1
|
Mehrabi F, Hosseini M, Sadeghi N, Mohammadi J, Ganjali MR, Ranjbar B. Green emitting carbon dots-immunosensor on magnetic nanoparticles for detection of Nanog antigen as a cancer stem cell biomarker. Anal Chim Acta 2025; 1353:343960. [PMID: 40221207 DOI: 10.1016/j.aca.2025.343960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Embryonic Nanog is recognized as a crucial controller of pluripotency. In the progression of cancer and the formation of metastasis, cancer cells with stem cell-like characteristics frequently express Nanog. Precisely identifying the Nanog antigen poses a significant challenge due to its low abundance in biofluids. The precise detection of the Nanog antigen originating from cancer cells has attracted growing interest for its potential uses in diagnostics and prognostics. RESULTS In this study, a novel fluorescence strategy utilizing green carbon dots was developed for the highly sensitive and specific detection of Nanog. This approach involved the use of fluoro-immunosensors based on magnetic nanoparticles (MNPs) and antibodies targeting the cancer Stem Cells (CSCs) biomarker, Nanog. In this study, the targeted Nanog was magnetically separated following its reaction with green carbon dots and magnetic nanoparticles, both conjugated with anti-nanog antibodies. The findings show a clear increase in fluorescence with the rising concentration of Nanog antigen in the sample. The linear range for Nanog, measured under optimal experimental conditions, was found to be 5.0 × 10 -11 g/L to 1.0 × 10 -9 g/L. The detection limit (LOD) was calculated to be 1.0 × 10 -11 g/L. SIGNIFICANCE This study introduces a fluoro-immunosensor employing magnetic nanoparticles (MNPs) and high quantum efficiency green-emitting carbon dots. This represents the first use of these carbon dots in this type of sensor. The biosensor has demonstrated effective detection of Nanog in biological samples. This developed biosensor, which is both convenient and highly sensitive, presents a significant opportunity for quantifying Nanog in biological research and clinical applications.
Collapse
Affiliation(s)
- Fatemeh Mehrabi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Nanobiotechnology and Biomimetics, School of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, 1439817435, Iran.
| | - Niloufar Sadeghi
- Medical Genetics Department, Institute of Medical Biotechnology (IMB), National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Javad Mohammadi
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1439817435, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1439817435, Iran
| | - Bijan Ranjbar
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Ferronato GDA, Rosa PMDS, Bridi A, Santos ACD, Nociti RP, Chiaratti MR, Perecin F, Meirelles FV, Sangalli JR, Silveira JCD. Transcriptomic effects of alginate hydrogel applied to the production of bovine embryos. Heliyon 2024; 10:e40957. [PMID: 39759294 PMCID: PMC11700250 DOI: 10.1016/j.heliyon.2024.e40957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
In vitro-produced blastocysts are exposed to different stimuli when compared with in vivo ones. This includes the culture of in vitro embryos in a sturdy petri-dish, while in vivo embryos develop in a soft and dynamic structure. Here we hypothesized that a softer environment could differently modulate the in vitro produced embryos. To that aim, presumptive zygotes were produced by in vitro fertilization and divided into three groups: 1) Cultured in a regular Petri dish - Control (CON); 2) Cultured on top of an alginate hydrogel surface (TOP); 3) Encapsulated inside an alginate hydrogel sphere (ENC) and cultured. We observed a decrease in blastocyst rate in TOP and ENC compared with the CON. Profiling of 383 bovine miRNAs, we found 3 miRNAs involved in cell proliferation being differently modulated by the TOP and ENC groups (miR-1246; miR-1260b, and miR-541). Analyzing global levels of DNA methylation and hydroxymethylation, we observed increased levels of the two marks in the TOP group when compared with the CON and ENC systems. RNA sequencing (RNA-seq) analysis carried out using blastocysts showed alterations in several developmentally important genes among the three groups. In summary, our results indicate that in vitro embryo production was possible to achieve up to the blastocyst stage. However, with the experimental conditions used herein, the alginate hydrogels adversely affected the embryo development, which were paralleled by epigenetic and transcriptomic changes.
Collapse
Affiliation(s)
- Giuliana de A. Ferronato
- Faculty of Animal Science and Food Engineering, Department of Veterinary Medicine, University of São Paulo, Pirassununga, SP, Brazil
| | - Paola M. da S. Rosa
- Faculty of Animal Science and Food Engineering, Department of Veterinary Medicine, University of São Paulo, Pirassununga, SP, Brazil
| | - Alessandra Bridi
- Faculty of Animal Science and Food Engineering, Department of Veterinary Medicine, University of São Paulo, Pirassununga, SP, Brazil
| | - Angélica Camargo dos Santos
- Universidade Federal de São Carlos, Centro de Ciências Biológicas e da Saúde, Departamento de Genética e Evolução, São Carlos, SP, Brazil
| | - Ricardo P. Nociti
- Faculty of Animal Science and Food Engineering, Department of Veterinary Medicine, University of São Paulo, Pirassununga, SP, Brazil
| | - Marcos Roberto Chiaratti
- Universidade Federal de São Carlos, Centro de Ciências Biológicas e da Saúde, Departamento de Genética e Evolução, São Carlos, SP, Brazil
| | - Felipe Perecin
- Faculty of Animal Science and Food Engineering, Department of Veterinary Medicine, University of São Paulo, Pirassununga, SP, Brazil
| | - Flávio V. Meirelles
- Faculty of Animal Science and Food Engineering, Department of Veterinary Medicine, University of São Paulo, Pirassununga, SP, Brazil
| | - Juliano R. Sangalli
- Faculty of Animal Science and Food Engineering, Department of Veterinary Medicine, University of São Paulo, Pirassununga, SP, Brazil
| | - Juliano C. da Silveira
- Faculty of Animal Science and Food Engineering, Department of Veterinary Medicine, University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
3
|
Andrews PW, Gokhale PJ. A short history of pluripotent stem cells markers. Stem Cell Reports 2024; 19:1-10. [PMID: 38157849 PMCID: PMC10828816 DOI: 10.1016/j.stemcr.2023.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
The expression of one or more of a small number of molecules, typically cell surface-associated antigens, or transcription factors, is widely used for identifying pluripotent stem cells (PSCs) or for monitoring their differentiation. However, none of these marker molecules are uniquely expressed by PSCs and all are expressed by stem cells that have lost the ability to differentiate. Consequently, none are indicators of pluripotency, per se. Here we summarize the nature and characteristics of several markers that are in wide use, including the cell surface antigens, stage-specific embryonic antigen (SSEA)-1, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, GCTM2, and the transcription factors POUF5/OCT4, NANOG, and SOX2, highlighting issues that must be considered when interpreting data about their expression on putative PSCs.
Collapse
Affiliation(s)
- Peter W Andrews
- The School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Paul J Gokhale
- The School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
4
|
Jeon AY, Cho JY, Park J, Kim WJ, Kim YO, Kong HJ, Kim JW. Molecular cytogenetic analysis of the olive flounder embryonic cell line FGBC8 and its applicability to biotechnology. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109077. [PMID: 37726081 DOI: 10.1016/j.fsi.2023.109077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
We explored the biotechnological applicability of a previously established olive flounder (Paralichthys olivaceus) embryonic cell line (FGBC8). FGBC8 was transfected with pEGFP-c1 and pluripotency-related genes, then infected with viral hemorrhagic septicemia virus (VHSV), and the expression of immune-related genes was observed through quantitative real-time polymerase chain reaction. Transfected cells showed strong green fluorescence 48 h after transfection, and pluripotency-related genes were successfully transfected. In addition, FGBC8 cells were highly susceptible to VHSV and the expression of immune-related genes was induced during infection. Our results demonstrate that FGBC8 cells are valuable research tools for assessing host-pathogen interactions and biotechnological applications.
Collapse
Affiliation(s)
- A-Young Jeon
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Ja Young Cho
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Jungwook Park
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Woo-Jin Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Ju-Won Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea.
| |
Collapse
|
5
|
Zhao Y, Li J, Lian Y, Zhou Q, Wu Y, Kang J. METTL3-Dependent N6-Methyladenosine Modification Programs Human Neural Progenitor Cell Proliferation. Int J Mol Sci 2023; 24:15535. [PMID: 37958523 PMCID: PMC10647291 DOI: 10.3390/ijms242115535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
METTL3, a methyltransferase responsible for N6-methyladenosine (m6A) modification, plays key regulatory roles in mammal central neural system (CNS) development. However, the specific epigenetic mechanisms governing human CNS development remain poorly elucidated. Here, we generated small-molecule-assisted shut-off (SMASh)-tagged hESC lines to reduce METTL3 protein levels, and found that METTL3 is not required for human neural progenitor cell (hNPC) formation and neuron differentiation. However, METTL3 deficiency inhibited hNPC proliferation by reducing SLIT2 expression. Mechanistic studies revealed that METTL3 degradation in hNPCs significantly decreased the enrichment of m6A in SLIT2 mRNA, consequently reducing its expression. Our findings reveal a novel functional target (SLIT2) for METTL3 in hNPCs and contribute to a better understanding of m6A-dependent mechanisms in hNPC proliferation.
Collapse
Affiliation(s)
- Yuan Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jianguo Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yilin Lian
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qian Zhou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
6
|
Abstract
Pathological hair loss (also known as alopecia) and shortage of hair follicle (HF) donors have posed an urgent requirement for HF regeneration. With the revelation of mechanisms in tissue engineering, the proliferation of HFs in vitro has achieved more promising trust for the treatments of alopecia and other skin impairments. Theoretically, HF organoids have great potential to develop into native HFs and attachments such as sweat glands after transplantation. However, since the rich extracellular matrix (ECM) deficiency, the induction characteristics of skin-derived cells gradually fade away along with their trichogenic capacity after continuous cell passaging in vitro. Therefore, ECM-mimicking support is an essential prelude before HF transplantation is implemented. This review summarizes the status of providing various epidermal and dermal cells with a three-dimensional (3D) scaffold to support the cell homeostasis and better mimic in vivo environments for the sake of HF regeneration. HF-relevant cells including dermal papilla cells (DPCs), hair follicle stem cells (HFSCs), and mesenchymal stem cells (MSCs) are able to be induced to form HF organoids in the vitro culture system. The niche microenvironment simulated by different forms of biomaterial scaffold can offer the cells a network of ordered growth environment to alleviate inductivity loss and promote the expression of functional proteins. The scaffolds often play the role of ECM substrates and bring about epithelial-mesenchymal interaction (EMI) through coculture to ensure the functional preservation of HF cells during in vitro passage. Functional HF organoids can be formed either before or after transplantation into the dermis layer. Here, we review and emphasize the importance of 3D culture in HF regeneration in vitro. Finally, the latest progress in treatment trials and critical analysis of the properties and benefits of different emerging biomaterials for HF regeneration along with the main challenges and prospects of HF regenerative approaches are discussed.
Collapse
Affiliation(s)
- Wei Zheng
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P.R. China
| | - Chang-Hua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P.R. China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
| |
Collapse
|
7
|
Patil S, Islam F, Gopalan V. Diagnostic and Prognostic Implications of Cancer Stem Cell Transcription Factors. CANCER STEM CELLS: BASIC CONCEPT AND THERAPEUTIC IMPLICATIONS 2023:325-347. [DOI: 10.1007/978-981-99-3185-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Nile tilapia (Oreochromis niloticus) Nanog co-expression with Pou5f3, transcriptional regulation and biological activity in embyonic development and embryonic cells. Comp Biochem Physiol B Biochem Mol Biol 2022; 264:110812. [DOI: 10.1016/j.cbpb.2022.110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
|
9
|
German OL, Vallese-Maurizi H, Soto TB, Rotstein NP, Politi LE. Retina stem cells, hopes and obstacles. World J Stem Cells 2021; 13:1446-1479. [PMID: 34786153 PMCID: PMC8567457 DOI: 10.4252/wjsc.v13.i10.1446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Retinal degeneration is a major contributor to visual dysfunction worldwide. Although it comprises several eye diseases, loss of retinal pigment epithelial (RPE) and photoreceptor cells are the major contributors to their pathogenesis. Early therapies included diverse treatments, such as provision of anti-vascular endothelial growth factor and many survival and trophic factors that, in some cases, slow down the progression of the degeneration, but do not effectively prevent it. The finding of stem cells (SC) in the eye has led to the proposal of cell replacement strategies for retina degeneration. Therapies using different types of SC, such as retinal progenitor cells (RPCs), embryonic SC, pluripotent SCs (PSCs), induced PSCs (iPSCs), and mesenchymal stromal cells, capable of self-renewal and of differentiating into multiple cell types, have gained ample support. Numerous preclinical studies have assessed transplantation of SC in animal models, with encouraging results. The aim of this work is to revise the different preclinical and clinical approaches, analyzing the SC type used, their efficacy, safety, cell attachment and integration, absence of tumor formation and immunorejection, in order to establish which were the most relevant and successful. In addition, we examine the questions and concerns still open in the field. The data demonstrate the existence of two main approaches, aimed at replacing either RPE cells or photoreceptors. Emerging evidence suggests that RPCs and iPSC are the best candidates, presenting no ethical concerns and a low risk of immunorejection. Clinical trials have already supported the safety and efficacy of SC treatments. Serious concerns are pending, such as the risk of tumor formation, lack of attachment or integration of transplanted cells into host retinas, immunorejection, cell death, and also ethical. However, the amazing progress in the field in the last few years makes it possible to envisage safe and effective treatments to restore vision loss in a near future.
Collapse
Affiliation(s)
- Olga L German
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Harmonie Vallese-Maurizi
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Tamara B Soto
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Nora P Rotstein
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Luis Enrique Politi
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
10
|
Ghafouri-Fard S, Moghadam MHB, Shoorei H, Bahroudi Z, Taheri M, Taheriazam A. The impact of non-coding RNAs on normal stem cells. Biomed Pharmacother 2021; 142:112050. [PMID: 34426251 DOI: 10.1016/j.biopha.2021.112050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Self-renewal and differentiation into diverse cells are two main characteristics of stem cells. These cells have important roles in development and homeostasis of different tissues and are supposed to facilitate tissue regeneration. Function of stem cells is regulated by dynamic interactions between external signaling, epigenetic factors, and molecules that regulate expression of genes. Among the highly appreciated regulators of function of stem cells are long non-coding RNAs (lncRNAs) and microRNAs (miRNAs). Impact of miR-342-5p, miR-145, miR-1297, miR-204-5p, miR-132, miR-128-3p, hsa-miR-302, miR-26b-5p and miR-10a are among miRNAs that regulate function of stem cells. Among lncRNAs, AK141205, ANCR, MEG3, Pnky, H19, TINCR, HULC, EPB41L4A-AS1 and SNHG7 have important roles in the regulation of stem cells. In the current paper, we aimed at reviewing the importance of miRNAs and lncRNAs in differentiation of stem cells both in normal and diseased conditions. For this purpose, we searched PubMed/Medline and google scholar databases using "stem cell" AND "lncRNA", or "long non-coding RNA", or "microRNA" or "miRNA".
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
11
|
Salilew-Wondim D, Tesfaye D, Rings F, Held-Hoelker E, Miskel D, Sirard MA, Tholen E, Schellander K, Hoelker M. The global gene expression outline of the bovine blastocyst: reflector of environmental conditions and predictor of developmental capacity. BMC Genomics 2021; 22:408. [PMID: 34082721 PMCID: PMC8176733 DOI: 10.1186/s12864-021-07693-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Background Morphological evaluation of embryos has been used to screen embryos for transfer. However, the repeatability and accuracy of this method remains low. Thus, evaluation of an embryo’s gene expression signature with respect to its developmental capacity could provide new opportunities for embryo selection. Since the gene expression outline of an embryo is considered as an aggregate of its intrinsic characteristics and culture conditions, we have compared transcriptome profiles of in vivo and in vitro derived blastocysts in relation to pregnancy outcome to unravel the discrete effects of developmental competence and environmental conditions on bovine embryo gene expression outlines. To understand whether the gene expression patterns could be associated with blastocyst developmental competency, the global transcriptome profile of in vivo (CVO) and in vitro (CVT) derived competent blastocysts that resulted in pregnancy was investigated relative to that of in vivo (NVO) and in vitro (NVT) derived blastocysts which did not establish initial pregnancy, respectively while to unravel the effects of culture condition on the transcriptome profile of embryos, the transcriptional activity of the CVO group was compared to the CVT group and the NVO group was compared to the NVT ones. Results A total of 700 differentially expressed genes (DEGs) were identified between CVO and NVO blastocysts. These gene transcripts represent constitutive regions, indel variants, 3′-UTR sequence variants and novel transcript regions. The majority (82%) of these DEGs, including gene clusters like ATP synthases, eukaryotic translation initiation factors, ribosomal proteins, mitochondrial ribosomal proteins, NADH dehydrogenase and cytochrome c oxidase subunits were enriched in the CVO group. These DEGs were involved in pathways associated with glycolysis/glycogenesis, citrate acid cycle, pyruvate metabolism and oxidative phosphorylation. Similarly, a total of 218 genes were differentially expressed between CVT and NVT groups. Of these, 89%, including TPT1, PDIA6, HSP90AA1 and CALM, were downregulated in the CVT group and those DEGs were overrepresented in pathways related to protein processing, endoplasmic reticulum, spliceasome, ubiquitone mediated proteolysis and steroid biosynthesis. On the other hand, although both the CVT and CVO blastocyst groups resulted in pregnancy, a total of 937 genes were differential expressed between the two groups. Compared to CVO embryos, the CVT ones exhibited downregulation of gene clusters including ribosomal proteins, mitochondrial ribosomal protein, eukaryotic translation initiation factors, ATP synthases, NADH dehydrogenase and cytochrome c oxidases. Nonetheless, downregulation of these genes could be associated with pre and postnatal abnormalities observed after transfer of in vitro embryos. Conclusion The present study provides a detailed inventory of differentially expressed gene signatures and pathways specifically reflective of the developmental environment and future developmental capacities of bovine embryos suggesting that transcriptome activity observed in blastocysts could be indicative of further pregnancy success but also adaptation to culture environment. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07693-0.
Collapse
Affiliation(s)
- Dessie Salilew-Wondim
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3105 Rampart Rd, CO, 80521, Fort Collins, USA
| | - Franca Rings
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Eva Held-Hoelker
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Dennis Miskel
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Marc-Andre Sirard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des sciences de l'agriculture et de l'alimentation, INAF, Pavillon des services, Université Laval (Québec), G1V 0A6, Quebec City, Canada
| | - Ernst Tholen
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Karl Schellander
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Michael Hoelker
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany. .,Department of Animal Science, Biotechnology & Reproduction in farm animals, University of Goettingen, Burckhardtweg 2, 37077, Goettingen, Germany.
| |
Collapse
|
12
|
Xie D, Tong M, Xia B, Feng G, Wang L, Li A, Luo G, Wan H, Zhang Z, Zhang H, Yang YG, Zhou Q, Wang M, Wang XJ. Long noncoding RNA lnc-NAP sponges mmu-miR-139-5p to modulate Nanog functions in mouse ESCs and embryos. RNA Biol 2021; 18:875-887. [PMID: 32991228 PMCID: PMC8081037 DOI: 10.1080/15476286.2020.1827591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/30/2020] [Accepted: 09/20/2020] [Indexed: 12/30/2022] Open
Abstract
The pluripotency of embryonic stem cells (ESCs) is controlled by a multilayer regulatory network, of which the key factors include core pluripotency genes Oct4, Sox2 and Nanog, and multiple microRNAs (miRNAs). Recently, long noncoding RNAs (lncRNAs) have been discovered as a class of new regulators for ESCs, and some lncRNAs could function as competing endogenous RNAs (ceRNAs) to regulate mRNAs by competitively binding to miRNAs. Here, we identify mmu-miR-139-5p as a new regulator for Nanog by targeting Nanog 3' untranslated region (UTR) to repress Nanog expression in mouse ESCs and embryos. Such regulation could be released by an ESC-specifically expressed ceRNA named lnc-NAP. The expression of lnc-NAP is activated by OCT4, SOX2, as well as NANOG through promoter binding. Downregulation of lnc-NAP reduces Nanog abundance, which leads to decreased pluripotency of mouse ESCs and embryonic lethality. These results reveal lnc-NAP as a new regulator for Nanog in mouse ESCs, and uncover a feed-forward regulatory loop of Nanog through the participation of lnc-NAP.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Animals
- Cell Differentiation/genetics
- Embryo, Mammalian/cytology
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Embryonic Stem Cells/cytology
- Embryonic Stem Cells/metabolism
- Gene Expression Regulation, Developmental
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Inbred NOD
- Mice, SCID
- MicroRNAs/genetics
- Nanog Homeobox Protein/genetics
- Nanog Homeobox Protein/metabolism
- Octamer Transcription Factor-3/genetics
- Octamer Transcription Factor-3/metabolism
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA, Long Noncoding/genetics
- RNA-Seq/methods
- Reverse Transcriptase Polymerase Chain Reaction/methods
- SOXB1 Transcription Factors/genetics
- SOXB1 Transcription Factors/metabolism
- Mice
Collapse
Affiliation(s)
- Dongfang Xie
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Man Tong
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Baolong Xia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Leyun Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ang Li
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Guanzheng Luo
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Haifeng Wan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zeyu Zhang
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hao Zhang
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yun-Gui Yang
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meng Wang
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Jie Wang
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Wu Y, Zhang W. The Role of E3s in Regulating Pluripotency of Embryonic Stem Cells and Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:1168. [PMID: 33503896 PMCID: PMC7865285 DOI: 10.3390/ijms22031168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Pluripotent embryonic stem cells (ESCs) are derived from early embryos and can differentiate into any type of cells in living organisms. Induced pluripotent stem cells (iPSCs) resemble ESCs, both of which serve as excellent sources to study early embryonic development and realize cell replacement therapies for age-related degenerative diseases and other cell dysfunction-related illnesses. To achieve these valuable applications, comprehensively understanding of the mechanisms underlying pluripotency maintenance and acquisition is critical. Ubiquitination modifies proteins with Ubiquitin (Ub) at the post-translational level to monitor protein stability and activity. It is extensively involved in pluripotency-specific regulatory networks in ESCs and iPSCs. Ubiquitination is achieved by sequential actions of the Ub-activating enzyme E1, Ub-conjugating enzyme E2, and Ub ligase E3. Compared with E1s and E2s, E3s are most abundant, responsible for substrate selectivity and functional diversity. In this review, we focus on E3 ligases to discuss recent progresses in understanding how they regulate pluripotency and somatic cell reprogramming through ubiquitinating core ESC regulators.
Collapse
Affiliation(s)
| | - Weiwei Zhang
- College of Life Sciences, Capital Normal University, Beijing 100048, China;
| |
Collapse
|
14
|
Plant AL, Halter M, Stinson J. Probing pluripotency gene regulatory networks with quantitative live cell imaging. Comput Struct Biotechnol J 2020; 18:2733-2743. [PMID: 33101611 PMCID: PMC7560648 DOI: 10.1016/j.csbj.2020.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/12/2022] Open
Abstract
Live cell imaging uniquely enables the measurement of dynamic events in single cells, but it has not been used often in the study of gene regulatory networks. Network components can be examined in relation to one another by quantitative live cell imaging of fluorescent protein reporter cell lines that simultaneously report on more than one network component. A series of dual-reporter cell lines would allow different combinations of network components to be examined in individual cells. Dynamical information about interacting network components in individual cells is critical to predictive modeling of gene regulatory networks, and such information is not accessible through omics and other end point techniques. Achieving this requires that gene-edited cell lines are appropriately designed and adequately characterized to assure the validity of the biological conclusions derived from the expression of the reporters. In this brief review we discuss what is known about the importance of dynamics to network modeling and review some recent advances in optical microscopy methods and image analysis approaches that are making the use of quantitative live cell imaging for network analysis possible. We also discuss how strategies for genetic engineering of reporter cell lines can influence the biological relevance of the data.
Collapse
Affiliation(s)
- Anne L Plant
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, United States
| | - Michael Halter
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, United States
| | - Jeffrey Stinson
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, United States
| |
Collapse
|
15
|
Ozawa Y, Yamamuro S, Sano E, Tatsuoka J, Hanashima Y, Yoshimura S, Sumi K, Hara H, Nakayama T, Suzuki Y, Yoshino A. Indoleamine 2,3-dioxygenase 1 is highly expressed in glioma stem cells. Biochem Biophys Res Commun 2020; 524:723-729. [PMID: 32035622 DOI: 10.1016/j.bbrc.2020.01.148] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 01/26/2023]
Abstract
Recent research has revealed that glioblastoma (GBM) avoids the immune system via strong expression of indoleamine 2,3-dioxygenase 1 (IDO1). IDO1, an enzyme involved in tryptophan metabolism, is now proposed as a new target in GBM treatment, since several reports have demonstrated that IDO1 expression is related to GBM malignancy. On the other hand, it is well known that glioma stem cells (GSCs) are strongly related to the malignancy of GBM. However, there is as yet no report evaluating the relationship between GSCs and IDO1. We therefore examined the expression levels of IDO1 in GSCs in order to identify a new therapeutic target for GBM based on the immune systems of GSCs. In the present study, we employed human GBM cell lines (U-138MG, U-251MG) and patient-derived GSC model cell lines (0125-GSC, 0222-GSC). GSC model cell lines Rev-U-138MG and Rev-U-251MG were established by culturing U-138MG and U-251MG in serum-free media, while differentiated GBM model cell lines 0125-DGC and 0222-DGC were established by culturing 0125-GSC and 0222-GSC in serum-containing media. The expression levels of stem cell markers (Nanog, Nestin, Oct4 and Sox2) and IDO1 protein and mRNA were determined. Rev-U-138MG and Rev-U-251MG formed spheres and their expression levels of stem cell markers were increased as compared to U-138MG and U-251MG. On the other hand, 0125-DGC and 0222-DGC suffered breakdown of sphere formation, despite the original 0125-GSC and 0222-GSC forming spheres, and their expression levels of the markers were decreased. IDO1 expressions were strongly recognized in Rev-U-138MG, Rev-U-251MG, 0125-GSC and 0222-GSC as compared to U-138MG, U-251MG, 0125-DGC and 0222-DGC. These findings demonstrate that GSCs exhibit treatment resistance with immunosuppression via high expression levels of IDO1, and could represent a novel target for GBM treatment.
Collapse
Affiliation(s)
- Yoshinari Ozawa
- Department of Neurosurgery, Nihon University School of Medicine, 30-1, Ohyaguchi-kamichou, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Shun Yamamuro
- Department of Neurosurgery, Nihon University School of Medicine, 30-1, Ohyaguchi-kamichou, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Emiko Sano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Juri Tatsuoka
- Department of Neurosurgery, Nihon University School of Medicine, 30-1, Ohyaguchi-kamichou, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Yuya Hanashima
- Department of Neurosurgery, Nihon University School of Medicine, 30-1, Ohyaguchi-kamichou, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Sodai Yoshimura
- Department of Neurosurgery, Nihon University School of Medicine, 30-1, Ohyaguchi-kamichou, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Koichiro Sumi
- Department of Neurosurgery, Nihon University School of Medicine, 30-1, Ohyaguchi-kamichou, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Hiroyuki Hara
- Department of Anatomical Science, Nihon University School of Medicine, 30-1, Ohyaguchi-kamichou, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Tomohiro Nakayama
- Division of Companion Diagnostics, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1, Ohyaguchi-kamichou, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Atsuo Yoshino
- Department of Neurosurgery, Nihon University School of Medicine, 30-1, Ohyaguchi-kamichou, Itabashi-ku, Tokyo, 173-8610, Japan
| |
Collapse
|
16
|
Thakurela S, Sindhu C, Yurkovsky E, Riemenschneider C, Smith ZD, Nachman I, Meissner A. Differential regulation of OCT4 targets facilitates reacquisition of pluripotency. Nat Commun 2019; 10:4444. [PMID: 31570708 PMCID: PMC6768871 DOI: 10.1038/s41467-019-11741-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 08/02/2019] [Indexed: 01/14/2023] Open
Abstract
Ectopic transcription factor expression enables reprogramming of somatic cells to pluripotency, albeit with generally low efficiency. Despite steady progress in the field, the exact molecular mechanisms that coordinate this remarkable transition still remain largely elusive. To better characterize the final steps of pluripotency induction, we optimized an experimental system where pluripotent stem cells are differentiated for set intervals before being reintroduced to pluripotency-supporting conditions. Using this approach, we identify a transient period of high-efficiency reprogramming where ectopic transcription factors, but not serum/LIF alone, rapidly revert cells to pluripotency with near 100% efficiency. After this period, cells reprogram with somatic-like kinetics and efficiencies. We identify a set of OCT4 bound cis-regulatory elements that are dynamically regulated during this transient phase and appear central to facilitating reprogramming. Interestingly, these regions remain hypomethylated during in vitro and in vivo differentiation, which may allow them to act as primary targets of ectopically induced factors during somatic cell reprogramming.
Collapse
Affiliation(s)
- Sudhir Thakurela
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Camille Sindhu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Evgeny Yurkovsky
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel.,Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| | | | - Zachary D Smith
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Iftach Nachman
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel.
| | - Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
17
|
Terada M, Kawamata M, Kimura R, Sekiya S, Nagamatsu G, Hayashi K, Horisawa K, Suzuki A. Generation of
Nanog
reporter mice that distinguish pluripotent stem cells from unipotent primordial germ cells. Genesis 2019; 57:e23334. [DOI: 10.1002/dvg.23334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Maiko Terada
- Division of Organogenesis and Regeneration Medical Institute of Bioregulation, Kyushu University Fukuoka Japan
| | - Masaki Kawamata
- Division of Organogenesis and Regeneration Medical Institute of Bioregulation, Kyushu University Fukuoka Japan
| | - Ryota Kimura
- Division of Organogenesis and Regeneration Medical Institute of Bioregulation, Kyushu University Fukuoka Japan
| | - Sayaka Sekiya
- Division of Organogenesis and Regeneration Medical Institute of Bioregulation, Kyushu University Fukuoka Japan
| | - Go Nagamatsu
- Department of Stem Cell Biology and Medicine Graduate School of Medical Sciences, Kyushu University Fukuoka Japan
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine Graduate School of Medical Sciences, Kyushu University Fukuoka Japan
| | - Kenichi Horisawa
- Division of Organogenesis and Regeneration Medical Institute of Bioregulation, Kyushu University Fukuoka Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration Medical Institute of Bioregulation, Kyushu University Fukuoka Japan
| |
Collapse
|
18
|
Nakanoh S, Agata K. Evolutionary view of pluripotency seen from early development of non-mammalian amniotes. Dev Biol 2019; 452:95-103. [PMID: 31029690 DOI: 10.1016/j.ydbio.2019.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/22/2019] [Accepted: 04/24/2019] [Indexed: 11/24/2022]
Abstract
Early embryonic cells are capable of acquiring numerous developmental fates until they become irreversibly committed to specific lineages depending on intrinsic determinants and/or regional interactions. From fertilization to gastrulation, such pluripotent cells first increase in number and then turn to undergoing differentiation. Mechanisms regulating pluripotency in each species attract great interest in developmental biology. Also, outlining the evolutionary background of pluripotency can enhance our understanding of mammalian pluripotency and provide a broader view of early development of vertebrates. Here, we introduce integrative models of pluripotent states in amniotes (mammals, birds and reptiles) to offer a comprehensive overview of widely accepted knowledge about mammalian pluripotency and our recent findings in non-mammalian amniotes, such as chicken and gecko. In particular, we describe 1) the IL6/Stat3 signaling pathway as a positive regulator of naive pluripotency, 2) Fgf/Erk signaling as a process that prepares cells for differentiation, 3) the role of the interactions between these two signaling pathways during the transition from pluripotency to differentiation, and 4) functional diversification of two transcription factors, Class V POUs and Nanog. In the last section, we also briefly discuss possible relationships of unique cell cycle properties of early embryonic cells with signaling pathways and developmental potentials in the pluripotent cell states.
Collapse
Affiliation(s)
- Shota Nakanoh
- Division of Embryology, National Institute for Basic Biology, Okazaki 444-8787, Japan; Wellcome-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Kiyokazu Agata
- Graduate Course in Life Science, Gakushuin University, Toyoshima-ku, Tokyo 171-8588, Japan.
| |
Collapse
|
19
|
Slc25a36 modulates pluripotency of mouse embryonic stem cells by regulating mitochondrial function and glutathione level. Biochem J 2019; 476:1585-1604. [PMID: 31036718 DOI: 10.1042/bcj20190057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/09/2019] [Accepted: 04/29/2019] [Indexed: 01/01/2023]
Abstract
Mitochondria play a central role in the maintenance of the naive state of embryonic stem cells. Many details of the mechanism remain to be fully elucidated. Solute carrier family 25 member 36 (Slc25a36) might regulate mitochondrial function through transporting pyrimidine nucleotides for mtDNA/RNA synthesis. Its physical role in this process remains unknown; however, Slc25a36 was recently found to be highly expressed in naive mouse embryonic stem cells (mESCs). Here, the function of Slc25a36 was characterized as a maintenance factor of mESCs pluripotency. Slc25a36 deficiency (via knockdown) has been demonstrated to result in mitochondrial dysfunction, which induces the differentiation of mESCs. The expression of key pluripotency markers (Pou5f1, Sox2, Nanog, and Utf1) decreased, while that of key TE genes (Cdx2, Gata3, and Hand1) increased. Cdx2-positive cells emerged in Slc25a36-deficient colonies under trophoblast stem cell culture conditions. As a result of Slc25a36 deficiency, mtDNA of knockdown cells declined, leading to impaired mitochondria with swollen morphology, decreased mitochondrial membrane potential, and low numbers. The key transcription regulators of mitochondrial biogenesis also decreased. These results indicate that mitochondrial dysfunction leads to an inability to support the pluripotency maintenance. Moreover, down-regulated glutathione metabolism and up-regulated focal adhesion reinforced and stabilized the process of differentiation by separately enhancing OCT4 degradation and promoting cell spread. This study improves the understanding of the function of Slc25a36, as well as the relationship of mitochondrial function with naive pluripotency maintenance and stem cell fate decision.
Collapse
|
20
|
Nikopoulou C, Parekh S, Tessarz P. Ageing and sources of transcriptional heterogeneity. Biol Chem 2019; 400:867-878. [DOI: 10.1515/hsz-2018-0449] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/27/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Cellular heterogeneity is an important contributor to biological function and is employed by cells, tissues and organisms to adapt, compensate, respond, defend and/or regulate specific processes. Research over the last decades has revealed that transcriptional noise is a major driver for cell-to-cell variability. In this review we will discuss sources of transcriptional variability, in particular bursting of gene expression and how it could contribute to cellular states and fate decisions. We will highlight recent developments in single cell sequencing technologies that make it possible to address cellular heterogeneity in unprecedented detail. Finally, we will review recent literature, in which these new technologies are harnessed to address pressing questions in the field of ageing research, such as transcriptional noise and cellular heterogeneity in the course of ageing.
Collapse
Affiliation(s)
- Chrysa Nikopoulou
- Max Planck Research Group ‘Chromatin and Ageing’ , Max Planck Institute for Biology of Ageing , Joseph-Stelzmann-Str. 9b , D-50931 Cologne , Germany
| | - Swati Parekh
- Max Planck Research Group ‘Chromatin and Ageing’ , Max Planck Institute for Biology of Ageing , Joseph-Stelzmann-Str. 9b , D-50931 Cologne , Germany
| | - Peter Tessarz
- Max Planck Research Group ‘Chromatin and Ageing’ , Max Planck Institute for Biology of Ageing , Joseph-Stelzmann-Str. 9b , D-50931 Cologne , Germany
- Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD) , University of Cologne , Joseph-Stelzmann-Str. 26 , D-50931 Cologne , Germany
| |
Collapse
|
21
|
Khazim M, Postiglione L, Pedone E, Rocca DL, Zahra C, Marucci L. Towards automated control of embryonic stem cell pluripotency. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ifacol.2019.12.240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Hayashi Y, Ohnuma K, Furue MK. Pluripotent Stem Cell Heterogeneity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1123:71-94. [DOI: 10.1007/978-3-030-11096-3_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Abstract
We present an overview of symmetry breaking in early mammalian development as a continuous process from compaction to specification of the body axes. While earlier studies have focused on individual symmetry-breaking events, recent advances enable us to explore progressive symmetry breaking during early mammalian development. Although we primarily discuss embryonic development of the mouse, as it is the best-studied mammalian model system to date, we also highlight the shared and distinct aspects between different mammalian species. Finally, we discuss how insights gained from studying mammalian development can be generalized in light of self-organization principles. With this review, we hope to highlight new perspectives in studying symmetry breaking and self-organization in multicellular systems.
Collapse
Affiliation(s)
- Hui Ting Zhang
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| | - Takashi Hiiragi
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| |
Collapse
|
24
|
Zaveri L, Dhawan J. Cycling to Meet Fate: Connecting Pluripotency to the Cell Cycle. Front Cell Dev Biol 2018; 6:57. [PMID: 29974052 PMCID: PMC6020794 DOI: 10.3389/fcell.2018.00057] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/14/2018] [Indexed: 01/26/2023] Open
Abstract
Pluripotent stem cells are characterized by their high proliferative rates, their ability to self-renew and their potential to differentiate to all the three germ layers. This rapid proliferation is brought about by a highly modified cell cycle that allows the cells to quickly shuttle from DNA synthesis to cell division, by reducing the time spent in the intervening gap phases. Many key regulators that define the somatic cell cycle are either absent or exhibit altered behavior, allowing the pluripotent cell to bypass cell cycle checkpoints typical of somatic cells. Experimental analysis of this modified stem cell cycle has been challenging due to the strong link between rapid proliferation and pluripotency, since perturbations to the cell cycle or pluripotency factors result in differentiation. Despite these hurdles, our understanding of this unique cell cycle has greatly improved over the past decade, in part because of the availability of new technologies that permit the analysis of single cells in heterogeneous populations. This review aims to highlight some of the recent discoveries in this area with a special emphasis on different states of pluripotency. We also discuss the highly interlinked network that connects pluripotency factors and key cell cycle genes and review evidence for how this interdependency may promote the rapid cell cycle. This issue gains translational importance since disruptions in stem cell proliferation and differentiation can impact disorders at opposite ends of a spectrum, from cancer to degenerative disease.
Collapse
Affiliation(s)
- Lamuk Zaveri
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India.,Manipal Academy of Higher Education, Manipal, India
| | - Jyotsna Dhawan
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
25
|
Akberdin IR, Omelyanchuk NA, Fadeev SI, Leskova NE, Oschepkova EA, Kazantsev FV, Matushkin YG, Afonnikov DA, Kolchanov NA. Pluripotency gene network dynamics: System views from parametric analysis. PLoS One 2018; 13:e0194464. [PMID: 29596533 PMCID: PMC5875786 DOI: 10.1371/journal.pone.0194464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/02/2018] [Indexed: 01/06/2023] Open
Abstract
Multiple experimental data demonstrated that the core gene network orchestrating self-renewal and differentiation of mouse embryonic stem cells involves activity of Oct4, Sox2 and Nanog genes by means of a number of positive feedback loops among them. However, recent studies indicated that the architecture of the core gene network should also incorporate negative Nanog autoregulation and might not include positive feedbacks from Nanog to Oct4 and Sox2. Thorough parametric analysis of the mathematical model based on this revisited core regulatory circuit identified that there are substantial changes in model dynamics occurred depending on the strength of Oct4 and Sox2 activation and molecular complexity of Nanog autorepression. The analysis showed the existence of four dynamical domains with different numbers of stable and unstable steady states. We hypothesize that these domains can constitute the checkpoints in a developmental progression from naïve to primed pluripotency and vice versa. During this transition, parametric conditions exist, which generate an oscillatory behavior of the system explaining heterogeneity in expression of pluripotent and differentiation factors in serum ESC cultures. Eventually, simulations showed that addition of positive feedbacks from Nanog to Oct4 and Sox2 leads mainly to increase of the parametric space for the naïve ESC state, in which pluripotency factors are strongly expressed while differentiation ones are repressed.
Collapse
Affiliation(s)
- Ilya R. Akberdin
- Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- San Diego State University, San Diego, CA, United States of America
| | - Nadezda A. Omelyanchuk
- Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Stanislav I. Fadeev
- Novosibirsk State University, Novosibirsk, Russia
- Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
| | - Natalya E. Leskova
- Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Evgeniya A. Oschepkova
- Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Fedor V. Kazantsev
- Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Yury G. Matushkin
- Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Dmitry A. Afonnikov
- Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Nikolay A. Kolchanov
- Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
26
|
Zhou Y, Song N, Li X, Han Y, Ren Z, Xu JX, Han YC, Li F, Jia X. Changes in the methylation status of the Oct3/4, Nanog, and Sox2 promoters in stem cells during regeneration of rat tracheal epithelium after injury. Oncotarget 2018; 8:2984-2994. [PMID: 27935870 PMCID: PMC5356857 DOI: 10.18632/oncotarget.13818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 11/21/2016] [Indexed: 11/25/2022] Open
Abstract
We investigated the relationship between promoter methylation and tracheal stem cell activation. We developed a model of rat tracheal epithelium regeneration after 5-fluorouracil (5-FU)-induced injury. Using immunohistochemistry and Western blotting, the expression levels of the stem cell pluripotency regulator Oct3/4 and differentiation marker CK14 were measured after 5-FU treatment. The methylation status of the Oct3/4, Nanog, and Sox2 promoters was investigated using methylation-specific PCR. Additionally, the effects of 5-azacytidine (5-azaC), a demethylating agent, on Oct3/4, Nanog, and Sox2 mRNA and protein expression were evaluated. Finally, we measured the activity of the maintenance and de novo DNA methyltransferases DNMT1, DNMT3a, and DNMT3b. Our data indicate that Oct3/4, Sox2, and Nanog are transiently expressed in response to 5-FU-induced injury, and then they are gradually silenced as the cells differentiate. DNA methylation can result in silencing of gene expression, and it can determine whether tracheal stem cells are in an active or dormant state. Treatment with 5-FU reversed the methylation of the Oct3/4, Nanog, and Sox2 promoters, which corresponded to increases in Oct3/4, Nanog, and Sox2 mRNA and protein. Thus, both maintenance and de novo methyltransferases are involved in regulating tracheal stem cell dormancy and activation.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Department of Emergency, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Nan Song
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xin Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Department of Physiology, College of Life Science and Biopharmaceutics of Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying Han
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Department of Pathology, Shenyang Medical College, Shenyang, 110001, China
| | - Zihan Ren
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Jing-Xian Xu
- Department of Ophthalmology, The 4th Affiliated Hospital, Eye Institute, China Medical University, The Key Laboratory of Lens Research, Shenyang 110005, China
| | - Yu-Chen Han
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Fang Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,IVF Michigan, Bloomfield Hills, MI, 48304, USA
| | - Xinshan Jia
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
27
|
Su Z, Zhang Y, Liao B, Zhong X, Chen X, Wang H, Guo Y, Shan Y, Wang L, Pan G. Antagonism between the transcription factors NANOG and OTX2 specifies rostral or caudal cell fate during neural patterning transition. J Biol Chem 2018; 293:4445-4455. [PMID: 29386354 DOI: 10.1074/jbc.m117.815449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/29/2018] [Indexed: 01/08/2023] Open
Abstract
During neurogenesis, neural patterning is a critical step during which neural progenitor cells differentiate into neurons with distinct functions. However, the molecular determinants that regulate neural patterning remain poorly understood. Here we optimized the "dual SMAD inhibition" method to specifically promote differentiation of human pluripotent stem cells (hPSCs) into forebrain and hindbrain neural progenitor cells along the rostral-caudal axis. We report that neural patterning determination occurs at the very early stage in this differentiation. Undifferentiated hPSCs expressed basal levels of the transcription factor orthodenticle homeobox 2 (OTX2) that dominantly drove hPSCs into the "default" rostral fate at the beginning of differentiation. Inhibition of glycogen synthase kinase 3β (GSK3β) through CHIR99021 application sustained transient expression of the transcription factor NANOG at early differentiation stages through Wnt signaling. Wnt signaling and NANOG antagonized OTX2 and, in the later stages of differentiation, switched the default rostral cell fate to the caudal one. Our findings have uncovered a mutual antagonism between NANOG and OTX2 underlying cell fate decisions during neural patterning, critical for the regulation of early neural development in humans.
Collapse
Affiliation(s)
- Zhenghui Su
- From the School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China.,the Chinese Academy of Sciences Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China.,the Hefei Institute of Stem Cell and Regenerative Medicine, 230088 Hefei, China
| | - Yanqi Zhang
- the Chinese Academy of Sciences Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Baojian Liao
- the Chinese Academy of Sciences Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China.,the Hefei Institute of Stem Cell and Regenerative Medicine, 230088 Hefei, China
| | - Xiaofen Zhong
- the Chinese Academy of Sciences Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Xin Chen
- the School of Automation, Guangdong University of Technology, 510006 Guangzhou, China, and
| | - Haitao Wang
- From the School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China
| | - Yiping Guo
- the Chinese Academy of Sciences Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Yongli Shan
- the Chinese Academy of Sciences Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Lihui Wang
- the Department of Pathology, Medical College, Jinan University, 510632 Guangzhou, China
| | - Guangjin Pan
- the Chinese Academy of Sciences Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China, .,the Hefei Institute of Stem Cell and Regenerative Medicine, 230088 Hefei, China
| |
Collapse
|
28
|
Choi HJ, Kim I, Lee HJ, Park YH, Suh J, Han JY. Chicken NANOG self‐associates
via
a novel folding‐upon‐binding mechanism. FASEB J 2018; 32:2563-2573. [PMID: 29295863 DOI: 10.1096/fj.201700924rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hee Jung Choi
- Department of Agricultural Biotechnology Research Institute of Agriculture and Life Sciences College of Agriculture and Life Sciences Seoul National University Seoul South Korea
| | - Iktae Kim
- Department of Agricultural Biotechnology Research Institute of Agriculture and Life Sciences College of Agriculture and Life Sciences Seoul National University Seoul South Korea
| | - Hong Jo Lee
- Department of Agricultural Biotechnology Research Institute of Agriculture and Life Sciences College of Agriculture and Life Sciences Seoul National University Seoul South Korea
| | - Young Hyun Park
- Department of Agricultural Biotechnology Research Institute of Agriculture and Life Sciences College of Agriculture and Life Sciences Seoul National University Seoul South Korea
| | - Jeong‐Yong Suh
- Department of Agricultural Biotechnology Research Institute of Agriculture and Life Sciences College of Agriculture and Life Sciences Seoul National University Seoul South Korea
- Institute for Biomedical Sciences Shinshu University Minamiminowa Japan
| | - Jae Yong Han
- Department of Agricultural Biotechnology Research Institute of Agriculture and Life Sciences College of Agriculture and Life Sciences Seoul National University Seoul South Korea
- Institute for Biomedical Sciences Shinshu University Minamiminowa Japan
| |
Collapse
|
29
|
Ma C, Karwacki-Neisius V, Tang H, Li W, Shi Z, Hu H, Xu W, Wang Z, Kong L, Lv R, Fan Z, Zhou W, Yang P, Wu F, Diao J, Tan L, Shi YG, Lan F, Shi Y. Nono, a Bivalent Domain Factor, Regulates Erk Signaling and Mouse Embryonic Stem Cell Pluripotency. Cell Rep 2017; 17:997-1007. [PMID: 27760330 DOI: 10.1016/j.celrep.2016.09.078] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 08/29/2016] [Accepted: 09/22/2016] [Indexed: 10/20/2022] Open
Abstract
Nono is a component of the para-speckle, which stores and processes RNA. Mouse embryonic stem cells (mESCs) lack para-speckles, leaving the function of Nono in mESCs unclear. Here, we find that Nono functions as a chromatin regulator cooperating with Erk to regulate mESC pluripotency. We report that Nono loss results in robust self-renewing mESCs with epigenomic and transcriptomic features resembling the 2i (GSK and Erk inhibitors)-induced "ground state." Erk interacts with and is required for Nono localization to a subset of bivalent genes that have high levels of poised RNA polymerase. Nono loss compromises Erk activation and RNA polymerase poising at its target bivalent genes in undifferentiated mESCs, thus disrupting target gene activation and differentiation. These findings argue that Nono collaborates with Erk signaling to regulate the integrity of bivalent domains and mESC pluripotency.
Collapse
Affiliation(s)
- Chun Ma
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Violetta Karwacki-Neisius
- Newborn Medicine Division, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Haoran Tang
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenjing Li
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhennan Shi
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Haolin Hu
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenqi Xu
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhentian Wang
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lingchun Kong
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ruitu Lv
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zheng Fan
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China
| | - Pengyuan Yang
- Department of Systems Biology, Institutes of Biomedical Sciences, Fudan University, 138 Yixue Yuan Road, Shanghai 200032, China
| | - Feizhen Wu
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jianbo Diao
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Li Tan
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yujiang Geno Shi
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Division of Endocrinology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Fei Lan
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Yang Shi
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Newborn Medicine Division, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Truntipakorn A, Makeudom A, Sastraruji T, Pavasant P, Pattamapun K, Krisanaprakornkit S. Effects of prostaglandin E 2 on clonogenicity, proliferation and expression of pluripotent markers in human periodontal ligament cells. Arch Oral Biol 2017; 83:130-135. [DOI: 10.1016/j.archoralbio.2017.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
|
31
|
Memon A, Song KD, Lee WK. Characterization of the porcine Nanog 5'-flanking region. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:449-456. [PMID: 28823121 PMCID: PMC5838351 DOI: 10.5713/ajas.17.0431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/02/2017] [Accepted: 08/11/2017] [Indexed: 12/02/2022]
Abstract
Objective Nanog, a homeodomain protein, has been investigated in humans and mice using embryonic stem cells (ESCs). Because of the limited availability of ESCs, few studies have reported the function and role of Nanog in porcine ESCs. Therefore, in this study, we investigated the location of the porcine Nanog chromosome and its basal promoter activity, which might have potential applications in development of ESCs specific marker as well as understanding its operating systems in the porcine. Methods To characterize the porcine Nanog promoter, the 5′-flanking region of Nanog was isolated from cells of mini-pig ears. BLAST database search showed that there are two porcine Nanog genomic loci, chromosome 1 and 5, both of which contain an exon with a start codon. Deletion mutants from the 5′-flanking region of both loci were measured using the Dual-Luciferase Reporter Assay System, and a fluorescence marker, green fluorescence protein. Results Promoter activity was detected in the sequences of chromosome 5, but not in those of chromosome 1. We identified the sequences from –99 to +194 that possessed promoter activity and contained transcription factor binding sites from deletion fragment analysis. Among the transcription factor binding sites, a Sp1 was found to play a crucial role in basal promoter activity, and point mutation of this site abolished its activity, confirming its role in promoter activity. Furthermore, gel shift analysis and chromatin immunoprecipitation analysis confirmed that Sp1 transcription factor binds to the Sp1 binding site in the porcine Nanog promoter. Taken together, these results show that Sp1 transcription factor is an essential element for porcine Nanog basal activity the same as in human and mouse. Conclusion We showed that the porcine Nanog gene is located on porcine chromosome 5 and its basal transcriptional activity is controlled by Sp1 transcription factor.
Collapse
Affiliation(s)
- Azra Memon
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896, Korea
| | - Woon Kyu Lee
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea
| |
Collapse
|
32
|
|
33
|
Smith RCG, Stumpf PS, Ridden SJ, Sim A, Filippi S, Harrington HA, MacArthur BD. Nanog Fluctuations in Embryonic Stem Cells Highlight the Problem of Measurement in Cell Biology. Biophys J 2017; 112:2641-2652. [PMID: 28636920 PMCID: PMC5479053 DOI: 10.1016/j.bpj.2017.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/19/2017] [Accepted: 05/05/2017] [Indexed: 11/18/2022] Open
Abstract
A number of important pluripotency regulators, including the transcription factor Nanog, are observed to fluctuate stochastically in individual embryonic stem cells. By transiently priming cells for commitment to different lineages, these fluctuations are thought to be important to the maintenance of, and exit from, pluripotency. However, because temporal changes in intracellular protein abundances cannot be measured directly in live cells, fluctuations are typically assessed using genetically engineered reporter cell lines that produce a fluorescent signal as a proxy for protein expression. Here, using a combination of mathematical modeling and experiment, we show that there are unforeseen ways in which widely used reporter strategies can systematically disturb the dynamics they are intended to monitor, sometimes giving profoundly misleading results. In the case of Nanog, we show how genetic reporters can compromise the behavior of important pluripotency-sustaining positive feedback loops, and induce a bifurcation in the underlying dynamics that gives rise to heterogeneous Nanog expression patterns in reporter cell lines that are not representative of the wild-type. These findings help explain the range of published observations of Nanog variability and highlight the problem of measurement in live cells.
Collapse
Affiliation(s)
- Rosanna C G Smith
- Centre for Human Development, Stem Cells, and Regeneration, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Patrick S Stumpf
- Centre for Human Development, Stem Cells, and Regeneration, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sonya J Ridden
- Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| | - Aaron Sim
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Sarah Filippi
- Department of Mathematics, Imperial College London, London, United Kingdom; Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | | | - Ben D MacArthur
- Centre for Human Development, Stem Cells, and Regeneration, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Mathematical Sciences, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
34
|
Nanog Dynamics in Mouse Embryonic Stem Cells: Results from Systems Biology Approaches. Stem Cells Int 2017; 2017:7160419. [PMID: 28684962 PMCID: PMC5480057 DOI: 10.1155/2017/7160419] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/20/2017] [Indexed: 12/12/2022] Open
Abstract
Mouse embryonic stem cells (mESCs), derived from the inner cell mass of the blastocyst, are pluripotent stem cells having self-renewal capability and the potential of differentiating into every cell type under the appropriate culture conditions. An increasing number of reports have been published to uncover the molecular mechanisms that orchestrate pluripotency and cell fate specification using combined computational and experimental methodologies. Here, we review recent systems biology approaches to describe the causes and functions of gene expression heterogeneity and complex temporal dynamics of pluripotency markers in mESCs under uniform culture conditions. In particular, we focus on the dynamics of Nanog, a key regulator of the core pluripotency network and of mESC fate. We summarize the strengths and limitations of different experimental and modeling approaches and discuss how various strategies could be used.
Collapse
|
35
|
DUSP9 Modulates DNA Hypomethylation in Female Mouse Pluripotent Stem Cells. Cell Stem Cell 2017; 20:706-719.e7. [PMID: 28366588 DOI: 10.1016/j.stem.2017.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/12/2016] [Accepted: 03/06/2017] [Indexed: 11/23/2022]
Abstract
Blastocyst-derived embryonic stem cells (ESCs) and gonad-derived embryonic germ cells (EGCs) represent two classic types of pluripotent cell lines, yet their molecular equivalence remains incompletely understood. Here, we compare genome-wide methylation patterns between isogenic ESC and EGC lines to define epigenetic similarities and differences. Surprisingly, we find that sex rather than cell type drives methylation patterns in ESCs and EGCs. Cell fusion experiments further reveal that the ratio of X chromosomes to autosomes dictates methylation levels, with female hybrids being hypomethylated and male hybrids being hypermethylated. We show that the X-linked MAPK phosphatase DUSP9 is upregulated in female compared to male ESCs, and its heterozygous loss in female ESCs leads to male-like methylation levels. However, male and female blastocysts are similarly hypomethylated, indicating that sex-specific methylation differences arise in culture. Collectively, our data demonstrate the epigenetic similarity of sex-matched ESCs and EGCs and identify DUSP9 as a regulator of female-specific hypomethylation.
Collapse
|
36
|
Fu X, Cui K, Yi Q, Yu L, Xu Y. DNA repair mechanisms in embryonic stem cells. Cell Mol Life Sci 2017; 74:487-493. [PMID: 27614628 PMCID: PMC11107665 DOI: 10.1007/s00018-016-2358-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 08/28/2016] [Accepted: 09/05/2016] [Indexed: 10/21/2022]
Abstract
Embryonic stem cells (ESCs) can undergo unlimited self-renewal and retain the pluripotency to differentiate into all cell types in the body. Therefore, as a renewable source of various functional cells in the human body, ESCs hold great promise for human cell therapy. During the rapid proliferation of ESCs in culture, DNA damage, such as DNA double-stranded breaks, will occur in ESCs. Therefore, to realize the potential of ESCs in human cell therapy, it is critical to understand the mechanisms how ESCs activate DNA damage response and DNA repair to maintain genomic stability, which is a prerequisite for their use in human therapy. In this context, it has been shown that ESCs harbor much fewer spontaneous mutations than somatic cells. Consistent with the finding that ESCs are genetically more stable than somatic cells, recent studies have indicated that ESCs can mount more robust DNA damage responses and DNA repair than somatic cells to ensure their genomic integrity.
Collapse
Affiliation(s)
- Xuemei Fu
- Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China.
| | - Ke Cui
- Center for Regenerative and Translational Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qiuxiang Yi
- Center for Regenerative and Translational Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lili Yu
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Xu
- Center for Regenerative and Translational Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong, China.
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
37
|
Abstract
Immunomodulators regulate stem cell activity at all stages of development as well as during adulthood. Embryonic stem cell (ESC) proliferation as well as neurogenic processes during embryonic development are controlled by factors of the immune system. We review here immunophenotypic expression patterns of different stem cell types, including ESC, neural (NSC) and tissue-specific mesenchymal stem cells (MSC), and focus on immunodulatory properties of these cells. Immune and inflammatory responses, involving actions of cytokines as well as toll-like receptor (TLR) signaling are known to affect the differentiation capacity of NSC and MSC. Secretion of pro- and anti-inflammatory messengers by MSC have been observed as the consequence of TLR and cytokine activation and promotion of differentiation into specified phenotypes. As result of augmented differentiation capacity, stem cells secrete angiogenic factors including vascular endothelial growth factor, resulting in multifactorial actions in tissue repair. Immunoregulatory properties of tissue specific adult stem cells are put into the context of possible clinical applications.
Collapse
|
38
|
Li L, Chen Z, Zhang L, Liu G, Hua J, Jia L, Liao M. Genome-wide targets identification of "core" pluripotency transcription factors with integrated features in human embryonic stem cells. MOLECULAR BIOSYSTEMS 2016; 12:1324-32. [PMID: 26912333 DOI: 10.1039/c6mb00006a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Embryonic stem cells (ESCs) play an important role in developmental biology which is still lacking clear molecular mechanisms. The "core" transcription factors (TFs) including OCT4, SOX2 and NANOG are essential for maintaining the stemness of ESCs. But the downstream targets of these "core" TFs are still ambiguous. Based on support vector machine (SVM) technology, this study develops a label method algorithm (LMA) for genome-wide target identification of "core" TFs in humans, which eliminates the need for negative training samples. This method integrates histone modifications and TF binding motifs as identification features. Compared with a previous mapping-convergence (M-C) algorithm, the LMA can provide more stable and reliable predictions. 4796, 3166 and 4384 target genes of OCT4, SOX2 and NANOG, respectively, were identified with the LMA model. Then verifications of the predicted targets were carried out based on their functional consistency and their connection degree in networks from a computational system biology perspective. The results showed that the targets of "core" TFs present higher gene functional similarity and closer connection distance than background levels.
Collapse
Affiliation(s)
- Leijie Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | | | | | | | | | | | | |
Collapse
|
39
|
Gu J, Ni Y, Xu L, Xu H, Cai Z. Nanog interact with CDK6 to regulates astrocyte cells proliferation following spinal cord injury. Biochem Biophys Res Commun 2016; 469:1097-103. [DOI: 10.1016/j.bbrc.2015.12.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/12/2015] [Indexed: 10/22/2022]
|
40
|
Sanchez A, Amatruda JF. Zebrafish Germ Cell Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:479-94. [PMID: 27165367 DOI: 10.1007/978-3-319-30654-4_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Germ cell tumors (GCTs) are malignant cancers that arise from embryonic precursors known as Primordial Germ Cells. GCTs occur in neonates, children, adolescents and young adults and can occur in the testis, the ovary or extragonadal sites. Because GCTs arise from pluripotent cells, the tumors can exhibit a wide range of different histologies. Current cisplatin-based combination therapies cures most patients, however at the cost of significant toxicity to normal tissues. While GWAS studies and genomic analysis of human GCTs have uncovered somatic mutations and loci that might confer tumor susceptibility, little is still known about the exact mechanisms that drive tumor development, and animal models that faithfully recapitulate all the different GCT subtypes are lacking. Here, we summarize current understanding of germline development in humans and zebrafish, describe the biology of human germ cell tumors, and discuss progress and prospects for zebrafish GCT models that may contribute to better understanding of human GCTs.
Collapse
Affiliation(s)
- Angelica Sanchez
- Departments of Pediatrics and Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - James F Amatruda
- Departments of Pediatrics, Molecular Biology and Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
41
|
Singh AM, Perry DW, Steffey VVA, Miller K, Allison DW. Decoding the Epigenetic Heterogeneity of Human Pluripotent Stem Cells with Seamless Gene Editing. Methods Mol Biol 2016; 1516:153-169. [PMID: 27075976 DOI: 10.1007/7651_2016_324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Pluripotent stem cells exhibit cell cycle-regulated heterogeneity for trimethylation of histone-3 on lysine-4 (H3K4me3) on developmental gene promoters containing bivalent epigenetic domains. The heterogeneity of H3K4me3 can be attributed to Cyclin-dependent kinase-2 (CDK2) phosphorylation and activation of the histone methyltransferase, MLL2 (KMT2B), during late-G1. The deposition of H3K4me3 on developmental promoters in late-G1 establishes a permissive chromatin architecture that enables signaling cues to promote differentiation from the G1 phase. These data suggest that the inhibition of MLL2 phosphorylation and activation will prevent the initiation of differentiation. Here, we describe a method to seamlessly modify a putative CDK2 phosphorylation site on MLL2 to restrict its phosphorylation and activation. Specifically, by utilizing dimeric CRISPR RNA-guided nucleases, RFNs (commercially known as the NextGEN™ CRISPR), in combination with an excision-only piggyBac™ transposase, we demonstrate how to generate a point mutation of threonine-542, a predicted site to prevent MLL2 activation. This gene editing method enables the use of both positive and negative selection, and allows for subsequent removal of the donor cassette without leaving behind any unwanted DNA sequences or modifications. This seamless "donor-excision" approach provides clear advantages over using single stranded oligo-deoxynucleotides (ssODN) as donors to create point mutations, as the use of ssODN necessitate additional mutations in the donor PAM sequence, along with extensive cloning efforts. The method described here therefore provides the highest targeting efficiency with the lowest "off-target" mutation rates possible, while removing the labor-intensive efforts associated with screening thousands of clones. In sum, this chapter describes how seamless gene editing may be utilized to examine stem cell heterogeneity of epigenetic marks, but is also widely applicable for performing precise genetic manipulations in numerous other cell types.
Collapse
Affiliation(s)
- Amar M Singh
- Transposagen Biopharmaceuticals, Inc., 535 W. Second Street, Lexington, KY, 40508, USA.
| | - Dustin W Perry
- Transposagen Biopharmaceuticals, Inc., 535 W. Second Street, Lexington, KY, 40508, USA
| | | | - Kenneth Miller
- Transposagen Biopharmaceuticals, Inc., 535 W. Second Street, Lexington, KY, 40508, USA
| | - Daniel W Allison
- Transposagen Biopharmaceuticals, Inc., 535 W. Second Street, Lexington, KY, 40508, USA.
| |
Collapse
|
42
|
Differential developmental competence and gene expression patterns in buffalo (Bubalus bubalis) nuclear transfer embryos reconstructed with fetal fibroblasts and amnion mesenchymal stem cells. Cytotechnology 2015; 68:1827-48. [PMID: 26660476 DOI: 10.1007/s10616-015-9936-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 12/01/2015] [Indexed: 01/01/2023] Open
Abstract
The developmental ability and gene expression pattern at 8- to 16-cell and blastocyst stages of buffalo (Bubalus bubalis) nuclear transfer (NT) embryos from fetal fibroblasts (FFs), amnion mesenchymal stem cells (AMSCs) and in vitro fertilized (IVF) embryos were compared in the present studies. The in vitro expanded buffalo FFs showed a typical "S" shape growth curve with a doubling time of 41.4 h and stained positive for vimentin. The in vitro cultured undifferentiated AMSCs showed a doubling time of 39.5 h and stained positive for alkaline phosphatase, and these cells also showed expression of pluripotency markers (OCT 4, SOX 2, NANOG), and mesenchymal stem cell markers (CD29, CD44) and were negative for haematopoietic marker (CD34) genes at different passages. Further, when AMSCs were exposed to corresponding induction conditions, these cells differentiated into adipogenic, chondrogenic and osteogenic lineages which were confirmed through oil red O, alcian blue and alizarin staining, respectively. Donor cells at 3-4 passage were employed for NT. The cleavage rate was significantly (P < 0.05) higher in IVF than in FF-NT and AMSC-NT embryos (82.6 ± 8.2 vs. 64.6 ± 1.3 and 72.3 ± 2.2 %, respectively). However, blastocyst rates in IVF and AMSC-NT embryos (30.6 ± 2.7 and 28.9 ± 3.1 %) did not differ and were significantly (P < 0.05) higher than FF-NT (19.5 ± 1.8 %). Total cell number did not show significant (P > 0.05) differences between IVF and AMSC-NT embryos (186.7 ± 4.2, 171.2 ± 3.8, respectively) but were significantly (P < 0.05) higher than that from FF-NT (151.3 ± 4.1). Alterations in the expression pattern of genes implicated in transcription and pluripotency (OCT4, STAT3, NANOG), DNA methylation (DNMT1, DNMT3A), histone deacetylation (HDAC2), growth factor signaling and imprinting (IGF2, IGF2R), apoptosis (BAX, BCL2), metabolism (GLUT1) and oxidative stress (MnSOD) regulation were observed in cloned embryos. The transcripts or expression patterns in AMSC-NT embryos more closely followed that of the in vitro derived embryos compared with FF-NT embryos. The results demonstrate that multipotent amnion MSCs have a greater potential as donor cells than FFs in achieving enhanced production of cloned buffalo embryos.
Collapse
|
43
|
Jang HJ, Park HH, Linh TTT, Lee HK, Song KD, Lee WK. Characterization of Bovine NANOG5'-flanking Region during Differentiation of Mouse Embryonic Stem Cells. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1721-8. [PMID: 26580439 PMCID: PMC4647080 DOI: 10.5713/ajas.15.0497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/25/2015] [Accepted: 08/12/2015] [Indexed: 11/29/2022]
Abstract
Embryonic stem cells (ESCs) have been used as a powerful tool for research including gene manipulated animal models and the study of developmental gene regulation. Among the critical regulatory factors that maintain the pluripotency and self-renewal of undifferentiated ESCs, NANOG plays a very important role. Nevertheless, because pluripotency maintaining factors and specific markers for livestock ESCs have not yet been probed, few studies of the NANOG gene from domestic animals including bovine have been reported. Therefore, we chose mouse ESCs in order to understand and compare NANOG expression between bovine, human, and mouse during ESCs differentiation. We cloned a 600 bp (−420/+181) bovine NANOG 5′-flanking region, and tagged it with humanized recombinant green fluorescent protein (hrGFP) as a tracing reporter. Very high GFP expression for bovine NANOG promoter was observed in the mouse ESC line. GFP expression was monitored upon ESC differentiation and was gradually reduced along with differentiation toward neurons and adipocyte cells. Activity of bovine NANOG (−420/+181) promoter was compared with already known mouse and human NANOG promoters in mouse ESC and they were likely to show a similar pattern of regulation. In conclusion, bovine NANOG 5-flanking region functions in mouse ES cells and has characteristics similar to those of mouse and human. These results suggest that bovine gene function studied in mouse ES cells should be evaluated and extrapolated for application to characterization of bovine ES cells.
Collapse
Affiliation(s)
- Hye-Jeong Jang
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 561-756, Korea
| | - Hwan Hee Park
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 561-756, Korea
| | - Tran Thi Thuy Linh
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 561-756, Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 561-756, Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 561-756, Korea
| | - Woon Kyu Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 561-756, Korea
| |
Collapse
|
44
|
Jedrusik A. Making the first decision: lessons from the mouse. Reprod Med Biol 2015; 14:135-150. [PMID: 29259411 PMCID: PMC5715835 DOI: 10.1007/s12522-015-0206-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/31/2015] [Indexed: 01/06/2023] Open
Abstract
Pre-implantation development encompasses a period of 3-4 days over which the mammalian embryo has to make its first decision: to separate the pluripotent inner cell mass (ICM) from the extra-embryonic epithelial tissue, the trophectoderm (TE). The ICM gives rise to tissues mainly building the body of the future organism, while the TE contributes to the extra-embryonic tissues that support embryo development after implantation. This review provides an overview of the cellular and molecular mechanisms that control the critical aspects of this first decision, and highlights the role of critical events, namely zytotic genome activation, compaction, polarization, asymmetric cell divisions, formation of the blastocyst cavity and expression of key transcription factors.
Collapse
Affiliation(s)
- Agnieszka Jedrusik
- Wellcome Trust/CR UK Gurdon InstituteTennis Court RoadCB2 1QNCambridgeUK
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeDowning StreetCB2 3DYCambridgeUK
| |
Collapse
|
45
|
Yamamuro S, Sano E, Okamoto Y, Ochiai Y, Ohta T, Ogino A, Natsume A, Wakabayashi T, Ueda T, Hara H, Nakayama T, Yoshino A, Katayama Y. Antitumorigenic effect of interferon-β by inhibition of undifferentiated glioblastoma cells. Int J Oncol 2015; 47:1647-54. [PMID: 26397698 PMCID: PMC4599190 DOI: 10.3892/ijo.2015.3165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/03/2015] [Indexed: 12/28/2022] Open
Abstract
Glioma stem-like cells (GSCs) are undifferentiated cells that are considered to be an origin of glioblastomas. Furthermore, they may contribute to treatment resistance and recurrence in glioblastomas. GSCs differentiate into differentiated glioma cells (non-glioma stem-like cells: non-GSCs), and interconversion might occur between GSCs and non-GSCs. We investigated whether interferon-beta (IFN-β) could exert any efficacy towards GSCs or such interconversion processes. The neural stem cell marker CD133 and pluripotency marker Nanog in GSCs were analyzed to evaluate their differentiation levels. GSCs were considered to undergo differentiation into non-GSCs upon serum exposure, since the expression of CD133 and Nanog in the GSCs was negatively affected. Furthermore, the cells regained their undifferentiated features upon removal of the serum. However, we verified that IFN-β reduced cell proliferation and tumor sphere formation in GSCs, and induced suppression of the restoration of such undifferentiated features. In addition, we also confirmed that IFN-β suppressed the acquisition process of undifferentiated features in human malignant glioma cell lines. Our data thus suggest that IFN-β could be an effective agent not only through its cell growth inhibitory effect on GSCs but also as a means of targeting the interconversion between GSCs and non-GSCs, indicating the possibility of IFN-β being used to prevent treatment resistance and recurrence in glioblastomas, via the inhibition of undifferentiated features.
Collapse
Affiliation(s)
- Shun Yamamuro
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Emiko Sano
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yutaka Okamoto
- Department of Research Promotion, Japan Agency for Medical Research and Development, Nagoya, Japan
| | - Yushi Ochiai
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Takashi Ohta
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Akiyoshi Ogino
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | | | - Takuya Ueda
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Hiroyuki Hara
- Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Tomohiro Nakayama
- Division of Companion Diagnostics, Department of Pathology of Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Atsuo Yoshino
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Yoichi Katayama
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
46
|
Hu C, Xu L, Liang S, Zhang Z, Zhang Y, Zhang F. Lentivirus-mediated shRNA targeting Nanog inhibits cell proliferation and attenuates cancer stem cell activities in breast cancer. J Drug Target 2015; 24:422-32. [PMID: 26339994 DOI: 10.3109/1061186x.2015.1082567] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Emerging evidences suggest that cancer stem cells (CSCs) are responsible for tumor growth, metastasis and treatment resistance. Nanog is one of the transcription factors that are essential for stem cellular physiology process. Previous studies reported that Nanog was detected in breast cancer and other solid tumors and indicated that it has oncogenic characteristics. However, expression feature of Nanog in breast cancer stem cells (BCSCs) enriched population and its biological function in BCSCs is poorly understood. In this study, CD44 + CD24- fraction sorting with Fluorescence Activated Cell Sorter and mammosphere culture were used for enriching BCSCs. We report here that Nanog was highly expressed in CSCs-enriched population from the breast cancer cells, as well as stemness-associated genes. In addition, we employed the lentivirus-mediated shRNA targeting Nanog to investigate function of Nanog in BCSCs. We found that targeted inhibition of Nanog could suppress proliferation and colony formation in breast cancer cells. Further studies showed that targeted inhibition of Nanog resulted in a decrease of BCSCs activities, including mammosphere formation, CD44 + CD24- proportion and expressions of stemness-associated genes. These data therefore suggest that Nanog possesses important function in BCSCs and targeted inhibition of Nanog may provide a novel means of targeting and eliminating BCSCs.
Collapse
Affiliation(s)
- Chun Hu
- a Department of Oncology , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , P.R. China
| | - Liang Xu
- a Department of Oncology , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , P.R. China .,b Department of Oncology , Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine , Suzhou , P.R. China
| | - Shujing Liang
- a Department of Oncology , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , P.R. China .,b Department of Oncology , Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine , Suzhou , P.R. China
| | - Zhiying Zhang
- b Department of Oncology , Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine , Suzhou , P.R. China .,c Graduate School of Xuzhou Medical College , Xuzhou , P.R. China , and
| | - Yanyun Zhang
- d Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine , Shanghai , P.R. China
| | - Fengchun Zhang
- a Department of Oncology , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , P.R. China .,b Department of Oncology , Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine , Suzhou , P.R. China
| |
Collapse
|
47
|
Li WZ, Ai ZY, Wang ZW, Chen LL, Guo ZK, Zhang Y. GATA-1 directly regulates Nanog in mouse embryonic stem cells. Biochem Biophys Res Commun 2015; 465:575-9. [PMID: 26296469 DOI: 10.1016/j.bbrc.2015.08.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 01/27/2023]
Abstract
Nanog safeguards pluripotency in mouse embryonic stem cells (mESCs). Insight into the regulation of Nanog is important for a better understanding of the molecular mechanisms that control pluripotency of mESCs. In a silico analysis, we identify four GATA-1 putative binding sites in Nanog proximal promoter. The Nanog promoter activity can be significantly repressed by ectopic expression of GATA-1 evidenced by a promoter reporter assay. Mutation studies reveal that one of the four putative binding sites counts for GATA-1 repressing Nanog promoter activity. Direct binding of GATA-1 on Nanog proximal promoter is confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation. Our data provide new insights into the expanded regulatory circuitry that coordinates Nanog expression.
Collapse
Affiliation(s)
- Wen-Zhong Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, PR China
| | - Zhi-Ying Ai
- College of Life Sciences, Northwest A&F University, Yangling 712100, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, PR China
| | - Zhi-Wei Wang
- School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Lin-Lin Chen
- College of Life Sciences, Northwest A&F University, Yangling 712100, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, PR China
| | - Ze-Kun Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, PR China.
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
48
|
A comparative study on expression profile of developmentally important genes during pre-implantation stages in buffalo hand-made cloned embryos derived from adult fibroblasts and amniotic fluid derived stem cells. Cytotechnology 2015. [PMID: 26224482 DOI: 10.1007/s10616-015-9904-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Abnormal gene expression in somatic cell nuclear transfer embryos due to aberrant epigenetic modifications of the donor nucleus may account for much of the observed diminished viability and developmental abnormalities. The present study compared the developmentally important gene expression pattern at 4-cell, 8- to 16-cell, morula, and blastocyst stages of buffalo nuclear transfer (NT) embryos from adult fibroblasts (AFs) and amniotic fluid stem cells (AFSCs). In vitro fertilized embryos were used as control embryos. Alterations in the expression pattern of genes implicated in transcription and pluripotency (OCT4, STAT3, NANOG), DNA methylation (DNMT1, DNMT3A), histone deacetylation (HDAC2), growth factor signaling, and imprinting (IGF2, IGF2R), apoptosis (BAX, BCL2), oxidative stress (MnSOD), metabolism (GLUT1) regulation were observed in cloned embryos. The expression of transcripts in AFSC-NT embryos more closely followed that of the in vitro fertilized embryos compared with AF-NT embryos. It is concluded that AFSCs with a relatively undifferentiated genome may serve as suitable donors which could be reprogrammed more efficiently to reactivate expression of early embryonic genes in buffalo NT.
Collapse
|
49
|
Parfitt DE, Shen MM. From blastocyst to gastrula: gene regulatory networks of embryonic stem cells and early mouse embryogenesis. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0542. [PMID: 25349451 DOI: 10.1098/rstb.2013.0542] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To date, many regulatory genes and signalling events coordinating mammalian development from blastocyst to gastrulation stages have been identified by mutational analyses and reverse-genetic approaches, typically on a gene-by-gene basis. More recent studies have applied bioinformatic approaches to generate regulatory network models of gene interactions on a genome-wide scale. Such models have provided insights into the gene networks regulating pluripotency in embryonic and epiblast stem cells, as well as cell-lineage determination in vivo. Here, we review how regulatory networks constructed for different stem cell types relate to corresponding networks in vivo and provide insights into understanding the molecular regulation of the blastocyst-gastrula transition.
Collapse
Affiliation(s)
- David-Emlyn Parfitt
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Urology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael M Shen
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Urology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
50
|
Welling M, Chen HH, Muñoz J, Musheev MU, Kester L, Junker JP, Mischerikow N, Arbab M, Kuijk E, Silberstein L, Kharchenko PV, Geens M, Niehrs C, van de Velde H, van Oudenaarden A, Heck AJR, Geijsen N. DAZL regulates Tet1 translation in murine embryonic stem cells. EMBO Rep 2015; 16:791-802. [PMID: 26077710 DOI: 10.15252/embr.201540538] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 11/09/2022] Open
Abstract
Embryonic stem cell (ESC) cultures display a heterogeneous gene expression profile, ranging from a pristine naïve pluripotent state to a primed epiblast state. Addition of inhibitors of GSK3β and MEK (so-called 2i conditions) pushes ESC cultures toward a more homogeneous naïve pluripotent state, but the molecular underpinnings of this naïve transition are not completely understood. Here, we demonstrate that DAZL, an RNA-binding protein known to play a key role in germ-cell development, marks a subpopulation of ESCs that is actively transitioning toward naïve pluripotency. Moreover, DAZL plays an essential role in the active reprogramming of cytosine methylation. We demonstrate that DAZL associates with mRNA of Tet1, a catalyst of 5-hydroxylation of methyl-cytosine, and enhances Tet1 mRNA translation. Overexpression of DAZL in heterogeneous ESC cultures results in elevated TET1 protein levels as well as increased global hydroxymethylation. Conversely, null mutation of Dazl severely stunts 2i-mediated TET1 induction and hydroxymethylation. Our results provide insight into the regulation of the acquisition of naïve pluripotency and demonstrate that DAZL enhances TET1-mediated cytosine hydroxymethylation in ESCs that are actively reprogramming to a pluripotent ground state.
Collapse
Affiliation(s)
- Maaike Welling
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hsu-Hsin Chen
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Javier Muñoz
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands Netherlands Proteomics Centre, Utrecht, The Netherlands
| | | | - Lennart Kester
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Philipp Junker
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nikolai Mischerikow
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Mandana Arbab
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ewart Kuijk
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lev Silberstein
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Peter V Kharchenko
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Mieke Geens
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Christof Niehrs
- Institute of Molecular Biology, Mainz, Germany Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Hilde van de Velde
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Niels Geijsen
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands Department of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|