1
|
Kronenberg PA, Laurimäe T, Reinehr M, Deibel A, Hasler S, Gehrig P, Weber A, Deplazes P, Eichenberger RM. Identification and characterization of the elusive protein backbone of the immuno-dominant and species-specific Em2(G11) metacestode antigen of Echinococcus multilocularis. FRONTIERS IN PARASITOLOGY 2025; 4:1540215. [PMID: 40135073 PMCID: PMC11935348 DOI: 10.3389/fpara.2025.1540215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/20/2025] [Indexed: 03/27/2025]
Abstract
Alveolar echinococcosis (AE) caused by Echinococcus multilocularis, is a severe zoonotic disease in humans. One of the major metacestode antigens of E. multilocularis is the Em2 or Em2(G11) native purified antigen. The Em2 antigen is used for the serological and histopathological diagnosis of AE in humans and plays an important role in parasite-host interactions. As the Em2(G11) antigen is a mucin-type and glycosylated protein, the protein backbone has not been identified yet. We have targeted the protein backbone identification through mass spectrometry (LC-MS/MS) analysis of the Em2(G11) antigen. As a result, we evidenced that the Em2(G11) antigen consists of 33 unique protein candidates of which the most abundant was ''EmuJ_001105600.1''. This protein (889 amino acids) had 427 predicted glycosylation sites. Amino acid composition comparison was in agreement with earlier studies and further confirmed the candidate of interest as the most likely Em2(G11) protein backbone. NCBI BLAST revealed no other known protein homologues in related Echinococcus species nor helminths. After successfully producing this protein recombinantly (Em2rec), a monoclonal antibody (mAbEm2rec) was raised against it. Immunohistochemical stainings of liver tissue sections of AE patients showed that the mAbEm2rec reacts specifically with E. multilocularis antigens solely after deglycosylation with an O-glycosidase cocktail. Similarly, in ELISA, the mAbEm2rec recognized the recombinant and native antigens of E. multilocularis after deglycosylation. These results reveal the nature of this highly glycosylated and specific protein, where mucins are covering the proteomic backbone. For antibody detection in human patients, the native Em2(G11) antigen was superior compared to the Em2rec antigen, indicating the importance of glycosylated epitopes in this immuno-dominant antigen. Of note is the second most abundant protein in the Em2(G11) antigen, namely phosphoenolpyruvate carboxykinase (PEPCK; EmuJ_000292700.1). PEPCK is known to play an important part in the metabolic pathway of gluconeogenesis in E. multilocularis. However, whether this co-eluted protein has any functional importance in the parasite-host interplay of nutrients, growth, and diagnostic significance, is not explored. By combining various approaches, we were able to uncover and confirm the protein backbone of the diagnostic Em2(G11) antigen of E. multilocularis.
Collapse
Affiliation(s)
- Philipp A. Kronenberg
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
- Medical Micro- and Molecular Biology, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Teivi Laurimäe
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Michael Reinehr
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Institute of Pathology, Hegau-Bodensee Clinic, Gesundheitsverband Landkreis Konstanz (GLKN), Singen, Germany
| | - Ansgar Deibel
- Departement for Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Sina Hasler
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Peter Gehrig
- Functional Genomics Center Zurich, University of Zurich and Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Peter Deplazes
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
- Departement for Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Ramon M. Eichenberger
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
- Medical Micro- and Molecular Biology, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| |
Collapse
|
2
|
Liu H, Zhang Y, Li J, Liu F, Ye L, Liu X, Wang C, Hu M. Identification and validation of protective glycoproteins in Haemonchus contortus H11. Front Immunol 2025; 16:1521022. [PMID: 40093001 PMCID: PMC11906660 DOI: 10.3389/fimmu.2025.1521022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
Barbervax is the first and only available vaccine to protect animals against Haemonchus contortus - one of the most pathogenic parasites of small ruminants. This vaccine contains a kind of native antigen called H11, a glycoprotein complex derived from integral gut of this parasite. Native H11 has been shown to induce high levels (72-95%) of protection, but single or two recombinant molecules of H11 are consistently unsuccessful. An increasing number of aminopeptidases related to H11 have been characterized in the past three decades, but little is known about which ones are the key contributors to protective immunity. Our recent work has revealed that the immunoprotective effect of H11 is primarily associated with its N-glycan moieties. To identify key immunoprotective glycoproteins derived from H11 antigen, we employed glycan-related protective IgG antibodies combined with LC-MS/MS analysis and identified five glycosylated H11 proteins: H11, H11-1, H11-2, H11-4, and H11-5. Subsequently, we utilized the baculovirus-insect cell expression system and successfully expressed four H11 recombinant proteins including rH11, rH11-1, rH11-2 and rH11-4, which demonstrated similar aminopeptidase activity and comparable high-mannose and di-fucosylated N-glycan structures to those found on native H11. Immunization of goats with a cocktail of four rH11s induced a 66.29% reduction (p > 0.05) in total worm burden and cumulative fecal egg counts. High level of anti-rH11s IgG which could inhibit H. contortus intestinal aminopeptidase activity and larval development. Collectively, our study identified glycoprotein antigens from H11 and assessed their protective efficacy of a recombinant cocktail expressed in insect cells. This work will provide valuable insights into further development of recombinant vaccines against parasitic nematodes.
Collapse
Affiliation(s)
- Hui Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yao Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiarui Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Feng Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lisha Ye
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xin Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chunqun Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Min Hu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Kildemoes AO, Veldhuizen T, Hilt ST, van Lieshout L, Supali T, Yazdanbakhsh M, Camprubí-Ferrer D, Muñoz J, Clerinx J, Harvey M, Codée J, Corstjens PLAM, van Dam GJ, Visser LG, Roestenberg M, van Diepen A, Hokke CH. Identification of a circulating carbohydrate antigen as a highly specific and sensitive target for schistosomiasis serology. J Clin Microbiol 2025; 63:e0100824. [PMID: 39804062 PMCID: PMC11837524 DOI: 10.1128/jcm.01008-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/11/2024] [Indexed: 02/20/2025] Open
Abstract
The World Health Organization (WHO) 2030 roadmap for schistosomiasis calls for development of highly sensitive and specific diagnostic tools to continue and sustain progress towards elimination. Serological assays are excellent for sensitive detection of primary schistosome infections and for schistosomiasis surveillance in near- and post-elimination settings. To develop accurate assay formats, it is necessary to identify defined antibody targets with low cross-reactivity and potential for standardized production. Here we aim to identify such target(s) with focus on defined schistosome glycan antigens. Target identification was performed by assessing antibody responses in well-characterized cross-sectional and cohort sample sets (n = 366 individuals) on tailor-made antigen microarrays. IgM and IgG binding to candidate diagnostic targets was measured for serum/plasma samples from controlled human schistosome infection models, schistosome-infected travelers, soil-transmitted helminth-infected individuals, and non-infected individuals. We found that antibodies to a schistosome gut-associated glycan, the circulating anodic antigen (CAA), identify schistosome infection with high sensitivity (IgM ≥100%, IgG ≥97%) and specificity (IgM ≥93%, IgG ≥97%) in the test samples. Infection dose affected timing of anti-CAA antibody isotype switch. Furthermore, we demonstrate that other non-specific glycan epitopes in crude schistosome cercarial and egg antigen preparations can contribute to generation of false schistosomiasis positives, which is relevant for current serological assays based on these antigen mixtures. In conclusion, CAA is an excellent single glycan antigen target for development of highly sensitive and specific tools for schistosomiasis serology with use cases for travelers and surveillance in near- and post-elimination settings, as well as emerging transmission zones. IMPORTANCE The WHO 2030 roadmap deems diagnostics developments for schistosomiasis critically needed. Here we present identification of an antibody target with superior performance compared to traditionally used crude antigens in schistosomiasis serology. Access to unique controlled human infection model samples, traveler samples, and negative controls enabled this discovery, which forms the basis for development of new diagnostic tools urgently needed in travel medicine, surveillance in emerging transmission zones driven by climate change, and in pre- and post-elimination scenarios.
Collapse
Affiliation(s)
- Anna O. Kildemoes
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom Veldhuizen
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Stan T. Hilt
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lisette van Lieshout
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Taniawati Supali
- Department of Parasitology, Universitas Indonesia, Jakarta, Indonesia
| | - Maria Yazdanbakhsh
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Jose Muñoz
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Joannes Clerinx
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Mickey Harvey
- Leiden Institute of Chemistry, Leiden University Medical Center, Leiden, the Netherlands
| | - Jeroen Codée
- Leiden Institute of Chemistry, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul L. A. M. Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Govert J. van Dam
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Leo G. Visser
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Meta Roestenberg
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Angela van Diepen
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Cornelis H. Hokke
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
4
|
Devi KR, Deka A, Mukherjee D, Kaur H, Narain K. Immunoblotting Identification of Diagnostic Antigens of Paragonimus westermani Type 1 for the Detection of Human Pulmonary Paragonimiasis in North East India. Trop Med Infect Dis 2023; 9:6. [PMID: 38251203 PMCID: PMC10818403 DOI: 10.3390/tropicalmed9010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 01/23/2024] Open
Abstract
Human pulmonary paragonimiasis, an emerging concern in North East India, frequently masquerades as pulmonary tuberculosis due to clinical and radiological similarities, leading to diagnostic challenges. This research aimed to harness the immunoblotting technique to discern immunodiagnostic protein antigens from both adult worm and excretory-secretory (ES) extracts of the prevalent Paragonimus westermani type 1 in Arunachal Pradesh, North East India. We studied the time kinetics of immunoreactive patterns in relation to the duration of infection in rodent models. Immunoblot analyses were also conducted using sera from ELISA-positive patients confirmed with paragonimiasis, facilitating the selection of antigenic extracts with diagnostic potential. Further, ES protein antigens were subjected to 2D immunoblot analysis and immunoreactive protein spots identified using MALDI-TOF MS. The immunoreactivity patterns of ES antigens with sera of paragonimiasis-positive patients were detailed, and specific immunoreactive protein antigens were pinpointed using peptide mass fingerprinting (MALDI-TOF). This work underscores the enhanced diagnostic accuracy when combining ELISA with immunoblotting for pulmonary paragonimiasis in regions like North East India, marked by co-existing helminth infections.
Collapse
Affiliation(s)
- Kangjam Rekha Devi
- Indian Council of Medical Research-Regional Medical Research Centre, Dibrugarh 786001, Assam, India; (K.R.D.); (A.D.)
| | - Archana Deka
- Indian Council of Medical Research-Regional Medical Research Centre, Dibrugarh 786001, Assam, India; (K.R.D.); (A.D.)
| | - Debdutta Mukherjee
- Indian Council of Medical Research-Regional Medical Research Centre, Dibrugarh 786001, Assam, India; (K.R.D.); (A.D.)
| | - Harpreet Kaur
- Indian Council of Medical Research-Headquarters, New Delhi 110029, India;
| | - Kanwar Narain
- Indian Council of Medical Research-Regional Medical Research Centre, Dibrugarh 786001, Assam, India; (K.R.D.); (A.D.)
| |
Collapse
|
5
|
Zwanenburg L, Borloo J, Decorte B, Bunte MJM, Mokhtari S, Serna S, Reichardt NC, Seys LJM, van Diepen A, Schots A, Wilbers RHP, Hokke CH, Claerebout E, Geldhof P. Plant-based production of a protective vaccine antigen against the bovine parasitic nematode Ostertagia ostertagi. Sci Rep 2023; 13:20488. [PMID: 37993516 PMCID: PMC10665551 DOI: 10.1038/s41598-023-47480-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
The development of effective recombinant vaccines against parasitic nematodes has been challenging and so far mostly unsuccessful. This has also been the case for Ostertagia ostertagi, an economically important abomasal nematode in cattle, applying recombinant versions of the protective native activation-associated secreted proteins (ASP). To gain insight in key elements required to trigger a protective immune response, the protein structure and N-glycosylation of the native ASP and a non-protective Pichia pastoris recombinant ASP were compared. Both antigens had a highly comparable protein structure, but different N-glycan composition. After mimicking the native ASP N-glycosylation via the expression in Nicotiana benthamiana plants, immunisation of calves with these plant-produced recombinants resulted in a significant reduction of 39% in parasite egg output, comparable to the protective efficacy of the native antigen. This study provides a valuable workflow for the development of recombinant vaccines against other parasitic nematodes.
Collapse
Affiliation(s)
- Laurens Zwanenburg
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Jimmy Borloo
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Bregt Decorte
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Myrna J M Bunte
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sanaz Mokhtari
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sonia Serna
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia San Sebastián, Spain
- CIBER-BBN, Paseo Miramón 194, 20014, San Sebastian, Spain
| | - Niels-C Reichardt
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia San Sebastián, Spain
- CIBER-BBN, Paseo Miramón 194, 20014, San Sebastian, Spain
| | - Leen J M Seys
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Arjen Schots
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Ruud H P Wilbers
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Edwin Claerebout
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Peter Geldhof
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| |
Collapse
|
6
|
Campillo Poveda M, Britton C, Devaney E, McNeilly TN, Gerbe F, Jay P, Maizels RM. Tuft Cells: Detectors, Amplifiers, Effectors and Targets in Parasite Infection. Cells 2023; 12:2477. [PMID: 37887321 PMCID: PMC10605326 DOI: 10.3390/cells12202477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Tuft cells have recently emerged as the focus of intense interest following the discovery of their chemosensory role in the intestinal tract, and their ability to activate Type 2 immune responses to helminth parasites. Moreover, they populate a wide range of mucosal tissues and are intimately connected to immune and neuronal cells, either directly or through the release of pharmacologically active mediators. They are now recognised to fulfil both homeostatic roles, in metabolism and tissue integrity, as well as acting as the first sensors of parasite infection, immunity to which is lost in their absence. In this review we focus primarily on the importance of tuft cells in the intestinal niche, but also link to their more generalised physiological role and discuss their potential as targets for the treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Marta Campillo Poveda
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK;
| | - Collette Britton
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK; (C.B.); (E.D.)
| | - Eileen Devaney
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK; (C.B.); (E.D.)
| | - Tom N. McNeilly
- Disease Control Department, Moredun Research Institute, Penicuik EH26 0PZ, UK;
| | - François Gerbe
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France; (F.G.); (P.J.)
| | - Philippe Jay
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France; (F.G.); (P.J.)
| | - Rick M. Maizels
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK;
| |
Collapse
|
7
|
Mersha FB, McClung CM, Chen M, Ruse CI, Foster JM. Defining the filarial N-glycoproteome by glycosite mapping in the human parasitic nematode Brugia malayi. Sci Rep 2023; 13:7951. [PMID: 37193733 DOI: 10.1038/s41598-023-34936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/10/2023] [Indexed: 05/18/2023] Open
Abstract
N-linked glycosylation is a critical post translational modification of eukaryotic proteins. N-linked glycans are present on surface and secreted filarial proteins that play a role in host parasite interactions. Examples of glycosylated Brugia malayi proteins have been previously identified but there has not been a systematic study of the N-linked glycoproteome of this or any other filarial parasite. In this study, we applied an enhanced N-glyco FASP protocol using an engineered carbohydrate-binding protein, Fbs1, to enrich N-glycosylated peptides for analysis by LC-MS/MS. We then mapped the N-glycosites on proteins from three host stages of the parasite: adult female, adult male and microfilariae. Fbs1 enrichment of N-glycosylated peptides enhanced the identification of N-glycosites. Our data identified 582 N-linked glycoproteins with 1273 N-glycosites. Gene ontology and cell localization prediction of the identified N-glycoproteins indicated that they were mostly membrane and extracellular proteins. Comparing results from adult female worms, adult male worms, and microfilariae, we find variability in N-glycosylation at the protein level as well as at the individual N-glycosite level. These variations are highlighted in cuticle N-glycoproteins and adult worm restricted N-glycoproteins as examples of proteins at the host parasite interface that are well positioned as potential therapeutic targets or biomarkers.
Collapse
|
8
|
Marlais T, Bickford-Smith J, Talavera-López C, Le H, Chowdhury F, Miles MA. A comparative 'omics' approach for prediction of candidate Strongyloides stercoralis diagnostic coproantigens. PLoS Negl Trop Dis 2023; 17:e0010777. [PMID: 37068106 PMCID: PMC10138266 DOI: 10.1371/journal.pntd.0010777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/27/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023] Open
Abstract
Human infection with the intestinal nematode Strongyloides stercoralis is persistent unless effectively treated, and potentially fatal in immunosuppressed individuals. Epidemiological data are lacking, partially due to inadequate diagnosis. A rapid antigen detection test is a priority for population surveillance, validating cure after treatment, and for screening prior to immunosuppression. We used a targeted analysis of open access 'omics' data sets and used online predictors to identify S. stercoralis proteins that are predicted to be present in infected stool, Strongyloides-specific, and antigenic. Transcriptomic data from gut and non-gut dwelling life cycle stages of S. stercoralis revealed 328 proteins that are differentially expressed. Strongyloides ratti proteomic data for excreted and secreted (E/S) proteins were matched to S. stercoralis, giving 1,057 orthologues. Five parasitism-associated protein families (SCP/TAPS, prolyl oligopeptidase, transthyretin-like, aspartic peptidase, acetylcholinesterase) were compared phylogenetically between S. stercoralis and outgroups, and proteins with least homology to the outgroups were selected. Proteins that overlapped between the transcriptomic and proteomic datasets were analysed by multiple sequence alignment, epitope prediction and 3D structure modelling to reveal S. stercoralis candidate peptide/protein coproantigens. We describe 22 candidates from seven genes, across all five protein families for further investigation as potential S. stercoralis diagnostic coproantigens, identified using open access data and freely-available protein analysis tools. This powerful approach can be applied to many parasitic infections with 'omic' data to accelerate development of specific diagnostic assays for laboratory or point-of-care field application.
Collapse
Affiliation(s)
- Tegwen Marlais
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jack Bickford-Smith
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Carlos Talavera-López
- Institute of Computational Biology, Computational Health Centre, Helmholtz Munich, Neuherberg, Germany
| | - Hai Le
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fatima Chowdhury
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael A Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
9
|
Kuipers ME, Nguyen DL, van Diepen A, Mes L, Bos E, Koning RI, Nolte-’t Hoen ENM, Smits HH, Hokke CH. Life stage-specific glycosylation of extracellular vesicles from Schistosoma mansoni schistosomula and adult worms drives differential interaction with C-type lectin receptors DC-SIGN and MGL. Front Mol Biosci 2023; 10:1125438. [PMID: 37006612 PMCID: PMC10050886 DOI: 10.3389/fmolb.2023.1125438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/15/2023] [Indexed: 03/17/2023] Open
Abstract
Schistosomes can survive in mammalian hosts for many years, and this is facilitated by released parasite products that modulate the host’s immune system. Many of these products are glycosylated and interact with host cells via C-type lectin receptors (CLRs). We previously reported on specific fucose-containing glycans present on extracellular vesicles (EVs) released by schistosomula, the early juvenile life stage of the schistosome, and the interaction of these EVs with the C-type lectin receptor Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN or CD209). EVs are membrane vesicles with a size range between 30–1,000 nm that play a role in intercellular and interspecies communication. Here, we studied the glycosylation of EVs released by the adult schistosome worms. Mass spectrometric analysis showed that GalNAcβ1–4GlcNAc (LacDiNAc or LDN) containing N-glycans were the dominant glycan type present on adult worm EVs. Using glycan-specific antibodies, we confirmed that EVs from adult worms were predominantly associated with LDN, while schistosomula EVs displayed a highly fucosylated glycan profile. In contrast to schistosomula EV that bind to DC-SIGN, adult worm EVs are recognized by macrophage galactose-type lectin (MGL or CD301), and not by DC-SIGN, on CLR expressing cell lines. The different glycosylation profiles of adult worm- and schistosomula-derived EVs match with the characteristic glycan profiles of the corresponding life stages and support their distinct roles in schistosome life-stage specific interactions with the host.
Collapse
Affiliation(s)
- Marije E. Kuipers
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - D. Linh Nguyen
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Lynn Mes
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Erik Bos
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden, Netherlands
| | - Roman I. Koning
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden, Netherlands
| | - Esther N. M. Nolte-’t Hoen
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Cornelis H. Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Cornelis H. Hokke,
| |
Collapse
|
10
|
Dagenais M, Tritten L. Hidden in plain sight: How helminths manage to thrive in host blood. FRONTIERS IN PARASITOLOGY 2023; 2:1128299. [PMID: 39816845 PMCID: PMC11732017 DOI: 10.3389/fpara.2023.1128299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/27/2023] [Indexed: 01/18/2025]
Abstract
Parasitic helminths have evolved a plethora of elegant stratagems to regulate and evade the host immune system, contributing to their considerable persistence and longevity in their vertebrate hosts. Various mechanisms to achieve this state have been described, ranging from interfering with or actively modulating host immune responses to hiding from immune recognition. Because they damage surrounding vessels and disturb blood flow, blood-borne and blood-feeding parasites in particular must deal with much more than immune effector cells. Management of the host complement system and coagulation cascade, as well as the development of processes of hiding and masking, represent hallmarks of life in blood. Here we review recent findings on putative evasion strategies employed by blood-borne parasitic helminths, focusing on the interaction with and utilisation of host serum components by nematodes and trematodes.
Collapse
Affiliation(s)
- Maude Dagenais
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC, Canada
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Lucienne Tritten
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Petralia LMC, van Diepen A, Nguyen DL, Lokker LA, Sartono E, Bennuru S, Nutman TB, Pfarr K, Hoerauf A, Wanji S, Foster JM, Hokke CH. Unraveling cross-reactivity of anti-glycan IgG responses in filarial nematode infections. Front Immunol 2023; 14:1102344. [PMID: 36949937 PMCID: PMC10026598 DOI: 10.3389/fimmu.2023.1102344] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/02/2023] [Indexed: 03/08/2023] Open
Abstract
Parasitic nematodes responsible for filarial diseases cause chronic disablement in humans worldwide. Elimination programs have substantially reduced the rate of infection in certain areas, but limitations of current diagnostics for population surveillance have been pointed out and improved assays are needed to reach the elimination targets. While serological tests detecting antibodies to parasite antigens are convenient tools, those currently available are compromised by the occurrence of antibodies cross-reactive between nematodes, as well as by the presence of residual antibodies in sera years after treatment and clearance of the infection. We recently characterized the N-linked and glycosphingolipid derived glycans of the parasitic nematode Brugia malayi and revealed the presence of various antigenic structures that triggered immunoglobulin G (IgG) responses in infected individuals. To address the specificity of IgG binding to these glycan antigens, we screened microarrays containing Brugia malayi glycans with plasma from uninfected individuals and from individuals infected with Loa loa, Onchocerca volvulus, Mansonella perstans and Wuchereria bancrofti, four closely related filarial nematodes. IgG to a restricted subset of cross-reactive glycans was observed in infection plasmas from all four species. In plasma from Onchocerca volvulus and Mansonella perstans infected individuals, IgG binding to many more glycans was additionally detected, resulting in total IgG responses similar to the ones of Brugia malayi infected individuals. For these infection groups, Brugia malayi, Onchocerca volvulus and Mansonella perstans, we further studied the different IgG subclasses to Brugia malayi glycans. In all three infections, IgG1 and IgG2 appeared to be the major subclasses involved in response to glycan antigens. Interestingly, in Brugia malayi infected individuals, we observed a marked reduction in particular in IgG2 to parasite glycans post-treatment with anthelminthic, suggesting a promising potential for diagnostic applications. Thus, we compared the IgG response to a broad repertoire of Brugia malayi glycans in individuals infected with various filarial nematodes. We identified broadly cross-reactive and more specific glycan targets, extending the currently scarce knowledge of filarial nematode glycosylation and host anti-glycan antibody response. We believe that our initial findings could be further exploited to develop disease-specific diagnostics as part of an integrated approach for filarial disease control.
Collapse
Affiliation(s)
- Laudine M. C. Petralia
- Department of Parasitology, Leiden University – Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
- Division of Protein Expression & Modification, New England Biolabs, Ipswich, MA, United States
| | - Angela van Diepen
- Department of Parasitology, Leiden University – Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Dieu-Linh Nguyen
- Department of Parasitology, Leiden University – Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Lena A. Lokker
- Department of Parasitology, Leiden University – Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Erliyani Sartono
- Department of Parasitology, Leiden University – Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kenneth Pfarr
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Samuel Wanji
- Epidemiology and Control of Infectious Diseases, Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Jeremy M. Foster
- Division of Protein Expression & Modification, New England Biolabs, Ipswich, MA, United States
| | - Cornelis H. Hokke
- Department of Parasitology, Leiden University – Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
12
|
Abou-El-Naga IF, Mogahed NMFH. Potential roles of Toxocara canis larval excretory secretory molecules in immunomodulation and immune evasion. Acta Trop 2023; 238:106784. [PMID: 36502886 DOI: 10.1016/j.actatropica.2022.106784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022]
Abstract
Toxocara canis larvae invade various tissues of different vertebrate species without developing into adults in paratenic host. The long-term survival of the larvae despite exposure to the well-armed immune response is a notable achievement. The larvae modulate the immune response to help the survival of both the host and the larvae. They skew the immune response to type 2/regulatory phenotype. The outstanding ability of the larvae to modulate the host immune response and to evade the immune arms is attributed to the secretion of Toxocara excretory-secretory products (TESPs). TESPs are complex mixture of differing molecules. The present review deals with the molecular composition of the TESPs, their interaction with the host molecules, their effect on the innate immune response, the receptor recognition, the downstream signals the adaptive immunity and the repair of tissues. This review also addresses the role of TESPs molecules in the immune evasion strategy and the potential effect of the induced immunomodulation in some diseases. Identification of parasite components that influence the nematode-host interactions could enhance understanding the molecular basis of nematode pathogenicity. Furthermore, the identification of helminths molecules with immunomodulatory potential could be used in immunotherapies for some diseases.
Collapse
Affiliation(s)
- Iman F Abou-El-Naga
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, 12 Abdel Hamid El Deeb Street, Tharwat, Alexandria, Egypt.
| | - Nermine M F H Mogahed
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, 12 Abdel Hamid El Deeb Street, Tharwat, Alexandria, Egypt
| |
Collapse
|
13
|
Tsubokawa D. Immunomodulators secreted from parasitic helminths act on pattern recognition receptors. FRONTIERS IN PARASITOLOGY 2023; 1:1091596. [PMID: 39816467 PMCID: PMC11731691 DOI: 10.3389/fpara.2022.1091596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2025]
Abstract
Excretory-secretory (ES) products from parasitic helminths contain immunomodulatory molecules, which can regulate host immune responses. These immunomodulatory molecules are crucial for successful parasitism, and play roles in tissue migration, maturation, and reproduction. Some target pattern recognition receptors (PRRs), including toll-like receptor, C-type lectin receptor, receptor for advanced glycation end products, and nucleotide-binding oligomerization domain-like receptor. PRRs trigger activation of signaling cascades, inducing innate inflammatory responses and adaptive immunity in hosts. This article reviews ES immunomodulators identified in parasitic helminths that act on PRRs, and their PRR-facilitated immune-regulatory mechanisms. In addition, we describe the therapeutic potential of ES immunomodulators for allergic and inflammatory diseases.
Collapse
Affiliation(s)
- Daigo Tsubokawa
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
14
|
Robb E, McCammick EM, Wells D, McVeigh P, Gardiner E, Armstrong R, McCusker P, Mousley A, Clarke N, Marks NJ, Maule AG. Transcriptomic analysis supports a role for the nervous system in regulating growth and development of Fasciola hepatica juveniles. PLoS Negl Trop Dis 2022; 16:e0010854. [PMCID: PMC9639813 DOI: 10.1371/journal.pntd.0010854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Fasciola spp. liver flukes have significant impacts in veterinary and human medicine. The absence of a vaccine and increasing anthelmintic resistance threaten sustainable control and underscore the need for novel flukicides. Functional genomic approaches underpinned by in vitro culture of juvenile Fasciola hepatica facilitate control target validation in the most pathogenic life stage. Comparative transcriptomics of in vitro and in vivo maintained 21 day old F. hepatica finds that 86% of genes are expressed at similar levels across maintenance treatments suggesting commonality in core biological functioning within these juveniles. Phenotypic comparisons revealed higher cell proliferation and growth rates in the in vivo juveniles compared to their in vitro counterparts. These phenotypic differences were consistent with the upregulation of neoblast-like stem cell and cell-cycle associated genes in in vivo maintained worms. The more rapid growth/development of in vivo juveniles was further evidenced by a switch in cathepsin protease expression profiles, dominated by cathepsin B in in vitro juveniles and by cathepsin L in in vivo juveniles. Coincident with more rapid growth/development was the marked downregulation of both classical and peptidergic neuronal signalling components in in vivo maintained juveniles, supporting a role for the nervous system in regulating liver fluke growth and development. Differences in the miRNA complements of in vivo and in vitro juveniles identified 31 differentially expressed miRNAs, including fhe-let-7a-5p, fhe-mir-124-3p and miRNAs predicted to target Wnt-signalling, which supports a key role for miRNAs in driving the growth/developmental differences in the in vitro and in vivo maintained juvenile liver fluke. Widespread differences in the expression of neuronal genes in juvenile fluke grown in vitro and in vivo expose significant interplay between neuronal signalling and the rate of growth/development, encouraging consideration of neuronal targets in efforts to dysregulate growth/development for parasite control.
Collapse
Affiliation(s)
- Emily Robb
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- * E-mail: (ER); (EMM); (AGM)
| | - Erin M. McCammick
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- * E-mail: (ER); (EMM); (AGM)
| | - Duncan Wells
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Paul McVeigh
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Erica Gardiner
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Rebecca Armstrong
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Paul McCusker
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Angela Mousley
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Nathan Clarke
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Nikki J. Marks
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Aaron G. Maule
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- * E-mail: (ER); (EMM); (AGM)
| |
Collapse
|
15
|
Wang C, Liu L, Wang T, Liu X, Peng W, Srivastav RK, Zhu XQ, Gupta N, Gasser RB, Hu M. H11-induced immunoprotection is predominantly linked to N-glycan moieties during Haemonchus contortus infection. Front Immunol 2022; 13:1034820. [PMID: 36405717 PMCID: PMC9667387 DOI: 10.3389/fimmu.2022.1034820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
Nematodes are one of the largest groups of animals on the planet. Many of them are major pathogens of humans, animals and plants, and cause destructive diseases and socioeconomic losses worldwide. Despite their adverse impacts on human health and agriculture, nematodes can be challenging to control, because anthelmintic treatments do not prevent re-infection, and excessive treatment has led to widespread drug resistance in nematode populations. Indeed, many nematode species of livestock animals have become resistant to almost all classes of anthelmintics used. Most efforts to develop commercial anti-nematode vaccines (native or recombinant) for use in animals and humans have not succeeded, although one effective (dead) vaccine (Barbervax) has been developed to protect animals against one of the most pathogenic parasites of livestock animals – Haemonchus contortus (the barber’s pole worm). This vaccine contains native molecules, called H11 and H-Gal-GP, derived from the intestine of this blood-feeding worm. In its native form, H11 alone consistently induces high levels (75-95%) of immunoprotection in animals against disease (haemonchosis), but recombinant forms thereof do not. Here, to test the hypothesis that post-translational modification (glycosylation) of H11 plays a crucial role in achieving such high immunoprotection, we explored the N-glycoproteome and N-glycome of H11 using the high-resolution mass spectrometry and assessed the roles of N-glycosylation in protective immunity against H. contortus. Our results showed conclusively that N-glycan moieties on H11 are the dominant immunogens, which induce high IgG serum antibody levels in immunised animals, and that anti-H11 IgG antibodies can confer specific, passive immunity in naïve animals. This work provides the first detailed account of the relevance and role of protein glycosylation in protective immunity against a parasitic nematode, with important implications for the design of vaccines against metazoan parasites.
Collapse
Affiliation(s)
- Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lu Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tianjiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xin Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Peng
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ratnesh Kumar Srivastav
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani (BITS-P), Hyderabad, India
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Nishith Gupta
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani (BITS-P), Hyderabad, India
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Robin B. Gasser
- Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Robin B. Gasser, ; Min Hu,
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Robin B. Gasser, ; Min Hu,
| |
Collapse
|
16
|
van der Kaaij A, van Noort K, Nibbering P, Wilbers RHP, Schots A. Glyco-Engineering Plants to Produce Helminth Glycoproteins as Prospective Biopharmaceuticals: Recent Advances, Challenges and Future Prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:882835. [PMID: 35574113 PMCID: PMC9100689 DOI: 10.3389/fpls.2022.882835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Glycoproteins are the dominant category among approved biopharmaceuticals, indicating their importance as therapeutic proteins. Glycoproteins are decorated with carbohydrate structures (or glycans) in a process called glycosylation. Glycosylation is a post-translational modification that is present in all kingdoms of life, albeit with differences in core modifications, terminal glycan structures, and incorporation of different sugar residues. Glycans play pivotal roles in many biological processes and can impact the efficacy of therapeutic glycoproteins. The majority of biopharmaceuticals are based on human glycoproteins, but non-human glycoproteins, originating from for instance parasitic worms (helminths), form an untapped pool of potential therapeutics for immune-related diseases and vaccine candidates. The production of sufficient quantities of correctly glycosylated putative therapeutic helminth proteins is often challenging and requires extensive engineering of the glycosylation pathway. Therefore, a flexible glycoprotein production system is required that allows straightforward introduction of heterologous glycosylation machinery composed of glycosyltransferases and glycosidases to obtain desired glycan structures. The glycome of plants creates an ideal starting point for N- and O-glyco-engineering of helminth glycans. Plants are also tolerant toward the introduction of heterologous glycosylation enzymes as well as the obtained glycans. Thus, a potent production platform emerges that enables the production of recombinant helminth proteins with unusual glycans. In this review, we discuss recent advances in plant glyco-engineering of potentially therapeutic helminth glycoproteins, challenges and their future prospects.
Collapse
|
17
|
Bouchery T, Volpe B, Doolan R, Coakley G, Moyat M, Esser‐von Bieren J, Wickramasinghe LC, Hibbs ML, Sotillo J, Camberis M, Le Gros G, Khan N, Williams D, Harris NL. β‐Glucan receptors on IL‐4 activated macrophages are required for hookworm larvae recognition and trapping. Immunol Cell Biol 2022; 100:223-234. [PMID: 35156238 PMCID: PMC9314611 DOI: 10.1111/imcb.12536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/10/2022] [Accepted: 02/10/2022] [Indexed: 01/13/2023]
Abstract
Recent advances in the field of host immunity against parasitic nematodes have revealed the importance of macrophages in trapping tissue migratory larvae. Protective immune mechanisms against the rodent hookworm Nippostrongylus brasiliensis (Nb) are mediated, at least in part, by IL‐4‐activated macrophages that bind and trap larvae in the lung. However, it is still not clear how host macrophages recognize the parasite. An in vitro co‐culture system of bone marrow‐derived macrophages and Nb infective larvae was utilized to screen for the possible ligand–receptor pair involved in macrophage attack of larvae. Competitive binding assays revealed an important role for β‐glucan recognition in the process. We further identified a role for CD11b and the non‐classical pattern recognition receptor ephrin‐A2 (EphA2), but not the highly expressed β‐glucan dectin‐1 receptor, in this process of recognition. This work raises the possibility that parasitic nematodes synthesize β‐glucans and it identifies CD11b and ephrin‐A2 as important pattern recognition receptors involved in the host recognition of these evolutionary old pathogens. To our knowledge, this is the first time that EphA2 has been implicated in immune responses to a helminth.
Collapse
Affiliation(s)
- Tiffany Bouchery
- Global Health Institute Swiss Federal Institute of Technology Lausanne Switzerland
- Laboratory of Intestinal Immunology Department of Immunology and Pathology Central Clinical School The Alfred Centre Monash University Melbourne VIC Australia
| | - Beatrice Volpe
- Global Health Institute Swiss Federal Institute of Technology Lausanne Switzerland
| | - Rory Doolan
- Laboratory of Intestinal Immunology Department of Immunology and Pathology Central Clinical School The Alfred Centre Monash University Melbourne VIC Australia
| | - Gillian Coakley
- Laboratory of Intestinal Immunology Department of Immunology and Pathology Central Clinical School The Alfred Centre Monash University Melbourne VIC Australia
| | - Mati Moyat
- Global Health Institute Swiss Federal Institute of Technology Lausanne Switzerland
- Laboratory of Intestinal Immunology Department of Immunology and Pathology Central Clinical School The Alfred Centre Monash University Melbourne VIC Australia
| | - Julia Esser‐von Bieren
- Global Health Institute Swiss Federal Institute of Technology Lausanne Switzerland
- Center of Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Centre Munich Munich Germany
| | - Lakshanie C Wickramasinghe
- Laboratory of Intestinal Immunology Department of Immunology and Pathology Central Clinical School The Alfred Centre Monash University Melbourne VIC Australia
| | - Margaret L Hibbs
- Leukocyte Signaling Laboratory Department of Immunology and Pathology Central Clinical School The Alfred Centre Monash University Melbourne VIC Australia
| | - Javier Sotillo
- Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia
| | - Mali Camberis
- Malaghan Institute of Medical Research Wellington New Zealand
| | - Graham Le Gros
- Malaghan Institute of Medical Research Wellington New Zealand
| | - Nemat Khan
- Mayne Academy of Paediatrics and Child Health The University of Queensland Herston QLD Australia
| | - David Williams
- Department of Surgery Quillen College of Medicine Center for Inflammation Infectious Disease and Immunity East Tennessee State University Johnson City TN USA
| | - Nicola L Harris
- Global Health Institute Swiss Federal Institute of Technology Lausanne Switzerland
- Laboratory of Intestinal Immunology Department of Immunology and Pathology Central Clinical School The Alfred Centre Monash University Melbourne VIC Australia
| |
Collapse
|
18
|
Dagenais M, Gerlach JQ, Geary TG, Long T. Sugar Coating: Utilisation of Host Serum Sialoglycoproteins by Schistosoma mansoni as a Potential Immune Evasion Mechanism. Pathogens 2022; 11:pathogens11040426. [PMID: 35456101 PMCID: PMC9030049 DOI: 10.3390/pathogens11040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
Parasitic helminths resort to various mechanisms to evade and modulate their host’s immune response, several of which have been described for Schistosoma mansoni. We recently reported the presence of sialic acid residues on the surface of adult S. mansoni extracellular vesicles (EVs). We now report that these sialylated molecules are mammalian serum proteins. In addition, our data suggest that most sialylated EV-associated proteins do not elicit a humoral response upon injection into mice, or in sera obtained from infected animals. Sialic acids frequently terminate glycans on the surface of vertebrate cells, where they serve important functions in physiological processes such as cell adhesion and signalling. Interestingly, several pathogens have evolved ways to mimic or utilise host sialic acid beneficially by coating their own proteins, thereby facilitating cell invasion and providing protection from host immune effectors. Together, our results indicate that S. mansoni EVs are coated with host glycoproteins, which may contribute to immune evasion by masking antigenic sites, protecting EVs from removal from serum and aiding in cell adhesion and entry to exert their functions.
Collapse
Affiliation(s)
- Maude Dagenais
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (T.G.G.); (T.L.)
- Correspondence:
| | - Jared Q. Gerlach
- Advanced Glycoscience Research Cluster, National University of Ireland-Galway, H91 TK33 Galway, Ireland;
| | - Timothy G. Geary
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (T.G.G.); (T.L.)
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University-Belfast, Belfast BT9 5DL, UK
| | - Thavy Long
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (T.G.G.); (T.L.)
| |
Collapse
|
19
|
Petralia LM, van Diepen A, Lokker LA, Nguyen DL, Sartono E, Khatri V, Kalyanasundaram R, Taron CH, Foster JM, Hokke CH. Mass spectrometric and glycan microarray-based characterization of the filarial nematode Brugia malayi glycome reveals anionic and zwitterionic glycan antigens. Mol Cell Proteomics 2022; 21:100201. [PMID: 35065273 PMCID: PMC9046957 DOI: 10.1016/j.mcpro.2022.100201] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 11/30/2022] Open
Abstract
Millions of people worldwide are infected with filarial nematodes, responsible for lymphatic filariasis (LF) and other diseases causing chronic disablement. Elimination programs have resulted in a substantial reduction of the rate of infection in certain areas creating a need for improved diagnostic tools to establish robust population surveillance and avoid LF resurgence. Glycans from parasitic helminths are emerging as potential antigens for use in diagnostic assays. However, despite its crucial role in host–parasite interactions, filarial glycosylation is still largely, structurally, and functionally uncharacterized. Therefore, we investigated the glycan repertoire of the filarial nematode Brugia malayi. Glycosphingolipid and N-linked glycans were extracted from several life-stages using enzymatic release and characterized using a combination of MALDI-TOF-MS and glycan sequencing techniques. Next, glycans were purified by HPLC and printed onto microarrays to assess the host anti-glycan antibody response. Comprehensive glycomic analysis of B. malayi revealed the presence of several putative antigenic motifs such as phosphorylcholine and terminal glucuronic acid. Glycan microarray screening showed a recognition of most B. malayi glycans by immunoglobulins from rhesus macaques at different time points after infection, which permitted the characterization of the dynamics of anti-glycan immunoglobulin G and M during the establishment of brugian filariasis. A significant level of IgG binding to the parasite glycans was also detected in infected human plasma, while IgG binding to glycans decreased after anthelmintic treatment. Altogether, our work identifies B. malayi glycan antigens and reveals antibody responses from the host that could be exploited as potential markers for LF. Antigenic B. malayi N-linked and GSL glycans were structurally defined. IgG/IgM is induced to a subset of B. malayi glycans upon infection of rhesus macaques. Preferential IgG response to B. malayi glycans observed in chronically infected humans. Marked drop of anti-glycan IgG following treatment of individuals with anthelminthic.
Collapse
|
20
|
Dagenais M, Gerlach JQ, Wendt GR, Collins JJ, Atkinson LE, Mousley A, Geary TG, Long T. Analysis of Schistosoma mansoni Extracellular Vesicles Surface Glycans Reveals Potential Immune Evasion Mechanism and New Insights on Their Origins of Biogenesis. Pathogens 2021; 10:1401. [PMID: 34832557 PMCID: PMC8617790 DOI: 10.3390/pathogens10111401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
Parasitic helminths are master manipulators of host immunity. Their strategy is complex and involves the release of excreted/secreted products, including extracellular vesicles (EVs). The protein and miRNA contents of EVs have been characterised for many parasitic helminths but, despite reports suggesting the importance of EV surface carbohydrate structures (glycans) in the interactions with target cells and thus subsequent effector functions, little is known about parasite EV glycomics. Using lectin microarrays, we identified several lectins that exhibit strong adhesion to Schistosoma mansoni EVs, suggesting the presence of multiple glycan structures on these vesicles. Interestingly, SNA-I, a lectin that recognises structures with terminal sialic acid, displayed strong affinity for S. mansoni EVs, which was completely abolished by neuraminidase treatment, suggesting sialylation in the EV sample. This finding is of interest, as sialic acids play important roles in the context of infection by aiding immune evasion, affecting target recognition, cell entry, etc., but are not thought to be synthesised by helminths. These data were validated by quantitative analysis of free sialic acid released from EVs following treatment with neuraminidase. Lectin histochemistry and fluorescence in situ hybridisation analyses on whole adult worms suggest the involvement of sub-tegumental cell bodies, as well as the digestive and excretory systems, in the release of EVs. These results support previous reports of EV biogenesis diversity in trematodes and potentially highlight new means of immune modulation and evasion employed by schistosomes.
Collapse
Affiliation(s)
- Maude Dagenais
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (T.G.G.); (T.L.)
| | - Jared Q. Gerlach
- Glycoscience Group, Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, H91 TK33 Galway, Ireland;
| | - George R. Wendt
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (G.R.W.); (J.J.C.III)
| | - James J. Collins
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (G.R.W.); (J.J.C.III)
| | - Louise E. Atkinson
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University-Belfast, Belfast BT9 5DL, UK; (L.E.A.); (A.M.)
| | - Angela Mousley
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University-Belfast, Belfast BT9 5DL, UK; (L.E.A.); (A.M.)
| | - Timothy G. Geary
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (T.G.G.); (T.L.)
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University-Belfast, Belfast BT9 5DL, UK; (L.E.A.); (A.M.)
| | - Thavy Long
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (T.G.G.); (T.L.)
| |
Collapse
|
21
|
He W, Baysal C, Lobato Gómez M, Huang X, Alvarez D, Zhu C, Armario‐Najera V, Blanco Perera A, Cerda Bennaser P, Saba‐Mayoral A, Sobrino‐Mengual G, Vargheese A, Abranches R, Alexandra Abreu I, Balamurugan S, Bock R, Buyel JF, da Cunha NB, Daniell H, Faller R, Folgado A, Gowtham I, Häkkinen ST, Kumar S, Sathish Kumar R, Lacorte C, Lomonossoff GP, Luís IM, K.‐C. Ma J, McDonald KA, Murad A, Nandi S, O’Keef B, Parthiban S, Paul MJ, Ponndorf D, Rech E, Rodrigues JC, Ruf S, Schillberg S, Schwestka J, Shah PS, Singh R, Stoger E, Twyman RM, Varghese IP, Vianna GR, Webster G, Wilbers RHP, Christou P, Oksman‐Caldentey K, Capell T. Contributions of the international plant science community to the fight against infectious diseases in humans-part 2: Affordable drugs in edible plants for endemic and re-emerging diseases. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1921-1936. [PMID: 34181810 PMCID: PMC8486237 DOI: 10.1111/pbi.13658] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 05/05/2023]
Abstract
The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain. In this review article, we consider the potential of molecular farming to address the challenges of endemic and re-emerging diseases, focusing on edible plants for the development of oral drugs. Key recent developments in this field include successful clinical trials based on orally delivered dried leaves of Artemisia annua against malarial parasite strains resistant to artemisinin combination therapy, the ability to produce clinical-grade protein drugs in leaves to treat infectious diseases and the long-term storage of protein drugs in dried leaves at ambient temperatures. Recent FDA approval of the first orally delivered protein drug encapsulated in plant cells to treat peanut allergy has opened the door for the development of affordable oral drugs that can be manufactured and distributed in remote areas without cold storage infrastructure and that eliminate the need for expensive purification steps and sterile delivery by injection.
Collapse
Affiliation(s)
- Wenshu He
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Can Baysal
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Maria Lobato Gómez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Xin Huang
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Derry Alvarez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Changfu Zhu
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Victoria Armario‐Najera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Aamaya Blanco Perera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Pedro Cerda Bennaser
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Andrea Saba‐Mayoral
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | | | - Ashwin Vargheese
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Rita Abranches
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Isabel Alexandra Abreu
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Shanmugaraj Balamurugan
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Johannes F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Nicolau B. da Cunha
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de BrasíliaBrasíliaBrazil
| | - Henry Daniell
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Roland Faller
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
| | - André Folgado
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Iyappan Gowtham
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Suvi T. Häkkinen
- Industrial Biotechnology and Food SolutionsVTT Technical Research Centre of Finland LtdEspooFinland
| | - Shashi Kumar
- International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Ramalingam Sathish Kumar
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Cristiano Lacorte
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | | | - Ines M. Luís
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Julian K.‐C. Ma
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Karen A. McDonald
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Andre Murad
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Somen Nandi
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Barry O’Keef
- Division of Cancer Treatment and DiagnosisMolecular Targets ProgramCenter for Cancer ResearchNational Cancer Institute, and Natural Products Branch, Developmental Therapeutics ProgramNational Cancer Institute, NIHFrederickMDUSA
| | - Subramanian Parthiban
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Mathew J. Paul
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Daniel Ponndorf
- Department of Biological ChemistryJohn Innes CentreNorwich Research Park, NorwichUK
| | - Elibio Rech
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Julio C.M. Rodrigues
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Stephanie Ruf
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for PhytopathologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Jennifer Schwestka
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Priya S. Shah
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Department of Microbiology and Molecular GeneticsUniversity of California, DavisDavisCAUSA
| | - Rahul Singh
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Inchakalody P. Varghese
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Giovanni R. Vianna
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Gina Webster
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Ruud H. P. Wilbers
- Laboratory of NematologyPlant Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Paul Christou
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
- ICREACatalan Institute for Research and Advanced StudiesBarcelonaSpain
| | | | - Teresa Capell
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| |
Collapse
|
22
|
Drurey C, Maizels RM. Helminth extracellular vesicles: Interactions with the host immune system. Mol Immunol 2021; 137:124-133. [PMID: 34246032 PMCID: PMC8636279 DOI: 10.1016/j.molimm.2021.06.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022]
Abstract
As long-lived parasites, helminths depend upon immunomodulation of their hosts for survival. The release of excretory-secretory (ES) products, including proteins, lipids and RNAs is how successful host manipulation is achieved. It has recently been discovered that the ES products of helminths contain extracellular vesicles (EVs), with every species investigated found to secrete these lipid-bound structures. EVs are perfect for packaging and delivering immune modulators to target cell types. This review outlines the research carried out on helminth EVs and their constituents thus far, as well as their interaction with components of the mammalian immune system. We discuss how targeting EVs will aid treatment of helminth infection and consider how EVs and their immunomodulatory cargo could be used as therapeutics as we progress through this exciting era.
Collapse
Affiliation(s)
- Claire Drurey
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK.
| |
Collapse
|
23
|
Platts‐Mills TA, Hilger C, Jappe U, van Hage M, Gadermaier G, Spillner E, Lidholm J, Keshavarz B, Aalberse RC, van Ree R, Goodman RE, Pomés A. Carbohydrate epitopes currently recognized as targets for IgE antibodies. Allergy 2021; 76:2383-2394. [PMID: 33655520 DOI: 10.1111/all.14802] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/17/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Until recently, glycan epitopes have not been documented by the WHO/IUIS Allergen Nomenclature Sub-Committee. This was in part due to scarce or incomplete information on these oligosaccharides, but also due to the widely held opinion that IgE to these epitopes had little or no relevance to allergic symptoms. Most IgE-binding glycans recognized up to 2008 were considered to be "classical" cross-reactive carbohydrate determinants (CCD) that occur in insects, some helminths and throughout the plant kingdom. Since 2008, the prevailing opinion on lack of clinical relevance of IgE-binding glycans has been subject to a reevaluation. This was because IgE specific for the mammalian disaccharide galactose-alpha-1,3-galactose (alpha-gal) was identified as a cause of delayed anaphylaxis to mammalian meat in the United States, an observation that has been confirmed by allergists in many parts of the world. Several experimental studies have shown that oligosaccharides with one or more terminal alpha-gal epitopes can be attached as a hapten to many different mammalian proteins or lipids. The classical CCDs also behave like haptens since they can be expressed on proteins from multiple species. This is the explanation for extensive in vitro cross-reactivity related to CCDs. Because of these developments, the Allergen Nomenclature Sub-Committee recently decided to include glycans as potentially allergenic epitopes in an adjunct section of its website (www.allergen.org). In this article, the features of the main glycan groups known to be involved in IgE recognition are revisited, and their characteristic structural, functional, and clinical features are discussed.
Collapse
Affiliation(s)
- Thomas A. Platts‐Mills
- WHO/IUIS Allergen Nomenclature Sub‐Committee
- Division of Allergy and Immunology University of Virginia Charlottesville Virginia USA
| | - Christiane Hilger
- WHO/IUIS Allergen Nomenclature Sub‐Committee
- Department of Infection and Immunity Luxembourg Institute of Health Esch‐sur‐Alzette Luxembourg
| | - Uta Jappe
- WHO/IUIS Allergen Nomenclature Sub‐Committee
- Division of Clinical and Molecular Allergology, Research Center Borstel AirwayResearch Center North (ARCN)German Center for Lung Research Borstel Germany
- Interdisciplinary Allergy Outpatient Clinic, Department of Internal Medicine and Pneumology University of Lübeck Lübeck Germany
| | - Marianne van Hage
- WHO/IUIS Allergen Nomenclature Sub‐Committee
- Department of Medicine Solna, Division of Immunology and Allergy Karolinska Institutet & Karolinska University Hospital Stockholm Sweden
| | - Gabriele Gadermaier
- WHO/IUIS Allergen Nomenclature Sub‐Committee
- Department of Biosciences Paris Lodron University of Salzburg Salzburg Austria
| | - Edzard Spillner
- WHO/IUIS Allergen Nomenclature Sub‐Committee
- Department of Biological and Chemical Engineering Aarhus University Denmark
| | - Jonas Lidholm
- WHO/IUIS Allergen Nomenclature Sub‐Committee
- Thermo Fisher Scientific Uppsala Sweden
| | - Behnam Keshavarz
- Division of Allergy and Immunology University of Virginia Charlottesville Virginia USA
| | - Rob C. Aalberse
- Department of Immunopathology Sanquin Amsterdam The Netherlands
| | - Ronald van Ree
- WHO/IUIS Allergen Nomenclature Sub‐Committee
- Departments of Experimental Immunology and of Otorhinolaryngology Amsterdam University Medical Centers, Academic Medical Center Amsterdam The Netherlands
| | - Richard E. Goodman
- WHO/IUIS Allergen Nomenclature Sub‐Committee
- Food Allergy Research & Resource Program University of Nebraska Lincoln Nebraska USA
| | - Anna Pomés
- WHO/IUIS Allergen Nomenclature Sub‐Committee
- Basic Research, Indoor Biotechnologies, Inc. Charlottesville Virginia USA
| |
Collapse
|
24
|
Wang C, Gao W, Yan S, Zhu XQ, Suo X, Liu X, Gupta N, Hu M. N-glycome and N-glycoproteome of a hematophagous parasitic nematode Haemonchus. Comput Struct Biotechnol J 2021; 19:2486-2496. [PMID: 34025939 PMCID: PMC8113779 DOI: 10.1016/j.csbj.2021.04.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/24/2022] Open
Abstract
N-glycosylation is a physiologically vital post-translational modification of proteins in eukaryotic organisms. Initial work on Haemonchus contortus - a blood-sucking nematode of ruminants with a broad geographical distribution - has shown that this parasite harbors N-glycans with exclusive chitobiose modifications. Besides, several immunogenic proteins (e.g., amino- and metallo-peptidases) are known to be N-glycosylated in adult worms. However, an informative atlas of N-glycosylation in H. contortus is not yet available. Herein, we report 291 N-glycosylated proteins with a total of 425 modification sites in the parasite. Among them, many peptidase families (e.g., peptidase C1 and M1) including potential vaccine targets were enriched. Notably, the glycan-rich conjugates are distributed primarily in the intestine and gonads of adult worms, and consequently hidden from the host's immune system. Collectively, these data provide a comprehensive atlas of N-glycosylation in a prevalent parasitic nematode while underlining its significance for infection, immunity and prevention.
Collapse
Key Words
- Con A, concanavalin A
- Fuc, fucose
- Gal, galactose
- Gal-Fuc, galactosylated fucose
- GalNAc, N-acetylgalactosamine
- GlcNAc, N-acetylglucosamine
- Glycopeptide
- HILIC, hydrophilic interaction chromatography
- Haemonchus contortus
- LC-MS/MS, liquid chromatography-tandem mass spectrometry
- MALDI-ToF MS, matrix-assisted laser desorption ionization-time of flight mass spectrometry
- Man, mannose
- Mass spectrometry
- N-glycan
- N-glycosylation
- OST, oligosaccharyltransferase
- PNGase A/F, peptide-N-glycosidase A/F
Collapse
Affiliation(s)
- Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenjie Gao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China,College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shi Yan
- Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xun Suo
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xin Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Nishith Gupta
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany,Department of Biological Sciences, Birla Institute of Technology and Science Pilani (BITS-P), Hyderabad, India
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Corresponding author at: College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan St., Wuhan, Hubei Province 430070, China.
| |
Collapse
|
25
|
Moreno Y, Geary TG, Tritten L. When Secretomes Meet Anthelmintics: Lessons for Therapeutic Interventions. Trends Parasitol 2021; 37:468-475. [PMID: 33563557 DOI: 10.1016/j.pt.2021.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
Helminth secretomes comprise many potential immunomodulators. The molecular and functional diversity of these entities and their importance at the host-parasite interface have been increasingly recognized. It is now common to hypothesize that parasite-derived molecules (PDMs) are essential mediators used by parasites to establish and remain in their hosts. Suppression of PDM release has been reported for two anthelmintic drug classes, the benzimidazoles and macrocyclic lactones, the mechanisms of action of which remain incompletely resolved. We propose that bringing together recent insights from different streams of parasitology research, for example, immunoparasitology and pharmacology, will stimulate the development of new ways to alter the host-parasite interface in the search for novel anthelmintic strategies.
Collapse
Affiliation(s)
- Yovany Moreno
- Boehringer-Ingelheim Animal Health, Duluth, GA, USA.
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC, Canada; School of Biological Sciences, Queen's University - Belfast, Belfast, UK
| | - Lucienne Tritten
- Institute of Parasitology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
26
|
Alvisi N, van Noort K, Dwiani S, Geschiere N, Sukarta O, Varossieau K, Nguyen DL, Strasser R, Hokke CH, Schots A, Wilbers RHP. β-Hexosaminidases Along the Secretory Pathway of Nicotiana benthamiana Have Distinct Specificities Toward Engineered Helminth N-Glycans on Recombinant Glycoproteins. FRONTIERS IN PLANT SCIENCE 2021; 12:638454. [PMID: 33815445 PMCID: PMC8010188 DOI: 10.3389/fpls.2021.638454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/23/2021] [Indexed: 05/14/2023]
Abstract
Secretions of parasitic worms (helminths) contain a wide collection of immunomodulatory glycoproteins with the potential to treat inflammatory disorders, like autoimmune diseases. Yet, the identification of single molecules that can be developed into novel biopharmaceuticals is hampered by the limited availability of native parasite-derived proteins. Recently, pioneering work has shown that helminth glycoproteins can be produced transiently in Nicotiana benthamiana plants while simultaneously mimicking their native helminth N-glycan composition by co-expression of desired glycosyltransferases. However, efficient "helminthization" of N-glycans in plants by glyco-engineering seems to be hampered by the undesired truncation of complex N-glycans by β-N-acetyl-hexosaminidases, in particular when aiming for the synthesis of N-glycans with antennary GalNAcβ1-4GlcNAc (LacdiNAc or LDN). In this study, we cloned novel β-hexosaminidase open reading frames from N. benthamiana and characterized the biochemical activity of these enzymes. We identified HEXO2 and HEXO3 as enzymes responsible for the cleavage of antennary GalNAc residues of N-glycans on the model helminth glycoprotein kappa-5. Furthermore, we reveal that each member of the HEXO family has a distinct specificity for N-glycan substrates, where HEXO2 has strict β-galactosaminidase activity, whereas HEXO3 cleaves both GlcNAc and GalNAc. The identification of HEXO2 and HEXO3 as major targets for LDN cleavage will enable a targeted genome editing approach to reduce undesired processing of these N-glycans. Effective knockout of these enzymes could allow the production of therapeutically relevant glycoproteins with tailor-made helminth N-glycans in plants.
Collapse
Affiliation(s)
- Nicolò Alvisi
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Kim van Noort
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Sarlita Dwiani
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Nathan Geschiere
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Octavina Sukarta
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Koen Varossieau
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Dieu-Linh Nguyen
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cornelis H. Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Arjen Schots
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Ruud H. P. Wilbers
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Ruud H. P. Wilbers,
| |
Collapse
|
27
|
Nkurunungi G, Mpairwe H, Versteeg SA, Diepen A, Nassuuna J, Kabagenyi J, Nambuya I, Sanya RE, Nampijja M, Serna S, Reichardt N, Hokke CH, Webb EL, Ree R, Yazdanbakhsh M, Elliott AM. Cross-reactive carbohydrate determinant-specific IgE obscures true atopy and exhibits ⍺-1,3-fucose epitope-specific inverse associations with asthma. Allergy 2021; 76:233-246. [PMID: 32568414 PMCID: PMC7610925 DOI: 10.1111/all.14469] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/03/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022]
Abstract
Background In high-income, temperate countries, IgE to allergen extracts is a risk factor for, and mediator of, allergy-related diseases (ARDs). In the tropics, positive IgE tests are also prevalent, but rarely associated with ARD. Instead, IgE responses to ubiquitous cross-reactive carbohydrate determinants (CCDs) on plant, insect and parasite glycoproteins, rather than to established major allergens, are dominant. Because anti-CCD IgE has limited clinical relevance, it may impact ARD phenotyping and assessment of contribution of atopy to ARD. Methods Using an allergen extract-based test, a glycan and an allergen (glyco)protein microarray, we mapped IgE fine specificity among Ugandan rural Schistosoma mansoni (Sm)-endemic communities, proximate urban communities, and importantly in asthmatic and nonasthmatic schoolchildren. Results Overall, IgE sensitization to extracts was highly prevalent (43%-73%) but allergen arrays indicated that this was not attributable to established major allergenic components of the extracts (0%-36%); instead, over 40% of all participants recognized CCD-bearing components. Using glycan arrays, we dissected IgE responses to specific glycan moieties and found that reactivity to classical CCD epitopes (core β-1,2-xylose, α-1,3-fucose) was positively associated with sensitization to extracts, rural environment and Sm infection, but not with skin reactivity to extracts or sensitization to their major allergenic components. Interestingly, we discovered that reactivity to only a subset of core α-1,3-fucose-carrying N-glycans was inversely associated with asthma. Conclusions CCD reactivity is not just an epiphenomenon of parasite exposure hampering specificity of allergy diagnostics; mechanistic studies should investigate whether specific CCD moieties identified here are implicated in the protective effect of certain environmental exposures against asthma.
Collapse
Affiliation(s)
- Gyaviira Nkurunungi
- Immunomodulation and Vaccines Programme Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit Entebbe Uganda
- Department of Clinical Research London School of Hygiene and Tropical Medicine London UK
| | - Harriet Mpairwe
- Immunomodulation and Vaccines Programme Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit Entebbe Uganda
| | - Serge A. Versteeg
- Departments of Experimental Immunology and of Otorhinolaryngology Amsterdam University Medical Centers (AMC) Amsterdam The Netherlands
| | - Angela Diepen
- Department of Parasitology Leiden University Medical Center Leiden The Netherlands
| | - Jacent Nassuuna
- Immunomodulation and Vaccines Programme Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit Entebbe Uganda
| | - Joyce Kabagenyi
- Immunomodulation and Vaccines Programme Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit Entebbe Uganda
| | - Irene Nambuya
- Immunomodulation and Vaccines Programme Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit Entebbe Uganda
| | - Richard E. Sanya
- Immunomodulation and Vaccines Programme Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit Entebbe Uganda
- College of Health Sciences Makerere University Kampala Uganda
| | - Margaret Nampijja
- Immunomodulation and Vaccines Programme Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit Entebbe Uganda
| | - Sonia Serna
- Glycotechnology Laboratory Centro de Investigación Cooperativa en Biomateriales (CIC biomaGUNE) San Sebastián Spain
| | - Niels‐Christian Reichardt
- Glycotechnology Laboratory Centro de Investigación Cooperativa en Biomateriales (CIC biomaGUNE) San Sebastián Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN) San Sebastián Spain
| | - Cornelis H. Hokke
- Department of Parasitology Leiden University Medical Center Leiden The Netherlands
| | - Emily L. Webb
- Department of Infectious Disease Epidemiology London School of Hygiene and Tropical Medicine MRC Tropical Epidemiology Group London UK
| | - Ronald Ree
- Departments of Experimental Immunology and of Otorhinolaryngology Amsterdam University Medical Centers (AMC) Amsterdam The Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology Leiden University Medical Center Leiden The Netherlands
| | - Alison M. Elliott
- Immunomodulation and Vaccines Programme Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit Entebbe Uganda
- Department of Clinical Research London School of Hygiene and Tropical Medicine London UK
| |
Collapse
|
28
|
Bobardt SD, Dillman AR, Nair MG. The Two Faces of Nematode Infection: Virulence and Immunomodulatory Molecules From Nematode Parasites of Mammals, Insects and Plants. Front Microbiol 2020; 11:577846. [PMID: 33343521 PMCID: PMC7738434 DOI: 10.3389/fmicb.2020.577846] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Helminths stage a powerful infection that allows the parasite to damage host tissue through migration and feeding while simultaneously evading the host immune system. This feat is accomplished in part through the release of a diverse set of molecules that contribute to pathogenicity and immune suppression. Many of these molecules have been characterized in terms of their ability to influence the infectious capabilities of helminths across the tree of life. These include nematodes that infect insects, known as entomopathogenic nematodes (EPN) and plants with applications in agriculture and medicine. In this review we will first discuss the nematode virulence factors, which aid parasite colonization or tissue invasion, and cause many of the negative symptoms associated with infection. These include enzymes involved in detoxification, factors essential for parasite development and growth, and highly immunogenic ES proteins. We also explore how these parasites use several classes of molecules (proteins, carbohydrates, and nucleic acids) to evade the host's immune defenses. For example, helminths release immunomodulatory molecules in extracellular vesicles that may be protective in allergy and inflammatory disease. Collectively, these nematode-derived molecules allow parasites to persist for months or even years in a host, avoiding being killed or expelled by the immune system. Here, we evaluate these molecules, for their individual and combined potential as vaccine candidates, targets for anthelminthic drugs, and therapeutics for allergy and inflammatory disease. Last, we evaluate shared virulence and immunomodulatory mechanisms between mammalian and non-mammalian plant parasitic nematodes and EPNs, and discuss the utility of EPNs as a cost-effective model for studying nematode-derived molecules. Better knowledge of the virulence and immunomodulatory molecules from both entomopathogenic nematodes and soil-based helminths will allow for their use as beneficial agents in fighting disease and pests, divorced from their pathogenic consequences.
Collapse
Affiliation(s)
- Sarah D. Bobardt
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Adler R. Dillman
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
29
|
Srivastava AD, Unione L, Wolfert MA, Valverde P, Ardá A, Jiménez-Barbero J, Boons GJ. Mono- and Di-Fucosylated Glycans of the Parasitic Worm S. mansoni are Recognized Differently by the Innate Immune Receptor DC-SIGN. Chemistry 2020; 26:15605-15612. [PMID: 32957164 PMCID: PMC7894523 DOI: 10.1002/chem.202002619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/06/2020] [Indexed: 12/13/2022]
Abstract
The parasitic worm, Schistosoma mansoni, expresses unusual fucosylated glycans in a stage-dependent manner that can be recognized by the human innate immune receptor DC-SIGN, thereby shaping host immune responses. We have developed a synthetic approach for mono- and bis-fucosylated LacdiNAc (LDN-F and LDN-DF, respectively), which are epitopes expressed on glycolipids and glycoproteins of S. mansoni. It is based on the use of monosaccharide building blocks having carefully selected amino-protecting groups, facilitating high yielding and stereoselective glycosylations. The molecular interaction between the synthetic glycans and DC-SIGN was studied by NMR and molecular modeling, which demonstrated that the α1,3-fucoside of LDN-F can coordinate with the Ca2+ -ion of the canonical binding site of DC-SIGN allowing for additional interactions with the underlying LDN backbone. The 1,2-fucoside of LDN-DF can be complexed in a similar manner, however, in this binding mode GlcNAc and GalNAc of the LDN backbone are placed away from the protein surface resulting in a substantially lower binding affinity. Glycan microarray binding studies showed that the avidity and selectivity of binding is greatly enhanced when the glycans are presented multivalently, and in this format Lex and LDN-F gave strong responsiveness, whereas no binding was detected for LDN-DF. The data indicates that S. mansoni has developed a strategy to avoid detection by DC-SIGN in a stage-dependent manner by the addition of a fucoside to a number of its ligands.
Collapse
Affiliation(s)
- Apoorva D Srivastava
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, Netherlands
| | - Luca Unione
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, Netherlands
| | - Margreet A Wolfert
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, Netherlands
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Pablo Valverde
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, Building 800, 48162, Derio, Bizkaia, Spain
| | - Ana Ardá
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, Building 800, 48162, Derio, Bizkaia, Spain
| | - Jesús Jiménez-Barbero
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, Building 800, 48162, Derio, Bizkaia, Spain
- Basque Foundation for Science, Ikerbasque, 48013, Bilbao, Bizkaia, Spain
- Department of Organic Chemistry II, UPV/EHU, University of the Basque Country, 48940, Leioa, Bizkaia, Spain
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, Netherlands
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
30
|
Hertz MI, Rush A, Nutman TB, Weil GJ, Bennuru S, Budge PJ. Characterization of glycan determinants that mediate recognition of the major Wuchereria bancrofti circulating antigen by diagnostic antibodies. Mol Biochem Parasitol 2020; 240:111317. [PMID: 32961208 PMCID: PMC11006022 DOI: 10.1016/j.molbiopara.2020.111317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022]
Abstract
The Global Program to Eliminate Lymphatic Filariasis (GPELF) relies heavily on a rapid diagnostic test (RDT) to a Wuchereria bancrofti circulating filarial antigen (Wb-CFA) to identify endemic areas and for determining when mass drug administration can stop. The antigen contains a carbohydrate epitope that is recognized by monoclonal antibody AD12. Og4C3, a monoclonal antibody that is used in a commercial ELISA for Wb-CFA recognizes the same moiety. Despite its diagnostic importance, little is known about the structure and function of this "AD12 epitope". It is also present on other W. bancrofti glycoproteins and on glycoproteins of other filarial worms, but such antigens are not detected in the sera of individuals with most other filarial infections. We report here functional and biochemical analyses that shed light on the interaction between filarial glycoproteins and AD12 and/or Og4C3. Binding of these monoclonal antibodies to a mammalian glycan array suggests the reactive moiety has structural similarity to terminal β-d-glucuronic acid in a 1-3 linkage to other hexoses. However, sera collected from individuals with patent W. bancrofti infection had very low or undetectable serum antibodies to the GlcA-containing array glycans. Unlike other filarial glycoproteins, the Wb-CFA is relatively resistant to protease digestion by pronase and trypsin and completely resistant to the mucinase O-sialoglycoprotein endopeptidase (OSGE). The protease resistance of the Wb-CFA may contribute to its consistent detection in Wb-infected sera.
Collapse
Affiliation(s)
- Marla I Hertz
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Amy Rush
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gary J Weil
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Philip J Budge
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
31
|
van Noort K, Nguyen DL, Kriechbaumer V, Hawes C, Hokke CH, Schots A, Wilbers RHP. Functional characterization of Schistosoma mansoni fucosyltransferases in Nicotiana benthamiana plants. Sci Rep 2020; 10:18528. [PMID: 33116178 PMCID: PMC7595089 DOI: 10.1038/s41598-020-74485-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Helminth parasites secrete a wide variety of immunomodulatory proteins and lipids to dampen host immune responses. Many of these immunomodulatory compounds are modified with complex sugar structures (or glycans), which play an important role at the host-parasite interface. As an example, the human blood fluke Schistosoma mansoni produces highly fucosylated glycan structures on glycoproteins and glycolipids. Up to 20 different S. mansoni fucosyltransferase (SmFucT) genes can be found in genome databases, but thus far only one enzyme has been functionally characterized. To unravel the synthesis of highly fucosylated N-glycans by S. mansoni, we examined the ability of ten selected SmFucTs to modify N-glycans upon transient expression in Nicotiana benthamiana plants. All enzymes were localized in the plant Golgi apparatus, which allowed us to identify the SmFucTs involved in core fucosylation and the synthesis of complex antennary glycan motifs. This knowledge provides a starting point for investigations into the role of specific fucosylated glycan motifs of schistosomes in parasite-host interactions. The functionally characterized SmFucTs can also be applied to synthesize complex N-glycan structures on recombinant proteins to study their contribution to immunomodulation. Furthermore, this plant expression system will fuel the development of helminth glycoproteins for pharmaceutical applications or novel anti-helminth vaccines.
Collapse
Affiliation(s)
- Kim van Noort
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Dieu-Linh Nguyen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef, 2333 ZA, Leiden, The Netherlands
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Albinusdreef, 2333 ZA, Leiden, The Netherlands
| | - Arjen Schots
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Ruud H P Wilbers
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
32
|
Drurey C, Coakley G, Maizels RM. Extracellular vesicles: new targets for vaccines against helminth parasites. Int J Parasitol 2020; 50:623-633. [PMID: 32659278 PMCID: PMC8313431 DOI: 10.1016/j.ijpara.2020.04.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022]
Abstract
The hunt for effective vaccines against the major helminth diseases of humans has yet to bear fruit despite much effort over several decades. No individual parasite antigen has proved to elicit full protective immunity, suggesting that combinatorial strategies may be required. Recently it has been discovered that extracellular vesicles released by parasitic helminths contain multiple potential immune modulators, which could together be targeted by a future vaccine. Increasing knowledge of helminth extracellular vesicle components, both enclosed by and exposed on the membrane, will open up a new field of targets for an effective vaccine. This review discusses the interactions between helminth extracellular vesicles and the immune system discovered thus far, and the advantages of targeting these lipid-bound packages with a vaccine. In addition, we also comment upon specific antigens that may be the best targets for an anti-helminth vaccine. In the future, extensive knowledge of the parasites' full arsenal in controlling their host may finally provide us with the ideal target for a fully effective vaccine.
Collapse
Affiliation(s)
- Claire Drurey
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Gillian Coakley
- Department of Immunology and Pathology, Central Clinical School, Monash University, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
33
|
Lindenwald DL, Lepenies B. C-Type Lectins in Veterinary Species: Recent Advancements and Applications. Int J Mol Sci 2020; 21:ijms21145122. [PMID: 32698416 PMCID: PMC7403975 DOI: 10.3390/ijms21145122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
C-type lectins (CTLs), a superfamily of glycan-binding receptors, play a pivotal role in the host defense against pathogens and the maintenance of immune homeostasis of higher animals and humans. CTLs in innate immunity serve as pattern recognition receptors and often bind to glycan structures in damage- and pathogen-associated molecular patterns. While CTLs are found throughout the whole animal kingdom, their ligand specificities and downstream signaling have mainly been studied in humans and in model organisms such as mice. In this review, recent advancements in CTL research in veterinary species as well as potential applications of CTL targeting in veterinary medicine are outlined.
Collapse
|
34
|
Sotillo J, Robinson MW, Kimber MJ, Cucher M, Ancarola ME, Nejsum P, Marcilla A, Eichenberger RM, Tritten L. The protein and microRNA cargo of extracellular vesicles from parasitic helminths - current status and research priorities. Int J Parasitol 2020; 50:635-645. [PMID: 32652128 DOI: 10.1016/j.ijpara.2020.04.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
Abstract
Helminth parasites have a remarkable ability to persist within their mammalian hosts, which is largely due to their secretion of molecules with immunomodulatory properties. Although the soluble components of helminth secretions have been extensively studied, the discovery that helminths release extracellular vesicles (EVs) has added further complexity to the host-parasite interaction. Whilst several studies have begun to characterise the molecules carried by helminth EVs, work aimed at investigating their biological functions has been hindered by a lack of helminth-specific EV markers. To begin to address this, we summarised helminth EV literature to date. With a focus on the protein and microRNA (miRNA) cargo, we aimed to detect similarities and differences across those major groups of helminths for which data are available; namely nematodes, trematodes and cestodes. Pfam analysis revealed that although there is no universal EV marker for all helminth species, the EF-hand protein family was present in all EV datasets from cestodes and trematodes, and could serve as a platyhelminth EV biomarker. In contrast, M13 metallopeptidases and actin may have potential as markers for nematode EVs. As with proteins, many miRNA families appeared to be species-, stage-, or dataset-specific. Two miRNA families were common to nematode EVs (mir-10 and let-7); the miRNA cargo of EVs secreted by clade I species appeared somewhat different from species from other clades. Five miRNA families (mir-71, mir-10, mir-190, let-7 and mir-2) were shared by all trematode species examined. Our analysis has identified novel markers that may be used in studies aimed at characterising helminth EVs and interrogating their function at the host-parasite interface. In addition, we discuss the heterogeneity of methods used for helminth EV isolation and emphasise the need for a standardised approach in reporting on helminth EV data.
Collapse
Affiliation(s)
- Javier Sotillo
- Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, United Kingdom
| | - Michael J Kimber
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Marcela Cucher
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Paraguay 2155 Piso 13 (CP1121), Buenos Aires, Argentina
| | - María Eugenia Ancarola
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Paraguay 2155 Piso 13 (CP1121), Buenos Aires, Argentina
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 45, 8200 Aarhus, Denmark
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Valencia, Spain; Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de Valencia, Valencia, Spain
| | - Ramon M Eichenberger
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland.
| | - Lucienne Tritten
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland.
| |
Collapse
|
35
|
Kuipers ME, Nolte-'t Hoen ENM, van der Ham AJ, Ozir-Fazalalikhan A, Nguyen DL, de Korne CM, Koning RI, Tomes JJ, Hoffmann KF, Smits HH, Hokke CH. DC-SIGN mediated internalisation of glycosylated extracellular vesicles from Schistosoma mansoni increases activation of monocyte-derived dendritic cells. J Extracell Vesicles 2020; 9:1753420. [PMID: 32489529 PMCID: PMC7241508 DOI: 10.1080/20013078.2020.1753420] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Helminths like Schistosoma mansoni release excretory/secretory (E/S) products that modulate host immunity to enable infection. Extracellular vesicles (EVs) are among these E/S products, yet molecular mechanisms and functionality of S. mansoni EV interaction with host immune cells is unknown. Here we demonstrate that EVs released by S. mansoni schistosomula are internalised by human monocyte-derived dendritic cells (moDCs). Importantly, we show that this uptake was mainly mediated via DC-SIGN (CD209). Blocking DC-SIGN almost completely abrogated EV uptake, while blocking mannose receptor (MR, CD206) or dendritic cell immunoreceptor (DCIR, CLEC4A) had no effect on EV uptake. Mass spectrometric analysis of EV glycans revealed the presence of surface N-glycans with terminal Galβ1-4(Fucα1-3)GlcNAc (LewisX) motifs, and a wide array of fucosylated lipid-linked glycans, including LewisX, a known ligand for DC-SIGN. Stimulation of moDCs with schistosomula EVs led to increased expression of costimulatory molecules CD86 and CD80 and regulatory surface marker PD-L1. Furthermore, schistosomula EVs increased expression of IL-12 and IL-10 by moDCs, which was partly dependent on the interaction with DC-SIGN. These results provide the first evidence that glycosylation of S. mansoni EVs facilitates the interaction with host immune cells and reveals a role for DC-SIGN and EV-associated glycoconjugates in parasite-induced immune modulation.
Collapse
Affiliation(s)
- Marije E Kuipers
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands.,Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Esther N M Nolte-'t Hoen
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Alwin J van der Ham
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - D Linh Nguyen
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Clarize M de Korne
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Roman I Koning
- Department of Cell & Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - John J Tomes
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK
| | - Karl F Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
36
|
North SJ, Botchway K, Doonan J, Lumb FE, Dell A, Harnett W, Haslam SM. Site-specific glycoproteomic characterization of ES-62: The major secreted product of the parasitic worm Acanthocheilonema viteae. Glycobiology 2020; 29:562-571. [PMID: 31094418 PMCID: PMC6639541 DOI: 10.1093/glycob/cwz035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 12/29/2022] Open
Abstract
ES-62 is the major secreted product of the parasitic filarial nematode Acanthocheilonema viteae and has potent anti-inflammatory activities as a consequence of posttranslational decoration by phosphorylcholine (PC). Previously, we showed that ES-62’s PC was attached to N-linked glycans, and using fast atom bombardment mass spectrometry, we characterized the structure of the glycans. However, it was unknown at this time which of ES-62’s four potential N-glycosylation sites carries the PC-modified glycans. In the present study, we now employ more advanced analytical tools—nano-flow liquid chromatography with high-definition electrospray mass spectrometry—to show that PC-modified glycans are found at all four potential N-glycosylation sites. Also, our earlier studies showed that up to two PC groups were detected per glycan, and we are now able to characterize N-glycans with up to five PC groups. The number per glycan varies in three of the four glycosylation sites, and in addition, for the first time, we have detected PC on the N-glycan chitobiose core in addition to terminal GlcNAc. Nevertheless, the majority of PC is detected on terminal GlcNAc, enabling it to interact with the cells and molecules of the immune system. Such expression may explain the potent immunomodulatory effects of a molecule that is considered to have significant therapeutic potential in the treatment of certain human allergic and autoimmune conditions.
Collapse
Affiliation(s)
- Simon J North
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Kwamina Botchway
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - James Doonan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Felicity E Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Anne Dell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
37
|
How can schistosome circulating antigen assays be best applied for diagnosing male genital schistosomiasis (MGS): an appraisal using exemplar MGS cases from a longitudinal cohort study among fishermen on the south shoreline of Lake Malawi. Parasitology 2019; 146:1785-1795. [PMID: 31452477 PMCID: PMC6939168 DOI: 10.1017/s0031182019000969] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We provide an update on diagnostic methods for the detection of urogenital schistosomiasis (UGS) in men and highlight that satisfactory urine-antigen diagnostics for UGS lag much behind that for intestinal schistosomiasis, where application of a urine-based point-of-care strip assay, the circulating cathodic antigen (CCA) test, is now advocated. Making specific reference to male genital schistosomiasis (MGS), we place greater emphasis on parasitological detection methods and clinical assessment of internal genitalia with ultrasonography. Unlike the advances made in defining a clinical standard protocol for female genital schistosomiasis, MGS remains inadequately defined. Whilst urine filtration with microscopic examination for ova of Schistosoma haematobium is a convenient but error-prone proxy of MGS, we describe a novel low-cost sampling and direct visualization method for the enumeration of ova in semen. Using exemplar clinical cases of MGS from our longitudinal cohort study among fishermen along the shoreline of Lake Malawi, the portfolio of diagnostic needs is appraised including: the use of symptomatology questionnaires, urine analysis (egg count and CCA measurement), semen analysis (egg count, circulating anodic antigen measurement and real-time polymerase chain reaction analysis) alongside clinical assessment with portable ultrasonography.
Collapse
|
38
|
Advances toward mapping the full extent of protein site-specific O-GalNAc glycosylation that better reflects underlying glycomic complexity. Curr Opin Struct Biol 2019; 56:146-154. [DOI: 10.1016/j.sbi.2019.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 01/01/2023]
|
39
|
Abstract
The investigation of the glycan repertoire of several organisms has revealed a wide variation in terms of structures and abundance of glycan moieties. Among the parasites, it is possible to observe different sets of glycoconjugates across taxa and developmental stages within a species. The presence of distinct glycoconjugates throughout the life cycle of a parasite could relate to the ability of that organism to adapt and survive in different hosts and environments. Carbohydrates on the surface, and in excretory-secretory products of parasites, play essential roles in host-parasite interactions. Carbohydrate portions of complex molecules of parasites stimulate and modulate host immune responses, mainly through interactions with specific receptors on the surface of dendritic cells, leading to the generation of a pattern of response that may benefit parasite survival. Available data reviewed here also show the frequent aspect of parasite immunomodulation of mammalian responses through specific glycan interactions, which ultimately makes these molecules promising in the fields of diagnostics and vaccinology.
Collapse
|
40
|
Takeuchi T, Tamura M, Ishiwata K, Hamasaki M, Hamano S, Arata Y, Hatanaka T. Galectin-2 suppresses nematode development by binding to the invertebrate-specific galactoseβ1-4fucose glyco-epitope. Glycobiology 2019; 29:504-512. [DOI: 10.1093/glycob/cwz022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Tomoharu Takeuchi
- Josai University, Faculty of Pharmacy and Pharmaceutical Sciences, 1-1 Keyakidai, Sakado, Saitama, Japan
| | - Mayumi Tamura
- Teikyo University, Faculty of Pharma-Science, 2-11-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Kenji Ishiwata
- The Jikei University School of Medicine, Department of Tropical Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo, Japan
| | - Megumi Hamasaki
- Nagasaki University, Department of Parasitology, Institute of Tropical Medicine (NEKKEN), 1-12-4 Sakamoto, Nagasaki, Nagasaki, Japan
- Nagasaki University, The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), 1-12-4 Sakamoto, Nagasaki, Nagasaki, Japan
| | - Shinjiro Hamano
- Nagasaki University, Department of Parasitology, Institute of Tropical Medicine (NEKKEN), 1-12-4 Sakamoto, Nagasaki, Nagasaki, Japan
- Nagasaki University, The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), 1-12-4 Sakamoto, Nagasaki, Nagasaki, Japan
- Nagasaki University, Leading Program, Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, Nagasaki, Japan
| | - Yoichiro Arata
- Teikyo University, Faculty of Pharma-Science, 2-11-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Tomomi Hatanaka
- Josai University, Faculty of Pharmacy and Pharmaceutical Sciences, 1-1 Keyakidai, Sakado, Saitama, Japan
- Tokai University, School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| |
Collapse
|
41
|
Scheys F, Van Damme EJM, Smagghe G. Let’s talk about sexes: sex-related N-glycosylation in ecologically important invertebrates. Glycoconj J 2019; 37:41-46. [DOI: 10.1007/s10719-019-09866-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/15/2019] [Indexed: 11/30/2022]
|
42
|
Nkurunungi G, van Diepen A, Nassuuna J, Sanya RE, Nampijja M, Nambuya I, Kabagenyi J, Serna S, Reichardt NC, van Ree R, Webb EL, Elliott AM, Yazdanbakhsh M, Hokke CH. Microarray assessment of N-glycan-specific IgE and IgG profiles associated with Schistosoma mansoni infection in rural and urban Uganda. Sci Rep 2019; 9:3522. [PMID: 30837526 PMCID: PMC6401159 DOI: 10.1038/s41598-019-40009-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/07/2019] [Indexed: 01/01/2023] Open
Abstract
Core β-1,2-xylose and α-1,3-fucose are antigenic motifs on schistosome N-glycans, as well as prominent IgE targets on some plant and insect glycoproteins. To map the association of schistosome infection with responses to these motifs, we assessed plasma IgE and IgG reactivity using microarray technology among Ugandans from rural Schistosoma mansoni (Sm)-endemic islands (n = 209), and from proximate urban communities with lower Sm exposure (n = 62). IgE and IgG responses to core β-1,2-xylose and α-1,3-fucose modified N-glycans were higher in rural versus urban participants. Among rural participants, IgE and IgG to core β-1,2-xylose were positively associated with Sm infection and concentration peaks coincided with the infection intensity peak in early adolescence. Responses to core α-1,3-fucose were elevated regardless of Sm infection status and peaked before the infection peak. Among urban participants, Sm infection intensity was predominantly light and positively associated with responses to both motifs. Principal component and hierarchical cluster analysis reduced the data to a set of variables that captured core β-1,2-xylose- and α-1,3-fucose-specific responses, and confirmed associations with Sm and the rural environment. Responses to core β-1,2-xylose and α-1,3-fucose have distinctive relationships with Sm infection and intensity that should further be explored for associations with protective immunity, and cross-reactivity with other exposures.
Collapse
Affiliation(s)
- Gyaviira Nkurunungi
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda. .,Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacent Nassuuna
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Richard E Sanya
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda.,College of Health Sciences, Makerere University, Kampala, Uganda
| | - Margaret Nampijja
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Irene Nambuya
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Joyce Kabagenyi
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Sonia Serna
- Glycotechnology Laboratory, Centro de Investigación Cooperativa en Biomateriales (CIC biomaGUNE), San Sebastián, Spain
| | - Niels-Christian Reichardt
- Glycotechnology Laboratory, Centro de Investigación Cooperativa en Biomateriales (CIC biomaGUNE), San Sebastián, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), San Sebastián, Spain
| | - Ronald van Ree
- Amsterdam University Medical Centers, Departments of Experimental Immunology and of Otorhinolaryngology, Amsterdam, The Netherlands
| | - Emily L Webb
- MRC Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alison M Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda.,Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
43
|
Maizels RM, Smits HH, McSorley HJ. Modulation of Host Immunity by Helminths: The Expanding Repertoire of Parasite Effector Molecules. Immunity 2018; 49:801-818. [PMID: 30462997 PMCID: PMC6269126 DOI: 10.1016/j.immuni.2018.10.016] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/13/2018] [Accepted: 10/30/2018] [Indexed: 02/09/2023]
Abstract
Helminths are extraordinarily successful parasites due to their ability to modulate the host immune response. They have evolved a spectrum of immunomodulatory molecules that are now beginning to be defined, heralding a molecular revolution in parasite immunology. These discoveries have the potential both to transform our understanding of parasite adaptation to the host and to develop possible therapies for immune-mediated disease. In this review we will summarize the current state of the art in parasite immunomodulation and discuss perspectives on future areas for research and discovery.
Collapse
Affiliation(s)
- Rick M Maizels
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | | | - Henry J McSorley
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
44
|
McSorley HJ, Chayé MAM, Smits HH. Worms: Pernicious parasites or allies against allergies? Parasite Immunol 2018; 41:e12574. [PMID: 30043455 PMCID: PMC6585781 DOI: 10.1111/pim.12574] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/14/2022]
Abstract
Type 2 immune responses are most commonly associated with allergy and helminth parasite infections. Since the discovery of Th1 and Th2 immune responses more than 30 years ago, models of both allergic disease and helminth infections have been useful in characterizing the development, effector mechanisms and pathological consequences of type 2 immune responses. The observation that some helminth infections negatively correlate with allergic and inflammatory disease led to a large field of research into parasite immunomodulation. However, it is worth noting that helminth parasites are not always benign infections, and that helminth immunomodulation can have stimulatory as well as suppressive effects on allergic responses. In this review, we will discuss how parasitic infections change host responses, the consequences for bystander immunity and how this interaction influences clinical symptoms of allergy.
Collapse
Affiliation(s)
- Henry J McSorley
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mathilde A M Chayé
- Department of Parasitology, Leiden Immunology of Parasitic Infections Group, Leiden University Medical Centre, ZA Leiden, The Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden Immunology of Parasitic Infections Group, Leiden University Medical Centre, ZA Leiden, The Netherlands
| |
Collapse
|
45
|
Echeverria B, Serna S, Achilli S, Vivès C, Pham J, Thépaut M, Hokke CH, Fieschi F, Reichardt NC. Chemoenzymatic Synthesis of N-glycan Positional Isomers and Evidence for Branch Selective Binding by Monoclonal Antibodies and Human C-type Lectin Receptors. ACS Chem Biol 2018; 13:2269-2279. [PMID: 29894153 DOI: 10.1021/acschembio.8b00431] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here, we describe a strategy for the rapid preparation of pure positional isomers of complex N-glycans to complement an existing array comprising a larger number of N-glycans and smaller glycan structures. The expanded array was then employed to study context-dependent binding of structural glycan fragments by monoclonal antibodies and C-type lectins. A partial enzymatic elongation of semiprotected core structures was combined with the protecting-group-aided separation of positional isomers by preparative HPLC. This methodology, which avoids the laborious chemical differentiation of antennae, was employed for the preparation of eight biantennary N-glycans with Galβ1,4GlcNAc (LN), GalNAcβ1,4GlcNAc (LDN), and GalNAcβ1,4[Fucα1,3]GlcNAc (LDNF) motifs presented on either one or both antennae. Screening of the binding specificities of three anti-LeX monoclonal IgM antibodies raised against S. mansoni glycans and three C-type lectin receptors of the innate immune system, namely DC-SIGN, DC-SIGNR, and LSECtin, revealed a surprising context-dependent fine specificity for the recognition of the glycan motifs. Moreover, we observed a striking selection of one individual positional isomer over the other by the C-type lectins tested, underscoring the biological relevance of the structural context of glycan elements in molecular recognition.
Collapse
Affiliation(s)
- Begoña Echeverria
- CIC biomaGUNE, Glycotechnology Laboratory, Paseo Miramón 182, 20014 San Sebastian, Spain
| | - Sonia Serna
- CIC biomaGUNE, Glycotechnology Laboratory, Paseo Miramón 182, 20014 San Sebastian, Spain
| | - Silvia Achilli
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Corinne Vivès
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Julie Pham
- CIC biomaGUNE, Glycotechnology Laboratory, Paseo Miramón 182, 20014 San Sebastian, Spain
| | - Michel Thépaut
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Cornelis H. Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Franck Fieschi
- Université Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Niels-Christian Reichardt
- CIC biomaGUNE, Glycotechnology Laboratory, Paseo Miramón 182, 20014 San Sebastian, Spain
- CIBER-BBN, Paseo Miramón 182, 20014 San Sebastian, Spain
| |
Collapse
|
46
|
Stutzer C, Richards SA, Ferreira M, Baron S, Maritz-Olivier C. Metazoan Parasite Vaccines: Present Status and Future Prospects. Front Cell Infect Microbiol 2018; 8:67. [PMID: 29594064 PMCID: PMC5859119 DOI: 10.3389/fcimb.2018.00067] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic parasites and pathogens continue to cause some of the most detrimental and difficult to treat diseases (or disease states) in both humans and animals, while also continuously expanding into non-endemic countries. Combined with the ever growing number of reports on drug-resistance and the lack of effective treatment programs for many metazoan diseases, the impact that these organisms will have on quality of life remain a global challenge. Vaccination as an effective prophylactic treatment has been demonstrated for well over 200 years for bacterial and viral diseases. From the earliest variolation procedures to the cutting edge technologies employed today, many protective preparations have been successfully developed for use in both medical and veterinary applications. In spite of the successes of these applications in the discovery of subunit vaccines against prokaryotic pathogens, not many targets have been successfully developed into vaccines directed against metazoan parasites. With the current increase in -omics technologies and metadata for eukaryotic parasites, target discovery for vaccine development can be expedited. However, a good understanding of the host/vector/pathogen interface is needed to understand the underlying biological, biochemical and immunological components that will confer a protective response in the host animal. Therefore, systems biology is rapidly coming of age in the pursuit of effective parasite vaccines. Despite the difficulties, a number of approaches have been developed and applied to parasitic helminths and arthropods. This review will focus on key aspects of vaccine development that require attention in the battle against these metazoan parasites, as well as successes in the field of vaccine development for helminthiases and ectoparasites. Lastly, we propose future direction of applying successes in pursuit of next generation vaccines.
Collapse
Affiliation(s)
- Christian Stutzer
- Tick Vaccine Group, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | | | | | | | | |
Collapse
|