1
|
Williams RM. Leveraging chicken embryos for studying human enhancers. Dev Biol 2025; 524:123-131. [PMID: 40368318 DOI: 10.1016/j.ydbio.2025.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 04/30/2025] [Accepted: 05/12/2025] [Indexed: 05/16/2025]
Abstract
The dynamic activity of complex gene regulatory networks stands at the core of all cellular functions that define cell identity and behaviour. Gene regulatory networks comprise transcriptional enhancers, acted upon by cell-specific transcription factors to control gene expression in a spatial and temporal specific manner. Enhancers are found in the non-coding genome; pathogenic variants can disrupt enhancer activity and lead to disease. Correlating non-coding variants with aberrant enhancer activity remains a significant challenge. Due to their clinical significance, there is a longstanding interest in understanding enhancer function during early embryogenesis. With the onset of the omics era, it is now feasible to identify putative tissue-specific enhancers from epigenome data. However, such predictions in vivo require validation. The early stages of chick embryogenesis closely parallel those of human, offering an accessible in vivo model in which to assess the activity of putative human enhancer sequences. This review explores the unique advantages and recent advancements in employing chicken embryos to elucidate the activity of human transcriptional enhancers and the potential implications of these findings in human disease.
Collapse
Affiliation(s)
- Ruth M Williams
- University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester, United Kingdom.
| |
Collapse
|
2
|
Konya K, Watanabe Y, Kawamura A, Nakamura K, Iida H, Yoshihi K, Kondoh H. Chicken embryo cultures in the dorsal-upward orientation for the manipulation of epiblasts. Dev Growth Differ 2024; 66:426-434. [PMID: 39287331 DOI: 10.1111/dgd.12943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
Chicken embryos have many advantages in the study of amniote embryonic development. In particular, culture techniques developed for early-stage embryos have promoted the advancement of modern developmental studies using chicken embryos. However, the standard technique involves placing chicken embryos in the ventral-upward (ventral-up) orientation, limiting manipulation of the epiblast at the dorsal surface, which is the primary source of ectodermal and mesodermal tissues. To circumvent this limitation, we developed chicken embryo cultures in the dorsal-up orientation and exploited this technique to address diverse issues. In this article, we first review the history of chicken embryo culture techniques to evaluate the advantages and limitations of the current standard technique. Then, the dorsal-up technique is discussed. These technological discussions are followed by three different examples of experimental analyses using dorsal-up cultures to illustrate their advantages: (1) EdU labeling of epiblast cells to assess potential variation in the cell proliferation rate; (2) migration behaviors of N1 enhancer-active epiblast cells revealed by tracking cells with focal fluorescent dye labeling in dorsal-up embryo culture; and (3) neural crest development of mouse neural stem cells in chicken embryos.
Collapse
Affiliation(s)
- Kaho Konya
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Yusaku Watanabe
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | | | - Kae Nakamura
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Hideaki Iida
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Koya Yoshihi
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Hisato Kondoh
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Biohistory Research Hall, Osaka, Japan
| |
Collapse
|
3
|
Nakamura K, Watanabe Y, Boitet C, Satake S, Iida H, Yoshihi K, Ishii Y, Kato K, Kondoh H. Wnt signal-dependent antero-posterior specification of early-stage CNS primordia modeled in EpiSC-derived neural stem cells. Front Cell Dev Biol 2024; 11:1260528. [PMID: 38405136 PMCID: PMC10884098 DOI: 10.3389/fcell.2023.1260528] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/30/2023] [Indexed: 02/27/2024] Open
Abstract
The specification of the embryonic central nervous system (CNS) into future brain (forebrain, midbrain, or hindbrain) and spinal cord (SC) regions is a critical step of CNS development. A previous chicken embryo study indicated that anterior epiblast cells marked by Sox2 N2 enhancer activity are specified to the respective brain regions during the transition phase of the epiblast to the neural plate-forming neural primordium. The present study showed that the SC precursors positioned posterior to the hindbrain precursors in the anterior epiblast migrated posteriorly in contrast to the anterior migration of brain precursors. The anteroposterior specification of the CNS precursors occurs at an analogous time (∼E7.5) in mouse embryos, in which an anterior-to-posterior incremental gradient of Wnt signal strength was observed. To examine the possible Wnt signal contribution to the anteroposterior CNS primordium specification, we utilized mouse epiblast stem cell (EpiSC)-derived neurogenesis in culture. EpiSCs maintained in an activin- and FGF2-containing medium start neural development after the removal of activin, following a day in a transitory state. We placed activin-free EpiSCs in EGF- and FGF2-containing medium to arrest neural development and expand the cells into neural stem cells (NSCs). Simultaneously, a Wnt antagonist or agonist was added to the culture, with the anticipation that different levels of Wnt signals would act on the transitory cells to specify CNS regionality; then, the Wnt-treated cells were expanded as NSCs. Gene expression profiles of six NSC lines were analyzed using microarrays and single-cell RNA-seq. The NSC lines demonstrated anteroposterior regional specification in response to increasing Wnt signal input levels: forebrain-midbrain-, hindbrain-, cervical SC-, and thoracic SC-like lines. The regional coverage of these NSC lines had a range; for instance, the XN1 line expressed Otx2 and En2, indicating midbrain characteristics, but additionally expressed the SC-characteristic Hoxa5. The ranges in the anteroposterior specification of neural primordia may be narrowed as neural development proceeds. The thoracic SC is presumably the posterior limit of the contribution by anterior epiblast-derived neural progenitors, as the characteristics of more posterior SC regions were not displayed.
Collapse
Affiliation(s)
- Kae Nakamura
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Yusaku Watanabe
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Claire Boitet
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
- Université Joseph Fourier, Domaine Universitaire, Saint-Martin-d’Hères, France
| | - Sayaka Satake
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Hideaki Iida
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Koya Yoshihi
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Yasuo Ishii
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
- Department of Biology, School of Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Kagayaki Kato
- National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Hisato Kondoh
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
- Biohistory Research Hall, Takatsuki, Osaka, Japan
| |
Collapse
|
4
|
Kondoh H. Enhancer Arrays Regulating Developmental Genes: Sox2 Enhancers as a Paradigm. Results Probl Cell Differ 2024; 72:145-166. [PMID: 38509257 DOI: 10.1007/978-3-031-39027-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Enhancers are the primary regulatory DNA sequences in eukaryotes and are mostly located in the non-coding sequences of genes, namely, intergenic regions and introns. The essential characteristic of an enhancer is the ability to activate proximal genes, e.g., a reporter gene in a reporter assay, regardless of orientation, relative position, and distance from the gene. These characteristics are ascribed to the interaction (spatial proximity) of the enhancer sequence and the gene promoter via DNA looping, discussed in the latter part of this chapter.Developmentally regulated genes are associated with multiple enhancers carrying distinct cell and developmental stage specificities, which form arrays on the genome. We discuss the array of enhancers regulating the Sox2 gene as a paradigm. Sox2 enhancers are the best studied enhancers of a single gene in developmental regulation. In addition, the Sox2 gene is located in a genomic region with a very sparse gene distribution (no other protein-coding genes in ~1.6 Mb in the mouse genome), termed a "gene desert," which means that most identified enhancers in the region are associated with Sox2 regulation. Furthermore, the importance of the Sox2 gene in stem cell regulation and neural development justifies focusing on Sox2-associated enhancers.
Collapse
Affiliation(s)
- Hisato Kondoh
- Osaka University, Suita, Osaka, Japan
- Biohistory Research Hall, Takatsuki, Osaka, Japan
| |
Collapse
|
5
|
Han JH, Lee HJ, Kim TH. Characterization of transcriptional enhancers in the chicken genome using CRISPR-mediated activation. Front Genome Ed 2023; 5:1269115. [PMID: 37953873 PMCID: PMC10634339 DOI: 10.3389/fgeed.2023.1269115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
DNA regulatory elements intricately control when, where, and how genes are activated. Therefore, understanding the function of these elements could unveil the complexity of the genetic regulation network. Genome-wide significant variants are predominantly found in non-coding regions of DNA, so comprehending the predicted functional regulatory elements is crucial for understanding the biological context of these genomic markers, which can be incorporated into breeding programs. The emergence of CRISPR technology has provided a powerful tool for studying non-coding regulatory elements in genomes. In this study, we leveraged epigenetic data from the Functional Annotation of Animal Genomes project to identify promoter and putative enhancer regions associated with three genes (HBBA, IRF7, and PPARG) in the chicken genome. To identify the enhancer regions, we designed guide RNAs targeting the promoter and candidate enhancer regions and utilized CRISPR activation (CRISPRa) with dCas9-p300 and dCas9-VPR as transcriptional activators in chicken DF-1 cells. By comparing the expression levels of target genes between the promoter activation and the co-activation of the promoter and putative enhancers, we were able to identify functional enhancers that exhibited augmented upregulation. In conclusion, our findings demonstrate the remarkable efficiency of CRISPRa in precisely manipulating the expression of endogenous genes by targeting regulatory elements in the chicken genome, highlighting its potential for functional validation of non-coding regions.
Collapse
Affiliation(s)
- Jeong Hoon Han
- Department of Animal Science, The Pennsylvania State University, University Park, PA, United States
| | - Hong Jo Lee
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Tae Hyun Kim
- Department of Animal Science, The Pennsylvania State University, University Park, PA, United States
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
6
|
Chen YC, Saito D, Suzuki T, Takemoto T. An inducible germ cell ablation chicken model for high-grade germline chimeras. Development 2023; 150:dev202079. [PMID: 37665168 PMCID: PMC10560566 DOI: 10.1242/dev.202079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Chicken embryos are a powerful and widely used animal model in developmental biology studies. Since the development of CRISPR technology, gene-edited chickens have been generated by transferring primordial germ cells (PGCs) into recipients after genetic modifications. However, low inheritance caused by competition between host germ cells and the transferred cells is a common complication and greatly reduces production efficiency. Here, we generated a gene-edited chicken, in which germ cells can be ablated in a drug-dependent manner, as recipients for gene-edited PGC transfer. We used the nitroreductase/metronidazole (NTR/Mtz) system for cell ablation, in which nitroreductase produces cytotoxic alkylating agents from administered metronidazole, causing cell apoptosis. The chicken Vasa homolog (CVH) gene locus was used to drive the expression of the nitroreductase gene in a germ cell-specific manner. In addition, a fluorescent protein gene, mCherry, was also placed in the CVH locus to visualize the PGCs. We named this system 'germ cell-specific autonomous removal induction' (gSAMURAI). gSAMURAI chickens will be an ideal recipient to produce offspring derived from transplanted exogenous germ cells.
Collapse
Affiliation(s)
- Yi-Chen Chen
- Division of Research and Development, Setsuro Tech Inc., Tokushima 770-8503, Japan
- Laboratory for Embryology, Institute for Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Daisuke Saito
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Takayuki Suzuki
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Osaka 558-8585, Japan
| | - Tatsuya Takemoto
- Division of Research and Development, Setsuro Tech Inc., Tokushima 770-8503, Japan
- Laboratory for Embryology, Institute for Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
7
|
Fouani Y, Gholipour A, Oveisee M, Shahryari A, Saberi H, Mowla SJ, Malakootian M. Distinct gene expression patterns of SOX2 and SOX2OT variants in different types of brain tumours. J Genet 2023. [DOI: 10.1007/s12041-023-01423-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Gotoh H, Chimhanda TA, Nomura T, Ono K. STAT3 transcriptionally regulates the expression of genes related to glycogen metabolism in developing motor neurons. FEBS Lett 2022; 596:2940-2951. [PMID: 36050761 DOI: 10.1002/1873-3468.14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/29/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
Motor neurons in the spinal cord are essential for movement. During the embryonic period, developing motor neurons store glycogen to protect against hypoglycemic and hypoxic stress. However, the mechanisms by which glycogen metabolism is regulated in motor neurons remain unclear. We herein investigated the transcriptional regulation of genes related to glycogen metabolism in the developing spinal cord. We focused on the regulatory mechanism of glycogen synthase (Gys1) and glycogen phosphorylase brain isoform (PygB), which play central roles in glycogen metabolism, and found that the transcription factor STAT3 regulated the expression of Gys1 and PygB via cis-regulatory promoter sequences in the developing spinal cord. These results suggest that STAT3 is important for the regulation of glycogen metabolism during motor neuron development.
Collapse
Affiliation(s)
- Hitoshi Gotoh
- Department of Biology, Kyoto Prefectural University of Medicine. Inamori Memorial Building, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto city, Kyoto, 603-0823, Japan
| | - Tatenda Alois Chimhanda
- Department of Biology, Kyoto Prefectural University of Medicine. Inamori Memorial Building, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto city, Kyoto, 603-0823, Japan.,Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center, Universiteitssingel 40, 6229, ER, Maastricht, the Netherlands
| | - Tadashi Nomura
- Department of Biology, Kyoto Prefectural University of Medicine. Inamori Memorial Building, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto city, Kyoto, 603-0823, Japan
| | - Katsuhiko Ono
- Department of Biology, Kyoto Prefectural University of Medicine. Inamori Memorial Building, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto city, Kyoto, 603-0823, Japan
| |
Collapse
|
9
|
Abstract
Enhancer activity is determined by both the activity and occupancy of transcription factors as well as the specific sequences they bind. Experimental investigation of this dynamic requires the ability to manipulate components of the system, ideally in as close to an in vivo context as possible. Here we use electroporation of plasmid reporters to define critical parameters of a specific cis-regulatory element, ThrbCRM1, during retinal development. ThrbCRM1 is associated with cone photoreceptor genesis and activated in a subset of developing retinal cells that co-express the Otx2 and Onecut1 (OC1) transcription factors. Variation of reporter plasmid concentration was used to generate dose response curves and revealed an effect of binding site availability on the number and strength of cells with reporter activity. Critical sequence elements of the ThrbCRM1 element were defined using both mutagenesis and misexpression of the Otx2 and OC1 transcription factors in the developing retina. Additionally, these experiments suggest that the ThrbCRM1 element is co-regulated by Otx2 and OC1 even under conditions of sub-optimal binding of OC1.
Collapse
Affiliation(s)
- Benjamin Souferi
- Department of Biology, The City College of New York, City University of New York, New York, NY 10031, USA
| | - Mark M Emerson
- Department of Biology, The City College of New York, City University of New York, New York, NY 10031, USA .,Graduate Center, City University of New York, New York, NY 10031, USA
| |
Collapse
|
10
|
Wang WB, Jia YC, Zhang Z, Xu J, Zuo RT, Kang QL. A novel duplication downstream of BMP2 in a Chinese family with Brachydactyly type A2 (BDA2). Gene 2018; 642:110-115. [DOI: 10.1016/j.gene.2017.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/16/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
|
11
|
Nasal and otic placode specific regulation of Sox2 involves both activation by Sox-Sall4 synergism and multiple repression mechanisms. Dev Biol 2018; 433:61-74. [DOI: 10.1016/j.ydbio.2017.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/02/2017] [Accepted: 11/10/2017] [Indexed: 01/21/2023]
|
12
|
Zamir L, Singh R, Nathan E, Patrick R, Yifa O, Yahalom-Ronen Y, Arraf AA, Schultheiss TM, Suo S, Han JDJ, Peng G, Jing N, Wang Y, Palpant N, Tam PP, Harvey RP, Tzahor E. Nkx2.5 marks angioblasts that contribute to hemogenic endothelium of the endocardium and dorsal aorta. eLife 2017; 6:20994. [PMID: 28271994 PMCID: PMC5400512 DOI: 10.7554/elife.20994] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 03/06/2017] [Indexed: 01/10/2023] Open
Abstract
Novel regenerative therapies may stem from deeper understanding of the mechanisms governing cardiovascular lineage diversification. Using enhancer mapping and live imaging in avian embryos, and genetic lineage tracing in mice, we investigated the spatio-temporal dynamics of cardiovascular progenitor populations. We show that expression of the cardiac transcription factor Nkx2.5 marks a mesodermal population outside of the cardiac crescent in the extraembryonic and lateral plate mesoderm, with characteristics of hemogenic angioblasts. Extra-cardiac Nkx2.5 lineage progenitors migrate into the embryo and contribute to clusters of CD41+/CD45+ and RUNX1+ cells in the endocardium, the aorta-gonad-mesonephros region of the dorsal aorta and liver. We also demonstrated that ectopic expression of Nkx2.5 in chick embryos activates the hemoangiogenic gene expression program. Taken together, we identified a hemogenic angioblast cell lineage characterized by transient Nkx2.5 expression that contributes to hemogenic endothelium and endocardium, suggesting a novel role for Nkx2.5 in hemoangiogenic lineage specification and diversification. DOI:http://dx.doi.org/10.7554/eLife.20994.001 As an animal embryo develops, it establishes a circulatory system that includes the heart, vessels and blood. Vessels and blood initially form in the yolk sac, a membrane that surrounds the embryo. These yolk sac vessels act as a rudimentary circulatory system, connecting to the heart and blood vessels within the embryo itself. In older embryos, cells in the inner layer of the largest blood vessel (known as the dorsal aorta) generate blood stem cells that give rise to the different types of blood cells. A gene called Nkx2.5 encodes a protein that controls the activity of a number of complex genetic programs and has been long studied as a key player in the development of the heart. Nkx2.5 is essential for forming normal heart muscle cells and for shaping the primitive heart and its surrounding vessels into a working organ. Interfering with the normal activity of the Nkx2.5 gene results in severe defects in blood vessels and the heart. However, many details are missing on the role played by Nkx2.5 in specifying the different cellular components of the circulatory system and heart. Zamir et al. genetically engineered chick and mouse embryos to produce fluorescent markers that could be used to trace the cells that become part of blood vessels and heart. The experiments found that some of the cells that form the blood and vessels in the yolk sac originate from within the membranes surrounding the embryo, outside of the areas previously reported to give rise to the heart. The Nkx2.5 gene is active in these cells for only a short period of time as they migrate toward the heart and dorsal aorta, where they give rise to blood stem cells These findings suggest that Nkx2.5 plays an important role in triggering developmental processes that eventually give rise to blood vessels and blood cells. The next step following on from this work will be to find out what genes the protein encoded by Nkx2.5 regulates to drive these processes. Mapping the genes that control the early origins of blood and blood-forming vessels will help biologists understand this complex and vital tissue system, and develop new treatments for patients with conditions that affect their circulatory system. In the future, this knowledge may also help to engineer synthetic blood and blood products for use in trauma and genetic diseases. DOI:http://dx.doi.org/10.7554/eLife.20994.002
Collapse
Affiliation(s)
- Lyad Zamir
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Reena Singh
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Elisha Nathan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ralph Patrick
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Oren Yifa
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yfat Yahalom-Ronen
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alaa A Arraf
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Thomas M Schultheiss
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shengbao Suo
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Dong Jackie Han
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guangdun Peng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, The University of Washington, Seattle, United States
| | - Nathan Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Patrick Pl Tam
- School of Medical Sciences, Sydney Medical School, The University of Sydney, Westmead, Australia.,Embryology Unit, Children's Medical Research Institute, Westmead, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Sydney, Australia.,St. Vincent's Clinical School, School of Biological and Biomolecular Sciences, University of New South Wales, Kensington, Australia
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
13
|
Lee B, Yoon J, Tri Lam D, Yoon J, Baek K, Jeong Y. Identification of a conserved cis-regulatory element controlling mid-diencephalic expression of mouse Six3. Genesis 2017; 55. [PMID: 28093895 DOI: 10.1002/dvg.23017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/15/2016] [Accepted: 01/11/2017] [Indexed: 11/08/2022]
Abstract
The sine oculis homeobox protein Six3 plays pivotal roles in the development of the brain and craniofacial structures. In humans, SIX3 haploinsufficiency results in holoprosencephaly, a defect in anterior midline formation. Although much is known about the evolutionarily conserved functions of Six3, the regulatory mechanism responsible for the expression pattern of Six3 remains relatively unexplored. To understand how the transcription of Six3 is controlled during embryogenesis, we screened ∼300 kb of genomic DNA encompassing the Six3 locus for cis-acting regulatory elements capable of directing reporter gene expression to sites of Six3 transcription in transgenic mouse embryos. We identified a novel enhancer element, whose activity recapitulates endogenous Six3 expression in the ventral midbrain, pretectum, and thalamus. Cross-species comparisons revealed that this Six3 brain enhancer is functionally conserved in other vertebrates. We also showed that normal Six3 transcription in the ventral midbrain and pretectum is dependent on Ascl1, a basic helix-loop-helix proneural factor. Moreover, loss of Ascl1 resulted in downregulation of the Six3 brain enhancer activity, emphasizing its unique role in regulating Six3 expression in the developing brain.
Collapse
Affiliation(s)
- Bumwhee Lee
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, 446-701, Republic of Korea
| | - Jiyeon Yoon
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, 446-701, Republic of Korea
| | - Duc Tri Lam
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, 446-701, Republic of Korea
| | - Jaeseung Yoon
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, 446-701, Republic of Korea
| | - Kwanghee Baek
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, 446-701, Republic of Korea
| | - Yongsu Jeong
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, 446-701, Republic of Korea
| |
Collapse
|
14
|
Abstract
Chicken embryo electroporation is a powerful tool used to identify and analyze enhancers involved in developmental gene regulation. In this chapter, the basic procedures and underlying principles of enhancer analysis using chicken embryo electroporation are described in the following steps: (1) identification of enhancers in a wide genomic region, (2) determination of the full enhancer region, (3) definition of the core enhancer regions, and (4) analysis of a functional transcription factor binding sequences in the core region.
Collapse
|
15
|
Kondoh H, Takada S, Takemoto T. Axial level-dependent molecular and cellular mechanisms underlying the genesis of the embryonic neural plate. Dev Growth Differ 2016; 58:427-36. [PMID: 27279156 DOI: 10.1111/dgd.12295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/22/2016] [Accepted: 04/22/2016] [Indexed: 01/18/2023]
Abstract
The transcription factor gene Sox2, centrally involved in neural primordial regulation, is activated by many enhancers. During the early stages of embryonic development, Sox2 is regulated by the enhancers N2 and N1 in the anterior neural plate (ANP) and posterior neural plate (PNP), respectively. This differential use of the enhancers reflects distinct regulatory mechanisms underlying the genesis of ANP and PNP. The ANP develops directly from the epiblast, triggered by nodal signal inhibition, and via the combined action of TFs SOX2, OTX2, POU3F1, and ZIC2, which promotes the the ANP development and inhibits other cell lineages. In contrast, the PNP is derived from neuromesodermal bipotential axial stem cells that develop into the neural plate when Sox2 is activated by the N1 enhancer, whereas they develop into the paraxial mesoderm when the N1 enhancer is repressed by the action of TBX6. The axial stem cells are maintained by the activity of WNT3a and T (Brachyury). However, at axial levels more anterior to the 8th somites (cervical levels), the development of both the neural plate and somite proceeds in the absence of WNT3a, T, or TBX6. These observations indicate that distinct molecular and cellular mechanisms determine neural plate genesis based on the axial level, and contradict the classical concept of the term "neural induction," which assumes a pan-neural plate mechanism.
Collapse
Affiliation(s)
- Hisato Kondoh
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
| | - Shinji Takada
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Tatsuya Takemoto
- Fujii Memorial Institute of Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
16
|
Bouzas SO, Marini MS, Torres Zelada E, Buzzi AL, Morales Vicente DA, Strobl-Mazzulla PH. Epigenetic activation of Sox2 gene in the developing vertebrate neural plate. Mol Biol Cell 2016; 27:1921-7. [PMID: 27099369 PMCID: PMC4907725 DOI: 10.1091/mbc.e16-01-0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022] Open
Abstract
The in vivo requirement of the histone demethylase JmjD2A, together with the kinase MSK1, results in a series of epigenetic events necessary for early activation of Sox2 and subsequent neural fate commitment in vertebrates. One of the earliest manifestations of neural induction is onset of expression of the neural marker Sox2, mediated by the activation of the enhancers N1 and N2. By using loss and gain of function, we find that Sox2 expression requires the activity of JmjD2A and the Msk1 kinase, which can respectively demethylate the repressive H3K9me3 mark and phosphorylate the activating H3S10 (H3S10ph) mark. Bimolecular fluorescence complementation reveals that the adaptor protein 14-3-3, known to bind to H3S10ph, interacts with JMJD2A and may be involved in its recruitment to regulatory regions of the Sox2 gene. Chromatin immunoprecipitation reveals dynamic binding of JMJD2A to the Sox2 promoter and N-1 enhancer at the time of neural plate induction. Finally, we show a clear temporal antagonism on the occupancy of H3K9me3 and H3S10ph modifications at the promoter of the Sox2 locus before and after the neural plate induction. Taken together, our results propose a series of epigenetic events necessary for the early activation of the Sox2 gene in neural progenitor cells.
Collapse
Affiliation(s)
- Santiago O Bouzas
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), 7130 Chascomús, Argentina
| | - Melisa S Marini
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), 7130 Chascomús, Argentina
| | - Eliana Torres Zelada
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), 7130 Chascomús, Argentina
| | - Ailín L Buzzi
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), 7130 Chascomús, Argentina
| | - David A Morales Vicente
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), 7130 Chascomús, Argentina
| | - Pablo H Strobl-Mazzulla
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), 7130 Chascomús, Argentina
| |
Collapse
|
17
|
Taher L, Narlikar L, Ovcharenko I. Identification and computational analysis of gene regulatory elements. Cold Spring Harb Protoc 2015; 2015:pdb.top083642. [PMID: 25561628 PMCID: PMC5885252 DOI: 10.1101/pdb.top083642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Over the last two decades, advances in experimental and computational technologies have greatly facilitated genomic research. Next-generation sequencing technologies have made de novo sequencing of large genomes affordable, and powerful computational approaches have enabled accurate annotations of genomic DNA sequences. Charting functional regions in genomes must account for not only the coding sequences, but also noncoding RNAs, repetitive elements, chromatin states, epigenetic modifications, and gene regulatory elements. A mix of comparative genomics, high-throughput biological experiments, and machine learning approaches has played a major role in this truly global effort. Here we describe some of these approaches and provide an account of our current understanding of the complex landscape of the human genome. We also present overviews of different publicly available, large-scale experimental data sets and computational tools, which we hope will prove beneficial for researchers working with large and complex genomes.
Collapse
Affiliation(s)
- Leila Taher
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock, 18051 Rostock, Germany
| | - Leelavati Narlikar
- Chemical Engineering and Process Development Division, National Chemical Laboratory, CSIR, Pune 411008, India
| | - Ivan Ovcharenko
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| |
Collapse
|
18
|
Okamoto R, Uchikawa M, Kondoh H. Sixteen additional enhancers associated with the chickenSox2locus outside the central 50-kb region. Dev Growth Differ 2014; 57:24-39. [DOI: 10.1111/dgd.12185] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/25/2014] [Accepted: 09/29/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Ryuji Okamoto
- Graduate School of Frontier Biosciences; Osaka University; 1-3 Yamadaoka Suita Osaka 565-0871 Japan
- Faculty of Medicine; Kagawa University; 1750-1 Ikenobe Miki-Cho, Kita-gun Kagawa 761-0793 Japan
| | - Masanori Uchikawa
- Graduate School of Frontier Biosciences; Osaka University; 1-3 Yamadaoka Suita Osaka 565-0871 Japan
| | - Hisato Kondoh
- Graduate School of Frontier Biosciences; Osaka University; 1-3 Yamadaoka Suita Osaka 565-0871 Japan
- Faculty of Life Sciences; Kyoto Sangyo University; Motoyama, Kamigamo Kita-ku Kyoto 603-8555 Japan
| |
Collapse
|
19
|
Liu X, Gao L, Zhao A, Zhang R, Ji B, Wang L, Zheng Y, Zeng B, Valenzuela RK, He L, Ma J. Identification of duplication downstream of BMP2 in a Chinese family with brachydactyly type A2 (BDA2). PLoS One 2014; 9:e94201. [PMID: 24710560 PMCID: PMC3978006 DOI: 10.1371/journal.pone.0094201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 03/12/2014] [Indexed: 12/02/2022] Open
Abstract
Brachydactyly type A2 (BDA2, MIM 112600) is characterized by the deviation and shortening of the middle phalange of the index finger and the second toe. Using genome-wide linkage analysis in a Chinese BDA2 family, we mapped the maximum candidate interval of BDA2 to a ∼1.5 Mb region between D20S194 and D20S115 within chromosome 20p12.3 and found that the pairwise logarithm of the odds score was highest for marker D20S156 (Zmax = 6.09 at θ = 0). Based on functional and positional perspectives, the bone morphogenetic protein 2 (BMP2) gene was identified as the causal gene for BDA2 in this region, even though no point mutation was detected in BMP2. Through further investigation, we identified a 4,671 bp (Chr20: 6,809,218-6,813,888) genomic duplication downstream of BMP2. This duplication was located within the linked region, co-segregated with the BDA2 phenotype in this family, and was not found in the unaffected family members and the unrelated control individuals. Compared with the previously reported duplications, the duplication in this family has a different breakpoint flanked by the microhomologous sequence GATCA and a slightly different length. Some other microhomologous nucleotides were also found in the duplicated region. In summary, our findings support the conclusions that BMP2 is the causing gene for BDA2, that the genomic location corresponding to the duplication region is prone to structural changes associated with malformation of the digits, and that this tendency is probably caused by the abundance of microhomologous sequences in the region.
Collapse
Affiliation(s)
- Xudong Liu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Linghan Gao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Aman Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Rui Zhang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
- Xi'an Hong Hui Hospital, the Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Baohu Ji
- Department of Psychiatry, School of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Lei Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yonglan Zheng
- Department of Medicine, the University of Chicago, Chicago, Illinois, United States of America
| | - Bingfang Zeng
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Robert K. Valenzuela
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Jie Ma
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
- Department of Psychiatry, School of Medicine, University of California San Diego, San Diego, California, United States of America
| |
Collapse
|
20
|
Simões-Costa M, Bronner ME. Insights into neural crest development and evolution from genomic analysis. Genome Res 2013; 23:1069-80. [PMID: 23817048 PMCID: PMC3698500 DOI: 10.1101/gr.157586.113] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The neural crest is an excellent model system for the study of cell type diversification during embryonic development due to its multipotency, motility, and ability to form a broad array of derivatives ranging from neurons and glia, to cartilage, bone, and melanocytes. As a uniquely vertebrate cell population, it also offers important clues regarding vertebrate origins. In the past 30 yr, introduction of recombinant DNA technology has facilitated the dissection of the genetic program controlling neural crest development and has provided important insights into gene regulatory mechanisms underlying cell migration and differentiation. More recently, new genomic approaches have provided a platform and tools that are changing the depth and breadth of our understanding of neural crest development at a “systems” level. Such advances provide an insightful view of the regulatory landscape of neural crest cells and offer a new perspective on developmental as well as stem cell and cancer biology.
Collapse
Affiliation(s)
- Marcos Simões-Costa
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
21
|
Khan MAF, Soto-Jimenez LM, Howe T, Streit A, Sosinsky A, Stern CD. Computational tools and resources for prediction and analysis of gene regulatory regions in the chick genome. Genesis 2013; 51:311-24. [PMID: 23355428 PMCID: PMC3664090 DOI: 10.1002/dvg.22375] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 01/16/2013] [Accepted: 01/17/2013] [Indexed: 11/07/2022]
Abstract
The discovery of cis-regulatory elements is a challenging problem in bioinformatics, owing to distal locations and context-specific roles of these elements in controlling gene regulation. Here we review the current bioinformatics methodologies and resources available for systematic discovery of cis-acting regulatory elements and conserved transcription factor binding sites in the chick genome. In addition, we propose and make available, a novel workflow using computational tools that integrate CTCF analysis to predict putative insulator elements, enhancer prediction, and TFBS analysis. To demonstrate the usefulness of this computational workflow, we then use it to analyze the locus of the gene Sox2 whose developmental expression is known to be controlled by a complex array of cis-acting regulatory elements. The workflow accurately predicts most of the experimentally verified elements along with some that have not yet been discovered. A web version of the CTCF tool, together with instructions for using the workflow can be accessed from http://toolshed.g2.bx.psu.edu/view/mkhan1980/ctcf_analysis. For local installation of the tool, relevant Perl scripts and instructions are provided in the directory named "code" in the supplementary materials.
Collapse
Affiliation(s)
- Mohsin A F Khan
- Department of Cell & Developmental Biology, University College London, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
22
|
Jean C, Aubel P, Soleihavoup C, Bouhallier F, Voisin S, Lavial F, Pain B. Pluripotent genes in avian stem cells. Dev Growth Differ 2012; 55:41-51. [DOI: 10.1111/dgd.12021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 01/17/2023]
Affiliation(s)
| | | | | | | | | | - Fabrice Lavial
- Centre de Cancérologie de Lyon, INSERM, U1052, CNRS, UMR5286; Centre Léon Bérard; Université de Lyon; Lyon; France
| | | |
Collapse
|
23
|
Gong P, Yang YP, Yang Y, Feng YP, Li SJ, Peng XL, Gong YZ. Different gene transfer methods at the very early, early, late and whole embryonic stages in chicken. ACTA BIOLOGICA HUNGARICA 2012; 63:453-62. [PMID: 23134602 DOI: 10.1556/abiol.63.2012.4.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
New technologies in gene transfer combined with experimental embryology make the chicken embryo an excellent model system for gene function studies. The techniques of in ovo electroporation, in vitro culture for ex ovo electroporation and retrovirus-mediated gene transfer have already been fully developed in chicken. Yet to our knowledge, there are no definite descriptions on the features and application scopes of these techniques. The survival rates of different in vitro culture methods were compared and the EGFP expression areas of different gene transfer techniques were explored. It was that the optimal timings of removing embryo for EC culture and Petri dish system was at E1.5 and E2.5, respectively; and optimal timing of injecting retrovirus is at E0. Results indicated that the EC culture, in ovo electroporation, the Petri dish system and retrovirus-mediated method are, respectively, suitable for the very early, early, late and whole embryonic stages in chicken. Comparison of different gene transfer methods and establishment of optimal timings are expected to provide a better choice of the efficient method for a particular experiment.
Collapse
Affiliation(s)
- Ping Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, Hubei, PR China
| | | | | | | | | | | | | |
Collapse
|
24
|
Nakamura H, Funahashi J. Electroporation: past, present and future. Dev Growth Differ 2012; 55:15-9. [PMID: 23157363 DOI: 10.1111/dgd.12012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 09/20/2012] [Accepted: 09/25/2012] [Indexed: 01/13/2023]
Abstract
Gene transfer by electroporation has become an indispensable method for the study of developmental biology. The technique is applied not only in chick embryos but also in mice and other organisms. Here, a short history and perspectives of electroporation for gene transfer in vertebrates are described.
Collapse
Affiliation(s)
- Harukazu Nakamura
- Department of Molecular Neurobiology, Graduate School of Life Sciences and Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi 4-1, Aoba-ku, Sendai, Japan.
| | | |
Collapse
|
25
|
Vergara MN, Canto-Soler MV. Rediscovering the chick embryo as a model to study retinal development. Neural Dev 2012; 7:22. [PMID: 22738172 PMCID: PMC3541172 DOI: 10.1186/1749-8104-7-22] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/22/2012] [Indexed: 01/20/2023] Open
Abstract
The embryonic chick occupies a privileged place among animal models used in developmental studies. Its rapid development and accessibility for visualization and experimental manipulation are just some of the characteristics that have made it a vertebrate model of choice for more than two millennia. Until a few years ago, the inability to perform genetic manipulations constituted a major drawback of this system. However, the completion of the chicken genome project and the development of techniques to manipulate gene expression have allowed this classic animal model to enter the molecular age. Such techniques, combined with the embryological manipulations that this system is well known for, provide a unique toolkit to study the genetic basis of neural development. A major advantage of these approaches is that they permit targeted gene misexpression with extremely high spatiotemporal resolution and over a large range of developmental stages, allowing functional analysis at a level, speed and ease that is difficult to achieve in other systems. This article provides a general overview of the chick as a developmental model focusing more specifically on its application to the study of eye development. Special emphasis is given to the state of the art of the techniques that have made gene gain- and loss-of-function studies in this model a reality. In addition, we discuss some methodological considerations derived from our own experience that we believe will be beneficial to researchers working with this system.
Collapse
Affiliation(s)
- M Natalia Vergara
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Smith Building 3023, 400 N Broadway, Baltimore, MD 21287-9257, USA
| | - M Valeria Canto-Soler
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Smith Building 3023, 400 N Broadway, Baltimore, MD 21287-9257, USA
| |
Collapse
|
26
|
Sato S, Ikeda K, Shioi G, Nakao K, Yajima H, Kawakami K. Regulation of Six1 expression by evolutionarily conserved enhancers in tetrapods. Dev Biol 2012; 368:95-108. [PMID: 22659139 DOI: 10.1016/j.ydbio.2012.05.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 11/16/2022]
Abstract
The Six1 homeobox gene plays critical roles in vertebrate organogenesis. Mice deficient for Six1 show severe defects in organs such as skeletal muscle, kidney, thymus, sensory organs and ganglia derived from cranial placodes, and mutations in human SIX1 cause branchio-oto-renal syndrome, an autosomal dominant developmental disorder characterized by hearing loss and branchial defects. The present study was designed to identify enhancers responsible for the dynamic expression pattern of Six1 during mouse embryogenesis. The results showed distinct enhancer activities of seven conserved non-coding sequences (CNSs) retained in tetrapod Six1 loci. The activities were detected in all cranial placodes (excluding the lens placode), dorsal root ganglia, somites, nephrogenic cord, notochord and cranial mesoderm. The major Six1-expression domains during development were covered by the sum of activities of these enhancers, together with the previously identified enhancer for the pre-placodal region and foregut endoderm. Thus, the eight CNSs identified in a series of our study represent major evolutionarily conserved enhancers responsible for the expression of Six1 in tetrapods. The results also confirmed that chick electroporation is a robust means to decipher regulatory information stored in vertebrate genomes. Mutational analysis of the most conserved placode-specific enhancer, Six1-21, indicated that the enhancer integrates a variety of inputs from Sox, Pax, Fox, Six, Wnt/Lef1 and basic helix-loop-helix proteins. Positive autoregulation of Six1 is achieved through the regulation of Six protein-binding sites. The identified Six1 enhancers provide valuable tools to understand the mechanism of Six1 regulation and to manipulate gene expression in the developing embryo, particularly in the sensory organs.
Collapse
Affiliation(s)
- Shigeru Sato
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Emerson MM, Cepko CL. Identification of a retina-specific Otx2 enhancer element active in immature developing photoreceptors. Dev Biol 2011; 360:241-55. [PMID: 21963459 DOI: 10.1016/j.ydbio.2011.09.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 09/09/2011] [Accepted: 09/13/2011] [Indexed: 01/20/2023]
Abstract
The homeodomain protein, Otx2, is a critical regulator of vertebrate photoreceptor genesis. However, the genetic elements that define the expression of Otx2 during photoreceptor development are unknown. Therefore, we sought to identify an Otx2 enhancer element that functions in photoreceptor development in order to better understand this specification event. Using the technique of electroporation, we tested a number of evolutionarily conserved elements (ECRs) for expression in the developing retina, and identified ECR2 as having robust activity in the retina. We have characterized this element using a number of assays, including Cre-fate mapping experiments. We found that ECR2 recapitulates expression/function of Otx2 primarily in newly postmitotic photoreceptor cells (PRs), as well as in a subset of retinal progenitor cells (RPCs). ECR2 was also found to be expressed in a subset of horizontal cells (HCs), in keeping with the role of Otx2 in HC development. Furthermore, we determined that the ECR2 element is not active in other Otx2-positive cells such as retinal bipolar cells (BPs), retinal pigmented epithelium (RPE), or the tectum, suggesting that the transcriptional networks controlling Otx2 expression in these cells are unique from those of developing PRs and HCs. These results reveal a distinct molecular state in dividing retinal cells and their newly postmitotic progeny, and provide genetic access to an early and critical transcriptional node involved in the genesis of vertebrate PRs.
Collapse
Affiliation(s)
- Mark M Emerson
- Department of Genetics, Department of Ophthamology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
28
|
Farley EK, Gale E, Chambers D, Li M. Effects of in ovo electroporation on endogenous gene expression: genome-wide analysis. Neural Dev 2011; 6:17. [PMID: 21527010 PMCID: PMC3105949 DOI: 10.1186/1749-8104-6-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/28/2011] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND In ovo electroporation is a widely used technique to study gene function in developmental biology. Despite the widespread acceptance of this technique, no genome-wide analysis of the effects of in ovo electroporation, principally the current applied across the tissue and exogenous vector DNA introduced, on endogenous gene expression has been undertaken. Here, the effects of electric current and expression of a GFP-containing construct, via electroporation into the midbrain of Hamburger-Hamilton stage 10 chicken embryos, are analysed by microarray. RESULTS Both current alone and in combination with exogenous DNA expression have a small but reproducible effect on endogenous gene expression, changing the expression of the genes represented on the array by less than 0.1% (current) and less than 0.5% (current + DNA), respectively. The subset of genes regulated by electric current and exogenous DNA span a disparate set of cellular functions. However, no genes involved in the regional identity were affected. In sharp contrast to this, electroporation of a known transcription factor, Dmrt5, caused a much greater change in gene expression. CONCLUSIONS These findings represent the first systematic genome-wide analysis of the effects of in ovo electroporation on gene expression during embryonic development. The analysis reveals that this process has minimal impact on the genetic basis of cell fate specification. Thus, the study demonstrates the validity of the in ovo electroporation technique to study gene function and expression during development. Furthermore, the data presented here can be used as a resource to refine the set of transcriptional responders in future in ovo electroporation studies of specific gene function.
Collapse
Affiliation(s)
- Emma K Farley
- MRC Clinical Sciences Centre, Hammersmith Hospital Campus, Imperial College London, W12 0NN, UK
| | - Emily Gale
- MRC Clinical Sciences Centre, Hammersmith Hospital Campus, Imperial College London, W12 0NN, UK
| | - David Chambers
- MRC Centre for Developmental Neurobiology, 4th Floor New Hunt's House, King's College, Guy's Campus, London, SE1 1UL, UK
| | - Meng Li
- MRC Clinical Sciences Centre, Hammersmith Hospital Campus, Imperial College London, W12 0NN, UK
| |
Collapse
|
29
|
Fallin MD, Szymanski M, Wang R, Gherman A, Bassett SS, Avramopoulos D. Fine mapping of the chromosome 10q11-q21 linkage region in Alzheimer's disease cases and controls. Neurogenetics 2010; 11:335-48. [PMID: 20182759 PMCID: PMC2891147 DOI: 10.1007/s10048-010-0234-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
We have previously reported strong linkage on chromosome 10q in pedigrees transmitting Alzheimer's disease through the mother, overlapping with many significant linkage reports including the largest reported study. Here, we report the most comprehensive fine mapping of this region to date. In a sample of 638 late-onset Alzheimer's disease (LOAD) cases and controls including 104 maternal LOAD cases, we genotyped 3,884 single nucleotide polymorphisms (SNPs) covering 15.2 Mb. We then used imputations and publicly available data to generate an extended dataset including 4,329 SNPs for 1,209 AD cases and 839 controls in the same region. Further, we screened eight genes in this region for rare alleles in 283 individuals by nucleotide sequencing, and we tested for possible monoallelic expression as it might underlie our maternal parent of origin linkage. We excluded the possibility of multiple rare coding risk variants for these genes and monoallelic expression when we could test for it. One SNP, rs10824310 in the PRKG1 gene, showed study-wide significant association without a parent of origin effect, but the effect size estimate is not of sufficient magnitude to explain the linkage, and no association is observed in an independent genome-wide association studies (GWAS) report. Further, no causative variants were identified though sequencing. Analysis of cases with maternal disease origin pointed to a few regions of interest that included the genes PRKG1 and PCDH15 and an intergenic interval of 200 Kb. It is likely that non-transcribed rare variants or other mechanisms involving these genomic regions underlie the observed linkage and parent of origin effect. Acquiring additional support and clarifying the mechanisms of such involvement is important for AD and other complex disorder genetics research.
Collapse
Affiliation(s)
- Margaret Daniele Fallin
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
30
|
Saigou Y, Kamimura Y, Inoue M, Kondoh H, Uchikawa M. Regulation of Sox2 in the pre-placodal cephalic ectoderm and central nervous system by enhancer N-4. Dev Growth Differ 2010; 52:397-408. [DOI: 10.1111/j.1440-169x.2010.01180.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Barembaum M, Bronner-Fraser M. Pax2 and Pea3 synergize to activate a novel regulatory enhancer for spalt4 in the developing ear. Dev Biol 2009; 340:222-31. [PMID: 19913005 DOI: 10.1016/j.ydbio.2009.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 10/30/2009] [Accepted: 11/02/2009] [Indexed: 12/11/2022]
Abstract
The transcription factor spalt4 is a key early-response gene in otic placode induction. Here, we characterize the cis-regulatory regions of spalt4 responsible for activation of its expression in the developing otic placode and report the isolation of a novel core enhancer. Identification and mutational analysis of putative transcription factor binding sites reveal that Pea3, a downstream effector of FGF signaling, and Pax2 directly activate spalt4 during ear development. Morpholino-mediated knock-down of each factor reduces or eliminates reporter expression. In contrast, combined over-expression of Pea3 and Pax2 drives ectopic reporter expression, suggesting that they function synergistically. These studies expand the gene regulatory network underlying early otic development by identifying direct inputs that mediate spalt4 expression.
Collapse
Affiliation(s)
- Meyer Barembaum
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
32
|
TIAN J, ZHAO ZH, CHEN HP. [Conserved non-coding elements in human genome]. YI CHUAN = HEREDITAS 2009; 31:1067-1076. [PMID: 19933086 DOI: 10.3724/sp.j.1005.2009.01067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Study of comparative genomics has revealed that about 5% of the human genome are under purifying selection, 3.5% of which are conserved non-coding elements (CNEs). While the coding regions comprise of only a small part. In human, the CNEs are functionally important, which may be associated with the process of the establishment and maintain of chromatin architecture, transcription regulation, and pre-mRNA processing. They are also related to ontogeny of mammals and human diseases. This review outlined the identification, functional significance, evolutionary origin, and effects on human genetic defects of the CNEs.
Collapse
Affiliation(s)
- Jing TIAN
- Institute of Biotechnology, Academy of Military Medical Science, Beijing 100071, China.
| | | | | |
Collapse
|
33
|
Amaral PP, Neyt C, Wilkins SJ, Askarian-Amiri ME, Sunkin SM, Perkins AC, Mattick JS. Complex architecture and regulated expression of the Sox2ot locus during vertebrate development. RNA (NEW YORK, N.Y.) 2009; 15:2013-2027. [PMID: 19767420 PMCID: PMC2764477 DOI: 10.1261/rna.1705309] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 08/18/2009] [Indexed: 05/28/2023]
Abstract
The Sox2 gene is a key regulator of pluripotency embedded within an intron of a long noncoding RNA (ncRNA), termed Sox2 overlapping transcript (Sox2ot), which is transcribed in the same orientation. However, this ncRNA remains uncharacterized. Here we show that Sox2ot has multiple transcription start sites associated with genomic features that indicate regulated expression, including highly conserved elements (HCEs) and chromatin marks characteristic of gene promoters. To identify biological processes in which Sox2ot may be involved, we analyzed its expression in several developmental systems, compared to expression of Sox2. We show that Sox2ot is a stable transcript expressed in mouse embryonic stem cells, which, like Sox2, is down-regulated upon induction of embryoid body (EB) differentiation. However, in contrast to Sox2, Sox2ot is up-regulated during EB mesoderm-lineage differentiation. In adult mouse, Sox2ot isoforms were detected in tissues where Sox2 is expressed, as well as in different tissues, supporting independent regulation of expression of the ncRNA. Sox2dot, an isoform of Sox2ot transcribed from a distal HCE located >500 kb upstream of Sox2, was detected exclusively in the mouse brain, with enrichment in regions of adult neurogenesis. In addition, Sox2ot isoforms are transcribed from HCEs upstream of Sox2 in other vertebrates, including in several regions of the human brain. We also show that Sox2ot is dynamically regulated during chicken and zebrafish embryogenesis, consistently associated with central nervous system structures. These observations provide insight into the structure and regulation of the Sox2ot gene, and suggest conserved roles for Sox2ot orthologs during vertebrate development.
Collapse
Affiliation(s)
- Paulo P Amaral
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia,QLD 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
34
|
Ishihara T, Sato S, Ikeda K, Yajima H, Kawakami K. Multiple evolutionarily conserved enhancers control expression of Eya1. Dev Dyn 2009; 237:3142-56. [PMID: 18816442 DOI: 10.1002/dvdy.21716] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Eya1 is a homolog of eyes absent in Drosophila, and essential for various organ formations in vertebrates. Mouse and chick Eya1 shows dynamic expression pattern in early development. We identified ten independent Eya1 enhancers by screening evolutionarily conserved sequences. They exhibited enhancer activities in Hensen's node, neural tube, migrating neural crest cells, otic vesicle, olfactory placode, cranial ganglia, and somites at HH6-17 of chick embryo. The sum of the enhancer activities of the enhancers covers the endogenous expression domains of Eya1 common to chick and mouse. Enhancer activities were also observed in species-specific expression domains such as trigeminal ganglia and brain. Mutational study of one of the enhancers revealed that the enhancer is composed of positive and negative cis-regulatory elements. Thus, we successfully identified a comprehensive group of enhancers around Eya1 locus, which are probably involved in the control of the complex expression pattern of Eya1 in vivo.
Collapse
Affiliation(s)
- Tadashi Ishihara
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | | | | | | | | |
Collapse
|
35
|
Kamachi Y, Iwafuchi M, Okuda Y, Takemoto T, Uchikawa M, Kondoh H. Evolution of non-coding regulatory sequences involved in the developmental process: reflection of differential employment of paralogous genes as highlighted by Sox2 and group B1 Sox genes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2009; 85:55-68. [PMID: 19212098 PMCID: PMC3524295 DOI: 10.2183/pjab.85.55] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 01/05/2009] [Indexed: 05/27/2023]
Abstract
In higher vertebrates, the expression of Sox2, a group B1 Sox gene, is the hallmark of neural primordial cell state during the developmental processes from embryo to adult. Sox2 is regulated by the combined action of many enhancers with distinct spatio-temporal specificities. DNA sequences for these enhancers are conserved in a wide range of vertebrate species, corresponding to a majority of highly conserved non-coding sequences surrounding the Sox2 gene, corroborating the notion that the conservation of non-coding sequences mirrors their functional importance. Among the Sox2 enhancers, N-1 and N-2 are activated the earliest in embryogenesis and regulate Sox2 in posterior and anterior neural plates, respectively. These enhancers differ in their evolutionary history: the sequence and activity of enhancer N-2 is conserved in all vertebrate species, while enhancer N-1 is fully conserved only in amniotes. In teleost embryos, Sox19a/b play the major pan-neural role among the group B1 Sox paralogues, while strong Sox2 expression is limited to the anterior neural plate, reflecting the absence of posterior CNS-dedicated enhancers, including N-1. In Xenopus, neurally expressed SoxD is the orthologue of Sox19, but Sox3 appears to dominate other B1 paralogues. In amniotes, however, Sox19 has lost its group B1 Sox function and transforms into group G Sox15 (neofunctionalization), and Sox2 assumes the dominant position by gaining enhancer N-1 and other enhancers for posterior CNS. Thus, the gain and loss of specific enhancer elements during the evolutionary process reflects the change in functional assignment of particular paralogous genes, while overall regulatory functions attributed to the gene family are maintained.
Collapse
Affiliation(s)
- Yusuke Kamachi
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Makiko Iwafuchi
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yuichi Okuda
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tatsuya Takemoto
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Masanori Uchikawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hisato Kondoh
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
36
|
Affiliation(s)
- Hisato Kondoh
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
37
|
|
38
|
Uchikawa M. Enhancer analysis by chicken embryo electroporation with aid of genome comparison. Dev Growth Differ 2008; 50:467-74. [DOI: 10.1111/j.1440-169x.2008.01028.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Arede N, Tavares AT. Modified whole-mount in situ hybridization protocol for the detection of transgene expression in electroporated chick embryos. PLoS One 2008; 3:e2638. [PMID: 18612382 PMCID: PMC2441435 DOI: 10.1371/journal.pone.0002638] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 06/11/2008] [Indexed: 11/23/2022] Open
Abstract
Background In vivo electroporation has been extensively used as an effective means of DNA transfer for analyzing gene function as well as gene regulation in developmental systems. In any of these two types of studies, the correct spatial and temporal expression of the electroporated transgene can only be accurately assessed by in situ hybridization. Methodology/Principal Findings While analyzing transgene expression in electroporated chicken embryos, we verified that transgene riboprobes cross-hybridized with the exogenous plasmid DNA when embryos were processed by conventional whole-mount in situ hybridization (WISH). Conclusions/Significance Here we describe a modification to the WISH protocol that is essential to prevent DNA cross-hybridization and to specifically detect transgene mRNA transcripts in electroporated embryos. Our optimized WISH procedure can be applied not only to electroporated chick embryos but also to other embryos or adult tissues that have been transfected with large amounts of reporter- or expression construct DNA.
Collapse
Affiliation(s)
| | - Ana T. Tavares
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
40
|
Abstract
My group has long studied transcriptional gene regulation involved in cell differentiation, employing lens cell differentiation as a model. In this article, our progress over the last quarter of a century in deciphering the principles involved in developmental gene regulation is described, outlining concurrent advancement in relevant branches of developmental biology.
Collapse
Affiliation(s)
- Hisato Kondoh
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
41
|
Abstract
The chicken embryo has been used as a classical embryological model for studying developmental events because of its ready availability, similarity to the human embryos, and amenability to embryological and surgical manipulations. With the arrival of the molecular era, however, avian embryos presented distinct experimental limitations, largely because of the difficulty of performing targeted mutagenesis or transgenic studies. However, in the last decade and a half, a number of new methods for transient transgenesis have been developed that allow efficient alteration of gene function during early embryonic development. These techniques have made it possible to study the effects of gene inactivation or overexpression on downstream transcriptional regulation as well as on embryonic derivatives. This, together with sequencing of the chicken genome, has allowed the chicken embryo to enter the genomic era. While attempts to establish germ line transgenesis are ongoing, methods for rapid, transient spatiotemporally targeted gene alterations have thus again re-established the chick embryo as an important experimental niche by making it possible to apply genetics in concert with classical embryological techniques. This provides a unique tool to explore the role of developmentally important genes (Ishii and Mikawa, 2005; Itasaki et al., 1999; Krull, 2004; Ogura, 2002; Swartz et al., 2001). Transient transfection methods have allowed for efficient mis- and overexpression of transgenes. For long-term analyses, retrovirally mediated gene transfer has particular advantage. For short-term experiments, electroporation and adenoviral-mediated gene transfer methods provide transient expression, largely because of the short persistence time of the transgene within the cell. More recently, Tol2 transposon-mediated constructs have been employed, allowing for integration into the genome and prolonged expression of the transgene (Sato et al., 2007), see Chapter 14 by Takahashi et al., this volume). These methods today are routinely used for gain-of-function analysis, to overexpress or ectopically express genes of interest (Arber et al., 1999; Barembaum and Bronner-Fraser, 2007; Bel-Vialar et al., 2002). Loss-of-function experiments are also possible using electroporation of dominant-negative constructs that act as competitive inhibitors (Bel-Vialar et al., 2002; Renzi et al., 2000; Suzuki-Hirano et al., 2005), morpholino antisense oligos (Basch et al., 2006; Kos et al., 2001; Sheng et al., 2003) that block translation or splicing, or constructs expressing small interfering or small hairpin RNAs (siRNAs or shRNAs) (Chesnutt and Niswander, 2004; Das et al., 2006; Katahira and Nakamura, 2003). Electroporation as the most popular method of the transient transfection into the chick embryos. Electroporation of chicken embryos involves application of an electric field to the exposed tissue that transiently disrupts the stability of the cell plasma membrane, creating reversible pores through which nucleic acids or their analogues can be readily transported into the cytosol. The use of this method for transfection into the vertebrate embryos has been facilitated by adapting the voltage parameters and the type and the duration of the electric pulse. By applying several successive square pulses at a very low voltage, with long rest periods in between, one can successfully deliver a DNA construct or another small charged particle into the cytoplasm, with minimal cell death, high efficiency of the uptake and good embryonic survival rate. The size limit of the DNA molecule that can be transfected in such a way is not yet known, though it is more likely that the size limitation in this procedure (if any) lies within the practical problems of cloning large fragments into the plasmid. We routinely overexpress constructs containing 3-4 kb inserts and coharboring a GFP or RFP reporter whose translation is initiated from an internal ribosomal entry site (IRES), thus allowing easy detection of the electroporated cells.
Collapse
|
42
|
Affiliation(s)
- Ivor Mason
- MRC Centre for Developmental Neurobiology, King's College London, London, UK
| |
Collapse
|
43
|
Abstract
The transcription of almost all developmental genes is driven by tissue- and time-specific regulatory elements. These transcriptional regulatory elements lie in the genomic DNA proximal to the gene, and hence are cis-regulatory (as opposed to trans-regulatory elements like transcription factor genes). Over the past three decades, a number of techniques have been applied to the problem of finding and characterizing these regulatory elements. In this chapter, I discuss some computational approaches that have been particularly useful in identifying developmental cis-regulatory regions, and provide a tutorial on how to apply these approaches to the study of chick development.
Collapse
|
44
|
Voiculescu O, Papanayotou C, Stern CD. Spatially and temporally controlled electroporation of early chick embryos. Nat Protoc 2008; 3:419-26. [PMID: 18323813 DOI: 10.1038/nprot.2008.10] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The introduction of in ovo electroporation a decade ago has helped the chick embryo to become a powerful system to study gene regulation and function during development. Although this is a simple procedure for embryos of 2-d incubation, earlier stages (from laying to early neurulation, 0-1 d) present special challenges. Here we describe a robust and reproducible protocol for electroporation of expression vectors and morpholino oligonucleotides into the epiblast of embryos from soon after laying (stage XI) to stages 6-7 (early neurulation), with precise spatial and temporal control. Within 3 h, about 12 embryos can be electroporated and set up for culture by the New technique; the effects of morpholinos can be assessed immediately after electroporation, and robust overexpression from plasmid DNA is seen 2-3 h after electroporation. These techniques can be used for time-lapse imaging, gain- and loss-of-function experiments and studying gene regulatory elements in living embryos.
Collapse
Affiliation(s)
- Octavian Voiculescu
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | |
Collapse
|
45
|
Papanayotou C, Mey A, Birot AM, Saka Y, Boast S, Smith JC, Samarut J, Stern CD. A mechanism regulating the onset of Sox2 expression in the embryonic neural plate. PLoS Biol 2008; 6:e2. [PMID: 18184035 PMCID: PMC2174969 DOI: 10.1371/journal.pbio.0060002] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 11/26/2007] [Indexed: 12/12/2022] Open
Abstract
In vertebrate embryos, the earliest definitive marker for the neural plate, which will give rise to the entire central nervous system, is the transcription factor Sox2. Although some of the extracellular signals that regulate neural plate fate have been identified, we know very little about the mechanisms controlling Sox2 expression and thus neural plate identity. Here, we use electroporation for gain- and loss-of-function in the chick embryo, in combination with bimolecular fluorescence complementation, two-hybrid screens, chromatin immunoprecipitation, and reporter assays to study protein interactions that regulate expression of N2, the earliest enhancer of Sox2 to be activated and which directs expression to the largest part of the neural plate. We show that interactions between three coiled-coil domain proteins (ERNI, Geminin, and BERT), the heterochromatin proteins HP1alpha and HP1gamma acting as repressors, and the chromatin-remodeling enzyme Brm acting as activator control the N2 enhancer. We propose that this mechanism regulates the timing of Sox2 expression as part of the process of establishing neural plate identity.
Collapse
Affiliation(s)
- Costis Papanayotou
- Department of Anatomy & Developmental Biology, University College London, London, United Kingdom
| | - Anne Mey
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, CNRS/INRA, Lyon, France
| | - Anne-Marie Birot
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, CNRS/INRA, Lyon, France
| | - Yasushi Saka
- Wellcome/Cancer Research UK Gurdon Institute for Cancer and Developmental Biology, Cambridge, United Kingdom
| | - Sharon Boast
- Department of Anatomy & Developmental Biology, University College London, London, United Kingdom
| | - Jim C Smith
- Wellcome/Cancer Research UK Gurdon Institute for Cancer and Developmental Biology, Cambridge, United Kingdom
| | - Jacques Samarut
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, CNRS/INRA, Lyon, France
| | - Claudio D Stern
- Department of Anatomy & Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
46
|
Inoue M, Kamachi Y, Matsunami H, Imada K, Uchikawa M, Kondoh H. PAX6 and SOX2-dependent regulation of the Sox2 enhancer N-3 involved in embryonic visual system development. Genes Cells 2007; 12:1049-61. [PMID: 17825048 DOI: 10.1111/j.1365-2443.2007.01114.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sox2 is universally expressed in the neural and placodal primordia in early stage embryos, and this expression depends on various phylogenetically conserved enhancers having different regional and temporal specificities. The enhancer N-3 was identified as a regulator of the Sox2 gene active in the diencephalon, optic vesicle, and after the contact of the vesicle with the ectoderm, in the lens placodal surface area, suggesting its involvement in embryonic visual system development. A 36-bp minimal essential core sequence was defined in the 568-bp-long enhancer N-3, which in a tetrameric form emulates the original enhancer activity. The core sequence comprises a SOX-binding sequence and a non-canonical PAX6 (Paired domain) binding sequence, and is activated by the synergistic action of SOX2 and PAX6 in transfected cells. The SOX and PAX6 binding sequences of the N-3 core are arranged with the same orientation and spacing as the DC5 sequence of the delta-crystallin enhancer previously demonstrated to be cooperatively bound by SOX2 and PAX6. The N-3 core sequence was also bound by these factors in a cooperative fashion, but with a higher threshold of these factors' levels than DC5, and the enhancer effect of the tetrameric sequence activated by exogenous SOX2 and PAX6 was less pronounced than that of DC5. The observations suggest that gene activation mechanisms that depend on the cooperative interaction of SOX2 and PAX6 but with different thresholds of the factor levels are crucial for the regulation of visual system development.
Collapse
Affiliation(s)
- Masashi Inoue
- Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Drews VL, Shi K, de Haan G, Meisler MH. Identification of evolutionarily conserved, functional noncoding elements in the promoter region of the sodium channel gene SCN8A. Mamm Genome 2007; 18:723-31. [PMID: 17924165 PMCID: PMC2042028 DOI: 10.1007/s00335-007-9059-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 07/29/2007] [Indexed: 11/24/2022]
Abstract
SCN8A is a major neuronal sodium channel gene expressed throughout the central and peripheral nervous systems. Mutations of SCN8A result in movement disorders and impaired cognition. To investigate the basis for the tissue-specific expression of SCN8A, we located conserved, potentially regulatory sequences in the human, mouse, chicken, and fish genes by 5′ RACE of brain RNA and genomic sequence comparison. A highly conserved 5′ noncoding exon, exon 1c, is present in vertebrates from fish to mammals and appears to define the ancestral promoter region. The distance from exon 1c to the first coding exon increased tenfold during vertebrate evolution, largely by insertion of repetitive elements. The mammalian gene acquired three novel, mutually exclusive noncoding exons that are not represented in the lower vertebrates. Within the shared exon 1c, we identified four short sequence elements of 10-20 bp with an unusually high level of evolutionary conservation. The conserved elements are most similar to consensus sites for the transcription factors Pou6f1/Brn5, YY1, and REST/NRSF. Introduction of mutations into the predicted Pou6f1 and REST sites reduced promoter activity in transfected neuronal cells. A 470-bp promoter fragment containing all of the conserved elements directed brain-specific expression of the LacZ reporter in transgenic mice. Transgene expression was highest in hippocampal neurons and cerebellar Purkinje cells, consistent with the expression of the endogenous gene. The compact cluster of conserved regulatory elements in SCN8A provides a useful target for molecular analysis of neuronal gene expression.
Collapse
Affiliation(s)
- Valerie L Drews
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, 48109-0618, USA
| | | | | | | |
Collapse
|
48
|
Burt DW. Emergence of the chicken as a model organism: implications for agriculture and biology. Poult Sci 2007; 86:1460-71. [PMID: 17575197 DOI: 10.1093/ps/86.7.1460] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many of the features of the chicken make it an ideal model organism for phylogenetics and embryology, along with applications in agriculture and medicine. The availability of new tools such as whole genome gene expression arrays and single nucleotide polymorphism panels, coupled with the genome sequence, will enhance this position. These advances are reviewed and their implications are discussed.
Collapse
Affiliation(s)
- D W Burt
- Roslin Institute, Edinburgh, Midlothian EH25 9PS, United Kingdom.
| |
Collapse
|
49
|
Burt DW, White SJ. Avian genomics in the 21st century. Cytogenet Genome Res 2007; 117:6-13. [PMID: 17675839 DOI: 10.1159/000103159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 02/01/2007] [Indexed: 11/19/2022] Open
Abstract
The chicken has long been an important model organism for developmental biology, as well as a major source of protein with billions of birds used in meat and egg production each year. Chicken genomics has been transformed in recent years, with the characterisation of large EST collections and most recently with the assembly of the chicken genome sequence. As the first livestock genome to be fully sequenced it leads the way for others to follow--with zebra finch later this year. The genome sequence and the availability of three million genetic polymorphisms are expected to aid the identification of genes that control traits of importance in poultry. As the first bird genome to be sequenced it is a model for the remaining 9,600 species thought to exist today. Many of the features of avian biology and organisation of the chicken genome make it an ideal model organism for phylogenetics and embryology, along with applications in agriculture and medicine. The availability of new tools such as whole-genome gene expression arrays and SNP panels, coupled with information resources on the genes and proteins are likely to enhance this position.
Collapse
Affiliation(s)
- D W Burt
- Department of Genomics and Genetics, Roslin Institute (Edinburgh), Roslin, Midlothian, UK.
| | | |
Collapse
|
50
|
Kim SY, Pritchard JK. Adaptive evolution of conserved noncoding elements in mammals. PLoS Genet 2007; 3:1572-86. [PMID: 17845075 PMCID: PMC1971121 DOI: 10.1371/journal.pgen.0030147] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 07/13/2007] [Indexed: 02/07/2023] Open
Abstract
Conserved noncoding elements (CNCs) are an abundant feature of vertebrate genomes. Some CNCs have been shown to act as cis-regulatory modules, but the function of most CNCs remains unclear. To study the evolution of CNCs, we have developed a statistical method called the "shared rates test" to identify CNCs that show significant variation in substitution rates across branches of a phylogenetic tree. We report an application of this method to alignments of 98,910 CNCs from the human, chimpanzee, dog, mouse, and rat genomes. We find that approximately 68% of CNCs evolve according to a null model where, for each CNC, a single parameter models the level of constraint acting throughout the phylogeny linking these five species. The remaining approximately 32% of CNCs show departures from the basic model including speed-ups and slow-downs on particular branches and occasionally multiple rate changes on different branches. We find that a subset of the significant CNCs have evolved significantly faster than the local neutral rate on a particular branch, providing strong evidence for adaptive evolution in these CNCs. The distribution of these signals on the phylogeny suggests that adaptive evolution of CNCs occurs in occasional short bursts of evolution. Our analyses suggest a large set of promising targets for future functional studies of adaptation.
Collapse
Affiliation(s)
- Su Yeon Kim
- Department of Statistics, The University of Chicago, Chicago, Illinois, United States of America
- * To whom correspondence should be addressed. E-mail: (SYK); (JKP)
| | - Jonathan K Pritchard
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
- * To whom correspondence should be addressed. E-mail: (SYK); (JKP)
| |
Collapse
|