford Neuromuscular Centre, Oxford, UK
| | | | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan.
| | - Thomas C Roberts
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|