1
|
Guillén N. Pathogenicity and virulence of Entamoeba histolytica, the agent of amoebiasis. Virulence 2023; 14:2158656. [PMID: 36519347 DOI: 10.1080/21505594.2022.2158656] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The amoeba parasite Entamoeba histolytica is the causative agent of human amebiasis, an enteropathic disease affecting millions of people worldwide. This ancient protozoan is an elementary example of how parasites evolve with humans, e.g. taking advantage of multiple mechanisms to evade immune responses, interacting with microbiota for nutritional and protective needs, utilizing host resources for growth, division, and encystation. These skills of E. histolytica perpetuate the species and incidence of infection. However, in 10% of infected cases, the parasite turns into a pathogen; the host-parasite equilibrium is then disorganized, and the simple lifecycle based on two cell forms, trophozoites and cysts, becomes unbalanced. Trophozoites acquire a virulent phenotype which, when non-controlled, leads to intestinal invasion with the onset of amoebiasis symptoms. Virulent E. histolytica must cross mucus, epithelium, connective tissue and possibly blood. This highly mobile parasite faces various stresses and a powerful host immune response, with oxidative stress being a challenge for its survival. New emerging research avenues and omics technologies target gene regulation to determine human or parasitic factors activated upon infection, their role in virulence activation, and in pathogenesis; this research bears in mind that E. histolytica is a resident of the complex intestinal ecosystem. The goal is to eradicate amoebiasis from the planet, but the parasitic life of E. histolytica is ancient and complex and will likely continue to evolve with humans. Advances in these topics are summarized here.
Collapse
Affiliation(s)
- Nancy Guillén
- Cell Biology and Infection Department, Institut Pasteur and Centre National de la Recherche Scientifique CNRS-ERM9195, Paris, France
| |
Collapse
|
2
|
Morán P, Serrano-Vázquez A, Rojas-Velázquez L, González E, Pérez-Juárez H, Hernández EG, Padilla MDLA, Zaragoza ME, Portillo-Bobadilla T, Ramiro M, Ximénez C. Amoebiasis: Advances in Diagnosis, Treatment, Immunology Features and the Interaction with the Intestinal Ecosystem. Int J Mol Sci 2023; 24:11755. [PMID: 37511519 PMCID: PMC10380210 DOI: 10.3390/ijms241411755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
This review of human amoebiasis is based on the most current knowledge of pathogenesis, diagnosis, treatment, and Entamoeba/microbiota interactions. The most relevant findings during this last decade about the Entamoeba parasite and the disease are related to the possibility of culturing trophozoites of different isolates from infected individuals that allowed the characterization of the multiple pathogenic mechanisms of the parasite and the understanding of the host-parasite relationship in the human. Second, the considerable advances in molecular biology and genetics help us to analyze the genome of Entamoeba, their genetic diversity, and the association of specific genotypes with the different amoebic forms of human amoebiasis. Based on this knowledge, culture and/or molecular diagnostic strategies are now available to determine the Entamoeba species and genotype responsible for invasive intestinal or extraintestinal amoebiasis cases. Likewise, the extensive knowledge of the immune response in amoebiasis with the appearance of new technologies made it possible to design diagnostic tools now available worldwide. Finally, the understanding of the interaction between the Entamoeba species and the intestinal microbiota aids the understanding of the ecology of this parasite in the human environment. These relevant findings will be discussed in this review.
Collapse
Affiliation(s)
- Patricia Morán
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Angélica Serrano-Vázquez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Liliana Rojas-Velázquez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Enrique González
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Horacio Pérez-Juárez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Eric G Hernández
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Maria de Los Angeles Padilla
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Martha E Zaragoza
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Tobías Portillo-Bobadilla
- Unidad de Bioinformática, Bioestadística y Biología Computacional, Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Manuel Ramiro
- División de Estudios de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Cecilia Ximénez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| |
Collapse
|
3
|
Lozano-Mendoza J, Ramírez-Montiel F, Rangel-Serrano Á, Páramo-Pérez I, Mendoza-Macías CL, Saavedra-Salazar F, Franco B, Vargas-Maya N, Jeelani G, Saito-Nakano Y, Anaya-Velázquez F, Nozaki T, Padilla-Vaca F. Attenuation of In Vitro and In Vivo Virulence Is Associated with Repression of Gene Expression of AIG1 Gene in Entamoeba histolytica. Pathogens 2023; 12:pathogens12030489. [PMID: 36986411 PMCID: PMC10051847 DOI: 10.3390/pathogens12030489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Entamoeba histolytica virulence results from complex host-parasite interactions implicating multiple amoebic components (e.g., Gal/GalNAc lectin, cysteine proteinases, and amoebapores) and host factors (microbiota and immune response). UG10 is a strain derived from E. histolytica virulent HM-1:IMSS strain that has lost its virulence in vitro and in vivo as determined by a decrease of hemolytic, cytopathic, and cytotoxic activities, increased susceptibility to human complement, and its inability to form liver abscesses in hamsters. We compared the transcriptome of nonvirulent UG10 and its parental HM-1:IMSS strain. No differences in gene expression of the classical virulence factors were observed. Genes downregulated in the UG10 trophozoites encode for proteins that belong to small GTPases, such as Rab and AIG1. Several protein-coding genes, including iron-sulfur flavoproteins and heat shock protein 70, were also upregulated in UG10. Overexpression of the EhAIG1 gene (EHI_180390) in nonvirulent UG10 trophozoites resulted in augmented virulence in vitro and in vivo. Cocultivation of HM-1:IMSS with E. coli O55 bacteria cells reduced virulence in vitro, and the EhAIG1 gene expression was downregulated. In contrast, virulence was increased in the monoxenic strain UG10, and the EhAIG1 gene expression was upregulated. Therefore, the EhAIG1 gene (EHI_180390) represents a novel virulence determinant in E. histolytica.
Collapse
Affiliation(s)
- Janeth Lozano-Mendoza
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Fátima Ramírez-Montiel
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Ángeles Rangel-Serrano
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Itzel Páramo-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | | | - Faridi Saavedra-Salazar
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Bernardo Franco
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Naurú Vargas-Maya
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Ghulam Jeelani
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-0052, Japan
| | - Fernando Anaya-Velázquez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Tomoyoshi Nozaki
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-0052, Japan
| | - Felipe Padilla-Vaca
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| |
Collapse
|
4
|
Er-Lukowiak M, Hansen C, Lotter H. Sex Difference in Amebiasis. Curr Top Microbiol Immunol 2023; 441:209-224. [PMID: 37695430 DOI: 10.1007/978-3-031-35139-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Infection with the protozoan parasite Entamoeba histolytica is much more likely to cause severe, focal liver damage in males than females, although the infection rate is the same in both sexes. The differences in disease susceptibility may be due to modulation of key mechanisms of the innate immune response by sex hormones. Complement-mediated mechanisms and estrogen-dependent activated natural killer T cells lead to early elimination of the parasite in females, whereas a pathological immune axis is triggered in males. Testosterone, which is generally thought to have more immunosuppressive properties on cells of the immune response, leads to overwhelming activation of monocytes and host-dependent destruction of liver tissue in males resulting in worse outcomes.
Collapse
Affiliation(s)
- Marco Er-Lukowiak
- Department Interface - RG Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Charlotte Hansen
- Department Interface - RG Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hanna Lotter
- Department Interface - RG Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
5
|
Gene expression of axenically-isolated clinical Entamoeba histolytica strains and its impact on disease severity of amebiasis. PLoS Pathog 2022; 18:e1010880. [PMID: 36178974 PMCID: PMC9555656 DOI: 10.1371/journal.ppat.1010880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/12/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
The severity of Entamoeba histolytica infection is determined by host immunology, pathogen virulence, and the intestinal environment. Conventional research for assessing pathogen virulence has been mainly performed using laboratory strains, such as a virulent HM-1: IMSS (HM-1) and an avirulent Rahman, under various artificial environmental conditions because of the difficulties of axenic isolation of the clinical strains. However, it is still unclear whether scientific knowledge based on laboratory strains are universally applicable to the true pathogenesis. Hereby, we performed transcriptomic analysis of clinical strains from patients with different degrees of disease severity, as well as HM-1 under different conditions. Even after several months of axenization, Clinical strains show the distinct profile in gene expression during in vitro passage, moreover, difference between any 2 of these strains was much greater than the changes on the liver challenge. Interestingly, 26 DEGs, which were closely related to the biological functions, were oppositely up- or down regulated between virulent Ax 19 (liver abscess) and avirulent Ax 11 (asymptomatic carrier). Additionally, RNAseq using laboratory strain (HM1) showed more than half of genes were differently expressed between continuously in vitro passaged HM1 (in vitro HM1) and periodically liver passaged HM1 (virulent HM1), which was much greater than the changes on the liver passage of virulent HM1. Also, transcriptomic analysis of a laboratory strain revealed that continuous environmental stress enhances its virulence via a shift in its gene expression profile. Changes in gene expression patterns on liver abscess formation were not consistent between clinical and laboratory strains. Various genotypes of Entamoeba histolytica are prevalent in the field. Some papers suggest the association between genotypes and disease severity. However, most studies for assessing pathogen virulence were performed using laboratory strains, such as virulent HM1: IMSS (HM1) and avirulent Rahman, because axenic isolation from clinical specimen is technically complex and time consuming. This transcriptomic analysis using clinical strains from the patients with different clinical severity, as well as the laboratory strain HM1 under different conditions showed unique gene expression patterns. Following things were confirmed; 1. Virulent clinical strain maintains its virulence with unique gene expression pattern after axenic isolation, 2. Continuous environmental stress enhances its virulence via the accumulation of altered gene expressions, and 3. Changes in gene expression on the liver abscess formation are not always the same amongst strains. For an accurate understanding the pathogenesis, comprehensive analyses of various clinical strains under different environmental conditions should be promoted.
Collapse
|
6
|
Alama-Bermejo G, Bartošová-Sojková P, Atkinson SD, Holzer AS, Bartholomew JL. Proteases as Therapeutic Targets Against the Parasitic Cnidarian Ceratonova shasta: Characterization of Molecules Key to Parasite Virulence In Salmonid Hosts. Front Cell Infect Microbiol 2022; 11:804864. [PMID: 35071050 PMCID: PMC8777295 DOI: 10.3389/fcimb.2021.804864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Proteases and their inhibitors play critical roles in host-parasite interactions and in the outcomes of infections. Ceratonova shasta is a myxozoan pathogen that causes enteronecrosis in economically important salmonids from the Pacific Northwest of North America. This cnidarian parasite has host-specific genotypes with varying virulence, making it a powerful system to decipher virulence mechanisms in myxozoans. Using C. shasta genome and transcriptome, we identified four proteases of different catalytic types: cathepsin D (aspartic), cathepsin L and Z-like (cysteine) and aminopeptidase-N (metallo); and a stefin (cysteine protease inhibitor), which implied involvement in virulence and hence represent target molecules for the development of therapeutic strategies. We characterized, annotated and modelled their 3D protein structure using bioinformatics and computational tools. We quantified their expression in C. shasta genotype 0 (low virulence, no mortality) and IIR (high virulence and mortality) in rainbow trout Oncorhynchus mykiss, to demonstrate that there are major differences between the genotypes during infection and parasite development. High proliferation of genotype IIR was associated with high expression of the cathepsin D and the stefin, likely correlated with high nutrient demands and to regulate cell metabolism, with upregulation preceding massive proliferation and systemic dispersion. In contrast, upregulation of the cathepsin L and Z-like cysteine proteases may have roles in host immune evasion in genotype 0 infections, which are associated with low proliferation, low inflammation and non-destructive development. In contrast to the other proteases, C. shasta aminopeptidase-N appears to have a prominent role in nematocyst formation in both genotypes, but only during sporogenesis. Homology searches of C. shasta proteases against other myxozoan transcriptomes revealed a high abundance of cathepsin L and aminopeptidase homologs suggesting common gene requirements across species. Our study identified molecules of potential therapeutic significance for aquaculture and serves as a baseline for future research aimed at functional characterisation of these targets.
Collapse
Affiliation(s)
- Gema Alama-Bermejo
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.,Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Pavla Bartošová-Sojková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Astrid S Holzer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
7
|
Abstract
Entamoeba histolytica is a parasitic protozoan and the causative agent of amoebiasis in humans. Amoebiasis has a high incidence of disease, resulting in ∼67,900 deaths per year, and it poses a tremendous burden of morbidity and mortality in children. Despite its importance, E. histolytica is an understudied parasite. These protocols describe the in vitro growth, maintenance, cryopreservation, genetic manipulation, and cloning of axenic E. histolytica trophozoites. There has been significant progress in genetic manipulation of this organism over the past decade, and these protocols outline the ways in which these advances can be implemented. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Culturing E. histolytica trophozoites Support Protocol 1: Preparation of TYI-S-33 medium Support Protocol 2: Lot testing of Biosate peptone and adult bovine serum for TYI-S-33 medium Basic Protocol 2: Cryopreservation of E. histolytica trophozoites Support Protocol 3: Preparation of cryoprotectant solutions Basic Protocol 3: Transfection of E. histolytica trophozoites with Attractene reagent Basic Protocol 4: Creating clonal lines using limiting dilution Basic Protocol 5: Knockdown of one to two genes with trigger-induced RNA interference Support Protocol 4: Evaluation of RNA interference knockdown with reverse transcriptase PCR Basic Protocol 6: E. histolytica growth curves.
Collapse
Affiliation(s)
- Rene L. Suleiman
- Department of Microbiology and Molecular Genetics, University of California, Davis, USA
| | - Katherine S. Ralston
- Department of Microbiology and Molecular Genetics, University of California, Davis, USA
| |
Collapse
|
8
|
Chadha A, Moreau F, Wang S, Dufour A, Chadee K. Entamoeba histolytica activation of caspase-1 degrades cullin that attenuates NF-κB dependent signaling from macrophages. PLoS Pathog 2021; 17:e1009936. [PMID: 34499701 PMCID: PMC8454965 DOI: 10.1371/journal.ppat.1009936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/21/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
While Entamoeba histolytica (Eh)-induced pro-inflammatory responses are critical in disease pathogenesis, the downstream signaling pathways that subsequently dampens inflammation and the immune response remains unclear. Eh in contact with macrophages suppresses NF-κB signaling while favoring NLRP3-dependent pro-inflammatory cytokine production by an unknown mechanism. Cullin-1 and cullin-5 (cullin-1/5) assembled into a multi-subunit RING E3 ubiquitin ligase complex are substrates for neddylation that regulates the ubiquitination pathway important in NF-κB activity and pro-inflammatory cytokine production. In this study, we showed that upon live Eh contact with human macrophages, cullin-1/4A/4B/5 but not cullin-2/3, were degraded within 10 minutes. Similar degradation of cullin-1/5 were observed from colonic epithelial cells and proximal colonic loops tissues of mice inoculated with live Eh. Degradation of cullin-1/5 was dependent on Eh-induced activation of caspase-1 via the NLRP3 inflammasome. Unlike cullin-4B, the degradation of cullin-4A was partially dependent on caspase-1 and was inhibited with a pan caspase inhibitor. Cullin-1/5 degradation was dependent on Eh cysteine proteinases EhCP-A1 and EhCP-A4, but not EhCP-A5, based on pharmacological inhibition of the cysteine proteinases and EhCP-A5 deficient parasites. siRNA silencing of cullin-1/5 decreased the phosphorylation of pIκ-Bα in response to Eh and LPS stimulation and downregulated NF-κB-dependent TNF-α mRNA expression and TNF-α and MCP-1 pro-inflammatory cytokine production. These results unravel a unique outside-in strategy employed by Eh to attenuate NF-κB-dependent pro-inflammatory responses via NLRP3 activation of caspase-1 that degraded cullin-1/5 from macrophages. The protozoan parasite Entamoeba histolytica (Eh) is the etiologic agent for the disease amebiasis. It is a potent pathogen that deploys an arsenal of virulence factors to trigger and subvert host immune defenses. One of the hallmark features of the disease is amebic colitis and in extreme cases, it can lead to abscesses of the liver and brain. For unknown reasons, the parasite breaches colonic mucosal barriers and invade underlying tissues. The host immune system plays a decisive role in determining the outcome of the disease. At the molecular level, the interaction of Eh with macrophage is a turning point in shaping pro-inflammatory responses. Understanding host-pathogen intricacies at the molecular level is key in determining the complexity of the disease. In the context of amebiasis, the underlying molecular events that occur at the Eh-macrophage intercellular junction are partly unravelled. Here we sought to interrogate the mechanisms by which NF-κB signaling is aborted following Eh-macrophage contact and found two regulatory scaffold proteins, cullin-1 and -5 (cullin-1/5) of the multiple E3 ligase complex, are degraded leading to dampening of NF-κB signaling. During Eh-macrophage contact, cullin-1/4A/4B/5 were rapidly degraded whereas cullin-2/3 were not. The degradation of cullin-1/5 was highly dependent on Eh-induced caspase-1 activation via the NLRP3 inflammasome. In contrast, the degradation of cullin-4A but not cullin-4B, was partially dependent on caspase-1 and was inhibited with a cell-permeable pan caspase inhibitor. Intriguingly, we found that Eh virulence factor EhCP-A1 and EhCP-A4, but not EhCP-A5, played an important role in mediating the degradation of these proteins. Silencing cullin-1/5 decreased the phosphorylation of Iκ-Bα in response to Eh and LPS stimulation that markedly downregulated NF-κB-dependent TNF-α mRNA expression and TNF-α and MCP-1 pro-inflammatory cytokine production. This study unravelled a novel role for Eh-induced NLRP3 inflammasome activation of caspase-1 that intersected with the NF-κB pathway leading to the degradation of the novel substrates cullin-1/5 that regulates NF-κB-dependent pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Attinder Chadha
- Departments of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - France Moreau
- Departments of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Shanshan Wang
- Departments of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Antoine Dufour
- Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kris Chadee
- Departments of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
9
|
Uribe-Querol E, Rosales C. Immune Response to the Enteric Parasite Entamoeba histolytica. Physiology (Bethesda) 2021; 35:244-260. [PMID: 32490746 DOI: 10.1152/physiol.00038.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Entamoeba histolytica is a protozoan parasite responsible for amoebiasis, a disease with a high prevalence in developing countries. Establishing an amoebic infection involves interplay between pathogenic factors for invasion and tissue damage, and immune responses for protecting the host. Here, we review the pathogenicity of E. histolytica and summarize the latest knowledge on immune response and immune evasion mechanisms during amoebiasis.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
10
|
König C, Honecker B, Wilson IW, Weedall GD, Hall N, Roeder T, Metwally NG, Bruchhaus I. Taxon-Specific Proteins of the Pathogenic Entamoeba Species E. histolytica and E. nuttalli. Front Cell Infect Microbiol 2021; 11:641472. [PMID: 33816346 PMCID: PMC8017271 DOI: 10.3389/fcimb.2021.641472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/03/2021] [Indexed: 01/30/2023] Open
Abstract
The human protozoan parasite Entamoeba histolytica can live in the human intestine for months or years without generating any symptoms in the host. For unknown reasons, amoebae can suddenly destroy the intestinal mucosa and become invasive. This can lead to amoebic colitis or extraintestinal amoebiasis whereby the amoebae spread to other organs via the blood vessels, most commonly the liver where abscesses develop. Entamoeba nuttalli is the closest genetic relative of E. histolytica and is found in wild macaques. Another close relative is E. dispar, which asyptomatically infects the human intestine. Although all three species are closely related, only E. histolytica and E. nuttalli are able to penetrate their host’s intestinal epithelium. Lineage-specific genes and gene families may hold the key to understanding differences in virulence among species. Here we discuss those genes found in E. histolytica that have relatives in only one or neither of its sister species, with particular focus on the peptidase, AIG, Ariel, and BspA families.
Collapse
Affiliation(s)
- Constantin König
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Barbara Honecker
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ian W Wilson
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Gareth D Weedall
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Neil Hall
- Earlham Institute, Norwich, United Kingdom.,School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Thomas Roeder
- Zoology, Department of Molecular Physiology, Kiel University, Kiel, Germany.,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Kiel, Germany
| | | | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,Department of Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
11
|
Sierra-López F, Baylón-Pacheco L, Vanegas-Villa SC, Rosales-Encina JL. Characterization of low molecular weight protein tyrosine phosphatases of Entamoeba histolytica. Biochimie 2021; 180:43-53. [PMID: 33122104 DOI: 10.1016/j.biochi.2020.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022]
Abstract
Entamoeba histolytica is an intestinal protozoan parasite of humans and is endemic in developing countries. E. histolytica has two low molecular weight protein tyrosine phosphatase (LMW-PTP) genes, EhLMW-PTP1 and EhLMW-PTP2, which are expressed in cultured trophozoites, clinical isolates, and cysts. The amino acid sequences of proteins EhLMW-PTP1 and EhLMW-PTP2 showed only one amino acid difference between them at position A85V, respectively. Both genes are expressed in cultured trophozoites, mainly EhLMW-PTP2, and in trophozoites recovered from amoebic liver abscess, the expression of EhLMW-PTP1 is downregulated. We cloned the two genes and purified the corresponding recombinant (rEhLMW-PTPs) proteins. Antibodies anti-rEhLMW-PTP2 showed that during red blood cells uptake by E. histolytica, the EhLMW-PTPs were found in the phagocytic cups based on analysis of fluorescence signals. On the other hand, rEhLMW-PTPs showed an optimum phosphatase activity at pH 6.0 with p-nitrophenyl phosphate as the substrate. They dephosphorylate phosphotyrosine and 3-O-methylfluorescein phosphate, but not phosphoserine or phosphothreonine, and the enzymatic activity is inhibited by orthovanadate. rEhLMW-PTP1 and rEhLMW-PTP2 exhibited optimum temperatures of activities at 60 °C and 58 °C, respectively, with high thermal stability at 50 °C. Also, the rEhLMW-PTPs showed high specific activities and specific km value with pNPP or OMFP as the substrates at the physiological temperature (37 °C).
Collapse
Affiliation(s)
- Francisco Sierra-López
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., Ciudad de México, Mexico.
| | - Lidia Baylón-Pacheco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., Ciudad de México, Mexico.
| | - Sonia Cynthia Vanegas-Villa
- Programa de Doctorado en Ciencias Biomédicas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de, Mexico.
| | - José Luis Rosales-Encina
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., Ciudad de México, Mexico.
| |
Collapse
|
12
|
Mornico D, Hon CC, Koutero M, Weber C, Coppee JY, Dillies MA, Guillen N. Genomic determinants for initiation and length of natural antisense transcripts in Entamoeba histolytica. Sci Rep 2020; 10:20190. [PMID: 33214622 PMCID: PMC7677554 DOI: 10.1038/s41598-020-77010-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/02/2020] [Indexed: 01/27/2023] Open
Abstract
Natural antisense transcripts (NAT) have been reported in prokaryotes and eukaryotes. While the functions of most reported NATs remain unknown, their potentials in regulating the transcription of their counterparts have been speculated. Entamoeba histolytica, which is a unicellular eukaryotic parasite, has a compact protein-coding genome with very short intronic and intergenic regions. The regulatory mechanisms of gene expression in this compact genome are under-described. In this study, by genome-wide mapping of RNA-Seq data in the genome of E. histolytica, we show that a substantial fraction of its protein-coding genes (28%) has significant transcription on their opposite strand (i.e. NAT). Intriguingly, we found the location of transcription start sites or polyadenylation sites of NAT are determined by the specific motifs encoded on the opposite strand of the gene coding sequences, thereby providing a compact regulatory system for gene transcription. Moreover, we demonstrated that NATs are globally up-regulated under various environmental conditions including temperature stress and pathogenicity. While NATs do not appear to be consequences of spurious transcription, they may play a role in regulating gene expression in E. histolytica, a hypothesis which needs to be tested.
Collapse
Affiliation(s)
- Damien Mornico
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, CNRS USR 3756, Institut Pasteur, Paris, France.
| | - Chung-Chau Hon
- Unité Biologie Cellulaire du Parasitisme, Institut Pasteur, Paris, France.,Institut National de La Santé Et de La Recherche Médicale, INSERM U786, Paris, France.,Laboratory for Genome Information Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho. Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mikael Koutero
- Plate-forme Transcriptome et Epigénome, Institut Pasteur, Paris, France
| | - Christian Weber
- Unité Biologie Cellulaire du Parasitisme, Institut Pasteur, Paris, France.,Institut National de La Santé Et de La Recherche Médicale, INSERM U786, Paris, France
| | - Jean-Yves Coppee
- Plate-forme Transcriptome et Epigénome, Institut Pasteur, Paris, France
| | - Marie-Agnes Dillies
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, CNRS USR 3756, Institut Pasteur, Paris, France
| | - Nancy Guillen
- Unité Biologie Cellulaire du Parasitisme, Institut Pasteur, Paris, France. .,Institut National de La Santé Et de La Recherche Médicale, INSERM U786, Paris, France. .,Centre National de La Recherche Scientifique, CNRS ERL9195, Paris, France.
| |
Collapse
|
13
|
Differential Pathogenic Gene Expression of E. histolytica in Patients with Different Clinical Forms of Amoebiasis. Microorganisms 2020; 8:microorganisms8101556. [PMID: 33050280 PMCID: PMC7650713 DOI: 10.3390/microorganisms8101556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 11/17/2022] Open
Abstract
The etiological agent of human amoebiasis is the protozoan parasite E. histolytica; the disease is still an endemic infection in some countries and the outcome of infection in the host infection can range from asymptomatic intestinal infection to intestinal or liver invasive forms of the disease. The invasive character of this parasite is multifactorial and mainly due to the differential expression of multiple pathogenic genes. The aim of the present work was to measure the differential expression of some genes in different specimens of patients with amoebic liver abscess (ALA) and specimens of genital amoebiasis (AG) by RT-qPCR. Results show that the expression of genes is different in both types of samples. Almost all studied genes were over expressed in both sets of patients; however, superoxide dismutase (Ehsod), serine threonine isoleucine rich protein (Ehstirp), peroxiredoxin (Ehprd) and heat shock protein 70 and 90 (Ehhsp-70, EHhsp-90) were higher in AG biopsies tissue. Furthermore, cysteine proteinases 5 and 2 (Ehcp5, Ehcp2), lectin (Ehgal/galnaclectin) and calreticulin (Ehcrt) genes directly associate with pathogenic mechanisms of E. histolytica had similar over expression in both AG and ALA samples. In summary the results obtained show that trophozoites can regulate the expression of their genes depending on stimuli or environmental conditions, in order to regulate their pathogenicity and ensure their survival in the host.
Collapse
|
14
|
Benoit SL, Maier RJ, Sawers RG, Greening C. Molecular Hydrogen Metabolism: a Widespread Trait of Pathogenic Bacteria and Protists. Microbiol Mol Biol Rev 2020; 84:e00092-19. [PMID: 31996394 PMCID: PMC7167206 DOI: 10.1128/mmbr.00092-19] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathogenic microorganisms use various mechanisms to conserve energy in host tissues and environmental reservoirs. One widespread but often overlooked means of energy conservation is through the consumption or production of molecular hydrogen (H2). Here, we comprehensively review the distribution, biochemistry, and physiology of H2 metabolism in pathogens. Over 200 pathogens and pathobionts carry genes for hydrogenases, the enzymes responsible for H2 oxidation and/or production. Furthermore, at least 46 of these species have been experimentally shown to consume or produce H2 Several major human pathogens use the large amounts of H2 produced by colonic microbiota as an energy source for aerobic or anaerobic respiration. This process has been shown to be critical for growth and virulence of the gastrointestinal bacteria Salmonella enterica serovar Typhimurium, Campylobacter jejuni, Campylobacter concisus, and Helicobacter pylori (including carcinogenic strains). H2 oxidation is generally a facultative trait controlled by central regulators in response to energy and oxidant availability. Other bacterial and protist pathogens produce H2 as a diffusible end product of fermentation processes. These include facultative anaerobes such as Escherichia coli, S Typhimurium, and Giardia intestinalis, which persist by fermentation when limited for respiratory electron acceptors, as well as obligate anaerobes, such as Clostridium perfringens, Clostridioides difficile, and Trichomonas vaginalis, that produce large amounts of H2 during growth. Overall, there is a rich literature on hydrogenases in growth, survival, and virulence in some pathogens. However, we lack a detailed understanding of H2 metabolism in most pathogens, especially obligately anaerobic bacteria, as well as a holistic understanding of gastrointestinal H2 transactions overall. Based on these findings, we also evaluate H2 metabolism as a possible target for drug development or other therapies.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Robert J Maier
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - R Gary Sawers
- Institute of Microbiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
15
|
Naiyer S, Bhattacharya A, Bhattacharya S. Advances in Entamoeba histolytica Biology Through Transcriptomic Analysis. Front Microbiol 2019; 10:1921. [PMID: 31481949 PMCID: PMC6710346 DOI: 10.3389/fmicb.2019.01921] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
A large number of transcriptome-level studies in Entamoeba histolytica, the protozoan parasite that causes amoebiasis, have investigated gene expression patterns to help understand the pathology and biology of the organism. They have compared virulent and avirulent strains in lab culture and after tissue invasion, cells grown under different stress conditions, response to anti-amoebic drug treatments, and gene expression changes during the process of encystation. These studies have revealed interesting molecules/pathways that will help increase our mechanistic understanding of differentially expressed genes during growth perturbations and tissue invasion. Some of the important insights obtained from transcriptome studies include the observations that regulation of carbohydrate metabolism may be an important determinant for tissue invasion, while the novel up-regulated genes during encystation include phospholipase D, and meiotic genes, suggesting the possibility of meiosis during the process. Classification of genes according to expression levels showed that amongst the highly transcribed genes in cultured E. histolytica trophozoites were some virulence factors, raising the question of the role of these factors in normal parasite growth. Promoter motifs associated with differential gene expression and regulation were identified. Some of these motifs associated with high gene expression were located downstream of start codon, and were required for efficient transcription. The listing of E. histolytica genes according to transcript expression levels will help us determine the scale of post-transcriptional regulation, and the possible roles of predicted promoter motifs. The small RNA transcriptome is a valuable resource for detailed structural and functional analysis of these molecules and their regulatory roles. These studies provide new drug targets and enhance our understanding of gene regulation in E. histolytica.
Collapse
Affiliation(s)
- Sarah Naiyer
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
16
|
Fonseca Z, Uribe-Querol E, Díaz-Godínez C, Carrero JC, Rosales C. Pathogenic Entamoeba histolytica, but not Entamoeba dispar, induce neutrophil extracellular trap (NET) formation. J Leukoc Biol 2019; 105:1167-1181. [PMID: 30913315 DOI: 10.1002/jlb.ma0818-309rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
Amoebiasis is an infection of global importance, caused by the eukaryotic parasite Entamoeba histolytica. Pathogenic E. histolytica is associated worldwide with over a million cases of amoebic dysentery, colitis, and amoebic liver abscess. In contrast, the nonpathogenic Entamoeba dispar does not cause these diseases, although it is commonly found in the same areas as pathogenic amoeba. Entamoeba histolytica infection is usually associated with infiltrating neutrophils. These neutrophils appear to play a defensive role against this parasite, by mechanisms not completely understood. Recently, our group reported that neutrophil extracellular traps (NET) are produced in response to E. histolytica trophozoites. But, there is no information on whether nonpathogenic E. dispar can also induce NET formation. In this report, we explored the possibility that E. dispar leads to NET formation. Neutrophils were stimulated by E. histolytica trophozoites or by E. dispar trophozoites, and NET formation was assessed by video microscopy. NET induced by E. histolytica were important for trapping and killing amoebas. In contrast, E. dispar did not induce NET formation in any condition. Also E. dispar did not induce neutrophil degranulation or reactive oxygen species production. In addition, E. histolytica-induced NET formation required alive amoebas and it was inhibited by galactose, N-acetylgalactosamine, and lactose. These data show that only alive pathogenic E. histolytica activates neutrophils to produce NET, and suggest that recognition of the parasite involves a carbohydrate with an axial HO- group at carbon 4 of a hexose.
Collapse
Affiliation(s)
- Zayda Fonseca
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - César Díaz-Godínez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Julio C Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
17
|
Naiyer S, Kaur D, Ahamad J, Singh SS, Singh YP, Thakur V, Bhattacharya A, Bhattacharya S. Transcriptomic analysis reveals novel downstream regulatory motifs and highly transcribed virulence factor genes of Entamoeba histolytica. BMC Genomics 2019; 20:206. [PMID: 30866809 PMCID: PMC6416950 DOI: 10.1186/s12864-019-5570-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/27/2019] [Indexed: 11/16/2022] Open
Abstract
Background Promoter motifs in Entamoeba histolytica were earlier analysed using microarray data with lower dynamic range of gene expression. Additionally, previous transcriptomic studies did not provide information on the nature of highly transcribed genes, and downstream promoter motifs important for gene expression. To address these issues we generated RNA-Seq data and identified the high and low expressing genes, especially with respect to virulence potential. We analysed sequences both upstream and downstream of start site for important motifs. Results We used RNA-Seq data to classify genes according to expression levels, which ranged six orders of magnitude. Data were validated by reporter gene expression. Virulence-related genes (except AIG1) were amongst the highly expressed, while some kinases and BspA family genes were poorly expressed. We looked for conserved motifs in sequences upstream and downstream of the initiation codon. Following enrichment by AME we found seven motifs significantly enriched in high expression- and three in low expression-classes. Two of these motifs (M4 and M6) were located downstream of AUG, were exclusively enriched in high expression class, and were mostly found in ribosomal protein, and translation-related genes. Motif deletion resulted in drastic down regulation of reporter gene expression, showing functional relevance. Distribution of core promoter motifs (TATA, GAAC, and Inr) in all genes revealed that genes with downstream motifs were not preferentially associated with TATA-less promoters. We looked at gene expression changes in cells subjected to growth stress by serum starvation, and experimentally validated the data. Genes showing maximum up regulation belonged to the low or medium expression class, and included genes in signalling pathways, lipid metabolism, DNA repair, Myb transcription factors, BspA, and heat shock. Genes showing maximum down regulation belonged to the high or medium expression class. They included genes for signalling factors, actin, Ariel family, and ribosome biogenesis factors. Conclusion Our analysis has added important new information about the E. histolytica transcriptome. We report for the first time two downstream motifs required for gene expression, which could be used for over expression of E. histolytica genes. Most of the virulence-related genes in this parasite are highly expressed in culture. Electronic supplementary material The online version of this article (10.1186/s12864-019-5570-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah Naiyer
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Devinder Kaur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jamaluddin Ahamad
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | - Vivek Thakur
- Centre for Systems Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
18
|
Matthiesen J, Lender C, Haferkorn A, Fehling H, Meyer M, Matthies T, Tannich E, Roeder T, Lotter H, Bruchhaus I. Trigger-induced RNAi gene silencing to identify pathogenicity factors of Entamoeba histolytica. FASEB J 2018; 33:1658-1668. [PMID: 30169111 DOI: 10.1096/fj.201801313r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recently, Entamoeba histolytica clones derived from isolate HM-1:IMSS that differ in their pathogenicity were identified. Whereas some clones induce amoebic liver abscesses (ALAs) in animal models of amoebiasis, others provoke only minimal liver lesions. Based on transcriptome studies of pathogenic and nonpathogenic clones, differentially expressed genes associated with reduced or increased liver pathology can be identified. Here, to analyze the influence of these genes on ALA formation in more detail, an RNA interference-trigger mediated silencing approach was used. Using newly identified trigger sequences, the expression of 15 genes was silenced. The respective transfectants were analyzed for their ability to induce liver destruction in the murine model for the disease. Silencing of EHI_180390 (encoding an AIG1 protein) increased liver pathology induced by a nonpathogenic parent clone, whereas silencing of EHI_127670 (encoding a hypothetical protein) decreased the pathogenicity of an initially pathogenic parent clone. Additional phenotypical in vitro analyses of EHI_127670 silencing as well as overexpression transfectants indicated that this molecule has an influence on size, growth, and cysteine peptidase activity of E. histolytica. This work describes an example of how the sole operational method for effective gene silencing in E. histolytica can be used for comprehensive analyses of putative pathogenicity factors.-Matthiesen, J., Lender, C., Haferkorn, A., Fehling, H., Meyer, M., Matthies, T., Tannich, E., Roeder, T., Lotter, H., Bruchhaus, I. Trigger-induced RNAi gene silencing to identify pathogenicity factors of Entamoeba histolytica.
Collapse
Affiliation(s)
- Jenny Matthiesen
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Corinna Lender
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Anne Haferkorn
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Helena Fehling
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Martin Meyer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Thorben Matthies
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Thomas Roeder
- Molecular Physiology Department, Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Hannelore Lotter
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| |
Collapse
|
19
|
Ahn CS, Kim JG, Shin MH, Lee YA, Kong Y. Comparison of Secretome Profile of Pathogenic and Non-Pathogenic Entamoeba histolytica. Proteomics 2018; 18:e1700341. [PMID: 29409117 DOI: 10.1002/pmic.201700341] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 01/08/2018] [Indexed: 02/05/2023]
Abstract
The obligatory intracellular protozoan parasite Entamoeba histolytica causes amebic dysentery and liver abscess. E. histolytica adheres to the host tissues in a contact-dependent manner. E. histolytica excretory-secretory products (ESP) might play critical roles during invasion. We comparatively analyzed the secretome profile of E. histolytica pathogenic HM-1:IMSS and non-pathogenic Rahman strains. The two ESP revealed similar but distinct spotting patterns. In both ESP, alcohol dehydrogenase, enolase 1, and transketolase, which control classical carbohydrate metabolism and other moonlighting effects, constituted the most abundant fractions. We recognized differently secreted molecules. Secretion of cytoskeletal organization proteins (actin, actin binding protein, and EHI_068510), protein remodeling amino peptidase, and multifunctional elongation factor 1-α were increased in Rahman. Conversely, carbohydrate metabolizing enolase 1, alcohol dehydrogenase, transketolase, calponin, phosphoglucose mutase, malic enzyme and EHI_156420, xenobiotic scavenging superoxide dismutase and EHI_140740, and pyruvate:ferredoxin oxidoreductase and coronin (carbohydrate metabolism/detoxification) showed reduced secretion. Transcription levels of some genes involved in these processes also decreased. Changes of secretory behavior, especially decreased secretion of multifunctional carbohydrate metabolizing enzymes and detoxifying proteins that importantly participated in amoeba pathogenesis might reflect avirulent nature of Rahman strain in the host.
Collapse
Affiliation(s)
- Chun-Seob Ahn
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jeong-Geun Kim
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Myeong Heon Shin
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ah Lee
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Kong
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
20
|
Nakada-Tsukui K, Sekizuka T, Sato-Ebine E, Escueta-de Cadiz A, Ji DD, Tomii K, Kuroda M, Nozaki T. AIG1 affects in vitro and in vivo virulence in clinical isolates of Entamoeba histolytica. PLoS Pathog 2018; 14:e1006882. [PMID: 29554130 PMCID: PMC5884625 DOI: 10.1371/journal.ppat.1006882] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 04/04/2018] [Accepted: 01/17/2018] [Indexed: 11/17/2022] Open
Abstract
The disease state of amebiasis, caused by Entamoeba histolytica, varies from asymptomatic to severe manifestations that include dysentery and extraintestinal abscesses. The virulence factors of the pathogen, and host defense mechanisms, contribute to the outcomes of infection; however, the underlying genetic factors, which affect clinical outcomes, remain to be fully elucidated. To identify these genetic factors in E. histolytica, we used Illumina next-generation sequencing to conduct a comparative genomic analysis of two clinical isolates obtained from diarrheal and asymptomatic patients (strains KU50 and KU27, respectively). By mapping KU50 and KU27 reads to the genome of a reference HM-1:IMSS strain, we identified two genes (EHI_089440 and EHI_176590) that were absent in strain KU27. In KU27, a single AIG1 (avrRpt2-induced gene 1) family gene (EHI_176590) was found to be deleted, from a tandem array of three AIG1 genes, by homologous recombination between the two flanking genes. Overexpression of the EHI_176590 gene, in strain HM-1:IMSS cl6, resulted in increased formation of cell-surface protrusions and enhanced adhesion to human erythrocytes. The EHI_176590 gene was detected by PCR in 56% of stool samples from symptomatic patients infected with E. histolytica, but only in 15% of stool samples from asymptomatic individuals. This suggests that the presence of the EHI_176590 gene is correlated with the outcomes of infection. Taken together, these data strongly indicate that the AIG1 family protein plays a pivotal role in E. histolytica virulence via regulation of host cell adhesion. Our in-vivo experiments, using a hamster liver abscess model, showed that overexpression or gene silencing of EHI_176590 reduced and increased liver abscess formation, respectively. This suggests that the AIG1 genes may have contrasting roles in virulence depending on the genetic background of the parasite and host environment.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Laboratory of Bacterial Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Emi Sato-Ebine
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Dar-der Ji
- Center for Research and Diagnostics, Centers for Disease Control, Taipei, Taiwan
| | - Kentaro Tomii
- Artificial Intelligence Research Center (AIRC) and Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Makoto Kuroda
- Laboratory of Bacterial Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Shabardina V, Kischka T, Kmita H, Suzuki Y, Makałowski W. Environmental adaptation of Acanthamoeba castellanii and Entamoeba histolytica at genome level as seen by comparative genomic analysis. Int J Biol Sci 2018; 14:306-320. [PMID: 29559848 PMCID: PMC5859476 DOI: 10.7150/ijbs.23869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/30/2017] [Indexed: 11/17/2022] Open
Abstract
Amoebozoans are in many aspects interesting research objects, as they combine features of single-cell organisms with complex signaling and defense systems, comparable to multicellular organisms. Acanthamoeba castellanii is a cosmopolitan species and developed diverged feeding abilities and strong anti-bacterial resistance; Entamoeba histolytica is a parasitic amoeba, who underwent massive gene loss and its genome is almost twice smaller than that of A. castellanii. Nevertheless, both species prosper, demonstrating fitness to their specific environments. Here we compare transcriptomes of A. castellanii and E. histolytica with application of orthologs' search and gene ontology to learn how different life strategies influence genome evolution and restructuring of physiology. A. castellanii demonstrates great metabolic activity and plasticity, while E. histolytica reveals several interesting features in its translational machinery, cytoskeleton, antioxidant protection, and nutritional behavior. In addition, we suggest new features in E. histolytica physiology that may explain its successful colonization of human colon and may facilitate medical research.
Collapse
Affiliation(s)
- Victoria Shabardina
- Institute of Bioinformatics, University Münster, Niels-Stensen Strasse 14, Münster 48149, Germany
| | - Tabea Kischka
- Institute of Bioinformatics, University Münster, Niels-Stensen Strasse 14, Münster 48149, Germany
| | - Hanna Kmita
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Wojciech Makałowski
- Institute of Bioinformatics, University Münster, Niels-Stensen Strasse 14, Münster 48149, Germany
| |
Collapse
|
22
|
Abstract
The protozoan parasite Entamoeba histolytica is the microbial agent of amoebiasis - an infection that is endemic worldwide and is associated with high morbidity and mortality rates. As the disease develops, virulent E. histolytica deplete the mucus layer, interact with the intestinal epithelium, and then degrade the colonic mucosa and disrupt the extracellular matrix (ECM). Our research demonstrated that virulent parasites with an invasive phenotype display rapid, highly specific changes in their transcriptome (notably for essential factors involved in carbohydrate metabolism and the processing of glycosylated residues). Moreover, combined activation of parasite and host lytic enzymes leads to the destruction of the intestinal parenchyma. Together, these enzymes degrade the mucus layer and the ECM, and trigger the inflammatory response essential to the development of amoebiasis.
Collapse
|
23
|
St-Pierre J, Moreau F, Cornick S, Quach J, Begum S, Aracely Fernandez L, Gorman H, Chadee K. The macrophage cytoskeleton acts as a contact sensor upon interaction with Entamoeba histolytica to trigger IL-1β secretion. PLoS Pathog 2017; 13:e1006592. [PMID: 28837696 PMCID: PMC5587335 DOI: 10.1371/journal.ppat.1006592] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/06/2017] [Accepted: 08/18/2017] [Indexed: 01/09/2023] Open
Abstract
Entamoeba histolytica (Eh) is the causative agent of amebiasis, one of the major causes of dysentery-related morbidity worldwide. Recent studies have underlined the importance of the intercellular junction between Eh and host cells as a determinant in the pathogenesis of amebiasis. Despite the fact that direct contact and ligation between Eh surface Gal-lectin and EhCP-A5 with macrophage α5β1 integrin are absolute requirements for NLRP3 inflammasome activation and IL-1β release, many other undefined molecular events and downstream signaling occur at the interface of Eh and macrophage. In this study, we investigated the molecular events at the intercellular junction that lead to recognition of Eh through modulation of the macrophage cytoskeleton. Upon Eh contact with macrophages key cytoskeletal-associated proteins were rapidly post-translationally modified only with live Eh but not with soluble Eh proteins or fragments. Eh ligation with macrophages rapidly activated caspase-6 dependent cleavage of the cytoskeletal proteins talin, Pyk2 and paxillin and caused robust release of the pro-inflammatory cytokine, IL-1β. Macrophage cytoskeletal cleavages were dependent on Eh cysteine proteinases EhCP-A1 and EhCP-A4 but not EhCP-A5 based on pharmacological blockade of Eh enzyme inhibitors and EhCP-A5 deficient parasites. These results unravel a model where the intercellular junction between macrophages and Eh form an area of highly interacting proteins that implicate the macrophage cytoskeleton as a sensor for Eh contact that leads downstream to subsequent inflammatory immune responses. The protozoan parasite Entamoeba histolytica can establish an enteric infection in human hosts that leads to symptoms ranging from diarrhea to abscesses in the liver and the brain. Host susceptibility to amebic infection is in part determined by the quality and potency of the host immune response that occurs once the parasite overcomes the mucus bilayers and colonic epithelial barriers, and invades underlying tissues. At the cellular level, one of the key events that shape the inflammatory response occurs during direct parasite interaction with host macrophages via surface proteins. The ensuing cascades of intracellular signaling events have only partly been uncovered. Interestingly, only direct interaction between live parasites and macrophages, as opposed to soluble factors or dead parasites, is a prerequisite to the generation of a prompt raging pro-inflammatory response. We have sought to further elucidate the mechanisms by which macrophages distinguish live parasites and found that the macrophage cell skeleton undergoes rapid significant alteration upon Eh contact. Furthermore, we uncovered a previously unknown role for two Eh enzymes in triggering macrophage pro-inflammatory responses. Through this work, we gain a better understanding of the molecular interactions that occur at the macrophage-ameba interface that regulate host inflammatory responses.
Collapse
Affiliation(s)
- Joëlle St-Pierre
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - France Moreau
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Steve Cornick
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jeanie Quach
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Sharmin Begum
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Luz Aracely Fernandez
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Hayley Gorman
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
24
|
Ximénez C, González E, Nieves M, Magaña U, Morán P, Gudiño-Zayas M, Partida O, Hernández E, Rojas-Velázquez L, García de León MC, Maldonado H. Differential expression of pathogenic genes of Entamoeba histolytica vs E. dispar in a model of infection using human liver tissue explants. PLoS One 2017; 12:e0181962. [PMID: 28771523 PMCID: PMC5542602 DOI: 10.1371/journal.pone.0181962] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
We sought to establish an ex vivo model for examining the interaction of E. histolytica with human tissue, using precision-cut liver slices (PCLS) from donated organs. E. histolytica- or E. dispar-infected PCLS were analyzed at different post-infection times (0, 1, 3, 24 and 48 h) to evaluate the relation between tissue damage and the expression of genes associated with three factors: a) parasite survival (peroxiredoxin, superoxide dismutase and 70 kDa heat shock protein), b) parasite virulence (EhGal/GalNAc lectin, amoebapore, cysteine proteases and calreticulin), and c) the host inflammatory response (various cytokines). Unlike E. dispar (non-pathogenic), E. histolytica produced some damage to the structure of hepatic parenchyma. Overall, greater expression of virulence genes existed in E. histolytica-infected versus E. dispar-infected tissue. Accordingly, there was an increased expression of EhGal/GalNAc lectin, Ehap-a and Ehcp-5, Ehcp-2, ehcp-1 genes with E. histolytica, and a decreased or lack of expression of Ehcp-2, and Ehap-a genes with E. dispar. E. histolytica-infected tissue also exhibited an elevated expression of genes linked to survival, principally peroxiredoxin, superoxide dismutase and Ehhsp-70. Moreover, E. histolytica-infected tissue showed an overexpression of some genes encoding for pro-inflammatory interleukins (ILs), such as il-8, ifn-γ and tnf-α. Contrarily, E. dispar-infected tissue displayed higher levels of il-10, the gene for the corresponding anti-inflammatory cytokine. Additionally, other genes were investigated that are important in the host-parasite relationship, including those encoding for the 20 kDa heat shock protein (HSP-20), the AIG-1 protein, and immune dominant variable surface antigen, as well as for proteins apparently involved in mechanisms for the protection of the trophozoites in different environments (e.g., thioredoxin-reductase, oxido-reductase, and 9 hypothetical proteins). Some of the hypothetical proteins evidenced interesting overexpression rates, however we should wait to their characterization. This finding suggest that the present model could be advantageous for exploring the complex interaction between trophozoites and hepatocytes during the development of ALA, particularly in the initial stages of infection.
Collapse
Affiliation(s)
- Cecilia Ximénez
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
- * E-mail:
| | - Enrique González
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Miriam Nieves
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Ulises Magaña
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Patricia Morán
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Marco Gudiño-Zayas
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Oswaldo Partida
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Eric Hernández
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | - Liliana Rojas-Velázquez
- Laboratory of Immunology, Unit of Experimental Medicine, Faculty of Medicine, UNAM, México City, México
| | | | - Héctor Maldonado
- Sub direction of Pathology, National Institute of Cancerology, México City, México
| |
Collapse
|
25
|
Kazama M, Ogiwara S, Makiuchi T, Yoshida K, Nakada-Tsukui K, Nozaki T, Tachibana H. Behavior of DNA-lacking mitochondria in Entamoeba histolytica revealed by organelle transplant. Sci Rep 2017; 7:44273. [PMID: 28287148 PMCID: PMC5347163 DOI: 10.1038/srep44273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/07/2017] [Indexed: 12/19/2022] Open
Abstract
The anaerobic protozoan parasite Entamoeba histolytica has mitosomes that are mitochondria lacking some canonical functions and organelle DNA. Mitosomes play an important role in the life cycle of the parasite. The distribution of proteins in mitosomes is not uniform, and how mitosomes are maintained and retained is unknown. To answer these questions, we developed a transplant method for mitosomes with hemagglutinin-tagged protein into recipient cells containing mitosomes with Myc-tagged protein. Immunofluorescence staining showed that the two protein tags colocalized in single mitosomes in some recipient cells. These results suggest that our transplant method can be used in anaerobic protozoa and that donor mitosomes may obtain recipient proteins through fusion with other mitosomes or through de novo synthesis of proteins in recipient cells.
Collapse
Affiliation(s)
- Makoto Kazama
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Sanae Ogiwara
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa 259-1193, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Kazuhiro Yoshida
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
26
|
Rubin E, Tanguy A, Pales Espinosa E, Allam B. Differential Gene Expression in Five Isolates of the Clam Pathogen, Quahog Parasite Unknown (QPX). J Eukaryot Microbiol 2017; 64:647-654. [PMID: 28171698 DOI: 10.1111/jeu.12400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/30/2017] [Accepted: 01/30/2017] [Indexed: 11/28/2022]
Abstract
Quahog parasite unknown (QPX) is a thraustochytrid protist that infects the hard clam, Mercenaria mercenaria, causing significant economic losses along the northeastern coast of North America. Previous investigations noted differences in growth dynamics and virulence in QPX cells from different geographic locations. In order to probe the molecular determinants for these variations, we investigated the transcriptomic profiles of five geographically distinct QPX isolates using custom 15k 60-mer oligonucleotide arrays. A total of 1,263 transcripts were differentially expressed (DE) among the five QPX isolates. The hierarchical clustering of gene expression profiles showed that the QPX isolates from Raritan Bay (RB, NY) and from Provincetown Harbor (MA) were more similar to each other and diverged from QPX isolates from Peconic Bay (PB, NY) and Old Plantation Creek (VA), which had more similar gene expression profiles. The most prominent difference was based on 78 transcripts coding for heat shock proteins DE between the five QPX isolates. The study generated contrasting transcriptomic profiles for QPX isolated from northern (MA) and deeper (RB, NY) locations as compared to southern (VA) and shallower (PB, NY) areas, suggesting the adaptation of the parasite to local environmental, in particular temperature, conditions.
Collapse
Affiliation(s)
- Ewelina Rubin
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, 11794-5000, New York, USA
| | - Arnaud Tanguy
- UPMC Université Paris 6, UMR 7144, Equipe Génétique et Adaptation en Milieu Extrême, Station Biologique de Roscoff, Roscoff, 29682, France.,UPMC Université Paris 6, UMR 7138, Systématique, Adaptation et Evolution, Paris, 75005, France
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, 11794-5000, New York, USA
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, 11794-5000, New York, USA
| |
Collapse
|
27
|
Weber C, Koutero M, Dillies MA, Varet H, Lopez-Camarillo C, Coppée JY, Hon CC, Guillén N. Extensive transcriptome analysis correlates the plasticity of Entamoeba histolytica pathogenesis to rapid phenotype changes depending on the environment. Sci Rep 2016; 6:35852. [PMID: 27767091 PMCID: PMC5073345 DOI: 10.1038/srep35852] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/06/2016] [Indexed: 01/02/2023] Open
Abstract
Amoebiasis is a human infectious disease due to the amoeba parasite Entamoeba histolytica. The disease appears in only 20% of the infections. Diversity in phenotypes may occur within the same infectious strain in the gut; for instance, parasites can be commensal (in the intestinal lumen) or pathogenic (inside the tissue). The degree of pathogenesis of clinical isolates varies greatly. These findings raise the hypothesis that genetic derivation may account for amoebic diverse phenotypes. The main goal of this study was to analyse gene expression changes of a single virulent amoebic strain in different environmental contexts where it exhibit different degrees of virulence, namely isolated from humans and maintained through animal liver passages, in contact with the human colon and short or prolonged in vitro culture. The study reveals major transcriptome changes in virulent parasites upon contact with human colon explants, including genes related to sugar metabolism, cytoskeleton rearrangement, stress responses and DNA repair. Furthermore, in long-term cultured parasites, drastic changes in gene expression for proteins with functions for proteasome and tRNA activities were found. Globally we conclude that rapid changes in gene expression rather than genetic derivation can sustain the invasive phenotype of a single virulent isolate of E. histolytica.
Collapse
Affiliation(s)
- Christian Weber
- Institut Pasteur, Cell Biology of Parasitism Unit, F-75015 Paris, France
- Inserm, U786, F-75015 Paris, France
| | - Mikael Koutero
- Institut Pasteur, Transcriptome and EpiGenome, BioMics, Center for Innovation and Technological Research, F-75015, Paris, France
| | - Marie-Agnes Dillies
- Institut Pasteur, Transcriptome and EpiGenome, BioMics, Center for Innovation and Technological Research, F-75015, Paris, France
- Institut Pasteur, Hub Bioinformatique et Biostatistique – Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI, USR 3756 IP CNRS) – F-75015 Paris, France
| | - Hugo Varet
- Institut Pasteur, Transcriptome and EpiGenome, BioMics, Center for Innovation and Technological Research, F-75015, Paris, France
- Institut Pasteur, Hub Bioinformatique et Biostatistique – Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI, USR 3756 IP CNRS) – F-75015 Paris, France
| | - Cesar Lopez-Camarillo
- Universidad Autonoma de la Ciudad de Mexico, Genomics Sciences Program, Mexico City, Mexico
| | - Jean Yves Coppée
- Institut Pasteur, Transcriptome and EpiGenome, BioMics, Center for Innovation and Technological Research, F-75015, Paris, France
| | - Chung-Chau Hon
- Institut Pasteur, Cell Biology of Parasitism Unit, F-75015 Paris, France
- Inserm, U786, F-75015 Paris, France
| | - Nancy Guillén
- Institut Pasteur, Cell Biology of Parasitism Unit, F-75015 Paris, France
- Inserm, U786, F-75015 Paris, France
| |
Collapse
|
28
|
Meyer M, Fehling H, Matthiesen J, Lorenzen S, Schuldt K, Bernin H, Zaruba M, Lender C, Ernst T, Ittrich H, Roeder T, Tannich E, Lotter H, Bruchhaus I. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation. PLoS Pathog 2016; 12:e1005853. [PMID: 27575775 PMCID: PMC5004846 DOI: 10.1371/journal.ppat.1005853] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023] Open
Abstract
We here compared pathogenic (p) and non-pathogenic (np) isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA)-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1–A12) derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1–B12) derived from a pathogenic isolate HM-1:IMSS-B. “Non-pathogenicity” included the induction of small and quickly resolved lesions while “pathogenicity” comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP) activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica. The pathogen Entamoeba histolytica can live asymptomatically in the human gut, or it can disrupt the intestinal barrier and induce life-threatening abscesses in different organs, most often in the liver. The molecular framework that enables this invasive, highly pathogenic phenotype is still not well understood. In order to identify factors that are positively or negatively correlated for invasion and destruction of the liver, we used a unique tool, E. histolytica clones that differ dramatically in their pathogenicity, while sharing almost identical genetic background. Based on comprehensive transcriptome studies of these clones, we identified a set of candidate genes that are potentially involved in pathogenicity. Using ectopic overexpression of the most promising candidates, either in pathogenic or in non-pathogenic Entamoeba clones, we identified genes where high expression reduced pathogenicity and only one gene that increased pathogenicity to a certain extend. Taken together, the current study identifies novel pathogenicity factors of E. histolytica and highlights the observation that various different genes contribute to pathogenicity.
Collapse
Affiliation(s)
- Martin Meyer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Helena Fehling
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jenny Matthiesen
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephan Lorenzen
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Kathrin Schuldt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hannah Bernin
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Mareen Zaruba
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Corinna Lender
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thomas Ernst
- Diagnostic and Interventional Radiology Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harald Ittrich
- Diagnostic and Interventional Radiology Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Roeder
- Zoological Institute, Molecular Physiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hannelore Lotter
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
29
|
Stark D, Barratt J, Chan D, Ellis JT. Dientamoeba fragilis, the Neglected Trichomonad of the Human Bowel. Clin Microbiol Rev 2016; 29:553-80. [PMID: 27170141 PMCID: PMC4861990 DOI: 10.1128/cmr.00076-15] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Dientamoeba fragilis is a protozoan parasite of the human bowel, commonly reported throughout the world in association with gastrointestinal symptoms. Despite its initial discovery over 100 years ago, arguably, we know less about this peculiar organism than any other pathogenic or potentially pathogenic protozoan that infects humans. The details of its life cycle and mode of transmission are not completely known, and its potential as a human pathogen is debated within the scientific community. Recently, several major advances have been made with respect to this organism's life cycle and molecular biology. While many questions remain unanswered, these and other recent advances have given rise to some intriguing new leads, which will pave the way for future research. This review encompasses a large body of knowledge generated on various aspects of D. fragilis over the last century, together with an update on the most recent developments. This includes an update on the latest diagnostic techniques and treatments, the clinical aspects of dientamoebiasis, the development of an animal model, the description of a D. fragilis cyst stage, and the sequencing of the first D. fragilis transcriptome.
Collapse
Affiliation(s)
- Damien Stark
- Division of Microbiology, Sydpath, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Joel Barratt
- School of Life Sciences and the I3 Institute, University of Technology Sydney, Broadway, NSW, Australia
| | - Douglas Chan
- School of Life Sciences and the I3 Institute, University of Technology Sydney, Broadway, NSW, Australia
| | - John T Ellis
- School of Life Sciences and the I3 Institute, University of Technology Sydney, Broadway, NSW, Australia
| |
Collapse
|
30
|
Borbolla-Vázquez J, Orozco E, Medina-Gómez C, Martínez-Higuera A, Javier-Reyna R, Chávez B, Betanzos A, Rodríguez MA. Identification and functional characterization of lysine methyltransferases of Entamoeba histolytica. Mol Microbiol 2016; 101:351-65. [PMID: 27062489 DOI: 10.1111/mmi.13394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2016] [Indexed: 02/07/2023]
Abstract
Lysine methylation of histones, a posttranslational modification catalyzed by lysine methyltransferases (HKMTs), plays an important role in the epigenetic regulation of transcription. Lysine methylation of non-histone proteins also impacts the biological function of proteins. Previously it has been shown that lysine methylation of histones of Entamoeba histolytica, the protozoan parasite that infects 50 million people worldwide each year and causing up to 100,000 deaths annually, is implicated in the epigenetic machinery of this microorganism. However, the identification and characterization of HKMTs in this parasite had not yet been determined. In this work we identified four HKMTs in E. histolytica (EhHKMT1 to EhHKMT4) that are expressed by trophozoites. Enzymatic assays indicated that all of them are able to transfer methyl groups to commercial histones. EhHKMT1, EhHKMT2 and EhHKMT4 were detected in nucleus and cytoplasm of trophozoites. In addition EhHKMT2 and EhHKMT4 were located in vesicles containing ingested cells during phagocytosis, and they co-immunoprecipitated with EhADH, a protein involved in the phagocytosis of this parasite. Results suggest that E. histolytica uses its HKMTs to regulate transcription by epigenetic mechanisms, and at least two of them could also be implicated in methylation of proteins that participate in phagocytosis.
Collapse
Affiliation(s)
- Jessica Borbolla-Vázquez
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| | - Christian Medina-Gómez
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| | - Aarón Martínez-Higuera
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| | - Bibiana Chávez
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| | - Mario A Rodríguez
- Departamento de Infectómica y Patogénesis Molecular. CINVESTAV-IPN. AP. 14-740 México, D.F. México
| |
Collapse
|
31
|
Evaluation of cellular retinoic acid binding protein 2 gene expression through the retinoic acid pathway by co-incubation of Blastocystis ST-1 with HT29 cells in vitro. Parasitol Res 2016; 115:1965-75. [PMID: 26911149 DOI: 10.1007/s00436-016-4939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
Blastocystis is a parasitic protist with a worldwide distribution that is commonly found in patients with colon and gastrointestinal pathological symptoms. Blastocystis infection has also commonly been reported in colorectal cancer and HIV/AIDS patients with gastrointestinal symptoms. To understand the pathway networks of gene regulation and the probable mechanisms influencing functions of HT-29 host cells in response to parasite infection, we examined the expression of 163 human oncogenes and kinases in human colon adenocarcinoma HT-29 cells co-incubated with Blastocystis by in-house cDNA microarray and PCR analysis. At least 10 genes were shown to be modified following Blastocystis co-incubation, including those with immunological, tumorigenesis, and antitumorigenesis functions. The expression of genes encoding cellular retinoic acid binding protein 2 (CRABP2) and proliferating cell nuclear antigen (PCNA) was markedly upregulated and downregulated, respectively. Reverse transcriptase-PCR validated the modified transcript expression of CRABP2 and other associated genes such as retinoic acid (RA)-related nuclear-receptor (RARα). Together, our data indicate that CRABP2, RARα, and PCNA expressions are involved in RA signaling regulatory networks that affect the growth, proliferation, and inflammation of HT-29 cells.
Collapse
|
32
|
Lee YA, Saito-Nakano Y, Kim KA, Min A, Nozaki T, Shin MH. Modulation of endogenous Cysteine Protease Inhibitor (ICP) 1 expression in Entamoeba histolytica affects amoebic adhesion to Extracellular Matrix proteins. Exp Parasitol 2014; 149:7-15. [PMID: 25500214 DOI: 10.1016/j.exppara.2014.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 11/07/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022]
Abstract
Entamoeba histolytica is an enteric tissue-invading protozoan parasite that causes amoebic colitis and occasionally liver abscess in humans. During tissue invasion, amoebic adhesion to host components is an important event for host cell death leading to successful invasion and infection. Among amoebic virulence factors, Gal/GalNAc lectin is known to be major adhesion factor to host cells. In this study, we investigated the role of amoebic secreted CP (Cysteine Proteases) in amoebic adhesion to extracellular matrix (ECM) protein using CP inhibitor and E. histolytica strains in which the endogenous inhibitor of cysteine protease (ICP) 1 gene was overexpressed (ICP1(+)) or repressed by antisense small RNA-mediated gene silencing (ICP1(-)). We found that pretreatment of wild-type amoebae with CP inhibitor E64, or thiol-group modifiers such as diamide and N-Ethylmaleimide resulted in a significant decrease in adhesion to laminin and collagen ECM proteins. Furthermore, ICP1(+) strain, with a reduction of secreted CP activity, exhibited reduced ability by 40% to adhere to laminin. In contrast, ICP1(-) strain, with a 1.9-fold increase of secreted CP activity, showed a two-fold increase in amoebic adherence to laminin compared to the control strain. In addition, total amount of secreted CP5 was decreased in ICP1(+) amoeba. Conversely, total amount of secreted CP1 and mature-form CP5 were increased in ICP1(-) amoeba. We also found that ICP1 was secreted into extracellular milieu. These results suggest that secreted CP activity by E. histolytica may be an important factor affecting adhesion to host proteins, and regulation of CP secretion by ICP plays a major role in pathogenesis. This study provides insight into the CP-mediated tissue pathogenesis in amoeba-invaded lesions during human amoebiasis.
Collapse
Affiliation(s)
- Young Ah Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Kyeong Ah Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Arim Min
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Myeong Heon Shin
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea.
| |
Collapse
|
33
|
Differentially expressed genes of virulent and nonvirulent Entamoeba histolytica strains identified by suppression subtractive hybridization. BIOMED RESEARCH INTERNATIONAL 2014; 2014:285607. [PMID: 25313356 PMCID: PMC4182305 DOI: 10.1155/2014/285607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 11/18/2022]
Abstract
Entamoeba histolytica is a parasite which presents capacity to degrade tissues and therefore has a pathogenic behavior. As this behavior is not shown by all strains, there have been several studies investigating molecular basis of the cytotoxicity process. Using the suppression subtractive hybridization (SSH) technique, differential gene expressions of two E. histolytica strains, one virulent (EGG) and one nonvirulent (452), have been analyzed with the purpose of isolating genes which may be involved with amoebic virulence. Nine cDNA fragments presenting high homology with E. histolytica previously sequenced genes were subtracted. Of these, four genes were confirmed by RT-PCR. Two coding for hypothetical proteins, one for a cysteine-rich protein, expressed only in the virulent strain, EGG and another one, coding for grainin 2 protein, exclusive from 452 strain. This study provided new insight into the proteins differences in the virulent and nonvirulent E. histolytica strains. We believe that further studies with these proteins may prove association of them with tissue damage, providing new perceptions to improve treatment or diagnosis of the invasive disease.
Collapse
|
34
|
Ligand heterogeneity of the cysteine protease binding protein family in the parasitic protist Entamoeba histolytica. Int J Parasitol 2014; 44:625-35. [DOI: 10.1016/j.ijpara.2014.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 01/08/2023]
|
35
|
Strain-dependent induction of human enterocyte apoptosis by blastocystis disrupts epithelial barrier and ZO-1 organization in a caspase 3- and 9-dependent manner. BIOMED RESEARCH INTERNATIONAL 2014; 2014:209163. [PMID: 24822183 PMCID: PMC4009109 DOI: 10.1155/2014/209163] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/04/2014] [Indexed: 12/11/2022]
Abstract
Blastocystis is an emerging protistan parasite colonizing the human intestine. It is frequently reported to cause general intestinal symptoms of vomiting, diarrhea, and abdominal pain. We recently demonstrated that Blastocystis rearranged cytoskeletal proteins and induced intestinal epithelial barrier compromise. The effect of Blastocystis on enterocyte apoptosis is unknown, and a possible link between microbially induced enterocyte apoptosis and increased epithelial permeability has yet to be determined. The aim of this study is to assess if Blastocystis induces human enterocyte apoptosis and whether this effect influences human intestinal epithelial barrier function. Monolayers of polarized human colonic epithelial cell-line Caco-2 were incubated with Blastocystis subtype 7 and subtype 4. Assays for both early and late markers of apoptosis, phosphatidylserine externalization, and nuclear fragmentation, respectively, showed that Blastocystis ST-7, but not ST-4, significantly increased apoptosis in enterocytes, suggesting that Blastocystis exhibits host specificity and strain-to-strain variation in pathogenicity. ST-7 also activated Caco-2 caspases 3 and 9 but not 8. ST-7 induced changes in epithelial resistance, permeability, and tight junction (ZO-1) localization. Pretreatment of Caco-2 monolayers with a pan-caspase inhibitor z-VAD-fmk significantly inhibited these changes. This suggests a role for enterocyte apoptosis in Blastocystis-mediated epithelial barrier compromise in the human intestine.
Collapse
|
36
|
Fernandes HC, Costa AF, Freitas MAR, Martins AS, Pesquero JL, Rabelo ÉM, Gomes MA. Entamoeba histolytica: gene expression analysis of cells invading tissues. ScientificWorldJournal 2014; 2014:364264. [PMID: 24605052 PMCID: PMC3925561 DOI: 10.1155/2014/364264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/05/2013] [Indexed: 11/17/2022] Open
Abstract
Entamoeba histolytica is a protozoan parasite that presents a risk to the health of millions of people worldwide. Due to the existence of different clinical forms caused by the parasite and also different virulence levels presented by one strain, one would expect differences in the profile of gene transcripts between virulent and nonvirulent cultures. In this study we used the differential display to select gene segments related to invasiveness of amoeba. One Brazilian strain of E. histolytica in two conditions, able or not to cause lesions in experimental animals, was used. RNA from this strain, was used to study the differential expression of genes. 29 specific gene fragments differentially expressed in the virulent strain were selected. By real-time PCR, six of these genes had confirmed their differential expression in the virulent culture. These genes may have important roles in triggering invasive amoebiasis and may be related to adaptation of trophozoites to difficulties encountered during colonization of the intestinal epithelium and liver tissue. Future studies with these genes may elucidate its actual role in tissue invasion by E. histolytica generating new pathways for diagnosis and treatment of amoebiasis.
Collapse
Affiliation(s)
- Helen C. Fernandes
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Ana F. Costa
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Michelle A. R. Freitas
- Laboratory of Parasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil
| | - Almir S. Martins
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Jorge L. Pesquero
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Élida M. Rabelo
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Maria A. Gomes
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
37
|
Thibeaux R, Weber C, Hon CC, Dillies MA, Avé P, Coppée JY, Labruyère E, Guillén N. Identification of the virulence landscape essential for Entamoeba histolytica invasion of the human colon. PLoS Pathog 2013; 9:e1003824. [PMID: 24385905 PMCID: PMC3868522 DOI: 10.1371/journal.ppat.1003824] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/25/2013] [Indexed: 02/02/2023] Open
Abstract
Entamoeba histolytica is the pathogenic amoeba responsible for amoebiasis, an infectious disease targeting human tissues. Amoebiasis arises when virulent trophozoites start to destroy the muco-epithelial barrier by first crossing the mucus, then killing host cells, triggering inflammation and subsequently causing dysentery. The main goal of this study was to analyse pathophysiology and gene expression changes related to virulent (i.e. HM1:IMSS) and non-virulent (i.e. Rahman) strains when they are in contact with the human colon. Transcriptome comparisons between the two strains, both in culture conditions and upon contact with human colon explants, provide a global view of gene expression changes that might contribute to the observed phenotypic differences. The most remarkable feature of the virulent phenotype resides in the up-regulation of genes implicated in carbohydrate metabolism and processing of glycosylated residues. Consequently, inhibition of gene expression by RNA interference of a glycoside hydrolase (β-amylase absent from humans) abolishes mucus depletion and tissue invasion by HM1:IMSS. In summary, our data suggest a potential role of carbohydrate metabolism in colon invasion by virulent E. histolytica.
Collapse
Affiliation(s)
- Roman Thibeaux
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
- INSERM U786, Paris, France
- Université de Versailles Saint-Quentin-en-Yvelines, Versailles, France
| | - Christian Weber
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
- INSERM U786, Paris, France
| | - Chung-Chau Hon
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
- INSERM U786, Paris, France
| | - Marie-Agnès Dillies
- Institut Pasteur, Transcriptome et Epigénome, Département Génomes et Génétique, Paris, France
| | - Patrick Avé
- Institut Pasteur, Unité Histopathologie Humaine et Modèles Animaux, Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur, Transcriptome et Epigénome, Département Génomes et Génétique, Paris, France
| | - Elisabeth Labruyère
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
- INSERM U786, Paris, France
- * E-mail: (EL); (NG)
| | - Nancy Guillén
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
- INSERM U786, Paris, France
- * E-mail: (EL); (NG)
| |
Collapse
|
38
|
Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors. J Trop Med 2013; 2013:890603. [PMID: 23476670 PMCID: PMC3582061 DOI: 10.1155/2013/890603] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/28/2012] [Indexed: 02/01/2023] Open
Abstract
The standard reference for pathogenic and nonpathogenic amoebae is the human parasite Entamoeba histolytica; a direct correlation between virulence and protease expression has been demonstrated for this amoeba. Traditionally, proteases are considered virulence factors, including those that produce cytopathic effects in the host or that have been implicated in manipulating the immune response. Here, we expand the scope to other amoebae, including less-pathogenic Entamoeba species and highly pathogenic free-living amoebae. In this paper, proteases that affect mucin, extracellular matrix, immune system components, and diverse tissues and cells are included, based on studies in amoebic cultures and animal models. We also include proteases used by amoebae to degrade iron-containing proteins because iron scavenger capacity is currently considered a virulence factor for pathogens. In addition, proteases that have a role in adhesion and encystation, which are essential for establishing and transmitting infection, are discussed. The study of proteases and their specific inhibitors is relevant to the search for new therapeutic targets and to increase the power of drugs used to treat the diseases caused by these complex microorganisms.
Collapse
|
39
|
Hon CC, Weber C, Sismeiro O, Proux C, Koutero M, Deloger M, Das S, Agrahari M, Dillies MA, Jagla B, Coppee JY, Bhattacharya A, Guillen N. Quantification of stochastic noise of splicing and polyadenylation in Entamoeba histolytica. Nucleic Acids Res 2012; 41:1936-52. [PMID: 23258700 PMCID: PMC3561952 DOI: 10.1093/nar/gks1271] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing and polyadenylation were observed pervasively in eukaryotic messenger RNAs. These alternative isoforms could either be consequences of physiological regulation or stochastic noise of RNA processing. To quantify the extent of stochastic noise in splicing and polyadenylation, we analyzed the alternative usage of splicing and polyadenylation sites in Entamoeba histolytica using RNA-Seq. First, we identified a large number of rarely spliced alternative junctions and then showed that the occurrence of these alternative splicing events is correlated with splicing site sequence, occurrence of constitutive splicing events and messenger RNA abundance. Our results implied the majority of these alternative splicing events are likely to be stochastic error of splicing machineries, and we estimated the corresponding error rates. Second, we observed extensive microheterogeneity of polyadenylation cleavage sites, and the extent of such microheterogeneity is correlated with the occurrence of constitutive cleavage events, suggesting most of such microheterogeneity is likely to be stochastic. Overall, we only observed a small fraction of alternative splicing and polyadenylation isoforms that are unlikely to be solely stochastic, implying the functional relevance of alternative splicing and polyadenylation in E. histolytica is limited. Lastly, we revised the gene models and annotated their 3′UTR in AmoebaDB, providing valuable resources to the community.
Collapse
Affiliation(s)
- Chung-Chau Hon
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Département Biologie cellulaire et infection, F-75015 Paris, France, INSERM U786, F-75015 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pearson RJ, Morf L, Singh U. Regulation of H2O2 stress-responsive genes through a novel transcription factor in the protozoan pathogen Entamoeba histolytica. J Biol Chem 2012; 288:4462-74. [PMID: 23250742 DOI: 10.1074/jbc.m112.423467] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Outcome of infection depends upon complex interactions between the invading pathogen and the host. As part of the host's innate immune response, the release of reactive oxygen and nitrogen species by phagocytes represents a major obstacle to the establishment of infection. The ability of the human parasite Entamoeba histolytica to survive reactive oxygen and nitrogen species is central to its pathogenic potential and contributes to disease outcome. In order to define the transcriptional network associated with oxidative stress, we utilized the MEME and MAST programs to analyze the promoter regions of 57 amoebic genes that had increased expression specifically in response to H(2)O(2) exposure. We functionally characterized an H(2)O(2)-regulatory motif (HRM) ((1)AAACCTCAATGAAGA(15)), which was enriched in these promoters and specifically bound amoebic nuclear protein(s). Assays with promoter-luciferase fusions established the importance of key residues and that the HRM motif directly impacted the ability of H(2)O(2)-responsive promoters to drive gene expression. DNA affinity chromatography and mass spectrometry identified EHI_108720 as an HRM DNA-binding protein. Overexpression and down-regulation of EHI_108720 demonstrated the specificity of EHI_108720 protein binding to the HRM, and overexpression increased basal expression from an H(2)O(2)-responsive wild-type promoter but not from its mutant counterpart. Thus, EHI_108720, or HRM-binding protein, represents a new stress-responsive transcription factor in E. histolytica that controls a transcriptional regulatory network associated with oxidative stress. Overexpression of EHI_108720 increased parasite virulence. Insight into how E. histolytica responds to oxidative stress increases our understanding of how this important human pathogen establishes invasive disease.
Collapse
Affiliation(s)
- Richard J Pearson
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
41
|
A high-throughput drug screen for Entamoeba histolytica identifies a new lead and target. Nat Med 2012; 18:956-60. [PMID: 22610278 PMCID: PMC3411919 DOI: 10.1038/nm.2758] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/30/2012] [Indexed: 02/06/2023]
|
42
|
Wilson IW, Weedall GD, Hall N. Host-Parasite interactions in Entamoeba histolytica and Entamoeba dispar: what have we learned from their genomes? Parasite Immunol 2012; 34:90-9. [PMID: 21810102 PMCID: PMC3378717 DOI: 10.1111/j.1365-3024.2011.01325.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Invasive amoebiasis caused by Entamoeba histolytica is a major global health problem. Virulence is a rare outcome of infection, occurring in fewer than 1 in 10 infections. Not all strains of the parasite are equally virulent, and understanding the mechanisms and causes of virulence is an important goal of Entamoeba research. The sequencing of the genome of E. histolytica and the related avirulent species Entamoeba dispar has allowed whole-genome-scale analyses of genetic divergence and differential gene expression to be undertaken. These studies have helped elucidate mechanisms of virulence and identified genes differentially expressed in virulent and avirulent parasites. Here, we review the current status of the E. histolytica and E. dispar genomes and the findings of a number of genome-scale studies comparing parasites of different virulence.
Collapse
Affiliation(s)
- I W Wilson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
43
|
Morf L, Singh U. Entamoeba histolytica: a snapshot of current research and methods for genetic analysis. Curr Opin Microbiol 2012; 15:469-75. [PMID: 22664276 DOI: 10.1016/j.mib.2012.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 04/27/2012] [Indexed: 11/24/2022]
Abstract
Entamoeba histolytica represents one of the leading causes of parasitic death worldwide. Although identified as the causative agent of amebiasis since 1875, the molecular mechanisms by which the parasite causes disease are still not fully understood. Studying Entamoeba reveals insights into a eukaryotic cell that differs in many ways from better-studied model organisms. Thus, much can be learned from this protozoan parasite on evolution, cell biology, and RNA biology. In this review we discuss selected research highlights in Entamoeba research and focus on the development of molecular biological techniques to study this pathogen. We end by highlighting some of the many questions that remain to be answered in order to fully understand this important human pathogen.
Collapse
Affiliation(s)
- Laura Morf
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | | |
Collapse
|
44
|
He GZ. WITHDRAWN: Use of a recombinant Entamoeba histolytica cysteine proteinase antigen to evaluation of the efficacy of immune protective responses in miniature pigs. Exp Parasitol 2012:S0014-4894(12)00119-1. [PMID: 22522180 DOI: 10.1016/j.exppara.2012.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/01/2012] [Indexed: 11/26/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Guang-Zhi He
- Guiyang College of Traditional Chinese Medicine, Guiyang 550002, Guizhou Province, China
| |
Collapse
|
45
|
He GZ, Feng Y, Deng SX, An CW. RETRACTED: Cloning, expression and evaluation of the efficacy of a recombinant Entamoeba histolytica cysteine proteinase (EhCP4) antigen in minipig. Exp Parasitol 2012; 130:412-5. [DOI: 10.1016/j.exppara.2012.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 01/19/2012] [Accepted: 01/25/2012] [Indexed: 10/14/2022]
|
46
|
Furukawa A, Nakada-Tsukui K, Nozaki T. Novel transmembrane receptor involved in phagosome transport of lysozymes and β-hexosaminidase in the enteric protozoan Entamoeba histolytica. PLoS Pathog 2012; 8:e1002539. [PMID: 22383874 PMCID: PMC3285589 DOI: 10.1371/journal.ppat.1002539] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 01/05/2012] [Indexed: 11/30/2022] Open
Abstract
Lysozymes and hexosaminidases are ubiquitous hydrolases in bacteria and eukaryotes. In phagocytic lower eukaryotes and professional phagocytes from higher eukaryotes, they are involved in the degradation of ingested bacteria in phagosomes. In Entamoeba histolytica, which is the intestinal protozoan parasite that causes amoebiasis, phagocytosis plays a pivotal role in the nutrient acquisition and the evasion from the host defense systems. While the content of phagosomes and biochemical and physiological roles of the major phagosomal proteins have been established in E. histolytica, the mechanisms of trafficking of these phagosomal proteins, in general, remain largely unknown. In this study, we identified and characterized for the first time the putative receptor/carrier involved in the transport of the above-mentioned hydrolases to phagosomes. We have shown that the receptor, designated as cysteine protease binding protein family 8 (CPBF8), is localized in lysosomes and mediates transport of lysozymes and β-hexosaminidase α-subunit to phagosomes when the amoeba ingests mammalian cells or Gram-positive bacillus Clostridium perfringens. We have also shown that the binding of CPBF8 to the cargos is mediated by the serine-rich domain, more specifically three serine residues of the domain, which likely contains trifluoroacetic acid-sensitive O-phosphodiester-linked glycan modifications, of CPBF8. We further showed that the repression of CPBF8 by gene silencing reduced the lysozyme and β-hexosaminidase activity in phagosomes and delayed the degradation of C. perfringens. Repression of CPBF8 also resulted in decrease in the cytopathy against the mammalian cells, suggesting that CPBF8 may also be involved in, besides the degradation of ingested bacteria, the pathogenesis against the mammalian hosts. This work represents the first case of the identification of a transport receptor of hydrolytic enzymes responsible for the degradation of microorganisms in phagosomes. Phagocytosis is the cellular process of engulfing solid particles to form an internal phagosome in protozoa, algae, and professional phagocytes of multicellular eukaryotic organisms. In phagocytic protozoa, phagocytosis is involved in the acquisition of nutrients, and the evasion from the host immune system and inflammation. While hydrolytic enzymes that are essential for the efficient and regulated degradation of phagocytosed particles, such as bacteria, fungi, and eukaryotic organisms, have been characterized, the mechanisms of the transport of these proteins are poorly understood. In the present study, we have demonstrated, for the first time, the molecular mechanisms of how the digestive enzymes are transported to phagosomes. Understanding of such mechanisms of the transport of phagosomal proteins at the molecular level may lead to the identification of a novel target for the development of new preventive measures against parasitic infections caused by phagocytic protozoa.
Collapse
Affiliation(s)
- Atsushi Furukawa
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
- Department of Parasitology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
47
|
Thibeaux R, Dufour A, Roux P, Bernier M, Baglin AC, Frileux P, Olivo-Marin JC, Guillén N, Labruyère E. Newly visualized fibrillar collagen scaffolds dictate Entamoeba histolytica invasion route in the human colon. Cell Microbiol 2012; 14:609-21. [DOI: 10.1111/j.1462-5822.2012.01752.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
He GZ. RETRACTED: Entamoeba histolytica: Cloning, expression and evaluation of the efficacy of a recombinant amebiasis cysteine proteinase gene (ACP1) antigen in minipig. Exp Parasitol 2012; 130:126-9. [DOI: 10.1016/j.exppara.2011.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 12/28/2022]
|
49
|
Weedall GD, Hall N. Evolutionary genomics of Entamoeba. Res Microbiol 2011; 162:637-45. [PMID: 21288488 PMCID: PMC3268252 DOI: 10.1016/j.resmic.2011.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 12/17/2010] [Indexed: 11/06/2022]
Abstract
Entamoeba histolytica is a human pathogen that causes amoebic dysentery and leads to significant morbidity and mortality worldwide. Understanding the genome and evolution of the parasite will help explain how, when and why it causes disease. Here we review current knowledge about the evolutionary genomics of Entamoeba: how differences between the genomes of different species may help explain different phenotypes, and how variation among E. histolytica parasites reveals patterns of population structure. The imminent expansion of the amount genome data will greatly improve our knowledge of the genus and of pathogenic species within it.
Collapse
Affiliation(s)
- Gareth D Weedall
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | | |
Collapse
|
50
|
Pearson RJ, Singh U. Approaches to characterizing Entamoeba histolytica transcriptional regulation. Cell Microbiol 2010; 12:1681-90. [DOI: 10.1111/j.1462-5822.2010.01524.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|