1
|
Yin A, Gui Y, Wan L, Cai Q, Luo Y, Wang JZ, Liu R, Ying C, Wang X, Yang F. p53 SUMOylation promotes neurogenesis defects in APP/PS1 mice. J Alzheimers Dis 2025:13872877251340432. [PMID: 40336408 DOI: 10.1177/13872877251340432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Backgroundp53 is a transcriptional factor that regulates numerous cellular processes, the stability and activity of p53 is essential to maintain its function. Post-translational modifications (PTMs), particularly SUMOylation, play a vital role in regulating p53 activity.ObjectiveTo investigate the neurogenesis related genes that downregulated by p53 SUMOylation in APP/PS1 mice, and the protected effect by overexpressing non-SUMOylated p53 (p53 K386R). Furthermore, to provide new clues for the mechanisms of Alzheimer's disease (AD).MethodsCo-immunoprecipitation was used to detect the p53 SUMOylation levels in neuro2a (N2a) cells and APP/PS1 mice overexpressing wild-type p53 (p53 WT) or p53 K386R. In addition, RNA sequencing (RNA-seq) was used to detect the p53 SUMOylation regulated genes. Then we used qPCR, western blot, and immunofluorescence to measure the expression of neuroglobin (ngb) and the effect of neurogenesis defects induced by p53 SUMOylation.ResultsWe verified that overexpression of p53 WT promoted p53 SUMOylation and p53 K386R decreased p53 SUMOylation in N2a cells and APP/PS1 mice. Ngb was related to neurogenesis which dramatically downregulated by p53 SUMOylation. In addition, we found p53 SUMOylation caused neuron reduction and impairment of neurogenesis.ConclusionsOur data support that p53 SUMOylation may lead to neurogenesis defects by downregulating ngb in AD, suggesting that inhibition of p53 SUMOylation may be served as a therapeutic strategy for preventing AD and provide a new target for future researches and interventions.
Collapse
Affiliation(s)
- Anqi Yin
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition & Food Hygiene and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yuran Gui
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, China
| | - Lu Wan
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinfeng Cai
- Department of Nutrition & Food Hygiene and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yong Luo
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, China
| | - Rong Liu
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenjiang Ying
- Department of Nutrition & Food Hygiene and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, China
| | - Fumin Yang
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Yoshitome Queiroz L, Nunes Mariot L, Sousa Soares E, Urach Stahler C, Griebner G, de Moraes Machado G, M Gissoni J, Betta Canever J, Sordi R, Cimarosti H. Cecal slurry-induced sepsis in mice impairs cognition and decreases SUMO-2/3 conjugation. Behav Brain Res 2025; 485:115544. [PMID: 40118347 DOI: 10.1016/j.bbr.2025.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/07/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025]
Abstract
Sepsis is characterized by multiple organ dysfunction, dysregulation of the response to the infection process, and a high mortality rate in intensive care units. In addition, individuals who overcome sepsis often manifest cognitive deficits associated with neuroinflammation resulting from the entry of pro-inflammatory cytokines into the brain. Post-translational protein modifications, such as SUMOylation, can regulate the expression of pro-inflammatory genes during sepsis. Since SUMO-2/3 can play a role in pathological conditions, our aim was to investigate a potential link between sepsis-induced cognitive decline and SUMOylation by this isoform. Firstly, the cecal slurry model was induced by intraperitoneally injecting male Swiss mice with different volumes of a cecal solution. Following assessment of body temperature, mass and septic scores, the groups that received 300 μL and 350 μL of the cecal solution were selected for the behavioural tests, as they presented signs of sepsis without excessive mortality. Surviving animals were evaluated for cognition/memory and anxious/depressive-like behaviours through the open-field, object recognition, Y-maze, and tail suspension tests. Subsequently, SUMO-2/3 conjugation was determined in samples from the hippocampus and prefrontal cortex by Western blotting. Mice in the septic groups showed decreased locomotor activity, anxious-and depressive-like behaviours, as well as impaired memory. These deficits were accompanied by a decrease in SUMO-2/3 conjugation in the hippocampus and prefrontal cortex at 24 h and 10 days after the induction of the cecal slurry model. Taken together, our findings suggest that SUMOylation is impaired in septic animals and this could be related to the behavioural deficits seen in the surviving mice.
Collapse
Affiliation(s)
- Letícia Yoshitome Queiroz
- Postgraduate Program of Pharmacology Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil; Postgraduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Luana Nunes Mariot
- Postgraduate Program of Pharmacology Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Ericks Sousa Soares
- Postgraduate Program of Pharmacology Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Carolina Urach Stahler
- Postgraduate Program of Pharmacology Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Gustavo Griebner
- Postgraduate Program of Pharmacology Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil; Postgraduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Gustavo de Moraes Machado
- Postgraduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - João M Gissoni
- Postgraduate Program of Pharmacology Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Jaquelini Betta Canever
- Postgraduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Regina Sordi
- Postgraduate Program of Pharmacology Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Helena Cimarosti
- Postgraduate Program of Pharmacology Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil; Postgraduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
3
|
Lu X, Lei Y, Xu Z, Cheng Z, Liu M, Tai Y, Han X, Hao Z, Li M, Zhang D, Yong H, Han J, Wang Z, Li WX, Weng J, Zhou Z, Li X. Natural variations in the promoter of ZmDeSI2 encoding a deSUMOylating isopeptidase controls kernel methionine content in maize. MOLECULAR PLANT 2025; 18:872-891. [PMID: 40269497 DOI: 10.1016/j.molp.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
Improving the methionine (Met) content in maize kernels is of key importance to the animal feed industry; however, the genetic and molecular mechanisms governing maize kernel Met content remain largely unexplored. In this study, we leveraged a panel consisting of 348 diverse inbred maize lines to explore the genetic and molecular mechanisms that control kernel Met levels. A genome-wide association study followed by transcriptomic analysis identified the deSUMOylating isopeptidase gene ZmDeSI2. Further biochemical experiments revealed that ZmDeSI2 directly reduces the SUMOylation and accumulation of the sulfite reductase ZmSIR, thereby repressing Met accumulation. Natural variants in the ZmDeSI2 promoter region were found to serve as key determinants of the expression of this gene, predominantly due to the absence or presence of a ZmWRKY105 transcription factor binding site. The elite ZmDeSI2Hap2 haplotype without this binding site in the ZmDeSI2 promoter was associated with a 1.36-fold increase in Met levels in the kernels of modified near-isogenic lines generated through marker-assisted breeding. Taken together, these results provide new insights into the molecular processes that control Met biosynthesis, highlighting an elite natural variant suitable for application in maize breeding for Met biofortification.
Collapse
Affiliation(s)
- Xin Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Lei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhennan Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zixiang Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxin Tai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohua Han
- Institute of Food Crops, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Zhuanfang Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingshun Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Degui Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongjun Yong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jienan Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenhua Wang
- Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wen-Xue Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianfeng Weng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Zhiqiang Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xinhai Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
4
|
Li Z, Koch KE, Thompson DT, Van der Heide DM, Chang J, Franke CM, Suraju MO, Beck AC, Lorenzen AW, White JR, Bartschat NI, Kulak MV, Meyerholz DK, Kenny C, Weigel RJ. Sumoylated Etv1 establishes mouse mammary cancer stem cells that support tumorigenesis by non-stem cancer cells. Dev Cell 2025:S1534-5807(25)00207-2. [PMID: 40315856 DOI: 10.1016/j.devcel.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/05/2024] [Accepted: 04/04/2025] [Indexed: 05/04/2025]
Abstract
The small ubiquitin-like modifier (SUMO) pathway is required for maintenance of cancer stem cells/tumor-initiating cells (CSCs/TICs), which drive tumorigenesis when transplanted into immunocompromised mice. We found that inhibition of the SUMO pathway blocked Neu-mediated mammary oncogenesis and inhibited the function of CSCs/TICs without effects on normal mammary stem cells. Transcriptomic analysis implicated SUMO-conjugated Etv1 as being critical for oncogenesis. After SUMO pathway inhibition, a SUMO-mimetic Etv1 protein, created by a fusion with SUMO1 or SUMO2, established a stem-like cell capable of tumorigenesis, whereas a SUMO-resistant Etv1 protein established a proliferative, non-tumorigenic cell. In mixing experiments, stem-like cells induced tumorigenesis by non-stem cells. We conclude that SUMO-conjugated Etv1 is necessary to maintain the CSC/TIC phenotype and that crosstalk between stem and non-stem cells is crucial for tumorigenesis. The findings demonstrate dynamic interactions between heterogeneous cell types to drive tumorigenesis, which has implications for future cancer therapeutic development.
Collapse
Affiliation(s)
- Zhijie Li
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Kelsey E Koch
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | | | - Jeremy Chang
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | | | - Anna C Beck
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | - Jeffrey R White
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | - Mikhail V Kulak
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Colin Kenny
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Ronald J Weigel
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
5
|
Tharuka MDN, Courelli AS, Chen Y. Immune regulation by the SUMO family. Nat Rev Immunol 2025:10.1038/s41577-025-01155-4. [PMID: 40108400 DOI: 10.1038/s41577-025-01155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
Post-translational protein modifications by the small ubiquitin-like modifier (SUMO) family have been shown to regulate immune cells in the context of infection, autoimmunity and, more recently, cancer. Recent clinical trials investigating sumoylation inhibition as a therapeutic approach for cancer have established that sumoylation has important immune modulatory effects. Sumoylation suppresses transcription factors in innate immune cells and in cytotoxic T cells through the direct modification of these factors, which leads to the recruitment of transcriptional repressor complexes containing histone deacetylases. By contrast, in regulatory T cells and T helper 17 cells, sumoylation of transcription factors can enhance transcriptional activity by recruiting transcriptional coactivators. Sumoylation is also involved in the repression of IFNB1 and endogenous retroviruses and is therefore important for regulating interferon expression. A central theme from literature is that the sumoylation of a group of proteins, instead of a single target, collectively contributes to the regulation of various immune processes. In this Review, we consider how these studies provide scientific basis for future exploration of SUMO-mediated immune modulation for the treatment of cancers and autoimmune disorders.
Collapse
Affiliation(s)
- Mohottige D Neranjan Tharuka
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Asimina S Courelli
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yuan Chen
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Connolly JG, Plant LD. SUMO Regulation of Ion Channels in Health and Disease. Physiology (Bethesda) 2025; 40:0. [PMID: 39499247 DOI: 10.1152/physiol.00034.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 11/07/2024] Open
Abstract
The small ubiquitin-like modifier (SUMO) protein pathway governs a panoply of vital biological processes including cell death, proliferation, differentiation, metabolism, and signal transduction by diversifying the functions, half-lives, and partnerships of target proteins in situ. More recently, SUMOylation has emerged as a key regulator of ion homeostasis and excitability across multiple tissues due to the regulation of a plethora of ion channels expressed in a range of tissue subtypes. Altogether, the balance of SUMOylation states among relevant ion channels can result in graded biophysical effects that tune excitability and contribute to a range of disease states including cardiac arrhythmia, epilepsy, pain transmission, and inflammation. Here, we consolidate these concepts by focusing on the role of ion channel SUMOylation in the central nervous system, peripheral nervous system, and cardiovascular system. In addition, we review what is known about the enigmatic factors that regulate the SUMO pathway and consider the emerging role of small molecule SUMO modulators as potential therapeutics in a range of diseases.
Collapse
Affiliation(s)
- Jenna G Connolly
- Department of Pharmaceutical Sciences and the Center for Drug Discovery, The School of Pharmacy and Pharmaceutical SciencesBouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States
| | - Leigh D Plant
- Department of Pharmaceutical Sciences and the Center for Drug Discovery, The School of Pharmacy and Pharmaceutical SciencesBouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States
| |
Collapse
|
7
|
Calderon-Rivera A, Gomez K, Rodríguez-Palma EJ, Khanna R. SUMOylation and DeSUMOylation: Tug of War of Pain Signaling. Mol Neurobiol 2025; 62:3305-3321. [PMID: 39276308 DOI: 10.1007/s12035-024-04478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024]
Abstract
SUMOylation is a post-translational modification that attaches a small ubiquitin-like modifier (SUMO) group to a target protein via SUMO ligases, while deSUMOylation refers to the removal of this SUMO group by sentrin-specific proteases (SENPs). Although the functions of these processes have been well described in the nucleus, the role of SUMOylation and deSUMOylation in regulating ion channels is emerging as a novel area of study. Despite this, their contributions to pain signaling remain less clear. Therefore, this review consolidates the current evidence on the link(s) between SUMOylation, deSUMOylation, and pain, with a specific focus on ion channels expressed in the sensory system. Additionally, we explore the role of SUMOylation in the expression and function of kinases, vesicle proteins, and transcription factors, which result in the modulation of certain ion channels contributing to pain. Altogether, this review aims to highlight the relationship between SUMOylation and deSUMOylation in the modulation of ion channels, ultimately exploring the potential therapeutic role of these processes in chronic pain.
Collapse
Affiliation(s)
- Aida Calderon-Rivera
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Kimberly Gomez
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Erick J Rodríguez-Palma
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Rajesh Khanna
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA.
- Pain and Addiction Therapeutics (PATH) Collaboratory, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
8
|
Raju C, Sankaranarayanan K. Insights on post-translational modifications in fatty liver and fibrosis progression. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167659. [PMID: 39788217 DOI: 10.1016/j.bbadis.2025.167659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease [MASLD] is a pervasive multifactorial health burden. Post-translational modifications [PTMs] of amino acid residues in protein domains demonstrate pivotal roles for imparting dynamic alterations in the cellular micro milieu. The crux of identifying novel druggable targets relies on comprehensively studying the etiology of metabolic disorders. This review article presents how different chemical moieties of various PTMs like phosphorylation, methylation, ubiquitination, glutathionylation, neddylation, acetylation, SUMOylation, lactylation, crotonylation, hydroxylation, glycosylation, citrullination, S-sulfhydration and succinylation presents the cause-effect contribution towards the MASLD spectra. Additionally, the therapeutic prospects in the management of liver steatosis and hepatic fibrosis via targeting PTMs and regulatory enzymes are also encapsulated. This review seeks to understand the function of protein modifications in progression and promote the markers discovery of diagnostic, prognostic and drug targets towards MASLD management which could also halt the progression of a catalogue of related diseases.
Collapse
Affiliation(s)
- Chithra Raju
- Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology Campus, Anna University, Chrompet, Chennai 600 044, Tamil Nadu, India
| | - Kavitha Sankaranarayanan
- Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology Campus, Anna University, Chrompet, Chennai 600 044, Tamil Nadu, India.
| |
Collapse
|
9
|
Gusar V, Kan N, Leonova A, Chagovets V, Tyutyunnik V, Khachatryan Z, Yarotskaya E, Sukhikh G. Non-Invasive Assessment of Neurogenesis Dysfunction in Fetuses with Early-Onset Growth Restriction Using Fetal Neuronal Exosomes Isolating from Maternal Blood: A Pilot Study. Int J Mol Sci 2025; 26:1497. [PMID: 40003962 PMCID: PMC11855093 DOI: 10.3390/ijms26041497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The vector of modern obstetrics is aimed at finding ways to predict various placenta-associated complications, including those associated with neuronal dysfunction on in fetal growth restriction (FGR). The technology of fetal neuronal exosome (FNE) isolation from the maternal bloodstream opens up unique opportunities for detecting early signs of fetal brain damage. Using this method, FNEs were isolated from the blood of pregnant women with and without early-onset FGR, and the expression of a number of proteins in their composition was assessed (Western blotting). Significant changes in the level of proteins involved in neurogenesis (pro-BDNF (brain-derived neurotrophic factor), pro-NGF (nerve growth factor), TAG1/Contactin2) and presynaptic transmission (Synapsin 1, Synaptophysin) were revealed. The preliminary data on the expression of FNE proteins that perform post-translational modifications-sumoylation (SUMO 1, UBC9) and neddylation (NEDD8, UBC12)-were obtained. A relationship was established between altered protein expression and neonatal outcomes in newborns with growth restriction. Our study opens up new possibilities for non-invasive prenatal monitoring of fetal neurodevelopment disorders and possibilities of their correction in placenta-associated diseases.
Collapse
Affiliation(s)
- Vladislava Gusar
- Laboratory of Applied Transcriptomics, Federal State Budget Institution “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” of the Ministry of Health of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia
| | - Natalia Kan
- Federal State Budget Institution “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” of the Ministry of Health of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia; (N.K.); (E.Y.); (G.S.)
| | - Anastasia Leonova
- Department of Molecular Diagnostic Methods and Personalized Medicine, Federal State Budget Institution “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” of the Ministry of Health of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia;
| | - Vitaliy Chagovets
- Laboratory of Metabolomics and Bioinformatics, Federal State Budget Institution “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” of the Ministry of Health of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia;
| | - Victor Tyutyunnik
- Center for Scientific and Clinical Research, Federal State Budget Institution “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” of the Ministry of Health of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia;
| | - Zarine Khachatryan
- JSC “European Medical Center”, 35, Shchepkina Street, 129090 Moscow, Russia;
| | - Ekaterina Yarotskaya
- Federal State Budget Institution “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” of the Ministry of Health of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia; (N.K.); (E.Y.); (G.S.)
| | - Gennadiy Sukhikh
- Federal State Budget Institution “National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov” of the Ministry of Health of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia; (N.K.); (E.Y.); (G.S.)
| |
Collapse
|
10
|
Zhu G, Tong N, Zhu Y, Wang L, Wang Q. The crosstalk between SUMOylation and immune system in host-pathogen interactions. Crit Rev Microbiol 2025; 51:164-186. [PMID: 38619159 DOI: 10.1080/1040841x.2024.2339259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
Pathogens can not only cause infectious diseases, immune system diseases, and chronic diseases, but also serve as potential triggers or initiators for certain tumors. They directly or indirectly damage human health and are one of the leading causes of global deaths. Small ubiquitin-like modifier (SUMO) modification, a type of protein post-translational modification (PTM) that occurs when SUMO groups bond covalently to particular lysine residues on substrate proteins, plays a crucial role in both innate and adaptive immunologic responses, as well as pathogen-host immune system crosstalk. SUMOylation participates in the host's defense against pathogens by regulating immune responses, while numerically vast and taxonomically diverse pathogens have evolved to exploit the cellular SUMO modification system to break through innate defenses. Here, we describe the characteristics and multiple functions of SUMOylation as a pivotal PTM mechanism, the tactics employed by various pathogens to counteract the immune system through targeting host SUMOylation, and the character of the SUMOylation system in the fight between pathogens and the host immune system. We have also included a summary of the potential anti-pathogen SUMO enzyme inhibitors. This review serves as a reference for basic research and clinical practice in the diagnosis, prognosis, and treatment of pathogenic microorganism-caused disorders.
Collapse
Affiliation(s)
- Gangli Zhu
- Guangdong Province Solid Waste Recycling and Heavy Metal Pollution Control Engineering Technology Research Center, Guangdong Polytechnic of Environment Protection Engineering, Foshan, Guangdong, China
| | - Ni Tong
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Yipeng Zhu
- Guagnzhou NO.6 Middle school, Guangzhou, Guangdong, China
| | - Lize Wang
- General Department, Institute of Software Chinese Academy of Sciences, Beijing, China
| | - Qirui Wang
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Chen Y, Li J, Fu J, Xiao L, Chu J, Qin W, Xiao J, Feng H. SENP2 negatively regulates RIG-I/MDA5 mediated innate immunity in black carp. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110097. [PMID: 39724728 DOI: 10.1016/j.fsi.2024.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Mammalian SUMO specific peptidase 2 (SENP2) plays vital roles in a variety of biological procedures including the immune response. However, the effects of teleost SENP2 are still mostly unexplored. In this study, the SENP2 of black carp (Mylopharyngodon piceus) was cloned and characterized. The open reading frame of black carp SENP2 (bcSENP2) consists of 1800 nucleotides, which encode 600 amino acids. The reporter assay results showed that over-expression of bcSENP2 alone had a weak effect on interferon (IFN) promoter transcription activity, whereas it significantly reduced bcMDA5/bcRIG-I mediated IFN promoter transcription activity. The interaction between bcSENP2 and bcMDA5 or bcRIG-I was detected by immunoprecipitation experiments. The plaque assay and qPCR results indicated that bcMDA5 or bcRIG-I mediated antiviral capacity was attenuated by bcSENP2, while knockdown of bcSENP2 led to enhanced antiviral resistance to SVCV in host cells. In addition, the expression level of bcMDA5/bcRIG-I protein was attenuated by co-expressed bcSENP2 and MG132 treatment rescued this attenuating effect. All of these data support the conclusion that bcSENP2 inhibits bcMDA5/bcRIG-I mediated antiviral signaling by enhancing ubiquitin-proteasome mediated degradation of bcMDA5/bcRIG-I in black carp.
Collapse
Affiliation(s)
- Yixia Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Li
- Key Laboratory of Hunan Province for Study and Utilization of Ethnic Medicinal Plant Resources, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Jiaxin Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Lili Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jixiang Chu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Wei Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
12
|
Khasanshina ZR, Kornakov IA, Buslaeva EA, Kazakova AV, Ishchuk SA, Shmurak VI, Saparova VB, Latypov VF, Drai RV. Development of therapeutic peptide producers based on Escherichia coli BL21 and their cultivation technology. DRUG DEVELOPMENT & REGISTRATION 2025. [DOI: 10.33380/2305-2066-2025-14-1-1825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Introduction. Peptides with a molecular weight of less than 5 kDa have been used in medicine and biotechnology over the past decade for the treatment of various diseases. However, chemical synthesis peptide has several disadvantages, including low yield, reduced efficiency, and high costs. An alternative approach to peptide production is the use of the Escherichia coli expression system. The development of effective peptide synthesis technology remains a critical task because of the low productivity of recombinant strains.Aim. Developing highly efficient strains of Escherichia coli BL21 expressing therapeutic peptides with a molecular weight of less than 5 kDa in E. coli and their cultivation technology.Materials and methods. Genetic constructs were obtained using the restriction-ligase method, and their authenticity was confirmed by Sanger sequencing. Cultivation technology was developed using the Design of Experiments approach. The cultivation condition was validated in the Biostat B bioreactor. Hybrid proteins were purified by metal-chelate chromatography, followed by hydrolysis ULP proteas to obtain the target peptides. The quantitative content of the target protein was determined by capillary electrophoresis, and the authenticity of the protein was confirmed by HPLC-MS and ELISA.Results and discussion. Highly efficient peptide-producing strains were developed. Cultivation conditions were optimized: рН 7.5 ± 0.5, cultivation temperature 37 °C, induction optical density 28 ± 2, IPTG concentration 0.05 мМ. The productivity of the producer strains was up to 4.82 ± 0.05 g/L. Furthermore, samples of the target peptides were isolated and purified.Conclusion. The productivity of peptides in this study were significantly higher than in previous research. The presented strategy for strain development, cultivation and purification technology can be used production of therapeutic peptides with diverse physical chemicals characteristics in the future.
Collapse
|
13
|
Baytshtok V, DiMattia MA, Lima CD. Structural basis for a nucleoporin exportin complex between RanBP2, SUMO1-RanGAP1, the E2 Ubc9, Crm1 and the Ran GTPase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.04.616749. [PMID: 39763778 PMCID: PMC11703149 DOI: 10.1101/2024.10.04.616749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
The human nucleoporin RanBP2/Nup358 interacts with SUMO1-modified RanGAP1 and the SUMO E2 Ubc9 at the nuclear pore complex (NPC) to promote export and disassembly of exportin Crm1/Ran(GTP)/cargo complexes. In mitosis, RanBP2/SUMO1-RanGAP1/Ubc9 remains intact after NPC disassembly and is recruited to kinetochores and mitotic spindles by Crm1 where it contributes to mitotic progression. Interestingly, RanBP2 binds SUMO1-RanGAP1/Ubc9 via motifs that also catalyze SUMO E3 ligase activity. Here, we resolve cryo-EM structures of a RanBP2 C-terminal fragment in complex with Crm1, SUMO1-RanGAP1/Ubc9, and two molecules of Ran(GTP). These structures reveal several unanticipated interactions with Crm1 including a nuclear export signal (NES) for RanGAP1, the deletion of which mislocalizes RanGAP1 and the Ran GTPase in cells. Our structural and biochemical results support models in which RanBP2 E3 ligase activity is dependent on Crm1, the RanGAP1 NES and Ran GTPase cycling.
Collapse
Affiliation(s)
- Vladimir Baytshtok
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
- These authors contributed equally
| | - Michael A DiMattia
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
- Current address: Schrödinger New York, 1540 Broadway, 24th Floor, New York, NY 10036, USA
- These authors contributed equally
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
- Howard Hughes Medical Institute, 1275 York Avenue, New York, NY 10065
| |
Collapse
|
14
|
Arora S, Ainavarapu SRK. Probing Aromatic Side Chains Reveals the Site-Specific Melting in the SUMO1 Molten Globule. Biochemistry 2024; 63:3090-3099. [PMID: 39540835 DOI: 10.1021/acs.biochem.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The conventional idea that a well-defined protein structure governs its functions is being challenged by the evolving significance of conformational flexibility and disorder in influencing protein activity. Here, we focus on the Small Ubiquitin-like MOdifier 1 (SUMO1) protein, a post-translational modifier, which binds various target proteins during the process of SUMOylation. We present evidence supporting the presence of both folded and "ordered" molten globule (MG) states in SUMO1 under physiological conditions. We investigate the MG state using a combination of near-UV and far-UV circular dichroism (CD) experiments. Moreover, we dissect the information from the near-UV CD data to gain specific insights about the MG intermediate. This is achieved by mutating specific aromatic amino acids, particularly creating a single-tyrosine mutant S1Y51 (by introducing Y21F and Y91F mutations) and a tryptophan mutant S1F66W. Spectroscopic studies of the mutants as a function of temperature revealed multiple insights. The transition from the folded to the MG state involves a site-specific loss of tertiary packing near Y51 but the region surrounding F66 retained most of its tertiary contacts, suggesting an ordered MG structure. We further demonstrate the increased solvent exposure of Y51 in the MG state by using time-resolved fluorescence and steady-state quenching experiments. The observed conformational flexibility and solvent accessibility, particularly around Y51 that is known to be involved in binding the cognate ligands such as PIASX and its peptide analogues, have biological and functional implications in mediating protein-protein interactions during the SUMOylation process.
Collapse
Affiliation(s)
- Simran Arora
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Sri Rama Koti Ainavarapu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
15
|
Shao Z, Liu S, Sun W, Zhuang X, Yin S, Cheng J, Xia X, Liao Y, Liu J, Huang H. SENP3 mediates deSUMOylation of SIX1 to promote prostate cancer proliferation and migration. Cell Mol Biol Lett 2024; 29:146. [PMID: 39623295 PMCID: PMC11613746 DOI: 10.1186/s11658-024-00665-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Sentrin/SUMO-specific protease 3 (SENP3) is essential to regulate protein stability and function in normal and cancer cells. Nevertheless, its role and action mechanisms in prostate cancer (PCa) remain elusive. Thus, clarification of SENP3's involvement and the SUMOylation process in PCa is pivotal for discovering potential targets and understanding SUMOylation dynamics. METHODS Cell viability, EdU staining, live cell imaging, and cell cycle assays were used to determine proliferation of PCa cells. Transwell and wound-healing assays were used to detect migration of PCa cells. The interaction between SENP3 and SIX1 was determined by co-immunoprecipitation, western blotting, and immunofluorescence assays. Xenograft models established on NOD-SCID mice were used to evaluate in vivo effects post SENP3 knockdown. Immunohistochemistry was performed to investigate the expression of SENP3 in PCa tissues. RESULTS This study found that SENP3 is highly expressed in PCa cell lines and tissues from PCa patients. Overexpressed SENP3 is associated with metastatic malignancy in PCa. Various in vivo and in vitro experiments confirmed that SENP3 promotes the proliferation and migration of PCa. In addition, SENP3 interacts with the SD domain of SIX1 and mediates its deSUMOylation and protein stability. Lys154 (K154) is required for the SUMOylation of SIX1. More importantly, SENP3 promotes the malignancy of PCa through the regulation of SIX1. CONCLUSIONS We unravel the significant role of SENP3 in regulating protein stability of SIX1 and progression of PCa, which may deepen our understanding of the SUMOylation modification and provide a promising target for management of metastatic PCa.
Collapse
Affiliation(s)
- Zhenlong Shao
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Shutong Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Wenshuang Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Xuefen Zhuang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Shusha Yin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Ji Cheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Xiaohong Xia
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China
| | - Yuning Liao
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China.
| | - Jinbao Liu
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China.
| | - Hongbiao Huang
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China.
| |
Collapse
|
16
|
Yu HX, Cao YJ, Yang YB, Shan JX, Ye WW, Dong NQ, Kan Y, Zhao HY, Lu ZQ, Guo SQ, Lei JJ, Liao B, Lin HX. A TT1-SCE1 module integrates ubiquitination and SUMOylation to regulate heat tolerance in rice. MOLECULAR PLANT 2024; 17:1899-1918. [PMID: 39552084 DOI: 10.1016/j.molp.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/29/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Heat stress poses a significant threat to grain yield. As an α2 subunit of the 26S proteasome, TT1 has been shown to act as a critical regulator of rice heat tolerance. However, the heat tolerance mechanisms mediated by TT1 remain elusive. In this study, we unveiled that small ubiquitin-like modifier (SUMO)-conjugating enzyme 1 (SCE1), which interacts with TT1 and acts as a downstream component of TT1, is engaged in TT1-mediated 26S proteasome degradation. We showed that SCE1 functions as a negative regulator of heat tolerance in rice, which is associated with its ubiquitination modification. Furthermore, we observed that small heat-shock proteins (sHSPs) such as Hsp24.1 and Hsp40 can undergo SUMOylation mediated by SCE1, leading to increased accumulation of sHSPs in the absence of SCE1. Reducing protein levels of SCE1 significantly enhanced grain yield under high-temperature stress by improving seed-setting rate and rice grain filling capacity. Taken together, these results uncover the critical role of SCE1 in the TT1-mediated heat tolerance pathway by regulating the abundance of sHSPs and SUMOylation, and ultimately modulating rice heat tolerance. These findings underscore the great potential of the TT1-SCE1 module in improving the heat tolerance of crops.
Collapse
Affiliation(s)
- Hong-Xiao Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Jie Cao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Bing Yang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wang-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Huai-Yu Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Qi Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuang-Qin Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jie-Jie Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ben Liao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
17
|
Gobbini RP, Velardo VG, Sokn C, Liberman AC, Arzt E. SUMO regulation of FKBP51 activity and the stress response. J Cell Biochem 2024; 125:e30411. [PMID: 37098699 DOI: 10.1002/jcb.30411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/27/2023]
Abstract
Glucocorticoids (GCs) actions are mostly mediated by the GC receptor (GR), a member of the nuclear receptor superfamily. Alterations of the GR activity have been associated to different diseases including mood disorders. FKBP51 is a GR chaperone that has gained much attention because it is a strong inhibitor of GR activity. FKBP51 exerts effects on many stress-related pathways and may be an important mediator of emotional behavior. Key proteins involved in the regulation of the stress response and antidepressant action are regulated by SUMOylation, a post-translational modification that has an important role in the regulation of neuronal physiology and disease. In this review, we focus on the role of SUMO-conjugation as a regulator of this pathway.
Collapse
Affiliation(s)
- Romina P Gobbini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
| | - Vanina Giselle Velardo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
| | - Clara Sokn
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
| | - Ana C Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
18
|
Li L, Gao PP, Chen TT, Li N, Zhang HJ, Li MQ, Chen YN, Wei W, Wang H, Sun WY. SUMO: A new perspective to decipher fibrosis. Acta Physiol (Oxf) 2024; 240:e14240. [PMID: 39404508 DOI: 10.1111/apha.14240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 11/10/2024]
Abstract
Fibrosis is characterized by excessive extracellular matrix (ECM) deposition resulting from dysregulated wound healing and connective tissue repair mechanisms. Excessive accumulation of ECM leads to fibrous tissue formation, impairing organ function and driving the progression of various fibrotic diseases. Recently, the role of small ubiquitin-like modifiers (SUMO) in fibrotic diseases has attracted significant attention. SUMO-mediated SUMOylation, a highly conserved posttranslational modification, participates in a variety of biological processes, including nuclear-cytosolic transport, cell cycle progression, DNA damage repair, and cellular metabolism. Conversely, SUMO-specific proteases cleave the isopeptide bond of SUMO conjugates, thereby regulating the deSUMOylation process. Mounting evidence indicates that SUMOylation and deSUMOylation regulate the functions of several proteins, such as Smad3, NF-κB, and promyelocytic leukemia protein, which are implicated in fibrotic diseases like liver fibrosis, myocardial fibrosis, and pulmonary fibrosis. This review summarizes the role of SUMO in fibrosis-related pathways and explores its pathological relevance in various fibrotic diseases. All evidence suggest that the SUMO pathway is important targets for the development of treatments for fibrotic diseases.
Collapse
Affiliation(s)
- Ling Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Ping-Ping Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Ting-Ting Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Nan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Hui-Juan Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Meng-Qi Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Ya-Ning Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Hua Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| |
Collapse
|
19
|
Zhu Q, Zhou H, Xie F. Regulation of ovarian cancer by protein post-translational modifications. Front Oncol 2024; 14:1437953. [PMID: 39678497 PMCID: PMC11638062 DOI: 10.3389/fonc.2024.1437953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
Ovarian cancer is one of the predominant gynecologic malignancies worldwide, ranking as the fifth leading cause of cancer-induced mortality among women globally. Post-translational modifications (PTMs) refer to the enzyme-catalyzed attachment of functional groups to proteins, thereby inducing structural and functional alterations. Recent evidence suggests that PTMs play multifaceted roles in the pathogenesis of ovarian cancer, influencing processes such as cell cycle, metabolism reprogramming, chemoresistance, and immune responses against cancer. Accordingly, a comprehensive understanding of the diverse PTMs in ovarian cancer is imperative for decoding the complex molecular mechanisms that drive cancer progression. This review discusses the latest developments in the study of protein PTMs in ovarian cancer and introduces pharmacological approaches that target these modifications as therapeutic strategies.
Collapse
Affiliation(s)
- Qiugang Zhu
- Department of Laboratory Medicine, Shangyu People’s Hospital of Shaoxing, Shaoxing University, Shaoxing, China
| | - Huimin Zhou
- Department of Laboratory Medicine, Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Feiting Xie
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Kobayashi ES, Lotan NS, Schejter YD, Makowski C, Kraus V, Ramchandar N, Meiner V, Thiffault I, Farrow E, Cakici J, Kingsmore S, Wagner M, Rieber N, Bainbridge M. Biallelic Loss of Function Variants in SENP7 Cause Immunodeficiency with Neurologic and Muscular Phenotypes. J Pediatr 2024; 274:114180. [PMID: 38972567 PMCID: PMC11556246 DOI: 10.1016/j.jpeds.2024.114180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/30/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
To evaluate a novel candidate disease gene, we engaged international collaborators and identified rare, biallelic, specifically homozygous, loss of function variants in SENP7 in 4 children from 3 unrelated families presenting with neurodevelopmental abnormalities, dysmorphism, and immunodeficiency. Their clinical presentations were characterized by hypogammaglobulinemia, intermittent neutropenia, and ultimately death in infancy for all 4 patients. SENP7 is a sentrin-specific protease involved in posttranslational modification of proteins essential for cell regulation, via a process referred to as deSUMOylation. We propose that deficiency of deSUMOylation may represent a novel mechanism of primary immunodeficiency.
Collapse
Affiliation(s)
- Erica Sanford Kobayashi
- Rady Children's Institute for Genomic Medicine, San Diego, CA; Division of Critical Care, Department of Pediatrics, Children's Hospital Orange County, Orange, CA
| | - Nava Shaul Lotan
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Yael Dinur Schejter
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; The Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel
| | - Christine Makowski
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Munich University Hospital, Munich, Germany; Technical University of Munich, Munich, Germany; Department of Pediatrics, TUM School of Medicine, Munich, Germany
| | - Verena Kraus
- Technical University of Munich, Munich, Germany; Department of Pediatrics, TUM School of Medicine, Munich, Germany
| | - Nanda Ramchandar
- Division of Infectious Disease, Department of Pediatrics, University of California at San Diego, La Jolla, CA
| | - Vardiella Meiner
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | | | - Emily Farrow
- Children's Mercy Research Institute, Kansas City, MO
| | - Julie Cakici
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, San Diego, CA
| | | | - Matias Wagner
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Munich University Hospital, Munich, Germany; Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nikolaus Rieber
- Technical University of Munich, Munich, Germany; Department of Pediatrics, TUM School of Medicine, Munich, Germany
| | | |
Collapse
|
21
|
Chang YC, Tsai YC, Chang EC, Hsu YC, Huang YR, Lee YH, Tsai YS, Chen YQ, Lee YC, Liao YC, Kuo JC, Su MT, Yang UC, Chern Y, Cheng TH. PIAS1 S510G variant acts as a genetic modifier of spinocerebellar ataxia type 3 by selectively impairing mutant ataxin-3 proteostasis. Int J Biochem Cell Biol 2024; 176:106662. [PMID: 39293559 DOI: 10.1016/j.biocel.2024.106662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Dysregulated protein homeostasis, characterized by abnormal protein accumulation and aggregation, is a key contributor to the progression of neurodegenerative disorders such as Huntington's disease and spinocerebellar ataxia type 3 (SCA3). Previous studies have identified PIAS1 gene variants in patients with late-onset SCA3 and Huntington's disease. This study aims to elucidate the role of PIAS1 and its S510G variant in modulating the pathogenic mechanisms of SCA3. Through in vitro biochemical analyses and in vivo assays, we demonstrate that PIAS1 stabilizes both wild-type and mutant ataxin-3 (ATXN3). The PIAS1 S510G variant, however, selectively reduces the stability and SUMOylation of mutant ATXN3, thereby decreasing its aggregation and toxicity while maintaining the stability of wild-type ATXN3. This effect is mediated by a weakened interaction with the SUMO-conjugating enzyme UBC9 in the presence of mutant ATXN3. In Drosophila models, downregulation of dPIAS1 resulted in reduced levels of mutant ATXN3 and alleviated associated phenotypes, including retinal degeneration and motor dysfunction. Our findings suggest that the PIAS1 S510G variant acts as a genetic modifier of SCA3, highlighting the potential of targeting SUMOylation as a therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Yi-Ching Chang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yao-Chou Tsai
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - En-Cheng Chang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yu-Chien Hsu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yi-Ru Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yan-Hua Lee
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 11529, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Shuen Tsai
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yin-Quan Chen
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11221, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11221, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Ming-Tsan Su
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ueng-Cheng Yang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yijuang Chern
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 11529, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Hao Cheng
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.
| |
Collapse
|
22
|
Lin YW, Lin FY, Lai ZH, Tsai CS, Tsai YT, Huang YS, Liu CW. Porphyromonas gingivalis GroEL accelerates abdominal aortic aneurysm formation by matrix metalloproteinase-2 SUMOylation in vascular smooth muscle cells: A novel finding for the activation of MMP-2. Mol Oral Microbiol 2024. [PMID: 39449503 DOI: 10.1111/omi.12487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Infection is a known cause of abdominal aortic aneurysm (AAA), and matrix metalloproteases-2 (MMP-2) secreted by vascular smooth muscle cells (SMCs) plays a key role in the structural disruption of the middle layer of the arteries during AAA progression. The periodontal pathogen Porphyromonas gingivalis is highly associated with the progression of periodontitis. GroEL protein of periodontal pathogens is an important virulence factor that can invade the body through either the bloodstream or digestive tract and is associated with numerous systemic diseases. Although P. gingivalis aggravates AAA by increasing the expression of MMP-2 in animal studies, the molecular mechanism through which P. gingivalis regulates the expression of MMP-2 is still unknown and requires further investigation. In this study, we first confirmed through animal experiments that P. gingivalis GroEL promotes MMP-2 secretion from vascular SMCs, thereby aggravating Ang II-induced aortic remodeling and AAA formation. In addition, rat vascular SMCs and A7r5 cells were used to investigate the underlying mechanisms in vitro. The results demonstrated that GroEL can promote the interaction between the K639 site of MMP-2 and SUMO-1, leading to MMP-2 SUMOylation, which inhibits the reoccurrence of non-K639-mediated monoubiquitylation. Hence, the monoubiquitylation-mediated lysosomal degradation of MMP-2 is inhibited, consequently promoting MMP-2 stability and production. SUMOylation may facilitate intra-endoplasmic reticulum (ER) and Golgi trafficking of MMP-2, thereby enhancing its transport capacity. In conclusion, this is the first report demonstrating the presence of a novel posttranslational modification, SUMOylation, in the MMP family, suggesting that P. gingivalis GroEL may exacerbate AAA formation by increasing MMP-2 production through SUMOylation in vascular SMCs. This study also provides a novel perspective on the role of SUMOylation in MMP-2-induced systemic diseases.
Collapse
Affiliation(s)
- Yi-Wen Lin
- Institute of Oral Biology, National Yang Ming Chiao Tung University (Taipei Campus), Taipei, Taiwan
| | - Feng-Yen Lin
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ze-Hao Lai
- Institute of Oral Biology, National Yang Ming Chiao Tung University (Taipei Campus), Taipei, Taiwan
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ting Tsai
- Division of Cardiovascular Surgery, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Yen-Sung Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chen-Wei Liu
- Department of Basic Medical Science, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| |
Collapse
|
23
|
Jiaerken B, Liu W, Zheng J, Qu W, Wu Q, Ai Z. The SUMO Family: Mechanisms and Implications in Thyroid Cancer Pathogenesis and Therapy. Biomedicines 2024; 12:2408. [PMID: 39457720 PMCID: PMC11505470 DOI: 10.3390/biomedicines12102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Background: Small ubiquitin-like modifiers (SUMOs) are pivotal in post-translational modifications, influencing various cellular processes, such as protein localization, stability, and genome integrity. (2) Methods: This review explores the SUMO family, including its isoforms and catalytic cycle, highlighting their significance in regulating key biological functions in thyroid cancer. We discuss the multifaceted roles of SUMOylation in DNA repair mechanisms, protein stability, and the modulation of receptor activities, particularly in the context of thyroid cancer. (3) Results: The aberrant SUMOylation machinery contributes to tumorigenesis through altered gene expression and immune evasion mechanisms. Furthermore, we examine the therapeutic potential of targeting SUMOylation pathways in thyroid cancer treatment, emphasizing the need for further research to develop effective SUMOylation inhibitors. (4) Conclusions: By understanding the intricate roles of SUMOylation in cancer biology, we can pave the way for innovative therapeutic strategies to improve outcomes for patients with advanced tumors.
Collapse
Affiliation(s)
- Bahejuan Jiaerken
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Liu
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiaojiao Zheng
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weifeng Qu
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiao Wu
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhilong Ai
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
24
|
Zhang M, Tao M, Cao Q, Cai Y, Ding L, Li Z, Chen W, Gao P, Liu L. Identification of crucial genes and possible molecular pathways associated with active vitamin D intervention in diabetic kidney disease. Heliyon 2024; 10:e38334. [PMID: 39398062 PMCID: PMC11470520 DOI: 10.1016/j.heliyon.2024.e38334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Background A significant cause of advanced renal failure is diabetic nephropathy (DKD), with few treatment options available. Calcitriol shows potential in addressing fibrosis related to DKD, though its molecular mechanisms remain poorly understood. This research seeks to pinpoint the crucial genes and pathways influenced by calcitriol within the scope of DKD-related fibrosis. Methods Single-cell gene expression profiling of calcitriol treated DKD rat kidney tissue and screening of fibrosis-associated cell subsets. Mendelian randomization and enrichment analyses (CIBERSORT, GSVA, GSEA, Motif Enrichment) were used to explore gene-immune cell interactions and signaling pathways. Key findings were validated using independent datasets and protein expression data from the Human Protein Atlas. Results Calcitriol treatment reduced proliferative cell populations and highlighted the FoxO signaling pathway's role in DKD. SUMO3 and CD74 were identified as key markers linked to immune infiltration and renal function. These genes were significantly associated with creatinine levels and eGFR, indicating their potential role in DKD progression. Conclusion Our results suggest that calcitriol modulates DKD fibrosis through the FoxO pathway, with SUMO3 and CD74 serving as potential biomarkers for kidney protection. These results provide fresh insights into strategies for treating DKD.
Collapse
Affiliation(s)
- MingXia Zhang
- Department of Nephrology, Minda Hospital Affiliated to Hubei Minzu University, Hubei Clinical Research Center for Kidney Disease, Enshi, China
| | - Mi Tao
- Department of Nephrology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Quan Cao
- Department of Nephrology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yousheng Cai
- Department of Nephrology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lin Ding
- Department of Nephrology, Minda Hospital Affiliated to Hubei Minzu University, Hubei Clinical Research Center for Kidney Disease, Enshi, China
| | - Zhenni Li
- Department of Nephrology, Minda Hospital Affiliated to Hubei Minzu University, Hubei Clinical Research Center for Kidney Disease, Enshi, China
| | - Wen Chen
- Department of Nephrology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Ping Gao
- Department of Nephrology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Lunzhi Liu
- Department of Nephrology, Minda Hospital Affiliated to Hubei Minzu University, Hubei Clinical Research Center for Kidney Disease, Enshi, China
| |
Collapse
|
25
|
Ma Z, Li Q, Wang W, Deng Z. Transcription factor E2F4 facilitates SUMOylation to promote HCC progression through interaction with LIN9. Int J Oncol 2024; 65:98. [PMID: 39239750 PMCID: PMC11387118 DOI: 10.3892/ijo.2024.5686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/14/2024] [Indexed: 09/07/2024] Open
Abstract
SUMOylation plays a crucial role in numerous cellular biological and pathophysiological processes associated with human disease; however, the mechanisms regulating the genes involved in SUMOylation remain unclear. In the present study, E2F transcription factor 4 (E2F4) was identified as an E2F member related to hepatocellular carcinoma (HCC) progression by public database analysis. It was found that E2F4 promoted the proliferation and invasiveness of HCC cells via SUMOylation using Soft agar and Transwell migration assays. Mechanistically, it was demonstrated that E2F4 upregulated the transcript and protein expression levels of baculoviral IAP repeat containing 5, cell division cycle associated 8 and DNA topoisomerase II α using western blotting. Furthermore, the interaction between E2F4 with lin‑9 DREAM multi‑vulva class B core complex component (LIN9) was explored by co‑immunoprecipitation, immunofluorescence co‑localization and bimolecular fluorescence complementation assays. Moreover, it was demonstrated that E2F4 promoted the progression of HCC cells via LIN9. Rescue experiments revealed that LIN9 facilitated the SUMOylation and proliferation of HCC cells, which was prevented by knocking down E2F4 expression. In conclusion, the findings of the present study indicated that E2F4 plays a major role in the proliferation of HCC cells and may be a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Zhenwei Ma
- Department of Hepatobiliary and Pancreatic Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430064, P.R. China
| | - Qilan Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wenjing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhengdong Deng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
26
|
Ji YW, Wen XY, Tang HP, Jin ZS, Su WT, Zhou L, Xia ZY, Xia ZY, Lei SQ. DJ-1: Potential target for treatment of myocardial ischemia-reperfusion injury. Biomed Pharmacother 2024; 179:117383. [PMID: 39232383 DOI: 10.1016/j.biopha.2024.117383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Ischemic heart disease (IHD) is a significant global health concern, resulting in high rates of mortality and disability among patients. Although coronary blood flow reperfusion is a key treatment for IHD, it often leads to acute myocardial ischemia-reperfusion injury (IRI). Current intervention strategies have limitations in providing adequate protection for the ischemic myocardium. DJ-1, originally known as a Parkinson's disease related protein, is a highly conserved cytoprotective protein. It is involved in enhancing mitochondrial function, scavenging reactive oxygen species (ROS), regulating autophagy, inhibiting apoptosis, modulating anaerobic metabolism, and exerting anti-inflammatory effects. DJ-1 is also required for protective strategies, such as ischemic preconditioning, ischemic postconditioning, remote ischemic preconditioning and pharmacological conditioning. Therefore, DJ-1 emerges as a potential target for the treatment of myocardial IRI. Our comprehensive review delves into its protective mechanisms in myocardial IRI and the structural foundations underlying its functions.
Collapse
Affiliation(s)
- Yan-Wei Ji
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin-Yu Wen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - He-Peng Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen-Shuai Jin
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wa-Ting Su
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zheng-Yuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
27
|
Cheng Y, Hou W, Fang H, Yan Y, Lu Y, Meng T, Ma C, Liu Q, Zhou Z, Li H, Li H, Xiao N. SENP2-NDR2-p21 axis modulates lung cancer cell growth. Eur J Pharmacol 2024; 978:176761. [PMID: 38908669 DOI: 10.1016/j.ejphar.2024.176761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Sentrin/small ubiquitin-like modifier (SUMO)-specific proteases (SENPs) perform pivotal roles in SUMO maturation and recycling, which modulate the balance of SUMOylation/de-SUMOylation and spatiotemporal functions of SUMOylation targets. The malfunction of SENPs often results in cellular dysfunction and various diseases. However, studies rarely investigated the correlation between SENP2 and lung cancer. This study revealed that SENP2 is a required contributor to lung cancer-cell growth and targets nuclear Dbf2-related 2 (NDR2, also known as serine/threonine kinase 38L or STK38L) for de-SUMOylation, which improves NDR2 kinase activity. This condition leads to the instability of downstream target p21 in accelerating the G1/S cell cycle transition and suggests SENP2 as a promising therapeutic target for lung cancer in the future. Specifically, astragaloside IV, an active ingredient of Jinfukang Oral Liquid (JOL, a clinical combination antilung cancer drug approved by the National Food and Drug Administration (FDA) of China), can repress lung cancer-cell growth via the SENP2-NDR2-p21 axis, which provides new insights into the molecular mechanism of JOL for lung cancer treatment.
Collapse
Affiliation(s)
- Yixuan Cheng
- Institute of Traditional Chinese Medicine Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Longhua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanxin Hou
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Houshun Fang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yinjie Yan
- Department of Medical Affairs, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Lu
- Longhua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian Meng
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunshuang Ma
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qinghai Liu
- Department of Performance Management, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiyi Zhou
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Oncology, Tianshan Hospital of Traditional Chinese Medicine in Changning District, Shanghai, China
| | - Hui Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fujian, China.
| | - Hegen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ning Xiao
- Institute of Traditional Chinese Medicine Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
28
|
Joo H, Baek W, Lim CW, Lee SC. Pepper SUMO protease CaDeSI2 positively modulates the drought responses via deSUMOylation of clade A PP2C CaAITP1. THE NEW PHYTOLOGIST 2024; 243:1361-1373. [PMID: 38934066 DOI: 10.1111/nph.19920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Posttranslational modification of multiple ABA signaling components is an essential process for the adaptation and survival of plants under stress conditions. In our previous study, we established that the pepper group A PP2C protein CaAITP1, one of the core components of ABA signaling, undergoes ubiquitination mediated by the RING-type E3 ligase CaAIRE1. In this study, we discovered an additional form of regulation mediated via the SUMOylation of CaAITP1. Pepper plants subjected to drought stress were characterized by reductions in both the stability and SUMOylation of CaAITP1 protein. Moreover, we identified a SUMO protease, Capsicum annuum DeSUMOylating Isopeptidase 2 (CaDeSI2), as a new interacting partner of CaAITP1. In vitro and in vivo analyses revealed that CaAITP1 is deSUMOylated by CaDeSI2. Silencing of CaDeSI2 in pepper plants led to drought-hypersensitive and ABA-hyposensitive phenotypes, whereas overexpression of CaDeSI2 in transgenic Arabidopsis plants resulted in the opposite phenotypes. Importantly, we found that the CaAITP1 protein was stabilized in response to the silencing of CaDeSI2, and CaDeSI2 and CaAITP1 co-silenced pepper plants were characterized by drought-tolerant phenotypes similar to those observed in CaAITP1-silenced pepper. Collectively, our findings indicate that CaDeSI2 reduces the stability of CaAITP1 via deSUMOylation, thereby positively regulating drought tolerance.
Collapse
Affiliation(s)
- Hyunhee Joo
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Korea
| | - Woonhee Baek
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Korea
| |
Collapse
|
29
|
Ramazi S, Dadzadi M, Darvazi M, Seddigh N, Allahverdi A. Protein modification in neurodegenerative diseases. MedComm (Beijing) 2024; 5:e674. [PMID: 39105197 PMCID: PMC11298556 DOI: 10.1002/mco2.674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Posttranslational modifications play a crucial role in governing cellular functions and protein behavior. Researchers have implicated dysregulated posttranslational modifications in protein misfolding, which results in cytotoxicity, particularly in neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and Huntington disease. These aberrant posttranslational modifications cause proteins to gather in certain parts of the brain that are linked to the development of the diseases. This leads to neuronal dysfunction and the start of neurodegenerative disease symptoms. Cognitive decline and neurological impairments commonly manifest in neurodegenerative disease patients, underscoring the urgency of comprehending the posttranslational modifications' impact on protein function for targeted therapeutic interventions. This review elucidates the critical link between neurodegenerative diseases and specific posttranslational modifications, focusing on Tau, APP, α-synuclein, Huntingtin protein, Parkin, DJ-1, and Drp1. By delineating the prominent aberrant posttranslational modifications within Alzheimer disease, Parkinson disease, and Huntington disease, the review underscores the significance of understanding the interplay among these modifications. Emphasizing 10 key abnormal posttranslational modifications, this study aims to provide a comprehensive framework for investigating neurodegenerative diseases holistically. The insights presented herein shed light on potential therapeutic avenues aimed at modulating posttranslational modifications to mitigate protein aggregation and retard neurodegenerative disease progression.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Maedeh Dadzadi
- Department of BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mona Darvazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Nasrin Seddigh
- Department of BiochemistryFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Abdollah Allahverdi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
30
|
Zanella CA, Marques N, Junqueira S, Prediger RD, Tasca CI, Cimarosti HI. Guanosine increases global SUMO1-ylation in the hippocampus of young and aged mice and improves the short-term memory of young mice. J Neurochem 2024; 168:1503-1513. [PMID: 37491912 DOI: 10.1111/jnc.15920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
The nucleoside guanosine is an endogenous neuromodulator associated with neuroprotection. The roles of guanosine during aging are still not fully elucidated. Guanosine modulates SUMOylation in neurons and astrocytes in vitro, but it is not known whether guanosine can modulate SUMOylation in vivo and improve cognitive functions during aging. SUMOylation is a post-translational protein modification with potential neuroprotective roles. In this follow-up study, we investigated whether guanosine could modulate SUMOylation in vivo and behavior in young and aged mice. Young (3-month-old) and aged (24-month-old) C57BL/6 mice were treated with guanosine (8 mg/kg intraperitoneal) daily for 14 days. Starting on day 8 of treatment, the following behavioral tests were performed: open field, novel object location, Y-maze, sucrose splash test, and tail suspension test. Treatment with guanosine did not change the locomotor activity of young or aged mice in the open-field test. Treatment with guanosine improved short-term memory only for young mice but did not change the working memory of either young or aged mice, as evaluated using object recognition and the Y-maze tests, respectively. Depressive-like behaviors, such as impaired grooming evaluated through the splash test, did not change in either young or aged mice. However, young mice treated with guanosine increased their immobility time in the tail suspension test, suggesting an effect on behavioral coping strategies. Global SUMO1-ylation was significantly increased in the hippocampus of young and aged mice after 14 days of treatment with guanosine, whereas no changes were detected in the cerebral cortex of either young or aged mice. Our findings demonstrate that guanosine also targets hippocampal SUMOylation in vivo, thereby contributing to a deeper understanding of its mechanisms of action. This highlights the involvement of SUMOylation in guanosine's modulatory and neuroprotective effects.
Collapse
Affiliation(s)
- Camila A Zanella
- Pharmacology Department, Pharmacology Postgraduate Program, Biological Sciences Center (CCB), Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Naiani Marques
- Biochemistry Department, Biochemistry Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
| | - Stella Junqueira
- Neuroscience Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
| | - Rui D Prediger
- Pharmacology Department, Pharmacology Postgraduate Program, Biological Sciences Center (CCB), Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
- Neuroscience Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
| | - Carla I Tasca
- Biochemistry Department, Biochemistry Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
- Neuroscience Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
| | - Helena I Cimarosti
- Pharmacology Department, Pharmacology Postgraduate Program, Biological Sciences Center (CCB), Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
- Neuroscience Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
| |
Collapse
|
31
|
Bradley E, Poole E, Reeves MB. The Triterpenoid MOMORDIN-Ic Inhibits HCMV by Preventing the Initiation of Gene Expression in Eukaryotic Cells. Pathogens 2024; 13:546. [PMID: 39057773 PMCID: PMC11280373 DOI: 10.3390/pathogens13070546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Human cytomegalovirus (HCMV) primary infection, re-infection, and reactivation from latency cause morbidity in immune-compromised patients. Consequently, potential therapeutic strategies remain of interest for the treatment of infection. Naturally occurring triterpenoids derived from plants have been demonstrated to have anti-viral activity, although their precise mechanisms of action are not always fully understood. Here, we investigate the activity of Mormordin Ic (Mc) and demonstrate that it is potently anti-viral against HCMV. Through investigation of the mechanistic basis of this anti-viral activity, we identify that it is inhibitory to both viral and host gene expression, and to highly induced genes in particular. We go on to observe that Mc impacts on RNA Pol II activity and, specifically, reduces the occupancy of elongating RNA Pol II at a viral promoter. Next, we demonstrate that Mc is inhibitory to HCMV reactivation, and in doing so identify that it has greater activity against the canonical major immediate early promoter compared to the alternative ip2 promoter located downstream. Finally, we see evidence of RNA Pol II occupancy at the ip2 promoter in undifferentiated myeloid cells. Thus, Mc is potently anti-viral and a potential tool to probe the activity of multiple promoters considered important for controlling HCMV reactivation.
Collapse
Affiliation(s)
- Eleanor Bradley
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Royal Free Campus, London NW3 2PP, UK;
| | - Emma Poole
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Campus, Cambridge CB2 0QQ, UK;
| | - Matthew B. Reeves
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Royal Free Campus, London NW3 2PP, UK;
| |
Collapse
|
32
|
Delibegović M, Dall'Angelo S, Dekeryte R. Protein tyrosine phosphatase 1B in metabolic diseases and drug development. Nat Rev Endocrinol 2024; 20:366-378. [PMID: 38519567 DOI: 10.1038/s41574-024-00965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/25/2024]
Abstract
Protein tyrosine phosphatase 1B (PTP1B), a non-transmembrane phosphatase, has a major role in a variety of signalling pathways, including direct negative regulation of classic insulin and leptin signalling pathways, and is implicated in the pathogenesis of several cardiometabolic diseases and cancers. As such, PTP1B has been a therapeutic target for over two decades, with PTP1B inhibitors identified either from natural sources or developed throughout the years. Some of these inhibitors have reached phase I and/or II clinical trials in humans for the treatment of type 2 diabetes mellitus, obesity and/or metastatic breast cancer. In this Review, we summarize the cellular processes and regulation of PTP1B, discuss evidence from in vivo preclinical and human studies of the association between PTP1B and different disorders, and discuss outcomes of clinical trials. We outline challenges associated with the targeting of this phosphatase (which was, until the past few years, viewed as difficult to target), the current state of the field of PTP1B inhibitors (and dual phosphatase inhibitors) and future directions for manipulating the activity of this key metabolic enzyme.
Collapse
Affiliation(s)
- Mirela Delibegović
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Institute of Medical Sciences, Aberdeen, UK.
| | - Sergio Dall'Angelo
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Institute of Medical Sciences, Aberdeen, UK
| | - Ruta Dekeryte
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Institute of Medical Sciences, Aberdeen, UK
| |
Collapse
|
33
|
O'Keefe ME, Dubyak GR, Abbott DW. Post-translational control of NLRP3 inflammasome signaling. J Biol Chem 2024; 300:107386. [PMID: 38763335 PMCID: PMC11245928 DOI: 10.1016/j.jbc.2024.107386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024] Open
Abstract
Inflammasomes serve as critical sensors for disruptions to cellular homeostasis, with inflammasome assembly leading to inflammatory caspase activation, gasdermin cleavage, and cytokine release. While the canonical pathways leading to priming, assembly, and pyroptosis are well characterized, recent work has begun to focus on the role of post-translational modifications (PTMs) in regulating inflammasome activity. A diverse array of PTMs, including phosphorylation, ubiquitination, SUMOylation, acetylation, and glycosylation, exert both activating and inhibitory influences on members of the inflammasome cascade through effects on protein-protein interactions, stability, and localization. Dysregulation of inflammasome activation is associated with a number of inflammatory diseases, and evidence is emerging that aberrant modification of inflammasome components contributes to this dysregulation. This review provides insight into PTMs within the NLRP3 inflammasome pathway and their functional consequences on the signaling cascade and highlights outstanding questions that remain regarding the complex web of signals at play.
Collapse
Affiliation(s)
- Meghan E O'Keefe
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - George R Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Derek W Abbott
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
34
|
Fomo KN, Perumal N, Manicam C, Pfeiffer N, Grus FH. Neuroretinal Cell Culture Model as a Tool for the Development of New Therapeutic Approaches for Oxidative Stress-Induced Ocular Diseases, with a Focus on Glaucoma. Cells 2024; 13:775. [PMID: 38727311 PMCID: PMC11083839 DOI: 10.3390/cells13090775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Glaucoma is a heterogeneous group of optic neuropathies characterized by a progressive degeneration of the retinal ganglion cells (RGCs), leading to irreversible vision loss. Nowadays, the traditional therapeutic approach to glaucoma consists of lowering the intraocular pressure (IOP), which does not address the neurodegenerative features of the disease. Besides animal models of glaucoma, there is a considerable need for in vitro experimental models to propose new therapeutic strategies for this ocular disease. In this study, we elucidated the pathological mechanisms leading to neuroretinal R28 cell death after exposure to glutamate and hydrogen peroxide (H2O2) in order to develop new therapeutic approaches for oxidative stress-induced retinal diseases, including glaucoma. We were able to show that glutamate and H2O2 can induce a decrease in R28 cell viability in a concentration-dependent manner. A cell viability of about 42% was found after exposure to 3 mM of glutamate and about 56% after exposure to 100 µM of H2O2 (n = 4). Label-free quantitative mass spectrometry analysis revealed differential alterations of 193 and 311 proteins in R28 cells exposed to 3 mM of glutamate and 100 µM of H2O2, respectively (FDR < 1%; p < 0.05). Bioinformatics analysis indicated that the protein changes were associated with the dysregulation of signaling pathways, which was similar to those observed in glaucoma. Thus, the proteomic alteration induced by glutamate was associated with the inhibition of the PI3K/AKT signaling pathway. On the other hand, H2O2-induced toxicity in R28 cells was linked to the activation of apoptosis signaling and the inhibition of the mTOR and ERK/MAPK signaling pathways. Furthermore, the data show a similarity in the inhibition of the EIF2 and AMPK signaling pathways and the activation of the sumoylation and WNT/β-catenin signaling pathways in both groups. Our findings suggest that the exposure of R28 cells to glutamate and H2O2 could induce glaucoma-like neurodegenerative features and potentially provide a suitable tool for the development of new therapeutic strategies for retinal diseases.
Collapse
Affiliation(s)
| | | | | | | | - Franz H. Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.N.F.); (N.P.); (C.M.); (N.P.)
| |
Collapse
|
35
|
Floros KV, Fairchild CK, Li J, Zhang K, Roberts JL, Kurupi R, Hu B, Kraskauskiene V, Hosseini N, Shen S, Inge MM, Smith-Fry K, Li L, Sotiriou A, Dalton KM, Jose A, Abdelfadiel EI, Xing Y, Hill RD, Slaughter JM, Shende M, Lorenz MR, Hinojosa MR, Belvin BR, Lai Z, Boikos SA, Stamatouli AM, Lewis JP, Manjili MH, Valerie K, Li R, Banito A, Poklepovic A, Koblinski JE, Siggers T, Dozmorov MG, Jones KB, Radhakrishnan SK, Faber AC. Targeting of SUMOylation leads to cBAF complex stabilization and disruption of the SS18::SSX transcriptome in Synovial Sarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591023. [PMID: 38712286 PMCID: PMC11071469 DOI: 10.1101/2024.04.25.591023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Synovial Sarcoma (SS) is driven by the SS18::SSX fusion oncoprotein. and is ultimately refractory to therapeutic approaches. SS18::SSX alters ATP-dependent chromatin remodeling BAF (mammalian SWI/SNF) complexes, leading to the degradation of canonical (cBAF) complex and amplified presence of an SS18::SSX-containing non-canonical BAF (ncBAF or GBAF) that drives an SS-specific transcription program and tumorigenesis. We demonstrate that SS18::SSX activates the SUMOylation program and SSs are sensitive to the small molecule SAE1/2 inhibitor, TAK-981. Mechanistically, TAK-981 de-SUMOylates the cBAF subunit SMARCE1, stabilizing and restoring cBAF on chromatin, shifting away from SS18::SSX-ncBAF-driven transcription, associated with DNA damage and cell death and resulting in tumor inhibition across both human and mouse SS tumor models. TAK-981 synergized with cytotoxic chemotherapy through increased DNA damage, leading to tumor regression. Targeting the SUMOylation pathway in SS restores cBAF complexes and blocks the SS18::SSX-ncBAF transcriptome, identifying a therapeutic vulnerability in SS, positioning the in-clinic TAK-981 to treat SS.
Collapse
|
36
|
Lv Z, Wei X, Hu S, Lin G, Qiu W. iSUMO-RsFPN: A predictor for identifying lysine SUMOylation sites based on multi-features and feature pyramid networks. Anal Biochem 2024; 687:115460. [PMID: 38191118 DOI: 10.1016/j.ab.2024.115460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
SUMOylation is a protein post-translational modification that plays an essential role in cellular functions. For predicting SUMO sites, numerous researchers have proposed advanced methods based on ordinary machine learning algorithms. These reported methods have shown excellent predictive performance, but there is room for improvement. In this study, we constructed a novel deep neural network Residual Pyramid Network (RsFPN), and developed an ensemble deep learning predictor called iSUMO-RsFPN. Initially, three feature extraction methods were employed to extract features from samples. Following this, weak classifiers were trained based on RsFPN for each feature type. Ultimately, the weak classifiers were integrated to construct the final classifier. Moreover, the predictor underwent systematically testing on an independent test dataset, where the results demonstrated a significant improvement over the existing state-of-the-art predictors. The code of iSUMO-RsFPN is free and available at https://github.com/454170054/iSUMO-RsFPN.
Collapse
Affiliation(s)
- Zhe Lv
- School of Mega Data, Jiangxi Institute of Fashion Technology, 330201, Nanchang, Jiangxi, China
| | - Xin Wei
- Business School, Jiangxi Institute of Fashion Technology, 330201, Nanchang, Jiangxi, China
| | - Siqin Hu
- School of Mega Data, Jiangxi Institute of Fashion Technology, 330201, Nanchang, Jiangxi, China
| | - Gang Lin
- School of Mega Data, Jiangxi Institute of Fashion Technology, 330201, Nanchang, Jiangxi, China
| | - Wangren Qiu
- Computer Department, Jingdezhen Ceramic University, 333403, Jingdezhen, Jiangxi, China.
| |
Collapse
|
37
|
Marelli E, Hughes J, Scotting PJ. SUMO-dependent transcriptional repression by Sox2 inhibits the proliferation of neural stem cells. PLoS One 2024; 19:e0298818. [PMID: 38507426 PMCID: PMC10954124 DOI: 10.1371/journal.pone.0298818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/30/2024] [Indexed: 03/22/2024] Open
Abstract
Sox2 is known for its roles in maintaining the stem cell state of embryonic stem cells and neural stem cells. In particular, it has been shown to slow the proliferation of these cell types. It is also known for its effects as an activating transcription factor. Despite this, analysis of published studies shows that it represses as many genes as it activates. Here, we identify a new set of target genes that Sox2 represses in neural stem cells. These genes are associated with centrosomes, centromeres and other aspects of cell cycle control. In addition, we show that SUMOylation of Sox2 is necessary for the repression of these genes and for its repressive effects on cell proliferation. Together, these data suggest that SUMO-dependent repression of this group of target genes is responsible for the role of Sox2 in regulating the proliferation of neural stem cells.
Collapse
Affiliation(s)
- Elisa Marelli
- School of Life Sciences, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
| | - Jaime Hughes
- School of Life Sciences, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
| | - Paul J. Scotting
- School of Life Sciences, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
| |
Collapse
|
38
|
Chen X, Zhang W, Huang H, Yi M, Jia K. Sea perch (Lateolabrax japonicus) UBC9 augments RGNNV infection by hindering RLRs-interferon response. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109408. [PMID: 38307301 DOI: 10.1016/j.fsi.2024.109408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Small ubiquitin-like modifier (SUMO) is a reversible post-translational modification that regulates various biological processes in eukaryotes. Ubiquitin-conjugating enzyme 9 (UBC9) is the sole E2-conjugating enzyme responsible for SUMOylation and plays an important role in essential cellular functions. Here, we cloned the UBC9 gene from sea perch (Lateolabrax japonicus) (LjUBC9) and investigated its role in regulating the IFN response during red-spotted grouper nervous necrosis virus (RGNNV) infection. The LjUBC9 gene consisted of 477 base pairs and encoded a polypeptide of 158 amino acids with an active site cysteine residue and a UBCc domain. Phylogenetic analysis showed that LjUBC9 shared the closest evolutionary relationship with UBC9 from Paralichthys olivaceus. Tissue expression profile analysis demonstrated that LjUBC9 was significantly increased in multiple tissues of sea perch following RGNNV infection. Further experiments showed that overexpression of LjUBC9 significantly increased the mRNA and protein levels of RGNNV capsid protein in LJB cells infected with RGNNV, nevertheless knockdown of LjUBC9 had the opposite effect, suggesting that LjUBC9 exerted a pro-viral effect during RGNNV infection. More importantly, we found that the 93rd cysteine is crucial for its pro-viral effect. Additionally, dual luciferase assays revealed that LjUBC9 prominently attenuated the promoter activities of sea perch type Ⅰ interferon (IFN) in RGNNV-infected cells, and overexpression of LjUBC9 markedly suppressed the transcription of key genes associated with RLRs-IFN pathway. In summary, these findings elucidate that LjUBC9 impairs the RLRs-IFN response, resulting in enhanced RGNNV infection.
Collapse
Affiliation(s)
- Xiaoqi Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China.
| | - Wanwan Zhang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China.
| | - Hao Huang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China.
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China.
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China.
| |
Collapse
|
39
|
Chen Y, Liu K, Zhang G, Cheng J, Tu J. Monoclonal antibody-based systematic identification of SUMO1-modification sites reveals TFII-I SUMOylation is involved in tumor growth. J Cell Physiol 2024; 239:e31080. [PMID: 37450667 DOI: 10.1002/jcp.31080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
SUMOylation plays an essential role in diverse physiological and pathological processes. Identification of wild-type SUMO1-modification sites by mass spectrometry is still challenging. In this study, we produced a monoclonal SUMO1C-K antibody recognizing SUMOylated peptides and proposed an efficient streamline for identification of SUMOylation sites. We identified 471 SUMOylation sites in 325 proteins from five raw data. These identified sites exhibit a high positive rate when evaluated by mutation-verified SUMOylation sites. We identified many SUMOylated proteins involved in mitochondrial metabolism and non-membrane-bounded organelles formation. We proposed a SUMOylation motif, ΨKXD/EP, where proline is required for efficient SUMOylation. We further revealed SUMOylation of TFII-I was stimulated by growth signals and was required for nucleus-localization of p-ERK1/2. Mutation of SUMOylation sites of TFII-I suppressed tumor cell growth in vitro and in vivo. Taken together, we provided a strategy for personalized identification of wild-type SUMO1-modification sites and revealed the physiological significance of TFII-I SUMOylation in this study.
Collapse
Affiliation(s)
- Yalan Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kexin Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Geqiang Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Tu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Hammami NEH, Mérindol N, Plourde MB, Maisonnet T, Lebel S, Berthoux L. SUMO-3 promotes the ubiquitin-dependent turnover of TRIM55. Biochem Cell Biol 2024; 102:73-84. [PMID: 37703582 DOI: 10.1139/bcb-2023-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Human muscle-specific RING fingers (MURFs) are members of the tripartite motif (TRIM) family of proteins characterized by their C-terminal subgroup one signature domain. MURFs play a role in sarcomere formation and microtubule dynamics. It was previously established that some TRIMs undergo post-translational modification by small ubiquitin-like modifier (SUMO). In this study, we explored the putative SUMOylation of MURF proteins as well as their interactions with SUMO. MURF proteins (TRIM54, TRIM55, and TRIM63) were not found to be SUMOylated. However, TRIM55 turnover by proteasomal and lysosomal degradation was higher upon overexpression of SUMO-3 but not of SUMO-1. Furthermore, it is predicted that TRIM55 contains two potential SUMO-interacting motifs (SIMs). We found that SIM1- and SIM2-mutated TRIM55 were more stable than the wild-type (WT) protein partly due to decreased degradation. Consistently, SIM-mutated TRIM55 was less polyubiquitinated than the WT protein, despite similar monoubiquitination levels. Using IF microscopy, we observed that SIM motifs influenced TRIM55 subcellular localization. In conclusion, our results suggest that SUMO-3 or SUMO-3-modified proteins modulate the localization, stability, and RING ubiquitin ligase activity of TRIM55.
Collapse
Affiliation(s)
- Nour-El-Houda Hammami
- Department of medical biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Natacha Mérindol
- Department of medical biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Mélodie B Plourde
- Department of medical biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Tara Maisonnet
- Department of medical biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Sophie Lebel
- Department of medical biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Lionel Berthoux
- Department of medical biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
41
|
Yang D, Geng T, Harrison AG, Cahoon JG, Xing J, Jiao B, Wang M, Cheng C, Hill RE, Wang H, Vella AT, Cheng G, Wang Y, Wang P. UBR5 promotes antiviral immunity by disengaging the transcriptional brake on RIG-I like receptors. Nat Commun 2024; 15:780. [PMID: 38278841 PMCID: PMC10817939 DOI: 10.1038/s41467-024-45141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
The Retinoic acid-Inducible Gene I (RIG-I) like receptors (RLRs) are the major viral RNA sensors essential for the initiation of antiviral immune responses. RLRs are subjected to stringent transcriptional and posttranslational regulations, of which ubiquitination is one of the most important. However, the role of ubiquitination in RLR transcription is unknown. Here, we screen 375 definite ubiquitin ligase knockout cell lines and identify Ubiquitin Protein Ligase E3 Component N-Recognin 5 (UBR5) as a positive regulator of RLR transcription. UBR5 deficiency reduces antiviral immune responses to RNA viruses, while increases viral replication in primary cells and mice. Ubr5 knockout mice are more susceptible to lethal RNA virus infection than wild type littermates. Mechanistically, UBR5 mediates the Lysine 63-linked ubiquitination of Tripartite Motif Protein 28 (TRIM28), an epigenetic repressor of RLRs. This modification prevents intramolecular SUMOylation of TRIM28, thus disengages the TRIM28-imposed brake on RLR transcription. In sum, UBR5 enables rapid upregulation of RLR expression to boost antiviral immune responses by ubiquitinating and de-SUMOylating TRIM28.
Collapse
Affiliation(s)
- Duomeng Yang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA.
| | - Tingting Geng
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Andrew G Harrison
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Jason G Cahoon
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Jian Xing
- Department of Neuroscience, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Baihai Jiao
- Department of Medicine, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Mark Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Robert E Hill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, EH4, 2XU, UK
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Gong Cheng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Yanlin Wang
- Department of Medicine, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA.
| |
Collapse
|
42
|
Ren R, Ding S, Ma K, Jiang Y, Wang Y, Chen J, Wang Y, Kou Y, Fan X, Zhu X, Qin L, Qiu C, Simons M, Wei X, Yu L. SUMOylation Fine-Tunes Endothelial HEY1 in the Regulation of Angiogenesis. Circ Res 2024; 134:203-222. [PMID: 38166414 PMCID: PMC10872267 DOI: 10.1161/circresaha.123.323398] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/15/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND Angiogenesis, which plays a critical role in embryonic development and tissue repair, is controlled by a set of angiogenic signaling pathways. As a TF (transcription factor) belonging to the basic helix-loop-helix family, HEY (hairy/enhancer of split related with YRPW motif)-1 (YRPW motif, abbreviation of 4 highly conserved amino acids in the motif) has been identified as a key player in developmental angiogenesis. However, the precise mechanisms underlying HEY1's actions in angiogenesis remain largely unknown. Our previous studies have suggested a potential role for posttranslational SUMOylation in the dynamic regulation of vascular development and organization. METHODS Immunoprecipitation, mass spectrometry, and bioinformatics analysis were used to determine the biochemical characteristics of HEY1 SUMOylation. The promoter-binding capability of HEY1 was determined by chromatin immunoprecipitation, dual luciferase, and electrophoretic mobility shift assays. The dimerization pattern of HEY1 was determined by coimmunoprecipitation. The angiogenic capabilities of endothelial cells were assessed by CCK-8 (cell counting kit-8), 5-ethynyl-2-deoxyuridine staining, wound healing, transwell, and sprouting assays. Embryonic and postnatal vascular growth in mouse tissues, matrigel plug assay, cutaneous wound healing model, oxygen-induced retinopathy model, and tumor angiogenesis model were used to investigate the angiogenesis in vivo. RESULTS We identified intrinsic endothelial HEY1 SUMOylation at conserved lysines by TRIM28 (tripartite motif containing 28) as the unique E3 ligase. Functionally, SUMOylation facilitated HEY1-mediated suppression of angiogenic RTK (receptor tyrosine kinase) signaling and angiogenesis in primary human endothelial cells and mice with endothelial cell-specific expression of wild-type HEY1 or a SUMOylation-deficient HEY1 mutant. Mechanistically, SUMOylation facilitates HEY1 homodimer formation, which in turn preserves HEY1's DNA-binding capability via recognition of E-box promoter elements. Therefore, SUMOylation maintains HEY1's function as a repressive TF controlling numerous angiogenic genes, including RTKs and Notch pathway components. Proangiogenic stimuli induce HEY1 deSUMOylation, leading to heterodimerization of HEY1 with HES (hairy and enhancer of split)-1, which results in ineffective DNA binding and loss of HEY1's angiogenesis-suppressive activity. CONCLUSIONS Our findings demonstrate that reversible HEY1 SUMOylation is a molecular mechanism that coordinates endothelial angiogenic signaling and angiogenesis, both in physiological and pathological milieus, by fine-tuning the transcriptional activity of HEY1. Specifically, SUMOylation facilitates the formation of the HEY1 transcriptional complex and enhances its DNA-binding capability in endothelial cells.
Collapse
Affiliation(s)
- Ruizhe Ren
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Sha Ding
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Kefan Ma
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Yuanqing Jiang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Yiran Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Junbo Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Yunyun Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Yaohui Kou
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Xiao Fan
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaolong Zhu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Lingfeng Qin
- Department of Surgery, Program in Vascular Biology and Therapeutics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Cong Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Xiyang Wei
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Luyang Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center and Joint Research Centre for Engineering Biology, Zhejiang University, Zhejiang, China
| |
Collapse
|
43
|
Fernandez A, Corvalan K, Santis O, Mendez-Ruette M, Caviedes A, Pizarro M, Gomez MT, Batiz LF, Landgraf P, Kahne T, Rojas-Fernandez A, Wyneken U. Sumoylation in astrocytes induces changes in the proteome of the derived small extracellular vesicles which change protein synthesis and dendrite morphology in target neurons. Brain Res 2024; 1823:148679. [PMID: 37972846 DOI: 10.1016/j.brainres.2023.148679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Emerging evidence highlights the relevance of the protein post-translational modification by SUMO (Small Ubiquitin-like Modifier) in the central nervous system for modulating cognition and plasticity in health and disease. In these processes, astrocyte-to-neuron crosstalk mediated by extracellular vesicles (EVs) plays a yet poorly understood role. Small EVs (sEVs), including microvesicles and exosomes, contain a molecular cargo of lipids, proteins, and nucleic acids that define their biological effect on target cells. Here, we investigated whether SUMOylation globally impacts the sEV protein cargo. For this, sEVs were isolated from primary cultures of astrocytes by ultracentrifugation or using a commercial sEV isolation kit. SUMO levels were regulated: 1) via plasmids that over-express SUMO, or 2) via experimental conditions that increase SUMOylation, i.e., by using the stress hormone corticosterone, or 3) via the SUMOylation inhibitor 2-D08 (2',3',4'-trihydroxy-flavone, 2-(2,3,4-Trihydroxyphenyl)-4H-1-Benzopyran-4-one). Corticosterone and 2-D08 had opposing effects on the number of sEVs and on their protein cargo. Proteomic analysis showed that increased SUMOylation in corticosterone-treated or plasmid-transfected astrocytes increased the presence of proteins related to cell division, transcription, and protein translation in the derived sEVs. When sEVs derived from corticosterone-treated astrocytes were transferred to neurons to assess their impact on protein synthesis using the fluorescence non-canonical amino acid tagging assay (FUNCAT), we detected an increase in protein synthesis, while sEVs from 2-D08-treated astrocytes had no effect. Our results show that SUMO conjugation plays an important role in the modulation of the proteome of astrocyte-derived sEVs with a potential functional impact on neurons.
Collapse
Affiliation(s)
- Anllely Fernandez
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile
| | - Katherine Corvalan
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile
| | - Octavia Santis
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile
| | - Maxs Mendez-Ruette
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile
| | - Ariel Caviedes
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile
| | - Matias Pizarro
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile
| | - Maria-Teresa Gomez
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile
| | - Luis Federico Batiz
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile
| | - Peter Landgraf
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University, Germany, 39120 Magdeburg, Germany
| | - Thilo Kahne
- Institute of Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Alejandro Rojas-Fernandez
- Instituto de Medicina & Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Ursula Wyneken
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620001, Chile.
| |
Collapse
|
44
|
Codognoto VM, de Souza FF, Cataldi TR, Labate CA, de Camargo LS, Esteves Trindade PH, da Rosa Filho RR, de Oliveira DJB, Oba E. Proteomics approach reveals urinary markers for early pregnancy diagnosis in buffaloes. J Proteomics 2024; 290:105036. [PMID: 37879565 DOI: 10.1016/j.jprot.2023.105036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/21/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
This study aimed to compare urine proteomics from non- and pregnant buffaloes in order to identify potential biomarkers of early pregnancy. Forty-four females underwent hormonal ovulation synchronization and were randomly divided into two experimental groups: inseminated (n = 30) and non-inseminated (n = 14). The pregnant females were further divided into two groups: pregnant at Day 12 (P12; n = 8) and at Day 18 (P18; n = 8) post-ovulation. The non-pregnant group was also subdivided into two groups: non-pregnant at Day 12 (NP12; n = 7) and at Day 18 (NP18; n = 7). Urine was collected from all females on Days 12 or 18. The samples were processed for proteomics. A total of 798 proteins were reported in the urine considering all groups. The differential proteins play essential roles during pregnancy, acting in cellular transport and metabolism, endometrial remodeling, embryonic protection, and degradation of defective proteins. We suggest that some proteins from our study can be considered biomarkers for early pregnancy diagnosis, since they were increased in pregnant buffaloes. SIGNIFICANCE: Macromolecules have been studied for early pregnancy diagnosis, aiming to increase reproductive efficiency in cattle and buffaloes. Direct methods such as rectal palpation and ultrasonography have been considered late. Thus, this study aimed to compare urine proteomics from non- and pregnant buffaloes to identify potential biomarkers of early pregnancy. The differential proteins found in our study play essential roles during pregnancy, acting in cellular transport and metabolism, endometrial remodeling, embryonic protection, and degradation of defective proteins. We suggest that these proteins can be considered possible biomarkers for early pregnancy diagnosis since they were increased in the pregnant buffaloes.
Collapse
Affiliation(s)
- Viviane M Codognoto
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Fabiana F de Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Thais R Cataldi
- Department of Genetic, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Carlos A Labate
- Department of Genetic, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Laíza S de Camargo
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Pedro H Esteves Trindade
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Roberto R da Rosa Filho
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Campus São Paulo, São Paulo, Brazil
| | - Diego J B de Oliveira
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Eunice Oba
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil.
| |
Collapse
|
45
|
Zhang P, Huang C, Liu H, Zhang M, Liu L, Zhai Y, Zhang J, Yang J, Yang J. The mechanism of the NFAT transcription factor family involved in oxidative stress response. J Cardiol 2024; 83:30-36. [PMID: 37149283 DOI: 10.1016/j.jjcc.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
As a transcriptional activator widely expressed in various tissues, nuclear factor of activated T cells (NFAT) is involved in the regulation of the immune system, the development of the heart and brain systems, and classically mediating pathological processes such as cardiac hypertrophy. Oxidative stress is an imbalance of intracellular redox status, characterized by excessive generation of reactive oxygen species, accompanied by mitochondrial dysfunction, calcium overload, and subsequent lipid peroxidation, inflammation, and apoptosis. Oxidative stress occurs during various pathological processes, such as chronic hypoxia, vascular smooth muscle cell phenotype switching, ischemia-reperfusion, and cardiac remodeling. Calcium overload leads to an increase in intracellular calcium concentration, while NFAT can be activated through calcium-calcineurin, which is also the main regulatory mode of NFAT factors. This review focuses on the effects of NFAT transcription factors on reactive oxygen species production, calcium overload, mitochondrial dysfunction, redox reactions, lipid peroxidation, inflammation, and apoptosis in response to oxidative stress. We hope to provide a reference for the functions and characteristics of NFAT involved in various stages of oxidative stress as well as related potential targets.
Collapse
Affiliation(s)
- Peiyue Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Cuiyuan Huang
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Haiyin Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Mengting Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Li Liu
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yuhong Zhai
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jing Zhang
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China.
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China.
| |
Collapse
|
46
|
Zhang H, Hu H, Zhai C, Jing L, Tian H. Cardioprotective Strategies After Ischemia-Reperfusion Injury. Am J Cardiovasc Drugs 2024; 24:5-18. [PMID: 37815758 PMCID: PMC10806044 DOI: 10.1007/s40256-023-00614-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Acute myocardial infarction (AMI) is associated with high morbidity and mortality worldwide. Although early reperfusion is the most effective strategy to salvage ischemic myocardium, reperfusion injury can develop with the restoration of blood flow. Therefore, it is important to identify protection mechanisms and strategies for the heart after myocardial infarction. Recent studies have shown that multiple intracellular molecules and signaling pathways are involved in cardioprotection. Meanwhile, device-based cardioprotective modalities such as cardiac left ventricular unloading, hypothermia, coronary sinus intervention, supersaturated oxygen (SSO2), and remote ischemic conditioning (RIC) have become important areas of research. Herein, we review the molecular mechanisms of cardioprotection and cardioprotective modalities after ischemia-reperfusion injury (IRI) to identify potential approaches to reduce mortality and improve prognosis in patients with AMI.
Collapse
Affiliation(s)
- Honghong Zhang
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Huilin Hu
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China.
| | - Changlin Zhai
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Lele Jing
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Hongen Tian
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| |
Collapse
|
47
|
Trujillo-Ochoa JL, Kazemian M, Afzali B. The role of transcription factors in shaping regulatory T cell identity. Nat Rev Immunol 2023; 23:842-856. [PMID: 37336954 PMCID: PMC10893967 DOI: 10.1038/s41577-023-00893-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Forkhead box protein 3-expressing (FOXP3+) regulatory T cells (Treg cells) suppress conventional T cells and are essential for immunological tolerance. FOXP3, the master transcription factor of Treg cells, controls the expression of multiples genes to guide Treg cell differentiation and function. However, only a small fraction (<10%) of Treg cell-associated genes are directly bound by FOXP3, and FOXP3 alone is insufficient to fully specify the Treg cell programme, indicating a role for other accessory transcription factors operating upstream, downstream and/or concurrently with FOXP3 to direct Treg cell specification and specialized functions. Indeed, the heterogeneity of Treg cells can be at least partially attributed to differential expression of transcription factors that fine-tune their trafficking, survival and functional properties, some of which are niche-specific. In this Review, we discuss the emerging roles of accessory transcription factors in controlling Treg cell identity. We specifically focus on members of the basic helix-loop-helix family (AHR), basic leucine zipper family (BACH2, NFIL3 and BATF), CUT homeobox family (SATB1), zinc-finger domain family (BLIMP1, Ikaros and BCL-11B) and interferon regulatory factor family (IRF4), as well as lineage-defining transcription factors (T-bet, GATA3, RORγt and BCL-6). Understanding the imprinting of Treg cell identity and specialized function will be key to unravelling basic mechanisms of autoimmunity and identifying novel targets for drug development.
Collapse
Affiliation(s)
- Jorge L Trujillo-Ochoa
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
48
|
Ip WH, Tatham MH, Krohne S, Gruhne J, Melling M, Meyer T, Gornott B, Bertzbach LD, Hay RT, Rodriguez E, Dobner T. Adenovirus E1B-55K controls SUMO-dependent degradation of antiviral cellular restriction factors. J Virol 2023; 97:e0079123. [PMID: 37916833 PMCID: PMC10688335 DOI: 10.1128/jvi.00791-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Human adenoviruses (HAdVs) generally cause mild and self-limiting diseases of the upper respiratory and gastrointestinal tracts but pose a serious risk to immunocompromised patients and children. Moreover, they are widely used as vectors for vaccines and vector-based gene therapy approaches. It is therefore vital to thoroughly characterize HAdV gene products and especially HAdV virulence factors. Early region 1B 55 kDa protein (E1B-55K) is a multifunctional HAdV-encoded oncoprotein involved in various viral and cellular pathways that promote viral replication and cell transformation. We analyzed the E1B-55K dependency of SUMOylation, a post-translational protein modification, in infected cells using quantitative proteomics. We found that HAdV increases overall cellular SUMOylation and that this increased SUMOylation can target antiviral cellular pathways that impact HAdV replication. Moreover, we showed that E1B-55K orchestrates the SUMO-dependent degradation of certain cellular antiviral factors. These results once more emphasize the key role of E1B-55K in the regulation of viral and cellular proteins in productive HAdV infections.
Collapse
Affiliation(s)
- Wing-Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Michael H. Tatham
- Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Steewen Krohne
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Julia Gruhne
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Michael Melling
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Tina Meyer
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Britta Gornott
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Ronald T. Hay
- Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Estefania Rodriguez
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
49
|
England SJ, Rusnock AK, Mujcic A, Kowalchuk A, de Jager S, Hilinski WC, Juárez-Morales JL, Smith ME, Grieb G, Banerjee S, Lewis KE. Molecular analyses of zebrafish V0v spinal interneurons and identification of transcriptional regulators downstream of Evx1 and Evx2 in these cells. Neural Dev 2023; 18:8. [PMID: 38017520 PMCID: PMC10683209 DOI: 10.1186/s13064-023-00176-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/12/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND V0v spinal interneurons are highly conserved, glutamatergic, commissural neurons that function in locomotor circuits. We have previously shown that Evx1 and Evx2 are required to specify the neurotransmitter phenotype of these cells. However, we still know very little about the gene regulatory networks that act downstream of these transcription factors in V0v cells. METHODS To identify candidate members of V0v gene regulatory networks, we FAC-sorted wild-type and evx1;evx2 double mutant zebrafish V0v spinal interneurons and expression-profiled them using microarrays and single cell RNA-seq. We also used in situ hybridization to compare expression of a subset of candidate genes in evx1;evx2 double mutants and wild-type siblings. RESULTS Our data reveal two molecularly distinct subtypes of zebrafish V0v spinal interneurons at 48 h and suggest that, by this stage of development, evx1;evx2 double mutant cells transfate into either inhibitory spinal interneurons, or motoneurons. Our results also identify 25 transcriptional regulator genes that require Evx1/2 for their expression in V0v interneurons, plus a further 11 transcriptional regulator genes that are repressed in V0v interneurons by Evx1/2. Two of the latter genes are hmx2 and hmx3a. Intriguingly, we show that Hmx2/3a, repress dI2 interneuron expression of skor1a and nefma, two genes that require Evx1/2 for their expression in V0v interneurons. This suggests that Evx1/2 might regulate skor1a and nefma expression in V0v interneurons by repressing Hmx2/3a expression. CONCLUSIONS This study identifies two molecularly distinct subsets of zebrafish V0v spinal interneurons, as well as multiple transcriptional regulators that are strong candidates for acting downstream of Evx1/2 to specify the essential functional characteristics of these cells. Our data further suggest that in the absence of both Evx1 and Evx2, V0v spinal interneurons initially change their neurotransmitter phenotypes from excitatory to inhibitory and then, later, start to express markers of distinct types of inhibitory spinal interneurons, or motoneurons. Taken together, our findings significantly increase our knowledge of V0v and spinal development and move us closer towards the essential goal of identifying the complete gene regulatory networks that specify this crucial cell type.
Collapse
Affiliation(s)
| | | | - Amra Mujcic
- Biology Department, Syracuse University, Syracuse, NY, USA
| | | | - Sarah de Jager
- Physiology, Development and Neuroscience Department, Cambridge University, Cambridge, UK
| | | | - José L Juárez-Morales
- Biology Department, Syracuse University, Syracuse, NY, USA
- Programa de IxM-CONAHCYT, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Baja California Sur, México
| | | | - Ginny Grieb
- Biology Department, Syracuse University, Syracuse, NY, USA
| | - Santanu Banerjee
- Biological Sciences Department, SUNY-Cortland, Cortland, NY, USA
| | | |
Collapse
|
50
|
Godneeva B, Ninova M, Fejes-Toth K, Aravin A. SUMOylation of Bonus, the Drosophila homolog of Transcription Intermediary Factor 1, safeguards germline identity by recruiting repressive chromatin complexes to silence tissue-specific genes. eLife 2023; 12:RP89493. [PMID: 37999956 PMCID: PMC10672805 DOI: 10.7554/elife.89493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
The conserved family of Transcription Intermediary Factors (TIF1) proteins consists of key transcriptional regulators that control transcription of target genes by modulating chromatin state. Unlike mammals that have four TIF1 members, Drosophila only encodes one member of the family, Bonus. Bonus has been implicated in embryonic development and organogenesis and shown to regulate several signaling pathways, however, its targets and mechanism of action remained poorly understood. We found that knockdown of Bonus in early oogenesis results in severe defects in ovarian development and in ectopic expression of genes that are normally repressed in the germline, demonstrating its essential function in the ovary. Recruitment of Bonus to chromatin leads to silencing associated with accumulation of the repressive H3K9me3 mark. We show that Bonus associates with the histone methyltransferase SetDB1 and the chromatin remodeler NuRD and depletion of either component releases Bonus-induced repression. We further established that Bonus is SUMOylated at a single site at its N-terminus that is conserved among insects and this modification is indispensable for Bonus's repressive activity. SUMOylation influences Bonus's subnuclear localization, its association with chromatin and interaction with SetDB1. Finally, we showed that Bonus SUMOylation is mediated by the SUMO E3-ligase Su(var)2-10, revealing that although SUMOylation of TIF1 proteins is conserved between insects and mammals, both the mechanism and specific site of modification is different in the two taxa. Together, our work identified Bonus as a regulator of tissue-specific gene expression and revealed the importance of SUMOylation as a regulator of complex formation in the context of transcriptional repression.
Collapse
Affiliation(s)
- Baira Godneeva
- California Institute of Technology, Division of Biology and Biological EngineeringPasadenaUnited States
- Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Maria Ninova
- University of California, RiversideRiversideUnited States
| | - Katalin Fejes-Toth
- California Institute of Technology, Division of Biology and Biological EngineeringPasadenaUnited States
| | - Alexei Aravin
- California Institute of Technology, Division of Biology and Biological EngineeringPasadenaUnited States
| |
Collapse
|