1
|
Tyagi A, Chandrasekaran B, Shukla V, Tyagi N, Sharma AK, Damodaran C. Nutraceuticals target androgen receptor-splice variants (AR-SV) to manage castration resistant prostate cancer (CRPC). Pharmacol Ther 2024; 264:108743. [PMID: 39491756 DOI: 10.1016/j.pharmthera.2024.108743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/25/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Every year, prostate cancer is diagnosed in millions of men. The androgen receptor's (AR) unchecked activation is crucial in causing the development and progression of prostate cancer. Second-generation anti-androgen therapies, which primarily focus on targeting the Ligand Binding Domain (LBD) of AR, are effective for most patients. However, the adverse effects pose significant challenges in managing the disease. Furthermore, genetic mutations or the emergence of AR splice variants create an even more complex tumor environment, fostering resistance to these treatments. Natural compounds and their analogs, while showing a lower toxicity profile and a potential for selective AR splice variants inhibition, are constrained by their bioavailability and therapeutic efficacy. Nonetheless, recent breakthroughs in using natural derivatives to target AR and its splice variants have shown promise in treating chemoresistant castration-resistant prostate cancer (CRPC). This review will discuss the role of AR variants, particularly androgen receptor splice variant 7 (AR-V7), in CRPC and investigate the latest findings on how natural compounds and their derivatives target AR and AR splice variants.
Collapse
Affiliation(s)
- Ashish Tyagi
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77845, United States
| | - Balaji Chandrasekaran
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77845, United States
| | - Vaibhav Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77845, United States
| | - Neha Tyagi
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77845, United States
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, College of Medicine, Penn State University, Hershey, PA 17033, United States
| | - Chendil Damodaran
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77845, United States.
| |
Collapse
|
2
|
Johnson MJ, Wasmuth EV. Structural perspectives on the androgen receptor, the elusive shape-shifter. Steroids 2024; 211:109501. [PMID: 39208923 DOI: 10.1016/j.steroids.2024.109501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The androgen receptor (AR) is a type I nuclear receptor and master transcription factor responsible for development and maintenance of male secondary sex characteristics. Aberrant AR activity is associated with numerous diseases, including prostate cancer, androgen insensitivity syndrome, spinal and bulbar muscular atrophy, and androgenic alopecia. Recent studies have shown that AR adopts numerous conformations that can modulate its ability to bind and transcribe its target DNA substrates, a feature that can be hijacked in the context of cancer. Here, we summarize a series of structural observations describing how this elusive shape-shifter binds to multiple partners, including self-interactions, DNA, and steroid and non-steroidal ligands. We present evidence that AR's pervasive structural plasticity confers an ability to broadly bind and transcribe numerous ligands in the normal and disease state, and explain the structural basis for adaptive resistance mutations to antiandrogen treatment. These evolutionary features are integral to receptor function, and are commonly lost in androgen insensitivity syndrome, or reinforced in cancer.
Collapse
Affiliation(s)
- Madisyn J Johnson
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Elizabeth V Wasmuth
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
3
|
Safi R, Wardell SE, Watkinson P, Qin X, Lee M, Park S, Krebs T, Dolan EL, Blattler A, Tsuji T, Nayak S, Khater M, Fontanillo C, Newlin MA, Kirkland ML, Xie Y, Long H, Fink EC, Fanning SW, Runyon S, Brown M, Xu S, Owzar K, Norris JD, McDonnell DP. Androgen receptor monomers and dimers regulate opposing biological processes in prostate cancer cells. Nat Commun 2024; 15:7675. [PMID: 39227594 PMCID: PMC11371910 DOI: 10.1038/s41467-024-52032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Most prostate cancers express the androgen receptor (AR), and tumor growth and progression are facilitated by exceptionally low levels of systemic or intratumorally produced androgens. Thus, absolute inhibition of the androgen signaling axis remains the goal of current therapeutic approaches to treat prostate cancer (PCa). Paradoxically, high dose androgens also exhibit considerable efficacy as a treatment modality in patients with late-stage metastatic PCa. Here we show that low levels of androgens, functioning through an AR monomer, facilitate a non-genomic activation of the mTOR signaling pathway to drive proliferation. Conversely, high dose androgens facilitate the formation of AR dimers/oligomers to suppress c-MYC expression, inhibit proliferation and drive a transcriptional program associated with a differentiated phenotype. These findings highlight the inherent liabilities in current approaches used to inhibit AR action in PCa and are instructive as to strategies that can be used to develop new therapeutics for this disease and other androgenopathies.
Collapse
Affiliation(s)
- Rachid Safi
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Suzanne E Wardell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Paige Watkinson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Xiaodi Qin
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Marissa Lee
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sunghee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Taylor Krebs
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Emma L Dolan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Adam Blattler
- Oncogenesis Thematic Research Center, Bristol Myers Squibb, San Diego, CA, USA
| | - Toshiya Tsuji
- Oncogenesis Thematic Research Center, Bristol Myers Squibb, San Diego, CA, USA
| | - Surendra Nayak
- Oncogenesis Thematic Research Center, Bristol Myers Squibb, San Diego, CA, USA
| | - Marwa Khater
- Informatics and Predictive Sciences, Bristol Myers Squibb, San Diego, CA, USA
| | - Celia Fontanillo
- Informatics and Predictive Sciences, Bristol Myers Squibb, San Diego, CA, USA
| | - Madeline A Newlin
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Megan L Kirkland
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | | | - Henry Long
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Emma C Fink
- Department of Cancer Biology, Loyola University, Maywood, IL, USA
| | - Sean W Fanning
- Department of Cancer Biology, Loyola University, Maywood, IL, USA
| | - Scott Runyon
- RTI International, Research Triangle Park, NC, USA
| | - Myles Brown
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shuichan Xu
- Oncogenesis Thematic Research Center, Bristol Myers Squibb, San Diego, CA, USA
| | - Kouros Owzar
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - John D Norris
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
4
|
Ren L, Zhang T, Zhang J. Recent advances in dietary androgen receptor inhibitors. Med Res Rev 2024; 44:1446-1500. [PMID: 38279967 DOI: 10.1002/med.22019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
As a nuclear transcription factor, the androgen receptor (AR) plays a crucial role not only in normal male sexual differentiation and growth of the prostate, but also in benign prostatic hyperplasia, prostatitis, and prostate cancer. Multiple population-based epidemiological studies demonstrated that prostate cancer risk was inversely associated with increased dietary intakes of green tea, soy products, tomato, and so forth. Therefore, this review aimed to summarize the structure and function of AR, and further illustrate the structural basis for antagonistic mechanisms of the currently clinically available antiandrogens. Due to the limitations of these antiandrogens, a series of natural AR inhibitors have been identified from edible plants such as fruits and vegetables, as well as folk medicines, health foods, and nutritional supplements. Hence, this review mainly focused on recent experimental, epidemiological, and clinical studies about natural AR inhibitors, particularly the association between dietary intake of natural antiandrogens and reduced risk of prostatic diseases. Since natural products offer multiple advantages over synthetic antiandrogens, this review may provide a comprehensive and updated overview of dietary-derived AR inhibitors, as well as their potential for the nutritional intervention against prostatic disorders.
Collapse
Affiliation(s)
- Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
5
|
Arai S, Gao Y, Yu Z, Xie L, Wang L, Zhang T, Nouri M, Chen S, Asara JM, Balk SP. A carboxy-terminal ubiquitylation site regulates androgen receptor activity. Commun Biol 2024; 7:25. [PMID: 38182874 PMCID: PMC10770046 DOI: 10.1038/s42003-023-05709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024] Open
Abstract
Degradation of unliganded androgen receptor (AR) in prostate cancer cells can be prevented by proteasome inhibition, but this is associated with only modest increases in polyubiquitylated AR. An inhibitor (VLX1570) of the deubiquitylases associated with the proteasome did not increase ubiquitylation of unliganded AR, indicating that AR is not targeted by these deubiquitylases. We then identified a series of AR ubiquitylation sites, including a not previously identified site at K911, as well as methylation sites and previously identified phosphorylation sites. Mutagenesis of K911 increases AR stability, chromatin binding, and transcriptional activity. We further found that K313, a previously reported ubiquitylation site, could also be methylated and acetylated. Mutagenesis of K313, in combination with K318, increases AR transcriptional activity, indicating that distinct posttranslational modifications at K313 differentially regulate AR activity. Together these studies expand the spectrum of AR posttranslational modifications, and indicate that the K911 site may regulate AR turnover on chromatin.
Collapse
Affiliation(s)
- Seiji Arai
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Urology, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Yanfei Gao
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Ziyang Yu
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lisha Xie
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Liyang Wang
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tengfei Zhang
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mannan Nouri
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shaoyong Chen
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John M Asara
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Steven P Balk
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Ren QN, Huang DH, Zhang XN, Wang YN, Zhou YF, Zhang MY, Wang SC, Mai SJ, Wu DH, Wang HY. Two somatic mutations in the androgen receptor N-terminal domain are oncogenic drivers in hepatocellular carcinoma. Commun Biol 2024; 7:22. [PMID: 38182647 PMCID: PMC10770045 DOI: 10.1038/s42003-023-05704-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/13/2023] [Indexed: 01/07/2024] Open
Abstract
The androgen receptor (AR) plays an important role in male-dominant hepatocellular carcinoma, and specific acquired somatic mutations of AR have been observed in HCC patients. Our previous research have established the role of AR wild type as one of the key oncogenes in hepatocarcinogenesis. However, the role of hepatic acquired somatic mutations of AR remains unknown. In this study, we identify two crucial acquired somatic mutations, Q62L and E81Q, situated close to the N-terminal activation function domain-1 of AR. These mutations lead to constitutive activation of AR, both independently and synergistically with androgens, making them potent driver oncogene mutations. Mechanistically, these N-terminal AR somatic mutations enhance de novo lipogenesis by activating sterol regulatory element-binding protein-1 and promote glycogen accumulation through glycogen phosphorylase, brain form, thereby disrupting the AMPK pathway and contributing to tumorigenesis. Moreover, the AR mutations show sensitivity to the AMPK activator A769662. Overall, this study establishes the role of these N- terminal hepatic mutations of AR as highly malignant oncogenic drivers in hepatocarcinogenesis and highlights their potential as therapeutic targets for patients harboring these somatic mutations.
Collapse
Affiliation(s)
- Qian-Nan Ren
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, 510060, China.
| | - Dan-Hui Huang
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiao-Nan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Yue-Ning Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, 510060, China
| | - Yu-Feng Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, 510060, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, 510060, China
| | - Shuo-Cheng Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, 510060, China
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, 510060, China
| | - De-Hua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, 510060, China.
| |
Collapse
|
7
|
Khan AF, Karami S, Peidl AS, Waiters KD, Babajide MF, Bawa-Khalfe T. Androgen Receptor in Hormone Receptor-Positive Breast Cancer. Int J Mol Sci 2023; 25:476. [PMID: 38203649 PMCID: PMC10779387 DOI: 10.3390/ijms25010476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Breast cancer subtypes expressing hormone receptors (HR+ BCa) have a good prognosis and respond to first-line endocrine therapy (ET). However, the majority of HR+ BCa patients exhibit intrinsic or acquired ET resistance (ET-R) and rapid onset of incurable metastatic BCa. With the failure of conventional ET, limited targeted therapy exists for ET-R HR+ BCa patients. The androgen receptor (AR) in HR-negative BCa subtypes is emerging as an attractive alternative target for therapy. The AR drives Luminal AR (LAR) triple-negative breast cancer progression, and LAR patients consistently exhibit positive clinical benefits with AR antagonists in clinical trials. In contrast, the function of the AR in HR+ BCa is more conflicting. AR in HR+ BCa correlates with a favorable prognosis, and yet, the AR supports the development of ET-R BCa. While AR antagonists were ineffective, ongoing clinical trials with a selective AR modulator have shown promise for HR+ BCa patients. To understand the incongruent actions of ARs in HR+ BCa, the current review discusses how the structure and post-translational modification impact AR function. Additionally, completed and ongoing clinical trials with FDA-approved AR-targeting agents for BCa are presented. Finally, we identify promising investigational small molecules and chimera drugs for future HR+ BCa therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Tasneem Bawa-Khalfe
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg., Rm 3010, Houston, TX 77204-5056, USA (K.D.W.)
| |
Collapse
|
8
|
Basu S, Martínez-Cristóbal P, Frigolé-Vivas M, Pesarrodona M, Lewis M, Szulc E, Bañuelos CA, Sánchez-Zarzalejo C, Bielskutė S, Zhu J, Pombo-García K, Garcia-Cabau C, Zodi L, Dockx H, Smak J, Kaur H, Batlle C, Mateos B, Biesaga M, Escobedo A, Bardia L, Verdaguer X, Ruffoni A, Mawji NR, Wang J, Obst JK, Tam T, Brun-Heath I, Ventura S, Meierhofer D, García J, Robustelli P, Stracker TH, Sadar MD, Riera A, Hnisz D, Salvatella X. Rational optimization of a transcription factor activation domain inhibitor. Nat Struct Mol Biol 2023; 30:1958-1969. [PMID: 38049566 PMCID: PMC10716049 DOI: 10.1038/s41594-023-01159-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 10/23/2023] [Indexed: 12/06/2023]
Abstract
Transcription factors are among the most attractive therapeutic targets but are considered largely 'undruggable' in part due to the intrinsically disordered nature of their activation domains. Here we show that the aromatic character of the activation domain of the androgen receptor, a therapeutic target for castration-resistant prostate cancer, is key for its activity as transcription factor, allowing it to translocate to the nucleus and partition into transcriptional condensates upon activation by androgens. On the basis of our understanding of the interactions stabilizing such condensates and of the structure that the domain adopts upon condensation, we optimized the structure of a small-molecule inhibitor previously identified by phenotypic screening. The optimized compounds had more affinity for their target, inhibited androgen-receptor-dependent transcriptional programs, and had an antitumorigenic effect in models of castration-resistant prostate cancer in cells and in vivo. These results suggest that it is possible to rationally optimize, and potentially even to design, small molecules that target the activation domains of oncogenic transcription factors.
Collapse
Affiliation(s)
- Shaon Basu
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Paula Martínez-Cristóbal
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Frigolé-Vivas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mireia Pesarrodona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Michael Lewis
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elzbieta Szulc
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - C Adriana Bañuelos
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Carolina Sánchez-Zarzalejo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Stasė Bielskutė
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jiaqi Zhu
- Dartmouth College, Department of Chemistry, Hanover, NH, USA
| | - Karina Pombo-García
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Levente Zodi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Jordann Smak
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Harpreet Kaur
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Cristina Batlle
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Borja Mateos
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mateusz Biesaga
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Albert Escobedo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Lídia Bardia
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Xavier Verdaguer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Barcelona, Spain
| | - Alessandro Ruffoni
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nasrin R Mawji
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Jun Wang
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Jon K Obst
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Teresa Tam
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Isabelle Brun-Heath
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, Berlin, Germany
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Paul Robustelli
- Dartmouth College, Department of Chemistry, Hanover, NH, USA
| | - Travis H Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Marianne D Sadar
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| | - Antoni Riera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Barcelona, Spain.
| | - Denes Hnisz
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
9
|
Chen L, Zhang Z, Han Q, Maity BK, Rodrigues L, Zboril E, Adhikari R, Ko SH, Li X, Yoshida SR, Xue P, Smith E, Xu K, Wang Q, Huang THM, Chong S, Liu Z. Hormone-induced enhancer assembly requires an optimal level of hormone receptor multivalent interactions. Mol Cell 2023; 83:3438-3456.e12. [PMID: 37738977 PMCID: PMC10592010 DOI: 10.1016/j.molcel.2023.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 07/11/2023] [Accepted: 08/29/2023] [Indexed: 09/24/2023]
Abstract
Transcription factors (TFs) activate enhancers to drive cell-specific gene programs in response to signals, but our understanding of enhancer assembly during signaling events is incomplete. Here, we show that androgen receptor (AR) forms condensates through multivalent interactions mediated by its N-terminal intrinsically disordered region (IDR) to orchestrate enhancer assembly in response to androgen signaling. AR IDR can be substituted by IDRs from selective proteins for AR condensation capacity and its function on enhancers. Expansion of the poly(Q) track within AR IDR results in a higher AR condensation propensity as measured by multiple methods, including live-cell single-molecule microscopy. Either weakening or strengthening AR condensation propensity impairs its heterotypic multivalent interactions with other enhancer components and diminishes its transcriptional activity. Our work reveals the requirement of an optimal level of AR condensation in mediating enhancer assembly and suggests that alteration of the fine-tuned multivalent IDR-IDR interactions might underlie AR-related human pathologies.
Collapse
Affiliation(s)
- Lizhen Chen
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Zhao Zhang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Qinyu Han
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Barun K Maity
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Leticia Rodrigues
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Emily Zboril
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Rashmi Adhikari
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Su-Hyuk Ko
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xin Li
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Shawn R Yoshida
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pengya Xue
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Emilie Smith
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Kexin Xu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Qianben Wang
- Department of Pathology, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tim Hui-Ming Huang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Shasha Chong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Zhijie Liu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
10
|
Fancher AT, Hua Y, Close DA, Xu W, McDermott LA, Strock CJ, Santiago U, Camacho CJ, Johnston PA. Characterization of allosteric modulators that disrupt androgen receptor co-activator protein-protein interactions to alter transactivation-Drug leads for metastatic castration resistant prostate cancer. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:325-343. [PMID: 37549772 DOI: 10.1016/j.slasd.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/06/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Three series of compounds were prioritized from a high content screening campaign that identified molecules that blocked dihydrotestosterone (DHT) induced formation of Androgen Receptor (AR) protein-protein interactions (PPIs) with the Transcriptional Intermediary Factor 2 (TIF2) coactivator and also disrupted preformed AR-TIF2 PPI complexes; the hydrobenzo-oxazepins (S1), thiadiazol-5-piperidine-carboxamides (S2), and phenyl-methyl-indoles (S3). Compounds from these series inhibited AR PPIs with TIF2 and SRC-1, another p160 coactivator, in mammalian 2-hybrid assays and blocked transcriptional activation in reporter assays driven by full length AR or AR-V7 splice variants. Compounds inhibited the growth of five prostate cancer cell lines, with many exhibiting differential cytotoxicity towards AR positive cell lines. Representative compounds from the 3 series substantially reduced both endogenous and DHT-enhanced expression and secretion of the prostate specific antigen (PSA) cancer biomarker in the C4-2 castration resistant prostate cancer (CRPC) cell line. The comparatively weak activities of series compounds in the H3-DHT and/or TIF2 box 3 LXXLL-peptide binding assays to the recombinant ligand binding domain of AR suggest that direct antagonism at the orthosteric ligand binding site or AF-2 surface respectively are unlikely mechanisms of action. Cellular enhanced thermal stability assays (CETSA) indicated that compounds engaged AR and reduced the maximum efficacy and right shifted the EC50 of DHT-enhanced AR thermal stabilization consistent with the effects of negative allosteric modulators. Molecular docking of potent representative hits from each series to AR structures suggest that S1-1 and S2-6 engage a novel binding pocket (BP-1) adjacent to the orthosteric ligand binding site, while S3-11 occupies the AR binding function 3 (BF-3) allosteric pocket. Hit binding poses indicate spaces and residues adjacent to the BP-1 and BF-3 pockets that will be exploited in future medicinal chemistry optimization studies. Small molecule allosteric modulators that prevent/disrupt AR PPIs with coactivators like TIF2 to alter transcriptional activation in the presence of orthosteric agonists might evade the resistance mechanisms to existing prostate cancer drugs and provide novel starting points for medicinal chemistry lead optimization and future development into therapies for metastatic CRPC.
Collapse
Affiliation(s)
- Ashley T Fancher
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Nucleus Global, 2 Ravinia Drive, Suite 605, Atlanta, GA 30346, USA
| | - Yun Hua
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David A Close
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wei Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lee A McDermott
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; PsychoGenics Inc, 215 College Road, Paramus, NJ 07652, USA
| | | | - Ulises Santiago
- Department of Computational and Systems Biology, School of Medicine, at the University of Pittsburgh, USA
| | - Carlos J Camacho
- Department of Computational and Systems Biology, School of Medicine, at the University of Pittsburgh, USA
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
11
|
Doamekpor SK, Peng P, Xu R, Ma L, Tong Y, Tong L. A partially open conformation of an androgen receptor ligand-binding domain with drug-resistance mutations. Acta Crystallogr F Struct Biol Commun 2023; 79:95-104. [PMID: 36995121 PMCID: PMC10071832 DOI: 10.1107/s2053230x23002224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Mutations in the androgen receptor (AR) ligand-binding domain (LBD) can cause resistance to drugs used to treat prostate cancer. Commonly found mutations include L702H, W742C, H875Y, F877L and T878A, while the F877L mutation can convert second-generation antagonists such as enzalutamide and apalutamide into agonists. However, pruxelutamide, another second-generation AR antagonist, has no agonist activity with the F877L and F877L/T878A mutants and instead maintains its inhibitory activity against them. Here, it is shown that the quadruple mutation L702H/H875Y/F877L/T878A increases the soluble expression of AR LBD in complex with pruxelutamide in Escherichia coli. The crystal structure of the quadruple mutant in complex with the agonist dihydrotestosterone (DHT) reveals a partially open conformation of the AR LBD due to conformational changes in the loop connecting helices H11 and H12 (the H11-H12 loop) and Leu881. This partially open conformation creates a larger ligand-binding site for AR. Additional structural studies suggest that both the L702H and F877L mutations are important for conformational changes. This structural variability in the AR LBD could affect ligand binding as well as the resistance to antagonists.
Collapse
Affiliation(s)
- Selom K. Doamekpor
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Panfeng Peng
- Suzhou Kintor Pharmaceuticals Inc, No. 20 Songbei Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Ruo Xu
- Suzhou Kintor Pharmaceuticals Inc, No. 20 Songbei Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Liandong Ma
- Suzhou Kintor Pharmaceuticals Inc, No. 20 Songbei Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Youzhi Tong
- Suzhou Kintor Pharmaceuticals Inc, No. 20 Songbei Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
12
|
Miyahira AK, Hawley JE, Adelaiye-Ogala R, Calais J, Nappi L, Parikh R, Seibert TM, Wasmuth EV, Wei XX, Pienta KJ, Soule HR. Exploring new frontiers in prostate cancer research: Report from the 2022 Coffey-Holden prostate cancer academy meeting. Prostate 2023; 83:207-226. [PMID: 36443902 DOI: 10.1002/pros.24461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022]
Abstract
INTRODUCTION The 2022 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, "Exploring New Frontiers in Prostate Cancer Research," was held from June 23 to 26, 2022, at the University of California, Los Angeles, Luskin Conference Center, in Los Angeles, CA. METHODS The CHPCA Meeting is an annual discussion-oriented scientific conference organized by the Prostate Cancer Foundation, that focuses on emerging and next-step topics deemed critical for making the next major advances in prostate cancer research and clinical care. The 2022 CHPCA Meeting included 35 talks over 10 sessions and was attended by 73 academic investigators. RESULTS Major topic areas discussed at the meeting included: prostate cancer diversity and disparities, the impact of social determinants on research and patient outcomes, leveraging real-world and retrospective data, development of artificial intelligence biomarkers, androgen receptor (AR) signaling biology and new strategies for targeting AR, features of homologous recombination deficient prostate cancer, and future directions in immunotherapy and nuclear theranostics. DISCUSSION This article summarizes the scientific presentations from the 2022 CHPCA Meeting, with the goal that dissemination of this knowledge will contribute to furthering global prostate cancer research efforts.
Collapse
Affiliation(s)
| | - Jessica E Hawley
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Remi Adelaiye-Ogala
- Department of Medicine, Division of Hematology and Oncology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jeremie Calais
- Department of Molecular and Medical Pharmacology, Ahmanson Translational Imaging Division, University of California, Los Angeles, Los Angeles, California, USA
| | - Lucia Nappi
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, British Columbia, Canada
- Department of Medical Oncology, BC Cancer, British Columbia, Canada
| | - Ravi Parikh
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medical Ethics and Health Policy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Tyler M Seibert
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Research Service, VA San Diego Healthcare System, San Diego, California, USA
| | - Elizabeth V Wasmuth
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Xiao X Wei
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Howard R Soule
- Prostate Cancer Foundation, Santa Monica, California, USA
| |
Collapse
|
13
|
Androgen receptor suppresses β-adrenoceptor-mediated CREB activation and thermogenesis in brown adipose tissue of male mice. J Biol Chem 2022; 298:102619. [PMID: 36272644 PMCID: PMC9700029 DOI: 10.1016/j.jbc.2022.102619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Thermoregulation is a process by which core body temperature is maintained in mammals. Males typically have a lower body temperature than females. However, the effects of androgens, which show higher levels in males, on adrenergic receptor-mediated thermogenesis remain unclear. Here, we demonstrate that androgen-androgen receptor (AR) signaling suppresses the β-adrenergic agonist-induced rise of core body temperature using castrated and AR knockout (ARKO) male mice. Furthermore, in vitro mechanistic studies show that activated AR inhibits cAMP response element (CRE)-mediated transcription by suppressing cAMP response element-binding protein (CREB) phosphorylation. The elevation of body temperature induced by the β-adrenergic agonist CL316243 was higher in ARKO and castrated mice than in the control mice. Similarly, CL316243 induced a greater increase in Uncoupling protein 1 (Ucp1) expression and CREB phosphorylation in the brown adipose tissue of ARKO mice than in that of controls. We determined that activation of AR by dihydrotestosterone suppressed β3-agonist- or forskolin-induced CRE-mediated transcription, which was prevented by AR antagonist. AR activation also suppressed CREB phosphorylation induced by forskolin. Moreover, we found AR nuclear localization, but not transcriptional activity, was necessary for the suppression of CRE-mediated transcription. Finally, modified mammalian two-hybrid and immunoprecipitation analyses suggest nuclear AR and CREB form a protein complex both in the presence and absence of dihydrotestosterone and forskolin. These results suggest androgen-AR signaling suppresses β-adrenoceptor-induced UCP1-mediated brown adipose tissue thermogenesis by suppressing CREB phosphorylation, presumably owing to a protein complex with AR and CREB. This mechanism explains sexual differences in body temperature, at least partially.
Collapse
|
14
|
Sengupta M, Pluciennik A, Merry DE. The role of ubiquitination in spinal and bulbar muscular atrophy. Front Mol Neurosci 2022; 15:1020143. [PMID: 36277484 PMCID: PMC9583669 DOI: 10.3389/fnmol.2022.1020143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative and neuromuscular genetic disease caused by the expansion of a polyglutamine-encoding CAG tract in the androgen receptor (AR) gene. The AR is an important transcriptional regulator of the nuclear hormone receptor superfamily; its levels are regulated in many ways including by ubiquitin-dependent degradation. Ubiquitination is a post-translational modification (PTM) which plays a key role in both AR transcriptional activity and its degradation. Moreover, the ubiquitin-proteasome system (UPS) is a fundamental component of cellular functioning and has been implicated in diseases of protein misfolding and aggregation, including polyglutamine (polyQ) repeat expansion diseases such as Huntington's disease and SBMA. In this review, we discuss the details of the UPS system, its functions and regulation, and the role of AR ubiquitination and UPS components in SBMA. We also discuss aspects of the UPS that may be manipulated for therapeutic effect in SBMA.
Collapse
Affiliation(s)
| | | | - Diane E. Merry
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
15
|
El Kharraz S, Dubois V, Launonen KM, Helminen L, Palvimo JJ, Libert C, Smeets E, Moris L, Eerlings R, Vanderschueren D, Helsen C, Claessens F. N/C Interactions Are Dispensable for Normal In Vivo Functioning of the Androgen Receptor in Male Mice. Endocrinology 2022; 163:6652495. [PMID: 35908178 PMCID: PMC9756762 DOI: 10.1210/endocr/bqac104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/19/2022]
Abstract
The androgen receptor (AR) plays a central role in the development and maintenance of the male phenotype. The binding of androgens to the receptor induces interactions between the carboxyterminal ligand-binding domain and the highly conserved 23FQNLF27 motif in the aminoterminal domain. The role of these so-called N/C interactions in AR functioning is debated. In vitro assays show that mutating the AR in the 23FQNLF27 motif (called ARNoC) attenuates the AR transactivation of reporter genes, has no effect on ligand binding, but does affect protein-protein interactions with several AR coregulators. To test the in vivo relevance of the N/C interaction, we analyzed the consequences of the genomic introduction of the ARNoC mutation in mice. Surprisingly, the ARNoC/Y mice show a normal male development, with unaffected male anogenital distance and normal accessory sex glands, male circulating androgen levels, body composition, and fertility. The responsiveness of androgen target genes in kidney, prostate, and testes was also unaffected. We thus conclude that the N/C interactions in the AR are not essential for the development of a male phenotype under normal physiological conditions.
Collapse
Affiliation(s)
- Sarah El Kharraz
- Correspondence: Frank Claessens, PhD, Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, 3000, Belgium. . Reprint requests can be sent to or
| | - Vanessa Dubois
- Department of Chronic Diseases and Metabolism, Clinical and Experimental Endocrinology, KU Leuven, Leuven, 3000, Belgium
- Department of Basic and Applied Medical Sciences, Basic and Translational Endocrinology, Ghent University, Ghent, 9000, Belgium
| | - Kaisa-Mari Launonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, 70210, Finland
| | - Laura Helminen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, 70210, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, 70210, Finland
| | - Claude Libert
- VIB Center for Inflammation Research, VIB, Ghent, 9052, Belgium
- Department for Biomedical Molecular Biology, Ghent University, Ghent, 9052, Belgium
| | - Elien Smeets
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, 3000, Belgium
| | - Lisa Moris
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, 3000, Belgium
| | - Roy Eerlings
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, 3000, Belgium
| | - Dirk Vanderschueren
- Department of Chronic Diseases and Metabolism, Clinical and Experimental Endocrinology, KU Leuven, Leuven, 3000, Belgium
| | - Christine Helsen
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, 3000, Belgium
| | - Frank Claessens
- Correspondence: Frank Claessens, PhD, Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, 3000, Belgium. . Reprint requests can be sent to or
| |
Collapse
|
16
|
Wasmuth EV, Broeck AV, LaClair JR, Hoover EA, Lawrence KE, Paknejad N, Pappas K, Matthies D, Wang B, Feng W, Watson PA, Zinder JC, Karthaus WR, de la Cruz MJ, Hite RK, Manova-Todorova K, Yu Z, Weintraub ST, Klinge S, Sawyers CL. Allosteric interactions prime androgen receptor dimerization and activation. Mol Cell 2022; 82:2021-2031.e5. [PMID: 35447082 PMCID: PMC9177810 DOI: 10.1016/j.molcel.2022.03.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/15/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
Abstract
The androgen receptor (AR) is a nuclear receptor that governs gene expression programs required for prostate development and male phenotype maintenance. Advanced prostate cancers display AR hyperactivation and transcriptome expansion, in part, through AR amplification and interaction with oncoprotein cofactors. Despite its biological importance, how AR domains and cofactors cooperate to bind DNA has remained elusive. Using single-particle cryo-electron microscopy, we isolated three conformations of AR bound to DNA, showing that AR forms a non-obligate dimer, with the buried dimer interface utilized by ancestral steroid receptors repurposed to facilitate cooperative DNA binding. We identify novel allosteric surfaces which are compromised in androgen insensitivity syndrome and reinforced by AR's oncoprotein cofactor, ERG, and by DNA-binding motifs. Finally, we present evidence that this plastic dimer interface may have been adopted for transactivation at the expense of DNA binding. Our work highlights how fine-tuning AR's cooperative interactions translate to consequences in development and disease.
Collapse
Affiliation(s)
- Elizabeth V Wasmuth
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA.
| | - Arnaud Vanden Broeck
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Justin R LaClair
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elizabeth A Hoover
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kayla E Lawrence
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Navid Paknejad
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kyrie Pappas
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Doreen Matthies
- Cryo-Electron Microscopy Facility, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Biran Wang
- Molecular Cytology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Weiran Feng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Philip A Watson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John C Zinder
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Wouter R Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - M Jason de la Cruz
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Zhiheng Yu
- Cryo-Electron Microscopy Facility, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Sebastian Klinge
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
17
|
Tan H, Chen Q, Hong H, Benfenati E, Gini GC, Zhang X, Yu H, Shi W. Structures of Endocrine-Disrupting Chemicals Correlate with the Activation of 12 Classic Nuclear Receptors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16552-16562. [PMID: 34859678 DOI: 10.1021/acs.est.1c04997] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can inadvertently interact with 12 classic nuclear receptors (NRs) that disrupt the endocrine system and cause adverse effects. There is no widely accepted understanding about what structural features make thousands of EDCs able to activate different NRs as well as how these structural features exert their functions and induce different outcomes at the cellular level. This paper applies the hierarchical characteristic fragment methodology and high-throughput screening molecular docking to comprehensively explore the structural and functional features of EDCs for the 12 NRs based on more than 7000 chemicals from curated datasets. EDCs share three levels of key fragments. The primary and secondary fragments are associated with the binding of EDCs to four groups of receptors: steroidal nuclear receptors (SNRs, including androgen, estrogen, glucocorticoid, mineralocorticoid, and progesterone), retinoic acid receptors, thyroid hormone receptors, and vitamin D receptors. The tertiary fragments determine the activity type by interacting with two key locations in the ligand-binding domains of NRs (N-H5-H3-C and N-H7-H11-C for SNRs and N-H5-H5'-H2'-H3-C and N-H6'-H11-C for non-SNRs). The resulting compiled structural fragments of EDCs together with elucidated compound NR binding modes provide a framework for understanding the interactions between EDCs and NRs, facilitating faster and more accurate screening of EDCs for multiple NRs in the future.
Collapse
Affiliation(s)
- Haoyue Tan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, 210023 Nanjing, China
| | - Qinchang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, 210023 Nanjing, China
| | - Huixiao Hong
- National Center for Toxicological Research, U. S. Food and Drug Administration, 3900 NCTR Road., Jefferson, Arkansas 72079, United States
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Giuseppina C Gini
- Department of Electronics and Information, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, 210023 Nanjing, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, 210023 Nanjing, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, 210023 Nanjing, China
| |
Collapse
|
18
|
El Kharraz S, Dubois V, van Royen ME, Houtsmuller AB, Pavlova E, Atanassova N, Nguyen T, Voet A, Eerlings R, Handle F, Prekovic S, Smeets E, Moris L, Devlies W, Ohlsson C, Poutanen M, Verstrepen KJ, Carmeliet G, Launonen KM, Helminen L, Palvimo JJ, Libert C, Vanderschueren D, Helsen C, Claessens F. The androgen receptor depends on ligand-binding domain dimerization for transcriptional activation. EMBO Rep 2021; 22:e52764. [PMID: 34661369 DOI: 10.15252/embr.202152764] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/28/2023] Open
Abstract
Whereas dimerization of the DNA-binding domain of the androgen receptor (AR) plays an evident role in recognizing bipartite response elements, the contribution of the dimerization of the ligand-binding domain (LBD) to the correct functioning of the AR remains unclear. Here, we describe a mouse model with disrupted dimerization of the AR LBD (ARLmon/Y ). The disruptive effect of the mutation is demonstrated by the feminized phenotype, absence of male accessory sex glands, and strongly affected spermatogenesis, despite high circulating levels of testosterone. Testosterone replacement studies in orchidectomized mice demonstrate that androgen-regulated transcriptomes in ARLmon/Y mice are completely lost. The mutated AR still translocates to the nucleus and binds chromatin, but does not bind to specific AR binding sites. In vitro studies reveal that the mutation in the LBD dimer interface also affects other AR functions such as DNA binding, ligand binding, and co-regulator binding. In conclusion, LBD dimerization is crucial for the development of AR-dependent tissues through its role in transcriptional regulation in vivo. Our findings identify AR LBD dimerization as a possible target for AR inhibition.
Collapse
Affiliation(s)
- Sarah El Kharraz
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Vanessa Dubois
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | | | | | - Ekatarina Pavlova
- Institute of Experimental Morphology Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nina Atanassova
- Institute of Experimental Morphology Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tien Nguyen
- Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Arnout Voet
- Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Roy Eerlings
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Florian Handle
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Prekovic
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Elien Smeets
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Moris
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Wout Devlies
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, Sweden
| | - Matti Poutanen
- Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, Sweden.,Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Kevin J Verstrepen
- VIB Laboratory for Systems Biology and KU Leuven Laboratory for Genetics and Genomics, VIB - KU Leuven Center for Microbiology, Leuven, Belgium
| | - Geert Carmeliet
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | | | - Laura Helminen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Claude Libert
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Christine Helsen
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frank Claessens
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Conformational dynamics of androgen receptors bound to agonists and antagonists. Sci Rep 2021; 11:15887. [PMID: 34354111 PMCID: PMC8342701 DOI: 10.1038/s41598-021-94707-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/13/2021] [Indexed: 11/09/2022] Open
Abstract
The androgen receptor (AR) is critical in the progression of prostate cancer (PCa). Small molecule antagonists that bind to the ligand binding domain (LBD) of the AR have been successful in treating PCa. However, the structural basis by which the AR antagonists manifest their therapeutic efficacy remains unclear, due to the lack of detailed structural information of the AR bound to the antagonists. We have performed accelerated molecular dynamics (aMD) simulations of LBDs bound to a set of ligands including a natural substrate (dihydrotestosterone), an agonist (RU59063) and three antagonists (bicalutamide, enzalutamide and apalutamide) as well as in the absence of ligand (apo). We show that the binding of AR antagonists at the substrate binding pocket alter the dynamic fluctuations of H12, thereby disrupting the structural integrity of the agonistic conformation of AR. Two antagonists, enzalutamide and apalutamide, induce considerable structural changes to the agonist conformation of LBD, when bound close to H12 of AR LBD. When the antagonists bind to the pocket with different orientations having close contact with H11, no significant conformational changes were observed, suggesting the AR remains in the functionally activated (agonistic) state. The simulations on a drug resistance mutant F876L bound to enzalutamide demonstrated that the mutation stabilizes the agonistic conformation of AR LBD, which compromises the efficacy of the antagonists. Principal component analysis (PCA) of the structural fluctuations shows that the binding of enzalutamide and apalutamide induce conformational fluctuations in the AR, which are markedly different from those caused by the agonist as well as another antagonist, bicalutamide. These fluctuations could only be observed with the use of aMD.
Collapse
|
20
|
Liang J, Wang L, Poluben L, Nouri M, Arai S, Xie L, Voznesensky OS, Cato L, Yuan X, Russo JW, Long HW, Brown M, Chen S, Balk SP. Androgen receptor splice variant 7 functions independently of the full length receptor in prostate cancer cells. Cancer Lett 2021; 519:172-184. [PMID: 34256096 DOI: 10.1016/j.canlet.2021.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 11/30/2022]
Abstract
One mechanism for reactivation of androgen receptor (AR) activity after androgen deprivation therapy in castration-resistant prostate cancer (CRPC) is expression of splice variants such as ARv7 that delete the ligand binding domain and have constitutive activity. Exogenous overexpressed ARv7 can function as a homodimer or heterodimer with full length AR (ARfl), which is highly expressed with ARv7 in CRPC. However, the extent to which endogenous ARv7 function is dependent on heterodimerization with ARfl remains to be determined. We used double-crosslinking to stabilize AR complexes on chromatin in a CRPC cell line expressing endogenous ARfl and ARv7 (LN95 cells), and established that only trace levels of ARfl were associated with ARv7 on chromatin. Consistent with this result, depletion of ARfl with an AR degrader targeting the AR ligand binding domain did not decrease ARv7 binding to chromatin or its association with HOXB13, but did decrease overall AR transcriptional activity. Comparable results were obtained in CWR22RV1 cells, another CRPC cell line expressing ARfl and ARv7. These results indicate that ARv7 function in CRPC is not dependent on ARfl, and that both contribute independently to overall AR activity.
Collapse
Affiliation(s)
- Jiaqian Liang
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA; Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Liyang Wang
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA; Shaanxi Normal University School of Life Sciences, Shaanxi 710062, China
| | - Larysa Poluben
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Mannan Nouri
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Seiji Arai
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA; Department of Urology, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Lisha Xie
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA; Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Olga S Voznesensky
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Laura Cato
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Xin Yuan
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Joshua W Russo
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Henry W Long
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Myles Brown
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Shaoyong Chen
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Steven P Balk
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
21
|
Kong X, Xing E, Zhuang T, Li PK, Cheng X. Mechanistic Insights into the Allosteric Inhibition of Androgen Receptors by Binding Function 3 Antagonists from an Integrated Molecular Modeling Study. J Chem Inf Model 2021; 61:3477-3494. [PMID: 34165949 DOI: 10.1021/acs.jcim.1c00124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An androgen receptor (AR) is an intensively studied treatment target for castration-resistant prostate cancer that is irresponsive to conventional antiandrogen therapeutics. Binding function 3 (BF3) inhibitors with alternative modes of action have emerged as a promising approach to overcoming antiandrogen resistance. However, how these BF3 inhibitors modulate AR function remains elusive, hindering the development of BF3-targeting agents. Here, we performed an integrated computational study to interrogate the binding mechanism of several known BF3 inhibitors with ARs. Our results show that the inhibitory effect of the BF3 antagonists arises from their allosteric modulation of the activation function (AF2) site, which alters the dynamic coupling between the BF3 and AF2 sites as well as the AF2-coactivator (SRC2-3) interaction. Moreover, the per-residue binding energy analyses reveal the "anchor" role of the linker connecting the phenyl ring and benzimidazole/indole in these BF3 inhibitors. Furthermore, the allosteric driver-interacting residues are found to include both "positive", e.g., Phe673 and Asn833, and "negative" ones, e.g., Phe826, and the differential interactions with these residues provide an explanation why stronger binding does not necessarily result in higher inhibitory activities. Finally, our allosteric communication pathway analyses delineate how the allosteric signals triggered by BF3 binding are propagated to the AF2 pocket through multiple short- and/or long-ranged transmission pathways. Collectively, our combined computational study provides a comprehensive structural mechanism underlying how the selected set of BF3 inhibitors modulate AR function, which will help guide future development of BF3 antagonists.
Collapse
Affiliation(s)
- Xiaotian Kong
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Enming Xing
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tony Zhuang
- J. Willis Hurst Internal Medicine Program, Department of Medicine, Emory University, 100 Woodruff Circle, Atlanta, Georgia 30329, United States
| | - Pui-Kai Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
22
|
Steroid receptor-coregulator transcriptional complexes: new insights from CryoEM. Essays Biochem 2021; 65:857-866. [PMID: 34061186 DOI: 10.1042/ebc20210019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/14/2023]
Abstract
Steroid receptors activate gene transcription through recruitment of a number of coregulators to facilitate histone modification, chromatin remodeling, and general transcription machinery stabilization. Understanding the structures of full-length steroid receptor and coregulatory complexes has been difficult due to their large molecular sizes and dynamic structural conformations. Recent developments in cryo-electron microscopy (cryoEM) technology and proteomics have advanced the structural studies of steroid receptor complexes. Here, we will review the insights we learned from cryoEM studies of the estrogen and androgen receptor transcriptional complexes. Despite similar domain organizations, the two receptors have different coregulator interaction modes. The cryoEM structures now have revealed the fundamental differences between the two receptors and their functional mechanisms.
Collapse
|
23
|
Yang CS, Jividen K, Kamata T, Dworak N, Oostdyk L, Remlein B, Pourfarjam Y, Kim IK, Du KP, Abbas T, Sherman NE, Wotton D, Paschal BM. Androgen signaling uses a writer and a reader of ADP-ribosylation to regulate protein complex assembly. Nat Commun 2021; 12:2705. [PMID: 33976187 PMCID: PMC8113490 DOI: 10.1038/s41467-021-23055-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/14/2021] [Indexed: 02/03/2023] Open
Abstract
Androgen signaling through the androgen receptor (AR) directs gene expression in both normal and prostate cancer cells. Androgen regulates multiple aspects of the AR life cycle, including its localization and post-translational modification, but understanding how modifications are read and integrated with AR activity has been difficult. Here, we show that ADP-ribosylation regulates AR through a nuclear pathway mediated by Parp7. We show that Parp7 mono-ADP-ribosylates agonist-bound AR, and that ADP-ribosyl-cysteines within the N-terminal domain mediate recruitment of the E3 ligase Dtx3L/Parp9. Molecular recognition of ADP-ribosyl-cysteine is provided by tandem macrodomains in Parp9, and Dtx3L/Parp9 modulates expression of a subset of AR-regulated genes. Parp7, ADP-ribosylation of AR, and AR-Dtx3L/Parp9 complex assembly are inhibited by Olaparib, a compound used clinically to inhibit poly-ADP-ribosyltransferases Parp1/2. Our study reveals the components of an androgen signaling axis that uses a writer and reader of ADP-ribosylation to regulate protein-protein interactions and AR activity.
Collapse
Affiliation(s)
- Chun-Song Yang
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Kasey Jividen
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
| | - Teddy Kamata
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Natalia Dworak
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
| | - Luke Oostdyk
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Bartlomiej Remlein
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Yasin Pourfarjam
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - In-Kwon Kim
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Kang-Ping Du
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Tarek Abbas
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Nicholas E Sherman
- W. M. Keck Biomedical Mass Spectrometry Laboratory, University of Virginia, Charlottesville, VA, USA
| | - David Wotton
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Bryce M Paschal
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
24
|
Shao G, Bao J, Pan X, He X, Qi Y, Zhang JZH. Computational Analysis of Residue-Specific Binding Free Energies of Androgen Receptor to Ligands. Front Mol Biosci 2021; 8:646524. [PMID: 33778009 PMCID: PMC7994597 DOI: 10.3389/fmolb.2021.646524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
Androgen receptor (AR) is an important therapeutic target for the treatment of diseases such as prostate cancer, hypogonadism, muscle wasting, etc. In this study, the complex structures of the AR ligand-binding domain (LBD) with fifteen ligands were analyzed by molecular dynamics simulations combined with the alanine-scanning-interaction-entropy method (ASIE). The quantitative free energy contributions of the pocket residues were obtained and hotspot residues are quantitatively identified. Our calculation shows that that these hotspot residues are predominantly hydrophobic and their interactions with binding ligands are mainly van der Waals interactions. The total binding free energies obtained by summing over binding contributions by individual residues are in good correlation with the experimental binding data. The current quantitative analysis of binding mechanism of AR to ligands provides important insight on the design of future inhibitors.
Collapse
Affiliation(s)
- Guangfeng Shao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jingxiao Bao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiaolin Pan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,NYU-ECNU Center for Computational Chemistry at NYU, Shanghai, China
| | - Yifei Qi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,NYU-ECNU Center for Computational Chemistry at NYU, Shanghai, China
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,NYU-ECNU Center for Computational Chemistry at NYU, Shanghai, China.,Department of Chemistry, New York University, New York, NY, United States
| |
Collapse
|
25
|
Hornig NC, Holterhus PM. Molecular basis of androgen insensitivity syndromes. Mol Cell Endocrinol 2021; 523:111146. [PMID: 33385475 DOI: 10.1016/j.mce.2020.111146] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Individuals with complete androgen insensitivity syndrome show a female genital phenotype despite 46, XY gonosomes and the presence of androgen producing testes. This clinical observation indicates the resistance of the body and its cells to androgens like testosterone. At the molecular level, this hormone resistance is caused by hemizygous loss of function mutations in the X-chromosomal androgen receptor (AR) gene. Partial forms of androgen insensitivity syndrome (PAIS) show different degrees of virilisation largely depending on the remaining activity of the AR. Nevertheless, the phenotypic outcome can be variable even in presence of the same mutation and in the same kindred indicating the presence of further influencing factors. Importantly, the majority of clinically diagnosed PAIS individuals do not bear a mutation in their AR gene. A recent assay using the androgen regulated gene apolipoprotein D as biomarker is able to detect androgen insensitivity on the cellular level even in absence of an AR gene mutation. Using this assay a class of AIS without an AR-gene mutation was defined as AIS type II and suggests that unidentified cofactors of the AR are responsible for the PAIS phenotype. Here we outline the scientific progress made from the first clinical definition of AIS over biochemical and molecular characterizations to the concept of AIS type II. This review is based on publications in the PubMed database of the National Institutes of Health using the search terms androgen insensitivity syndrome and androgen receptor mutation.
Collapse
Affiliation(s)
- Nadine C Hornig
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Kiel, Germany.
| | - Paul-Martin Holterhus
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
26
|
Eighty Years of Targeting Androgen Receptor Activity in Prostate Cancer: The Fight Goes on. Cancers (Basel) 2021; 13:cancers13030509. [PMID: 33572755 PMCID: PMC7865914 DOI: 10.3390/cancers13030509] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Prostate cancer is the second most common cancer in men world-wide, with nearly 1.3 million new cases each year, and over the next twenty years the incidence and death rate are predicted to nearly double. For decades, this lethal disease has been more or less successfully treated using hormonal therapy, which has the ultimate aim of inhibiting androgen signalling. However, prostate tumours can evade such hormonal therapies in a number of different ways and therapy resistant disease, so-called castration-resistant prostate cancer (CRPC) is the major clinical problem. Somewhat counterintuitively, the androgen receptor remains a key therapy target in CRPC. Here, we explain why this is the case and summarise both new hormone therapy strategies and the recent advances in knowledge of androgen receptor structure and function that underpin them. Abstract Prostate cancer (PCa) is the most common cancer in men in the West, other than skin cancer, accounting for over a quarter of cancer diagnoses in US men. In a seminal paper from 1941, Huggins and Hodges demonstrated that prostate tumours and metastatic disease were sensitive to the presence or absence of androgenic hormones. The first hormonal therapy for PCa was thus castration. In the subsequent eighty years, targeting the androgen signalling axis, where possible using drugs rather than surgery, has been a mainstay in the treatment of advanced and metastatic disease. Androgens signal via the androgen receptor, a ligand-activated transcription factor, which is the direct target of many such drugs. In this review we discuss the role of the androgen receptor in PCa and how the combination of structural information and functional screenings is continuing to be used for the discovery of new drug to switch off the receptor or modify its function in cancer cells.
Collapse
|
27
|
Shimizu T, Takahashi N, Huber VJ, Asawa Y, Ueda H, Yoshimori A, Muramatsu Y, Seimiya H, Kouji H, Nakamura H, Oguri H. Design and synthesis of 14 and 15-membered macrocyclic scaffolds exhibiting inhibitory activities of hypoxia-inducible factor 1α. Bioorg Med Chem 2020; 30:115949. [PMID: 33360196 DOI: 10.1016/j.bmc.2020.115949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022]
Abstract
Inspired by the privileged molecular skeletons of 14- and 15-membered antibiotics, we adopted a relatively unexplored synthetic approach that exploits alkaloidal macrocyclic scaffolds to generate modulators of protein-protein interactions (PPIs). As mimetics of hot-spot residues in the α-helices responsible for the transcriptional regulation, three hydrophobic sidechains were displayed on each of the four distinct macrocyclic scaffolds generating diversity of their spatial arrangements. Modular assembly of the building blocks followed by ring-closing olefin metathesis reaction and subsequent hydrogenation allowed concise and divergent synthesis of scaffolds 1-4. The 14-membered alkaloidal macrocycles 2-4 demonstrated similar inhibition of hypoxia-inducible factor (HIF)-1α transcriptional activities (IC50 between 8.7 and 10 µM), and 4 demonstrated the most potent inhibition of cell proliferation in vitro (IC50 = 12 µM against HTC116 colon cancer cell line). A docking model suggested that 4 could mimic the LLxxL motif in HIF-1α, in which the three sidechains are capable of matching the spatial arrangements of the protein hot-spot residues. Unlike most of the stapled peptides, the 14-membered alkaloidal scaffold has a similar size to the α-helix backbone and does not require additional atoms to induce α-helix mimetic structure. These experimental results underscore the potential of alkaloidal macrocyclic scaffolds featuring flexibly customizable skeletal, stereochemical, substitutional, and conformational properties for the development of non-peptidyl PPI modulators targeting α-helix-forming consensus sequences responsible for the transcriptional regulation.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Norihito Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Vincent J Huber
- Oita University Institute of Advanced Medicine, Inc., 17-20 Higashi kasuga-machi, Oita-shi, Oita 870-0037, Japan
| | - Yasunobu Asawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroki Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Atsushi Yoshimori
- Institute for Theoretical Medicine, Inc., 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yukiko Muramatsu
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Hiroyuki Kouji
- Oita University Institute of Advanced Medicine, Inc., 17-20 Higashi kasuga-machi, Oita-shi, Oita 870-0037, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroki Oguri
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
28
|
Ye M, Tian H, Lin S, Mo J, Li Z, Chen X, Liu J. Resveratrol inhibits proliferation and promotes apoptosis via the androgen receptor splicing variant 7 and PI3K/AKT signaling pathway in LNCaP prostate cancer cells. Oncol Lett 2020; 20:169. [PMID: 32934736 PMCID: PMC7471767 DOI: 10.3892/ol.2020.12032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is a common malignant tumor of the male genitourinary system and its incidence increases with age. Studies have shown that resveratrol (Res) inhibits cancer cell proliferation, migration, invasion and promotes apoptosis. The present study evaluated the effect of Res in two human prostate cancer cell lines (the androgen-dependent LNCaP cell line and the non-androgen-independent LNCaP-B cell line) on proliferation and apoptosis. A proliferation assay was used to demonstrate that Res inhibited proliferation of LNCaP and LNCaP-B cells in the range of 25-100 µM, and the effect was time- and dose-dependent. Using flow cytometry, it was reported that various concentrations of Res induced apoptosis in LNCaP and LNCaP-B cells, and that the apoptotic effect of Res was dose-dependent. A chemiluminescence assay showed that Res inhibited prostate specific antigen levels in LNCaP and LNCaP-B cells. Reverse transcription quantitative-PCR showed that Res inhibited the expression of androgen receptor (AR) in LNCaP and LNCaP-B cells at the mRNA level. Western blot analysis showed that Res suppressed the expression of AR protein as well as protein kinase B (AKT) phosphorylation. To study the effect of Res on the expression of AR splicing variant 7 (ARV7) and the PI3K/AKT signaling pathway in prostate cancer cells, as well as the underlying molecular mechanisms, the recombinant ARV7 expression vector Pcdna3.1-ARV7 was transfected into LNCaP and LNCaP cells and the aforementioned experiments were repeated. It was revealed that Res acted via the ARV7 and the AKT pathways. Taken together, the present results suggested that Res suppresses the proliferation of prostate cancer cells, promotes apoptosis and inhibits the expression of AR mRNA and protein. These effects likely resulted from inhibition of ARV7 and the AKT signaling pathway.
Collapse
Affiliation(s)
- Mushi Ye
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Huanshu Tian
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Shanhong Lin
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Jierong Mo
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Zhuo Li
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Xiaojun Chen
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Jianjun Liu
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| |
Collapse
|
29
|
Tan H, Wang X, Hong H, Benfenati E, Giesy JP, Gini GC, Kusko R, Zhang X, Yu H, Shi W. Structures of Endocrine-Disrupting Chemicals Determine Binding to and Activation of the Estrogen Receptor α and Androgen Receptor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11424-11433. [PMID: 32786601 DOI: 10.1021/acs.est.0c02639] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can interact with nuclear receptors, including estrogen receptor α (ERα) and androgen receptor (AR), to affect the normal endocrine system function, causing severe symptoms. Limited studies queried the EDC mechanisms, focusing on limited chemicals or a set of structurally similar compounds. It remained uncertain how hundreds of diverse EDCs could bind to ERα and AR and cause distinct functional consequences. Here, we employed a series of computational methodologies to investigate the structural features of EDCs that bind to and activate ERα and AR based on more than 4000 compounds. We used molecular docking and molecular dynamics simulations to elucidate the functional consequences and validated structure-function correlations experimentally using a time-resolved fluorescence resonance energy-transfer assay. We found that EDCs share three levels of key fragments. Primary (20 for ERα and 18 for AR) and secondary fragments (38 for ERα and 29 for AR) are responsible for the binding to receptors, and tertiary fragments determine the activity type (agonist, antagonist, or mixed). In summary, our study provides a general mechanism for the EDC function. Discovering the three levels of key fragments may drive fast screening and evaluation of potential EDCs from large sets of commercially used synthetic compounds.
Collapse
Affiliation(s)
- Haoyue Tan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xiaoxiang Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Huixiao Hong
- National Center for Toxicological Research US Food and Drug Administration, 3900 NCTR Rd., Jefferson 72079, Arkansas, United States
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via G. La Masa 19, Milan 20156, Italy
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon S7N 5B4, Canada
- Department of Environmental Sciences, Baylor University, Waco 76706, Texas, United States
| | - Giuseppina C Gini
- Department of Electronics and Information, Politecnico di Milano, Piazza L. da Vinci 32, Milano 20133, Italy
| | - Rebeca Kusko
- Immuneering Corporation, Cambridge 02142, Massachusetts, United States
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
30
|
Computational analysis of androgen receptor (AR) variants to decipher the relationship between protein stability and related-diseases. Sci Rep 2020; 10:12101. [PMID: 32694570 PMCID: PMC7374729 DOI: 10.1038/s41598-020-68731-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 06/19/2020] [Indexed: 11/08/2022] Open
Abstract
Although more than 1,000 androgen receptor (AR) mutations have been identified and these mutants are pathologically important, few theoretical studies have investigated the role of AR protein folding stability in disease and its relationship with the phenotype of the patients. Here, we extracted AR variant data from four databases: ARDB, HGMD, Cosmic, and 1,000 genome. 905 androgen insensitivity syndrome (AIS)-associated loss-of-function mutants and 168 prostate cancer-associated gain-of-function mutants in AR were found. We analyzed the effect of single-residue variation on the folding stability of AR by FoldX and guanidine hydrochloride denaturation experiment, and found that genetic disease-associated mutations tend to have a significantly greater effect on protein stability than gene polymorphisms. Moreover, AR mutants in complete androgen insensitivity syndrome (CAIS) tend to have a greater effect on protein stability than in partial androgen insensitive syndrome (PAIS). This study, by linking disease phenotypes to changes in AR stability, demonstrates the importance of protein stability in the pathogenesis of hereditary disease.
Collapse
|
31
|
Yu X, Yi P, Hamilton RA, Shen H, Chen M, Foulds CE, Mancini MA, Ludtke SJ, Wang Z, O'Malley BW. Structural Insights of Transcriptionally Active, Full-Length Androgen Receptor Coactivator Complexes. Mol Cell 2020; 79:812-823.e4. [PMID: 32668201 DOI: 10.1016/j.molcel.2020.06.031] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 01/15/2023]
Abstract
Steroid receptors activate gene transcription by recruiting coactivators to initiate transcription of their target genes. For most nuclear receptors, the ligand-dependent activation function domain-2 (AF-2) is a primary contributor to the nuclear receptor (NR) transcriptional activity. In contrast to other steroid receptors, such as ERα, the activation function of androgen receptor (AR) is largely dependent on its ligand-independent AF-1 located in its N-terminal domain (NTD). It remains unclear why AR utilizes a different AF domain from other receptors despite that NRs share similar domain organizations. Here, we present cryoelectron microscopy (cryo-EM) structures of DNA-bound full-length AR and its complex structure with key coactivators, SRC-3 and p300. AR dimerization follows a unique head-to-head and tail-to-tail manner. Unlike ERα, AR directly contacts a single SRC-3 and p300. The AR NTD is the primary site for coactivator recruitment. The structures provide a basis for understanding assembly of the AR:coactivator complex and its domain contributions for coactivator assembly and transcriptional regulation.
Collapse
Affiliation(s)
- Xinzhe Yu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ping Yi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ross A Hamilton
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hong Shen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muyuan Chen
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven J Ludtke
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhao Wang
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Modulation of androgen receptor DNA binding activity through direct interaction with the ETS transcription factor ERG. Proc Natl Acad Sci U S A 2020; 117:8584-8592. [PMID: 32220959 PMCID: PMC7165421 DOI: 10.1073/pnas.1922159117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Progress in studying the androgen receptor (AR), the primary drug target in prostate cancer, has been hampered by challenges in expressing and purifying active multidomain AR for use in cell-free biochemical reconstitution assays. Here we successfully express full-length and truncated AR variants and demonstrate that the oncogenic ETS protein ERG, responsible for half of all prostate cancers, enhances the ability of AR to bind DNA through direct interaction with AR. In addition to providing a biochemical system to evaluate AR activity on different DNA templates, our findings provide insight into why ERG-positive prostate cancers have an expanded AR cistrome. The androgen receptor (AR) is a type I nuclear hormone receptor and the primary drug target in prostate cancer due to its role as a lineage survival factor in prostate luminal epithelium. In prostate cancer, the AR cistrome is reprogrammed relative to normal prostate epithelium and particularly in cancers driven by oncogenic ETS fusion genes. The molecular basis for this change has remained elusive. Using purified proteins, we report a minimal cell-free system that demonstrates interdomain cooperativity between the ligand (LBD) and DNA binding domains (DBD) of AR, and its autoinhibition by the N terminus of AR. Furthermore, we identify ERG as a cofactor that activates AR’s ability to bind DNA in both high and lower affinity contexts through direct interaction within a newly identified AR-interacting motif (AIM) in the ETS domain, independent of ERG’s own DNA binding ability. Finally, we present evidence that this interaction is conserved among ETS factors whose expression is altered in prostate cancer. Our work highlights, at a biochemical level, how tumor-initiating ETS translocations result in reprogramming of the AR cistrome.
Collapse
|
33
|
Sadar MD. Discovery of drugs that directly target the intrinsically disordered region of the androgen receptor. Expert Opin Drug Discov 2020; 15:551-560. [PMID: 32100577 DOI: 10.1080/17460441.2020.1732920] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Intrinsically disordered proteins (IDPs) and regions (IDRs) lack stable three-dimensional structure making drug discovery challenging. A validated therapeutic target for diseases such as prostate cancer is the androgen receptor (AR) which has a disordered amino-terminal domain (NTD) that contains all of its transcriptional activity. Drug discovery against the AR-NTD is of intense interest as a potential treatment for disease such as advanced prostate cancer that is driven by truncated constitutively active splice variants of AR that lack the C-terminal ligand-binding domain (LBD).Areas covered: This article presents an overview of the relevance of AR and its intrinsically disordered NTD as a drug target. AR structure and approaches to blocking AR transcriptional activity are discussed. The discovery of small molecules, including the libraries used, proven binders to the AR-NTD, and site of interaction of these small molecules in the AR-NTD are presented along with discussion of the Phase I clinical trial.Expert opinion: The lack of drugs in the clinic that directly bind IDPs/IDRs reflects the difficulty of targeting these proteins and obtaining specificity. However, it may also point to an inappropriateness of too closely borrowing concepts and resources from drug discovery to folded proteins.
Collapse
Affiliation(s)
- Marianne D Sadar
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
34
|
Schuppe ER, Miles MC, Fuxjager MJ. Evolution of the androgen receptor: Perspectives from human health to dancing birds. Mol Cell Endocrinol 2020; 499:110577. [PMID: 31525432 DOI: 10.1016/j.mce.2019.110577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/23/2022]
Abstract
Androgenic hormones orchestrate the development and activation of diverse reproductive phenotypes across vertebrates. Although extensive work investigates how selection for these traits modifies individual elements of this signaling system (e.g., hormone or androgen receptor [AR] levels), we know less about natural variation in the AR sequence across vertebrates. Our knowledge of AR sequence mutations is largely limited to work in human patients or cell-lines, providing a framework to contextualize single mutations at the expense of evolutionary timescale. Here we unite both perspectives in a review that explores the functional significance of AR on a domain-by-domain basis, using existing knowledge to highlight how and why each region might evolve. We then examine AR sequence variation on different timescales by examining sequence variation in clades originating in the Cambrian (vertebrates; >500 mya) and Cretaceous (birds; >65 mya). In each case, we characterize how the receptor has changed over time and discuss which regions are most likely to evolve in response to selection. Overall, domains that are required for androgenic signaling to function (e.g., DNA- and ligand-binding) tend to be conserved. Meanwhile, areas that interface with co-regulatory molecules can exhibit notable variation even between closely related species. We propose that accumulating mutations in regulatory regions is one way that AR structure might act as a substrate for selection to guide the evolution of reproductive traits. By synthesizing literature across disciplines and highlighting the evolutionary potential of specific AR regions, we hope to inspire new avenues of integrative research into endocrine system evolution.
Collapse
Affiliation(s)
- Eric R Schuppe
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Meredith C Miles
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA
| | - Matthew J Fuxjager
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
35
|
Wen S, Niu Y, Huang H. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer. Asian J Urol 2019; 7:203-218. [PMID: 33024699 PMCID: PMC7525085 DOI: 10.1016/j.ajur.2019.11.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/21/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer among men in western countries. Androgen receptor (AR) signaling plays key roles in the development of PCa. Androgen deprivation therapy (ADT) remains the standard therapy for advanced PCa. In addition to its ligand androgen, accumulating evidence indicates that posttranscriptional modification is another important mechanism to regulate AR activities during the progression of PCa, especially in castration resistant prostate cancer (CRPC). To date, a number of posttranscriptional modifications of AR have been identified, including phosphorylation (e.g. by CDK1), acetylation (e.g. by p300 and recognized by BRD4), methylation (e.g. by EZH2), ubiquitination (e.g. by SPOP), and SUMOylation (e.g. by PIAS1). These modifications are essential for the maintenance of protein stability, nuclear localization and transcriptional activity of AR. This review summarizes posttranslational modifications that influence androgen-dependent and -independent activities of AR, PCa progression and therapy resistance. We further emphasize that in addition to androgen, posttranslational modification is another important way to regulate AR activity, suggesting that targeting AR posttranslational modifications, such as proteolysis targeting chimeras (PROTACs) of AR, represents a potential and promising alternate for effective treatment of CRPC. Potential areas to be investigated in the future in the field of AR posttranslational modifications are also discussed.
Collapse
Affiliation(s)
- Simeng Wen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin Medical University, Tianjin, China.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, USA
| | - Yuanjie Niu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin Medical University, Tianjin, China
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, USA.,Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, USA.,Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, USA
| |
Collapse
|
36
|
Shizu R, Yokobori K, Perera L, Pedersen L, Negishi M. Ligand induced dissociation of the AR homodimer precedes AR monomer translocation to the nucleus. Sci Rep 2019; 9:16734. [PMID: 31723170 PMCID: PMC6853983 DOI: 10.1038/s41598-019-53139-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/03/2019] [Indexed: 01/21/2023] Open
Abstract
The androgen receptor (AR) regulates male sexual development. We have now investigated AR homodimerization, hormone-dependent monomerization and nuclear translocation in PC-3 and COS-1 cells, by utilizing mutations associated with the androgen insensitivity syndrome: Pro767Ala, Phe765Leu, Met743Val and Trp742Arg. AR wild type (WT) was expressed as a homodimer in the cytoplasm, while none of these mutants formed homodimers. Unlike AR WT which responded to 1 nM dihydrotestosterone (DHT) to dissociate and translocate into the nucleus, AR Pro767Ala and Phe765Leu mutants remain as the monomer in the cytoplasm. In the crystal structure of the AR LBD homodimer, Pro767 and Phe765 reside closely on a loop that constitutes the dimer interface; their sidechains interact with the Pro767 of the other monomer and with the DHT molecule in the ligand-binding pocket. These observations place Phe765 at a position to facilitate DHT binding to Pro767 and lead to dissociation of the AR homodimer in the cytoplasm. This Pro-Phe Met relay may constitute a structural switch that mediates androgen signaling and is conserved in other steroid hormone receptors.
Collapse
Affiliation(s)
- Ryota Shizu
- Pharmacogenetic section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Kosuke Yokobori
- Pharmacogenetic section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Lee Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Masahiko Negishi
- Pharmacogenetic section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA.
| |
Collapse
|
37
|
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by a polyglutamine (polyQ) expansion in the androgen receptor (AR). Despite the fact that the monogenic cause of SBMA has been known for nearly 3 decades, there is no effective treatment for this disease, underscoring the complexity of the pathogenic mechanisms that lead to a loss of motor neurons and muscle in SBMA patients. In the current review, we provide an overview of the system-wide clinical features of SBMA, summarize the structure and function of the AR, discuss both gain-of-function and loss-of-function mechanisms of toxicity caused by polyQ-expanded AR, and describe the cell and animal models utilized in the study of SBMA. Additionally, we summarize previously conducted clinical trials which, despite being based on positive results from preclinical studies, proved to be largely ineffective in the treatment of SBMA; nonetheless, these studies provide important insights as researchers develop the next generation of therapies.
Collapse
Affiliation(s)
- Frederick J Arnold
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 411E Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, Pennsylvania, 19107, USA
| | - Diane E Merry
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 411E Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, Pennsylvania, 19107, USA.
| |
Collapse
|
38
|
Feng Q, He B. Androgen Receptor Signaling in the Development of Castration-Resistant Prostate Cancer. Front Oncol 2019; 9:858. [PMID: 31552182 PMCID: PMC6738163 DOI: 10.3389/fonc.2019.00858] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
Abstract
Most prostate cancers are androgen-sensitive malignancies whose growths depend on the transcriptional activity of the androgen receptor (AR). In the 1940s, Charles Huggins demonstrated that the surgical removal of testes in men can result in a dramatic improvement in symptoms and can induce prostate cancer regression. Since then, androgen deprivation therapies have been the standard first-line treatment for advanced prostate cancer, including: surgical castration, medical castration, antiandrogens, and androgen biosynthesis inhibitors. These therapies relieve symptoms, reduce tumor burden, and prolong patient survival, while having relatively modest side effects. Unfortunately, hormone deprivation therapy rarely cures the cancer itself. Prostate cancer almost always recurs, resulting in deadly castration-resistant prostate cancer. The underlying escape mechanisms include androgen receptor gene/enhancer amplification, androgen receptor mutations, androgen receptor variants, coactivator overexpression, intratumoral de novo androgen synthesis, etc. Whereas, the majority of the castration-resistant prostate cancers continuously rely on the androgen axis, a subset of recurrent cancers have completely lost androgen receptor expression, undergone divergent clonal evolution or de-differentiation, and become truly androgen receptor-independent small-cell prostate cancers. There is an urgent need for the development of novel targeted and immune therapies for this subtype of prostate cancer, when more deadly small-cell prostate cancers are induced by thorough androgen deprivation and androgen receptor ablation.
Collapse
Affiliation(s)
- Qin Feng
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, United States
| | - Bin He
- Departments of Surgery and Urology, Immunobiology & Transplant Science Center, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
- Department of Medicine-Cancer Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
39
|
Review: Understanding the role of androgens and placental AR variants: Insight into steroid-dependent fetal-placental growth and development. Placenta 2019; 84:63-68. [DOI: 10.1016/j.placenta.2019.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/30/2022]
|
40
|
Hsp70 and Hsp40 inhibit an inter-domain interaction necessary for transcriptional activity in the androgen receptor. Nat Commun 2019; 10:3562. [PMID: 31395886 PMCID: PMC6687723 DOI: 10.1038/s41467-019-11594-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022] Open
Abstract
Molecular chaperones such as Hsp40 and Hsp70 hold the androgen receptor (AR) in an inactive conformation. They are released in the presence of androgens, enabling transactivation and causing the receptor to become aggregation-prone. Here we show that these molecular chaperones recognize a region of the AR N-terminal domain (NTD), including a FQNLF motif, that interacts with the AR ligand-binding domain (LBD) upon activation. This suggests that competition between molecular chaperones and the LBD for the FQNLF motif regulates AR activation. We also show that, while the free NTD oligomerizes, binding to Hsp70 increases its solubility. Stabilizing the NTD-Hsp70 interaction with small molecules reduces AR aggregation and promotes its degradation in cellular and mouse models of the neuromuscular disorder spinal bulbar muscular atrophy. These results help resolve the mechanisms by which molecular chaperones regulate the balance between AR aggregation, activation and quality control. Hsp chaperones stabilize the inactive conformation of androgen receptor (AR) and are released upon hormone-induced AR activation. Here, the authors locate the Hsp binding region on AR, and show that Hsp70 reduces AR aggregation and promotes AR degradation in cellular and mouse models of a neuromuscular disorder.
Collapse
|
41
|
Skowron KJ, Booker K, Cheng C, Creed S, David BP, Lazzara PR, Lian A, Siddiqui Z, Speltz TE, Moore TW. Steroid receptor/coactivator binding inhibitors: An update. Mol Cell Endocrinol 2019; 493:110471. [PMID: 31163202 PMCID: PMC6645384 DOI: 10.1016/j.mce.2019.110471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022]
Abstract
The purpose of this review is to highlight recent developments in small molecules and peptides that block the binding of coactivators to steroid receptors. These coactivator binding inhibitors bind at the coregulator binding groove, also known as Activation Function-2, rather than at the ligand-binding site of steroid receptors. Steroid receptors that have been targeted with coactivator binding inhibitors include the androgen receptor, estrogen receptor and progesterone receptor. Coactivator binding inhibitors may be useful in some cases of resistance to currently prescribed therapeutics. The scope of the review includes small-molecule and peptide coactivator binding inhibitors for steroid receptors, with a particular focus on recent compounds that have been assayed in cell-based models.
Collapse
Affiliation(s)
- Kornelia J Skowron
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Kenneth Booker
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Changfeng Cheng
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Simone Creed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Brian P David
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Phillip R Lazzara
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Amy Lian
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Zamia Siddiqui
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Thomas E Speltz
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; Department of Chemistry, University of Chicago, 929 E. 57th Street, E547, Chicago, IL, 60637, USA
| | - Terry W Moore
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, 1801 W. Taylor Street, Chicago, IL, 60612, USA.
| |
Collapse
|
42
|
Dellafiora L, Galaverna G, Cruciani G, Dall'Asta C. A computational study toward the "personalized" activity of alternariol - Does it matter for safe food at individual level? Food Chem Toxicol 2019; 130:199-206. [PMID: 31128219 DOI: 10.1016/j.fct.2019.05.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 02/08/2023]
Abstract
Mycotoxins in food may threat public health at a global scale. However, for most of them, the current body of knowledge does not support a proper risk assessment and more data are needed to clarify their toxicity. In particular, the assessment of "personalized" action may succeed in understanding and counteracting the effects of many toxicants. Therefore, the assessment of "personalized" toxicology of mycotoxins might deserve attention to foster the understanding of their mechanisms of toxicity and to eventually improve the assessment of risk. This work dealt with the early warning analysis of possible differences in eliciting androgenic stimuli by alternariol, a widespread mycotoxin produce by Alternaria species, when mutations on the androgen receptor occur. It was applied a computational study based on docking simulations, pharmacophore modeling and molecular dynamics to assess the capability of alternariol to interact with the androgen receptor bearing the M749I substitution - which confers insensitivity to androgens stimulation. The results collected pointed to possible "protective" effects against alternariol suggesting: i) the likely existence of inter-individual responses to alternariol stimulation; ii) the meaningfulness of collecting data on "personalized" response to mycotoxins toward a more precise paradigm addressing the risk assessment at the individual level.
Collapse
Affiliation(s)
- Luca Dellafiora
- Department of Food and Drug, University of Parma, Area Parco delle Scienze 27/A, 43124, Parma, Italy.
| | - Gianni Galaverna
- Department of Food and Drug, University of Parma, Area Parco delle Scienze 27/A, 43124, Parma, Italy
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto, 8, 06123, Perugia, Italy
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Area Parco delle Scienze 27/A, 43124, Parma, Italy
| |
Collapse
|
43
|
Roell D, Rösler TW, Hessenkemper W, Kraft F, Hauschild M, Bartsch S, Abraham TE, Houtsmuller AB, Matusch R, van Royen ME, Baniahmad A. Halogen-substituted anthranilic acid derivatives provide a novel chemical platform for androgen receptor antagonists. J Steroid Biochem Mol Biol 2019; 188:59-70. [PMID: 30615932 DOI: 10.1016/j.jsbmb.2018.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
Abstract
Androgen receptor (AR) antagonists are used for hormone therapy of prostate cancer (PCa). However resistance to the treatment occurs eventually. One possible reason is the occurrence of AR mutations that prevent inhibition of AR-mediated transactivation by antagonists. To offer in future more options to inhibit AR signaling, novel chemical lead structures for new AR antagonists would be beneficial. Here we analyzed structure-activity relationships of a battery of 36 non-steroidal structural variants of methyl anthranilate including 23 synthesized compounds. We identified structural requirements that lead to more potent AR antagonists. Specific compounds inhibit the transactivation of wild-type AR as well as AR mutants that render treatment resistance to hydroxyflutamide, bicalutamide and the second-generation AR antagonist enzalutamide. This suggests a distinct mode of inhibiting the AR compared to the clinically used compounds. Competition assays suggest binding of these compounds to the AR ligand binding domain and inhibit PCa cell proliferation. Moreover, active compounds induce cellular senescence despite inhibition of AR-mediated transactivation indicating a transactivation-independent AR-pathway. In line with this, fluorescence resonance after photobleaching (FRAP) - assays reveal higher mobility of the AR in the cell nuclei. Mechanistically, fluorescence resonance energy transfer (FRET) - assays indicate that the amino-carboxy (N/C)-interaction of the AR is not affected, which is in contrast to known AR-antagonists. This suggests a mechanistically novel mode of AR-antagonism. Together, these findings indicate the identification of a novel chemical platform as a new lead structure that extends the diversity of known AR antagonists and possesses a distinct mode of antagonizing AR-function.
Collapse
Affiliation(s)
- Daniela Roell
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Thomas W Rösler
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | | | - Florian Kraft
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Monique Hauschild
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Sophie Bartsch
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Tsion E Abraham
- Department of Pathology and Erasmus Optical Imaging Center OIC, Erasmus MC, Rotterdam, the Netherlands
| | - Adriaan B Houtsmuller
- Department of Pathology and Erasmus Optical Imaging Center OIC, Erasmus MC, Rotterdam, the Netherlands
| | - Rudolf Matusch
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Martin E van Royen
- Department of Pathology and Erasmus Optical Imaging Center OIC, Erasmus MC, Rotterdam, the Netherlands
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
44
|
Jin Y, Duan M, Wang X, Kong X, Zhou W, Sun H, Liu H, Li D, Yu H, Li Y, Hou T. Communication between the Ligand-Binding Pocket and the Activation Function-2 Domain of Androgen Receptor Revealed by Molecular Dynamics Simulations. J Chem Inf Model 2019; 59:842-857. [DOI: 10.1021/acs.jcim.8b00796] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ye Jin
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mojie Duan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xuwen Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaotian Kong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenfang Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huiyong Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hui Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huidong Yu
- Rongene Pharma Co., Ltd., Shenzhen, Guangdong 518054, China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Tingjun Hou
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
45
|
Centenera MM, Selth LA, Ebrahimie E, Butler LM, Tilley WD. New Opportunities for Targeting the Androgen Receptor in Prostate Cancer. Cold Spring Harb Perspect Med 2018; 8:a030478. [PMID: 29530945 PMCID: PMC6280715 DOI: 10.1101/cshperspect.a030478] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent genomic analyses of metastatic prostate cancer have provided important insight into adaptive changes in androgen receptor (AR) signaling that underpin resistance to androgen deprivation therapies. Novel strategies are required to circumvent these AR-mediated resistance mechanisms and thereby improve prostate cancer survival. In this review, we present a summary of AR structure and function and discuss mechanisms of AR-mediated therapy resistance that represent important areas of focus for the development of new therapies.
Collapse
Affiliation(s)
- Margaret M Centenera
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide SA 5001, Australia
| | - Luke A Selth
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Esmaeil Ebrahimie
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide SA 5001, Australia
| | - Wayne D Tilley
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
46
|
Li D, Tian G, Wang J, Zhao LY, Co O, Underill ZC, Mymryk JS, Claessens F, Dehm SM, Daaka Y, Liao D. Inhibition of androgen receptor transactivation function by adenovirus type 12 E1A undermines prostate cancer cell survival. Prostate 2018; 78:1140-1156. [PMID: 30009471 PMCID: PMC6424568 DOI: 10.1002/pros.23689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mutations or truncation of the ligand-binding domain (LBD) of androgen receptor (AR) underlie treatment resistance for prostate cancer (PCa). Thus, targeting the AR N-terminal domain (NTD) could overcome such resistance. METHODS Luciferase reporter assays after transient transfection of various DNA constructs were used to assess effects of E1A proteins on AR-mediated transcription. Immunofluorescence microscopy and subcellular fractionation were applied to assess intracellular protein localization. Immunoprecipitation and mammalian two-hybrid assays were used to detect protein-protein interactions. qRT-PCR was employed to determine RNA levels. Western blotting was used to detect protein expression in cells. Effects of adenoviruses on prostate cancer cell survival were evaluated with CellTiter-Glo assays. RESULTS Adenovirus 12 E1A (E1A12) binds specifically to the AR. Interestingly, the full-length E1A12 (266 aa) preferentially binds to full-length AR, while the small E1A12 variant (235 aa) interacts more strongly with AR-V7. E1A12 promotes AR nuclear translocation, likely through mediating intramolecular AR NTD-LBD interactions. In the nucleus, AR and E1A12 co-expression in AR-null PCa cells results in E1A12 redistribution from nuclear foci containing CBX4 (also known as Pc2), suggesting a preferential AR-E1A12 interaction over other E1A12 interactors. E1A12 represses AR-mediated transcription in reporter gene assays and endogenous AR target genes such as ATAD2 and MYC in AR-expressing PCa cells. AR-expressing PCa cells are more sensitive to death induced by a recombinant adenovirus expressing E1A12 (Ad-E1A12) than AR-deficient PCa cells, which could be attributed to the increased viral replication promoted by androgen stimulation. Targeting the AR by E1A12 promotes apoptosis in PCa cells that express the full-length AR or C-terminally truncated AR variants. Importantly, inhibition of mTOR signaling that blocks the expression of anti-apoptotic proteins markedly augments Ad-E1A12-induced apoptosis of AR-expressing cells. Mechanistically, Ad-E1A12 infection triggers apoptotic response while activating the PI3K-AKT-mTOR signaling axis; thus, mTOR inhibition enhances apoptosis in AR-expressing PCa cells infected by Ad-E1A12. CONCLUSION Ad12 E1A inhibits AR-mediated transcription and suppresses PCa cell survival, suggesting that targeting the AR by E1A12 might have therapeutic potential for treating advanced PCa with heightened AR signaling.
Collapse
Affiliation(s)
- Dawei Li
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, P. R. China
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Guimei Tian
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Jia Wang
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
- Affiliated Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Lisa Y. Zhao
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
- Present address: Department of Medicine, University of Florida, Gainesville, FL 32610
| | - Olivia Co
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Zoe C. Underill
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, the University of Western Ontario, London Regional Cancer Centre, Ontario, Canada
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 PO box 901, 3000 Leuven, Belgium
| | - Scott M. Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - Yehia Daaka
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
- Corresponding author: Department of Anatomy and Cell Biology, University of Florida, 1333 Center Drive, Gainesville, Florida, 32610-0235, , Phone: 352-273-8188, Fax: 352-846-1248
| |
Collapse
|
47
|
Ohno M, Negishi M. GR Utilizes a Co-Chaperone Cytoplasmic CAR Retention Protein to Form an N/C Interaction. NUCLEAR RECEPTOR SIGNALING 2018; 15:1550762918801072. [PMID: 30718983 PMCID: PMC6348740 DOI: 10.1177/1550762918801072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 09/06/2016] [Indexed: 01/18/2023]
Abstract
The N-terminal domain (NTD) of nuclear receptor superfamily members has been recently reported to regulate functions of the receptor through the interaction between the NTD and the C-terminal ligand binding domain (LBD), so-called an N/C interaction. Although this N/C interaction has been demonstrated in various nuclear receptors, eg, androgen receptor, this concept has not been observed in glucocorticoid receptor (GR). We hypothesized that GR requires its co-chaperone CCRP (cytoplasmic constitutive active/androstane receptor retention protein) to form a stable N/C interaction. This hypothesis was examined by co-immunoprecipitation assays using GR fragments overexpressing COS-1 cell lysate. Here, we demonstrated that GR undergoes the N/C interaction between the 26VMDFY30 motif in the NTD and the LBD. More importantly, co-chaperone CCRP is now found to induce this interaction. By the fact that a negative charge at Y30 disrupts this interaction, this residue, a potential phosphorylation site, was indicated to regulate the GR N/C interaction critically. Utilizing Y30F and Y30E mutants as N/C interacting and noninteracting forms of GR, respectively, a 2-dimensional blue native/sodium dodecyl sulfate-polyacrylamide gel electrophoresis was performed to examine whether or not the N/C interaction regulated formation of GR complexes. A cDNA microarray analysis was performed with COS-1 cells expressing Y30F or Y30E. We will present experimental data to demonstrate that CCRP is essential for GR to form the N/C interaction and will discuss its implications in GR functions.
Collapse
Affiliation(s)
- Marumi Ohno
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Masahiko Negishi
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
48
|
Zhang R, Zhang Y, Wu M, Yan P, Izaz A, Wang R, Zhu H, Zhou Y, Wu X. Molecular cloning of androgen receptor and gene expression of sex steroid hormone receptors in the brain of newborn Chinese alligator (Alligator sinensis). Gene 2018; 674:178-187. [DOI: 10.1016/j.gene.2018.06.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/29/2018] [Accepted: 06/11/2018] [Indexed: 12/16/2022]
|
49
|
Liu N, Zhou W, Guo Y, Wang J, Fu W, Sun H, Li D, Duan M, Hou T. Molecular Dynamics Simulations Revealed the Regulation of Ligands to the Interactions between Androgen Receptor and Its Coactivator. J Chem Inf Model 2018; 58:1652-1661. [PMID: 29993249 DOI: 10.1021/acs.jcim.8b00283] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The androgen receptor (AR) plays important roles in gene expression regulation, sexual phenotype maintenance, and prostate cancer (PCa) development. The communications between the AR ligand-binding domain (LBD) and its coactivator are critical to the activation of AR. It is still unclear how the ligand binding would affect the AR-coactivator interactions. In this work, the effects of the ligand binding on the AR-coactivator communications were explored by molecular dynamics (MD) simulations. The results showed that the ligand binding regulates the residue interactions in the function site AF-2. The ligand-to-coactivator allosteric pathway, which involves the coactivator, helix 3 (H3), helix 4 (H4), the loop between H3 and H4 (L3), and helix 12 (H12), and ligands, was characterized. In addition, the interactions of residues on the function site BF-3, especially on the boundary of AF-2 and BF-3, are also affected by the ligands. The MM/GBSA free energy calculations demonstrated that the binding affinity between the coactivator and apo-AR is roughly weaker than those between the coactivator and antagonistic ARs but stronger than those between the coactivator and agonistic ARs. The results indicated that the long-range electrostatic interactions and the conformational entropies are the main factors affecting the binding free energies. In addition, the F876L mutation on AR-LBD affects the ligand-to-coactivator allosteric pathway, which could be the reason for point mutation induced tolerance for the antagonistic drugs such as enzalutamide. Our study would help to develop novel drug candidates against PCa.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Wenfang Zhou
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , People's Republic of China
| | - Yue Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Junmei Wang
- Department of Pharmaceutical Sciences , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Weitao Fu
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , People's Republic of China
| | - Huiyong Sun
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , People's Republic of China
| | - Dan Li
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , People's Republic of China
| | - Mojie Duan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , China
| | - Tingjun Hou
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , People's Republic of China
| |
Collapse
|
50
|
Water Pharmacophore: Designing Ligands using Molecular Dynamics Simulations with Water. Sci Rep 2018; 8:10400. [PMID: 29991756 PMCID: PMC6039478 DOI: 10.1038/s41598-018-28546-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/19/2018] [Indexed: 12/24/2022] Open
Abstract
In this study, we demonstrate a method to construct a water-based pharmacophore model which can be utilized in the absence of known ligands. This method utilizes waters found in the binding pocket, sampled through molecular dynamics. Screening of compound databases against this water-based pharmacophore model reveals that this approach can successfully identify known binders to a target protein. The method was tested by enrichment studies of 7 therapeutically important targets and compared favourably to screening-by-docking with Glide. Our results suggest that even without experimentally known binders, pharmacophore models can be generated using molecular dynamics with waters and used for virtual screening.
Collapse
|