1
|
Shemshadi S, Shekari F, Eslaminejad MB, Taghiyar L. Extracellular vesicles derived from Msh homeobox 1 (Msx1)-overexpressing mesenchymal stem cells improve digit tip regeneration in an amputee mice model. Sci Rep 2024; 14:23538. [PMID: 39384602 PMCID: PMC11464676 DOI: 10.1038/s41598-024-72647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 09/09/2024] [Indexed: 10/11/2024] Open
Abstract
In adult mammals, limb regeneration is limited by the absence of blastemal cells (BCs) and the lack of the regenerative signaling cascade. The utilization of transgenic cells circumvents the limitations associated with the absence of BCs. In a previous investigation, we successfully regenerated mouse phalanx amputations using blastema-like cells (BlCs) generated from bone marrow-derived mesenchymal stem cells (mBMSCs) overexpressing Msx1 and Msx2 genes. Recently, extracellular vesicles (EVs) have emerged as potent biological tools, offering a promising alternative to manipulated cells for clinical applications. This research focuses on utilizing BlCs-derived extracellular vesicles (BlCs-EVs) for regenerating mouse digit tips. The BlCs were cultured and expanded, and then EVs were isolated via ultracentrifugation. The size, morphology, and CD81 marker expression of the EVs were confirmed through Dynamic Light Scattering (DLS), Scanning Electron Microscope (SEM), and Western Blot (WB) analyses. Additionally, WB analysis demonstrated the presence of MSX1, MSX2, FGF8, and BMP4 proteins. The uptake of EVs by mBMSCs was shown through immunostaining. Effects on cell proliferation, migration, and osteogenic activity post-treatment with BlCs-EVs were assessed through MTT assay, scratch assay, and Real-time PCR. The regenerative potential of BlCs-EVs was evaluated in a mouse digit tip amputation model using histological assessments. Results indicated that BlCs-EVs enhanced several abilities of mBMSCs, such as migration, proliferation, and osteogenesis in vitro. Notably, BlCs-EVs significantly improved digit tip regeneration in mice, promoting the formation of new bone and nails, which was absent in control groups. In summary, BlCs-EVs are promising tools for digit tip regeneration, avoiding the ethical concerns associated with using genetically modified cells.
Collapse
Affiliation(s)
- Sahar Shemshadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Soares AP, Fischer H, Aydin S, Steffen C, Schmidt-Bleek K, Rendenbach C. Uncovering the unique characteristics of the mandible to improve clinical approaches to mandibular regeneration. Front Physiol 2023; 14:1152301. [PMID: 37008011 PMCID: PMC10063818 DOI: 10.3389/fphys.2023.1152301] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
The mandible (lower jaw) bone is aesthetically responsible for shaping the lower face, physiologically in charge of the masticatory movements, and phonetically accountable for the articulation of different phonemes. Thus, pathologies that result in great damage to the mandible severely impact the lives of patients. Mandibular reconstruction techniques are mainly based on the use of flaps, most notably free vascularized fibula flaps. However, the mandible is a craniofacial bone with unique characteristics. Its morphogenesis, morphology, physiology, biomechanics, genetic profile, and osteoimmune environment are different from any other non-craniofacial bone. This fact is especially important to consider during mandibular reconstruction, as all these differences result in unique clinical traits of the mandible that can impact the results of jaw reconstructions. Furthermore, overall changes in the mandible and the flap post-reconstruction may be dissimilar, and the replacement process of the bone graft tissue during healing can take years, which in some cases can result in postsurgical complications. Therefore, the present review highlights the uniqueness of the jaw and how this factor can influence the outcome of its reconstruction while using an exemplary clinical case of pseudoarthrosis in a free vascularized fibula flap.
Collapse
Affiliation(s)
- Ana Prates Soares
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Ana Prates Soares,
| | - Heilwig Fischer
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Centrum für Muskuloskeletale Chirurgie, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Sabrin Aydin
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claudius Steffen
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Rendenbach
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
3
|
Aru B, Gürel G, Yanikkaya Demirel G. Mesenchymal Stem Cells: History, Characteristics and an Overview of Their Therapeutic Administration. TURKISH JOURNAL OF IMMUNOLOGY 2022. [DOI: 10.4274/tji.galenos.2022.18209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Singh S, Biswas S, Srivastava A, Mishra Y, Chaturvedi TP. In silico characterization and structural modeling of a homeobox protein MSX1 from Homo sapiens. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2020.100497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
5
|
TAŞLI PN, YALÇIN ÜLKER GM, CUMBUL A, USLU Ü, YILMAZ Ş, BOZKURT BT, ŞAHİN F. In vitro tooth-shaped scaffold construction by mimicking late bell stage. Turk J Biol 2020; 44:315-326. [PMID: 33110369 PMCID: PMC7585158 DOI: 10.3906/biy-2002-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/02/2020] [Indexed: 01/21/2023] Open
Abstract
Neogenesis of osseous and ligamentous interfacial structures is essential for the regeneration of large oral or craniofacial defects. However, current treatment strategies are inadequate in renewing supporting tissues of teeth after trauma, chronic infections or surgical resection. Combined use of 3D scaffolds with stem cells became a promising treatment option for these injuries. Matching different scaffolding materials with different tissues can induce the correct cytokines and the differentiation of cells corresponding to that particular tissue. In this study, a hydroxyapatite (HA) based scaffold was used together with human adipose stem cells (hASCs), human bone marrow stem cells (hBMSCs) and gingival epithelial cells to mimic human tooth dentin-pulp-enamel tissue complexes and model an immature tooth at the late bell stage in vitro. Characteristics of the scaffold were determined via SEM, FTIR, pore size and density measurements. Changes in gene expression, protein secretions and tissue histology resulting from cross-interactions of different dental tissues grown in the system were shown. Classical tooth tissues such as cementum, pulp and bone like tissues were formed within the scaffold. Our study suggests that a HA-based scaffold with different cell lineages can successfully mimic early stages of tooth development and can be a valuable tool for hard tissue engineering.
Collapse
Affiliation(s)
- Pakize Neslihan TAŞLI
- Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, İstanbulTurkey
| | - Gül Merve YALÇIN ÜLKER
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, İstanbul Okan University, İstanbulTurkey
| | - Alev CUMBUL
- Department of Histology and Embryology, Faculty of Medicine, Yeditepe University, İstanbulTurkey
| | - Ünal USLU
- Department of Histology and Embryology, Faculty of Medicine, Yeditepe University, İstanbulTurkey
| | - Şahin YILMAZ
- Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, İstanbulTurkey
| | - Batuhan Turhan BOZKURT
- Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, İstanbulTurkey
| | - Fikrettin ŞAHİN
- Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, İstanbulTurkey
| |
Collapse
|
6
|
Son C, Choi MS, Park JC. Different Responsiveness of Alveolar Bone and Long Bone to Epithelial-Mesenchymal Interaction-Related Factor. JBMR Plus 2020; 4:e10382. [PMID: 32803111 PMCID: PMC7422712 DOI: 10.1002/jbm4.10382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/02/2020] [Indexed: 12/29/2022] Open
Abstract
Alveolar bone is both morphologically and functionally different from other bones of the axial or peripheral skeleton. Because of its sensitive nature to external stimuli including mechanical stress, bone loss stimuli, and medication-related osteonecrosis of the jaw, alveolar bone rendering is seen as an important factor in various dental surgical processes. Although multiple studies have validated the response of long bone to various factors, how alveolar bone responds to functional stimuli still needs further clarification. To examine the characteristics of bone in vitro, we isolated cells from alveolar, femur, and tibia bone tissue. Although primary cultured mouse alveolar bone-derived cells (mABDCs) and mouse long bone-derived cells (mLBDCs) exhibited similar osteoblastic characteristics, morphology, and proliferation rates, both showed distinct expression of neural crest (NC) and epithelial-mesenchymal interaction (EMI)-related genes. Furthermore, they showed significantly different mineralization rates. RNA sequencing data demonstrated distinct transcriptome profiles of alveolar bone and long bone. Osteogenic, NC-, and EMI-related genes showed distinct expression between mABDCs and mLBDCs. When the gene expression patterns during osteogenic differentiation were analyzed, excluding several osteogenic genes, NC- and EMI-related genes showed different expression patterns. Among EMI-related proteins, BMP4 elevated the expression levels of osteogenic genes, Msx2, Dlx5, and Bmp2 the most, more noticeably in mABDCs than in mLBDCs during osteogenic differentiation. In in vivo models, the BMP4-treated mABDC group showed massive bone formation and maturation as opposed to its counterpart. Bone sialoprotein expression was also validated in calcified tissues. Overall, our data suggest that alveolar bone and long bone have different responsiveness to EMI by distinct gene regulation. In particular, BMP4 has critical bone formation effects on alveolar bone, but not on long bone. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chul Son
- Department of Oral Histology and Developmental Biology, School of Dentistry Seoul National University Seoul South Korea
| | - Moon Sil Choi
- Department of Dental Hygiene Songwon University Gwangju South Korea
| | - Joo-Cheol Park
- Department of Oral Histology and Developmental Biology, School of Dentistry Seoul National University Seoul South Korea
| |
Collapse
|
7
|
Zika virus induces abnormal cranial osteogenesis by negatively affecting cranial neural crest development. INFECTION GENETICS AND EVOLUTION 2019; 69:176-189. [PMID: 30665021 DOI: 10.1016/j.meegid.2019.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/20/2022]
Abstract
Zika virus (ZIKV) infection during gestation is deemed to be coupled to birth defects through direct impairment of the nervous system during neurogenesis. However, in this study, our data showed that ZIKV infection dramatically suppressed cranial osteogenesis, shown by Safranin O/Fast Green and alizarin red staining, in chick embryos, which provides another possibility that craniofacial bone malformation caused by ZIKV may be a major cause of ZIKV-mediated birth defects. By immunofluorescent staining and electron microcopy, we confirmed ZIKV infection in chick embryo neural tubes and sites of neural crest. Next, in vivo (chick embryos) and in vitro [primary culture of neural crest cells (NCC)] ZIKV and HNK-1 double immunofluorescent staining demonstrated that ZIKV infection inhibited the production of migratory NCC. The reduction of both AP-2α- and Pax7-positive NCC in HH10 chick embryos infected by ZIKV confirmed that abnormal development of cranial NCC also occurred in the migratory process. Whole mount in situ hybridization demonstrated that cadherin 6B expression was elevated and Slug, FoxD3, and BMP4/Msx1 expressions decreased in ZIKV-infected HH10 chick embryos, implying that epithelial-mesenchymal transition (EMT) of neural crest production was blocked by ZIKV infection. Moreover, in vivo and in vitro pHIS3 and Pax7 double immunofluorescent staining showed that NCC proliferation was repressed by ZIKV infection. C-caspase-3 and AP-2α double immunofluorescent staining in HH10 chick embryos and western blotting showed that NCC apoptosis increased following ZIKV infection. Finally, electron microscopy showed multiple autophagosomes in ZIKV-infected embryos, and western blot and LC3B immunofluorescent staining demonstrated that autophagy-related genes were activated by ZIKV infection. Taken together, our data first showed that ZIKV infection during embryogenesis could interfere with cranial neural crest development, which in turn causes aberrant cranial osteogenesis. Our results provided new insights into brain malformations induced by ZIKV infection.
Collapse
|
8
|
Wein M, Huelter-Hassler D, Nelson K, Fretwurst T, Nahles S, Finkenzeller G, Altmann B, Steinberg T. Differential osteopontin expression in human osteoblasts derived from iliac crest and alveolar bone and its role in early stages of angiogenesis. J Bone Miner Metab 2019; 37:105-117. [PMID: 29327303 DOI: 10.1007/s00774-017-0900-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
In our previous study, we revealed significant differences of osteopontin (OPN) gene expression in primary human osteoblasts (HOBs) derived from iliac crest bone (iHOBs) and alveolar bone (aHOBs). The present study aims at assigning this discriminative expression to a possible biologic function. OPN is known to be involved in several pathologic and physiologic processes, among others angiogenesis. Therefore, we studied the reaction of human umbilical vein endothelial cells (HUVECs) to HOB-derived OPN regarding angiogenesis. To this end, human primary explant cultures of both bone entities from ten donors were established. Subsequent transcription analysis detected higher gene expression of OPN in iHOBs compared to aHOBs, thereby confirming the results of our previous study. This difference was particularly apparent when cultures were derived from female donors. Hence, OPN protein expression as well as the angiogenic potential of OPN was analyzed, originating from HOBs of one female donor. In accordance to the gene expression level, secreted OPN was more abundant in the supernatant of iHOBs than in aHOBs. Moreover, secreted OPN was found to stimulate migration of HUVECs, but not proliferation or tube formation. These results indicate an involvement in very early stages of angiogenesis and a functional distinction of OPN from HOBs derived from different bone entities.
Collapse
Affiliation(s)
- Martin Wein
- Department of Oral Biotechnology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Diana Huelter-Hassler
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Orthodontics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katja Nelson
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Oral and Maxillofacial Surgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Fretwurst
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Oral and Maxillofacial Surgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Nahles
- Department of Oral- and Maxillofacial Surgery, Charité Campus Virchow, Berlin, Germany
| | - Guenter Finkenzeller
- Department of Plastic and Hand Surgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Brigitte Altmann
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Oral and Maxillofacial Surgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thorsten Steinberg
- Department of Oral Biotechnology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106, Freiburg, Germany.
| |
Collapse
|
9
|
Gou Y, Li J, Wu J, Gupta R, Cho I, Ho TV, Chai Y, Merrill A, Wang J, Xu J. Prmt1 regulates craniofacial bone formation upstream of Msx1. Mech Dev 2018; 152:13-20. [PMID: 29727702 DOI: 10.1016/j.mod.2018.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 02/05/2023]
Abstract
Protein arginine methylation has been recently identified as an important form of post-translational modification (PTM). It is carried out by the protein arginine methyltransferase (PRMT) family of enzymes, which in mammals consists of nine members. Among them, PRMT1 is the major arginine methyltransferase and participates in transcription, signal transduction, development and cancer. The function of PRMT1 in craniofacial development remains unclear. We generated Wnt1-Cre;Prmt1fl/fl mice with cranial neural crest (CNC)-specific deletion of Prmt1 and compared CNC-derived craniofacial bones from newborn control and Wnt1-Cre;Prmt1fl/fl mice. The size, surface area and volume of the premaxilla, maxilla, palatine bone, frontal bone, and mandible were analyzed using three-dimensional (3D) micro-computed tomography (microCT). We found that Prmt1 deficiency led to alterations in craniofacial bones including the premaxilla, maxilla, palatine bone, frontal bone, and mandible, as well as defects in the incisor and alveolar bone, recapitulating changes seen in Msx1-deficient mice. We further determined that Prmt1 depletion resulted in significant downregulation of Msx1 in calvaria-derived preosteoblast and primordium of frontal bone and mandible. Our study reveals critical roles of PRMT1 in the formation of CNC-derived craniofacial bones and suggests that Prmt1 is an upstream regulator of Msx1 in craniofacial bone development.
Collapse
Affiliation(s)
- Yongchao Gou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Jingyuan Li
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Jian Wu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Rahul Gupta
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Ihnbae Cho
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Amy Merrill
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Heo JS, Lee SG, Kim HO. Distal-less homeobox 5 is a master regulator of the osteogenesis of human mesenchymal stem cells. Int J Mol Med 2017; 40:1486-1494. [PMID: 28949384 PMCID: PMC5627883 DOI: 10.3892/ijmm.2017.3142] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/11/2017] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) differentiate into multiple lineages and are a promising source of cells for clinical use. Previously, we found that the gene distal-less homeobox 5 (DLX5) is specifically expressed in MSCs with osteogenic potential. Understanding the mechanism of osteogenesis is necessary for successful bone regeneration using MSCs. The aim of this study was to examine the function of the DLX5 gene in MSCs during osteogenesis (bone development). We analyzed the possible association between DLX5 expression and osteogenesis-, chondrogenesis- and adipogenesis-related gene expression in different cells isolated from bone marrow and cord blood. Differentiation capacity was assessed by observing morphological changes, monitoring gene expression patterns, and staining with Von Kossa, safranin O, and Oil Red O. Suppression of DLX5 expression by means of a small interfering RNA (siRNA) downregulated osteogenic markers and reduced the signs of calcium mineralization. Tanshinone IIA is a known small molecule activator of bone morphogenetic protein (BMP) signaling. Here, we report that induction of DLX5 by tanshinone IIA in MSCs enhanced osteogenic differentiation. In addition, we showed that tanshinone IIA (as a mediator of BMP2 signaling) activates runt-related transcription factor 2 (RUNX2) in MSCs and initiates calcium mineralization during osteogenesis. Taken together, these findings indicate that, in MSCs, DLX5 is a master regulator of osteogenesis. Furthermore, tanshinone IIA may be valuable for stem cell-based therapies of certain bone diseases.
Collapse
Affiliation(s)
- June Seok Heo
- Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul 02841; 2Cell Therapy Center, Severance Hospital, Seoul 03722, Republic of Korea
| | - Seung Gwan Lee
- Department of Health and Environmental Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Ok Kim
- Cell Therapy Center, Severance Hospital, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Nishio K, Ozawa Y, Ito H, Kifune T, Narita T, Iinuma T, Gionhaku N, Asano M. Functional expression of BMP7 receptors in oral epithelial cells. Interleukin-17F production in response to BMP7. J Recept Signal Transduct Res 2017; 37:515-521. [PMID: 28812969 DOI: 10.1080/10799893.2017.1360352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β (TGF-β) superfamily. Recently, BMP7 has been demonstrated to be produced by salivary glands and contribute to embryonic branching in mice. The BMP7 in saliva is thought to be delivered to the oral cavity and is expected to contact with stratified squamous epithelial cells which line the surface of oral mucosa. In this study, we attempted to investigate the effects of BMP7 on oral epithelial cells. METHODS The expression of BMP receptors was examined by reverse transcriptase-polymerase chain reaction (RT-PCR). OSCCs were stimulated with human recombinant BMP7 (hrBMP7) and the phosphorylation status of Smad1/5/8 was examined by western blotting. For microarray analysis, Ca9-22 cells were stimulated with 100 ng/mL of hrBMP7 and total RNA was extracted and subjected to real-time PCR. The 5'-untranslated region (5'-UTR) of IL-17 F gene was cloned to pGL4-basic vector and used for luciferase assay. Ca9-22 cells were pre-incubated with DM3189, a specific inhibitor of Smad1/5/8, for inhibition assay. RESULTS All isoforms of type I and type II BMP receptors were expressed in both Ca9-22 and HSC3 cells and BMP7 stimulation resulted in the phosphorylation of Smad1/5/8 in both cell lines. The microarray analysis revealed the induction of interleukin-17 F (IL-17 F), netrin G2 (NTNG2) and hyaluronan synthase 1 (HAS1). Luciferase assay using the 5'-UTR of the IL-17 F gene revealed transcriptional regulation. Induced IL-17 F production was further confirmed at the protein level by ELISA. Smad1/5/8 inhibitor pretreatment decreased IL-17 F expression levels in the cells.
Collapse
Affiliation(s)
- Kensuke Nishio
- a Department of Complete Denture Prosthodontics , Nihon University School of Dentistry , Tokyo , Japan.,b Division of Advanced Dental Treatment, Dental Research Center , Nihon University School of Dentistry , Tokyo , Japan
| | - Yasumasa Ozawa
- c Division of Applied Oral Sciences , Nihon University Graduate School of Dentistry , Tokyo , Japan
| | - Hisanori Ito
- c Division of Applied Oral Sciences , Nihon University Graduate School of Dentistry , Tokyo , Japan
| | - Takashi Kifune
- c Division of Applied Oral Sciences , Nihon University Graduate School of Dentistry , Tokyo , Japan
| | - Tatsuya Narita
- a Department of Complete Denture Prosthodontics , Nihon University School of Dentistry , Tokyo , Japan.,b Division of Advanced Dental Treatment, Dental Research Center , Nihon University School of Dentistry , Tokyo , Japan
| | - Toshimitsu Iinuma
- a Department of Complete Denture Prosthodontics , Nihon University School of Dentistry , Tokyo , Japan.,b Division of Advanced Dental Treatment, Dental Research Center , Nihon University School of Dentistry , Tokyo , Japan
| | - Nobuhito Gionhaku
- a Department of Complete Denture Prosthodontics , Nihon University School of Dentistry , Tokyo , Japan.,b Division of Advanced Dental Treatment, Dental Research Center , Nihon University School of Dentistry , Tokyo , Japan
| | - Masatake Asano
- d Department of Pathology , Nihon University School of Dentistry , Tokyo , Japan.,e Division of Immunology and Pathobiology , Nihon University School of Dentistry , Tokyo , Japan
| |
Collapse
|
12
|
Cheng X, Li H, Yan Y, Wang G, Berman Z, Chuai M, Yang X. From the Cover: Usage of Dexamethasone Increases the Risk of Cranial Neural Crest Dysplasia in the Chick Embryo. Toxicol Sci 2017; 158:36-47. [DOI: 10.1093/toxsci/kfx073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
13
|
Choi YH, Kim GS, Choi JH, Jin SW, Kim HG, Han Y, Lee DY, Choi SI, Kim SY, Ahn YS, Lee KY, Jeong HG. Ethanol extract of Lithospermum erythrorhizon Sieb. et Zucc. promotes osteoblastogenesis through the regulation of Runx2 and Osterix. Int J Mol Med 2016; 38:610-8. [PMID: 27353217 DOI: 10.3892/ijmm.2016.2655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/16/2016] [Indexed: 02/04/2023] Open
Abstract
Bone remodeling and homeostasis are largely the result of the coordinated action of osteoblasts and osteoclasts. Osteoblasts are responsible for bone formation. The differentiation of osteoblasts is regulated by the transcription factors, Runx2 and Osterix. Natural products of plant origin are still a major part of traditional medicinal systems in Korea. The root of Lithospermum erythrorhizon Sieb. et Zucc. (LR), the purple gromwell, is an herbal medicine used for inflammatory and infectious diseases. LR is an anti-inflammatory and exerts anticancer effects by inducing the apoptosis of cancer cells. However, the precise molecular signaling mechanisms of osteoblastogenesis as regards LR and osteoblast transcription are not yet known. In this study, we investigated the effects of ethanol (EtOH) extract of LR (LES) on the osteoblast differentiation of C2C12 myoblasts induced by bone morphogenetic protein 4 (BMP4) and the potential involvement of Runx2 and Osterix in these effects. We found that the LES exhibited an ability to induce osteoblast differentiation. LES increased the expression of the osteoblast marker, alkaline phosphatase (ALP), as well as its activity, as shown by ALP staining and ALP activity assay. LES also increased mineralization, as shown by Alizarin Red S staining. Treatment with LES increased the protein levels (as shown by immunoblotting), as well as the transcriptional activity of Runx2 and Osterix and enhanced osteogenic activity. These results suggest that LES modulates osteoblast differentiation at least in part through Runx2 and Osterix.
Collapse
Affiliation(s)
- You Hee Choi
- College of Pharmacy, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Geum Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 369-873, Republic of Korea
| | - Jae Ho Choi
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Hyung Gyun Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Younho Han
- College of Pharmacy, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 369-873, Republic of Korea
| | - Soo Im Choi
- YD Global Life Science Co., Ltd., Seongnam 462-807, Republic of Korea
| | - Seung Yu Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 369-873, Republic of Korea
| | - Young Sup Ahn
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 369-873, Republic of Korea
| | - Kwang Youl Lee
- College of Pharmacy, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| |
Collapse
|
14
|
Wang CJ, Wang G, Wang XY, Liu M, Chuai M, Lee KKH, He XS, Lu DX, Yang X. Imidacloprid Exposure Suppresses Neural Crest Cells Generation during Early Chick Embryo Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4705-15. [PMID: 27195532 DOI: 10.1021/acs.jafc.6b01478] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Imidacloprid is a neonicotinoid pesticide that is widely used in the control pests found on crops and fleas on pets. However, it is still unclear whether imidacloprid exposure could affect early embryo development-despite some studies having been conducted on the gametes. In this study, we demonstrated that imidacloprid exposure could lead to abnormal craniofacial osteogenesis in the developing chick embryo. Cranial neural crest cells (NCCs) are the progenitor cells of the chick cranial skull. We found that the imidacloprid exposure retards the development of gastrulating chick embryos. HNK-1, PAX7, and Ap-2α immunohistological stainings indicated that cranial NCCs generation was inhibited after imidacloprid exposure. Double immunofluorescent staining (Ap-2α and PHIS3 or PAX7 and c-Caspase3) revealed that imidacloprid exposure inhibited both NCC proliferation and apoptosis. In addition, it inhibited NCCs production by repressing Msx1 and BMP4 expression in the developing neural tube and by altering expression of EMT-related adhesion molecules (Cad6B, E-Cadherin, and N-cadherin) in the developing neural crests. We also determined that imidacloprid exposure suppressed cranial NCCs migration and their ability to differentiate. In sum, we have provided experimental evidence that imidacloprid exposure during embryogenesis disrupts NCCs development, which in turn causes defective cranial bone development.
Collapse
Affiliation(s)
- Chao-Jie Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Guang Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Xiao-Yu Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Meng Liu
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee , Dundee, DD1 5EH, U.K
| | - Kenneth Ka Ho Lee
- Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Biomedical Sciences, Chinese University of Hong Kong , Shatin, Hong Kong
| | - Xiao-Song He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
| | - Da-Xiang Lu
- Division of Pathophysiology, Medical College, Jinan University , Guangzhou 510632, China
| | - Xuesong Yang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| |
Collapse
|
15
|
Chen Y, Zhang Y, Ramachandran A, George A. DSPP Is Essential for Normal Development of the Dental-Craniofacial Complex. J Dent Res 2015; 95:302-10. [PMID: 26503913 DOI: 10.1177/0022034515610768] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The craniofacial skeleton is derived from both neural crest cells and mesodermal cells; however, the majority of the bone, cartilage, and connective tissue is derived from the neural crest. Dentin sialophosphoprotein (DSPP) is a precursor protein that is expressed by the connective tissues of the craniofacial skeleton, namely, bone and dentin with high expression levels in the dentin matrix. Gene ablation studies have shown severe dental defects in DSPP-null mutant mice. Therefore, to elucidate the role of DSPP on the developing dental-craniofacial complex, we evaluated phenotypic changes in the structure of intramembranous bone and dentin mineralization using 3 different age groups of DSPP-null and wild-type mice. Results from micro-computed tomographic, radiographic, and optical microscopic analyses showed defective dentin, alveolar and calvarial bones, and sutures during development. The impaired mineralization of the cranial bone correlated well with low expression levels of Runx2, Col1, and OPN identified using calvarial cells from DSPP-null and wild-type mice in an in vitro culture system. However, the upregulation of MMP9, MMP2, FN, and BSP was observed. Interestingly, the null mice also displayed low serum phosphate levels, while calcium levels remained unchanged. Alizarin red and von Kossa staining confirmed the dysfunction in the terminal differentiation of osteoblasts obtained from the developing calvaria of DSPP-null mice. Immunohistochemical analysis of the developing molars showed changes in Runx2, Gli1, Numb, and Notch expression in the dental pulp cells and odontoblasts of DSPP-null mice when compared with wild-type mice. Overall, these observations provide insight into the role of DSPP in the normal development of the calvaria, alveolar bone, and dentin-pulp complex.
Collapse
Affiliation(s)
- Y Chen
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Y Zhang
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - A Ramachandran
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - A George
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
Abstract
Alveolar bone remodeling is a continuous process that takes place during development and in response to various physiological and pathological stimuli. However, detailed knowledge regarding the underlying mechanisms involved in alveolar bone development is still lacking. This study aims at improving our understanding of alveolar bone formation and the role of bone morphogenetic proteins (Bmps) in this process. Mice at embryonic (E) day 13.5 to postnatal (PN) day 15.5 were selected to observe the process of alveolar bone development. Alveolar bone development was found to be morphologically observable at E14.5. Molar teeth isolated from mice at PN7.5 were pretreated with Bmp2, Bmp4, Noggin, or BSA, and grafted subcutaneously into mice. The subcutaneously implanted tooth germs formed alveolar bone indicating the role of the dental follicle in alveolar bone development. Alveolar bone formation was increased after pretreatment with Bmp2 and Bmp4, but not with Noggin. Gene expression levels in dental follicle cells from murine molars were also determined by real-time RT-PCR. The expression levels of Runx2, Bsp, and Ocn were significantly higher in dental follicle cells cultured with Bmp2 or Bmp4, and significantly lower in those cultured with Noggin when compared with that of the BSA controls. Our results suggest that the dental follicle participates in alveolar bone formation and Bmp2/4 appears to accelerate alveolar bone development.
Collapse
Affiliation(s)
- Mingming Ou
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | | | | | | |
Collapse
|
17
|
Hedgehog signaling activates a positive feedback mechanism involving insulin-like growth factors to induce osteoblast differentiation. Proc Natl Acad Sci U S A 2015; 112:4678-83. [PMID: 25825734 DOI: 10.1073/pnas.1502301112] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hedgehog (Hh) signaling is essential for osteoblast differentiation in the endochondral skeleton during embryogenesis. However, the molecular mechanism underlying the osteoblastogenic role of Hh is not completely understood. Here, we report that Hh markedly induces the expression of insulin-like growth factor 2 (Igf2) that activates the mTORC2-Akt signaling cascade during osteoblast differentiation. Igf2-Akt signaling, in turn, stabilizes full-length Gli2 through Serine 230, thus enhancing the output of transcriptional activation by Hh. Importantly, genetic deletion of the Igf signaling receptor Igf1r specifically in Hh-responding cells diminishes bone formation in the mouse embryo. Thus, Hh engages Igf signaling in a positive feedback mechanism to activate the osteogenic program.
Collapse
|
18
|
Osteogenic differentiation and gene expression profile of human dental follicle cells induced by human dental pulp cells. J Mol Histol 2014; 46:93-106. [PMID: 25520056 DOI: 10.1007/s10735-014-9604-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/15/2014] [Indexed: 12/20/2022]
Abstract
Dental follicle cells (DFCs) differentiate into cementoblasts or osteoblasts under appropriate triggering. However, the mechanism(s) for osteogenic differentiation of DFCs are still unclear. The purpose of this study was to examine the effects of dental papilla-derived human dental pulp cells (hDPCs) on osteogenic differentiation of human DFCs (hDFCs) in vitro and in vivo and to compare gene expression in hDFCs in the presence or absence of hDPCs. To evaluate the osteogenic differentiation of hDFCs induced by hDPCs, hDFCs were cultured in osteogenic medium with or without hDPCs-conditioned medium (CM) in vitro and the cells transplanted into the subcutaneous tissue of immunodeficient mice in vivo. The hDPCs-CM enhanced alkaline phosphatase promoter activity of hDFCs in osteogenic culture. The expression of several osteoblast marker genes was increased in hDFCs treated with hDPCs-CM compared to hDFCs in normal medium. The hDFCs induced by hDPCs-CM also produced more calcified nodules than hDFCs in normal medium. In transplantation experiments, hDPCs-CM promoted the osteogenic induction and bone formation of hDFCs. Microarray analysis and quantitative real-time PCR showed that osteogenesis-related genes including WNT2, VCAN, OSR2, FOSB, and POSTN in hDFCs were significantly upregulated after induction by hDPCs-CM compared to hDFCs in normal medium. These findings indicate that hDPCs could increase the expression of osteogenic genes in hDFCs and stimulate their osteogenesis and could be a cellular resource for bone regeneration therapy when induced by hDPCs-derived factors.
Collapse
|
19
|
BRONJ-related jaw bone is associated with increased Dlx-5 and suppressed osteopontin-implication in the site-specific alteration of angiogenesis and bone turnover by bisphosphonates. Clin Oral Investig 2014; 19:1289-98. [PMID: 25467232 DOI: 10.1007/s00784-014-1354-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 11/04/2014] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Site-specific suppression of bone remodelling has been implicated in bisphosphonate-(BP)-related osteonecrosis of the jaws (BRONJ). Due to the origin of jaw bone from cranial neural crest, osseous differentiation is regulated specifically by the antagonizing BMP-2-downstream-transcription factors Msx-1 and Dlx-5. Osteopontin has been implicated in bone remodelling and angiogenesis. The osteoblast and osteoclast progenitor proliferation mediating Msx-1 has been demonstrated to be suppressed in BRONJ. In vitro BPs were shown to increase Dlx-5 and to suppress osteopontin expression. This study targeted Dlx-5 and osteopontin in BRONJ-related and BP-exposed jaw bone compared with healthy jaw bone samples at protein- and messenger RNA (mRNA) level, since increased Dlx-5 and suppressed osteopontin might account for impaired bone turnover in BRONJ. MATERIALS AND METHODS Fifteen BRONJ-exposed, 15 BP-exposed and 20 healthy jaw bone samples were processed for real-time reverse transcription polymerase chain reaction (RT-PCR) and for immunohistochemistry. Targeting Dlx-5, osteopontin and glyceraldehyde 3-phosphate dehydrogenase mRNA was extracted, quantified by the LabChip-method, followed by quantitative RT-PCR. For immunohistochemistry, an autostaining-based alkaline phosphatase antialkaline phosphatase (APAPP) staining kit was used. Semiquantitative assessment was performed measuring the ratio of stained cells/total number of cells (labelling index, Bonferroni adjustment). RESULTS The labelling index was significant decreased for osteopontin (p < 0.017) and significantly increased for Dlx-5 (p < 0.021) in BRONJ samples. In BRONJ specimens, a significant fivefold decrease in gene expression for osteopontin (p < 0.015) and a significant eightfold increase in Dlx-5 expression (p < 0.012) were found. CONCLUSIONS BRONJ-related suppression of bone turnover is consistent with increased Dlx-5 expression and with suppression of osteopontin. The BP-related impaired BMP-2-Msx-1-Dlx-5 axis might explain the jaw bone specific alteration by BP. CLINICAL RELEVANCE The findings of this study help to explain the restriction of RONJ to craniofacial bones. BRONJ might serve as a model of disease elucidating the specific signal transduction of neural crest cell-derived bone structures in health and disease.
Collapse
|
20
|
Liu C, Gu S, Sun C, Ye W, Song Z, Zhang Y, Chen Y. FGF signaling sustains the odontogenic fate of dental mesenchyme by suppressing β-catenin signaling. Development 2013; 140:4375-85. [PMID: 24067353 DOI: 10.1242/dev.097733] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Odontoblasts and osteoblasts develop from multipotent craniofacial neural crest cells during tooth and jawbone development, but the mechanisms that specify and sustain their respective fates remain largely unknown. In this study we used early mouse molar and incisor tooth germs that possess distinct tooth-forming capability after dissociation and reaggregation in vitro to investigate the mechanism that sustains odontogenic fate of dental mesenchyme during tooth development. We found that after dissociation and reaggregation, incisor, but not molar, mesenchyme exhibits a strong osteogenic potency associated with robustly elevated β-catenin signaling activity in a cell-autonomous manner, leading to failed tooth formation in the reaggregates. Application of FGF3 to incisor reaggregates inhibits β-catenin signaling activity and rescues tooth formation. The lack of FGF retention on the cell surface of incisor mesenchyme appears to account for the differential osteogenic potency between incisor and molar, which can be further attributed to the differential expression of syndecan 1 and NDST genes. We further demonstrate that FGF signaling inhibits intracellular β-catenin signaling by activating the PI3K/Akt pathway to regulate the subcellular localization of active GSK3β in dental mesenchymal cells. Our results reveal a novel function for FGF signaling in ensuring the proper fate of dental mesenchyme by regulating β-catenin signaling activity during tooth development.
Collapse
Affiliation(s)
- Chao Liu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Feng XY, Zhao YM, Wang WJ, Ge LH. Msx1regulates proliferation and differentiation of mouse dental mesenchymal cells in culture. Eur J Oral Sci 2013; 121:412-20. [PMID: 24028588 DOI: 10.1111/eos.12078] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Xiao-yu Feng
- Department of Pediatric Dentistry; Peking University School and Hospital of Stomatology; Beijing; China
| | - Yu-ming Zhao
- Department of Pediatric Dentistry; Peking University School and Hospital of Stomatology; Beijing; China
| | - Wen-jun Wang
- Department of Pediatric Dentistry; Peking University School and Hospital of Stomatology; Beijing; China
| | - Li-hong Ge
- Department of Pediatric Dentistry; Peking University School and Hospital of Stomatology; Beijing; China
| |
Collapse
|
22
|
Tokita M, Chaeychomsri W, Siruntawineti J. Skeletal gene expression in the temporal region of the reptilian embryos: implications for the evolution of reptilian skull morphology. SPRINGERPLUS 2013; 2:336. [PMID: 24711977 PMCID: PMC3970585 DOI: 10.1186/2193-1801-2-336] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/08/2013] [Indexed: 01/17/2023]
Abstract
Reptiles have achieved highly diverse morphological and physiological traits that allow them to exploit various ecological niches and resources. Morphology of the temporal region of the reptilian skull is highly diverse and historically it has been treated as an important character for classifying reptiles and has helped us understand the ecology and physiology of each species. However, the developmental mechanism that generates diversity of reptilian skull morphology is poorly understood. We reveal a potential developmental basis that generates morphological diversity in the temporal region of the reptilian skull by performing a comparative analysis of gene expression in the embryos of reptile species with different skull morphology. By investigating genes known to regulate early osteoblast development, we find dorsoventrally broadened unique expression of the early osteoblast marker, Runx2, in the temporal region of the head of turtle embryos that do not form temporal fenestrae. We also observe that Msx2 is also uniquely expressed in the mesenchymal cells distributed at the temporal region of the head of turtle embryos. Furthermore, through comparison of gene expression pattern in the embryos of turtle, crocodile, and snake species, we find a possible correlation between the spatial patterns of Runx2 and Msx2 expression in cranial mesenchymal cells and skull morphology of each reptilian lineage. Regulatory modifications of Runx2 and Msx2 expression in osteogenic mesenchymal precursor cells are likely involved in generating morphological diversity in the temporal region of the reptilian skull.
Collapse
Affiliation(s)
- Masayoshi Tokita
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tenno-dai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan ; Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138 USA
| | - Win Chaeychomsri
- Department of Zoology, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900 Thailand
| | - Jindawan Siruntawineti
- Department of Zoology, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900 Thailand
| |
Collapse
|
23
|
Uchibe K, Shimizu H, Yokoyama S, Kuboki T, Asahara H. Identification of novel transcription-regulating genes expressed during murine molar development. Dev Dyn 2012; 241:1217-26. [PMID: 22639370 DOI: 10.1002/dvdy.23808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mechanism of tooth development is a complex process regulated by numerous genes including transcription factors, growth factors, and other intra- and extracellular molecules. Especially, transcription factors play a central role in gene expression, regulating a wide spectrum of biological processes including organogenesis. Substantial evidence has been demonstrated by a number of studies using genetically engineered animal models. However, detailed molecular mechanisms of tooth development have not been completely elucidated, partially because numerous genes that play essential roles in tooth development remain unidentified. RESULTS In this study, we conducted an expression-based screening using gene expression database and in situ hybridization assays. Based on the gene expression database "EMBRYS," 207 out of 1,520 genes were expressed in the maxillary and/or mandibular processes and thus were selected for further analysis by section in situ hybridization. Among these candidates, 28 genes were newly identified as potential factors associated with tooth development by in situ hybridization assays with frontal sections of embryonic day 13.5 and 14.5 mouse embryos. The expression patterns were also examined at embryonic day 16.5 and 18.5. CONCLUSIONS These results will contribute to elucidating the mechanisms of tooth development and to improving the technology for regeneration of tooth.
Collapse
Affiliation(s)
- Kenta Uchibe
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Setagaya, Japan
| | | | | | | | | |
Collapse
|
24
|
Ravindran S, Gao Q, Kotecha M, Magin RL, Karol S, Bedran-Russo A, George A. Biomimetic extracellular matrix-incorporated scaffold induces osteogenic gene expression in human marrow stromal cells. Tissue Eng Part A 2011; 18:295-309. [PMID: 21867449 DOI: 10.1089/ten.tea.2011.0136] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Engineering biomaterials mimicking the biofunctionality of the extracellular matrix (ECM) is important in instructing and eliciting cell response. The native ECM is highly dynamic and has been shown to support cellular attachment, migration, and differentiation. The advantage of synthesizing an ECM-based biomaterial is that it mimics the native cellular environment. However, the ECM has tissue-specific composition and patterned arrangement. In this study, we have employed biomimetic strategies to develop a novel collagen/chitosan template that is embedded with the native ECM of differentiating human marrow stromal cells (HMSCs) to facilitate osteoblast differentiation. The scaffold was characterized for substrate stiffness by magnetic resonance imaging and nanoindentation and by immunohistochemical analysis for the presence of key ECM proteins. Gene expression analysis showed that the ECM scaffold supported osteogenic differentiation of undifferentiated HMSCs as significant changes were observed in the expression levels of growth factors, transcription factors, proteases, receptors, and ECM proteins. Finally, we demonstrate that the scaffold had the ability to nucleate calcium phosphate polymorphs to form a mineralized matrix. The results from this study suggest that the three-dimensional native ECM scaffold directly controls cell behavior and supports the osteogenic differentiation of mesenchymal stem cells.
Collapse
Affiliation(s)
- Sriram Ravindran
- Department of Oral Biology, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Chung IH, Han J, Iwata J, Chai Y. Msx1 and Dlx5 function synergistically to regulate frontal bone development. Genesis 2010; 48:645-55. [PMID: 20824629 DOI: 10.1002/dvg.20671] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 11/09/2022]
Abstract
The Msx and Dlx families of homeobox proteins are important regulators for embryogenesis. Loss of Msx1 in mice results in multiple developmental defects including craniofacial malformations. Although Dlx5 is widely expressed during embryonic development, targeted null mutation of Dlx5 mainly affects the development of craniofacial bones. Msx1 and Dlx5 show overlapping expression patterns during frontal bone development. To investigate the functional significance of Msx1/Dlx5 interaction in regulating frontal bone development, we generated Msx1 and Dlx5 double null mutant mice. In Msx1(-/-) ;Dlx5(-/-) mice, the frontal bones defect was more severe than that of either Msx1(-/-) or Dlx5(-/-) mice. This aggravated frontal bone defect suggests that Msx1 and Dlx5 function synergistically to regulate osteogenesis. This synergistic effect of Msx1 and Dlx5 on the frontal bone represents a tissue specific mode of interaction of the Msx and Dlx genes. Furthermore, Dlx5 requires Msx1 for its expression in the context of frontal bone development. Our study shows that Msx1/Dlx5 interaction is crucial for osteogenic induction during frontal bone development.
Collapse
Affiliation(s)
- Il-Hyuk Chung
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
26
|
Cai J, Kwak S, Lee JM, Kim EJ, Lee MJ, Park GH, Cho SW, Jung HS. Function analysis of mesenchymal Bcor in tooth development by using RNA interference. Cell Tissue Res 2010; 341:251-8. [DOI: 10.1007/s00441-010-0996-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 05/18/2010] [Indexed: 02/03/2023]
|
27
|
Gluhak-Heinrich J, Guo D, Yang W, Harris MA, Lichtler A, Kream B, Zhang J, Feng JQ, Smith LC, Dechow P, Harris SE. New roles and mechanism of action of BMP4 in postnatal tooth cytodifferentiation. Bone 2010; 46:1533-45. [PMID: 20206312 PMCID: PMC2875306 DOI: 10.1016/j.bone.2010.02.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 01/22/2010] [Accepted: 02/24/2010] [Indexed: 11/28/2022]
Abstract
During the phase of overt tooth cytodifferentiation that occurs after birth in the mouse and using the 3.6Collagen1a-Cre and the BMP4 floxed and BMP4 knockout mice, the BMP4 gene was deleted in early collagen producing odontoblasts around postnatal day 1. BMP4 expression was reduced over 90% in alveolar osteoblasts and odontoblasts. There was decreased rate of predentin to dentin formation and decreased mature odontoblast differentiation reflected in reduced DMP1 expression and proper dentinal tubule formation, as well as reduced Collagen type I and Osteocalcin expression. We observed mutant dysmorphogenic odontoblasts that failed to properly elongate and differentiate. The consequence of this failed differentiation process leads to permanent loss of dentin thickness, apparent enlarged pulp chambers in the molars and reduced bone supporting the tooth structures in mice as old as 10-12 months. Deletion of the BMP4 gene in odontoblasts also indirectly disrupted the process of enamel formation that persisted throughout life. The mechanism for this altered differentiation program in the absence of the BMP4 gene in odontoblasts is from decreased BMP signaling, and decreased expression of three key transcription factors, Dlx3, Dlx5, and Osterix. BMP signaling, as well as Dlx3 and Amelogenin expression, is also indirectly reduced in the ameloblasts of the odontoblast BMP4 cKO mice. This supports a key paracrine or endocrine postnatal role of odontoblast derived BMP4 on the proper amelogenesis and formation of the enamel.
Collapse
Affiliation(s)
- J Gluhak-Heinrich
- The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Han J, Mayo J, Xu X, Li J, Bringas P, Maas RL, Rubenstein JLR, Chai Y. Indirect modulation of Shh signaling by Dlx5 affects the oral-nasal patterning of palate and rescues cleft palate in Msx1-null mice. Development 2010; 136:4225-33. [PMID: 19934017 DOI: 10.1242/dev.036723] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cleft palate represents one of the most common congenital birth defects in human. During embryonic development, palatal shelves display oronasal (O-N) and anteroposterior polarity before the onset of fusion, but how the O-N pattern is established and how it relates to the expansion and fusion of the palatal shelves are unknown. Here we address these questions and show that O-N patterning is associated with the expansion and fusion of the palatal shelves and that Dlx5 is required for the O-N patterning of palatal mesenchyme. Loss of Dlx5 results in downregulation of Fgf7 and expanded Shh expression from the oral to the nasal side of the palatal shelf. This expanded Shh signaling is sufficient to restore palatal expansion and fusion in mice with compromised palatal mesenchymal cell proliferation, such as Msx1-null mutants. Exogenous Fgf7 inhibits Shh signaling and reverses the cranial neural crest (CNC) cell proliferation rescue in the Msx1/Dlx5 double knockout palatal mesenchyme. Thus, Dlx5-regulated Fgf7 signaling inhibits the expression of Shh, which in turn controls the fate of CNC cells through tissue-tissue interaction and plays a crucial role during palatogenesis. Our study shows that modulation of Shh signaling may be useful as a potential therapeutic approach for rescuing cleft palate.
Collapse
Affiliation(s)
- Jun Han
- Center for Craniofacial Molecular Biology School of Dentistry University of Southern California, CSA 103, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Fleischmannova J, Matalova E, Sharpe PT, Misek I, Radlanski RJ. Formation of the tooth-bone interface. J Dent Res 2009; 89:108-15. [PMID: 20042740 DOI: 10.1177/0022034509355440] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Not only are teeth essential for mastication, but also missing teeth are considered a social handicap due to speech and aesthetic problems, with a resulting high impact on emotional well-being. Several treatment procedures are currently available for tooth replacement with mostly inert prosthetic materials and implants. Natural tooth substitution based on copying the developmental process of tooth formation is particularly challenging and creates a rapidly developing area of molecular dentistry. In any approach, functional interactions among the tooth, the surrounding bone, and the periodontium must be established. Therefore, recent research in craniofacial genetics searches for mechanisms responsible for correct cell and tissue interactions, not only within a specific structure, but also in the context of supporting structures. A tooth crown that is not functionally anchored to roots and bone is useless. This review aims to summarize the developmental and tissue homeostatic aspects of the tooth-bone interface, from the initial patterning toward tooth eruption and lifelong interactions between the tooth and its surrounding alveolar bone.
Collapse
Affiliation(s)
- J Fleischmannova
- Institute of Animal Physiology and Genetics CAS v.v.i., Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
31
|
Diep L, Matalova E, Mitsiadis TA, Tucker AS. Contribution of the tooth bud mesenchyme to alveolar bone. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:510-7. [DOI: 10.1002/jez.b.21269] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Chung IH, Yamaza T, Zhao H, Choung PH, Shi S, Chai Y. Stem cell property of postmigratory cranial neural crest cells and their utility in alveolar bone regeneration and tooth development. Stem Cells 2009; 27:866-77. [PMID: 19350689 PMCID: PMC2896558 DOI: 10.1002/stem.2] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The vertebrate neural crest is a multipotent cell population that gives rise to a variety of different cell types. We have discovered that postmigratory cranial neural crest cells (CNCCs) maintain mesenchymal stem cell characteristics and show potential utility for the regeneration of craniofacial structures. We are able to induce the osteogenic differentiation of postmigratory CNCCs, and this differentiation is regulated by bone morphogenetic protein (BMP) and transforming growth factor-beta signaling pathways. After transplantation into a host animal, postmigratory CNCCs form bone matrix. CNCC-formed bones are distinct from bones regenerated by bone marrow mesenchymal stem cells. In addition, CNCCs support tooth germ survival via BMP signaling in our CNCC-tooth germ cotransplantation system. Thus, we conclude that postmigratory CNCCs preserve stem cell features, contribute to craniofacial bone formation, and play a fundamental role in supporting tooth organ development. These findings reveal a novel function for postmigratory CNCCs in organ development, and demonstrate the utility of these CNCCs in regenerating craniofacial structures.
Collapse
Affiliation(s)
- Il-Hyuk Chung
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California, USA
- Department of Oral and Maxillofacial Surgery, Seoul National University Boramae Hospital, Seoul, Republic of Korea
| | - Takayoshi Yamaza
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Hu Zhao
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Pill-Hoon Choung
- Department of Oral and Maxillofacial Surgery, Seoul National University Boramae Hospital, Seoul, Republic of Korea
| | - Songtao Shi
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
33
|
Fukase H, Suwa G. Growth-related changes in prehistoric Jomon and modern Japanese mandibles with emphasis on cortical bone distribution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008; 136:441-54. [PMID: 18383159 DOI: 10.1002/ajpa.20828] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cortical bone distribution of the anthropoid mandibular symphysis has been addressed in relation to mechanical stress generated by mastication. To examine whether or not bone mass and distribution patterns of the human mandibular symphysis could be interpreted as an example of functional adaptation, we compared the skeletal growth series of two populations, prehistoric Jomon, considered to represent a "robust" mandibular morphology associated with a presumed heavier masticatory load, and modern Japanese. Results showed that the adult Jomon symphysis possessed significantly greater bone mass and thicker cortical bone compared to the modern Japanese condition. However, the second moments of area did not differ significantly between the two, indicating comparable rigidity against bending. Furthermore, the Jomon mandibles of the infant to juvenile stages exhibited most of the adult characteristics, in both bone mass/distribution of the symphysis and in mandibular corpus/ramus morphologies. The present study also demonstrated the presence of a growth pattern of symphyseal cortical thickness, common to both the Jomon and the modern Japanese series. In both populations, subsequent to deciduous molar occlusion, cortical bone tends to be thickest at the inferolingual symphysis, at the location where the highest tensile stresses presumably occur during mastication. These findings suggest that the "robust" characteristics of the Jomon mandible are initially manifested early in development, and that the effect of mechanical stimulus to bone mass formation in the human symphysis is largely confined to a regulatory role during growth modeling.
Collapse
Affiliation(s)
- Hitoshi Fukase
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | | |
Collapse
|
34
|
Kim KS, Kim GS, Hwang JY, Lee HJ, Park MH, Kim KJ, Jung J, Cha HS, Shin HD, Kang JH, Park EK, Kim TH, Hong JM, Koh JM, Oh B, Kimm K, Kim SY, Lee JY. Single nucleotide polymorphisms in bone turnover-related genes in Koreans: ethnic differences in linkage disequilibrium and haplotype. BMC MEDICAL GENETICS 2007; 8:70. [PMID: 18036257 PMCID: PMC2222243 DOI: 10.1186/1471-2350-8-70] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 11/26/2007] [Indexed: 12/20/2022]
Abstract
Background Osteoporosis is defined as the loss of bone mineral density that leads to bone fragility with aging. Population-based case-control studies have identified polymorphisms in many candidate genes that have been associated with bone mass maintenance or osteoporotic fracture. To investigate single nucleotide polymorphisms (SNPs) that are associated with osteoporosis, we examined the genetic variation among Koreans by analyzing 81 genes according to their function in bone formation and resorption during bone remodeling. Methods We resequenced all the exons, splice junctions and promoter regions of candidate osteoporosis genes using 24 unrelated Korean individuals. Using the common SNPs from our study and the HapMap database, a statistical analysis of deviation in heterozygosity depicted. Results We identified 942 variants, including 888 SNPs, 43 insertion/deletion polymorphisms, and 11 microsatellite markers. Of the SNPs, 557 (63%) had been previously identified and 331 (37%) were newly discovered in the Korean population. When compared SNPs in the Korean population with those in HapMap database, 1% (or less) of SNPs in the Japanese and Chinese subpopulations and 20% of those in Caucasian and African subpopulations were significantly differentiated from the Hardy-Weinberg expectations. In addition, an analysis of the genetic diversity showed that there were no significant differences among Korean, Han Chinese and Japanese populations, but African and Caucasian populations were significantly differentiated in selected genes. Nevertheless, in the detailed analysis of genetic properties, the LD and Haplotype block patterns among the five sub-populations were substantially different from one another. Conclusion Through the resequencing of 81 osteoporosis candidate genes, 118 unknown SNPs with a minor allele frequency (MAF) > 0.05 were discovered in the Korean population. In addition, using the common SNPs between our study and HapMap, an analysis of genetic diversity and deviation in heterozygosity was performed and the polymorphisms of the above genes among the five populations were substantially differentiated from one another. Further studies of osteoporosis could utilize the polymorphisms identified in our data since they may have important implications for the selection of highly informative SNPs for future association studies.
Collapse
Affiliation(s)
- Kyung-Seon Kim
- Center for Genome Science, National Institute of Health, 5 Nokbun-dong, Eunpyung-gu, Seoul 122-701, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhang YD, Chen Z, Song YQ, Liu C, Chen YP. Making a tooth: growth factors, transcription factors, and stem cells. Cell Res 2007; 15:301-16. [PMID: 15916718 DOI: 10.1038/sj.cr.7290299] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mammalian tooth development is largely dependent on sequential and reciprocal epithelial-mesenchymal interactions. These processes involve a series of inductive and permissive interactions that result in the determination, differentiation, and organization of odontogenic tissues. Multiple signaling molecules, including BMPs, FGFs, Shh, and Wnt proteins, have been implicated in mediating these tissue interactions. Transcription factors participate in epithelial-mesenchymal interactions via linking the signaling loops between tissue layers by responding to inductive signals and regulating the expression of other signaling molecules. Adult stem cells are highly plastic and multipotent. These cells including dental pulp stem cells and bone marrow stromal cells could be reprogrammed into odontogenic fate and participated in tooth formation. Recent progress in the studies of molecular basis of tooth development, adult stem cell biology, and regeneration will provide fundamental knowledge for the realization of human tooth regeneration in the near future.
Collapse
|
36
|
Han J, Ishii M, Bringas P, Maas RL, Maxson RE, Chai Y. Concerted action of Msx1 and Msx2 in regulating cranial neural crest cell differentiation during frontal bone development. Mech Dev 2007; 124:729-45. [PMID: 17693062 PMCID: PMC2220014 DOI: 10.1016/j.mod.2007.06.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 06/16/2007] [Accepted: 06/30/2007] [Indexed: 11/29/2022]
Abstract
The homeobox genes Msx1 and Msx2 function as transcriptional regulators that control cellular proliferation and differentiation during embryonic development. Mutations in the Msx1 and Msx2 genes in mice disrupt tissue-tissue interactions and cause multiple craniofacial malformations. Although Msx1 and Msx2 are both expressed throughout the entire development of the frontal bone, the frontal bone defect in Msx1 or Msx2 null mutants is rather mild, suggesting the possibility of functional compensation between Msx1 and Msx2 during early frontal bone development. To investigate this hypothesis, we generated Msx1(-/-);Msx2(-/-) mice. These double mutant embryos died at E17 to E18 with no formation of the frontal bone. There was no apparent defect in CNC migration into the presumptive frontal bone primordium, but differentiation of the frontal mesenchyme and establishment of the frontal primordium was defective, indicating that Msx1 and Msx2 genes are specifically required for osteogenesis in the cranial neural crest lineage within the frontal bone primordium. Mechanistically, our data suggest that Msx genes are critical for the expression of Runx2 in the frontonasal subpopulation of cranial neural crest cells and for differentiation of the osteogenic lineage. This early function of the Msx genes is likely independent of the Bmp signaling pathway.
Collapse
Affiliation(s)
- Jun Han
- Center for Craniofacial Molecular Biology School of Dentistry University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033
| | - Mamoru Ishii
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center and Hospital, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90089-9176
| | - Pablo Bringas
- Center for Craniofacial Molecular Biology School of Dentistry University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033
| | - Richard L. Maas
- Genetics Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115
| | - Robert E. Maxson
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center and Hospital, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90089-9176
| | - Yang Chai
- Center for Craniofacial Molecular Biology School of Dentistry University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033
| |
Collapse
|
37
|
Song Y, Zhang Z, Yu X, Yan M, Zhang X, Gu S, Stuart T, Liu C, Reiser J, Zhang Y, Chen Y. Application of lentivirus-mediated RNAi in studying gene function in mammalian tooth development. Dev Dyn 2006; 235:1334-44. [PMID: 16628661 DOI: 10.1002/dvdy.20706] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RNA interference (RNAi) has recently become a powerful tool to silence gene expression in mammalian cells, but its application in assessing gene function in mammalian developing organs remains highly limited. Here we describe several unique developmental properties of the mouse molar germ. Embryonic molar mesenchyme, but not the incisor mesenchyme, once dissociated into single cell suspension and re-aggregated, retains its odontogenic potential, the capability of a tissue to instruct an adjacent tissue to initiate tooth formation. Dissociated molar mesenchymal cells, even after being plated in cell culture, retain odontogenic competence, the capability of a tissue to respond to odontogenic signals and to support tooth formation. Most interestingly, while dissociated epithelial and mesenchymal cells of molar tooth germ are mixed and re-aggregated, the epithelial cells are able to sort out from the mesenchymal cells and organize into a well-defined dental epithelial structure, leading to the formation of a well-differentiated tooth organ after sub-renal culture. These unique molar developmental properties allow us to develop a strategy using a lentivirus-mediated RNAi approach to silence gene expression in dental mesenchymal cells and assess gene function in tooth development. We show that knockdown of Msx1 or Dlx2 expression in the dental mesenchyme faithfully recapitulates the tooth phenotype of their targeted mutant mice. Silencing of Barx1 expression in the dental mesenchyme causes an arrest of tooth development at the bud stage, demonstrating a crucial role for Barx1 in tooth formation. Our studies have established a reliable and rapid assay that would permit large-scale analysis of gene function in mammalian tooth development.
Collapse
Affiliation(s)
- Yiqiang Song
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Perinpanayagam H, Martin T, Mithal V, Dahman M, Marzec N, Lampasso J, Dziak R. Alveolar bone osteoblast differentiation and Runx2/Cbfa1 expression. Arch Oral Biol 2006; 51:406-15. [PMID: 16253204 DOI: 10.1016/j.archoralbio.2005.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2005] [Revised: 09/06/2005] [Accepted: 09/19/2005] [Indexed: 11/19/2022]
Abstract
Alveolar bone cells have a unique origin and functionality, but may resemble skeletal osteoblasts. Osteoblast differentiation and gene expression are regulated by the Runx2/Cbfa1 transcription factor. However, most studies on Runx2/Cbfa1 expression have been on rodent cells and the few studies on human osteoblasts have had differing results. The purpose of this study was to characterize Runx2/Cbfa1 expression in primary cell cultures derived from human alveolar bone. An alveolar bone chip was incubated in alpha-minimum essential medium (alpha-MEM) supplemented with fetal calf serum (10% FCS). Explant cultures were harvested after 3-4 weeks of outgrowth and grown in alpha-MEM with FCS. This media was supplemented with ascorbate, beta-glycerophosphate and dexamethasone to promote osteoblast differentiation over 14 days. RT-PCR analysis and Western blots showed a rapid increase in Runx2/Cbfa1 mRNA (2.1-fold) and protein (2.3-fold) levels in 3 days, followed by a slight decline. There was also a rapid increase in bone sialoprotein expression (2.9-fold) in 3 days, followed by a further increase (3.6-fold) at 14 days. There was a slower increase in alkaline phosphatase expression (1.6-fold) and activity (3.1-fold) over 7 days, followed by a gradual decline. In contrast, collagen mRNA levels showed little change over 14 days. These findings attest to the osteogenic potential of primary cell cultures derived from human alveolar bone. Osteoblastic differentiation in human alveolar bone involves an increase in Runx2/Cbfa1 expression that may be an important component of the differentiation process.
Collapse
Affiliation(s)
- Hiran Perinpanayagam
- School of Dental Medicine, University at Buffalo, 135 Foster Hall, Buffalo, NY 14214-8031, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Ishii M, Han J, Yen HY, Sucov HM, Chai Y, Maxson RE. Combined deficiencies of Msx1 and Msx2 cause impaired patterning and survival of the cranial neural crest. Development 2005; 132:4937-50. [PMID: 16221730 DOI: 10.1242/dev.02072] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The neural crest is a multipotent, migratory cell population that contributes to a variety of tissues and organs during vertebrate embryogenesis. Here, we focus on the function of Msx1 and Msx2, homeobox genes implicated in several disorders affecting craniofacial development in humans. We show that Msx1/2 mutants exhibit profound deficiencies in the development of structures derived from the cranial and cardiac neural crest. These include hypoplastic and mispatterned cranial ganglia, dysmorphogenesis of pharyngeal arch derivatives and abnormal organization of conotruncal structures in the developing heart. The expression of the neural crest markers Ap-2alpha, Sox10 and cadherin 6 (cdh6) in Msx1/2 mutants revealed an apparent retardation in the migration of subpopulations of preotic and postotic neural crest cells, and a disorganization of neural crest cells paralleling patterning defects in cranial nerves. In addition, normally distinct subpopulations of migrating crest underwent mixing. The expression of the hindbrain markers Krox20 and Epha4 was altered in Msx1/2 mutants, suggesting that defects in neural crest populations may result, in part, from defects in rhombomere identity. Msx1/2 mutants also exhibited increased Bmp4 expression in migratory cranial neural crest and pharyngeal arches. Finally, proliferation of neural crest-derived mesenchyme was unchanged, but the number of apoptotic cells was increased substantially in neural crest-derived cells that contribute to the cranial ganglia and the first pharyngeal arch. This increase in apoptosis may contribute to the mispatterning of the cranial ganglia and the hypoplasia of the first arch.
Collapse
Affiliation(s)
- Mamoru Ishii
- Department of Biochemistry and Molecular Biology, Norris Cancer Hospital, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
40
|
Clouthier DE, Schilling TF. Understanding endothelin-1 function during craniofacial development in the mouse and zebrafish. ACTA ACUST UNITED AC 2005; 72:190-9. [PMID: 15269892 DOI: 10.1002/bdrc.20007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Morphogenesis of the face and neck is driven by an intricate relay of signaling molecules and transcription factors organized into hierarchical pathways. The coordinated action of these pathways regulates the development of neural crest cells within the pharyngeal arches, resulting in proper spatiotemporal formation of bone, cartilage, and connective tissue. While the functions of many genes involved in these processes were initially elucidated through the use of knockout technology in the mouse, increasing numbers of zebrafish craniofacial mutants have led to a rapid expansion in the identification of genes involved in craniofacial development. A comparative analysis of signaling pathways involved in these processes between mouse and zebrafish holds the potential not only to pinpoint conserved and therefore crucial gene functions in craniofacial development, but also to rapidly identify and study downstream effectors. These complementary approaches will also allow rapid identification of candidate genes and gene functions disrupted in human craniofacial dysmorphologies. In this brief review, we present a comparative analysis of one molecule involved in craniofacial development, endothelin-1, a small, secreted protein that is crucial for patterning the neural crest cells that give rise to lower jaw and throat structures.
Collapse
Affiliation(s)
- David E Clouthier
- Department of Molecular, Cellular and Craniofacial Biology, University of Louisville, Kentucky 40292, USA.
| | | |
Collapse
|