1
|
Xia H, Ning J, Guo X, Song H, Li X, Wang X. TMSB10 drives prostate cancer aggressiveness via immune microenvironment regulation. Mol Med 2025; 31:160. [PMID: 40307738 PMCID: PMC12042486 DOI: 10.1186/s10020-025-01211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
Thymosin β10 (TMSB10) has emerged as a key player in the progression of prostate cancer, significantly influencing the tumor immune microenvironment. Pan-cancer analysis from The Cancer Genome Atlas (TCGA) revealed that TMSB10 is upregulated across multiple cancer types, particularly in prostate cancer, where high TMSB10 expression correlates with poorer patient outcomes. Functional assays using prostate cancer cell lines LNCaP and DU145 showed that TMSB10 silencing suppresses cell proliferation, migration, and invasion, while overexpression enhances these oncogenic processes. Furthermore, co-culture experiments demonstrated that TMSB10 overexpression skews macrophage polarization, decreasing the population of M1-type macrophages while increasing M2-type macrophages. This shift reduces immune cell cytotoxicity and alters cytokine secretion, highlighting TMSB10's role in immune evasion. These findings establish TMSB10 as a pivotal factor in prostate cancer biology, promoting tumor aggressiveness and modulating the immune response within the tumor microenvironment. TMSB10 presents a promising therapeutic target for prostate cancer, offering new avenues for treatments aimed at altering the tumor immune landscape. This research also provides a foundation for further exploration of TMSB10's role in other cancers.
Collapse
Affiliation(s)
- Haoran Xia
- Department of Urology, Beijing Friendship hospital, Capital Medical University, Beijing, P. R. China
- Institute of Urology, Beijing Municipal Health Commission, Beijing, P. R. China
| | - Jiaxin Ning
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Xiaoxiao Guo
- Department of Urology, Beijing Friendship hospital, Capital Medical University, Beijing, P. R. China
- Institute of Urology, Beijing Municipal Health Commission, Beijing, P. R. China
| | - Hongchen Song
- Department of Urology, Beijing Friendship hospital, Capital Medical University, Beijing, P. R. China
- Institute of Urology, Beijing Municipal Health Commission, Beijing, P. R. China
| | - Xuanhao Li
- Department of Urology, Beijing Friendship hospital, Capital Medical University, Beijing, P. R. China.
- Institute of Urology, Beijing Municipal Health Commission, Beijing, P. R. China.
| | - Xuan Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P. R. China.
| |
Collapse
|
2
|
Liu F, Wang M, Gao S, Song G, Liu M, Li Y, Sun P, Lai W, Wang H, Yang YG, Liu F, Yang Y, Wang L. RNA m 5C methylation mediated by Ybx1 ensures hematopoietic stem and progenitor cell expansion. Cell Rep 2025; 44:115324. [PMID: 39954256 DOI: 10.1016/j.celrep.2025.115324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 12/01/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) undergo rapid transcriptional transitions among distinct cell states and functional properties during development, but the underlying molecular mechanism is largely unknown. Here, we characterize the mRNA m5C landscape of developing HSPCs in zebrafish and found that m5C modification is essential for HSPC expansion through maintaining mRNA stability. Deletion of the m5C reader, Y-box binding protein 1 (Ybx1), significantly inhibits the proliferation of HSPCs in zebrafish and mice. Mechanistically, Ybx1 recognizes m5C-modified mRNAs and maintains the stability of cell-cycle-related transcripts, thereby ensuring proper HSPC expansion. This study reveals the critical role of Ybx1-mediated mRNA m5C modification in developmental hematopoiesis and provides new insights and epitransciptomic strategies for optimizing HSPC expansion.
Collapse
Affiliation(s)
- Fan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Mengke Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suwei Gao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Gege Song
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Ying Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Piao Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Weiyi Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yun-Gui Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Feng Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Ying Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| |
Collapse
|
3
|
Henick BS, Taylor AM, Nakagawa H, Wong KK, Diehl JA, Rustgi AK. Squamous cell cancers of the aero-upper digestive tract: A unified perspective on biology, genetics, and therapy. Cancer Cell 2025; 43:178-194. [PMID: 39933897 PMCID: PMC11875029 DOI: 10.1016/j.ccell.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/23/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025]
Abstract
Squamous cell cancers (SCCs) of the head and neck, esophagus, and lung, referred to as aero-upper digestive SCCs, are prevalent in the United States and worldwide. Their incidence and mortality are projected to increase at alarming rates, posing diagnostic, prognostic, and therapeutic challenges. These SCCs share certain epigenetic, genomic, and genetic alterations, immunologic properties, environmental exposures, as well as lifestyle and nutritional risk factors, which may underscore common complex gene-environmental interactions across them. This review focuses upon the frequent shared epigenetic, genomic, and genetic alterations, emerging preclinical model systems, and how this collective knowledge can be leveraged into perspectives on standard of care therapies and mechanisms of resistance, nominating new potential directions in translational therapeutics.
Collapse
Affiliation(s)
- Brian S Henick
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Division of Hematology-Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Kwok-Kin Wong
- Division of Hematology-Oncology, Department of Medicine, NYU Perlmutter Cancer Center, New York, NY, USA
| | - J Alan Diehl
- Department of Biochemistry, Case Western Reserve Comprehensive Cancer Center, Cleveland, OH, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Zeng X, Cao J, Xu J, Zhou Z, Long C, Zhou Y, Tang J. SKP1-CUL1-F-box: Key molecular targets affecting disease progression. FASEB J 2025; 39:e70326. [PMID: 39812503 PMCID: PMC11734646 DOI: 10.1096/fj.202402816rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
The correct synthesis and degradation of proteins are vital for numerous biological processes in the human body, with protein degradation primarily facilitated by the ubiquitin-proteasome system. The SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase, a member of the Cullin-RING E3 ubiquitin ligase (CRL) family, plays a crucial role in mediating protein ubiquitination and subsequent 26S proteasome degradation during normal cellular metabolism. Notably, SCF is intricately linked to the pathogenesis of various diseases, including malignant tumors. This paper provides a comprehensive overview of the functional characteristics of SCF complexes, encompassing their assembly, disassembly, and regulatory factors. Furthermore, we discuss the diverse effects of SCF on crucial cellular processes such as cell cycle progression, DNA replication, oxidative stress response, cell proliferation, apoptosis, cell differentiation, maintenance of stem cell characteristics, tissue development, circadian rhythm regulation, and immune response modulation. Additionally, we summarize the associations between SCF and the onset, progression, and prognosis of malignant tumors. By synthesizing current knowledge, this review aims to offer a novel perspective for a holistic and systematic understanding of SCF complexes and their multifaceted functions in cellular physiology and disease pathogenesis.
Collapse
Affiliation(s)
- Xiangrong Zeng
- Department of GeriatricsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Cancer Research Institute, Basic School of Medicine, Central South UniversityChangshaHunanChina
| | - Jiaying Cao
- Cancer Research Institute, Basic School of Medicine, Central South UniversityChangshaHunanChina
| | - Juan Xu
- Department of Critical Care MedicinThe Affiliated Cancer Hospital of Xiangya School of Medicine Central South University, Hunan Cancer HospitalChangshaHunanChina
| | - Zihua Zhou
- Department of OncologyLoudi Central HospitalLoudiChina
| | - Chen Long
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South UniversityChangshaHunanChina
| | - Jingqiong Tang
- Department of GeriatricsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
5
|
Markitantova Y, Simirskii V. Retinal Pigment Epithelium Under Oxidative Stress: Chaperoning Autophagy and Beyond. Int J Mol Sci 2025; 26:1193. [PMID: 39940964 PMCID: PMC11818496 DOI: 10.3390/ijms26031193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
The structural and functional integrity of the retinal pigment epithelium (RPE) plays a key role in the normal functioning of the visual system. RPE cells are characterized by an efficient system of photoreceptor outer segment phagocytosis, high metabolic activity, and risk of oxidative damage. RPE dysfunction is a common pathological feature in various retinal diseases. Dysregulation of RPE cell proteostasis and redox homeostasis is accompanied by increased reactive oxygen species generation during the impairment of phagocytosis, lysosomal and mitochondrial failure, and an accumulation of waste lipidic and protein aggregates. They are the inducers of RPE dysfunction and can trigger specific pathways of cell death. Autophagy serves as important mechanism in the endogenous defense system, controlling RPE homeostasis and survival under normal conditions and cellular responses under stress conditions through the degradation of intracellular components. Impairment of the autophagy process itself can result in cell death. In this review, we summarize the classical types of oxidative stress-induced autophagy in the RPE with an emphasis on autophagy mediated by molecular chaperones. Heat shock proteins, which represent hubs connecting the life supporting pathways of RPE cells, play a special role in these mechanisms. Regulation of oxidative stress-counteracting autophagy is an essential strategy for protecting the RPE against pathological damage when preventing retinal degenerative disease progression.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | | |
Collapse
|
6
|
Advani D, Kumar P. Uncovering Cell Cycle Dysregulations and Associated Mechanisms in Cancer and Neurodegenerative Disorders: A Glimpse of Hope for Repurposed Drugs. Mol Neurobiol 2024; 61:8600-8630. [PMID: 38532240 DOI: 10.1007/s12035-024-04130-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
The cell cycle is the sequence of events orchestrated by a complex network of cell cycle proteins. Unlike normal cells, mature neurons subsist in a quiescent state of the cell cycle, and aberrant cell cycle activation triggers neuronal death accompanied by neurodegeneration. The periodicity of cell cycle events is choreographed by various mechanisms, including DNA damage repair, oxidative stress, neurotrophin activity, and ubiquitin-mediated degradation. Given the relevance of cell cycle processes in cancer and neurodegeneration, this review delineates the overlapping cell cycle events, signaling pathways, and mechanisms associated with cell cycle aberrations in cancer and the major neurodegenerative disorders. We suggest that dysregulation of some common fundamental signaling processes triggers anomalous cell cycle activation in cancer cells and neurons. We discussed the possible use of cell cycle inhibitors for neurodegenerative disorders and described the associated challenges. We propose that a greater understanding of the common mechanisms driving cell cycle aberrations in cancer and neurodegenerative disorders will open a new avenue for the development of repurposed drugs.
Collapse
Affiliation(s)
- Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India.
| |
Collapse
|
7
|
Deng Z, Dou L, Luo Z, Liu R, Zhang J, Wang J, Wang D, Guo D, An R, Yao Y, Qiu G, Zhang Y. AKAP95 regulates ubiquitination and degradation of cyclin Ds/Es, influencing the G1/S transition of lung cancer cells. Mol Carcinog 2024; 63:1907-1921. [PMID: 38923703 DOI: 10.1002/mc.23781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
A-kinase anchoring protein 95 (AKAP95) functions as a scaffold for protein kinase A. Prior work by our group has shown that AKAP95, in coordination with Connexin 43 (Cx43), modulates the expression of cyclin D and E proteins, thus affecting the cell cycle progression in lung cancer cells. In the current study, we confirmed that AKAP95 forms a complex with Cx43. Moreover, it associates with cyclins D1 and E1 during the G1 phase, leading to the formation of protein complexes that subsequently translocate to the nucleus. These findings indicate that AKAP95 might facilitate the nuclear transport of cyclins D1 and E1. Throughout this process, AKAP95 and Cx43 collectively regulate the expression of cyclin D, phosphorylate cyclin E1 proteins, and target their specific ubiquitin ligases, ultimately impacting cell cycle progression.
Collapse
Affiliation(s)
- Zifeng Deng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Liangding Dou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Zhen Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Rong Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Jinwen Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Jing Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Dai Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - DongBei Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Ran An
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Youliang Yao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Guihua Qiu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
- Department of Infectious Disease Control and Prevention, Longyan City Center for Disease Control and Prevention, Longyan, Fujian, China
| | - Yongxing Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
8
|
Sun MH, Zhan CL, Li XH, Lee SH, Cui XS. Transcriptome analysis of the effects of high temperature on zygotic genome activation in porcine embryos. Sci Rep 2024; 14:21849. [PMID: 39300156 DOI: 10.1038/s41598-024-73166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
Damage to the development of porcine gametes and embryos caused by high temperatures (HT) is one of the main reasons for the decline in the economic benefits of the livestock industry. Zygotic genome activation (ZGA) marks the beginning of gene expression programs in mammalian pre-implantation embryos. In pigs, ZGA occurs at the 4-cell (4 C) stage, indicating that correct gene expression at this stage plays an important regulatory role in embryonic development. However, the effect of the HT environment on early porcine embryonic development and the RNA expression profile of ZGA remain unclear. In this study, we compared the RNA transcription patterns of porcine 4 C embryos under normal and HT conditions using RNA-seq and identified 326 differentially expressed genes (DEGs). These changes were mainly related to DNA polymerase activity, DNA replication, and nucleotidyltransferase activity. In addition, entries for reverse transcription and endonuclease activity were enriched, indicating that ZGA interfered under HT conditions. Further comparison of the experimental results with the porcine ZGA gene revealed 39 ZGA genes among the DEGs. KEGG and GSEA analysis showed that the oxidative phosphorylation pathway was significantly enriched and signaling pathways related to energy metabolism were significantly downregulated. We also found that NDUFA6 and CDKN1A were located at the center of the protein-protein interaction network diagram of the DEGs. In summary, HT conditions affect mitochondrial function and oxidative phosphorylation levels, and lead to changes in the expression pattern of ZGA in early porcine embryos, with its hub genes NDUFA6 and CDKN1A.
Collapse
Affiliation(s)
- Ming-Hong Sun
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
- Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Cheng-Lin Zhan
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea.
| |
Collapse
|
9
|
Cavalu S, Abdelhamid AM, Saber S, Elmorsy EA, Hamad RS, Abdel-Reheim MA, Yahya G, Salama MM. Cell cycle machinery in oncology: A comprehensive review of therapeutic targets. FASEB J 2024; 38:e23734. [PMID: 38847486 DOI: 10.1096/fj.202400769r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
The cell cycle is tightly regulated to ensure controlled cell proliferation. Dysregulation of the cell cycle machinery is a hallmark of cancer that leads to unchecked growth. This review comprehensively analyzes key molecular regulators of the cell cycle and how they contribute to carcinogenesis when mutated or overexpressed. It focuses on cyclins, cyclin-dependent kinases (CDKs), CDK inhibitors, checkpoint kinases, and mitotic regulators as therapeutic targets. Promising strategies include CDK4/6 inhibitors like palbociclib, ribociclib, and abemaciclib for breast cancer treatment. Other possible targets include the anaphase-promoting complex/cyclosome (APC/C), Skp2, p21, and aurora kinase inhibitors. However, challenges with resistance have limited clinical successes so far. Future efforts should focus on combinatorial therapies, next-generation inhibitors, and biomarkers for patient selection. Targeting the cell cycle holds promise but further optimization is necessary to fully exploit it as an anti-cancer strategy across diverse malignancies.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia, Egypt
| | - Mohamed M Salama
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
10
|
Pan Q, Luo P, Hu K, Qiu Y, Liu G, Dai S, Cui B, Yin D, Shi C. Periodic changes of cyclin D1 mRNA stability are regulated by PC4 modifications in the cell cycle. J Cell Biol 2024; 223:e202308066. [PMID: 38349334 PMCID: PMC10864110 DOI: 10.1083/jcb.202308066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/21/2023] [Accepted: 12/22/2023] [Indexed: 02/15/2024] Open
Abstract
The cell cycle is a highly regulated process in which proteins involved in cell cycle progression exhibit periodic expression patterns, controlled by specific mechanisms such as transcription, translation, and degradation. However, the precise mechanisms underlying the oscillations of mRNA levels in cell cycle regulators are not fully understood. In this study, we observed that the stability of cyclin D1 (CCND1) mRNA fluctuates during the cell cycle, with increased stability during interphase and decreased stability during the M phase. Additionally, we identified a key RNA binding protein, positive coactivator 4 (PC4), which plays a crucial role in stabilizing CCND1 mRNA and regulating its periodic expression. Moreover, the binding affinity of PC4 to CCND1 mRNA is modulated by two cell cycle-specific posttranslational modifications: ubiquitination of K68 enhances binding and stabilizes the CCND1 transcript during interphase, while phosphorylation of S17 inhibits binding during the M phase, leading to degradation of CCND1 mRNA. Remarkably, PC4 promotes the transition from G1 to S phase in the cell cycle, and depletion of PC4 enhances the efficacy of CDK4/6 inhibitors in hepatocellular carcinoma, suggesting that PC4 could serve as a potential therapeutic target. These findings provide valuable insights into the intricate regulation of cell cycle dynamics.
Collapse
Affiliation(s)
- Qimei Pan
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Peng Luo
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuntan Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Gaoyu Liu
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Shijie Dai
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Bokang Cui
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chunmeng Shi
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| |
Collapse
|
11
|
Zhang C, Pan G, Qin JJ. Role of F-box proteins in human upper gastrointestinal tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189035. [PMID: 38049014 DOI: 10.1016/j.bbcan.2023.189035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
Protein ubiquitination and degradation is an essential physiological process in almost all organisms. As the key participants in this process, the E3 ubiquitin ligases have been widely studied and recognized. F-box proteins, a crucial component of E3 ubiquitin ligases that regulates diverse biological functions, including cell differentiation, proliferation, migration, and apoptosis by facilitating the degradation of substrate proteins. Currently, there is an increasing focus on studying the role of F-box proteins in cancer. In this review, we present a comprehensive overview of the significant contributions of F-box proteins to the development of upper gastrointestinal tumors, highlighting their dual roles as both carcinogens and tumor suppressors. We delve into the molecular mechanisms underlying the involvement of F-box proteins in upper gastrointestinal tumors, exploring their interactions with specific substrates and their cross-talks with other key signaling pathways. Furthermore, we discuss the implications of F-box proteins in radiotherapy resistance in the upper gastrointestinal tract, emphasizing their potential as clinical therapeutic and prognostic targets. Overall, this review provides an up-to-date understanding of the intricate involvement of F-box proteins in human upper gastrointestinal tumors, offering valuable insights for the identification of prognostic markers and the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Che Zhang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guangzhao Pan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jiang-Jiang Qin
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
12
|
Naseem Y, Zhang C, Zhou X, Dong J, Xie J, Zhang H, Agboyibor C, Bi Y, Liu H. Inhibitors Targeting the F-BOX Proteins. Cell Biochem Biophys 2023; 81:577-597. [PMID: 37624574 DOI: 10.1007/s12013-023-01160-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
F-box proteins are involved in multiple cellular processes through ubiquitylation and consequent degradation of targeted substrates. Any significant mutation in F-box protein-mediated proteolysis can cause human malformations. The various cellular processes F-box proteins involved include cell proliferation, apoptosis, invasion, angiogenesis, and metastasis. To target F-box proteins and their associated signaling pathways for cancer treatment, researchers have developed thousands of F-box inhibitors. The most advanced inhibitor of FBW7, NVD-BK M120, is a powerful P13 kinase inhibitor that has been proven to bring about apoptosis in cancerous human lung cells by disrupting levels of the protein known as MCL1. Moreover, F-box Inhibitors have demonstrated their efficacy for treating certain cancers through targeting particular mutated proteins. This paper explores the key studies on how F-box proteins act and their contribution to malignancy development, which fabricates an in-depth perception of inhibitors targeting the F-box proteins and their signaling pathways that eventually isolate the most promising approach to anti-cancer treatments.
Collapse
Affiliation(s)
- Yalnaz Naseem
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Chaofeng Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinyi Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianshu Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, China.
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China.
- Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jiachong Xie
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Huimin Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Clement Agboyibor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - YueFeng Bi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, China.
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China.
- Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hongmin Liu
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, China.
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China.
- Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
13
|
Fang M, Wu HK, Pei Y, Zhang Y, Gao X, He Y, Chen G, Lv F, Jiang P, Li Y, Li W, Jiang P, Wang L, Ji J, Hu X, Xiao RP. E3 ligase MG53 suppresses tumor growth by degrading cyclin D1. Signal Transduct Target Ther 2023; 8:263. [PMID: 37414783 PMCID: PMC10326024 DOI: 10.1038/s41392-023-01458-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/09/2023] [Accepted: 04/22/2023] [Indexed: 07/08/2023] Open
Abstract
Due to the essential role of cyclin D1 in regulating transition from G1 to S phase in cell cycle, aberrant cyclin D1 expression is a major oncogenic event in many types of cancers. In particular, the dysregulation of ubiquitination-dependent degradation of cyclin D1 contributes to not only the pathogenesis of malignancies but also the refractory to cancer treatment regiments with CDK4/6 inhibitors. Here we show that in colorectal and gastric cancer patients, MG53 is downregulated in more than 80% of tumors compared to the normal gastrointestinal tissues from the same patient, and the reduced MG53 expression is correlated with increased cyclin D1 abundance and inferior survival. Mechanistically, MG53 catalyzes the K48-linked ubiquitination and subsequent degradation of cyclin D1. Thus, increased expression of MG53 leads to cell cycle arrest at G1, and thereby markedly suppresses cancer cell proliferation in vitro as well as tumor growth in mice with xenograft tumors or AOM/DSS induced-colorectal cancer. Consistently, MG53 deficiency results in accumulation of cyclin D1 protein and accelerates cancer cell growth both in culture and in animal models. These findings define MG53 as a tumor suppressor via facilitating cyclin D1 degradation, highlighting the therapeutic potential of targeting MG53 in treating cancers with dysregulated cyclin D1 turnover.
Collapse
Affiliation(s)
- Meng Fang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China
| | - Hong-Kun Wu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, 310003, Hangzhou, China
| | - Yumeng Pei
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
| | - Xiangyu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Tumor Center, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Yanyun He
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China
| | - Gengjia Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Fengxiang Lv
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
| | - Peng Jiang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Yumei Li
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Wenwen Li
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Peng Jiang
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Tumor Center, Peking University Cancer Hospital & Institute, 100142, Beijing, China.
| | - Xinli Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China.
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China.
| | - Rui-Ping Xiao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China.
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China.
| |
Collapse
|
14
|
Cai W, Shu LZ, Liu DJ, Zhou L, Wang MM, Deng H. Targeting cyclin D1 as a therapeutic approach for papillary thyroid carcinoma. Front Oncol 2023; 13:1145082. [PMID: 37427143 PMCID: PMC10324616 DOI: 10.3389/fonc.2023.1145082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Cyclin D1 functions as a mitogenic sensor that specifically binds to CDK4/6, thereby integrating external mitogenic inputs and cell cycle progression. Cyclin D1 interacts with transcription factors and regulates various important cellular processes, including differentiation, proliferation, apoptosis, and DNA repair. Therefore, its dysregulation contributes to carcinogenesis. Cyclin D1 is highly expressed in papillary thyroid carcinoma (PTC). However, the particular cellular mechanisms through which abnormal cyclin D1 expression causes PTC are poorly understood. Unveiling the regulatory mechanisms of cyclin D1 and its function in PTC may help determine clinically effective strategies, and open up better opportunities for further research, leading to the development of novel PTC regimens that are clinically effective. This review explores the mechanisms underlying cyclin D1 overexpression in PTC. Furthermore, we discuss the role of cyclin D1 in PTC tumorigenesis via its interactions with other regulatory elements. Finally, recent progress in the development of therapeutic options targeting cyclin D1 in PTC is examined and summarized.
Collapse
Affiliation(s)
- Wei Cai
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lin-Zhen Shu
- Medical College, Nanchang University, Nanchang, China
| | - Ding-Jie Liu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Lv Zhou
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meng-Meng Wang
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Ma C, Wang D, Tian Z, Gao W, Zang Y, Qian L, Xu X, Jia J, Liu Z. USP13 deubiquitinates and stabilizes cyclin D1 to promote gastric cancer cell cycle progression and cell proliferation. Oncogene 2023:10.1038/s41388-023-02739-x. [PMID: 37311811 DOI: 10.1038/s41388-023-02739-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023]
Abstract
The reversible post-translational modifications of protein ubiquitination and deubiquitination play a crucial regulatory role in cellular homeostasis. Deubiquitinases (DUBs) are responsible for the removal of ubiquitin from the protein substrates. The dysregulation of the DUBs may give rise to the occurrence and development of tumors. In this study, we investigated the gastric cancer (GC) data from the TCGA and GEO databases and found that ubiquitin-specific protease USP13 was significantly up-regulated in GC samples. The higher expression of USP13 was associated with the worse prognosis and shorter overall survival (OS) of GC patients. Enforced expression of USP13 in GC cells promoted the cell cycle progression and cell proliferation in an enzymatically dependent manner. Conversely, suppression of USP13 led to GC cell cycle arrest in G1 phase and the inhibition of cell proliferation. Nude mouse experiments indicated that depletion of USP13 in GC cells dramatically suppressed tumor growth in vivo. Mechanistically, USP13 physically bound to the N-terminal domain of cyclin D1 and removed its K48- but not K63-linked polyubiquitination chain, thereby stabilizing and increasing cyclin D1. Furthermore, re-expression of cyclin D1 partially reversed the cell cycle arrest and cell proliferation inhibition induced by USP13 depletion in GC cells. Additionally, USP13 protein abundance was positively correlated with the protein level of cyclin D1 in human GC tissues. Taken together, our data demonstrate that USP13 deubiquitinates and stabilizes cyclin D1, thereby promoting cell cycle progression and cell proliferation in GC. These findings suggest that USP13 might be a promising therapeutic target for the treatment of GC.
Collapse
Affiliation(s)
- Cunying Ma
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Dandan Wang
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Zhuangfei Tian
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Wenrong Gao
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yichen Zang
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Lilin Qian
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xia Xu
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Jihui Jia
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Zhifang Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
16
|
Bélanger F, Roussel C, Sawchyn C, St-Hilaire E, Gezzar-Dandashi S, Kimenyi Ishimwe AB, Mallette FA, Wurtele H, Drobetsky E. A genome-wide screen reveals that Dyrk1A kinase promotes nucleotide excision repair by preventing aberrant overexpression of cyclin D1 and p21. J Biol Chem 2023:104900. [PMID: 37301510 PMCID: PMC10339196 DOI: 10.1016/j.jbc.2023.104900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/25/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Nucleotide excision repair (NER) eliminates highly-genotoxic solar UV-induced DNA photoproducts that otherwise stimulate malignant melanoma development. Here, a genome-wide loss-of-function screen, coupling CRISPR/Cas9 technology with a flow cytometry-based DNA repair assay, was used to identify novel genes required for efficient NER in primary human fibroblasts. Interestingly, the screen revealed multiple genes encoding proteins, with no previously known involvement in UV damage repair, that significantly modulate NER uniquely during S phase of the cell cycle. Among these, we further characterized Dyrk1A, a dual specificity kinase that phosphorylates the proto-oncoprotein cyclin D1 on threonine 286 (T286), thereby stimulating its timely cytoplasmic relocalization and proteasomal degradation which is required for proper regulation of the G1-S phase transition and control of cellular proliferation. We demonstrate that in UV-irradiated HeLa cells, depletion of Dyrk1A leading to overexpression of cyclin D1 causes inhibition of NER uniquely during S phase and reduced cell survival. Consistently, expression/nuclear accumulation of nonphosphorylatable cyclin D1 (T286A) in melanoma cells strongly interferes with S phase NER and enhances cytotoxicity post-UV. Moreover, the negative impact of cyclin D1 (T286A) overexpression on repair is independent of cyclin-dependent kinase activity but requires cyclin D1-dependent upregulation of p21 expression. Our data indicate that inhibition of NER during S phase might represent a previously unappreciated non-canonical mechanism by which oncogenic cyclin D1 fosters melanomagenesis.
Collapse
Affiliation(s)
- François Bélanger
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montréal, Québec, Canada H1T 2M4
| | - Cassandra Roussel
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montréal, Québec, Canada H1T 2M4
| | - Christina Sawchyn
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montréal, Québec, Canada H1T 2M4; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, Canada, H3T 1J4
| | - Edlie St-Hilaire
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montréal, Québec, Canada H1T 2M4
| | - Sari Gezzar-Dandashi
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montréal, Québec, Canada H1T 2M4; Molecular Biology Program, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, Canada, H3T 1J4
| | - Aimé Boris Kimenyi Ishimwe
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montréal, Québec, Canada H1T 2M4; Molecular Biology Program, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, Canada, H3T 1J4
| | - Frédérick Antoine Mallette
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montréal, Québec, Canada H1T 2M4; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, Canada, H3T 1J4; Molecular Biology Program, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, Canada, H3T 1J4; Department of Medicine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, Canada, H3T 1J4
| | - Hugo Wurtele
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montréal, Québec, Canada H1T 2M4; Molecular Biology Program, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, Canada, H3T 1J4; Department of Medicine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, Canada, H3T 1J4.
| | - Elliot Drobetsky
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montréal, Québec, Canada H1T 2M4; Molecular Biology Program, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, Canada, H3T 1J4; Department of Medicine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec, Canada, H3T 1J4.
| |
Collapse
|
17
|
Wang J, Zhang J, Ma Q, Zhang S, Ma F, Su W, Zhang T, Xie X, Di C. Influence of cyclin D1 splicing variants expression on breast cancer chemoresistance via CDK4/CyclinD1-pRB-E2F1 pathway. J Cell Mol Med 2023; 27:991-1005. [PMID: 36915230 PMCID: PMC10064037 DOI: 10.1111/jcmm.17716] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/16/2023] Open
Abstract
Cyclin D1 (CCND1), a mediator of cell cycle control, has a G870A polymorphism which results in the formation of two splicing variants: full-length CCND1 (CCND1a) and C-terminally truncated CCND1 species (CCND1b). However, the role of CCND1a and CCND1b variants in cancer chemoresistance remains unknown. Therefore, this study aimed to explore the molecular mechanism of alternative splicing of CCND1 in breast cancer (BC) chemoresistance. To address the contribution of G870A polymorphism to the production of CCND1 variants in BC chemoresistance, we sequenced the G870A polymorphism and analysed the expressions of CCND1a and CCND1b in MCF-7 and MCF-7/ADM cells. In comparison with MCF-7 cells, MCF-7/ADM cells with the A allele could enhance alternative splicing with the increase of SC-35, upregulate the ratio of CCND1b/a at both mRNA and protein levels, and activate the CDK4/CyclinD1-pRB-E2F1 pathway. Furthermore, CCND1b expression and the downstream signalling pathway were analysed through Western blotting and cell cycle in MCF-7/ADM cells with knockdown of CCND1b. Knockdown of CCND1b downregulated the ratio of CCND1b/a, demoted cell proliferation, decelerated cell cycle progression, inhibited the CDK4/CyclinD1-pRB-E2F1 pathway and thereby decreased the chemoresistance of MCF-7/ADM cells. Finally, CCND1 G870A polymorphism, the alternative splicing of CCDN1 was detected through Sequenom Mass ARRAY platform, Sanger sequencing, semi-quantitative RT-PCR, Western blotting and immunohistochemistry in clinical BC specimens. The increase of the ratio of CCND1b/a caused by G870A polymorphism was involved in BC chemoresistance. Thus, these findings revealed that CCND1b/a ratio caused by the polymorphism is involved in BC chemoresistance via CDK4/CyclinD1-pRB-E2F1 pathway.
Collapse
Affiliation(s)
- Jing Wang
- School of Basic Medical SciencesLanzhou UniversityLanzhouChina
- Bio‐Medical Research Center, Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
| | - Jiaxin Zhang
- School of Biological and Pharmaceutical EngineeringLanzhou Jiaotong UniversityLanzhouChina
| | - Qinglong Ma
- School of Basic Medical SciencesLanzhou UniversityLanzhouChina
| | - Shasha Zhang
- School of Basic Medical SciencesLanzhou UniversityLanzhouChina
| | - Fengdie Ma
- School of Basic Medical SciencesLanzhou UniversityLanzhouChina
| | - Wei Su
- Bio‐Medical Research Center, Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhouChina
| | - Taotao Zhang
- Bio‐Medical Research Center, Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhouChina
| | - Xiaodong Xie
- School of Basic Medical SciencesLanzhou UniversityLanzhouChina
| | - Cuixia Di
- Bio‐Medical Research Center, Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhouChina
| |
Collapse
|
18
|
Wu W, Hu Y, Zhang Q, Xu Y, Su W. TNFα stimulates the proliferation of immature Sertoli cells by attenuating UPS-degradation of cyclin D1 and leads to the delay of BTB maturation in pubertal rats. Andrology 2023; 11:575-590. [PMID: 36354278 DOI: 10.1111/andr.13336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/18/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUNDS The Sertoli cell that plays a vital role during spermatogenesis is a known target of physiological and pathological factors affecting testicular development. Tumor necrosis factor alpha (TNFα) participates in the blood-testis barrier reconstruction, cell apoptosis, and inflammatory response by recognizing receptors on Sertoli cell. TNFα has also been shown to induce the proliferation of immature Sertoli cell in vitro, yet the mechanism still remains unclarified. OBJECTIVES This study was designed to investigate the effect of TNFα on blood-testis barrier development during puberty and the underlying mechanisms of TNFα-induced immature Sertoli cell proliferation. MATERIALS AND METHODS Immature male Sprague-Dawley rats of postnatal day 12 were intraperitoneally injected with TNFα. Biotin-labeled method was used to detect permeability of the developing blood-testis barrier after TNFα treatment, and the distribution of occludin and junctional adhesion molecule-A (JAM-A) were detected by immunofluorescence. Sertoli cells isolated from Sprague-Dawley rats of postnatal day 10 were cultured in vitro and treated with TNFα. Cell proliferation rate was reflected by Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assay. Immunoblot and quantitative polymerase chain reaction were used to detect the expression of proliferating cell nuclear antigen, Fbxo4, and cyclin D1. Immunoprecipitation was used to detect the ubiquitination of cyclin D1 and the interaction between Fbxo4 and cyclin D1. Ammonium pyrrolidinedithiocarbamate (PDTC) was applied to detect the effect of nuclear factor kappaB (NFκB) activity inhibition on TNFα-induced Sertoli cell proliferation. The adenoviral recombinant plasmid containing rat Fbxo4 gene was constructed to investigate the effect of Fbxo4 overexpression on Sertoli cell proliferation promoted by TNFα. RESULTS The in vivo experiment revealed a significant delay of blood-testis barrier maturation in pubertal rats caused by exogenous TNFα. TNFα (10 ng/ml) treatment in vitro was found to promote the proliferation of immature Sertoli cells, accompanied with increased NFκB activity and cyclin D1 protein level. The level of Fbxo4 and ubiquitination of cyclin D1 were decreased after TNFα treatment. Inhibitor of NFκB or overexpression of Fbxo4 could both reverse the TNFα-induced proliferation of immature Sertoli cells, meanwhile restore the ubiquitin-proteasome system-dependent degradation of cyclin D1. Overexpression of Fbxo4 could not affect the activation of NFκB caused by TNFα. CONCLUSION These results indicate that TNFα inhibits the ubiquitination and degradation of cyclin D1 through the NFκB pathway, thereby promoting the proliferation of immature Sertoli cell in vitro and inducing the delay of blood-testis barrier maturation in pubertal rats.
Collapse
Affiliation(s)
- Weixing Wu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, Liaoning, China.,National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Ying Hu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, Liaoning, China
| | - Qiang Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, Liaoning, China
| | - Ying Xu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, Liaoning, China
| | - Wenhui Su
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
19
|
Abstract
Post-translational modifications (PTMs) can occur on specific amino acids localized within regulatory domains of target proteins, which control a protein's stability. These regions, called degrons, are often controlled by PTMs, which act as signals to expedite protein degradation (PTM-activated degrons) or to forestall degradation and stabilize a protein (PTM-inactivated degrons). We summarize current knowledge of the regulation of protein stability by various PTMs. We aim to display the variety and breadth of known mechanisms of regulation as well as highlight common themes in PTM-regulated degrons to enhance potential for identifying novel drug targets where druggable targets are currently lacking.
Collapse
|
20
|
Rezaeian AH, Inuzuka H, Wei W. Insights into the aberrant CDK4/6 signaling pathway as a therapeutic target in tumorigenesis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 135:179-201. [PMID: 37061331 DOI: 10.1016/bs.apcsb.2022.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The recent findings advance our knowledge for the prevention of the premature activation of the major oncogenic pathways including MYC and the cyclin D-cyclin-dependent kinases 4 and 6 (CDK4/6) axis. D-type cyclins are frequently deregulated in human cancer and promote cell division in part through activation of CDK4/6. Therefore, the activation of the cyclin D-CDK4/6 axis stimulates cell proliferation and cancer progression, which represents a unique therapeutic target. However, we have shown that inhibition of CDK4/6 upregulates protein levels of RB1 and CDK6 for acquisition of drug resistance to CDK4/6 inhibitors. Here, we review new progress in the control of cyclin D-dependent cancer cell cycle and proliferation, along with identification of novel E3 ligase for the stability of cyclin D. Cullin4-RING E3 ligase (CRL4)AMBRA1 complex plays a critical role in regulating D-type cyclins through their protein destabilization to control S phase entry and maintain genomic integrity. We also summarize the strategy for inhibition of the cyclin D-associated kinases CDK4/6 and other potential cell cycle regulators for targeting cancer with altered cyclin D expression. We also uncover the function of CK1ɛ as an effective target to potentiate therapeutic efficacy of CDK4/6 inhibitors. Moreover, as the level of PD-L1 is considered in the severe clinical problem in the patients treated with CDK4 inhibitors, we assume that a therapeutic combination using PD-L1 immunotherapy might lower the development of drug resistance and targeting cyclin D will likely inhibit tumor growth and overcome resistance to cyclin D-associated CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
21
|
Mucha B, Qie S, Bajpai S, Tarallo V, Diehl JN, Tedeschi F, Zhou G, Gao Z, Flashner S, Klein-Szanto AJ, Hibshoosh H, Masataka S, Chajewski OS, Majsterek I, Pytel D, Hatzoglou M, Der CJ, Nakagawa H, Bass AJ, Wong KK, Fuchs SY, Rustgi AK, Jankowsky E, Diehl JA. Tumor suppressor mediated ubiquitylation of hnRNPK is a barrier to oncogenic translation. Nat Commun 2022; 13:6614. [PMID: 36329064 PMCID: PMC9633729 DOI: 10.1038/s41467-022-34402-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Heterogeneous Nuclear Ribonucleoprotein K (hnRNPK) is a multifunctional RNA binding protein (RBP) localized in the nucleus and the cytoplasm. Abnormal cytoplasmic enrichment observed in solid tumors often correlates with poor clinical outcome. The mechanism of cytoplasmic redistribution and ensuing functional role of cytoplasmic hnRNPK remain unclear. Here we demonstrate that the SCFFbxo4 E3 ubiquitin ligase restricts the pro-oncogenic activity of hnRNPK via K63 linked polyubiquitylation, thus limiting its ability to bind target mRNA. We identify SCFFbxo4-hnRNPK responsive mRNAs whose products regulate cellular processes including proliferation, migration, and invasion. Loss of SCFFbxo4 leads to enhanced cell invasion, migration, and tumor metastasis. C-Myc was identified as one target of SCFFbxo4-hnRNPK. Fbxo4 loss triggers hnRNPK-dependent increase in c-Myc translation, thereby contributing to tumorigenesis. Increased c-Myc positions SCFFbxo4-hnRNPK dysregulated cancers for potential therapeutic interventions that target c-Myc-dependence. This work demonstrates an essential role for limiting cytoplasmic hnRNPK function in order to maintain translational and cellular homeostasis.
Collapse
Affiliation(s)
- Bartosz Mucha
- Department of Biochemistry, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Shuo Qie
- Department of Biochemistry, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sagar Bajpai
- Department of Biochemistry, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Vincenzo Tarallo
- Department of Biochemistry, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - J Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Frank Tedeschi
- Department of Biochemistry, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
- Center for RNA Science and Therapeutics, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Gao Zhou
- Center for RNA Science and Therapeutics, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Zhaofeng Gao
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44016, USA
| | - Samuel Flashner
- Division of Hematology-Oncology, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | - Hanina Hibshoosh
- Division of Hematology-Oncology, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Shimonosono Masataka
- Division of Hematology-Oncology, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Olga S Chajewski
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 60 Narutowicza St. 90-136, Lodz, Poland
| | - Dariusz Pytel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 60 Narutowicza St. 90-136, Lodz, Poland
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44016, USA
| | - Channing J Der
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Adam J Bass
- Division of Hematology-Oncology, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Kwok-Kin Wong
- Division of Hematology and Medical Oncology, Perlmutter Cancer Center, New York University, New York, NY, 10016, USA
| | - Serge Y Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anil K Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Eckhard Jankowsky
- Department of Biochemistry, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
- Center for RNA Science and Therapeutics, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - J Alan Diehl
- Department of Biochemistry, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Center for RNA Science and Therapeutics, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
22
|
Chen S, Li L. Degradation strategy of cyclin D1 in cancer cells and the potential clinical application. Front Oncol 2022; 12:949688. [PMID: 36059670 PMCID: PMC9434365 DOI: 10.3389/fonc.2022.949688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/28/2022] [Indexed: 02/02/2023] Open
Abstract
Cyclin D1 has been reported to be upregulated in several solid and hematologic tumors, promoting cancer progression. Thus, decreasing cyclin D1 by degradation could be a promising target strategy for cancer therapy. This mini review summarizes the roles of cyclin D1 in tumorigenesis and progression and its degradation strategies. Besides, we proposed an exploration of the degradation of cyclin D1 by FBX4, an F box protein belonging to the E3 ligase SKP-CUL-F-box (SCF) complex, which mediates substrate ubiquitination, as well as a postulate about the concrete combination mode of FBX4 and cyclin D1. Furthermore, we proposed a possible photodynamic therapy strategythat is based on the above concrete combination mode for treating superficial cancer.
Collapse
Affiliation(s)
- Shuyi Chen
- The Sixth Student Battalion, School of Basic Medical Sciences, Fourth Military Medical University, Xi’an, China
| | - Ling Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
23
|
Hussain M, Lu Y, Tariq M, Jiang H, Shu Y, Luo S, Zhu Q, Zhang J, Liu J. A small-molecule Skp1 inhibitor elicits cell death by p53-dependent mechanism. iScience 2022; 25:104591. [PMID: 35789855 PMCID: PMC9249674 DOI: 10.1016/j.isci.2022.104591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 04/21/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022] Open
Abstract
Skp1 overexpression promotes tumor growth, whereas reduced Skp1 activity is also linked with genomic instability and neoplastic transformation. This highlights the need to gain better understanding of Skp1 biology in cancer settings. To this context, potent and cellularly active small-molecule Skp1 inhibitors may be of great value. Using a hypothesis-driven, structure-guided approach, we herein identify Z0933M as a potent Skp1 inhibitor with KD ∼0.054 μM. Z0933M occupies a hydrophobic hotspot (P1) – encompassing an aromatic cage of two phenylalanines (F101 and F139) – alongside C-terminal extension of Skp1 and, thus, hampers its ability to interact with F-box proteins, a prerequisite step to constitute intact and active SCF E3 ligase(s) complexes. In cellulo, Z0933M disrupted SCF E3 ligase(s) functioning, recapitulated previously reported effects of Skp1-reduced activity, and elicited cell death by a p53-dependent mechanism. We propose Z0933M as valuable tool for future efforts toward probing Skp1 cancer biology, with implications for cancer therapy. Z0933M manifests strong binding with Skp1 and inhibits Skp1-F-box PPIs Z0933M interacts with a P1 hotspot alongside C-terminal extension of Skp1 Z0933M alters SCF E3 ligase functioning, leading to substrate accumulation/modulation Z0933M causes cell-cycle arrest, and elicits cell death by p53-dependent mechanism
Collapse
Affiliation(s)
- Muzammal Hussain
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yongzhi Lu
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Muqddas Tariq
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Hao Jiang
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
| | - Yahai Shu
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Jiancun Zhang
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Corresponding author
| |
Collapse
|
24
|
The E3 Ubiquitin Ligase Fbxo4 Functions as a Tumor Suppressor: Its Biological Importance and Therapeutic Perspectives. Cancers (Basel) 2022; 14:cancers14092133. [PMID: 35565262 PMCID: PMC9101129 DOI: 10.3390/cancers14092133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Fbxo4 is an E3 ubiquitin ligase that requires the formation of a complex with S-phase kinase-associated protein 1 and Cullin1 to catalyze the ubiquitylation of its substrates. Moreover, Fbxo4 depends on the existence of posttranslational modifications and/or co-factor to be activated to perform its biological functions. The well-known Fbxo4 substrates have oncogenic or oncogene-like activities, for example, cyclin D1, Trf1/Pin2, p53, Fxr1, Mcl-1, ICAM-1, and PPARγ; therefore, Fbxo4 is defined as a tumor suppressor. Biologically, Fbxo4 regulates cell cycle progression, DNA damage response, tumor metabolism, cellular senescence, metastasis and tumor cells’ response to chemotherapeutic compounds. Clinicopathologically, the expression of Fbxo4 is associated with patients’ prognosis depending on different tumor types. Regarding to its complicated regulation, more in-depth studies are encouraged to dissect the detailed molecular mechanisms to facilitate developing new treatment through targeting Fbxo4. Abstract Fbxo4, also known as Fbx4, belongs to the F-box protein family with a conserved F-box domain. Fbxo4 can form a complex with S-phase kinase-associated protein 1 and Cullin1 to perform its biological functions. Several proteins are identified as Fbxo4 substrates, including cyclin D1, Trf1/Pin2, p53, Fxr1, Mcl-1, ICAM-1, and PPARγ. Those factors can regulate cell cycle progression, cell proliferation, survival/apoptosis, and migration/invasion, highlighting their oncogenic or oncogene-like activities. Therefore, Fbxo4 is defined as a tumor suppressor. The biological functions of Fbxo4 make it a potential candidate for developing new targeted therapies. This review summarizes the gene and protein structure of Fbxo4, the mechanisms of how its expression and activity are regulated, and its substrates, biological functions, and clinicopathological importance in human cancers.
Collapse
|
25
|
Yoshida A, Phillips-Mason P, Tarallo V, Avril S, Koivisto C, Leone G, Diehl JA. Non-phosphorylatable cyclin D1 mutant potentiates endometrial hyperplasia and drives carcinoma with Pten loss. Oncogene 2022; 41:2187-2195. [PMID: 35210557 PMCID: PMC10056880 DOI: 10.1038/s41388-022-02243-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 11/08/2022]
Abstract
Cyclin D1 is a regulatory subunit of -Cyclin Dependent Kinases 4 and 6 (CDK4/6) and regulates progression from G1 to S phase of the cell cycle. Dysregulated cyclin D1-CDK4/6 contributes to abnormal cell proliferation and tumor development. Phosphorylation of threonine 286 of cyclin D1 is necessary for ubiquitin-dependent degradation. Non-phosphorylatable cyclin D1 mutants are stabilized and concentrated in the nucleus, contributing to genomic instability and tumor development. Studies investigating the tumor-promoting functions of cyclin D1 mutants have focused on the use of artificial promoters to drive the expression which unfortunately may not accurately reflect tumorigenic functions of mutant cyclin D1 in cancer development. We have generated a conditional knock-in mouse model where cyclin D1T286A is expressed under the control of its endogenous promoter following Cre-dependent excision of a lox-stop-lox sequence. Acute expression of cyclin D1T286A following tamoxifen-inducible Cre recombinase triggers inflammation, lymphocyte abnormality and ultimately mesenteric tumors in the intestine. Tissue-specific expression of cyclin D1T286A in the uterus and endometrium cooperates with Pten loss to drive endometrial hyperplasia and cancer. Mechanistically, cyclin D1T286A mutant activates NF-κB signaling, augments inflammation, and contributes to tumor development. These results indicate that mutation of cyclin D1 at threonine 286 has a critical role in regulating inflammation and tumor development.
Collapse
Affiliation(s)
- Akihiro Yoshida
- Department of Dermatology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Polly Phillips-Mason
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Vincenzo Tarallo
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Stefanie Avril
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Pathology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Christopher Koivisto
- Department of Biochemistry, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Gustavo Leone
- Medical College of Wisconsin Cancer Center, Department of Biochemistry, Medical College of Wisconsin, Wauwatosa, WI, 53226, USA
| | - J Alan Diehl
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
26
|
Zhao B, Yang Y, Cun B, Chen P. AMBRA1 attenuates the proliferation of uveal melanoma cells. Open Med (Wars) 2021; 17:1-14. [PMID: 34901460 PMCID: PMC8627920 DOI: 10.1515/med-2021-0386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
Uveal melanoma (UVM) is the most common primary intraocular malignancy in adults with high metastasis rates. D-type cyclins (CCNDs) are central regulators of the cell division cycle and are among the most frequently deregulated therapeutic targets in human cancer. Recently, the E3 ligase adaptor, autophagy and beclin 1 regulator 1 (AMBRA1), was reported to regulate the stability of CCNDs, including CCND1, but its role in UVM has not been demonstrated. AMBRA1 is lowly expressed in UVM cells, and the ablation of AMBRA1 promotes the proliferation of 92.1 and OMM1 cells, whereas ectopically expressing AMBRA1 attenuates the proliferation of UVM cells. Further studies found that AMBRA1 promotes the ubiquitination and degradation of CCND1, and AMBRA1 regulates the proliferation of UVM cells in a CCND1-dependent manner. Thus, this study suggests that AMBRA1 serves as an important tumor suppressor by limiting UVM cell growth.
Collapse
Affiliation(s)
- Binbin Zhao
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Yun Yang
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Biyun Cun
- Department of Clinical Skills Center, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Ping Chen
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| |
Collapse
|
27
|
Jiang Y, Zhu L, Wu D, Ni Y, Huang C, Ye H, Yang Y, Liu R, Li Y. Type IIB PKA is highly expressed in β cells and controls cell proliferation via regulating Cyclin D1 expression. FEBS J 2021; 289:2865-2876. [PMID: 34839588 DOI: 10.1111/febs.16302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 12/01/2022]
Abstract
β cell number is maintained mainly by cell proliferation and cell apoptosis. Protein kinase A (PKA) pathway is an important intracellular signalling-mediating β cell proliferation. However, the precise roles of PKA isoforms are not well-defined. We found that the RIIB subunit of PKA is expressed specifically by β cells of mouse and human islets. Sixty percent pancreatectomy caused increased β cell proliferation. Deletion of type IIB PKA by disruption of RIIB expression further promoted β cell proliferation, leading to enhanced β cell mass expansion. RIIB KO mice also showed increased insulin levels and improved glucose tolerance. Mechanistically, activation of type IIB PKA decreased Cyclin D1 levels and inhibition of RIIB expression increased Cyclin D1 levels. Consistently, activation of type IIB PKA inhibited cell cycle entry. These results suggest that type IIB PKA plays a pivotal role in β cell proliferation via regulating Cyclin D1 expression.
Collapse
Affiliation(s)
- Yaojing Jiang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Zhu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Di Wu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yunzhi Ni
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuxin Huang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongying Ye
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yehong Yang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Rui Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Hou Y, Liu R, Xia M, Sun C, Zhong B, Yu J, Ai N, Lu JJ, Ge W, Liu B, Chen X. Nannocystin ax, an eEF1A inhibitor, induces G1 cell cycle arrest and caspase-independent apoptosis through cyclin D1 downregulation in colon cancer in vivo. Pharmacol Res 2021; 173:105870. [PMID: 34500061 DOI: 10.1016/j.phrs.2021.105870] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 12/28/2022]
Abstract
Colorectal cancer (CRC) is one of the most common causes of cancer-related death worldwide. Nannocystin ax (NAN), a 21-membered cyclodepsipeptide initially isolated from myxobacteria of the Nannocystis genus, was found to target the eukaryotic elongation factor 1A (eEF1A). The current study was designed to evaluate the anticancer effect and underlying mechanisms of NAN with in vitro and in vivo models. Results showed that NAN induced G1 phase cell cycle arrest and caspase-independent apoptosis in HCT116 and HT29 human CRC cells. NAN significantly downregulated cyclin D1 level in a short time, but NAN did not affect the transcription level and ubiquitin-dependent degradation of cyclin D1. Furthermore, NAN treatment directly targeted eEF1A and partially decreased the synthesis of new proteins, contributing to the downregulation of cyclin D1. Besides, NAN significantly suppressed tumor growth in the zebrafish xenograft model. In conclusion, NAN triggered G1 phase cell cycle arrest through cyclin D1 downregulation and eEF1A-targeted translation inhibition and promoted caspase-independent apoptosis in CRC cells.
Collapse
Affiliation(s)
- Ying Hou
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Rong Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Mengwei Xia
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chong Sun
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Bingling Zhong
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jie Yu
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Nana Ai
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jin-Jian Lu
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiuping Chen
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
29
|
Thompson LL, Rutherford KA, Lepage CC, McManus KJ. The SCF Complex Is Essential to Maintain Genome and Chromosome Stability. Int J Mol Sci 2021; 22:8544. [PMID: 34445249 PMCID: PMC8395177 DOI: 10.3390/ijms22168544] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
The SKP1, CUL1, F-box protein (SCF) complex encompasses a group of 69 SCF E3 ubiquitin ligase complexes that primarily modify protein substrates with poly-ubiquitin chains to target them for proteasomal degradation. These SCF complexes are distinguishable by variable F-box proteins, which determine substrate specificity. Although the function(s) of each individual SCF complex remain largely unknown, those that have been characterized regulate a wide array of cellular processes, including gene transcription and the cell cycle. In this regard, the SCF complex regulates transcription factors that modulate cell signaling and ensures timely degradation of primary cell cycle regulators for accurate replication and segregation of genetic material. SCF complex members are aberrantly expressed in a myriad of cancer types, with altered expression or function of the invariable core SCF components expected to have a greater impact on cancer pathogenesis than that of the F-box proteins. Accordingly, this review describes the normal roles that various SCF complexes have in maintaining genome stability before discussing the impact that aberrant SCF complex expression and/or function have on cancer pathogenesis. Further characterization of the SCF complex functions is essential to identify and develop therapeutic approaches to exploit aberrant SCF complex expression and function.
Collapse
Affiliation(s)
- Laura L. Thompson
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (L.L.T.); (K.A.R.); (C.C.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Kailee A. Rutherford
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (L.L.T.); (K.A.R.); (C.C.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Chloe C. Lepage
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (L.L.T.); (K.A.R.); (C.C.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Kirk J. McManus
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (L.L.T.); (K.A.R.); (C.C.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
30
|
Sun T, Xu YJ, Jiang SY, Xu Z, Cao BY, Sethi G, Zeng YY, Kong Y, Mao XL. Suppression of the USP10/CCND1 axis induces glioblastoma cell apoptosis. Acta Pharmacol Sin 2021; 42:1338-1346. [PMID: 33184448 PMCID: PMC8285505 DOI: 10.1038/s41401-020-00551-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
Recent studies show that the expression of CCND1, a key factor in cell cycle control, is increased following the progress and deteriotation of glioma and predicts poor outcomes. On the other hand, dysregulated deubiquitinase USP10 also predicts poor prognosis for patients with glioblastoma (GBM). In the present study, we investigated the interplay between CCND1 protein and USP10 in GBM cells. We showed that the expression of CCND1 was significantly higher in both GBM tissues and GBM-derived stem cells. USP10 interacted with CCND1 and prevented its K48- but not K63-linked polyubiquitination in GBM U251 and HS683 cells, which led to increased CCND1 stability. Consistent with the action of USP10 on CCND1, knockdown of USP10 by single-guided RNA downregulated CCND1 and caused GBM cell cycle arrest at the G1 phase and induced GBM cell apoptosis. To implement this finding in the treatment of GBMs, we screened a natural product library and found that acevaltrate (AVT), an active component derived from the herbal plant Valeriana jatamansi Jones was strikingly potent to induce GBM cell apoptosis, which was confirmed by the Annexin V staining and activation of the apoptotic signals. Furthermore, we revealed that AVT concentration-dependently suppressed USP10-mediated deubiquitination on CCND1 therefore inducing CCND1 protein degradation. Collectively, the present study demonstrates that the USP10/CCND1 axis could be a promising therapeutic target for patients with GBMs.
Collapse
Affiliation(s)
- Tong Sun
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215100, China
| | - Yu-Jia Xu
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
- Guangdong Key Laboratory of Protein Modifications and Degradation, School of Basic Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuo-Yi Jiang
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
| | - Zhuan Xu
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
| | - Bi-Yin Cao
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215100, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Yuan-Ying Zeng
- Department of Oncology, Suzhou Municipal Hospital, Suzhou, 215100, China.
| | - Yan Kong
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215100, China.
| | - Xin-Liang Mao
- Department of Pharmacology, Soochow University, Suzhou, 215123, China.
- Guangdong Key Laboratory of Protein Modifications and Degradation, School of Basic Medicine, Guangzhou Medical University, Guangzhou, 511436, China.
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
31
|
The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression. Int J Mol Sci 2021; 22:ijms22115754. [PMID: 34072267 PMCID: PMC8198665 DOI: 10.3390/ijms22115754] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
The cell cycle is a collection of events by which cellular components such as genetic materials and cytoplasmic components are accurately divided into two daughter cells. The cell cycle transition is primarily driven by the activation of cyclin-dependent kinases (CDKs), which activities are regulated by the ubiquitin-mediated proteolysis of key regulators such as cyclins, CDK inhibitors (CKIs), other kinases and phosphatases. Thus, the ubiquitin-proteasome system (UPS) plays a pivotal role in the regulation of the cell cycle progression via recognition, interaction, and ubiquitination or deubiquitination of key proteins. The illegitimate degradation of tumor suppressor or abnormally high accumulation of oncoproteins often results in deregulation of cell proliferation, genomic instability, and cancer occurrence. In this review, we demonstrate the diversity and complexity of the regulation of UPS machinery of the cell cycle. A profound understanding of the ubiquitination machinery will provide new insights into the regulation of the cell cycle transition, cancer treatment, and the development of anti-cancer drugs.
Collapse
|
32
|
Liu J, Yang H, Cheung PY, Tsao SW, Lv L, Cheung ALM. FBX4 mediates rapid cyclin D1 proteolysis upon DNA damage in immortalized esophageal epithelial cells. Biochem Biophys Res Commun 2021; 554:76-82. [PMID: 33784509 DOI: 10.1016/j.bbrc.2021.03.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 11/27/2022]
Abstract
It has been implied that deregulation of cyclin D1 turnover under stresses can facilitate genomic instability and trigger tumorigenesis. Much focus has been placed on identifying the E3 ligases responsible for mediating cyclin D1 degradation. However, the findings were quite controversial and cell type-dependent. Little is known about how cyclin D1 is regulated in precancerous cells upon DNA damage and which E3 ligases mediate the effects. Here we found cyclin D1 reduction is an early response to DNA damage in immortalized esophageal epithelial cells, with expression dropping to a low level within 1 h after γ-irradiation. Comparison of temporal expression of cyclin D1 upon DNA damage between immortalized NE083-hTERT and NE083-E6E7, the latter being p53/p21-defective, showed that DNA damage-induced rapid cyclin D1 reduction was p53-independent and occurred before p21 accumulation. Overexpression of cyclin D1 in NE083-E6E7 cells could attenuate G0/G1 cell cycle arrest at 1 h after irradiation. Furthermore, rapid reduction of cyclin D1 upon DNA damage was attributed to proteasomal degradation, as evidenced by data showing that proteasomal inhibition by MG132 blocked cyclin D1 reduction while cycloheximide facilitated it. Inhibition of ATM activation and knockdown of E3 ligase adaptor FBX4 reversed cyclin D1 turnover in immortalized NE083-hTERT cells. Further study showed that knockdown of FBX4 facilitated DNA breaks, as indicated by an increase in γ-H2AX foci in esophageal cancer cells. Taken together, the results substantiated a pivotal role of ATM and FBX4 in cyclin D1 proteolysis upon DNA damage in precancerous esophageal epithelial cells, implying that deregulation of the process may contribute to carcinogenesis of esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Jia Liu
- Center of Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hui Yang
- Center of Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Pak Yan Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Liang Lv
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China.
| | - Annie L M Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
33
|
Association of Alpha B-Crystallin Expression with Tumor Differentiation Grade in Colorectal Cancer Patients. Diagnostics (Basel) 2021; 11:diagnostics11050896. [PMID: 34069924 PMCID: PMC8157605 DOI: 10.3390/diagnostics11050896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
Alpha B-crystallin (CRYAB, HSPB5) belongs to the small heat shock protein (HSP) family and is highly expressed in various human cancers, suggesting a crucial role in tumor progression. However, few studies have examined CRYAB expression in colorectal cancer (CRC). In the present study, we investigated the relationship between CRYAB expression and the clinicopathological features of CRC samples. We comparatively analyzed CRYAB protein expression in 111 CRC tissues and normal adjacent colonic tissue, observing that it was significantly lower in CRC tissues than in corresponding non-cancerous tissues. Moreover, immunohistochemical analysis showed a significant correlation between CRYAB expression and high histological grade G3 (p = 0.033). In summary, our results point to its possible application as a prognostic biomarker in CRC patients.
Collapse
|
34
|
FTO Demethylates Cyclin D1 mRNA and Controls Cell-Cycle Progression. Cell Rep 2021; 31:107464. [PMID: 32268083 DOI: 10.1016/j.celrep.2020.03.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/14/2020] [Accepted: 03/11/2020] [Indexed: 01/21/2023] Open
Abstract
N6-Methyladenosine (m6A) modification is the major chemical modification in mRNA that controls fundamental biological processes, including cell proliferation. Herein, we demonstrate that fat mass and obesity-associated (FTO) demethylates m6A modification of cyclin D1, the key regulator for G1 phase progression and controls cell proliferation in vitro and in vivo. FTO depletion upregulates cyclin D1 m6A modification, which in turn accelerates the degradation of cyclin D1 mRNA, leading to the impairment of G1 progression. m6A modification of cyclin D1 oscillates in a cell-cycle-dependent manner; m6A levels are suppressed during the G1 phase and enhanced during other phases. Low m6A levels during G1 are associated with the nuclear translocation of FTO from the cytosol. Furthermore, nucleocytoplasmic shuttling of FTO is regulated by casein kinase II-mediated phosphorylation of FTO. Our results highlight the role of m6A in regulating cyclin D1 mRNA stability and add another layer of complexity to cell-cycle regulation.
Collapse
|
35
|
|
36
|
Simoneschi D, Rona G, Zhou N, Jeong YT, Jiang S, Milletti G, Arbini AA, O'Sullivan A, Wang AA, Nithikasem S, Keegan S, Siu Y, Cianfanelli V, Maiani E, Nazio F, Cecconi F, Boccalatte F, Fenyö D, Jones DR, Busino L, Pagano M. CRL4 AMBRA1 is a master regulator of D-type cyclins. Nature 2021; 592:789-793. [PMID: 33854235 DOI: 10.1038/s41586-021-03445-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/11/2021] [Indexed: 12/20/2022]
Abstract
D-type cyclins are central regulators of the cell division cycle and are among the most frequently deregulated therapeutic targets in human cancer1, but the mechanisms that regulate their turnover are still being debated2,3. Here, by combining biochemical and genetics studies in somatic cells, we identify CRL4AMBRA1 (also known as CRL4DCAF3) as the ubiquitin ligase that targets all three D-type cyclins for degradation. During development, loss of Ambra1 induces the accumulation of D-type cyclins and retinoblastoma (RB) hyperphosphorylation and hyperproliferation, and results in defects of the nervous system that are reduced by treating pregnant mice with the FDA-approved CDK4 and CDK6 (CDK4/6) inhibitor abemaciclib. Moreover, AMBRA1 acts as a tumour suppressor in mouse models and low AMBRA1 mRNA levels are predictive of poor survival in cancer patients. Cancer hotspot mutations in D-type cyclins abrogate their binding to AMBRA1 and induce their stabilization. Finally, a whole-genome, CRISPR-Cas9 screen identified AMBRA1 as a regulator of the response to CDK4/6 inhibition. Loss of AMBRA1 reduces sensitivity to CDK4/6 inhibitors by promoting the formation of complexes of D-type cyclins with CDK2. Collectively, our results reveal the molecular mechanism that controls the stability of D-type cyclins during cell-cycle progression, in development and in human cancer, and implicate AMBRA1 as a critical regulator of the RB pathway.
Collapse
Affiliation(s)
- Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.,Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Nan Zhou
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yeon-Tae Jeong
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Shaowen Jiang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Giacomo Milletti
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Arnaldo A Arbini
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.,Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Alfie O'Sullivan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Andrew A Wang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Sorasicha Nithikasem
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Sarah Keegan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.,Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Yik Siu
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Valentina Cianfanelli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Emiliano Maiani
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.,Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Francesca Nazio
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesco Cecconi
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Department of Biology, University of Rome Tor Vergata, Rome, Italy.,Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Francesco Boccalatte
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.,Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.,Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Drew R Jones
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Luca Busino
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA. .,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA. .,Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
37
|
Chaikovsky AC, Li C, Jeng EE, Loebell S, Lee MC, Murray CW, Cheng R, Demeter J, Swaney DL, Chen SH, Newton BW, Johnson JR, Drainas AP, Shue YT, Seoane JA, Srinivasan P, He A, Yoshida A, Hipkins SQ, McCrea E, Poltorack CD, Krogan NJ, Diehl JA, Kong C, Jackson PK, Curtis C, Petrov DA, Bassik MC, Winslow MM, Sage J. The AMBRA1 E3 ligase adaptor regulates the stability of cyclin D. Nature 2021; 592:794-798. [PMID: 33854239 PMCID: PMC8246597 DOI: 10.1038/s41586-021-03474-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/18/2021] [Indexed: 11/08/2022]
Abstract
The initiation of cell division integrates a large number of intra- and extracellular inputs. D-type cyclins (hereafter, cyclin D) couple these inputs to the initiation of DNA replication1. Increased levels of cyclin D promote cell division by activating cyclin-dependent kinases 4 and 6 (hereafter, CDK4/6), which in turn phosphorylate and inactivate the retinoblastoma tumour suppressor. Accordingly, increased levels and activity of cyclin D-CDK4/6 complexes are strongly linked to unchecked cell proliferation and cancer2,3. However, the mechanisms that regulate levels of cyclin D are incompletely understood4,5. Here we show that autophagy and beclin 1 regulator 1 (AMBRA1) is the main regulator of the degradation of cyclin D. We identified AMBRA1 in a genome-wide screen to investigate the genetic basis of the response to CDK4/6 inhibition. Loss of AMBRA1 results in high levels of cyclin D in cells and in mice, which promotes proliferation and decreases sensitivity to CDK4/6 inhibition. Mechanistically, AMBRA1 mediates ubiquitylation and proteasomal degradation of cyclin D as a substrate receptor for the cullin 4 E3 ligase complex. Loss of AMBRA1 enhances the growth of lung adenocarcinoma in a mouse model, and low levels of AMBRA1 correlate with worse survival in patients with lung adenocarcinoma. Thus, AMBRA1 regulates cellular levels of cyclin D, and contributes to cancer development and the response of cancer cells to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Andrea C Chaikovsky
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Chuan Li
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Edwin E Jeng
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Samuel Loebell
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Myung Chang Lee
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Christopher W Murray
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Ran Cheng
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Janos Demeter
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Insitutes, San Francisco, CA, USA
| | - Si-Han Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Insitutes, San Francisco, CA, USA
| | - Billy W Newton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Insitutes, San Francisco, CA, USA
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Insitutes, San Francisco, CA, USA
| | - Alexandros P Drainas
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Yan Ting Shue
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Jose A Seoane
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Preethi Srinivasan
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Andy He
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Akihiro Yoshida
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Susan Q Hipkins
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Edel McCrea
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Carson D Poltorack
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Insitutes, San Francisco, CA, USA
| | - J Alan Diehl
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Christina Kong
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Peter K Jackson
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Christina Curtis
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Monte M Winslow
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
38
|
Brewer K, Nip I, Bellizzi J, Costa-Guda J, Arnold A. Molecular analysis of cyclin D1 modulators PRKN and FBX4 as candidate tumor suppressors in sporadic parathyroid adenomas. Endocr Connect 2021; 10:302-308. [PMID: 33617468 PMCID: PMC8052572 DOI: 10.1530/ec-21-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Primary hyperparathyroidism is most often caused by a sporadic single-gland parathyroid adenoma (PTA), a tumor type for which cyclin D1 is the only known and experimentally validated oncoprotein. However, the molecular origins of its frequent overexpression have remained mostly elusive. In this study, we explored a potential tumorigenic mechanism that could increase cyclin D1 stability through a defect in molecules responsible for its degradation. METHODS We examined two tumor suppressor genes known to modulate cyclin D1 ubiquitination, PRKN and FBXO4 (FBX4), for evidence of classic two-hit tumor suppressor inactivation within a cohort of 82 PTA cases. We examined the cohort for intragenic inactivating and splice site mutations by Sanger sequencing and for locus-associated loss of heterozygosity (LOH) by microsatellite analysis. RESULTS We identified no evidence of bi-allelic tumor suppressor inactivation of PRKN or FBXO4 via inactivating mutation or splice site perturbation, neither in combination with nor independent of LOH. Among the 82 cases, we encountered previously documented benign single nucleotide polymorphisms (SNPs) in 35 tumors at frequencies similar to those reported in the germlines of the general population. Eight cases exhibited intragenic LOH at the PRKN locus, in some cases extending to cover at least an additional 1.7 Mb of chromosome 6q25-26. FBXO4 was not affected by LOH. CONCLUSION The absence of evidence for specific bi-allelic inactivation in PRKN and FBXO4 in this sizeable cohort suggests that these genes only rarely, if ever, serve as classic driver tumor suppressors responsible for the growth of PTAs.
Collapse
Affiliation(s)
- Kelly Brewer
- Center for Molecular Oncology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Isabel Nip
- Center for Molecular Oncology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Justin Bellizzi
- Center for Molecular Oncology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Jessica Costa-Guda
- Center for Molecular Oncology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut School of Dental Medicine, Farmington, Connecticut, USA
| | - Andrew Arnold
- Center for Molecular Oncology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Division of Endocrinology and Metabolism, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Correspondence should be addressed to A Arnold:
| |
Collapse
|
39
|
Aweida D, Cohen S. Breakdown of Filamentous Myofibrils by the UPS-Step by Step. Biomolecules 2021; 11:biom11010110. [PMID: 33467597 PMCID: PMC7830001 DOI: 10.3390/biom11010110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
Protein degradation maintains cellular integrity by regulating virtually all biological processes, whereas impaired proteolysis perturbs protein quality control, and often leads to human disease. Two major proteolytic systems are responsible for protein breakdown in all cells: autophagy, which facilitates the loss of organelles, protein aggregates, and cell surface proteins; and the ubiquitin-proteasome system (UPS), which promotes degradation of mainly soluble proteins. Recent findings indicate that more complex protein structures, such as filamentous assemblies, which are not accessible to the catalytic core of the proteasome in vitro, can be efficiently degraded by this proteolytic machinery in systemic catabolic states in vivo. Mechanisms that loosen the filamentous structure seem to be activated first, hence increasing the accessibility of protein constituents to the UPS. In this review, we will discuss the mechanisms underlying the disassembly and loss of the intricate insoluble filamentous myofibrils, which are responsible for muscle contraction, and whose degradation by the UPS causes weakness and disability in aging and disease. Several lines of evidence indicate that myofibril breakdown occurs in a strictly ordered and controlled manner, and the function of AAA-ATPases is crucial for their disassembly and loss.
Collapse
|
40
|
Nathans JF, Cornwell JA, Afifi MM, Paul D, Cappell SD. Cell cycle inertia underlies a bifurcation in cell fates after DNA damage. SCIENCE ADVANCES 2021; 7:7/3/eabe3882. [PMID: 33523889 PMCID: PMC7806216 DOI: 10.1126/sciadv.abe3882] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/18/2020] [Indexed: 05/29/2023]
Abstract
The G1-S checkpoint is thought to prevent cells with damaged DNA from entering S phase and replicating their DNA and efficiently arrests cells at the G1-S transition. Here, using time-lapse imaging and single-cell tracking, we instead find that DNA damage leads to highly variable and divergent fate outcomes. Contrary to the textbook model that cells arrest at the G1-S transition, cells triggering the DNA damage checkpoint in G1 phase route back to quiescence, and this cellular rerouting can be initiated at any point in G1 phase. Furthermore, we find that most of the cells receiving damage in G1 phase actually fail to arrest and proceed through the G1-S transition due to persistent cyclin-dependent kinase (CDK) activity in the interval between DNA damage and induction of the CDK inhibitor p21. These observations necessitate a revised model of DNA damage response in G1 phase and indicate that cells have a G1 checkpoint.
Collapse
Affiliation(s)
- Jenny F Nathans
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - James A Cornwell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Marwa M Afifi
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Debasish Paul
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Steven D Cappell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
41
|
Zhao Q, Ma Y, Li Z, Zhang K, Zheng M, Zhang S. The Function of SUMOylation and Its Role in the Development of Cancer Cells under Stress Conditions: A Systematic Review. Stem Cells Int 2020; 2020:8835714. [PMID: 33273928 PMCID: PMC7683158 DOI: 10.1155/2020/8835714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Malignant tumors still pose serious threats to human health due to their high morbidity and mortality. Recurrence and metastasis are the most important factors affecting patient prognosis. Chemotherapeutic drugs and radiation used to treat these tumors mainly interfere with tumor metabolism, destroy DNA integrity, and inhibit protein synthesis. The upregulation of small ubiquitin-like modifier (SUMO) is a prevalent posttranslational modification (PTM) in various cancers and plays a critical role in tumor development. The dysregulation of SUMOylation can protect cancer cells from stresses exerted by external or internal stimuli. SUMOylation is a dynamic process finely regulated by SUMOylation enzymes and proteases to maintain a balance between SUMOylation and deSUMOylation. An increasing number of studies have reported that SUMOylation imbalance may contribute to cancer development, including metastasis, angiogenesis, invasion, and proliferation. High level of SUMOylation is required for cancer cells to survive internal or external stresses. Downregulation of SUMOylation may inhibit the development of cancer, making it an important potential clinical therapeutic target. Some studies have already begun to treat tumors by inhibiting the expression of SUMOylation family members, including SUMO E1 or E2. The tumor cells become more aggressive under internal and external stresses. The prevention of tumor development, metastasis, recurrence, and radiochemotherapy resistance by attenuating SUMOylation requires further exploration. This review focused on SUMOylation in tumor cells to discuss its effects on tumor suppressor proteins and oncoproteins as well as classical tumor pathways to identify new insights for cancer clinical therapy.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Tianjin Medical University, Tianjin, China
| | - Ying Ma
- Department of Spine Center, Tianjin Union Medical Center, Tianjin, China
| | - Zugui Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kexin Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
42
|
Hynes-Smith RW, Wittorf KJ, Buckley SM. Regulation of Normal and Malignant Hematopoiesis by FBOX Ubiquitin E3 Ligases. Trends Immunol 2020; 41:1128-1140. [PMID: 33160841 DOI: 10.1016/j.it.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022]
Abstract
Hematopoiesis is responsible for numerous functions, ranging from oxygen transportation to host defense, to injury repair. This process of hematopoiesis is maintained throughout life by hematopoietic stem cells and requires a controlled balance between self-renewal, differentiation, and quiescence. Disrupting this balance can result in hematopoietic malignancies, including anemia, immune deficiency, leukemia, and lymphoma. Recent work has shown that FBOX E3 ligases, a substrate recognition component of the ubiquitin proteasome system (UPS), have an integral role in maintaining this balance. In this review, we detail how FBOX proteins target specific proteins for degradation to regulate hematopoiesis through cell processes, such as cell cycle, development, and apoptosis.
Collapse
Affiliation(s)
- R Willow Hynes-Smith
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Karli J Wittorf
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shannon M Buckley
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
43
|
Tatum NJ, Endicott JA. Chatterboxes: the structural and functional diversity of cyclins. Semin Cell Dev Biol 2020; 107:4-20. [PMID: 32414682 DOI: 10.1016/j.semcdb.2020.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Proteins of the cyclin family have divergent sequences and execute diverse roles within the cell while sharing a common fold: the cyclin box domain. Structural studies of cyclins have played a key role in our characterization and understanding of cellular processes that they control, though to date only ten of the 29 CDK-activating cyclins have been structurally characterized by X-ray crystallography or cryo-electron microscopy with or without their cognate kinases. In this review, we survey the available structures of human cyclins, highlighting their molecular features in the context of their cellular roles. We pay particular attention to how cyclin activity is regulated through fine control of degradation motif recognition and ubiquitination. Finally, we discuss the emergent roles of cyclins independent of their roles as cyclin-dependent protein kinase activators, demonstrating the cyclin box domain to be a versatile and generalized scaffolding domain for protein-protein interactions across the cellular machinery.
Collapse
Affiliation(s)
- Natalie J Tatum
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Jane A Endicott
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
44
|
The functional analysis of Cullin 7 E3 ubiquitin ligases in cancer. Oncogenesis 2020; 9:98. [PMID: 33130829 PMCID: PMC7603503 DOI: 10.1038/s41389-020-00276-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 01/09/2023] Open
Abstract
Cullin (CUL) proteins have critical roles in development and cancer, however few studies on CUL7 have been reported due to its characteristic molecular structure. CUL7 forms a complex with the ROC1 ring finger protein, and only two F-box proteins Fbxw8 and Fbxw11 have been shown to bind to CUL7. Interestingly, CUL7 can interact with its substrates by forming a novel complex that is independent of these two F-box proteins. The biological implications of CUL-ring ligase 7 (CRL7) suggest that the CRL7 may not only perform a proteolytic function but may also play a non-proteolytic role. Among the existing studied CRL7-based E3 ligases, CUL7 exerts both tumor promotion and suppression in a context-dependent manner. Currently, the mechanism of CUL7 in cancer remains unclear, and no studies have addressed potential therapies targeting CUL7. Consistent with the roles of the various CRL7 adaptors exhibit, targeting CRL7 might be an effective strategy for cancer prevention and treatment. We systematically describe the recent major advances in understanding the role of the CUL7 E3 ligase in cancer and further summarize its potential use in clinical therapy.
Collapse
|
45
|
Yoshida A, Choi J, Jin HR, Li Y, Bajpai S, Qie S, Diehl JA. Fbxl8 suppresses lymphoma growth and hematopoietic transformation through degradation of cyclin D3. Oncogene 2020; 40:292-306. [PMID: 33122824 PMCID: PMC7808939 DOI: 10.1038/s41388-020-01532-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/07/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
Overexpression of D-type cyclins in human cancer frequently occurs as a result of protein stabilization, emphasizing the importance of identification of the machinery that regulates their ubiqutin-dependent degradation. Cyclin D3 is overexpressed in ~50% of Burkitt’s lymphoma correlating with a mutation of Thr-283. However, the E3 ligase that regulates phosphorylated cyclin D3 and whether a stabilized, phosphorylation deficient mutant of cyclin D3, has oncogenic activity are undefined. We describe the identification of SCF-Fbxl8 as the E3 ligase for Thr-283 phosphorylated cyclin D3. SCF-Fbxl8 poly-ubiquitylates p-Thr-283 cyclin D3 targeting it to the proteasome. Functional investigation demonstrates that Fbxl8 antagonizes cell cycle progression, hematopoietic cell proliferation, and oncogene-induced transformation through degradation of cyclin D3, which is abolished by expression of cyclin D3T283A, a non-phosphorylatable mutant. Clinically, the expression of cyclin D3 is inversely correlated with the expression of Fbxl8 in lymphomas from human patients implicating Fbxl8 functions as a tumor suppressor. Fbxl8 suppresses cell division, cell proliferation, and tumorigenesis through phosphorylation-dependent degradation of cyclin D3. Fbxl8 suppresses oncogene-induced transformation of hematopoietic cells and lymphoma cell proliferation through cyclin D3 degradation.
Collapse
Affiliation(s)
- Akihiro Yoshida
- Department of Biochemistry, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jaewoo Choi
- Abramson Family Cancer Research Institute, Department of Cancer Biology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hong Ri Jin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Yan Li
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Sagar Bajpai
- Department of Biochemistry, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Shuo Qie
- Department of Biochemistry, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - J Alan Diehl
- Department of Biochemistry, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
46
|
Jang SM, Redon CE, Thakur BL, Bahta MK, Aladjem MI. Regulation of cell cycle drivers by Cullin-RING ubiquitin ligases. Exp Mol Med 2020; 52:1637-1651. [PMID: 33005013 PMCID: PMC8080560 DOI: 10.1038/s12276-020-00508-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
The last decade has revealed new roles for Cullin-RING ubiquitin ligases (CRLs) in a myriad of cellular processes, including cell cycle progression. In addition to CRL1, also named SCF (SKP1-Cullin 1-F box protein), which has been known for decades as an important factor in the regulation of the cell cycle, it is now evident that all eight CRL family members are involved in the intricate cellular pathways driving cell cycle progression. In this review, we summarize the structure of CRLs and their functions in driving the cell cycle. We focus on how CRLs target key proteins for degradation or otherwise alter their functions to control the progression over the various cell cycle phases leading to cell division. We also summarize how CRLs and the anaphase-promoting complex/cyclosome (APC/C) ligase complex closely cooperate to govern efficient cell cycle progression.
Collapse
Affiliation(s)
- Sang-Min Jang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA.
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Bhushan L Thakur
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Meriam K Bahta
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA.
| |
Collapse
|
47
|
Lee DS, Roh SY, Choi H, Park JC. NFI-C Is Required for Epiphyseal Chondrocyte Proliferation during Postnatal Cartilage Development. Mol Cells 2020; 43:739-748. [PMID: 32759468 PMCID: PMC7468589 DOI: 10.14348/molcells.2020.2272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 07/01/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022] Open
Abstract
Stringent regulation of the chondrocyte cell cycle is required for endochondral bone formation. During the longitudinal growth of long bones, mesenchymal stem cells condense and differentiate into chondrocytes. Epiphyseal chondrocytes sequentially differentiate to form growth- plate cartilage, which is subsequently replaced with bone. Although the importance of nuclear factor 1C (Nfic) in hard tissue formation has been extensively studied, knowledge regarding its biological roles and molecular mechanisms in this process remains insufficient. Herein, we demonstrated that Nfic deficiency affects femoral growth-plate formation. Chondrocyte proliferation was downregulated and the number of apoptotic cell was increased in the growth plates of Nfic-/- mice. Further, the expression of the cell cycle inhibitor p21 was upregulated in the primary chondrocytes of Nfic-/- mice, whereas that of cyclin D1 was downregulated. Our findings suggest that Nfic may contribute to postnatal chondrocyte proliferation by inhibiting p21 expression and by increasing the stability of cyclin D1 protein.
Collapse
Affiliation(s)
- Dong-Seol Lee
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea
- These authors contributed equally to this work
| | - Song Yi Roh
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea
- These authors contributed equally to this work
| | - Hojae Choi
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea
- Present address: Postgraduate Orthodontic Program, Arizona School of Dentistry & Oral Health, A.T. Still University, Mesa, AZ 8506, USA
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
48
|
Ohto-Fujita E, Hayasaki S, Atomi A, Fujiki S, Watanabe T, Boelens WC, Shimizu M, Atomi Y. Dynamic localization of αB-crystallin at the microtubule cytoskeleton network in beating heart cells. J Biochem 2020; 168:125-137. [PMID: 32725133 DOI: 10.1093/jb/mvaa025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/05/2020] [Indexed: 01/17/2023] Open
Abstract
αB-crystallin is highly expressed in the heart and slow skeletal muscle; however, the roles of αB-crystallin in the muscle are obscure. Previously, we showed that αB-crystallin localizes at the sarcomere Z-bands, corresponding to the focal adhesions of cultured cells. In myoblast cells, αB-crystallin completely colocalizes with microtubules and maintains cell shape and adhesion. In this study, we show that in beating cardiomyocytes α-tubulin and αB-crystallin colocalize at the I- and Z-bands of the myocardium, where it may function as a molecular chaperone for tubulin/microtubules. Fluorescence recovery after photobleaching (FRAP) analysis revealed that the striated patterns of GFP-αB-crystallin fluorescence recovered quickly at 37°C. FRAP mobility assay also showed αB-crystallin to be associated with nocodazole-treated free tubulin dimers but not with taxol-treated microtubules. The interaction of αB-crystallin and free tubulin was further confirmed by immunoprecipitation and microtubule sedimentation assay in the presence of 1-100 μM calcium, which destabilizes microtubules. Förster resonance energy transfer analysis showed that αB-crystallin and tubulin were at 1-10 nm apart from each other in the presence of colchicine. These results suggested that αB-crystallin may play an essential role in microtubule dynamics by maintaining free tubulin in striated muscles, such as the soleus or cardiac muscles.
Collapse
Affiliation(s)
- Eri Ohto-Fujita
- Material Health Science Laboratory, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Saaya Hayasaki
- Material Health Science Laboratory, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Aya Atomi
- Material Health Science Laboratory, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Soichiro Fujiki
- Department of Physiology and Biological Information, Dokkyo Medical University, Mibu, Tochigi 321-0293, Japan
| | - Toshiyuki Watanabe
- Division of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Wilbert C Boelens
- Department of Biomolecular Chemistry, Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, The Netherlands
| | - Miho Shimizu
- Material Health Science Laboratory, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Yoriko Atomi
- Material Health Science Laboratory, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
49
|
Nitika, Porter CM, Truman AW, Truttmann MC. Post-translational modifications of Hsp70 family proteins: Expanding the chaperone code. J Biol Chem 2020; 295:10689-10708. [PMID: 32518165 PMCID: PMC7397107 DOI: 10.1074/jbc.rev120.011666] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/08/2020] [Indexed: 02/01/2023] Open
Abstract
Cells must be able to cope with the challenge of folding newly synthesized proteins and refolding those that have become misfolded in the context of a crowded cytosol. One such coping mechanism that has appeared during evolution is the expression of well-conserved molecular chaperones, such as those that are part of the heat shock protein 70 (Hsp70) family of proteins that bind and fold a large proportion of the proteome. Although Hsp70 family chaperones have been extensively examined for the last 50 years, most studies have focused on regulation of Hsp70 activities by altered transcription, co-chaperone "helper" proteins, and ATP binding and hydrolysis. The rise of modern proteomics has uncovered a vast array of post-translational modifications (PTMs) on Hsp70 family proteins that include phosphorylation, acetylation, ubiquitination, AMPylation, and ADP-ribosylation. Similarly to the pattern of histone modifications, the histone code, this complex pattern of chaperone PTMs is now known as the "chaperone code." In this review, we discuss the history of the Hsp70 chaperone code, its currently understood regulation and functions, and thoughts on what the future of research into the chaperone code may entail.
Collapse
Affiliation(s)
- Nitika
- Department of Biological Sciences, University of North Carolina, Charlotte, North Carolina, USA
| | - Corey M Porter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew W Truman
- Department of Biological Sciences, University of North Carolina, Charlotte, North Carolina, USA
| | - Matthias C Truttmann
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Geriatrics Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
50
|
Yumimoto K, Yamauchi Y, Nakayama KI. F-Box Proteins and Cancer. Cancers (Basel) 2020; 12:cancers12051249. [PMID: 32429232 PMCID: PMC7281081 DOI: 10.3390/cancers12051249] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Controlled protein degradation is essential for the operation of a variety of cellular processes including cell division, growth, and differentiation. Identification of the relations between ubiquitin ligases and their substrates is key to understanding the molecular basis of cancer development and to the discovery of novel targets for cancer therapeutics. F-box proteins function as the substrate recognition subunits of S-phase kinase-associated protein 1 (SKP1)−Cullin1 (CUL1)−F-box protein (SCF) ubiquitin ligase complexes. Here, we summarize the roles of specific F-box proteins that have been shown to function as tumor promoters or suppressors. We also highlight proto-oncoproteins that are targeted for ubiquitylation by multiple F-box proteins, and discuss how these F-box proteins are deployed to regulate their cognate substrates in various situations.
Collapse
|