1
|
Dantas A, Shueili BA, Park J, Abdullah S, Bertschmann J, Krowicki H, Djamshidi M, Yang Y, Blote K, Thalappilly S, Riabowol K. Tissue-specific localization of the ING4 targeting subunit of the HBO1 histone acetyltransferase in the cytoplasm and nucleus of secretory cells. Histochem Cell Biol 2025; 163:56. [PMID: 40402282 PMCID: PMC12098486 DOI: 10.1007/s00418-025-02385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2025] [Indexed: 05/23/2025]
Abstract
Members of the INhibitor of Growth protein family (ING1-5) function as epigenetic regulators by targeting different histone acetyltransferase (HAT) and histone deacetylase (HDAC) complexes to the H3K4Me3 mark of active transcription. The INGs recognize H3K4Me3 by specific interaction with their well-conserved plant homeodomains, and affinity can be increased by interactions between DNA and disordered regions within the ING proteins. They are classified as type II tumor suppressors since they are downregulated in numerous cancer types and knockout of ING family members results in tumorigenesis. ING4 targets the HBO1 HAT complex, which is known to affect acetylation of the H4 core nucleosomal histone, to affect local chromatin structure and knockout results in deficient innate immunity. Reports indicating roles in cell cycle regulation, tumor suppression, and apoptosis suggest that ING4 may be a promising target for cancer treatment by targeting pathways of innate immunity. Given the relatedness between ING4 and the closely related ING5 proteins, we have developed and characterized two mouse monoclonal antibodies to specifically recognize human and mouse ING4, but not ING5, to more accurately characterize ING4 levels by western, immunofluorescence and immunohistochemical assays. Using them, we show that ING4 differentially partitions between the nucleus and cytoplasm in different tissues and localizes largely to the cytoplasm of cells having a secretory role in different tissue types.
Collapse
Affiliation(s)
- Arthur Dantas
- Robson DNA Sciences Centre, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Buthaina Al Shueili
- Robson DNA Sciences Centre, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Jeongah Park
- Robson DNA Sciences Centre, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- University of Alberta, Edmonton, AB, Canada
| | - Suleyman Abdullah
- Robson DNA Sciences Centre, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- University of Western Ontario, London, ON, Canada
| | - Jessica Bertschmann
- Robson DNA Sciences Centre, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- Departments of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Hokan Krowicki
- Robson DNA Sciences Centre, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Calgary, Canada
| | - Mahbod Djamshidi
- Robson DNA Sciences Centre, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- Departments of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Yang Yang
- Robson DNA Sciences Centre, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Calgary, Canada
| | - Karen Blote
- Robson DNA Sciences Centre, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Calgary, Canada
| | - Subhash Thalappilly
- Robson DNA Sciences Centre, Calgary, Canada
- National University of Singapore, Queenstown, Singapore
| | - Karl Riabowol
- Robson DNA Sciences Centre, Calgary, Canada.
- Arnie Charbonneau Cancer Institute, Calgary, Canada.
- Departments of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
2
|
Yuan WC, Earl AS, Ma S, Alcedo K, Russell JO, Duarte FM, Chu YT, Chang PC, Chen HY, Chi HH, Zhu Q, Rodriguez-Fraticelli AE, Patel SH, Lee YR, Buenrostro JD, Camargo FD. HBO1 functions as an epigenetic barrier to hepatocyte plasticity and reprogramming during liver injury. Cell Stem Cell 2025:S1934-5909(25)00177-8. [PMID: 40403721 DOI: 10.1016/j.stem.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 02/19/2025] [Accepted: 04/22/2025] [Indexed: 05/24/2025]
Abstract
Hepatocytes can reprogram into biliary epithelial cells (BECs) during liver injury, but the underlying epigenetic mechanisms remain poorly understood. Here, we define the chromatin dynamics of this process using single-cell ATAC-seq and identify YAP/TEAD activation as a key driver of chromatin remodeling. An in vivo CRISPR screen highlights the histone acetyltransferase HBO1 as a critical barrier to reprogramming. HBO1 is recruited by YAP to target loci, where it promotes histone H3 lysine 14 acetylation (H3K14ac) and engages the chromatin reader zinc-finger MYND-type containing 8 (ZMYND8) to suppress YAP/TEAD-driven transcription. Loss of HBO1 accelerates chromatin remodeling, enhances YAP binding, and enables a more complete hepatocyte-to-BEC transition. Our findings position HBO1 as an epigenetic brake that restrains YAP-mediated reprogramming, suggesting that targeting HBO1 may enhance hepatocyte plasticity for liver regeneration.
Collapse
Affiliation(s)
- Wei-Chien Yuan
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
| | - Andrew S Earl
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sai Ma
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10026 USA
| | - Karel Alcedo
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jacquelyn O Russell
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fabiana M Duarte
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yen-Ting Chu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Pei-Chi Chang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Hsin-Hui Chi
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Qian Zhu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Lester Sue Smith Breast Center, Department of Molecular and Human Genetics, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Alejo E Rodriguez-Fraticelli
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sachin H Patel
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yu-Ru Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Jason D Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fernando D Camargo
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
3
|
Bergamasco MI, Ozturk E, Casillas-Espinosa PM, Garnham AL, Abeysekera W, Wimmer VC, Rajasekhar P, Vanyai HK, Whitehead L, Blewitt ME, Rogers K, Vogel AP, Hannan AJ, Smyth GK, Jones NC, Thomas T, Voss AK. KAT6B overexpression in mice causes aggression, anxiety, and epilepsy. iScience 2025; 28:111953. [PMID: 40083716 PMCID: PMC11904597 DOI: 10.1016/j.isci.2025.111953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/20/2024] [Accepted: 01/31/2025] [Indexed: 03/16/2025] Open
Abstract
Loss of the gene encoding the histone acetyltransferase KAT6B (MYST4/MORF/QKF) causes developmental brain abnormalities as well as behavioral and cognitive defects in mice. In humans, heterozygous variants in the KAT6B gene cause two cognitive disorders, Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS; OMIM:603736) and genitopatellar syndrome (GTPTS; OMIM:606170). Although the effects of KAT6B homozygous and heterozygous mutations have been documented in humans and mice, KAT6B gain-of-function effects have not been reported. Here, we show that overexpression of the Kat6b gene in mice caused aggression, anxiety, and spontaneous epilepsy. Kat6b overexpression led to an increase in histone H3 lysine 9 acetylation and upregulation of genes driving nervous system development and neuronal differentiation. Kat6b overexpression additionally promoted neural stem cell proliferation and favored neuronal over astrocyte differentiation in vivo and in vitro. Our results suggest that, in addition to loss-of-function alleles, gain-of-function KAT6B alleles may be detrimental for brain development.
Collapse
Affiliation(s)
- Maria I. Bergamasco
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ezgi Ozturk
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville VIC 3052, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Melbourne, VIC 3004, Australia
| | - Pablo M. Casillas-Espinosa
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville VIC 3052, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Melbourne, VIC 3004, Australia
| | - Alexandra L. Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Waruni Abeysekera
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Verena C. Wimmer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Pradeep Rajasekhar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Hannah K. Vanyai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Marnie E. Blewitt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kelly Rogers
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Adam P. Vogel
- Centre for Neurosciences of Speech, The University of Melbourne, Melbourne, VIC 3052, Australia
- Redenlab Inc, Melbourne, VIC 3000, Australia
| | - Anthony J. Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gordon K. Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nigel C. Jones
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville VIC 3052, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Melbourne, VIC 3004, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Anne K. Voss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
4
|
Wang M, Mu G, Qiu B, Wang S, Tao C, Mao Y, Zhao X, Liu J, Chen K, Li Z, Wang W, Yang E, Yang Y. Competitive antagonism of KAT7 crotonylation against acetylation affects procentriole formation and colorectal tumorigenesis. Nat Commun 2025; 16:2379. [PMID: 40064919 PMCID: PMC11893896 DOI: 10.1038/s41467-025-57546-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Accurate procentriole formation is critical for centriole duplication. However, the holistic transcriptional regulatory mechanisms underlying this process remain elusive. Here, we show that KAT7 crotonylation, facilitated by the crotonyltransferase hMOF, competes against its acetylation regulated by the deacetylase HDAC2 at the K432 residue upon DNA damage stimulation. This competition diminishes its histone acetyltransferase activity, leading to the inhibition of procentriole formation in colorectal cancer cells. Mechanistically, the reduction of KAT7 histone acetyltransferase activity by the antagonistic effect of KAT7 crotonylation against its acetylation decreases the gene expression associated with procentriole formation by modulating the enrichment of H3K14ac at their promoters and plays an important role in colorectal tumorigenesis. Furthermore, KAT7 crotonylation and acetylation are associated with the prognosis in colorectal cancer patients. Collectively, our findings uncover a previously unidentified role of KAT7 in the regulation of procentriole formation and colorectal tumorigenesis via competitive antagonism of its crotonylation against acetylation.
Collapse
Affiliation(s)
- Meng Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, 100191, China
| | - Guanqun Mu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Bingquan Qiu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shuo Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Changyu Tao
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yutong Mao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xinhui Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jiansong Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Keyu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ziyu Li
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Weibin Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ence Yang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Yang Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, 100191, China.
| |
Collapse
|
5
|
Mousavi N, Zhou E, Razavi A, Ebrahimi E, Varela-Castillo P, Yang XJ. P3 site-directed mutagenesis: An efficient method based on primer pairs with 3'-overhangs. J Biol Chem 2025; 301:108219. [PMID: 39863101 PMCID: PMC11910099 DOI: 10.1016/j.jbc.2025.108219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/23/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Site-directed mutagenesis is a fundamental tool indispensable for protein and plasmid engineering. An important technological question is how to achieve the ideal efficiency of 100%. Based on complementary primer pairs, the QuickChange method has been widely used, but it requires significant improvements due to its low efficiency and frequent unwanted mutations. An alternative and innovative strategy is to utilize primer pairs with 3'-overhangs, but this approach has not been fully developed. As the first step toward reaching the efficiency of 100%, we have optimized this approach systematically (such as use of newly designed short primers, test of different Pfu DNA polymerases, and modification of PCR parameters) and evaluated the resulting method extensively with >100 mutations on 12 mammalian expression vectors, ranging from 7.0 to 13.4 kb in size and encoding ten epigenetic regulators linked to cancer and neurodevelopmental disorders. We have also tested the new method with two expression vectors for the SARS-CoV-2 spike protein. Compared to the QuickChange method, the success rate has increased substantially, with an average efficiency of ∼50%, with some at or close to 100%, and requiring much less time for engineering various mutations. Therefore, we have developed a new site-directed mutagenesis method for efficient and economical generation of various mutations. Notably, the method failed with a human KAT2B expression plasmid that possesses extremely GC-rich sequences. Thus, this study also sheds light on how to improve the method for developing ideal mutagenesis methods with the efficiency of ∼100% for a wide spectrum of plasmids.
Collapse
Affiliation(s)
- Negar Mousavi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ethan Zhou
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Arezousadat Razavi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Elham Ebrahimi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | - Xiang-Jiao Yang
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
6
|
Bergamasco MI, Yang Y, Garnham AL, Sheikh BN, Smyth GK, Voss AK, Thomas T. KAT6B overexpression rescues embryonic lethality in homozygous null KAT6A mice restoring vitality and normal lifespan. Nat Commun 2025; 16:1958. [PMID: 40000651 PMCID: PMC11861323 DOI: 10.1038/s41467-025-57155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Closely related genes typically display common essential functions but also functional diversification, ensuring retention of both genes throughout evolution. The histone lysine acetyltransferases KAT6A (MOZ) and KAT6B (QKF/MORF), sharing identical protein domain structure, are mutually exclusive catalytic subunits of a multiprotein complex. Mutations in either KAT6A or KAT6B result in congenital intellectual disability disorders in human patients. In mice, loss of function of either gene results in distinct, severe phenotypic consequences. Here we show that, surprisingly, 4-fold overexpression of Kat6b rescues all previously described developmental defects in Kat6a mutant mice, including rescuing the absence of hematopoietic stem cells. Kat6b restores acetylation at histone H3 lysines 9 and 23 and reverses critical gene expression anomalies in Kat6a mutant mice. Our data suggest that the target gene specificity of KAT6A can be substituted by the related paralogue KAT6B, despite differences in amino acid sequence, if KAT6B is expressed at sufficiently high levels.
Collapse
Affiliation(s)
- Maria I Bergamasco
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Yuqing Yang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Bilal N Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
7
|
Anderson GA, Hernandez M, Quinde CA, Thompson Z, Binder-Blaser V, Taylor AM, Kathrein KL. Loss of ING4 enhances hematopoietic regeneration in multipotent progenitor cells. PLoS One 2025; 20:e0316256. [PMID: 39951458 PMCID: PMC11828401 DOI: 10.1371/journal.pone.0316256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/09/2024] [Indexed: 02/16/2025] Open
Abstract
Despite its critical role in survival, many aspects of hematopoiesis remain unresolved. In the classical model of the hematopoietic program, quiescent hematopoietic stem cells (HSCs) sit at the top of the hematopoietic hierarchy, with the ability to self-renew and differentiate as needed. HSCs give rise to more proliferative progenitor cells, which possess multipotent potential, but have largely or completely lost self-renewal capabilities. Here, we have identified the tumor suppressor, Inhibitor of Growth 4 (ING4), as a critical regulator of multipotent progenitor (MPP) homeostasis. In the absence of ING4, we show that MPPs express a transcriptional program of hematopoietic activation, yet they remain quiescent with low levels of reactive oxygen species. Functionally, ING4-deficient MPPs are capable of robust regeneration following competitive bone marrow transplantation, resulting in substantially higher blood chimerism compared to wild-type MPPs. These data suggest ING4 deficiency promotes a poised state in MPPs, quiescent but transcriptionally primed for activation, and capable of converting the poised state into robust repopulation upon stress. Our model provides key tools for further identification and characterization of pathways that control quiescence and regeneration in MPPs.
Collapse
Affiliation(s)
- Georgina A. Anderson
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Marco Hernandez
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Carlos Alfaro Quinde
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Zanshé Thompson
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina, United States of America
| | - Vera Binder-Blaser
- Department of Hematology and Oncology, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Alison M. Taylor
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, United States of America
| | - Katie L. Kathrein
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| |
Collapse
|
8
|
Lee K, Barone M, Waterbury AL, Jiang H, Nam E, DuBois-Coyne SE, Whedon SD, Wang ZA, Caroli J, Neal K, Ibeabuchi B, Dhoondia Z, Kuroda MI, Liau BB, Beck S, Mattevi A, Cole PA. Uncoupling histone modification crosstalk by engineering lysine demethylase LSD1. Nat Chem Biol 2025; 21:227-237. [PMID: 38965385 PMCID: PMC11699879 DOI: 10.1038/s41589-024-01671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Biochemical crosstalk between two or more histone modifications is often observed in epigenetic enzyme regulation, but its functional significance in cells has been difficult to discern. Previous enzymatic studies revealed that Lys14 acetylation of histone H3 can inhibit Lys4 demethylation by lysine-specific demethylase 1 (LSD1). In the present study, we engineered a mutant form of LSD1, Y391K, which renders the nucleosome demethylase activity of LSD1 insensitive to Lys14 acetylation. K562 cells with the Y391K LSD1 CRISPR knockin show decreased expression of a set of genes associated with cellular adhesion and myeloid leukocyte activation. Chromatin profiling revealed that the cis-regulatory regions of these silenced genes display a higher level of H3 Lys14 acetylation, and edited K562 cells show diminished H3 mono-methyl Lys4 near these silenced genes, consistent with a role for enhanced LSD1 demethylase activity. These findings illuminate the functional consequences of disconnecting histone modification crosstalk for a key epigenetic enzyme.
Collapse
Affiliation(s)
- Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Marco Barone
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Amanda L Waterbury
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eunju Nam
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sarah E DuBois-Coyne
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Samuel D Whedon
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Zhipeng A Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jonatan Caroli
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Katherine Neal
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Brian Ibeabuchi
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Zuzer Dhoondia
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Mitzi I Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Samuel Beck
- Department of Dermatology, Boston University School of Medicine & Boston Medical Center, Boston, MA, USA.
| | - Andrea Mattevi
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy.
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Bergamasco MI, Abeysekera W, Garnham AL, Hu Y, Li-Wai-Suen CS, Sheikh BN, Smyth GK, Thomas T, Voss AK. KAT6B is required for histone 3 lysine 9 acetylation and SOX gene expression in the developing brain. Life Sci Alliance 2025; 8:e202402969. [PMID: 39537341 PMCID: PMC11561263 DOI: 10.26508/lsa.202402969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Heterozygous mutations in the histone lysine acetyltransferase gene KAT6B (MYST4/MORF/QKF) underlie neurodevelopmental disorders, but the mechanistic roles of KAT6B remain poorly understood. Here, we show that loss of KAT6B in embryonic neural stem and progenitor cells (NSPCs) impaired cell proliferation, neuronal differentiation, and neurite outgrowth. Mechanistically, loss of KAT6B resulted in reduced acetylation at histone H3 lysine 9 and reduced expression of key nervous system development genes in NSPCs and the developing cortex, including the SOX gene family, in particular Sox2, which is a key driver of neural progenitor proliferation, multipotency and brain development. In the fetal cortex, KAT6B occupied the Sox2 locus. Loss of KAT6B caused a reduction in Sox2 promoter activity in NSPCs. Sox2 overexpression partially rescued the proliferative defect of Kat6b -/- NSPCs. Collectively, these results elucidate molecular requirements for KAT6B in brain development and identify key KAT6B targets in neural precursor cells and the developing brain.
Collapse
Affiliation(s)
- Maria I Bergamasco
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Waruni Abeysekera
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Yifang Hu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Connie Sn Li-Wai-Suen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Bilal N Sheikh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
10
|
Al Shueili B, Dantas A, Mahe E, Chu TH, Yang Y, Labit E, Kutluberk E, Lasaleta N, Masson A, Omairi H, Ito K, Krawetz RJ, Midha R, Cairncross G, Riabowol K. Knockout of the ING5 epigenetic regulator confirms roles in stem cell maintenance and tumor suppression in vivo. PLoS One 2025; 20:e0313255. [PMID: 39787145 PMCID: PMC11717183 DOI: 10.1371/journal.pone.0313255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/21/2024] [Indexed: 01/12/2025] Open
Abstract
INhibitor of Growth (ING1-5) proteins are epigenetic readers that target histone acetyltransferase (HAT) or histone deacetylase (HDAC) complexes to the H3K4Me3 mark of active transcription. ING5 targets Moz/Morf and HBO1 HAT complexes that alter acetylation of H3 and H4 core histones, affecting gene expression. Previous experiments in vitro indicated that ING5 functions to maintain stem cell character in normal and in cancer stem cells. Here we find that CRISPR/Cas9 ING5 knockout (KO) mice are sub-fertile but show no decrease in lifespan or ability to heal wounds despite indications of depleted stem cell pools in several tissues. ING5 KO mouse embryo fibroblasts accumulate in G2 of the cell cycle, have high levels of abnormal nuclei and show high basal levels of the γH2AX indicator of DNA damage. KO animals also develop severe dermatitis at a 5-fold higher rate that wild-type littermates. Consistent with ING5 serving a tumor suppressive role, ING5 KO mice developed germinal centre diffuse large B-cell lymphomas at a rate 6-fold higher than control mice at 18 months of age. These data suggest that ING5 functions in vivo to maintain stem cell character in multiple organs, that reduction of stem cell populations is not limiting for murine lifespan and that like a subset of other ING family members, ING5 functions as a tumor suppressor in hematopoietic cells in vivo.
Collapse
Affiliation(s)
- Buthaina Al Shueili
- Robson DNA Sciences Centre, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- Departments of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Arthur Dantas
- Robson DNA Sciences Centre, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Calgary, Canada
| | - Etienne Mahe
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- Departments of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tak Ho Chu
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Departments of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Yang Yang
- Robson DNA Sciences Centre, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- Departments of Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Elodie Labit
- Departments of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Eren Kutluberk
- Departments of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Nicolas Lasaleta
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Departments of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Anand Masson
- Departments of McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, Canada
- Departments of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
| | - Hiba Omairi
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- Departments of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Kenichi Ito
- Departments of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Roman J. Krawetz
- Departments of McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, Canada
- Departments of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
- Departments of Surgery, University of Calgary, Calgary, Canada
| | - Rajiv Midha
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Departments of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Gregory Cairncross
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Departments of Oncology, University of Calgary, Calgary, Canada
| | - Karl Riabowol
- Robson DNA Sciences Centre, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- Departments of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
- Departments of Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Departments of Oncology, University of Calgary, Calgary, Canada
| |
Collapse
|
11
|
Hifdi N, Vaucourt M, Hnia K, Panasyuk G, Vandromme M. Phosphoinositide signaling in the nucleus: Impacts on chromatin and transcription regulation. Biol Cell 2025; 117:e2400096. [PMID: 39707648 PMCID: PMC11771838 DOI: 10.1111/boc.202400096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
Phosphoinositides also called Polyphosphoinositides (PPIns) are small lipid messengers with established key roles in organelle trafficking and cell signaling in response to physiological and environmental inputs. Besides their well-described functions in the cytoplasm, accumulating evidences pointed to PPIns involvement in transcription and chromatin regulation. Through the description of previous and recent advances of PPIns implication in transcription, this review highlights key discoveries on how PPIns modulate nuclear factors activity and might impact chromatin to modify gene expression. Finally, we discuss how PPIns nuclear and cytosolic metabolisms work jointly in orchestrating key transduction cascades that end in the nucleus to modulate gene expression.
Collapse
Affiliation(s)
- Nesrine Hifdi
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM‐UMR 1297/University Paul SabatierToulouse Cedex 4France
| | - Mathilde Vaucourt
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM‐UMR 1297/University Paul SabatierToulouse Cedex 4France
| | - Karim Hnia
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM‐UMR 1297/University Paul SabatierToulouse Cedex 4France
| | - Ganna Panasyuk
- Institut Necker‐Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université de Paris CitéParisFrance
| | - Marie Vandromme
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM‐UMR 1297/University Paul SabatierToulouse Cedex 4France
| |
Collapse
|
12
|
Ahn JY, Kim S, Rok Kim C, Lee JH, Kim JM, Klompstra TM, Ha Choi Y, Jeon Y, Na Y, Kim JS, Okada Y, Lee H, Kim IS, Kim JK, Koo BK, Baek SH. Dual function of PHF16 in reinstating homeostasis of murine intestinal epithelium after crypt regeneration. Dev Cell 2024; 59:3089-3105.e7. [PMID: 39232563 DOI: 10.1016/j.devcel.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/24/2023] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
Intestinal stem cells (ISCs) are highly vulnerable to damage, being in a constant state of proliferation. Reserve stem cells repair the intestinal epithelium following damage-induced ablation of ISCs. Here, we report that the epigenetic regulator plant homology domain (PHD) finger protein 16 (PHF16) restores homeostasis of the intestinal epithelium after initial damage-induced repair. In Phf16-/Y mice, revival stem cells (revSCs) showed defects in exiting the regenerative state, and intestinal crypt regeneration failed even though revSCs were still induced in response to tissue damage, as observed by single-cell RNA sequencing (scRNA-seq). Analysis of Phf16-/Y intestinal organoids by RNA sequencing (RNA-seq) and ATAC sequencing identified that PHF16 restores homeostasis of the intestinal epithelium by inducing retinoic acid receptor (RAR)/retinoic X receptor (RXR) target genes through HBO1-mediated histone H3K14 acetylation, while at the same time counteracting YAP/TAZ activity by ubiquitination of CDC73. Together, our findings demonstrate the importance of timely suppression of regenerative activity by PHF16 for the restoration of gut homeostasis after acute tissue injury.
Collapse
Affiliation(s)
- Jun-Yeong Ahn
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Seoul National University, Seoul 08826, South Korea; School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Somi Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Chang Rok Kim
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Seoul National University, Seoul 08826, South Korea; School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Ji-Hyun Lee
- Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon 34126, South Korea
| | - Jong Min Kim
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Seoul National University, Seoul 08826, South Korea; School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Thomas M Klompstra
- Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon 34126, South Korea
| | - Yoon Ha Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Yoon Jeon
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, South Korea
| | - Yongwoo Na
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jong-Seo Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for RNA Research, Institute for Basic Science, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Yuki Okada
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Ho Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, South Korea
| | - Ik Soo Kim
- Department of Microbiology, Gachon University College of Medicine, Incheon 21999, South Korea.
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, South Korea.
| | - Bon-Kyoung Koo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea; Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon 34126, South Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Seoul National University, Seoul 08826, South Korea; School of Biological Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
13
|
Su Z, Zhang Y, Tang J, Zhou Y, Long C. Multifunctional acyltransferase HBO1: a key regulatory factor for cellular functions. Cell Mol Biol Lett 2024; 29:141. [PMID: 39543485 PMCID: PMC11566351 DOI: 10.1186/s11658-024-00661-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
HBO1, also known as KAT7 or MYST2, is a crucial histone acetyltransferase with diverse cellular functions. It typically forms complexes with protein subunits or cofactors such as MEAF6, ING4, or ING5, and JADE1/2/3 or BRPF1/2/3, where the BRPF or JADE proteins serve as the scaffold targeting histone H3 or H4, respectively. The histone acetylation mediated by HBO1 plays significant roles in DNA replication and gene expression regulation. Additionally, HBO1 catalyzes the modification of proteins through acylation with propionyl, butyryl, crotonyl, benzoyl, and acetoacetyl groups. HBO1 undergoes ubiquitination and degradation by two types of ubiquitin complexes and can also act as an E3 ubiquitin ligase for the estrogen receptor α (ERα). Moreover, HBO1 participates in the expansion of medullary thymic epithelial cells (mTECs) and regulates the expression of peripheral tissue genes (PTGs) mediated by autoimmune regulator (AIRE), thus inducing immune tolerance. Furthermore, HBO1 influences the renewal of hematopoietic stem cells and the development of neural stem cells significantly. Importantly, the overexpression of HBO1 in various cancers suggests its carcinogenic role and potential as a therapeutic target. This review summarizes recent advancements in understanding HBO1's involvement in acylation modification, DNA replication, ubiquitination, immunity, and stem cell renewal.
Collapse
Affiliation(s)
- Zhanhuan Su
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Yang Zhang
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Jingqiong Tang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| | - Chen Long
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
14
|
Li L, Zhang X, Xu G, Xue R, Li S, Wu S, Yang Y, Lin Y, Lin J, Liu G, Gao S, Zhang Y, Ye Q. Transcriptional Regulation of De Novo Lipogenesis by SIX1 in Liver Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404229. [PMID: 39258807 PMCID: PMC11538671 DOI: 10.1002/advs.202404229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/29/2024] [Indexed: 09/12/2024]
Abstract
De novo lipogenesis (DNL), a hallmark of cancer, facilitates tumor growth and metastasis. Therapeutic drugs targeting DNL are being developed. However, how DNL is directly regulated in cancer remains largely unknown. Here, transcription factor sine oculis homeobox 1 (SIX1) is shown to directly increase the expression of DNL-related genes, including ATP citrate lyase (ACLY), fatty acid synthase (FASN), and stearoyl-CoA desaturase 1 (SCD1), via histone acetyltransferases amplified in breast cancer 1 (AIB1) and lysine acetyltransferase 7 (HBO1/KAT7), thus promoting lipogenesis. SIX1 expression is regulated by insulin/lncRNA DGUOK-AS1/microRNA-145-5p axis, which also modulates DNL-related gene expression as well as DNL. The DGUOK-AS1/microRNA-145-5p/SIX1 axis regulates liver cancer cell proliferation, invasion, and metastasis in vitro and in vivo. In patients with liver cancer, SIX1 expression is positively correlated with DGUOK-AS1 and SCD1 expression and is negatively correlated with microRNA-145-5p expression. DGUOK-AS1 is a good predictor of prognosis. Thus, the DGUOK-AS1/microRNA-145-5p/SIX1 axis strongly links DNL to tumor growth and metastasis and may become an avenue for liver cancer therapeutic intervention.
Collapse
Affiliation(s)
- Ling Li
- Beijing Institute of BiotechnologyBeijing100071China
| | - Xiujuan Zhang
- Beijing Institute of BiotechnologyBeijing100071China
| | - Guang Xu
- School of Traditional Chinese MedicineCapital Medical UniversityBeijing100069China
| | - Rui Xue
- Beijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Shuo Li
- Beijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Shumeng Wu
- Beijing Institute of BiotechnologyBeijing100071China
- School of Basic Medical SciencesShanxi Medical UniversityTaiyuan030000China
| | - Yuanjun Yang
- Beijing Institute of BiotechnologyBeijing100071China
- School of Basic Medical SciencesShanxi Medical UniversityTaiyuan030000China
| | - Yanni Lin
- Beijing Institute of BiotechnologyBeijing100071China
- School of Basic Medical SciencesShanxi Medical UniversityTaiyuan030000China
| | - Jing Lin
- Beijing Institute of BiotechnologyBeijing100071China
- Department of Clinical LaboratoryThe Fourth Medical Center of PLA General HospitalBeijing100037China
| | - Guoxiao Liu
- Department of General SurgeryThe First Medical Center of PLA General HospitalBeijing100853China
| | - Shan Gao
- Zhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthSoutheast UniversityNanjing210096China
| | - Youzhi Zhang
- Beijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Qinong Ye
- Beijing Institute of BiotechnologyBeijing100071China
| |
Collapse
|
15
|
Zhang H, Liu X, Li J, Meng J, Huang W, Su X, Zhang X, Gao G, Wang X, Su H, Zhang F, Zhang T. ING5 inhibits aerobic glycolysis of lung cancer cells by promoting TIE1-mediated phosphorylation of pyruvate dehydrogenase kinase 1 at Y163. Front Med 2024; 18:878-895. [PMID: 39269568 DOI: 10.1007/s11684-024-1057-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/04/2023] [Indexed: 09/15/2024]
Abstract
Aerobic glycolysis is critical for tumor growth and metastasis. Previously, we have found that the overexpression of the inhibitor of growth 5 (ING5) inhibits lung cancer aggressiveness and epithelial-mesenchymal transition (EMT). However, whether ING5 regulates lung cancer metabolism reprogramming remains unknown. Here, by quantitative proteomics, we showed that ING5 differentially regulates protein phosphorylation and identified a new site (Y163) of the key glycolytic enzyme PDK1 whose phosphorylation was upregulated 13.847-fold. By clinical study, decreased p-PDK1Y163 was observed in lung cancer tissues and correlated with poor survival. p-PDK1Y163 represents the negative regulatory mechanism of PDK1 by causing PDHA1 dephosphorylation and activation, leading to switching from glycolysis to oxidative phosphorylation, with increasing oxygen consumption and decreasing lactate production. These effects could be impaired by PDK1Y163F mutation, which also impaired the inhibitory effects of ING5 on cancer cell EMT and invasiveness. Mouse xenograft models confirmed the indispensable role of p-PDK1Y163 in ING5-inhibited tumor growth and metastasis. By siRNA screening, ING5-upregulated TIE1 was identified as the upstream tyrosine protein kinase targeting PDK1Y163. TIE1 knockdown induced the dephosphorylation of PDK1Y163 and increased the migration and invasion of lung cancer cells. Collectively, ING5 overexpression-upregulated TIE1 phosphorylates PDK1Y163, which is critical for the inhibition of aerobic glycolysis and invasiveness of lung cancer cells.
Collapse
Affiliation(s)
- Haihua Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xinli Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710038, China
| | - Junqiang Li
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jin Meng
- Department of Pharmacy, the Medical Security Centre, Chinese PLA General Hospital, Beijing, 100091, China
| | - Wan Huang
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, 710038, China
| | - Xuan Su
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xutao Zhang
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710038, China
| | - Guizhou Gao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xiaodong Wang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Haichuan Su
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710038, China.
| | - Tao Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
16
|
Yokoyama A, Niida H, Kutateladze TG, Côté J. HBO1, a MYSTerious KAT and its links to cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195045. [PMID: 38851533 PMCID: PMC11330361 DOI: 10.1016/j.bbagrm.2024.195045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
The histone acetyltransferase HBO1, also known as KAT7, is a major chromatin modifying enzyme responsible for H3 and H4 acetylation. It is found within two distinct tetrameric complexes, the JADE subunit-containing complex and BRPF subunit-containing complex. The HBO1-JADE complex acetylates lysine 5, 8 and 12 of histone H4, and the HBO1-BRPF complex acetylates lysine 14 of histone H3. HBO1 regulates gene transcription, DNA replication, DNA damage repair, and centromere function. It is involved in diverse signaling pathways and plays crucial roles in development and stem cell biology. Recent work has established a strong relationship of HBO1 with the histone methyltransferase MLL/KMT2A in acute myeloid leukemia. Here, we discuss functional and pathological links of HBO1 to cancer, highlighting the underlying mechanisms that may pave the way to the development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata 997-0052, Japan.
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, United States of America.
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division-CHU de Québec-UL Research Center, Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada.
| |
Collapse
|
17
|
Yuan Q, Wu Y, Xue C, Zhao D, Wang H, Shen Y. KAT7 serves as an oncogenic gene and regulates CCL3 expression via STAT1 signaling in osteosarcoma. Biochem Biophys Res Commun 2024; 722:150156. [PMID: 38797155 DOI: 10.1016/j.bbrc.2024.150156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Osteosarcoma, considered as the primary cause of malignant bone tumors in children, necessitates novel therapeutic strategies to enhance overall survival rates. KAT7, a histone acetyltransferase, exerts pivotal functions in gene transcription and immune modulation. In light of this, our study identified a significant upregulation of KAT7 in the mRNA and protein levels in human osteosarcoma, boosting cell proliferation in vivo and in vitro. In addition, KAT7-mediated H3K14ac activation induced MMP14 transcription, leading to increased expression and facilitation of osteosarcoma cell metastasis. Subsequent bioinformatics analyses highlighted a correlation between KAT7 and adaptive immune responses, indicating CCL3 as a downstream target of KAT7. Mechanistically, STAT1 was found to transcriptionally upregulate CCL3 expression. Furthermore, overexpression of KAT7 suppressed CCL3 secretions, whereas knockdown of KAT7 enhanced its release. Overall, these findings underscore the oncogenic role of KAT7 in regulating immune responses for osteosarcoma treatment.
Collapse
Affiliation(s)
- Quan Yuan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu Province, People's Republic of China
| | - Yuxuan Wu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Cheng Xue
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Deyong Zhao
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Haibo Wang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Yixin Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu Province, People's Republic of China.
| |
Collapse
|
18
|
Tang YJ, Xu H, Hughes NW, Kim SH, Ruiz P, Shuldiner EG, Lopez SS, Hebert JD, Karmakar S, Andrejka L, Dolcen DN, Boross G, Chu P, Detrick C, Pierce S, Ashkin EL, Greenleaf WJ, Voss AK, Thomas T, van de Rijn M, Petrov DA, Winslow MM. Functional mapping of epigenetic regulators uncovers coordinated tumor suppression by the HBO1 and MLL1 complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.607671. [PMID: 39229041 PMCID: PMC11370414 DOI: 10.1101/2024.08.19.607671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Epigenetic dysregulation is widespread in cancer. However, the specific epigenetic regulators and the processes they control to drive cancer phenotypes are poorly understood. Here, we employed a novel, scalable and high-throughput in vivo method to perform iterative functional screens of over 250 epigenetic regulatory genes within autochthonous oncogenic KRAS-driven lung tumors. We identified multiple novel epigenetic tumor suppressor and tumor dependency genes. We show that a specific HBO1 complex and the MLL1 complex are among the most impactful tumor suppressive epigenetic regulators in lung. The histone modifications generated by the HBO1 complex are frequently absent or reduced in human lung adenocarcinomas. The HBO1 and MLL1 complexes regulate chromatin accessibility of shared genomic regions, lineage fidelity and the expression of canonical tumor suppressor genes. The HBO1 and MLL1 complexes are epistatic during lung tumorigenesis, and their functional correlation is conserved in human cancer cell lines. Together, these results demonstrate the value of quantitative methods to generate a phenotypic roadmap of epigenetic regulatory genes in tumorigenesis in vivo .
Collapse
|
19
|
Thompson Z, Anderson GA, Hernandez M, Alfaro Quinde C, Marchione A, Rodriguez M, Gabriel S, Binder V, Taylor AM, Kathrein KL. Ing4-deficiency promotes a quiescent yet transcriptionally poised state in hematopoietic stem cells. iScience 2024; 27:110521. [PMID: 39175773 PMCID: PMC11340613 DOI: 10.1016/j.isci.2024.110521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/14/2024] [Accepted: 07/12/2024] [Indexed: 08/24/2024] Open
Abstract
Defining the mechanisms that regulate stem cell maintenance, proliferation, and differentiation is critical for identifying therapies for improving stem cell function under stress. Here, we have identified the tumor suppressor, inhibitor of growth 4 (Ing4), as a critical regulator of hematopoietic stem cell (HSC) homeostasis. Cancer cell line models with Ing4 deficiency have shown that Ing4 functions as a tumor suppressor, in part, due to Ing4-mediated regulation of several major signaling pathways, including c-Myc. In HSCs, we show Ing4 deficiency promotes gene expression signatures associated with activation, yet HSCs are arrested in G0, expressing several markers of quiescence. Functionally, Ing4-deficient HSCs demonstrate robust regenerative capacity following transplantation. Our findings suggest Ing4 deficiency promotes a poised state in HSCs, where they appear transcriptionally primed for activation but remain in a resting state. Our model provides key tools for further identification and characterization of pathways that control quiescence and self-renewal in HSCs.
Collapse
Affiliation(s)
- Zanshé Thompson
- University of South Carolina, Department of Biomedical Engineering, Columbia, SC, USA
| | - Georgina A. Anderson
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | - Marco Hernandez
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | - Carlos Alfaro Quinde
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | - Alissa Marchione
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | - Melanie Rodriguez
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | - Seth Gabriel
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | - Vera Binder
- Department of Hematology and Oncology, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians University, 80539 Munich, Germany
| | - Alison M. Taylor
- Columbia University Medical Center, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, New York, NY 10032, USA
| | - Katie L. Kathrein
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| |
Collapse
|
20
|
Hong G, Chen W, Gong M, Wu Y, Shu G, Xiao Y, Zhang T, ShuXiong X. KAT7 suppresses tumorigenesis in clear cell renal cell carcinoma (ccRCC) by regulating cell cycle and ferroptosis sensitivity. Exp Cell Res 2024; 441:114149. [PMID: 38960363 DOI: 10.1016/j.yexcr.2024.114149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most aggressive malignancies in the urological system, known for its high immunogenicity. However, its pathogenesis remains unclear. This study utilized bioinformatics algorithms and in vitro experiments to investigate the role of KAT7 in ccRCC. The results indicate that KAT7 is significantly downregulated in ccRCC tissues and cell lines, which is linked to distant metastasis and unfavorable outcomes in ccRCC patients. Overexpression of KAT7 in vitro notably decreased the proliferation, migration, and invasion of renal cancer cells and inhibited Epithelial-Mesenchymal Transition (EMT). Additionally, Gene Set Enrichment Analysis (GSEA) demonstrated that KAT7-related gene functions are associated with cell cycle and ferroptosis transcription factors. Treatment with a KAT7 acetylation inhibitor in ccRCC cell lines reversed the S phase arrest caused by KAT7 overexpression. Similarly, ferroptosis inhibitors alleviated ferroptosis induced by overexpressed KAT7. In conclusion, the findings suggest that KAT7 acts as a tumor suppressor in ccRCC by modulating the cell cycle and ferroptosis sensitivity, underscoring its potential as a therapeutic target and prognostic biomarker for renal cell carcinoma patients.
Collapse
Affiliation(s)
- GuangYi Hong
- Guizhou University Medicine College, Guiyang, 550025, Guizhou Province, China
| | - Wei Chen
- Department of Urology, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China
| | - MaoDi Gong
- Department of Urology, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China
| | - YiKun Wu
- Guizhou University Medicine College, Guiyang, 550025, Guizhou Province, China
| | - GuoFeng Shu
- Department of Urology, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China
| | - Yu Xiao
- Department of Urology, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China
| | - Tao Zhang
- Guizhou University Medicine College, Guiyang, 550025, Guizhou Province, China
| | - Xu ShuXiong
- Department of Urology, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China.
| |
Collapse
|
21
|
Nguyen MC, Rostamian H, Raman A, Wei P, Becht DC, Erbse AH, Klein BJ, Gilbert TM, Zhang G, Blanco MA, Strahl BD, Taverna SD, Kutateladze TG. Molecular insight into interactions between the Taf14, Yng1 and Sas3 subunits of the NuA3 complex. Nat Commun 2024; 15:5335. [PMID: 38914563 PMCID: PMC11196586 DOI: 10.1038/s41467-024-49730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
The NuA3 complex is a major regulator of gene transcription and the cell cycle in yeast. Five core subunits are required for complex assembly and function, but it remains unclear how these subunits interact to form the complex. Here, we report that the Taf14 subunit of the NuA3 complex binds to two other subunits of the complex, Yng1 and Sas3, and describe the molecular mechanism by which the extra-terminal domain of Taf14 recognizes the conserved motif present in Yng1 and Sas3. Structural, biochemical, and mutational analyses show that two motifs are sandwiched between the two extra-terminal domains of Taf14. The head-to-toe dimeric complex enhances the DNA binding activity of Taf14, and the formation of the hetero-dimer involving the motifs of Yng1 and Sas3 is driven by sequence complementarity. In vivo assays in yeast demonstrate that the interactions of Taf14 with both Sas3 and Yng1 are required for proper function of the NuA3 complex in gene transcription and DNA repair. Our findings suggest a potential basis for the assembly of three core subunits of the NuA3 complex, Taf14, Yng1 and Sas3.
Collapse
Affiliation(s)
- Minh Chau Nguyen
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Hosein Rostamian
- Department of Biochemistry & Biophysics, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Ana Raman
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Pengcheng Wei
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Dustin C Becht
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Annette H Erbse
- Department of Biochemistry, University of Colorado, Boulder, CO, 80303, USA
| | - Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Tonya M Gilbert
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gongyi Zhang
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA
| | - M Andres Blanco
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Sean D Taverna
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
22
|
Liu SC. Comprehensive analysis of clinical and biological value of ING family genes in liver cancer. World J Gastrointest Oncol 2024; 16:2580-2597. [DOI: 10.4251/wjgo.v16.i6.2580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/17/2024] [Accepted: 04/22/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Liver cancer (LIHC) is a malignant tumor that occurs in the liver and has a high mortality in cancer. The ING family genes were identified as tumor suppressor genes. Dysregulated expression of these genes can lead to cell cycle arrest, senescence and/or apoptosis. ING family genes are promising targets for anticancer therapy. However, their role in LIHC is still not well understood.
AIM To have a better understanding of the important roles of ING family members in LIHC.
METHODS A series of bioinformatics approaches (including gene expression analysis, genetic alteration analysis, survival analysis, immune infiltration analysis, prediction of upstream microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) of ING1, and ING1-related gene functional enrichment analysis) was applied to study the expression profile, clinical relationship, prognostic significance and immune infiltration of ING in LIHC. The relationship between ING family genes expression and tumor associated immune checkpoints was investigated in LIHC. The molecular mechanism of ING1 mediated hepatocarcinogenesis was preliminarily discussed.
RESULTS mRNA/protein expression of different ING family genes in LIHC was analyzed in different databases, showing that ING family genes were highly expressed in LIHC. In 47 samples from 366 LIHC patients, the ING family genes were altered at a rate of 13%. By comprehensively analyzing the expression, clinical pathological parameters and prognostic value of ING family genes, ING1/5 was identified. ING1/5 was related to poor prognosis of LIHC, suggesting that they may play key roles in LIHC tumorigenesis and progression. One of the target miRNAs of ING1 was identified as hsa-miR-214-3p. Two upstream lncRNAs of hsa-miR-214-3p, U91328.1, and HCG17, were identified. At the same time, we found that the expression of ING family genes was correlated with immune cell infiltration and immune checkpoint genes.
CONCLUSION This study lays a foundation for further research on the potential mechanism and clinical value of ING family genes in the treatment and prognosis of LIHC.
Collapse
Affiliation(s)
- Shi-Cai Liu
- School of Medical Information, Wannan Medical College, Wuhu 241002, Anhui Province, China
| |
Collapse
|
23
|
Liu SC. Comprehensive analysis of clinical and biological value of ING family genes in liver cancer. World J Gastrointest Oncol 2024; 16:2592-2609. [PMID: 38994155 PMCID: PMC11236222 DOI: 10.4251/wjgo.v16.i6.2592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/17/2024] [Accepted: 04/22/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Liver cancer (LIHC) is a malignant tumor that occurs in the liver and has a high mortality in cancer. The ING family genes were identified as tumor suppressor genes. Dysregulated expression of these genes can lead to cell cycle arrest, senescence and/or apoptosis. ING family genes are promising targets for anticancer therapy. However, their role in LIHC is still not well understood. AIM To have a better understanding of the important roles of ING family members in LIHC. METHODS A series of bioinformatics approaches (including gene expression analysis, genetic alteration analysis, survival analysis, immune infiltration analysis, prediction of upstream microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) of ING1, and ING1-related gene functional enrichment analysis) was applied to study the expression profile, clinical relationship, prognostic significance and immune infiltration of ING in LIHC. The relationship between ING family genes expression and tumor associated immune checkpoints was investigated in LIHC. The molecular mechanism of ING1 mediated hepatocarcinogenesis was preliminarily discussed. RESULTS mRNA/protein expression of different ING family genes in LIHC was analyzed in different databases, showing that ING family genes were highly expressed in LIHC. In 47 samples from 366 LIHC patients, the ING family genes were altered at a rate of 13%. By comprehensively analyzing the expression, clinical pathological parameters and prognostic value of ING family genes, ING1/5 was identified. ING1/5 was related to poor prognosis of LIHC, suggesting that they may play key roles in LIHC tumorigenesis and progression. One of the target miRNAs of ING1 was identified as hsa-miR-214-3p. Two upstream lncRNAs of hsa-miR-214-3p, U91328.1, and HCG17, were identified. At the same time, we found that the expression of ING family genes was correlated with immune cell infiltration and immune checkpoint genes. CONCLUSION This study lays a foundation for further research on the potential mechanism and clinical value of ING family genes in the treatment and prognosis of LIHC.
Collapse
Affiliation(s)
- Shi-Cai Liu
- School of Medical Information, Wannan Medical College, Wuhu 241002, Anhui Province, China
| |
Collapse
|
24
|
Richter E, Patel P, Babu JR, Wang X, Geetha T. The Importance of Sleep in Overcoming Childhood Obesity and Reshaping Epigenetics. Biomedicines 2024; 12:1334. [PMID: 38927541 PMCID: PMC11201669 DOI: 10.3390/biomedicines12061334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The development of childhood obesity is a complex process influenced by a combination of genetic predisposition and environmental factors, such as sleep, diet, physical activity, and socioeconomic status. Long-term solutions for decreasing the risk of childhood obesity remain elusive, despite significant advancements in promoting health and well-being in school and at home. Challenges persist in areas such as adherence to interventions, addressing underlying social determinants, and individual differences in response to treatment. Over the last decade, there has been significant progress in epigenetics, along with increased curiosity in gaining insights into how sleep and lifestyle decisions impact an individual's health. Epigenetic modifications affect the expression of genes without causing changes to the fundamental DNA sequence. In recent years, numerous research studies have explored the correlation between sleep and the epigenome, giving a better understanding of DNA methylation, histone modification, and non-coding RNAs. Although significant findings have been made about the influence of sleep on epigenetics, a notable gap exists in the literature concerning sleep-related genes specifically associated with childhood obesity. Consequently, it is crucial to delve deeper into this area to enhance our understanding. Therefore, this review primarily focuses on the connection between sleep patterns and epigenetic modifications in genes related to childhood obesity. Exploring the interplay between sleep, epigenetics, and childhood obesity can potentially contribute to improved overall health outcomes. This comprehensive review encompasses studies focusing on sleep-related genes linked to obesity.
Collapse
Affiliation(s)
- Erika Richter
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Priyadarshni Patel
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
- Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, USA
| | - Xu Wang
- Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
- Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
25
|
Zhao W, Xia Y, Li T, Liu H, Zhong G, Chen D, Yu W, Li Y, Huang F. Hepatitis E virus infection upregulates ING5 expression in vitro and in vivo. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1365-1372. [PMID: 38877781 PMCID: PMC11532201 DOI: 10.3724/abbs.2024091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/20/2024] [Indexed: 06/16/2024] Open
Abstract
Hepatitis E virus (HEV) is the major pathogen of viral hepatitis. Immunocompromised individuals infected by HEV are prone to chronic hepatitis and increase the risk of hepato-cellular carcinoma (HCC). Inhibitor of growth family member 5 (ING5) is a tumor suppressor that is expressed at low levels in cancer tumors or cells. However, the underlying relationship between ING5 and HEV infection is unclear. In the present study, acute and chronic HEV animal models are used to explore the interaction between ING5 and HEV. Notably, the expression of ING5 is significantly increased in both the livers of acute HEV-infected BALB/c mice and chronic HEV-infected rhesus macaques. In addition, the relationship between HEV infection and ING5 expression is further identified in human hepatoma (HepG-2) cells. In conclusion, HEV infection strongly upregulates ING5 expression both in vivo and in vitro, which has significant implications for further understanding the pathogenic mechanism of HEV infection.
Collapse
Affiliation(s)
- Wanqiu Zhao
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Yueping Xia
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Tengyuan Li
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Huichan Liu
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Guo Zhong
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Dongxue Chen
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| | - Wenhai Yu
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunming650038China
| | - Yunlong Li
- Medical FacultyKunming University of Science and TechnologyKunming650500China
- Yunnan Provincial Key Laboratory of Clinical VirologyKunming650032China
| | - Fen Huang
- Medical FacultyKunming University of Science and TechnologyKunming650500China
| |
Collapse
|
26
|
Donoghue S, Wright J, Voss AK, Lockhart PJ, Amor DJ. The Mendelian disorders of chromatin machinery: Harnessing metabolic pathways and therapies for treatment. Mol Genet Metab 2024; 142:108360. [PMID: 38428378 DOI: 10.1016/j.ymgme.2024.108360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
The Mendelian disorders of chromatin machinery (MDCMs) represent a distinct subgroup of disorders that present with neurodevelopmental disability. The chromatin machinery regulates gene expression by a range of mechanisms, including by post-translational modification of histones, responding to histone marks, and remodelling nucleosomes. Some of the MDCMs that impact on histone modification may have potential therapeutic interventions. Two potential treatment strategies are to enhance the intracellular pool of metabolites that can act as substrates for histone modifiers and the use of medications that may inhibit or promote the modification of histone residues to influence gene expression. In this article we discuss the influence and potential treatments of histone modifications involving histone acetylation and histone methylation. Genomic technologies are facilitating earlier diagnosis of many Mendelian disorders, providing potential opportunities for early treatment from infancy. This has parallels with how inborn errors of metabolism have been afforded early treatment with newborn screening. Before this promise can be fulfilled, we require greater understanding of the biochemical fingerprint of these conditions, which may provide opportunities to supplement metabolites that can act as substrates for chromatin modifying enzymes. Importantly, understanding the metabolomic profile of affected individuals may also provide disorder-specific biomarkers that will be critical for demonstrating efficacy of treatment, as treatment response may not be able to be accurately assessed by clinical measures.
Collapse
Affiliation(s)
- Sarah Donoghue
- Murdoch Children's Research Institute, Parkville 3052, Australia; Department of Biochemical Genetics, Victorian Clinical Genetics Services, Parkville 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia.
| | - Jordan Wright
- Murdoch Children's Research Institute, Parkville 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - Anne K Voss
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3052, Australia
| | - Paul J Lockhart
- Murdoch Children's Research Institute, Parkville 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - David J Amor
- Murdoch Children's Research Institute, Parkville 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| |
Collapse
|
27
|
Kalamuddin M, Shakri AR, Wang C, Min H, Li X, Cui L, Miao J. MYST regulates DNA repair and forms a NuA4-like complex in the malaria parasite Plasmodium falciparum. mSphere 2024; 9:e0014024. [PMID: 38564734 PMCID: PMC11036802 DOI: 10.1128/msphere.00140-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Histone lysine acetyltransferase MYST-associated NuA4 complex is conserved from yeast to humans and plays key roles in cell cycle regulation, gene transcription, and DNA replication/repair. Here, we identified a Plasmodium falciparum MYST-associated complex, PfNuA4, which contains 11 of the 13 conserved NuA4 subunits. Reciprocal pulldowns using PfEAF2, a shared component between the NuA4 and SWR1 complexes, not only confirmed the PfNuA4 complex but also identified the PfSWR1 complex, a histone remodeling complex, although their identities are low compared to the homologs in yeast or humans. Notably, both H2A.Z/H2B.Z were associated with the PfSWR1 complex, indicating that this complex is involved in the deposition of H2A.Z/H2B.Z, the variant histone pair that is enriched in the activated promoters. Overexpression of PfMYST resulted in earlier expression of genes involved in cell cycle regulation, DNA replication, and merozoite invasion, and upregulation of the genes related to antigenic variation and DNA repair. Consistently, PfMYST overexpression led to high basal phosphorylated PfH2A (γ-PfH2A), the mark of DNA double-strand breaks, and conferred protection against genotoxic agent methyl methanesulfonate (MMS), X-rays, and artemisinin, the first-line antimalarial drug. In contrast, the knockdown of PfMYST caused a delayed parasite recovery upon MMS treatment. MMS induced the gradual disappearance of PfMYST in the cytoplasm and concomitant accumulation of PfMYST in the nucleus, suggesting cytoplasm-nucleus shuttling of PfMYST. Meanwhile, PfMYST colocalized with the γ-PfH2A, indicating PfMYST was recruited to the DNA damage sites. Collectively, PfMYST plays critical roles in cell cycle regulation, gene transcription, and DNA replication/DNA repair in this low-branching parasitic protist.IMPORTANCEUnderstanding gene regulation and DNA repair in malaria parasites is critical for identifying targets for antimalarials. This study found PfNuA4, a PfMYST-associated, histone modifier complex, and PfSWR1, a chromatin remodeling complex in malaria parasite Plasmodium falciparum. These complexes are divergent due to the low identities compared to their homologs from yeast and humans. Furthermore, overexpression of PfMYST resulted in substantial transcriptomic changes, indicating that PfMYST is involved in regulating the cell cycle, antigenic variation, and DNA replication/repair. Consistently, PfMYST was found to protect against DNA damage caused by the genotoxic agent methyl methanesulfonate, X-rays, and artemisinin, the first-line antimalarial drug. Additionally, DNA damage led to the relocation of cytoplasmic PfMYST to the nucleus and colocalization of PfMYST with γ-PfH2A, the mark of DNA damage. In summary, this study demonstrated that the PfMYST complex has critical functions in regulating cell cycle, antigenic variation, and DNA replication/DNA repair in P. falciparum.
Collapse
Affiliation(s)
- Mohammad Kalamuddin
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Ahmad Rushdi Shakri
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Hui Min
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Xiaolian Li
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Jun Miao
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
28
|
Bergamasco MI, Ranathunga N, Abeysekera W, Li-Wai-Suen CSN, Garnham AL, Willis SN, McRae HM, Yang Y, D'Amico A, Di Rago L, Wilcox S, Nutt SL, Alexander WS, Smyth GK, Voss AK, Thomas T. The histone acetyltransferase KAT6B is required for hematopoietic stem cell development and function. Stem Cell Reports 2024; 19:469-485. [PMID: 38518784 PMCID: PMC11096436 DOI: 10.1016/j.stemcr.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/24/2024] Open
Abstract
The histone lysine acetyltransferase KAT6B (MYST4, MORF, QKF) is the target of recurrent chromosomal translocations causing hematological malignancies with poor prognosis. Using Kat6b germline deletion and overexpression in mice, we determined the role of KAT6B in the hematopoietic system. We found that KAT6B sustained the fetal hematopoietic stem cell pool but did not affect viability or differentiation. KAT6B was essential for normal levels of histone H3 lysine 9 (H3K9) acetylation but not for a previously proposed target, H3K23. Compound heterozygosity of Kat6b and the closely related gene, Kat6a, abolished hematopoietic reconstitution after transplantation. KAT6B and KAT6A cooperatively promoted transcription of genes regulating hematopoiesis, including the Hoxa cluster, Pbx1, Meis1, Gata family, Erg, and Flt3. In conclusion, we identified the hematopoietic processes requiring Kat6b and showed that KAT6B and KAT6A synergistically promoted HSC development, function, and transcription. Our findings are pertinent to current clinical trials testing KAT6A/B inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Maria I Bergamasco
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Nishika Ranathunga
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Waruni Abeysekera
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Connie S N Li-Wai-Suen
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Simon N Willis
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Helen M McRae
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Yuqing Yang
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Angela D'Amico
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Ladina Di Rago
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Stephen Wilcox
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Mathematics and Statistics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia.
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia.
| |
Collapse
|
29
|
Bergamasco MI, Vanyai HK, Garnham AL, Geoghegan ND, Vogel AP, Eccles S, Rogers KL, Smyth GK, Blewitt ME, Hannan AJ, Thomas T, Voss AK. Increasing histone acetylation improves sociability and restores learning and memory in KAT6B-haploinsufficient mice. J Clin Invest 2024; 134:e167672. [PMID: 38557491 PMCID: PMC10977983 DOI: 10.1172/jci167672] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/26/2024] [Indexed: 04/04/2024] Open
Abstract
Mutations in genes encoding chromatin modifiers are enriched among mutations causing intellectual disability. The continuing development of the brain postnatally, coupled with the inherent reversibility of chromatin modifications, may afford an opportunity for therapeutic intervention following a genetic diagnosis. Development of treatments requires an understanding of protein function and models of the disease. Here, we provide a mouse model of Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS) (OMIM 603736) and demonstrate proof-of-principle efficacy of postnatal treatment. SBBYSS results from heterozygous mutations in the KAT6B (MYST4/MORF/QFK) gene and is characterized by intellectual disability and autism-like behaviors. Using human cells carrying SBBYSS-specific KAT6B mutations and Kat6b heterozygous mice (Kat6b+/-), we showed that KAT6B deficiency caused a reduction in histone H3 lysine 9 acetylation. Kat6b+/- mice displayed learning, memory, and social deficits, mirroring SBBYSS individuals. Treatment with a histone deacetylase inhibitor, valproic acid, or an acetyl donor, acetyl-carnitine (ALCAR), elevated histone acetylation levels in the human cells with SBBYSS mutations and in brain and blood cells of Kat6b+/- mice and partially reversed gene expression changes in Kat6b+/- cortical neurons. Both compounds improved sociability in Kat6b+/- mice, and ALCAR treatment restored learning and memory. These data suggest that a subset of SBBYSS individuals may benefit from postnatal therapeutic interventions.
Collapse
Affiliation(s)
- Maria I. Bergamasco
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Hannah K. Vanyai
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Alexandra L. Garnham
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Niall D. Geoghegan
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Adam P. Vogel
- Centre for Neurosciences of Speech, University of Melbourne, Parkville, Victoria, Australia
- Redenlab Inc., Melbourne, Australia
| | - Samantha Eccles
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Kelly L. Rogers
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Gordon K. Smyth
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
| | - Marnie E. Blewitt
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Anthony J. Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| | - Anne K. Voss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology and
| |
Collapse
|
30
|
Morison LD, Van Reyk O, Baker E, Ruaud L, Couque N, Verloes A, Amor DJ, Morgan AT. Beyond 'speech delay': Expanding the phenotype of BRPF1-related disorder. Eur J Med Genet 2024; 68:104923. [PMID: 38346666 DOI: 10.1016/j.ejmg.2024.104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/07/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Pathogenic variants in BRPF1 cause intellectual disability, ptosis and facial dysmorphism. Speech and language deficits have been identified as a manifestation of BRPF1-related disorder but have not been systematically characterized. We provide a comprehensive delineation of speech and language abilities in BRPF1-related disorder and expand the phenotype. Speech and language, and health and medical history were assessed in 15 participants (male = 10, median age = 7 years 4 months) with 14 BRPF1 variants. Language disorders were common (11/12), and most had mild to moderate deficits across receptive, expressive, written, and social-pragmatic domains. Speech disorders were frequent (7/9), including phonological delay (6/9) and disorder (3/9), and childhood apraxia of speech (3/9). All those tested for cognitive abilities had a FSIQ ≥70 (4/4). Participants had vision impairment (13/15), fine (8/15) and gross motor delay (10/15) which often resolved in later childhood, infant feeding impairment (8/15), and infant hypotonia (9/15). We have implicated BRPF1-related disorder as causative for speech and language disorder, including childhood apraxia of speech. Adaptive behavior and cognition were strengths when compared to other monogenic neurodevelopmental chromatin-related disorders. The universal involvement of speech and language impairment is noteable, relative to the high degree of phenotypic variability in BRPF1-related disorder.
Collapse
Affiliation(s)
- Lottie D Morison
- Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, Australia; Speech and Language, Murdoch Children's Research Institute, Parkville, Australia.
| | - Olivia Van Reyk
- Speech and Language, Murdoch Children's Research Institute, Parkville, Australia.
| | - Emma Baker
- Speech and Language, Murdoch Children's Research Institute, Parkville, Australia; School of Psychology and Public Health, La Trobe University, Bundoora, Australia.
| | - Lyse Ruaud
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France; INSERM UMR1141, Neurodiderot, University of Paris Cité, Paris, France.
| | - Nathalie Couque
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France; Département de Génétique - UF de Génétique Moléculaire, Hôpital Robert Debré, Paris, France.
| | - Alain Verloes
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France; Medical School, Paris Cité University, Paris, France.
| | - David J Amor
- Speech and Language, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Australia; Royal Children's Hospital, Parkville, Australia.
| | - Angela T Morgan
- Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, Australia; Speech and Language, Murdoch Children's Research Institute, Parkville, Australia; Royal Children's Hospital, Parkville, Australia.
| |
Collapse
|
31
|
Munir M, Embry A, Doench JG, Heaton NS, Wilen CB, Orchard RC. Genome-wide CRISPR activation screen identifies JADE3 as an antiviral activator of NF-kB-dependent IFITM3 expression. J Biol Chem 2024; 300:107153. [PMID: 38462163 PMCID: PMC11001640 DOI: 10.1016/j.jbc.2024.107153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024] Open
Abstract
The innate immune system features a web of interacting pathways that require exquisite regulation. To identify novel nodes in this immune landscape, we conducted a gain-of-function, genome-wide CRISPR activation screen with influenza A virus. We identified both appreciated and novel antiviral genes, including Jade family PHD zinc finger 3 (JADE3) a protein involved in directing the histone acetyltransferase histone acetyltransferase binding to ORC1 complex to modify chromatin and regulate transcription. JADE3 is both necessary and sufficient to restrict influenza A virus infection. Our results suggest a distinct function for JADE3 as expression of the closely related paralogs JADE1 and JADE2 does not confer resistance to influenza A virus infection. JADE3 is required for both constitutive and inducible expression of the well-characterized antiviral gene interferon-induced transmembrane protein 3 (IFITM3). Furthermore, we find JADE3 activates the NF-kB signaling pathway, which is required for the promotion of IFITM3 expression by JADE3. Therefore, we propose JADE3 activates an antiviral genetic program involving NF-kB-dependent IFITM3 expression to restrict influenza A virus infection.
Collapse
Affiliation(s)
- Moiz Munir
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Aaron Embry
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Nicholas S Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Craig B Wilen
- Department of Laboratory Medicine and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Robert C Orchard
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
32
|
Kolin DL, Nucci MR, Turashvili G, Song SJ, Corbett-Burns S, Cesari M, Chang MC, Clarke B, Demicco E, Dube V, Lee CH, Rouzbahman M, Shaw P, Cin PD, Swanson D, Dickson BC. Targeted RNA Sequencing Highlights a Diverse Genomic and Morphologic Landscape in Low-grade Endometrial Stromal Sarcoma, Including Novel Fusion Genes. Am J Surg Pathol 2024; 48:36-45. [PMID: 37867306 DOI: 10.1097/pas.0000000000002142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Low-grade endometrial stromal sarcoma (LGESS) represents a morphologically and genetically heterogenous mesenchymal neoplasm. Previous work has shown that approximately half of LGESS are characterized by JAZF1::SUZ12 gene fusions, while a smaller proportion involves rearrangement of other genes. However, a subset of cases has no known genetic abnormalities. To better characterize the genomic landscape of LGESS, we interrogated a cohort with targeted RNA sequencing (RNA-Seq). Cases previously diagnosed as low-grade endometrial stromal neoplasia (n=51) were identified and re-reviewed for morphology and subjected to RNA-Seq, of which 47 were successfully sequenced. The median patient age was 49 years (range: 19 to 85). The most commonly detected fusions were JAZF1::SUZ12 (n=26, 55%) and BRD8::PHF1 (n=3, 6%). In addition to the usual/typical LGESS morphology, some JAZF1::SUZ12 fusion tumors showed other morphologies, including fibrous, smooth muscle, sex-cord differentiation, and myxoid change. Novel translocations were identified in 2 cases: MEAF6::PTGR2 and HCFC1::PHF1 . Ten tumors (21%) had no identifiable fusion, despite a similar morphology and immunophenotype to fusion-positive cases. This suggests that a subset of cases may be attributable to fusion products among genes that are not covered by the assay, or perhaps altogether different molecular mechanisms. In all, these findings confirm that RNA-Seq is a potentially useful ancillary test in the diagnosis of endometrial stromal neoplasms and highlight their diverse morphology.
Collapse
Affiliation(s)
- David L Kolin
- Department of Pathology, Division of Women's and Perinatal Pathology
| | - Marisa R Nucci
- Department of Pathology, Division of Women's and Perinatal Pathology
| | - Gulisa Turashvili
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Sharon J Song
- Department of Pathology, Division of Women's and Perinatal Pathology
| | | | - Matthew Cesari
- Department of Laboratory Medicine and Pathobiology, University of Toronto
- Department of Pathology, Trillium Health Partners, Mississauga, Ontario
| | - Martin C Chang
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, VT
| | - Blaise Clarke
- Department of Laboratory Medicine and Pathobiology, University of Toronto
- Department of Pathology & Laboratory Medicine, University Health Network
| | - Elizabeth Demicco
- Department of Laboratory Medicine and Pathobiology, University of Toronto
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital
| | - Valerie Dube
- Department of Laboratory Medicine and Pathobiology, University of Toronto
- Department of Pathology, Trillium Health Partners, Mississauga, Ontario
| | - Cheng-Han Lee
- Laboratory Medicine & Pathology Department, University of Alberta, Edmonton, Alberta, Canada
| | - Marjan Rouzbahman
- Department of Laboratory Medicine and Pathobiology, University of Toronto
- Department of Pathology & Laboratory Medicine, University Health Network
| | - Patricia Shaw
- Department of Laboratory Medicine and Pathobiology, University of Toronto
- Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto
| | - Paola Dal Cin
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - David Swanson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital
| | - Brendan C Dickson
- Department of Laboratory Medicine and Pathobiology, University of Toronto
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital
| |
Collapse
|
33
|
Bayanbold K, Younger G, Darbro B, Sidhu A. Mosaicism in BRPF1-Related Neurodevelopmental Disorder: Report of Two Sisters and Literature Review. Case Rep Genet 2023; 2023:1692422. [PMID: 37946714 PMCID: PMC10632058 DOI: 10.1155/2023/1692422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/28/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Bromodomain and PHD finger containing 1 (BRPF1)-related neurodevelopmental disorder is characterized by intellectual disability, developmental delay, hypotonia, dysmorphic facial features, ptosis, and blepharophimosis. Both de novo and inherited pathogenic variants have been previously reported in association with this disorder. We report two affected female siblings with a novel variant in BRPF1 c.2420_2433del (p.Q807Lfs∗27) identified through whole-exome sequencing. Their history of mild intellectual disability, speech delay, attention deficient hyperactivity disorder (ADHD), and ptosis align with the features previously reported in the literature. The absence of the BRPF1 variant in parental buccal samples provides evidence of a de novo frameshift pathogenic variant, most likely as a result of parental gonadal mosaicism, which has not been previously reported. The frameshift pathogenic variant reported here lends further support to haploinsufficiency as the underlying mechanism of disease. We review the literature, compare the clinical features seen in our patients with others reported, and explore the possibility of genotype-phenotype correlation based on the location of pathogenic variants in BRPF1. Our study helps to summarize available knowledge and report the first case of a de novo frameshift pathogenic variant in BRPF1 in two siblings with this neurodevelopmental disorder.
Collapse
Affiliation(s)
- Khaliunaa Bayanbold
- Free Radical Radiation Biology, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Georgianne Younger
- Division of Medical Genetics and Genomics, The Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Benjamin Darbro
- Division of Medical Genetics and Genomics, The Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Alpa Sidhu
- Division of Medical Genetics and Genomics, The Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
34
|
Hu J, Leisegang MS, Looso M, Drekolia MK, Wittig J, Mettner J, Karantanou C, Kyselova A, Dumbovic G, Li X, Li Y, Guenther S, John D, Siragusa M, Zukunft S, Oo JA, Wittig I, Hille S, Weigert A, Knapp S, Brandes RP, Müller OJ, Papapetropoulos A, Sigala F, Dobreva G, Kojonazarov B, Fleming I, Bibli SI. Disrupted Binding of Cystathionine γ-Lyase to p53 Promotes Endothelial Senescence. Circ Res 2023; 133:842-857. [PMID: 37800327 DOI: 10.1161/circresaha.123.323084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Advanced age is unequivocally linked to the development of cardiovascular disease; however, the mechanisms resulting in reduced endothelial cell regeneration remain poorly understood. Here, we investigated novel mechanisms involved in endothelial cell senescence that impact endothelial cell transcription and vascular repair after injury. METHODS Native endothelial cells were isolated from young (20±3.4 years) and aged (80±2.3 years) individuals and subjected to molecular analyses to assess global transcriptional and metabolic changes. In vitro studies were conducted using primary human and murine endothelial cells. A murine aortic re-endothelialization model was used to examine endothelial cell regenerative capacity in vivo. RESULTS RNA sequencing of native endothelial cells revealed that aging resulted in p53-mediated reprogramming to express senescence-associated genes and suppress glycolysis. Reduced glucose uptake and ATP contributed to attenuated assembly of the telomerase complex, which was required for endothelial cell proliferation. Enhanced p53 activity in aging was linked to its acetylation on K120 due to enhanced activity of the acetyltransferase MOZ (monocytic leukemic zinc finger). Mechanistically, p53 acetylation and translocation were, at least partially, attributed to the loss of the vasoprotective enzyme, CSE (cystathionine γ-lyase). CSE physically anchored p53 in the cytosol to prevent its nuclear translocation and CSE absence inhibited AKT (Protein kinase B)-mediated MOZ phosphorylation, which in turn increased MOZ activity and subsequently p53 acetylation. In mice, the endothelial cell-specific deletion of CSE activated p53, induced premature endothelial senescence, and arrested vascular repair after injury. In contrast, the adeno-associated virus 9-mediated re-expression of an active CSE mutant retained p53 in the cytosol, maintained endothelial glucose metabolism and proliferation, and prevented endothelial cell senescence. Adenoviral overexpression of CSE in native endothelial cells from aged individuals maintained low p53 activity and reactivated telomerase to revert endothelial cell senescence. CONCLUSIONS Aging-associated impairment of vascular repair is partly determined by the vasoprotective enzyme CSE.
Collapse
Affiliation(s)
- Jiong Hu
- Department of Histology and Embryology, School of Basic Medicine (J.H., X.L., Y.L.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Sino-German Laboratory of CardioPulmonary Science (J.H., I.F.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology (M.S.L., J.A.O., R.P.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mario Looso
- Bioinformatics Core Unit, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.L., S.G.)
- German Center for Cardiovascular Research (DZHK), partner site RheinMain, Frankfurt am Main (M.L., S.G., R.P.B., I.F., S.-I.B.)
| | - Maria-Kyriaki Drekolia
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Janina Wittig
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Janina Mettner
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christina Karantanou
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anastasia Kyselova
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Gabrjela Dumbovic
- Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (G.D.)
| | - Xiaoming Li
- Department of Histology and Embryology, School of Basic Medicine (J.H., X.L., Y.L.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yuanyuan Li
- Department of Histology and Embryology, School of Basic Medicine (J.H., X.L., Y.L.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Stefan Guenther
- Bioinformatics Core Unit, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.L., S.G.)
- German Center for Cardiovascular Research (DZHK), partner site RheinMain, Frankfurt am Main (M.L., S.G., R.P.B., I.F., S.-I.B.)
| | - David John
- Institute of Cardiovascular Regeneration (D.J.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mauro Siragusa
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - James A Oo
- Institute for Cardiovascular Physiology (M.S.L., J.A.O., R.P.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ilka Wittig
- Sino-German Laboratory of CardioPulmonary Science (J.H., I.F.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Functional Proteomics, Institute for Cardiovascular Physiology (I.W.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Susanne Hille
- Department of Internal Medicine III, University of Kiel, Germany (S.H., O.J.M.)
| | - Andreas Weigert
- Institute of Biochemistry I (A.W.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Molecular Life Sciences (S.K.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology (M.S.L., J.A.O., R.P.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), partner site RheinMain, Frankfurt am Main (M.L., S.G., R.P.B., I.F., S.-I.B.)
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Germany (S.H., O.J.M.)
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany (O.J.M.)
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy (A.P.), National and Kapodistrian University of Athens, Greece
| | - Fragiska Sigala
- First Propedeutic Department of Surgery, Vascular Surgery Division (F.S.), National and Kapodistrian University of Athens, Greece
| | - Gergana Dobreva
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg, Germany (G.D.)
| | - Baktybek Kojonazarov
- Institute for Lung Health (ILH) (B.K.), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI) (B.K.), Justus Liebig University, Giessen, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), partner site RheinMain, Frankfurt am Main (M.L., S.G., R.P.B., I.F., S.-I.B.)
| |
Collapse
|
35
|
Zhang L, Zhu D, Jiang J, Min Z, Fa Z. The ubiquitin E3 ligase MDM2 induces chemoresistance in colorectal cancer by degradation of ING3. Carcinogenesis 2023; 44:562-575. [PMID: 37279970 DOI: 10.1093/carcin/bgad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023] Open
Abstract
Chemoresistance is an obstacle for colorectal cancer (CRC) treatment. This study investigates the role of the ubiquitin E3 ligase MDM2 in affecting cell growth and chemosensitivity in CRC cells by modifying the transcription factor inhibitor of growth protein 3 (ING3). The expression of MDM2 and ING3 in CRC tissues was predicted by bioinformatics analysis, followed by expression validation and their interaction in CRC HCT116 and LS180 cells. Ectopic overexpression or knockdown of MDM2/ING3 was performed to test their effect on proliferation and apotptosis as well as chemosensitivity of CRC cells. Finally, the effect of MDM2/ING3 expression on the in vivo tumorigenesis of CRC cells was examined through subcutaneous tumor xenograft experiment in nude mice. MDM2 promoted ubiquitin-proteasome pathway degradation of ING3 through ubiquitination and diminished its protein stability. Overexpression of MDM2 downregulated ING3 expression, which promoted CRC cell proliferation and inhibited the apoptosis. The enhancing role of MDM2 in tumorigenesis and resistance to chemotherapeutic drugs was also confirmed in vivo. Our findings highlight that MDM2 modifies the transcription factor ING3 by ubiquitination-proteasome pathway degradation, thus reducing ING3 protein stability, which finally promotes CRC cell growth and chemoresistance.
Collapse
Affiliation(s)
- Liangliang Zhang
- General Surgery Department, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213004, P. R. China
| | - Dagang Zhu
- General Surgery Department, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213004, P. R. China
| | - Jiwen Jiang
- General Surgery Department, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213004, P. R. China
| | - Zhenyu Min
- General Surgery Department, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213004, P. R. China
| | - Zhenzhong Fa
- General Surgery Department, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213004, P. R. China
| |
Collapse
|
36
|
Sharma S, Chung CY, Uryu S, Petrovic J, Cao J, Rickard A, Nady N, Greasley S, Johnson E, Brodsky O, Khan S, Wang H, Wang Z, Zhang Y, Tsaparikos K, Chen L, Mazurek A, Lapek J, Kung PP, Sutton S, Richardson PF, Greenwald EC, Yamazaki S, Jones R, Maegley KA, Bingham P, Lam H, Stupple AE, Kamal A, Chueh A, Cuzzupe A, Morrow BJ, Ren B, Carrasco-Pozo C, Tan CW, Bhuva DD, Allan E, Surgenor E, Vaillant F, Pehlivanoglu H, Falk H, Whittle JR, Newman J, Cursons J, Doherty JP, White KL, MacPherson L, Devlin M, Dennis ML, Hattarki MK, De Silva M, Camerino MA, Butler MS, Dolezal O, Pilling P, Foitzik R, Stupple PA, Lagiakos HR, Walker SR, Hediyeh-Zadeh S, Nuttall S, Spall SK, Charman SA, Connor T, Peat TS, Avery VM, Bozikis YE, Yang Y, Zhang M, Monahan BJ, Voss AK, Thomas T, Street IP, Dawson SJ, Dawson MA, Lindeman GJ, Davis MJ, Visvader JE, Paul TA. Discovery of a highly potent, selective, orally bioavailable inhibitor of KAT6A/B histone acetyltransferases with efficacy against KAT6A-high ER+ breast cancer. Cell Chem Biol 2023; 30:1191-1210.e20. [PMID: 37557181 DOI: 10.1016/j.chembiol.2023.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/07/2023] [Accepted: 07/16/2023] [Indexed: 08/11/2023]
Abstract
KAT6A, and its paralog KAT6B, are histone lysine acetyltransferases (HAT) that acetylate histone H3K23 and exert an oncogenic role in several tumor types including breast cancer where KAT6A is frequently amplified/overexpressed. However, pharmacologic targeting of KAT6A to achieve therapeutic benefit has been a challenge. Here we describe identification of a highly potent, selective, and orally bioavailable KAT6A/KAT6B inhibitor CTx-648 (PF-9363), derived from a benzisoxazole series, which demonstrates anti-tumor activity in correlation with H3K23Ac inhibition in KAT6A over-expressing breast cancer. Transcriptional and epigenetic profiling studies show reduced RNA Pol II binding and downregulation of genes involved in estrogen signaling, cell cycle, Myc and stem cell pathways associated with CTx-648 anti-tumor activity in ER-positive (ER+) breast cancer. CTx-648 treatment leads to potent tumor growth inhibition in ER+ breast cancer in vivo models, including models refractory to endocrine therapy, highlighting the potential for targeting KAT6A in ER+ breast cancer.
Collapse
Affiliation(s)
- Shikhar Sharma
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA.
| | - Chi-Yeh Chung
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Sean Uryu
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Jelena Petrovic
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Joan Cao
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Amanda Rickard
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Nataliya Nady
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | | | - Eric Johnson
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Oleg Brodsky
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Showkhin Khan
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Hui Wang
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Zhenxiong Wang
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Yong Zhang
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | | | - Lei Chen
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Anthony Mazurek
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - John Lapek
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Pei-Pei Kung
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Scott Sutton
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | | | - Eric C Greenwald
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Shinji Yamazaki
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Rhys Jones
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Karen A Maegley
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Patrick Bingham
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Hieu Lam
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Alexandra E Stupple
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; CANThera Discovery, Melbourne, VIC 3000, Australia
| | - Aileen Kamal
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Anderly Chueh
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Anthony Cuzzupe
- SYNthesis Med Chem (Australia) Pty Ltd, Bio21 Institute, 30 Flemington Road, Parkville, VIC 3052, Australia
| | - Benjamin J Morrow
- Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia
| | - Bin Ren
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Catalina Carrasco-Pozo
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Discovery Biology, Centre for Cellular Phenomics, Griffith University, Brisbane QLD 4111, Australia
| | - Chin Wee Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Dharmesh D Bhuva
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Elizabeth Allan
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Elliot Surgenor
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - François Vaillant
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Havva Pehlivanoglu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Hendrik Falk
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - James R Whittle
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Janet Newman
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Joseph Cursons
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Judy P Doherty
- Peter MacCallum Cancer Centre, Melbourne VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Karen L White
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Laura MacPherson
- Peter MacCallum Cancer Centre, Melbourne VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Mark Devlin
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Peter MacCallum Cancer Centre, Melbourne VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Matthew L Dennis
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Meghan K Hattarki
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Melanie De Silva
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Michelle A Camerino
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Miriam S Butler
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Peter MacCallum Cancer Centre, Melbourne VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Olan Dolezal
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Patricia Pilling
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Richard Foitzik
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; OncologyOne Pty Ltd, Melbourne, VIC 3000, Australia
| | - Paul A Stupple
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; CANThera Discovery, Melbourne, VIC 3000, Australia
| | - H Rachel Lagiakos
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Scott R Walker
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Soroor Hediyeh-Zadeh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Stewart Nuttall
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Sukhdeep K Spall
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Susan A Charman
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Theresa Connor
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Peter MacCallum Cancer Centre, Melbourne VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Thomas S Peat
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Vicky M Avery
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Discovery Biology, Centre for Cellular Phenomics, Griffith University, Brisbane QLD 4111, Australia
| | - Ylva E Bozikis
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Yuqing Yang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ming Zhang
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Brendon J Monahan
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia; CANThera Discovery, Melbourne, VIC 3000, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ian P Street
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia; OncologyOne Pty Ltd, Melbourne, VIC 3000, Australia; Children's Cancer Institute, Randwick, NSW 2031, Australia; University of New South Wales, Randwick, NSW 2021, Australia
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre, Melbourne VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Geoffrey J Lindeman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia; Parkville Familial Cancer Centre and Department of Medical Oncology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, VIC 3050, Australia
| | - Melissa J Davis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia; Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jane E Visvader
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Thomas A Paul
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA.
| |
Collapse
|
37
|
Feng M, Liu X, Hao X, Ren Y, Dong G, Tian J, Wang Y, Du L, Wang Y, Wang C. Fatty Acids Support the Fitness and Functionality of Tumor-Resident CD8+ T Cells by Maintaining SCML4 Expression. Cancer Res 2023; 83:3368-3384. [PMID: 37610617 DOI: 10.1158/0008-5472.can-23-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/08/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
CD8+ tissue-resident memory T (Trm) cells and tumor-infiltrating lymphocytes (TIL) regulate tumor immunity and immune surveillance. Characterization of Trm cells and TILs could help identify potential strategies to boost antitumor immunity. Here, we found that the transcription factor SCML4 was required for the progression and polyfunctionality of Trm cells and was associated with a better prognosis in patients with cancer. Moreover, SCML4 maintained multiple functions of TILs. Increased expression of SCML4 in CD8+ cells significantly reduced the growth of multiple types of tumors in mice, while deletion of SCML4 reduced antitumor immunity and promoted CD8+ T-cell exhaustion. Mechanistically, SCML4 recruited the HBO1-BRPF2-ING4 complex to reprogram the expression of T cell-specific genes, thereby enhancing the survival and effector functions of Trm cells and TILs. SCML4 expression was promoted by fatty acid metabolism through mTOR-IRF4-PRDM1 signaling, and fatty acid metabolism-induced epigenetic modifications that promoted tissue-resident and multifunctional gene expression in Trm cells and TILs. SCML4 increased the therapeutic effect of anti-PD-1 treatment by elevating the expression of effector molecules in TILs and inhibiting the apoptosis of TILs, which could be further enhanced by adding an inhibitor of H3K14ac deacetylation. These results provide a mechanistic perspective of functional regulation of tumor-localized Trm cells and TILs and identify an important activation target for tumor immunotherapy. SIGNIFICANCE SCML4 upregulation in CD8+ Trm cells and tumor-infiltrating lymphocytes induced by fatty acid metabolism enhances antitumor immune responses, providing an immunometabolic axis to target for cancer treatment. See related commentary by Chakraborty et al., p. 3321.
Collapse
Affiliation(s)
- Maoxiao Feng
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Clinical Laboratory, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaodong Hao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yidan Ren
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guoying Dong
- Department of Anatomy and Key Laboratory of Experimental Teratology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Tian
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuli Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
38
|
Munir M, Embry A, Doench JG, Heaton NS, Wilen CB, Orchard RC. Genome-wide CRISPR activation screen identifies JADE3 as an antiviral activator of NF-kB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560128. [PMID: 37808733 PMCID: PMC10557722 DOI: 10.1101/2023.09.29.560128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The innate immune system features a web of interacting pathways that require exquisite regulation. To identify novel nodes in this immune landscape we conducted a gain of function, genome-wide CRISPR activation screen with influenza A virus. We identified both appreciated and novel antiviral genes, including JADE3 a protein involved in directing the histone acetyltransferase HBO1 complex to modify chromatin and regulate transcription. JADE3 is both necessary and sufficient to restrict influenza A virus infection. Interestingly, expression of the closely related paralogues JADE1 and JADE2 are unable to restrict influenza A virus infection, suggesting a distinct function of JADE3. We identify both shared and unique transcriptional signatures between uninfected cells expressing JADE3 and JADE2. These data provide a framework for understanding the overlapping and distinct functions of the JADE family of paralogues. Specifically, we find that JADE3 expression activates the NF-kB signaling pathway, consistent with an antiviral function. Therefore, we propose JADE3, but not JADE1 or JADE2, activates an antiviral genetic program involving the NF-kB pathway to restrict influenza A virus infection.
Collapse
Affiliation(s)
- Moiz Munir
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aaron Embry
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John G. Doench
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Craig B. Wilen
- Departments of Laboratory Medicine and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Robert C. Orchard
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
39
|
Nazzari M, Romitti M, Hauser D, Carvalho DJ, Giselbrecht S, Moroni L, Costagliola S, Caiment F. Investigation of the effects of phthalates on in vitro thyroid models with RNA-Seq and ATAC-Seq. Front Endocrinol (Lausanne) 2023; 14:1200211. [PMID: 37810885 PMCID: PMC10556862 DOI: 10.3389/fendo.2023.1200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/08/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Phthalates are a class of endocrine-disrupting chemicals that have been shown to negatively correlate with thyroid hormone serum levels in humans and to cause a state of hyperactivity in the thyroid. However, their mechanism of action is not well described at the molecular level. Methods We analyzed the response of mouse thyroid organoids to the exposure to a biologically relevant dose range of the phthalates bis(2-ethylhexyl) phthalate (DEHP), di-iso-decylphthalate (DIDP), di-iso-nonylphthalate (DINP), and di-n-octylphthalate (DnOP) for 24 h and simultaneously analyzed mRNA and miRNA expression via RNA sequencing. Using the expression data, we performed differential expression and gene set enrichment analysis. We also exposed the human thyroid follicular epithelial cell line Nthy-ori 3-1 to 1 µM of DEHP or DINP for 5 days and analyzed changes in chromatin accessibility via ATAC-Seq. Results Dose-series analysis showed how the expression of several genes increased or decreased at the highest dose tested. As expected with the low dosing scheme, the compounds induced a modest response on the transcriptome, as we identified changes in only mmu-miR-143-3p after DINP treatment and very few differentially expressed genes. No effect was observed on thyroid markers. Ing5, a component of histones H3 and H4 acetylation complexes, was consistently upregulated in three out of four conditions compared to control, and we observed a partial overlap among the genes differentially expressed by the treatments. Gene set enrichment analysis showed enrichment in the treatment samples of the fatty acid metabolism pathway and in the control of pathways related to the receptor signalling and extracellular matrix organization. ATAC-Seq analysis showed a general increase in accessibility compared to the control, however we did not identify significant changes in accessibility in the identified regions. Discussion With this work, we showed that despite having only a few differentially expressed genes, diverse analysis methods could be applied to retrieve relevant information on phthalates, showing the potential of in vitro thyroid-relevant systems for the analysis of endocrine disruptors.
Collapse
Affiliation(s)
- Marta Nazzari
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | - Mírian Romitti
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Duncan Hauser
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | - Daniel J. Carvalho
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Sabine Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Florian Caiment
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
40
|
Murphy C, Gornés Pons G, Keogh A, Ryan L, McCarra L, Jose CM, Kesar S, Nicholson S, Fitzmaurice GJ, Ryan R, Young V, Cuffe S, Finn SP, Gray SG. An Analysis of JADE2 in Non-Small Cell Lung Cancer (NSCLC). Biomedicines 2023; 11:2576. [PMID: 37761019 PMCID: PMC10526426 DOI: 10.3390/biomedicines11092576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 09/29/2023] Open
Abstract
The JADE family comprises three members encoded by individual genes and roles for these proteins have been identified in chromatin remodeling, cell cycle progression, cell regeneration and the DNA damage response. JADE family members, and in particular JADE2 have not been studied in any great detail in cancer. Using a series of standard biological and bioinformatics approaches we investigated JADE2 expression in surgically resected non-small cell lung cancer (NSCLC) for both mRNA and protein to examine for correlations between JADE2 expression and overall survival. Additional correlations were identified using bioinformatic analyses on multiple online datasets. Our analysis demonstrates that JADE2 expression is significantly altered in NSCLC. High expression of JADE2 is associated with a better 5-year overall survival. Links between JADE2 mRNA expression and a number of mutated genes were identified, and associations between JADE2 expression and tumor mutational burden and immune cell infiltration were explored. Potential new drugs that can target JADE2 were identified. The results of this biomarker-driven study suggest that JADE2 may have potential clinical utility in the diagnosis, prognosis and stratification of patients into various therapeutically targetable options.
Collapse
Affiliation(s)
- Ciara Murphy
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
| | - Glòria Gornés Pons
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
- Faculty of Biology, University of Barcelona, 08025 Barcelona, Spain
| | - Anna Keogh
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Lisa Ryan
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
| | - Lorraine McCarra
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
| | - Chris Maria Jose
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Shagun Kesar
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Siobhan Nicholson
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
| | - Gerard J. Fitzmaurice
- Surgery, Anaesthesia and Critical Care Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (V.Y.)
| | - Ronan Ryan
- Surgery, Anaesthesia and Critical Care Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (V.Y.)
| | - Vincent Young
- Surgery, Anaesthesia and Critical Care Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (V.Y.)
| | - Sinead Cuffe
- HOPE Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Stephen P. Finn
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Steven G. Gray
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
- Department of Clinical Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- School of Biological Sciences, Technological University Dublin, D07 XT95 Dublin, Ireland
| |
Collapse
|
41
|
Yang Y, Ma B, Djamshidi M, Zhang Q, Sarkar A, Chanda A, Tran U, Soh J, Sandall C, Chen HM, MacDonald JA, Bonni S, Sensen CW, Zheng J, Riabowol K. ING1 inhibits Twist1 expression to block EMT and is antagonized by the HDAC inhibitor vorinostat. Eur J Cell Biol 2023; 102:151341. [PMID: 37459799 DOI: 10.1016/j.ejcb.2023.151341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 09/22/2023] Open
Abstract
ING1 is a chromatin targeting subunit of the Sin3a histone deacetylase (HDAC) complex that alters chromatin structure to subsequently regulate gene expression. We find that ING1 knockdown increases expression of Twist1, Zeb 1&2, Snai1, Bmi1 and TSHZ1 drivers of EMT, promoting EMT and cell motility. ING1 expression had the opposite effect, promoting epithelial cell morphology and inhibiting basal and TGF-β-induced motility in 3D organoid cultures. ING1 binds the Twist1 promoter and Twist1 was largely responsible for the ability of ING1 to reduce cell migration. Consistent with ING1 inhibiting Twist1 expression in vivo, an inverse relationship between ING1 and Twist1 levels was seen in breast cancer samples from The Cancer Genome Atlas (TCGA). The HDAC inhibitor vorinostat is approved for treatment of multiple myeloma and cutaneous T cell lymphoma and is in clinical trials for solid tumours as adjuvant therapy. One molecular target of vorinostat is INhibitor of Growth 2 (ING2), that together with ING1 serve as targeting subunits of the Sin3a HDAC complex. Treatment with sublethal (LD25-LD50) levels of vorinostat promoted breast cancer cell migration several-fold, which increased further upon ING1 knockout. These observations indicate that correct targeting of the Sin3a HDAC complex, and HDAC activity in general decreases luminal and basal breast cancer cell motility, suggesting that use of HDAC inhibitors as adjuvant therapies in breast cancers that are prone to metastasize may not be optimal and requires further investigation.
Collapse
Affiliation(s)
- Yang Yang
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Biao Ma
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Mahbod Djamshidi
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Qingrun Zhang
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Anusi Sarkar
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Ayan Chanda
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Uyen Tran
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Jung Soh
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Christina Sandall
- Libin Cardiovascular Institute of Alberta, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Huey-Miin Chen
- Libin Cardiovascular Institute of Alberta, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Justin A MacDonald
- Libin Cardiovascular Institute of Alberta, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Shirin Bonni
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | | | - Jianhua Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Karl Riabowol
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
42
|
Wang H, Qiu Y, Zhang H, Chang N, Hu Y, Chen J, Hu R, Liao P, Li Z, Yang Y, Cen Q, Ding X, Li M, Xie X, Li Y. Histone acetylation by HBO1 (KAT7) activates Wnt/β-catenin signaling to promote leukemogenesis in B-cell acute lymphoblastic leukemia. Cell Death Dis 2023; 14:498. [PMID: 37542030 PMCID: PMC10403501 DOI: 10.1038/s41419-023-06019-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive hematological disorder with a dismal prognosis. The dysregulation of histone acetylation is of great significance in the pathogenesis and progression of B-ALL. Regarded as a fundamental acetyltransferase gene, the role of HBO1 (lysine acetyltransferase 7/KAT7) in B-ALL has not been investigated. Herein, we found that HBO1 expression was elevated in human B-ALL cells and associated with poor disease-free survival. Strikingly, HBO1 knockdown inhibited viability, proliferation, and G1-S cycle progression in B-ALL cells, while provoking apoptosis. In contrast, ectopic overexpression of HBO1 enhanced cell viability and proliferation but inhibited apoptotic activation. The results of in vivo experiments also certificated the inhibitory effect of HBO1 knockdown on tumor growth. Mechanistically, HBO1 acetylated histone H3K14, H4K8, and H4K12, followed by upregulating CTNNB1 expression, resulting in activation of the Wnt/β-catenin signaling pathway. Moreover, a novel small molecule inhibitor of HBO1, WM-3835, potently inhibited the progression of B-ALL. Our data identified HBO1 as an efficacious regulator of CTNNB1 with therapeutic potential in B-ALL.
Collapse
Affiliation(s)
- Hao Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China.
| | - Ning Chang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Jianyu Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Peiyun Liao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Zhongwei Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Yulu Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Qingyan Cen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Xiangyang Ding
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Meifang Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, 510005, P. R. China.
| |
Collapse
|
43
|
Mah SY, Vanyai HK, Yang Y, Voss AK, Thomas T. The chromatin reader protein ING5 is required for normal hematopoietic cell numbers in the fetal liver. Front Immunol 2023; 14:1119750. [PMID: 37275850 PMCID: PMC10232820 DOI: 10.3389/fimmu.2023.1119750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/18/2023] [Indexed: 06/07/2023] Open
Abstract
ING5 is a component of KAT6A and KAT7 histone lysine acetylation protein complexes. ING5 contains a PHD domain that binds to histone H3 lysine 4 when it is trimethylated, and so functions as a 'reader' and adaptor protein. KAT6A and KAT7 function are critical for normal hematopoiesis. To examine the function of ING5 in hematopoiesis, we generated a null allele of Ing5. Mice lacking ING5 during development had decreased foetal liver cellularity, decreased numbers of hematopoietic stem cells and perturbed erythropoiesis compared to wild-type control mice. Ing5-/- pups had hypoplastic spleens. Competitive transplantation experiments using foetal liver hematopoietic cells showed that there was no defect in long-term repopulating capacity of stem cells lacking ING5, suggesting that the defects during the foetal stage were not cell intrinsic. Together, these results suggest that ING5 function is dispensable for normal hematopoiesis but may be required for timely foetal hematopoiesis in a cell-extrinsic manner.
Collapse
Affiliation(s)
- Sophia Y.Y. Mah
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Hannah K. Vanyai
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Yuqing Yang
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Anne K. Voss
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Tim Thomas
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
44
|
Ferreras-Gutiérrez M, Chaves-Arquero B, González-Magaña A, Merino N, Amusategui-Mateu I, Huecas S, Medrano FJ, Blanco FJ. Structural analysis of ING3 protein and histone H3 binding. Int J Biol Macromol 2023; 242:124724. [PMID: 37148949 DOI: 10.1016/j.ijbiomac.2023.124724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Proteins belonging to the ING family regulate the transcriptional state of chromatin by recruiting remodeling complexes to sites with histone H3 trimethylated at Lysine 4 (H3K4me3). This modification is recognized by the Plant HomeoDomain (PHD) present at the C-terminal region of the five ING proteins. ING3 facilitates acetylation of histones H2A and H4 by the NuA4-Tip60 MYST histone acetyl transferase complex, and it has been proposed to be an oncoprotein. The crystal structure of the N-terminal domain of ING3 shows that it forms homodimers with an antiparallel coiled-coil fold. The crystal structure of the PHD is similar to those of its four homologs. These structures explain the possible deleterious effects of ING3 mutations detected in tumors. The PHD binds histone H3K4me3 with low-micromolar, and binds the non-methylated histone with a 54-fold reduced affinity. Our structure explains the impact of site directed mutagenesis experiments on histone recognition. These structural features could not be confirmed for the full-length protein as solubility was insufficient for structural studies, but the structure of its folded domains suggest a conserved structural organization for the ING proteins as homodimers and bivalent readers of the histone H3K4me3 mark.
Collapse
Affiliation(s)
| | - Belén Chaves-Arquero
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
| | - Amaia González-Magaña
- Instituto Biofisika and Departamento de Bioquímica y Biología Molecular (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain
| | - Nekane Merino
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain
| | | | - Sonia Huecas
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
| | - Francisco J Medrano
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
| | - Francisco J Blanco
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain.
| |
Collapse
|
45
|
Kim LH, Kim JY, Xu YY, Lim MA, Koo BS, Kim JH, Yoon SE, Kim YJ, Choi KW, Chang JW, Hong ST. Tctp, a unique Ing5-binding partner, inhibits the chromatin binding of Enok in Drosophila. Proc Natl Acad Sci U S A 2023; 120:e2218361120. [PMID: 37014852 PMCID: PMC10104566 DOI: 10.1073/pnas.2218361120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/26/2023] [Indexed: 04/05/2023] Open
Abstract
The MOZ/MORF histone acetyltransferase complex is highly conserved in eukaryotes and controls transcription, development, and tumorigenesis. However, little is known about how its chromatin localization is regulated. Inhibitor of growth 5 (ING5) tumor suppressor is a subunit of the MOZ/MORF complex. Nevertheless, the in vivo function of ING5 remains unclear. Here, we report an antagonistic interaction between Drosophila Translationally controlled tumor protein (TCTP) (Tctp) and ING5 (Ing5) required for chromatin localization of the MOZ/MORF (Enok) complex and H3K23 acetylation. Yeast two-hybrid screening using Tctp identified Ing5 as a unique binding partner. In vivo, Ing5 controlled differentiation and down-regulated epidermal growth factor receptor signaling, whereas it is required in the Yorkie (Yki) pathway to determine organ size. Ing5 and Enok mutants promoted tumor-like tissue overgrowth when combined with uncontrolled Yki activity. Tctp depletion rescued the abnormal phenotypes of the Ing5 mutation and increased the nuclear translocation of Ing5 and chromatin binding of Enok. Nonfunctional Enok promoted the nuclear translocation of Ing5 by reducing Tctp, indicating a feedback mechanism between Tctp, Ing5, and Enok to regulate histone acetylation. Therefore, Tctp is essential for H3K23 acetylation by controlling the nuclear translocation of Ing5 and chromatin localization of Enok, providing insights into the roles of human TCTP and ING5-MOZ/MORF in tumorigenesis.
Collapse
Affiliation(s)
- Lee-Hyang Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Ja-Young Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Yu-Ying Xu
- Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Mi Ae Lim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Bon Seok Koo
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Jung Hae Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Sung-Eun Yoon
- Korea Drosophila Resource Center, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science & Technology, Daejeon34141, Republic of Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Sung-Tae Hong
- Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| |
Collapse
|
46
|
Komata Y, Kanai A, Maeda T, Inaba T, Yokoyama A. MOZ/ENL complex is a recruiting factor of leukemic AF10 fusion proteins. Nat Commun 2023; 14:1979. [PMID: 37031220 PMCID: PMC10082848 DOI: 10.1038/s41467-023-37712-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 03/22/2023] [Indexed: 04/10/2023] Open
Abstract
Changes in the transcriptional machinery cause aberrant self-renewal of non-stem hematopoietic progenitors. AF10 fusions, such as CALM-AF10, are generated via chromosomal translocations, causing malignant leukemia. In this study, we demonstrate that AF10 fusion proteins cause aberrant self-renewal via ENL, which binds to MOZ/MORF lysine acetyltransferases (KATs). The interaction of ENL with MOZ, via its YEATS domain, is critical for CALM-AF10-mediated leukemic transformation. The MOZ/ENL complex recruits DOT1L/AF10 fusion complexes and maintains their chromatin retention via KAT activity. Therefore, inhibitors of MOZ/MORF KATs directly suppress the functions of AF10 fusion proteins, thereby exhibiting strong antitumor effects on AF10 translocation-induced leukemia. Combinatorial inhibition of MOZ/MORF and DOT1L cooperatively induces differentiation of CALM-AF10-leukemia cells. These results reveal roles for the MOZ/ENL complex as an essential recruiting factor of the AF10 fusion/DOT1L complex, providing a rationale for using MOZ/MORF KAT inhibitors in AF10 translocation-induced leukemia.
Collapse
Affiliation(s)
- Yosuke Komata
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata, 997-0052, Japan
| | - Akinori Kanai
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, 277-0882, Japan
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Hiroshima, 734-8553, Japan
| | - Takahiro Maeda
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka, 812-8582, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Hiroshima, 734-8553, Japan
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata, 997-0052, Japan.
| |
Collapse
|
47
|
Stem cell plasticity, acetylation of H3K14, and de novo gene activation rely on KAT7. Cell Rep 2023; 42:111980. [PMID: 36641753 DOI: 10.1016/j.celrep.2022.111980] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/30/2022] [Accepted: 12/23/2022] [Indexed: 01/16/2023] Open
Abstract
In the conventional model of transcriptional activation, transcription factors bind to response elements and recruit co-factors, including histone acetyltransferases. Contrary to this model, we show that the histone acetyltransferase KAT7 (HBO1/MYST2) is required genome wide for histone H3 lysine 14 acetylation (H3K14ac). Examining neural stem cells, we find that KAT7 and H3K14ac are present not only at transcribed genes but also at inactive genes, intergenic regions, and in heterochromatin. KAT7 and H3K14ac were not required for the continued transcription of genes that were actively transcribed at the time of loss of KAT7 but indispensable for the activation of repressed genes. The absence of KAT7 abrogates neural stem cell plasticity, diverse differentiation pathways, and cerebral cortex development. Re-expression of KAT7 restored stem cell developmental potential. Overexpression of KAT7 enhanced neuron and oligodendrocyte differentiation. Our data suggest that KAT7 prepares chromatin for transcriptional activation and is a prerequisite for gene activation.
Collapse
|
48
|
Chromatin complex dependencies reveal targeting opportunities in leukemia. Nat Commun 2023; 14:448. [PMID: 36707513 PMCID: PMC9883437 DOI: 10.1038/s41467-023-36150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Chromatin regulators are frequently mutated in human cancer and are attractive drug targets. They include diverse proteins that share functional domains and assemble into related multi-subunit complexes. To investigate functional relationships among these regulators, here we apply combinatorial CRISPR knockouts (KOs) to test over 35,000 gene-gene pairings in leukemia cells, using a library of over 300,000 constructs. Top pairs that demonstrate either compensatory non-lethal interactions or synergistic lethality enrich for paralogs and targets that occupy the same protein complex. The screen highlights protein complex dependencies not apparent in single KO screens, for example MCM histone exchange, the nucleosome remodeling and deacetylase (NuRD) complex, and HBO1 (KAT7) complex. We explore two approaches to NuRD complex inactivation. Paralog and non-paralog combinations of the KAT7 complex emerge as synergistic lethal and specifically nominate the ING5 PHD domain as a potential therapeutic target when paired with other KAT7 complex member losses. These findings highlight the power of combinatorial screening to provide mechanistic insight and identify therapeutic targets within redundant networks.
Collapse
|
49
|
Viita T, Côté J. The MOZ-BRPF1 acetyltransferase complex in epigenetic crosstalk linked to gene regulation, development, and human diseases. Front Cell Dev Biol 2023; 10:1115903. [PMID: 36712963 PMCID: PMC9873972 DOI: 10.3389/fcell.2022.1115903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Acetylation of lysine residues on histone tails is an important post-translational modification (PTM) that regulates chromatin dynamics to allow gene transcription as well as DNA replication and repair. Histone acetyltransferases (HATs) are often found in large multi-subunit complexes and can also modify specific lysine residues in non-histone substrates. Interestingly, the presence of various histone PTM recognizing domains (reader domains) in these complexes ensures their specific localization, enabling the epigenetic crosstalk and context-specific activity. In this review, we will cover the biochemical and functional properties of the MOZ-BRPF1 acetyltransferase complex, underlining its role in normal biological processes as well as in disease progression. We will discuss how epigenetic reader domains within the MOZ-BRPF1 complex affect its chromatin localization and the histone acetyltransferase specificity of the complex. We will also summarize how MOZ-BRPF1 is linked to development via controlling cell stemness and how mutations or changes in expression levels of MOZ/BRPF1 can lead to developmental disorders or cancer. As a last touch, we will review the latest drug candidates for these two proteins and discuss the therapeutic possibilities.
Collapse
Affiliation(s)
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division of Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| |
Collapse
|
50
|
Zhang C, Lin H, Zhang Y, Xing Q, Zhang J, Zhang D, Liu Y, Chen Q, Zhou T, Wang J, Shan Y, Pan G. BRPF1 bridges H3K4me3 and H3K23ac in human embryonic stem cells and is essential to pluripotency. iScience 2023; 26:105939. [PMID: 36711238 PMCID: PMC9874078 DOI: 10.1016/j.isci.2023.105939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 10/04/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Post-translational modifications (PTMs) on histones play essential roles in cell fate decisions during development. However, how these PTMs are recognized and coordinated remains to be fully illuminated. Here, we show that BRPF1, a multi-histone binding module protein, is essential for pluripotency in human embryonic stem cells (ESCs). BRPF1, H3K4me3, and H3K23ac substantially co-occupy the open chromatin and stemness genes in hESCs. BRPF1 deletion impairs H3K23ac in hESCs and leads to closed chromatin accessibility on stemness genes and hESC differentiation as well. Deletion of the N terminal or PHD-zinc knuckle-PHD (PZP) module in BRPF1 completely impairs its functions in hESCs while PWWP module deletion partially impacts the function. In sum, we reveal BRPF1, the multi-histone binding module protein that bridges the crosstalk between different histone modifications in hESCs to maintain pluripotency.
Collapse
Affiliation(s)
- Cong Zhang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Huaisong Lin
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yanqi Zhang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qi Xing
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jingyuan Zhang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Di Zhang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yancai Liu
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qianyu Chen
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Tiancheng Zhou
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Junwei Wang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Corresponding author
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Key Lab for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong 250117, China,Corresponding author
| |
Collapse
|