1
|
Tsokas P, Hsieh C, Flores-Obando RE, Bernabo M, Tcherepanov A, Hernández AI, Thomas C, Bergold PJ, Cottrell JE, Kremerskothen J, Shouval HZ, Nader K, Fenton AA, Sacktor TC. KIBRA anchoring the action of PKMζ maintains the persistence of memory. SCIENCE ADVANCES 2024; 10:eadl0030. [PMID: 38924398 PMCID: PMC11204205 DOI: 10.1126/sciadv.adl0030] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
How can short-lived molecules selectively maintain the potentiation of activated synapses to sustain long-term memory? Here, we find kidney and brain expressed adaptor protein (KIBRA), a postsynaptic scaffolding protein genetically linked to human memory performance, complexes with protein kinase Mzeta (PKMζ), anchoring the kinase's potentiating action to maintain late-phase long-term potentiation (late-LTP) at activated synapses. Two structurally distinct antagonists of KIBRA-PKMζ dimerization disrupt established late-LTP and long-term spatial memory, yet neither measurably affects basal synaptic transmission. Neither antagonist affects PKMζ-independent LTP or memory that are maintained by compensating PKCs in ζ-knockout mice; thus, both agents require PKMζ for their effect. KIBRA-PKMζ complexes maintain 1-month-old memory despite PKMζ turnover. Therefore, it is not PKMζ alone, nor KIBRA alone, but the continual interaction between the two that maintains late-LTP and long-term memory.
Collapse
Affiliation(s)
- Panayiotis Tsokas
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Department of Anesthesiology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Changchi Hsieh
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Rafael E. Flores-Obando
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Matteo Bernabo
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Andrew Tcherepanov
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - A. Iván Hernández
- Department of Pathology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Christian Thomas
- Internal Medicine D (MedD), Department of Molecular Nephrology, University Hospital of Münster, 48149 Münster, Germany
| | - Peter J. Bergold
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - James E. Cottrell
- Department of Anesthesiology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Joachim Kremerskothen
- Internal Medicine D (MedD), Department of Molecular Nephrology, University Hospital of Münster, 48149 Münster, Germany
| | - Harel Z. Shouval
- Department of Neurobiology and Anatomy, University of Texas Medical at Houston, Houston, TX 77030, USA
| | - Karim Nader
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - André A. Fenton
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
- Neuroscience Institute at NYU Langone Medical Center, New York, NY 10016, USA
| | - Todd C. Sacktor
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Department of Anesthesiology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| |
Collapse
|
2
|
The Roles of Par3, Par6, and aPKC Polarity Proteins in Normal Neurodevelopment and in Neurodegenerative and Neuropsychiatric Disorders. J Neurosci 2022; 42:4774-4793. [PMID: 35705493 DOI: 10.1523/jneurosci.0059-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022] Open
Abstract
Normal neural circuits and functions depend on proper neuronal differentiation, migration, synaptic plasticity, and maintenance. Abnormalities in these processes underlie various neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Neural development and maintenance are regulated by many proteins. Among them are Par3, Par6 (partitioning defective 3 and 6), and aPKC (atypical protein kinase C) families of evolutionarily conserved polarity proteins. These proteins perform versatile functions by forming tripartite or other combinations of protein complexes, which hereafter are collectively referred to as "Par complexes." In this review, we summarize the major findings on their biophysical and biochemical properties in cell polarization and signaling pathways. We next summarize their expression and localization in the nervous system as well as their versatile functions in various aspects of neurodevelopment, including neuroepithelial polarity, neurogenesis, neuronal migration, neurite differentiation, synaptic plasticity, and memory. These versatile functions rely on the fundamental roles of Par complexes in cell polarity in distinct cellular contexts. We also discuss how cell polarization may correlate with subcellular polarization in neurons. Finally, we review the involvement of Par complexes in neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer's disease. While emerging evidence indicates that Par complexes are essential for proper neural development and maintenance, many questions on their in vivo functions have yet to be answered. Thus, Par3, Par6, and aPKC continue to be important research topics to advance neuroscience.
Collapse
|
3
|
Pražienková V, Funda J, Pirník Z, Karnošová A, Hrubá L, Kořínková L, Neprašová B, Janovská P, Benzce M, Kadlecová M, Blahoš J, Kopecký J, Železná B, Kuneš J, Bardová K, Maletínská L. GPR10 gene deletion in mice increases basal neuronal activity, disturbs insulin sensitivity and alters lipid homeostasis. Gene 2021; 774:145427. [PMID: 33450349 DOI: 10.1016/j.gene.2021.145427] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/27/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
G-protein-coupled receptor GPR10 is expressed in brain areas regulating energy metabolism. In this study, the effects of GPR10 gene deficiency on energy homeostasis in mice of both sexes fed either standard chow or a high-fat diet (HFD) were studied, with a focus on neuronal activation of PrRP neurons, and adipose tissue and liver metabolism. GPR10 deficiency in males upregulated the phasic and tonic activity of PrRP neurons in the nucleus of the solitary tract. GPR10 knockout (KO) males on a standard diet displayed a higher body weight than their wild-type (WT) littermates due to an increase in adipose tissue mass; however, HFD feeding did not cause weight differences between genotypes. Expression of lipogenesis genes was suppressed in the subcutaneous adipose tissue of GPR10 KO males. In contrast, GPR10 KO females did not differ in body weight from their WT controls, but showed elevated expression of lipid metabolism genes in the liver and subcutaneous adipose tissue compared to WT controls. An attenuated non-esterified fatty acids change after glucose load compared to WT controls suggested a defect in insulin-mediated suppression of lipolysis in GPR10 KO females. Indirect calorimetry did not reveal any differences in energy expenditure among groups. In conclusion, deletion of GPR10 gene resulted in changes in lipid metabolism in mice of both sexes, however in different extent. An increase in adipose tissue mass observed in only GPR10 KO males may have been prevented in GPR10 KO females owing to a compensatory increase in the expression of metabolic genes.
Collapse
Affiliation(s)
- Veronika Pražienková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Jiří Funda
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Zdenko Pirník
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic; Biomedical Research Center SAS of the Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovak Republic
| | - Alena Karnošová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Lucie Hrubá
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Lucia Kořínková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Barbora Neprašová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Petra Janovská
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Michal Benzce
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Michaela Kadlecová
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Jaroslav Blahoš
- Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jan Kopecký
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic; Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Kristina Bardová
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic.
| |
Collapse
|
4
|
Leitges M. Investigations of mouse models during tumorigenesis revealed essential but distinct in vivo functions among the PKC family. Adv Biol Regul 2020; 78:100756. [PMID: 32992232 DOI: 10.1016/j.jbior.2020.100756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 10/25/2022]
Abstract
PKC isozymes have been put in place as oncoproteins since the discovery that they can function as receptors for potent tumor-promoting phorbol esters in the 1980s. Despite nearly two decades of research, a clear in vivo proof of that concept was missing. The availability of so-called knock out mouse lines of individual PKC genes provided a tool to investigate isozyme specific in vivo functions in the context of tumor initiation, development and progression. This review aims to provide a limited overview of how the application of these mouse lines in combination with a cancer mouse model helped to understand PKC's in vivo function during tumorigenesis. The focus of this review will be on skin, colon and lung cancer.
Collapse
Affiliation(s)
- Michael Leitges
- Division of BioMedical Sciences, Faculty of Medicine, Craig L. Dobbin Genetics Research Centre, Memorial University of Newfoundland, Health Science Centre, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
5
|
aPKC in neuronal differentiation, maturation and function. Neuronal Signal 2019; 3:NS20190019. [PMID: 32269838 PMCID: PMC7104321 DOI: 10.1042/ns20190019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
The atypical Protein Kinase Cs (aPKCs)—PRKCI, PRKCZ and PKMζ—form a subfamily within the Protein Kinase C (PKC) family. These kinases are expressed in the nervous system, including during its development and in adulthood. One of the aPKCs, PKMζ, appears to be restricted to the nervous system. aPKCs are known to play a role in a variety of cellular responses such as proliferation, differentiation, polarity, migration, survival and key metabolic functions such as glucose uptake, that are critical for nervous system development and function. Therefore, these kinases have garnered a lot of interest in terms of their functional role in the nervous system. Here we review the expression and function of aPKCs in neural development and in neuronal maturation and function. Despite seemingly paradoxical findings with genetic deletion versus gene silencing approaches, we posit that aPKCs are likely candidates for regulating many important neurodevelopmental and neuronal functions, and may be associated with a number of human neuropsychiatric diseases.
Collapse
|
6
|
PKM-ζ Expression Is Important in Consolidation of Memory in Prelimbic Cortex Formed by the Process of Behavioral Tagging. Neuroscience 2019; 410:305-315. [DOI: 10.1016/j.neuroscience.2019.03.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/18/2022]
|
7
|
Histone acetylation determines transcription of atypical protein kinases in rat neurons. Sci Rep 2019; 9:4332. [PMID: 30867503 PMCID: PMC6416243 DOI: 10.1038/s41598-019-40823-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/11/2019] [Indexed: 01/19/2023] Open
Abstract
It is widely accepted that memory consolidation requires de-novo transcription of memory-related genes. Epigenetic modifications, particularly histone acetylation, may facilitate gene transcription, but their potential molecular targets are poorly characterized. In the current study, we addressed the question of epigenetic control of atypical protein kinases (aPKC) that are critically involved in memory consolidation and maintenance. We examined the patterns of expression of two aPKC genes (Prkci and Prkcz) in rat cultured cortical neurons treated with histone deacetylase inhibitors. Histone hyperacetylation in the promoter region of Prkci gene elicited direct activation of transcriptional machinery, resulting in increased production of PKCλ mRNA. In parallel, histone hyperacetylation in the upstream promoter of Prkcz gene led to appearance of the corresponding PKCζ transcripts that are almost absent in the brain in resting conditions. In contrast, histone hyperacetylation in the downstream promoter of Prkcz gene was accompanied by a decreased expression of the brain-specific PKMζ products. We showed that epigenetically-triggered differential expression of PKMζ and PKCζ mRNA depended on protein synthesis. Summarizing, our results suggest that genes, encoding memory-related aPKC, may represent the molecular targets for epigenetic regulation through posttranslational histone modifications.
Collapse
|
8
|
The Effect of Electroacupuncture on PKMzeta in the ACC in Regulating Anxiety-Like Behaviors in Rats Experiencing Chronic Inflammatory Pain. Neural Plast 2017; 2017:3728752. [PMID: 29075535 PMCID: PMC5624165 DOI: 10.1155/2017/3728752] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/31/2017] [Accepted: 08/07/2017] [Indexed: 01/26/2023] Open
Abstract
Chronic inflammatory pain can induce emotional diseases. Electroacupuncture (EA) has effects on chronic pain and pain-related anxiety. Protein kinase Mzeta (PKMzeta) has been proposed to be essential for the maintenance of pain and may interact with GluR1 to maintain CNS plasticity in the anterior cingulate cortex (ACC). We hypothesized that the PKMzeta-GluR1 pathway in the ACC may be involved in anxiety-like behaviors of chronic inflammatory pain and that the mechanism of EA regulation of pain emotion may involve the PKMzeta pathway in the ACC. Our results showed that chronic inflammatory pain model decreased the paw withdrawal threshold (PWT) and increased anxiety-like behaviors. The protein expression of PKCzeta, p-PKCzeta (T560), PKMzeta, p-PKMzeta (T560), and GluR1 in the ACC of the model group were remarkably enhanced. EA increased PWT and alleviated anxiety-like behaviors. EA significantly inhibited the protein expression of p-PKMzeta (T560) in the ACC, and only a downward trend effect for other substances. Further, the microinjection of ZIP remarkably reversed PWT and anxiety-like behaviors. The present study provides direct evidence that the PKCzeta/PKMzeta-GluR1 pathway is related to pain and pain-induced anxiety-like behaviors. EA treatment both increases pain-related somatosensory behavior and decreases pain-induced anxiety-like behaviors by suppressing PKMzeta activity in the ACC.
Collapse
|
9
|
Sheng T, Wang S, Qian D, Gao J, Ohno S, Lu W. Learning-Induced Suboptimal Compensation for PKCι/λ Function in Mutant Mice. Cereb Cortex 2017; 27:3284-3293. [DOI: 10.1093/cercor/bhx077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Indexed: 11/13/2022] Open
|
10
|
Dorfman MD, Krull JE, Scarlett JM, Guyenet SJ, Sajan MP, Damian V, Nguyen HT, Leitges M, Morton GJ, Farese RV, Schwartz MW, Thaler JP. Deletion of Protein Kinase C λ in POMC Neurons Predisposes to Diet-Induced Obesity. Diabetes 2017; 66:920-934. [PMID: 28073831 PMCID: PMC5360303 DOI: 10.2337/db16-0482] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 01/02/2017] [Indexed: 12/16/2022]
Abstract
Effectors of the phosphoinositide 3-kinase (PI3K) signal transduction pathway contribute to the hypothalamic regulation of energy and glucose homeostasis in divergent ways. Here we show that central nervous system (CNS) action of the PI3K signaling intermediate atypical protein kinase C (aPKC) constrains food intake, weight gain, and glucose intolerance in both rats and mice. Pharmacological inhibition of CNS aPKC activity acutely increases food intake and worsens glucose tolerance in chow-fed rodents and causes excess weight gain during high-fat diet (HFD) feeding. Similarly, selective deletion of the aPKC isoform Pkc-λ in proopiomelanocortin (POMC) neurons disrupts leptin action, reduces melanocortin content in the paraventricular nucleus, and markedly increases susceptibility to obesity, glucose intolerance, and insulin resistance specifically in HFD-fed male mice. These data implicate aPKC as a novel regulator of energy and glucose homeostasis downstream of the leptin-PI3K pathway in POMC neurons.
Collapse
Affiliation(s)
- Mauricio D Dorfman
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, WA
| | - Jordan E Krull
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, WA
| | - Jarrad M Scarlett
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, WA
| | - Stephan J Guyenet
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, WA
| | - Mini P Sajan
- Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL
- Research & Internal Medicine Services, James A. Haley VA Medical Center, Tampa, FL
| | - Vincent Damian
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, WA
| | - Hong T Nguyen
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, WA
| | - Michael Leitges
- The Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| | - Gregory J Morton
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, WA
| | - Robert V Farese
- Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL
- Research & Internal Medicine Services, James A. Haley VA Medical Center, Tampa, FL
| | - Michael W Schwartz
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, WA
| | - Joshua P Thaler
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
11
|
Zhang Y, Zong W, Zhang L, Ma Y, Wang J. Protein kinase M ζ and the maintenance of long-term memory. Neurochem Int 2016; 99:215-220. [DOI: 10.1016/j.neuint.2016.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 07/05/2016] [Accepted: 07/13/2016] [Indexed: 02/03/2023]
|
12
|
Overexpression of Protein Kinase Mζ in the Hippocampus Enhances Long-Term Potentiation and Long-Term Contextual But Not Cued Fear Memory in Rats. J Neurosci 2016; 36:4313-24. [PMID: 27076427 DOI: 10.1523/jneurosci.3600-15.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/17/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The persistently active protein kinase Mζ (PKMζ) has been found to be involved in the formation and maintenance of long-term memory. Most of the studies investigating PKMζ, however, have used either putatively unselective inhibitors or conventional knock-out animal models in which compensatory mechanisms may occur. Here, we overexpressed an active form of PKMζ in rat hippocampus, a structure highly involved in memory formation, and embedded in several neural networks. We investigated PKMζ's influence on synaptic plasticity using electrophysiological recordings of basal transmission, paired pulse facilitation, and LTP and combined this with behavioral cognitive experiments addressing formation and retention of both contextual memory during aversive conditioning and spatial memory during spontaneous exploration. We demonstrate that hippocampal slices overexpressing PKMζ show enhanced basal transmission, suggesting a potential role of PKMζ in postsynaptic AMPAR trafficking. Moreover, the PKMζ-overexpressing slices augmented LTP and this effect was not abolished by protein-synthesis blockers, indicating that PKMζ induces enhanced LTP formation in a protein-synthesis-independent manner. In addition, we found selectively enhanced long-term memory for contextual but not cued fear memory, underlining the theory of the hippocampus' involvement in the contextual aspect of aversive reinforced tasks. Memory for spatial orientation during spontaneous exploration remained unaltered, suggesting that PKMζ may not affect the neural circuits underlying spontaneous tasks that are different from aversive tasks. In this study, using an overexpression strategy as opposed to an inhibitor-based approach, we demonstrate an important modulatory role of PKMζ in synaptic plasticity and selective memory processing. SIGNIFICANCE STATEMENT Most of the literature investigating protein kinase Mζ (PKMζ) used inhibitors with selectivity that has been called into question or conventional knock-out animal models in which compensatory mechanisms may occur. To avoid these issues, some studies have been done using viral overexpression of PKMζ in different brain structures to show cognitive enhancement. However, electrophysiological experiments were exclusively done in knock-out models or inhibitory studies to show depletion of LTP. There was no study showing the effect of PKMζ overexpression in the hippocampus on behavior and LTP experiments. To our knowledge, this is the first study to combine these aspects with the result of enhanced memory for contextual fear memory and to show enhanced LTP in hippocampal slices overexpressing PKMζ.
Collapse
|
13
|
Wang S, Sheng T, Ren S, Tian T, Lu W. Distinct Roles of PKCι/λ and PKMζ in the Initiation and Maintenance of Hippocampal Long-Term Potentiation and Memory. Cell Rep 2016; 16:1954-61. [PMID: 27498875 DOI: 10.1016/j.celrep.2016.07.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/21/2016] [Accepted: 07/12/2016] [Indexed: 11/19/2022] Open
Abstract
PKMζ has been proposed to be essential for maintenance of long-term potentiation (LTP) and long-term memory (LTM). However, recent data from PKMζ-knockout mice has called this role into question. Instead, the other atypical isoform, protein kinase C iota/lambda (PKCι/λ), has emerged as a potential alternative player. Therefore, the nature of the "memory molecule" maintaining learned information remains uncertain. Here, we report knockdown (KD) of PKCι/λ and PKMζ in the dorsal hippocampus and find deficits in early expression and late maintenance, respectively, during both LTP and hippocampus-dependent LTM. Sequential increases in the active form of PKCι/λ and PKMζ are detected during LTP or fear conditioning. Importantly, PKMζ, but not PKCι/λ, KD disrupts previously established LTM. Thus, PKCι/λ and PKMζ have distinct functions in LTP and memory, with PKMζ playing a specific role in memory maintenance. This relaying pattern may represent a precise molecular mechanism by which atypical PKCs regulate the different stages of memory.
Collapse
Affiliation(s)
- Shaoli Wang
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu Province 210096, China; Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Tao Sheng
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu Province 210096, China; Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Siqiang Ren
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Tian Tian
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Wei Lu
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu Province 210096, China; Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
14
|
Chihabi K, Morielli AD, Green JT. Intracerebellar infusion of the protein kinase M zeta (PKMζ) inhibitor zeta-inhibitory peptide (ZIP) disrupts eyeblink classical conditioning. Behav Neurosci 2016; 130:563-571. [PMID: 26949968 DOI: 10.1037/bne0000140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein kinase M zeta (PKM-ζ), a constitutively active N-terminal truncated form of PKC-ζ, has long been implicated in a cellular correlate of learning, long-term potentiation (LTP). Inhibition of PKM-ζ with zeta-inhibitory peptide (ZIP) has been shown in many brain structures to disrupt maintenance of AMPA receptors, irreversibly disrupting numerous forms of learning and memory that have been maintained for weeks. Delay eyeblink conditioning (EBC) is an established model for the assessment of cerebellar learning; here, we show that PKC-ζ and PKM-ζ are highly expressed in the cerebellar cortex, with highest expression found in Purkinje cell (PC) nuclei. Despite being highly expressed in the cerebellar cortex, no studies have examined how regulation of cerebellar PKM-ζ may affect cerebellar-dependent learning and memory. Given its disruption of learning in other brain structures, we hypothesized that ZIP would also disrupt delay EBC. We have shown that infusion of ZIP into the lobulus simplex of the rat cerebellar cortex can indeed significantly disrupt delay EBC. (PsycINFO Database Record
Collapse
|
15
|
Cheng N, Hu X, Tian T, Lu W. PKMζ knockdown disrupts post-ischemic long-term potentiation via inhibiting postsynaptic expression of aminomethyl phosphonic acid receptors. J Biomed Res 2015; 29:241-9. [PMID: 26060448 PMCID: PMC4449492 DOI: 10.7555/jbr.28.20140033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/11/2014] [Accepted: 05/07/2014] [Indexed: 11/12/2022] Open
Abstract
Post-ischemic long-term potentiation (i-LTP) is a pathological form of plasticity that was observed in glutamate receptor-mediated neurotransmission after stroke and may exert a detrimental effect via facilitating excitotoxic damage. The mechanism underlying i-LTP, however, remains less understood. By employing electrophysiological recording and immunofluorescence assay on hippocampal slices and cultured neurons, we found that protein kinase Mζ (PKMζ), an atypical protein kinase C isoform, was involved in enhancing aminomethyl phosphonic acid (AMPA) receptor (AMPAR) expression after i-LTP induction. PKMζ knockdown attenuated postsynaptic expression of AMPA receptors and disrupted i-LTP. Consistently, we observed less neuronal death of cultured hippocampal cells with PKMζ knockdown. Meanwhile, these findings indicate that PKMζ plays an important role in i-LTP by regulating postsynaptic expression of AMPA receptors. This work adds new knowledge to the mechanism of i-LTP, and thus is helpful to find the potential target for clinical therapy of ischemic stroke.
Collapse
Affiliation(s)
- Nan Cheng
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaoqiao Hu
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tian Tian
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei Lu
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
16
|
Santerre JL, Rogow JA, Kolitz EB, Pal R, Landin JD, Gigante ED, Werner DF. Ethanol dose-dependently elicits opposing regulatory effects on hippocampal AMPA receptor GluA2 subunits through a zeta inhibitory peptide-sensitive kinase in adolescent and adult Sprague-Dawley rats. Neuroscience 2014; 280:50-9. [PMID: 25218807 PMCID: PMC4482479 DOI: 10.1016/j.neuroscience.2014.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
Abstract
AMPA receptor GluA2 subunits are strongly implicated in cognition, and prior work suggests that these subunits may be regulated by atypical protein kinase C (aPKC) isoforms. The present study assessed whether hippocampal and cortical AMPA receptor GluA2 subunit regulation may be an underlying factor in known age-related differences to cognitive-impairing doses of ethanol, and if aPKC isoforms modulate such responses. Hippocampal AMPA receptor GluA2 subunit, protein kinase Mζ (PKMζ), and PKCι/λ expression were elevated during adolescence compared to adults. 1 h following a low-dose (1.0-g/kg) ethanol exposure, hippocampal AMPA receptor GluA2 subunit serine 880 phosphorylation was decreased in adolescents, but was increased in adults. Age-dependent changes in GluA2 subunit phosphorylation were paralleled by alterations in aPKC isoforms, and zeta inhibitory peptide (ZIP) administration prevented ethanol-induced increases in both in adults. Ethanol-induced changes in GluA2 subunit phosphorylation were associated with delayed regulation in synaptosomal GluA2 subunit expression 24 h later. A higher ethanol dose (3.5-g/kg) failed to elicit changes in most measures in the hippocampus at either age. Similar to the hippocampus, analysis of cerebral cortical tissue also revealed age-related declines. However, no demonstrable effects were found following a low-dose ethanol exposure at either age. High-dose ethanol exposure reduced adolescent GluA2 subunit phosphorylation and aPKC isoform expression that were again accompanied by delayed reductions in synaptosomal GluA2 subunit expression. Together, these results suggest that GluA2-containing AMPA receptor modulation by aPKC isoforms is age-, region- and dose-dependently regulated, and may potentially be involved in developmentally regulated ethanol-induced cognitive impairment and other ethanol behaviors.
Collapse
Affiliation(s)
- J L Santerre
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, NY 13902, USA
| | - J A Rogow
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, NY 13902, USA
| | - E B Kolitz
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, NY 13902, USA
| | - R Pal
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, NY 13902, USA
| | - J D Landin
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, NY 13902, USA
| | - E D Gigante
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, NY 13902, USA
| | - D F Werner
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, NY 13902, USA.
| |
Collapse
|
17
|
Protein kinase Mζ is involved in the modulatory effect of fluoxetine on hippocampal neurogenesis in vitro. Int J Neuropsychopharmacol 2014; 17:1429-41. [PMID: 24679950 DOI: 10.1017/s1461145714000364] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The efficacy of chronic selective serotonin reuptake inhibitors (SSRIs) on depression is paralleled by the recovery of deficits in hippocampal neurogenesis related to sustained stress and elevated glucocorticoids. Previous studies have shown that atypical protein kinase C (aPKC) is implicated in the regulation of neurogenesis and the antidepressant response. Whether the specific aPKC isoforms (PKCζ, PKMζ and PKCι) are involved in SSRI-induced hippocampal neurogenesis and the underlying mechanisms is unknown. The present study shows that PKMζ and PKCι but not PKCζ are expressed in rat embryonic hippocampal neural stem cells (NSCs), whereas PKMζ but not PKCι expression is increased by the SSRI fluoxetine both in the absence and presence of the glucocorticoid receptor agonist dexamethasone. PKMζ shRNA significantly decreased neuronal proliferation and neuron-oriented differentiation, increased NSC apoptosis, and blocked the stimulatory effect of fluoxetine on NSC neurogenesis. Fluoxetine significantly increased PKMζ expression in hippocampal NSCs in a 5-hydroxytryptamine-1A (5-HT1A) receptor-dependent manner in both the absence and presence of dexamethasone. The PKMζ peptide blocker ZIP and MEK inhibitor U0126 significantly inhibited the increase in extracellular signal-regulated kinase 1/2 and cyclic adenosine monophosphate response element binding protein phosphorylation in the mitogen-activated protein kinase (MAPK) pathway and hippocampal NSC neurogenesis in response to fluoxetine and the 5-HT1A receptor agonist 8-OH DPAT. Collectively, our results suggest that the SSRI fluoxetine increases hippocampal NSC neurogenesis via a PKMζ-mediated mechanism that links 5-HT1A receptor activation with the phosphorylation of the downstream MAPK signaling pathway.
Collapse
|
18
|
Evuarherhe O, Barker GRI, Savalli G, Warburton EC, Brown MW. Early memory formation disrupted by atypical PKC inhibitor ZIP in the medial prefrontal cortex but not hippocampus. Hippocampus 2014; 24:934-42. [PMID: 24729442 PMCID: PMC4285083 DOI: 10.1002/hipo.22281] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2014] [Indexed: 12/12/2022]
Abstract
Atypical isoforms of protein kinase C (aPKCs; particularly protein kinase M zeta: PKMζ) have been hypothesized to be necessary and sufficient for the maintenance of long-term potentiation (LTP) and long term memory by maintaining postsynaptic AMPA receptors via the GluA2 subunit. A myristoylated PKMζ pseudosubstrate peptide (ZIP) blocks PKMζ activity. We examined the actions of ZIP in medial prefrontal cortex (mPFC) and hippocampus in associative recognition memory in rats during early memory formation and memory maintenance. ZIP infusion in either hippocampus or mPFC impaired memory maintenance. However, early memory formation was impaired by ZIP in mPFC but not hippocampus; and blocking GluA2-dependent removal of AMPA receptors did not affect this impairment caused by ZIP in the mPFC. The findings indicate: (i) a difference in the actions of ZIP in hippocampus and medial prefrontal cortex, and (ii) a GluA2-independent target of ZIP (possibly PKCλ) in the mPFC during early memory formation.
Collapse
Affiliation(s)
- Obaro Evuarherhe
- Department of Physiology and Pharmacology, University of Bristol, School of Medical Sciences, Bristol, BS8 1TD, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
KIBRA Co-Localizes with Protein Kinase Mζ (PKMζ) in the Mouse Hippocampus. Biosci Biotechnol Biochem 2014; 73:147-51. [DOI: 10.1271/bbb.80564] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Hernández AI, Oxberry WC, Crary JF, Mirra SS, Sacktor TC. Cellular and subcellular localization of PKMζ. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130140. [PMID: 24298142 DOI: 10.1098/rstb.2013.0140] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In contrast to protein kinases that participate in long-term potentiation (LTP) induction and memory consolidation, the autonomously active atypical protein kinase C isoform, protein kinase Mzeta (PKMζ), functions in the core molecular mechanism of LTP maintenance and long-term memory storage. Here, using multiple complementary techniques for light and electron microscopic immunolocalization, we present the first detailed characterization of the cellular and subcellular distribution of PKMζ in rat hippocampus and neocortex. We find that PKMζ is widely expressed in forebrain with prominent immunostaining in hippocampal and neocortical grey matter, and weak label in white matter. In hippocampal and cortical pyramidal cells, PKMζ expression is predominantly somatodendritic, and electron microscopy highlights the kinase at postsynaptic densities and in clusters within spines. In addition, nuclear label and striking punctate immunopositive structures in a paranuclear and dendritic distribution are seen by confocal microscopy, occasionally at dendritic bifurcations. PKMζ immunoreactive granules are observed by electron microscopy in cell bodies and dendrites, including endoplasmic reticulum. The widespread distribution of PKMζ in nuclei, nucleoli and endoplasmic reticulum suggests potential roles of this kinase in cell-wide mechanisms involving gene expression, biogenesis of ribosomes and new protein synthesis. The localization of PKMζ within postsynaptic densities and spines suggests sites where the kinase stores information during LTP maintenance and long-term memory.
Collapse
Affiliation(s)
- A Iván Hernández
- Department of Pathology, State University of New York, Downstate Medical Center, , Brooklyn, NY, USA
| | | | | | | | | |
Collapse
|
21
|
Kwapis JL, Helmstetter FJ. Does PKM(zeta) maintain memory? Brain Res Bull 2013; 105:36-45. [PMID: 24076105 DOI: 10.1016/j.brainresbull.2013.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/16/2013] [Accepted: 09/19/2013] [Indexed: 11/30/2022]
Abstract
Work on the long-term stability of memory has identified a potentially critical role for protein kinase Mzeta (PKMζ) in maintaining established memory. PKMζ, an autonomously active isoform of PKC, is hypothesized to sustain those changes that occurred during memory formation in order to preserve the memory engram over time. Initial studies investigating the role of PKMζ were largely successful in demonstrating a role for the kinase in memory maintenance; disrupting PKMζ activity with ζ-inhibitory peptide (ZIP) was successful in disrupting a variety of established associations in a number of key brain regions. More recent work, however, has questioned both the role of PKMζ in memory maintenance and the effectiveness of ZIP as a specific inhibitor of PKMζ activity. Here, we outline the research both for and against the idea that PKMζ is a memory maintenance mechanism and discuss how these two lines of research can be reconciled. We conclude by proposing a number of studies that would help to clarify the role of PKMζ in memory and define other mechanisms the brain may use to maintain memory.
Collapse
Affiliation(s)
- Janine L Kwapis
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave., Milwaukee, WI 53211, USA
| | - Fred J Helmstetter
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave., Milwaukee, WI 53211, USA.
| |
Collapse
|
22
|
Seidl S, Braun U, Roos N, Li S, Lüdtke THW, Kispert A, Leitges M. Phenotypical analysis of atypical PKCs in vivo function display a compensatory system at mouse embryonic day 7.5. PLoS One 2013; 8:e62756. [PMID: 23690951 PMCID: PMC3653893 DOI: 10.1371/journal.pone.0062756] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/25/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The atypical protein kinases C (PKC) isoforms ι/λ and ζ play crucial roles in many cellular processes including development, cell proliferation, differentiation and cell survival. Possible redundancy between the two isoforms has always been an issue since most biochemical tools do not differentiate between the two proteins. Thus, much effort has been made during the last decades to characterize the functions of aPKCs using gene targeting approaches and depletion studies. However, little is known about the specific roles of each isoform in mouse development. METHODOLOGY/PRINCIPAL FINDINGS To evaluate the importance of PKCι in mouse development we designed PKCι deletion mutants using the gene targeting approach. We show that the deletion of PKCι, results in a reduced size of the amniotic cavity at E7.5 and impaired growth of the embryo at E8.5 with subsequent absorption of the embryo. Our data also indicate an impaired localization of ZO-1 and disorganized structure of the epithelial tissue in the embryo. Importantly, using electron microscopy, embryoid body formation and immunofluorescence analysis, we found, that in the absence of PKCι, tight junctions and apico-basal polarity were still established. Finally, our study points to a non-redundant PKCι function at E9.5, since expression of PKCζ is able to rescue the E7.5 phenotype, but could not prevent embryonic lethality at a later time-point (E9.5). CONCLUSION Our data show that PKCι is crucial for mouse embryogenesis but is dispensable for the establishment of polarity and tight junction formation. We present a compensatory function of PKCζ at E7.5, rescuing the phenotype. Furthermore, this study indicates at least one specific, yet unknown, PKCι function that cannot be compensated by the overexpression of PKCζ at E9.5.
Collapse
Affiliation(s)
- Sebastian Seidl
- The Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| | - Ursula Braun
- The Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| | - Norbert Roos
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Shaohua Li
- Department of Surgery, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Timo H.-W. Lüdtke
- Institute for Molecular Biology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Andreas Kispert
- Institute for Molecular Biology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Michael Leitges
- The Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
PKCλ is critical in AMPA receptor phosphorylation and synaptic incorporation during LTP. EMBO J 2013; 32:1365-80. [PMID: 23511975 DOI: 10.1038/emboj.2013.60] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 02/13/2013] [Indexed: 01/26/2023] Open
Abstract
Direct phosphorylation of GluA1 by PKC controls α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) receptor (AMPAR) incorporation into active synapses during long-term potentiation (LTP). Numerous signalling molecules that involved in AMPAR incorporation have been identified, but the specific PKC isoform(s) participating in GluA1 phosphorylation and the molecule triggering PKC activation remain largely unknown. Here, we report that the atypical isoform of PKC, PKCλ, is a critical molecule that acts downstream of phosphatidylinositol 3-kinase (PI3K) and is essential for LTP expression. PKCλ activation is required for both GluA1 phosphorylation and increased surface expression of AMPARs during LTP. Moreover, p62 interacts with both PKCλ and GluA1 during LTP and may serve as a scaffolding protein to place PKCλ in close proximity to facilitate GluA1 phosphorylation by PKCλ. Thus, we conclude that PKCλ is the critical signalling molecule responsible for GluA1-containing AMPAR phosphorylation and synaptic incorporation at activated synapses during LTP expression.
Collapse
|
24
|
Price TJ, Ghosh S. ZIPping to pain relief: the role (or not) of PKMζ in chronic pain. Mol Pain 2013; 9:6. [PMID: 23433248 PMCID: PMC3621284 DOI: 10.1186/1744-8069-9-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/19/2013] [Indexed: 11/21/2022] Open
Abstract
Chronic pain remains a significant clinical problem despite substantial advances in our understanding of how persistent nociceptor stimulation drives plasticity in the CNS. A major theme that has emerged in this area of work is the strong similarity between plasticity involved in learning and memory in CNS regions such as cortex and hippocampus with mechanisms underlying chronic pain development and maintenance in the spinal dorsal horn and other CNS areas such as anterior cingulate cortex (ACC). We, and others have recently implicated an atypical PKC (aPKC), called PKMζ, in the maintenance of pain plasticity based on biochemical assays and the use of a peptide pseudosubstrate inhibitor called ZIP. These studies indicate remarkable parallels between the potential role of PKMζ as a key molecule for the maintenance of long-term memory and long-term potentiation (LTP) and the maintenance of a chronic pain state. On the other hand, very recent studies have disputed the specificity of ZIP and called into question the role of PKMζ as a memory maintenance molecule. Here we critically review the evidence that PKMζ might represent a new target for the reversal of certain chronic pain states. Furthermore, we consider whether ZIP might have other aPKC or even non-aPKC targets and the significance of such off-target effects for evaluating maintenance mechanisms of chronic pain. We conclude that, current controversies aside, utilization of ZIP as a tool to interrogate maintenance mechanisms of chronic pain and further investigations into the potential role of PKMζ, and other aPKCs, in pain plasticity are likely to lead to further insights with the potential to unravel the enigma that is the disease of chronic pain.
Collapse
Affiliation(s)
- Theodore J Price
- Department of Pharmacology, The University of Arizona School of Medicine, Arizona, USA.
| | | |
Collapse
|
25
|
Hartleben B, Widmeier E, Suhm M, Worthmann K, Schell C, Helmstädter M, Wiech T, Walz G, Leitges M, Schiffer M, Huber TB. aPKCλ/ι and aPKCζ contribute to podocyte differentiation and glomerular maturation. J Am Soc Nephrol 2013; 24:253-67. [PMID: 23334392 DOI: 10.1681/asn.2012060582] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Precise positioning of the highly complex interdigitating podocyte foot processes is critical to form the normal glomerular filtration barrier, but the molecular programs driving this process are unknown. The protein atypical protein kinase C (aPKC)--a component of the Par complex, which localizes to tight junctions and interacts with slit diaphragm proteins--may play a role. Here, we found that the combined deletion of the aPKCλ/ι and aPKCζ isoforms in podocytes associated with incorrectly positioned centrosomes and Golgi apparatus and mislocalized molecules of the slit diaphragm. Furthermore, aPKC-deficient podocytes failed to form the normal network of foot processes, leading to defective glomerular maturation with incomplete capillary formation and mesangiolysis. Our results suggest that aPKC isoforms orchestrate the formation of the podocyte processes essential for normal glomerular development and kidney function. Defective aPKC signaling results in a dramatically simplified glomerular architecture, causing severe proteinuria and perinatal death.
Collapse
Affiliation(s)
- Björn Hartleben
- Renal Division, University Hospital Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Selective kinase inhibitors as tools for neuroscience research. Neuropharmacology 2012; 63:1227-37. [DOI: 10.1016/j.neuropharm.2012.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/06/2012] [Accepted: 07/11/2012] [Indexed: 01/02/2023]
|
27
|
Wang J, Gallagher D, DeVito LM, Cancino GI, Tsui D, He L, Keller GM, Frankland PW, Kaplan DR, Miller FD. Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell 2012; 11:23-35. [PMID: 22770240 DOI: 10.1016/j.stem.2012.03.016] [Citation(s) in RCA: 356] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/09/2012] [Accepted: 03/29/2012] [Indexed: 12/11/2022]
Abstract
VIDEO ABSTRACT Although endogenous recruitment of adult neural stem cells has been proposed as a therapeutic strategy, clinical approaches for achieving this are lacking. Here, we show that metformin, a widely used drug, promotes neurogenesis and enhances spatial memory formation. Specifically, we show that an atypical PKC-CBP pathway is essential for the normal genesis of neurons from neural precursors and that metformin activates this pathway to promote rodent and human neurogenesis in culture. Metformin also enhances neurogenesis in the adult mouse brain in a CBP-dependent fashion, and in so doing enhances spatial reversal learning in the water maze. Thus, metformin, by activating an aPKC-CBP pathway, recruits neural stem cells and enhances neural function, thereby providing a candidate pharmacological approach for nervous system therapy.
Collapse
Affiliation(s)
- Jing Wang
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sacktor TC. Memory maintenance by PKMζ--an evolutionary perspective. Mol Brain 2012; 5:31. [PMID: 22986281 PMCID: PMC3517905 DOI: 10.1186/1756-6606-5-31] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 08/29/2012] [Indexed: 11/20/2022] Open
Abstract
Long-term memory is believed to be maintained by persistent modifications of synaptic transmission within the neural circuits that mediate behavior. Thus, long-term potentiation (LTP) is widely studied as a potential physiological basis for the persistent enhancement of synaptic strength that might sustain memory. Whereas the molecular mechanisms that initially induce LTP have been extensively characterized, the mechanisms that persistently maintain the potentiation have not. Recently, however, a candidate molecular mechanism linking the maintenance of LTP and the storage of long-term memory has been identified. The persistent activity of the autonomously active, atypical protein kinase C (aPKC) isoform, PKMζ, is both necessary and sufficient for maintaining LTP. Furthermore, blocking PKMζ activity by pharmacological or dominant negative inhibitors disrupts previously stored long-term memories in a variety of neural circuits, including spatial and trace memories in the hippocampus, aversive memories in the basolateral amygdala, appetitive memories in the nucleus accumbens, habit memory in the dorsal lateral striatum, and elementary associations, extinction, and skilled sensorimotor memories in the neocortex. During LTP and memory formation, PKMζ is synthesized de novo as a constitutively active kinase. This molecular mechanism for memory storage is evolutionarily conserved. PKMζ formation through new protein synthesis likely originated in early vertebrates ~500 million years ago during the Cambrian period. Other mechanisms for forming persistently active PKM from aPKC are found in invertebrates, and inhibiting this atypical PKM disrupts long-term memory in the invertebrate model systems Drosophila melanogaster and Aplysia californica. Conversely, overexpressing PKMζ enhances memory in flies and rodents. PKMζ persistently enhances synaptic strength by maintaining increased numbers of AMPA receptors at postsynaptic sites, a mechanism that might have evolved from the general function of aPKC in trafficking membrane proteins to the apical compartment of polarized cells. This mechanism of memory may have had adaptive advantages because it is both stable and reversible, as demonstrated by the downregulation of experience-dependent, long-term increases in PKMζ after extinction and reconsolidation blockade that attenuate learned behavior. Thus, PKMζ, the “working end” of LTP, is a component of an evolutionarily conserved molecular mechanism for the persistent, yet flexible storage of long-term memory.
Collapse
Affiliation(s)
- Todd Charlton Sacktor
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology, State University of New York Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 10705, USA.
| |
Collapse
|
29
|
Hara Y, Punsoni M, Yuk F, Park CS, Janssen WGM, Rapp PR, Morrison JH. Synaptic distributions of GluA2 and PKMζ in the monkey dentate gyrus and their relationships with aging and memory. J Neurosci 2012; 32:7336-44. [PMID: 22623679 PMCID: PMC3391702 DOI: 10.1523/jneurosci.0605-12.2012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/30/2012] [Accepted: 04/03/2012] [Indexed: 12/18/2022] Open
Abstract
Rhesus monkeys provide a valuable model for studying the neurobiological basis of cognitive aging, because they are vulnerable to age-related memory decline in a manner similar to humans. In this study, young and aged monkeys were first tested on a well characterized recognition memory test (delayed nonmatching-to-sample; DNMS). Then, electron microscopic immunocytochemistry was performed to determine the subcellular localization of two proteins in the hippocampal dentate gyrus (DG): the GluA2 subunit of the glutamate AMPA receptor and the atypical protein kinase C ζ isoform (PKMζ). PKMζ promotes memory storage by regulating GluA2-containing AMPA receptor trafficking. Thus, we examined whether the distribution of GluA2 and PKMζ is altered with aging in DG axospinous synapses and whether it is coupled with memory deficits. Monkeys with faster DNMS task acquisition and more accurate recognition memory exhibited higher proportions of dendritic spines coexpressing GluA2 and PKMζ. These double-labeled spines had larger synapses, as measured by postsynaptic density area, than single-labeled and unlabeled spines. Within this population of double-labeled spines, aged monkeys compared with young expressed a lower density of synaptic GluA2 immunogold labeling, which correlated with lower recognition accuracy. Additionally, higher density of synaptic PKMζ labeling in double-labeled spines correlated with both faster task acquisition and better retention. Together, these findings suggest that age-related impairment in maintenance of GluA2 at the synapse in the primate hippocampus is coupled with memory deficits.
Collapse
Affiliation(s)
- Yuko Hara
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories
- Friedman Brain Institute
| | - Michael Punsoni
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories
- Friedman Brain Institute
| | - Frank Yuk
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories
- Friedman Brain Institute
| | - C. Sehwan Park
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories
- Friedman Brain Institute
| | - William G. M. Janssen
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories
- Friedman Brain Institute
| | - Peter R. Rapp
- National Institute on Aging, Laboratory of Experimental Gerontology, Baltimore, Maryland 21224
| | - John H. Morrison
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories
- Friedman Brain Institute
- Department of Geriatrics and Palliative Medicine, and
- Computational Neurobiology and Imaging Center, Mount Sinai School of Medicine, New York, New York 10029, and
| |
Collapse
|
30
|
Ogasawara H, Kawato M. The protein kinase Mζ network as a bistable switch to store neuronal memory. BMC SYSTEMS BIOLOGY 2010; 4:181. [PMID: 21194445 PMCID: PMC3022653 DOI: 10.1186/1752-0509-4-181] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 12/31/2010] [Indexed: 11/10/2022]
Abstract
Background Protein kinase Mζ (PKMζ), the brain-specific, atypical protein kinase C isoform, plays a key role in long-term maintenance of memory. This molecule is essential for long-term potentiation of the neuron and various modalities of learning such as spatial memory and fear conditioning. It is unknown, however, how PKMζ stores information for long periods of time despite molecular turnover. Results We hypothesized that PKMζ forms a bistable switch because it appears to constitute a positive feedback loop (PKMζ induces its local synthesis) part of which is ultrasensitive (PKMζ stimulates its synthesis through dual pathways). To examine this hypothesis, we modeled the biochemical network of PKMζ with realistic kinetic parameters. Bifurcation analyses of the model showed that the system maintains either the up state or the down state according to previous inputs. Furthermore, the model was able to reproduce a variety of previous experimental results regarding synaptic plasticity and learning, which suggested that it captures the essential mechanism for neuronal memory. We proposed in vitro and in vivo experiments that would critically examine the validity of the model and illuminate the pivotal role of PKMζ in synaptic plasticity and learning. Conclusions This study revealed bistability of the PKMζ network and supported its pivotal role in long-term storage of memory.
Collapse
Affiliation(s)
- Hideaki Ogasawara
- National Institute of Information and Communications Technology, 2-2-2, Hikaridai, Seika, Kyoto 619-0288, Japan.
| | | |
Collapse
|
31
|
Guenther CH, Vinit S, Windelborn JA, Behan M, Mitchell GS. Atypical protein kinase C expression in phrenic motor neurons of the rat. Neuroscience 2010; 169:787-93. [PMID: 20478365 PMCID: PMC2904407 DOI: 10.1016/j.neuroscience.2010.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 04/10/2010] [Accepted: 05/09/2010] [Indexed: 11/27/2022]
Abstract
Atypical protein kinase C (PKC) isoforms play important roles in many neural processes, including synaptic plasticity and neurodegenerative diseases. Although atypical PKCs are expressed throughout the brain, there are no reports concerning their expression in central neural regions associated with respiratory motor control. Therefore, we explored the neuroanatomical distribution of atypical PKCs in identified phrenic motor neurons, a motor pool that plays a key role in breathing. Diaphragm injections of cholera toxin B were used to retrogradely label and identify phrenic motor neurons; immunohistochemistry was used to localize atypical PKCs in and near labeled motor neurons (i.e. the phrenic motor nucleus). Atypical PKC expression in the phrenic motor nucleus appears specific to neurons; aPKC expression could not be detected in adjacent astrocytes or microglia. Strong atypical PKC labeling was observed within cholera toxin B labeled phrenic motor neurons. Documenting the expression of atypical PKCs in phrenic motor neurons provides a framework within which to assess their role in respiratory motor control, including novel forms of respiratory plasticity known to occur in this region.
Collapse
Affiliation(s)
- C H Guenther
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive West, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
32
|
von Kraus LM, Sacktor TC, Francis JT. Erasing sensorimotor memories via PKMzeta inhibition. PLoS One 2010; 5:e11125. [PMID: 20559553 PMCID: PMC2886075 DOI: 10.1371/journal.pone.0011125] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/24/2010] [Indexed: 11/18/2022] Open
Abstract
Sensorimotor cortex has a role in procedural learning. Previous studies suggested that this learning is subserved by long-term potentiation (LTP), which is in turn maintained by the persistently active kinase, protein kinase Mzeta (PKMzeta). Whereas the role of PKMzeta in animal models of declarative knowledge is established, its effect on procedural knowledge is not well understood. Here we show that PKMzeta inhibition, via injection of zeta inhibitory peptide (ZIP) into the rat sensorimotor cortex, disrupts sensorimotor memories for a skilled reaching task even after several weeks of training. The rate of relearning the task after the memory disruption by ZIP was indistinguishable from the rate of initial learning, suggesting no significant savings after the memory loss. These results indicate a shared molecular mechanism of storage for declarative and procedural forms of memory.
Collapse
Affiliation(s)
- Lee Michael von Kraus
- Graduate Program in Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
| | - Todd Charlton Sacktor
- The Robert Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
- Departments of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
| | - Joseph Thachil Francis
- The Robert Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
- Departments of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
- Graduate Program in Biomedical Engineering, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
| |
Collapse
|
33
|
Sun MK, Alkon DL. Protein kinase C activators as synaptogenic and memory therapeutics. Arch Pharm (Weinheim) 2010; 342:689-98. [PMID: 19899099 DOI: 10.1002/ardp.200900050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The last decade has witnessed a rapid progress in understanding of the molecular cascades that may underlie memory and memory disorders. Among the critical players, activity of protein kinase C (PKC) isoforms is essential for many types of learning and memory and their dysfunction, and is critical in memory disorders. PKC inhibition and functional deficits lead to an impairment of various types of learning and memory, consistent with the observations that neurotoxic amyloid inhibits PKC activity and that transgenic animal models with PKCbeta deficit exhibit impaired capacity in cognition. In addition, PKC isozymes play a regulatory role in amyloid production and accumulation. Restoration of the impaired PKC signal pathway pharmacologically results in an enhanced memory capacity and synaptic remodeling / repair and synaptogenesis, and, therefore, represents a potentially important strategy for the treatment of memory disorders, including Alzheimer's dementia. The PKC activators, especially those that are isozyme-specific, are a new class of drug candidates that may be developed as future memory therapeutics.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, Rockville, MD 20850, USA.
| | | |
Collapse
|
34
|
Thaler JP, Choi SJ, Sajan MP, Ogimoto K, Nguyen HT, Matsen M, Benoit SC, Wisse BE, Farese RV, Schwartz MW. Atypical protein kinase C activity in the hypothalamus is required for lipopolysaccharide-mediated sickness responses. Endocrinology 2009; 150:5362-72. [PMID: 19819945 PMCID: PMC2795721 DOI: 10.1210/en.2009-0509] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
By activating the Toll-like receptor 4-nuclear factor-kappaB signal transduction pathway, the bacterial endotoxin lipopolysaccharide (LPS) induces anorexia, weight loss, fever, and other components of the sickness response. By comparison, the hormones leptin and insulin cause anorexia without sickness via a central mechanism involving the phosphatidylinositol-3 kinase signaling pathway. In the current study, we investigated whether a common Toll-like receptor 4 and phosphatidylinositol-3 kinase signaling intermediate, atypical protein kinase Czeta/lambda (aPKC), contributes to changes of energy balance induced by these stimuli. Immunohistochemistry analysis revealed that aPKC is expressed in the arcuate and paraventricular nuclei of the hypothalamus, key sites of leptin, insulin, and LPS action. Although administration of LPS, insulin, and leptin each acutely increased hypothalamic aPKC activity at doses that also reduce food intake, LPS treatment caused over 10-fold greater activation of hypothalamic a PKC signaling than that induced by leptin or insulin. Intracerebroventricular pretreatment with an aPKC inhibitor blocked anorexia induced by LPS but not insulin or leptin. Similarly, LPS-induced hypothalamic inflammation (as judged by induction of proinflammatory cytokine gene expression) and neuronal activation in the paraventricular nucleus (as judged by c-fos induction) were reduced by central aPKC inhibition. Although intracerebroventricular aPKC inhibitor administration also abolished LPS-induced fever, it had no effect on sickness-related hypoactivity or weight loss. We conclude that although hypothalamic aPKC signaling is not required for food intake inhibition by insulin or leptin, it plays a key role in inflammatory anorexia and fever induced by LPS.
Collapse
Affiliation(s)
- Joshua P Thaler
- Division of Metabolism, University of Washington, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Balasubramanian B, Mani SK. Dopamine agonist signalling in the hypothalamus of female rats is independent of calcium-dependent kinases. J Neuroendocrinol 2009; 21:954-60. [PMID: 19732294 PMCID: PMC3655436 DOI: 10.1111/j.1365-2826.2009.01917.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have previously demonstrated that dopamine agonist, SKF38396 (SKF), can substitute for progesterone in the facilitation of female reproductive behaviour in oestradiol benzoate-primed female rats and mice. We also reported that both progesterone- and SKF-initiated signalling were mediated by the cAMP-dependent protein kinase A signal transduction cascade. As the rapid effects of progesterone are also mediated by calcium-dependent kinases, calcium- and calmodulin-dependent kinase (CaMKII) and protein kinase (PKC), we sought to determine whether SKF-initiated signalling also recruited calcium as a second messenger. We measured the changes in the activation of CaMKII and PKC in the ventromedial nucleus (VMN) of the hypothalamus and preoptic area (POA) of the rat brain, which are the two regions implicated in the regulation of female reproductive behaviour in rodents. We measured the basal activities representing the activation of the kinases by in vivo treatments, as well as the total kinase activities assayed in the presence of exogenous cofactors in vitro. We report that, in contrast to progesterone-initiated signalling, there was no recruitment of calcium by SKF in the hypothalamus, as shown by the absence of changes in CaMKII activities in the VMN and POA. Furthermore, SKF-treatment resulted in a rapid increase in calcium-independent basal PKC activity in the VMN but not the POA. These rapid changes were not the result of changes in PKC protein levels or phosphorylation status. These data indicate that progesterone- and SKF-recruit distinct signalling molecules within the same regions of the brain to activate region-specific signal transduction pathways.
Collapse
Affiliation(s)
- B Balasubramanian
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | | |
Collapse
|
36
|
Sethi P, Jyoti A, Hussain E, Sharma D. Curcumin attenuates aluminium-induced functional neurotoxicity in rats. Pharmacol Biochem Behav 2009; 93:31-9. [PMID: 19376155 DOI: 10.1016/j.pbb.2009.04.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/14/2009] [Accepted: 04/02/2009] [Indexed: 11/24/2022]
Abstract
Curcumin is a polyphenol extracted from the rhizome of Curcuma longa and well known as a multi-functional drug with antioxidative, anti-cancerous and anti-inflammatory activities. Curcumin's antiaging and neuroprotective potential is widely reported. In the present study, effect of curcumin treatment dose 30 mg kg(-1) day(-1) was investigated against aluminium neurotoxicity in young and old animals. Direct and indirect intakes of aluminium have been reported to be involved in the etiology of several neurodegenerative disorders like Alzheimer's and Parkinson's diseases. Long term Al was administered through drinking water at a dose of 50 mg/kg/day for 6 months in both young (4 months) and old (18 months) male Wistar rats. Result obtained demonstrates that curcumin treatment attenuates the Al-induced alterations at biochemical, behavioral and ultrastructural levels which was well reflected in the electrophysiological recordings. Our results indicate that curcumin's ability to bind redox active metals and cross the blood-brain barrier could be playing crucial role in preventing against Al-induced neurotoxicity.
Collapse
Affiliation(s)
- Pallavi Sethi
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | |
Collapse
|
37
|
Jiang J, Parameshwaran K, Seibenhener ML, Kang MG, Suppiramaniam V, Huganir RL, Diaz-Meco MT, Wooten MW. AMPA receptor trafficking and synaptic plasticity require SQSTM1/p62. Hippocampus 2009; 19:392-406. [PMID: 19004011 PMCID: PMC2745981 DOI: 10.1002/hipo.20528] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
SQSTM1/p62 is a multidomain/scaffold for the atypical protein kinase Cs (aPKC). Phosphorylation of AMPA receptors by PKC has been shown to regulate their insertion in the postsynaptic membrane. Here, we directly tested whether p62 could interact with AMPA receptor subunits and influence their trafficking and phosphorylation. GluR1 receptor intracellular loop L2-3 and the ZZ-type zinc finger domain of p62 are essential for the interaction between these two proteins. In this context, both p62 and aPKC-mediated phosphorylation were necessary for surface delivery of the receptor. Our findings reveal that p62 is the first protein identified that interacts with a region of the GluR receptor other than the C-terminal tail. Furthermore, mice deficient in p62 displayed impaired hippocampal CA1 long-term potentiation (LTP), along with diminished surface expression of GluR1 and phosphorylation of S818. Lastly, we identify a conserved sequence (ISExSL) shared by all p62 interacting-aPKC substrates. These findings support a model where p62 interaction and aPKC phosphorylation act together to mediate AMPA receptor trafficking and long-term synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Jianxiong Jiang
- Department of Biological Sciences and Program in Cellular and Molecular Biosciences, Auburn University, Auburn, Alabama
| | | | - M. Lamar Seibenhener
- Department of Biological Sciences and Program in Cellular and Molecular Biosciences, Auburn University, Auburn, Alabama
| | - Myoung-Goo Kang
- The Soloman H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Richard L. Huganir
- The Soloman H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maria T. Diaz-Meco
- Department of Molecular Oncogenesis, Genome Research Institute, University of Cincinnati, Cincinnati, Ohio
| | - Marie W. Wooten
- Department of Biological Sciences and Program in Cellular and Molecular Biosciences, Auburn University, Auburn, Alabama
| |
Collapse
|
38
|
Balasubramanian B, Portillo W, Reyna A, Chen JZ, Moore AN, Dash PK, Mani SK. Nonclassical mechanisms of progesterone action in the brain: I. Protein kinase C activation in the hypothalamus of female rats. Endocrinology 2008; 149:5509-17. [PMID: 18617608 PMCID: PMC2584599 DOI: 10.1210/en.2008-0712] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The modulation of gene regulation by progesterone (P) and its classical intracellular regulation by progestin receptors in the brain, resulting in alterations in physiology and behavior has been well studied. The mechanisms mediating the short latency effects of P are less well understood. Recent studies have revealed rapid nonclassical signaling action of P involving the activation of intracellular signaling pathways. We explored the involvement of protein kinase C (PKC) in P-induced rapid signaling in the ventromedial nucleus of the hypothalamus (VMN) and preoptic area (POA) of the rat brain. Both the Ca2+-independent (basal) PKC activity representing the activation of PKC by the in vivo treatments and the Ca+2-dependent (total) PKC activity assayed in the presence of exogenous cofactors in vitro were determined. A comparison of the two activities demonstrated the strength and temporal status of PKC regulation by steroid hormones in vivo. P treatment resulted in a rapid increase in basal PKC activity in the VMN but not the POA. Estradiol benzoate priming augmented P-initiated increase in PKC basal activity in both the VMN and POA. These increases were inhibited by intracerebroventricular administration of a PKC inhibitor administered 30 min prior to P. The total PKC activity remained unchanged demonstrating maximal PKC activation within 30 min in the VMN. In contrast, P regulation in the POA significantly attenuated total PKC activity +/- estradiol benzoate priming. These rapid changes in P-initiated PKC activity were not due to changes in PKC protein levels or phosphorylation status.
Collapse
Affiliation(s)
- Bhuvana Balasubramanian
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Thiriet N, Amar L, Toussay X, Lardeux V, Ladenheim B, Becker KG, Cadet JL, Solinas M, Jaber M. Environmental enrichment during adolescence regulates gene expression in the striatum of mice. Brain Res 2008; 1222:31-41. [PMID: 18585688 PMCID: PMC2692267 DOI: 10.1016/j.brainres.2008.05.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/02/2008] [Accepted: 05/04/2008] [Indexed: 11/30/2022]
Abstract
We have previously shown that environmental enrichment decreases the activating and rewarding effects of the psychostimulant cocaine and increases resistance to the neurotoxic effect of the Parkinson-inducing drug MPTP. These effects were accompanied by an increase in the striatal expression of the neurotrophin BDNF, an increase in the striatal levels of delta-Fos B and by a decrease in striatal levels of the dopamine transporter, the main molecular target for cocaine and MPTP. Here, we used cDNA arrays to investigate the effects of rearing mice in enriched environments from weaning to adulthood on the profile of expression of genes in the striatum focusing on genes involved in intracellular signalling and functioning. We found that mice reared in an enriched environment show several alterations in the levels of mRNA coding for proteins involved in cell proliferation, cell differentiation, signal transduction, transcription and translation, cell structure and metabolism. Several of these findings were further confirmed by real-time quantitative PCR and, in the case of protein kinase C lambda, also by western blot. These findings are the first description of alterations in striatal gene expression by an enriched environment. The striatal gene expression regulation by environment that we report here may play a role in the resistance to the effects of drugs of abuse and dopaminergic neurotoxins previously reported.
Collapse
Affiliation(s)
- Nathalie Thiriet
- Institut de Biologie et Physiologie Cellulaires, University of Poitiers, CNRS UMR-6187, 40 Avenue du Recteur Pineau, Poitiers, 86022, France
| | - Lahouari Amar
- Institut de Biologie et Physiologie Cellulaires, University of Poitiers, CNRS UMR-6187, 40 Avenue du Recteur Pineau, Poitiers, 86022, France
| | - Xavier Toussay
- Institut de Biologie et Physiologie Cellulaires, University of Poitiers, CNRS UMR-6187, 40 Avenue du Recteur Pineau, Poitiers, 86022, France
| | - Virginie Lardeux
- Institut de Biologie et Physiologie Cellulaires, University of Poitiers, CNRS UMR-6187, 40 Avenue du Recteur Pineau, Poitiers, 86022, France
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Branch, National Institute on Drug Abuse (NIDA), Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland, USA
| | - Kevin G. Becker
- Research Resources Branch, National Institute on Aging (NIA), Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Branch, National Institute on Drug Abuse (NIDA), Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland, USA
| | - Marcello Solinas
- Institut de Biologie et Physiologie Cellulaires, University of Poitiers, CNRS UMR-6187, 40 Avenue du Recteur Pineau, Poitiers, 86022, France
| | - Mohamed Jaber
- Institut de Biologie et Physiologie Cellulaires, University of Poitiers, CNRS UMR-6187, 40 Avenue du Recteur Pineau, Poitiers, 86022, France
| |
Collapse
|
40
|
Ramesh Babu J, Lamar Seibenhener M, Peng J, Strom AL, Kemppainen R, Cox N, Zhu H, Wooten MC, Diaz-Meco MT, Moscat J, Wooten MW. Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration. J Neurochem 2008; 106:107-20. [PMID: 18346206 DOI: 10.1111/j.1471-4159.2008.05340.x] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The signaling adapter p62 plays a coordinating role in mediating phosphorylation and ubiquitin-dependent trafficking of interacting proteins. However, there is little known about the physiologic role of this protein in brain. Here, we report age-dependent constitutive activation of glycogen synthase kinase 3beta, protein kinase B, mitogen-activated protein kinase, and c-Jun-N-terminal kinase in adult p62(-/-) mice resulting in hyperphosphorylated tau, neurofibrillary tangles, and neurodegeneration. Biochemical fractionation of p62(-/-) brain led to recovery of aggregated K63-ubiquitinated tau. Loss of p62 was manifested by increased anxiety, depression, loss of working memory, and reduced serum brain-derived neurotrophic factor levels. Our findings reveal a novel role for p62 as a chaperone that regulates tau solubility thereby preventing tau aggregation. This study provides a clear demonstration of an Alzheimer-like phenotype in a mouse model in the absence of expression of human genes carrying mutations in amyloid-beta protein precursor, presenilin, or tau. Thus, these findings provide new insight into manifestation of sporadic Alzheimer disease and the impact of obesity.
Collapse
Affiliation(s)
- J Ramesh Babu
- Department of Biological Sciences, Program in Cellular and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The aim of our group is to identify PKC (protein kinase C) in vivo function by analysing individual PKC knockouts we have generated over the past few years. The general approach we are using to identify target tissues and/or defined cell populations within the mouse for further investigation is a detailed expression analysis of individual PKC isoforms. For these purposes, we have established several specific tools in the past that allow us to follow up isoform-specific PKC expression on a very precise level. Doing so, we have started to investigate PKC expression profiles under various tumour conditions in mice. As predicted, we were able to identify various PKC isoforms to be either up- or down-regulated during the development and progression of certain tumours, implying that these isoforms are substantially linked to the biology of these tumours. In order to prove this hypothesis, we then crossed relevant PKC knockout lines on the appropriate tumour background and analysed tumour growth and progression under PKC-deficient conditions. Exemplary of this approach, recent data generated with PKCalpha-deficient APC(Min) (adenomatous polyposis coli) mice identify PKCalpha in this system acting as a tumour suppressor instead of being a promoter as suggested from PMA data.
Collapse
|
42
|
Peirson SN, Oster H, Jones SL, Leitges M, Hankins MW, Foster RG. Microarray Analysis and Functional Genomics Identify Novel Components of Melanopsin Signaling. Curr Biol 2007; 17:1363-72. [PMID: 17702581 DOI: 10.1016/j.cub.2007.07.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 07/11/2007] [Accepted: 07/12/2007] [Indexed: 11/26/2022]
Abstract
BACKGROUND Within the mammalian retina, there exists a third photoreceptive system based upon a population of melanopsin (Opn4) expressing photosensitive retinal ganglion cells (pRGCs; also termed ipRGCs or intrinsically photosensitive RGCs). Here, we use a microarray-based approach, which we term transcriptional recalibration, coupled with functional genomics to identify downstream targets of melanopsin signaling. RESULTS In a mouse with genetically ablated rods and cones (rd/rd cl), approximately 30% of the ocular transcriptome is transiently regulated in response to nocturnal light exposure (3112 genes). A total of 163 of these genes were associated with the "intracellular signaling" gene ontology term. On the basis of their similarity to invertebrate phototransduction genes, 14 were selected for further study. Laser capture microdissection demonstrated that eight of these genes (Gnas, Gnb2l1, Gnaq, Prkcz, Pik3r1, Inadl, Slc9a3r1, and Drd1a) colocalized with melanopsin. The impact of genetic ablation of one of these genes, protein kinase C zeta (Prkcz), was assessed. Prkcz-/- animals show attenuated phase-shifting responses to light, reduced period lengthening under constant light, and attenuated pupillary responses at high irradiances, as well as impaired light-induced gene expression in the suprachiasmatic nuclei (SCN). These attenuated responses are indistinguishable from the deficits observed in melanopsin knockout mice. CONCLUSIONS Here, we show that (1) Prkcz plays an as yet unidentified role in melanopsin signaling, (2) the proteins of seven further light-regulated genes emerge as strong candidates in melanopsin signaling, and (3) transcriptional recalibration may provide a powerful new approach for dissecting unmapped signaling pathways.
Collapse
Affiliation(s)
- Stuart N Peirson
- Circadian and Visual Neuroscience Group, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | | | | | | | | | | |
Collapse
|
43
|
Jiang J, Suppiramaniam V, Wooten MW. Posttranslational modifications and receptor-associated proteins in AMPA receptor trafficking and synaptic plasticity. Neurosignals 2007; 15:266-82. [PMID: 17622793 DOI: 10.1159/000105517] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 05/18/2007] [Indexed: 01/26/2023] Open
Abstract
AMPA-type glutamate receptors (AMPARs) mediate most fast excitatory synaptic transmission in the mammalian brain. It is widely believed that the long-lasting, activity-dependent changes in synaptic strength, including long-term potentiation and long-term depression, could be the molecular and cellular basis of experience-dependent plasticities, such as learning and memory. Those changes of synaptic strength are directly related to AMPAR trafficking to and away from the synapse. There are many forms of synaptic plasticity in the mammalian brain, while the prototypic form, hippocampal CA1 long-term potentiation, has received the most intense investigation. After synthesis, AMPAR subunits undergo posttranslational modifications such as glycosylation, palmitoylation, phosphorylation and potential ubiquitination. In addition, AMPAR subunits spatiotemporally associate with specific neuronal proteins in the cell. Those posttranslational modifications and receptor-associated proteins play critical roles in AMPAR trafficking and regulation of AMPAR-dependent synaptic plasticity. Here, we summarize recent studies on posttranslational modifications and associated proteins of AMPAR subunits, and their roles in receptor trafficking and synaptic plasticity.
Collapse
Affiliation(s)
- Jianxiong Jiang
- Department of Biological Sciences and Program in Cellular and Molecular Biosciences, Auburn University, AL 36849, USA
| | | | | |
Collapse
|
44
|
Oster H, Leitges M. Protein kinase C alpha but not PKCzeta suppresses intestinal tumor formation in ApcMin/+ mice. Cancer Res 2006; 66:6955-63. [PMID: 16849539 DOI: 10.1158/0008-5472.can-06-0268] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Members of the protein kinase C (PKC) family of serine/threonine kinases play key regulatory roles in numerous cellular processes, including differentiation and proliferation. Of the 11 mammalian PKC isoforms known, several have been implicated in tumor development and progression. However, in most cases, isotype specificity is poorly defined, and even contrary functions for a single PKC have been reported mostly because appropriate molecular and genetic tools were missing to specifically assess the contribution of single PKC isoforms in vivo. In this report, we therefore used PKC genetic targeting to study the role of PKCalpha and PKCzeta in colorectal cancer. Both isoforms were found to be strongly down-regulated in intestinal tumors of ApcMin/+ mice. A deletion of PKCzeta did not affect tumorigenesis in this animal model. In contrast, PKCalpha-deficient ApcMin/+ mice developed more aggressive tumors and died significantly earlier than their PKCalpha-proficient littermates. Even without an additional Apc mutation, PKCalpha knockout mice showed an elevated tendency to develop spontaneous intestinal tumors. Transcriptional profiling revealed a role for this kinase in regulating epidermal growth factor receptor (EGFR) signaling and proposed a synergistic mechanism for EGFR/activator protein and WNT/APC pathways in mediating intestinal tumor development.
Collapse
Affiliation(s)
- Henrik Oster
- Laboratory for Signal Transduction, Max Planck Institute of Experimental Endocrinology and Department of Nephrology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
45
|
Kovac J, Oster H, Leitges M. Expression of the atypical protein kinase C (aPKC) isoforms iota/lambda and zeta during mouse embryogenesis. Gene Expr Patterns 2006; 7:187-96. [PMID: 16931174 DOI: 10.1016/j.modgep.2006.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 05/26/2006] [Accepted: 07/12/2006] [Indexed: 11/24/2022]
Abstract
The atypical C-type protein kinases (aPKCs) comprise the third subclass of the PKC family functionally defined by insensitivity to phorbol esters, diacylgylcerol and calcium. aPKCs have been implicated in numerous biological processes including cell proliferation and survival, cell polarity, migration and inflammation. However, only insufficient data exist with regard to aPKC isoform specificity, since both mammalian aPKCs, PKC iota/lambda and PKC zeta, exhibit a high structural homology and very similar biochemical properties. In this study, we therefore used isoform-specific riboprobes and antibodies to define the characteristic expression profile of each aPKC isoform during mouse embryogenesis. Both, PKC iota/lambda and zeta show highly specific temporal and spatial patterns of expression which may help in distinguishing physiological functions of these isoforms.
Collapse
Affiliation(s)
- Judit Kovac
- Max-Planck-Institute of Experimental Endocrinology, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany.
| | | | | |
Collapse
|
46
|
LaVallie ER, Chockalingam PS, Collins-Racie LA, Freeman BA, Keohan CC, Leitges M, Dorner AJ, Morris EA, Majumdar MK, Arai M. Protein kinase Czeta is up-regulated in osteoarthritic cartilage and is required for activation of NF-kappaB by tumor necrosis factor and interleukin-1 in articular chondrocytes. J Biol Chem 2006; 281:24124-37. [PMID: 16798739 DOI: 10.1074/jbc.m601905200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase Czeta (PKCzeta) is an intracellular serine/threonine protein kinase that has been implicated in the signaling pathways for certain inflammatory cytokines, including interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-alpha), in some cell types. A study of gene expression in articular chondrocytes from osteoarthritis (OA) patients revealed that PKCzeta is transcriptionally up-regulated in human OA articular cartilage clinical samples. This finding led to the hypothesis that PKCzeta may be an important signaling component of cytokine-mediated cartilage matrix destruction in articular chondrocytes, believed to be an underlying factor in the pathophysiology of OA. IL-1 treatment of chondrocytes in culture resulted in rapidly increased phosphorylation of PKCzeta, implicating PKCzeta activation in the signaling pathway. Chondrocyte cell-based assays were used to evaluate the contribution of PKCzeta activity in NF-kappaB activation and extracellular matrix degradation mediated by IL-1, TNF, or sphingomyelinase. In primary chondrocytes, IL-1 and TNF-alpha caused an increase in NF-kappaB activity resulting in induction of aggrecanase-1 and aggrecanase-2 expression, with consequent increased proteoglycan degradation. This effect was blocked by the pan-specific PKC inhibitors RO 31-8220 and bisindolylmaleimide I, partially blocked by Gö 6976, and was unaffected by the PKCzeta-sparing inhibitor calphostin C. A cell-permeable PKCzeta pseudosubstrate peptide inhibitor was capable of blocking TNFand IL-1-mediated NF-kappaB activation and proteoglycan degradation in chondrocyte pellet cultures. In addition, overexpression of a dominant negative PKCzeta protein effectively prevented cytokine-mediated NF-kappaB activation in primary chondrocytes. These data implicate PKCzeta as a necessary component of the IL-1 and TNF signaling pathways in chondrocytes that result in catabolic destruction of extracellular matrix proteins in osteoarthritic cartilage.
Collapse
Affiliation(s)
- Edward R LaVallie
- Departments of Biological Technologies and Women's Health and Musculoskeletal Biology, Wyeth Research, Cambridge, Massachusetts 02140-2325, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sun MK, Alkon DL. Protein kinase C substrate activators: potential as novel antidepressants. Drug Dev Res 2005. [DOI: 10.1002/ddr.20019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|