1
|
Gray ZH, Honer MA, Ghatalia P, Shi Y, Whetstine JR. 20 years of histone lysine demethylases: From discovery to the clinic and beyond. Cell 2025; 188:1747-1783. [PMID: 40185081 DOI: 10.1016/j.cell.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 04/07/2025]
Abstract
Twenty years ago, histone lysine demethylases (KDMs) were discovered. Since their discovery, they have been increasingly studied and shown to be important across species, development, and diseases. Considerable advances have been made toward understanding their (1) enzymology, (2) role as critical components of biological complexes, (3) role in normal cellular processes and functions, (4) implications in pathological conditions, and (5) therapeutic potential. This Review covers these key relationships related to the KDM field with the awareness that numerous laboratories have contributed to this field. The current knowledge coupled with future insights will shape our understanding about cell function, development, and disease onset and progression, which will allow for novel biomarkers to be identified and for optimal therapeutic options to be developed for KDM-related diseases in the years ahead.
Collapse
Affiliation(s)
- Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Pooja Ghatalia
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yang Shi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
2
|
Liang H, Li S, Peng X, Xiao H. Overview of the epigenetic/cytotoxic dual-target inhibitors for cancer therapy. Eur J Med Chem 2025; 285:117235. [PMID: 39788061 DOI: 10.1016/j.ejmech.2024.117235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
Epigenetic dysregulation plays a pivotal role in the initiation and progression of various cancers, influencing critical processes such as tumor growth, invasion, migration, survival, apoptosis, and angiogenesis. Consequently, targeting epigenetic pathways has emerged as a promising strategy for anticancer drug discovery in recent years. However, the clinical efficacy of epigenetic inhibitors, such as HDAC inhibitors, has been limited, often accompanied by resistance. To overcome these challenges, innovative therapeutic approaches are required, including the combination of epigenetic inhibitors with cytotoxic agents or the design of dual-acting inhibitors that target both epigenetic and cytotoxic pathways. In this review, we provide a comprehensive overview of the structures, biological functions and inhibitors of epigenetic regulators (such as HDAC, LSD1, PARP, and BET) and cytotoxic targets (including tubulin and topoisomerase). Furthermore, we discuss recent advancement of combination therapies and dual-target inhibitors that target both epigenetic and cytotoxic pathways, with a particular focus on recent advances, including rational drug design, pharmacodynamics, pharmacokinetics, and clinical applications.
Collapse
Affiliation(s)
- Hailiu Liang
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Shuqing Li
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Xiaopeng Peng
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China; Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, PR China.
| | - Hao Xiao
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China; Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, PR China.
| |
Collapse
|
3
|
Krishnamoorthy VK, Hamdani F, Shukla P, Rao RA, Anaitullah S, Biligiri KK, Kadumuri RV, Pothula PR, Chavali S, Rampalli S. NSD3 protein methylation and stabilization transforms human ES cells into variant state. Life Sci Alliance 2025; 8:e202402871. [PMID: 39741006 PMCID: PMC11707394 DOI: 10.26508/lsa.202402871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 01/02/2025] Open
Abstract
Cultured human embryonic stem cells (hESCs) can develop genetic anomalies that increase their susceptibility to transformation. In this study, we characterized a variant hESC (vhESC) line and investigated the molecular mechanisms leading to the drift towards a transformed state. Our findings revealed that vhESCs up-regulate EMT-specific markers, accelerate wound healing, exhibit compromised lineage differentiation, and retain pluripotency gene expression in teratomas. Furthermore, we discovered an altered epigenomic landscape and overexpression of the lysine methyltransferases EHMT1, EHMT2, and NSD group of proteins in vhESCs. Remarkably, depleting NSD3 oncogene reversed the molecular and phenotypic changes in vhESCs. We identified a detailed mechanism where EHMT2 interacts and methylates NSD3 at lysine 477, stabilizing its protein levels in vhESCs. In addition, we showed that NSD3 levels are regulated by protein degradation in hESCs, and its stabilization leads to the emergence of the variant state. Overall, our study identify that misregulation of NSD3 in pluripotent stem cells, through methylation-mediated abrogation of its protein degradation, drives hESCs towards oncogenic transformation.
Collapse
Affiliation(s)
- Vignesh K Krishnamoorthy
- https://ror.org/05ef28661 Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Fariha Hamdani
- https://ror.org/05ef28661 Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Pooja Shukla
- https://ror.org/05ef28661 Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Radhika Arasala Rao
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Campus, Bangalore, India
| | - Shaikh Anaitullah
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Campus, Bangalore, India
| | - Kriti Kestur Biligiri
- https://ror.org/05ef28661 Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajashekar Varma Kadumuri
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | | | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Shravanti Rampalli
- https://ror.org/05ef28661 Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Shin JH, Yoo HB, Roe JS. Current advances and future directions in targeting histone demethylases for cancer therapy. Mol Cells 2025; 48:100192. [PMID: 39938867 PMCID: PMC11889978 DOI: 10.1016/j.mocell.2025.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/14/2025] Open
Abstract
Epigenetic regulators, known as "writers," erasers," and "readers," are essential for controlling gene expression by adding, removing, or recognizing post-translational modifications to histone tails, respectively. These regulators significantly affect genes involved in cancer initiation and maintenance. Recently, several clinical strategies targeting these epigenetic enzymes have emerged and some trials have demonstrated promising results for cancer treatment. Histone lysine demethylases (KDMs) yield distinct transcriptional outcomes that depend on the position of the methylated lysine and the specific genotype or lineage of the cancer cells. Due to their diverse roles in transcription, KDMs offer valuable opportunities for precision oncology, allowing treatments to be tailored to meet individual patient needs. This review emphasizes our current understanding of the functional relationship between KDMs and cancer as well as the development and application of small-molecule compounds that target KDMs.
Collapse
Affiliation(s)
- June-Ha Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hye-Been Yoo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Cai W, Xiao C, Fan T, Deng Z, Wang D, Liu Y, Li C, He J. Targeting LSD1 in cancer: Molecular elucidation and recent advances. Cancer Lett 2024; 598:217093. [PMID: 38969160 DOI: 10.1016/j.canlet.2024.217093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Histones are the main components of chromatin, functioning as an instructive scaffold to maintain chromosome structure and regulate gene expression. The dysregulation of histone modification is associated with various pathological processes, especially cancer initiation and development, and histone methylation plays a critical role. However, the specific mechanisms and potential therapeutic targets of histone methylation in cancer are not elucidated. Lys-specific demethylase 1A (LSD1) was the first identified demethylase that specifically removes methyl groups from histone 3 at lysine 4 or lysine 9, acting as a repressor or activator of gene expression. Recent studies have shown that LSD1 promotes cancer progression in multiple epigenetic regulation or non-epigenetic manners. Notably, LSD1 dysfunction is correlated with repressive cancer immunity. Many LSD1 inhibitors have been developed and clinical trials are exploring their efficacy in monotherapy, or combined with other therapies. In this review, we summarize the oncogenic mechanisms of LSD1 and the current applications of LSD1 inhibitors. We highlight that LSD1 is a promising target for cancer treatment. This review will provide the latest theoretical references for further understanding the research progress of oncology and epigenetics, deepening the updated appreciation of epigenetics in cancer.
Collapse
Affiliation(s)
- Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Di Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
6
|
Jia J, Fan H, Wan X, Fang Y, Li Z, Tang Y, Zhang Y, Huang J, Fang D. FUS reads histone H3K36me3 to regulate alternative polyadenylation. Nucleic Acids Res 2024; 52:5549-5571. [PMID: 38499486 PMCID: PMC11162772 DOI: 10.1093/nar/gkae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Complex organisms generate differential gene expression through the same set of DNA sequences in distinct cells. The communication between chromatin and RNA regulates cellular behavior in tissues. However, little is known about how chromatin, especially histone modifications, regulates RNA polyadenylation. In this study, we found that FUS was recruited to chromatin by H3K36me3 at gene bodies. The H3K36me3 recognition of FUS was mediated by the proline residues in the ZNF domain. After these proline residues were mutated or H3K36me3 was abolished, FUS dissociated from chromatin and bound more to RNA, resulting in an increase in polyadenylation sites far from stop codons genome-wide. A proline mutation corresponding to a mutation in amyotrophic lateral sclerosis contributed to the hyperactivation of mitochondria and hyperdifferentiation in mouse embryonic stem cells. These findings reveal that FUS is an H3K36me3 reader protein that links chromatin-mediated alternative polyadenylation to human disease.
Collapse
Affiliation(s)
- Junqi Jia
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haonan Fan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinyi Wan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuan Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhuoning Li
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yin Tang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yanjun Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun Huang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dong Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Kim HM, Liu Z. LSD2 Is an Epigenetic Player in Multiple Types of Cancer and Beyond. Biomolecules 2024; 14:553. [PMID: 38785960 PMCID: PMC11118440 DOI: 10.3390/biom14050553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Histone demethylases, enzymes responsible for removing methyl groups from histone proteins, have emerged as critical players in regulating gene expression and chromatin dynamics, thereby influencing various cellular processes. LSD2 and LSD1 have attracted considerable interest among these demethylases because of their associations with cancer. However, while LSD1 has received significant attention, LSD2 has not been recognized to the same extent. In this study, we conduct a comprehensive comparison between LSD2 and LSD1, with a focus on exploring LSD2's implications. While both share structural similarities, LSD2 possesses unique features as well. Functionally, LSD2 shows diverse roles, particularly in cancer, with tissue-dependent roles. Additionally, LSD2 extends beyond histone demethylation, impacting DNA methylation, cancer cell reprogramming, E3 ubiquitin ligase activity and DNA damage repair pathways. This study underscores the distinct roles of LSD2, providing insights into their contributions to cancer and other cellular processes.
Collapse
Affiliation(s)
- Hyun-Min Kim
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, China
| | | |
Collapse
|
8
|
Zannikou M, Fish EN, Platanias LC. Signaling by Type I Interferons in Immune Cells: Disease Consequences. Cancers (Basel) 2024; 16:1600. [PMID: 38672681 PMCID: PMC11049350 DOI: 10.3390/cancers16081600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review addresses interferon (IFN) signaling in immune cells and the tumor microenvironment (TME) and examines how this affects cancer progression. The data reveal that IFNs exert dual roles in cancers, dependent on the TME, exhibiting both anti-tumor activity and promoting cancer progression. We discuss the abnormal IFN signaling induced by cancerous cells that alters immune responses to permit their survival and proliferation.
Collapse
Affiliation(s)
- Markella Zannikou
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
| | - Eleanor N. Fish
- Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada;
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Ave., Chicago, IL 60612, USA
| |
Collapse
|
9
|
Liu R, Li Y, Zheng Q, Ding M, Zhou H, Li X. Epigenetic modification in liver fibrosis: Promising therapeutic direction with significant challenges ahead. Acta Pharm Sin B 2024; 14:1009-1029. [PMID: 38486982 PMCID: PMC10935124 DOI: 10.1016/j.apsb.2023.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 03/17/2024] Open
Abstract
Liver fibrosis, characterized by scar tissue formation, can ultimately result in liver failure. It's a major cause of morbidity and mortality globally, often associated with chronic liver diseases like hepatitis or alcoholic and non-alcoholic fatty liver diseases. However, current treatment options are limited, highlighting the urgent need for the development of new therapies. As a reversible regulatory mechanism, epigenetic modification is implicated in many biological processes, including liver fibrosis. Exploring the epigenetic mechanisms involved in liver fibrosis could provide valuable insights into developing new treatments for chronic liver diseases, although the current evidence is still controversial. This review provides a comprehensive summary of the regulatory mechanisms and critical targets of epigenetic modifications, including DNA methylation, histone modification, and RNA modification, in liver fibrotic diseases. The potential cooperation of different epigenetic modifications in promoting fibrogenesis was also highlighted. Finally, available agonists or inhibitors regulating these epigenetic mechanisms and their potential application in preventing liver fibrosis were discussed. In summary, elucidating specific druggable epigenetic targets and developing more selective and specific candidate medicines may represent a promising approach with bright prospects for the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Yajing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Mingning Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 22460, USA
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| |
Collapse
|
10
|
Caeiro LD, Nakata Y, Borges RL, Zha M, Garcia-Martinez L, Bañuelos CP, Stransky S, Liu T, Chan HL, Brabson J, Domínguez D, Zhang Y, Lewis PW, Aznar Benitah S, Cimmino L, Bilbao D, Sidoli S, Wang Z, Verdun RE, Morey L. Methylation of histone H3 lysine 36 is a barrier for therapeutic interventions of head and neck squamous cell carcinoma. Genes Dev 2024; 38:46-69. [PMID: 38286657 PMCID: PMC10903949 DOI: 10.1101/gad.351408.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
Approximately 20% of head and neck squamous cell carcinomas (HNSCCs) exhibit reduced methylation on lysine 36 of histone H3 (H3K36me) due to mutations in histone methylase NSD1 or a lysine-to-methionine mutation in histone H3 (H3K36M). Whether such alterations of H3K36me can be exploited for therapeutic interventions is still unknown. Here, we show that HNSCC models expressing H3K36M can be divided into two groups: those that display aberrant accumulation of H3K27me3 and those that maintain steady levels of H3K27me3. The former group exhibits reduced proliferation, genome instability, and heightened sensitivity to genotoxic agents like PARP1/2 inhibitors. Conversely, H3K36M HNSCC models with constant H3K27me3 levels lack these characteristics unless H3K27me3 is elevated by DNA hypomethylating agents or inhibiting H3K27me3 demethylases KDM6A/B. Mechanistically, H3K36M reduces H3K36me by directly impeding the activities of the histone methyltransferase NSD3 and the histone demethylase LSD2. Notably, aberrant H3K27me3 levels induced by H3K36M expression are not a bona fide epigenetic mark because they require continuous expression of H3K36M to be inherited. Moreover, increased sensitivity to PARP1/2 inhibitors in H3K36M HNSCC models depends solely on elevated H3K27me3 levels and diminishing BRCA1- and FANCD2-dependent DNA repair. Finally, a PARP1/2 inhibitor alone reduces tumor burden in a H3K36M HNSCC xenograft model with elevated H3K27me3, whereas in a model with consistent H3K27me3, a combination of PARP1/2 inhibitors and agents that up-regulate H3K27me3 proves to be successful. These findings underscore the crucial balance between H3K36 and H3K27 methylation in maintaining genome instability, offering new therapeutic options for patients with H3K36me-deficient tumors.
Collapse
Affiliation(s)
- Lucas D Caeiro
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Yuichiro Nakata
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Rodrigo L Borges
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Mengsheng Zha
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Liliana Garcia-Martinez
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Carolina P Bañuelos
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Tong Liu
- Department of Computer Science, University of Miami, Coral Gables, Florida 33124, USA
| | - Ho Lam Chan
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - John Brabson
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Diana Domínguez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Yusheng Zhang
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Peter W Lewis
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Luisa Cimmino
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Zheng Wang
- Department of Computer Science, University of Miami, Coral Gables, Florida 33124, USA
| | - Ramiro E Verdun
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA;
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Geriatric Research, Education, and Clinical Center, Miami Veterans Affairs Healthcare System, Miami, Florida 33125, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, Florida 33136, USA;
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
11
|
Nuñez Y, Vera S, Baeza V, Gonzalez-Pecchi V. NSD3 in Cancer: Unraveling Methyltransferase-Dependent and Isoform-Specific Functions. Int J Mol Sci 2024; 25:944. [PMID: 38256018 PMCID: PMC10815784 DOI: 10.3390/ijms25020944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
NSD3 (nuclear receptor-binding SET domain protein 3) is a member of the NSD histone methyltransferase family of proteins. In recent years, it has been identified as a potential oncogene in certain types of cancer. The NSD3 gene encodes three isoforms, the long version (NSD3L), a short version (NSD3S) and the WHISTLE isoforms. Importantly, the NSD3S isoform corresponds to the N-terminal region of the full-length protein, lacking the methyltransferase domain. The chromosomal location of NSD3 is frequently amplified across cancer types, such as breast, lung, and colon, among others. Recently, this amplification has been correlated to a chromothripsis event, that could explain the different NSD3 alterations found in cancer. The fusion proteins containing NSD3 have also been reported in leukemia (NSD3-NUP98), and in NUT (nuclear protein of the testis) midline carcinoma (NSD3-NUT). Its role as an oncogene has been described by modulating different cancer pathways through its methyltransferase activity, or the short isoform of the protein, through protein interactions. Specifically, in this review we will focus on the functions that have been characterized as methyltransferase dependent, and those that have been correlated with the expression of the NSD3S isoform. There is evidence that both the NSD3L and NSD3S isoforms are relevant for cancer progression, establishing NSD3 as a therapeutic target. However, further functional studies are needed to differentiate NSD3 oncogenic activity as dependent or independent of the catalytic domain of the protein, as well as the contribution of each isoform and its clinical significance in cancer progression.
Collapse
Affiliation(s)
- Yanara Nuñez
- Biomedical Science Research Laboratory, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (Y.N.); (S.V.); (V.B.)
- Biochemistry, Faculty of Pharmacy, Universidad de Concepción, Concepción 4070383, Chile
| | - Sebastian Vera
- Biomedical Science Research Laboratory, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (Y.N.); (S.V.); (V.B.)
| | - Victor Baeza
- Biomedical Science Research Laboratory, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (Y.N.); (S.V.); (V.B.)
| | - Valentina Gonzalez-Pecchi
- Biomedical Science Research Laboratory, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (Y.N.); (S.V.); (V.B.)
| |
Collapse
|
12
|
Sheikh KA, Iqubal A, Alam MM, Akhter M, Khan MA, Ehtaishamul Haque S, Parvez S, Jahangir U, Amir M, Khanna S, Shaquiquzzaman M. A Quinquennial Review of Potent LSD1 Inhibitors Explored for the Treatment of Different Cancers, with Special Focus on SAR Studies. Curr Med Chem 2024; 31:152-207. [PMID: 36718063 DOI: 10.2174/0929867330666230130093442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/30/2022] [Accepted: 11/17/2022] [Indexed: 02/01/2023]
Abstract
Cancer bears a significant share of global mortality. The enzyme Lysine Specific Demethylase 1 (LSD1, also known as KDM1A), since its discovery in 2004, has captured the attention of cancer researchers due to its overexpression in several cancers like acute myeloid leukaemia (AML), solid tumours, etc. The Lysine Specific Demethylase (LSD1) downregulation is reported to have an effect on cancer proliferation, migration, and invasion. Therefore, research to discover safer and more potent LSD1 inhibitors can pave the way for the development of better cancer therapeutics. These efforts have resulted in the synthesis of many types of derivatives containing diverse structural nuclei. The present manuscript describes the role of Lysine Specific Demethylase 1 (LSD1) in carcinogenesis, reviews the LSD1 inhibitors explored in the past five years and discusses their comprehensive structural activity characteristics apart from the thorough description of LSD1. Besides, the potential challenges, opportunities, and future perspectives in the development of LSD1 inhibitors are also discussed. The review suggests that tranylcypromine derivatives are the most promising potent LSD1 inhibitors, followed by triazole and pyrimidine derivatives with IC50 values in the nanomolar and sub-micromolar range. A number of potent LSD1 inhibitors derived from natural sources like resveratrol, protoberberine alkaloids, curcumin, etc. are also discussed. The structural-activity relationships discussed in the manuscript can be exploited to design potent and relatively safer LSD1 inhibitors as anticancer agents.
Collapse
Affiliation(s)
- Khursheed Ahmad Sheikh
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Umar Jahangir
- Department of Amraaz-e-Jild wa Tazeeniyat, School of Unani Medical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Amir
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suruchi Khanna
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Shaquiquzzaman
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
13
|
Terzi Çizmecioğlu N. Roles and Regulation of H3K4 Methylation During Mammalian Early Embryogenesis and Embryonic Stem Cell Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:73-96. [PMID: 38231346 DOI: 10.1007/5584_2023_794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
From generation of germ cells, fertilization, and throughout early mammalian embryonic development, the chromatin undergoes significant alterations to enable precise regulation of gene expression and genome use. Methylation of histone 3 lysine 4 (H3K4) correlates with active regions of the genome, and it has emerged as a dynamic mark throughout this timeline. The pattern and the level of H3K4 methylation are regulated by methyltransferases and demethylases. These enzymes, as well as their protein partners, play important roles in early embryonic development and show phenotypes in embryonic stem cell self-renewal and differentiation. The various roles of H3K4 methylation are interpreted by dedicated chromatin reader proteins, linking this modification to broader molecular and cellular phenotypes. In this review, we discuss the regulation of different levels of H3K4 methylation, their distinct accumulation pattern, and downstream molecular roles with an early embryogenesis perspective.
Collapse
|
14
|
Liu H, Marayati BF, de la Cerda D, Lemezis BM, Gao J, Song Q, Chen M, Reid KZ. The Cross-Regulation Between Set1, Clr4, and Lsd1/2 in Schizosaccharomyces pombe. PLoS Genet 2024; 20:e1011107. [PMID: 38181050 PMCID: PMC10795994 DOI: 10.1371/journal.pgen.1011107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/18/2024] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Eukaryotic chromatin is organized into either silenced heterochromatin or relaxed euchromatin regions, which controls the accessibility of transcriptional machinery and thus regulates gene expression. In fission yeast, Schizosaccharomyces pombe, Set1 is the sole H3K4 methyltransferase and is mainly enriched at the promoters of actively transcribed genes. In contrast, Clr4 methyltransferase initiates H3K9 methylation, which has long been regarded as a hallmark of heterochromatic silencing. Lsd1 and Lsd2 are two highly conserved H3K4 and H3K9 demethylases. As these histone-modifying enzymes perform critical roles in maintaining histone methylation patterns and, consequently, gene expression profiles, cross-regulations among these enzymes are part of the complex regulatory networks. Thus, elucidating the mechanisms that govern their signaling and mutual regulations remains crucial. Here, we demonstrated that C-terminal truncation mutants, lsd1-ΔHMG and lsd2-ΔC, do not compromise the integrity of the Lsd1/2 complex but impair their chromatin-binding capacity at the promoter region of target genomic loci. We identified protein-protein interactions between Lsd1/2 and Raf2 or Swd2, which are the subunits of the Clr4 complex (CLRC) and Set1-associated complex (COMPASS), respectively. We showed that Clr4 and Set1 modulate the protein levels of Lsd1 and Lsd2 in opposite ways through the ubiquitin-proteasome-dependent pathway. During heat stress, the protein levels of Lsd1 and Lsd2 are upregulated in a Set1-dependent manner. The increase in protein levels is crucial for differential gene expression under stress conditions. Together, our results support a cross-regulatory model by which Set1 and Clr4 methyltransferases control the protein levels of Lsd1/2 demethylases to shape the dynamic chromatin landscape.
Collapse
Affiliation(s)
- Haoran Liu
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Bahjat Fadi Marayati
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David de la Cerda
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Brendan Matthew Lemezis
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Jieyu Gao
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, United States of America
| | - Minghan Chen
- Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Ke Zhang Reid
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
15
|
Mori S, Oya S, Takahashi M, Takashima K, Inagaki S, Kakutani T. Cotranscriptional demethylation induces global loss of H3K4me2 from active genes in Arabidopsis. EMBO J 2023; 42:e113798. [PMID: 37849386 PMCID: PMC10690457 DOI: 10.15252/embj.2023113798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
Based on studies of animals and yeasts, methylation of histone H3 lysine 4 (H3K4me1/2/3, for mono-, di-, and tri-methylation, respectively) is regarded as the key epigenetic modification of transcriptionally active genes. In plants, however, H3K4me2 correlates negatively with transcription, and the regulatory mechanisms of this counterintuitive H3K4me2 distribution in plants remain largely unexplored. A previous genetic screen for factors regulating plant regeneration identified Arabidopsis LYSINE-SPECIFIC DEMETHYLASE 1-LIKE 3 (LDL3), which is a major H3K4me2 demethylase. Here, we show that LDL3-mediated H3K4me2 demethylation depends on the transcription elongation factor Paf1C and phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (RNAPII). In addition, LDL3 binds to phosphorylated RNAPII. These results suggest that LDL3 is recruited to transcribed genes by binding to elongating RNAPII and demethylates H3K4me2 cotranscriptionally. Importantly, the negative correlation between H3K4me2 and transcription is significantly attenuated in the ldl3 mutant, demonstrating the genome-wide impacts of the transcription-driven LDL3 pathway to control H3K4me2 in plants. Our findings implicate H3K4me2 demethylation in plants as chromatin records of transcriptional activity, which ensures robust gene control.
Collapse
Affiliation(s)
- Shusei Mori
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
| | - Satoyo Oya
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
| | | | | | - Soichi Inagaki
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
| | - Tetsuji Kakutani
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
- National Institute of GeneticsShizuokaJapan
| |
Collapse
|
16
|
Caeiro LD, Nakata Y, Borges RL, Garcia-Martinez L, Bañuelos CP, Stransky S, Chan HL, Brabson J, Domínguez D, Zhang Y, Lewis PW, Aznar-Benitah S, Cimmino L, Bilbao D, Sidoli S, Verdun RE, Morey L. Methylation of histone H3 lysine 36 is a barrier for therapeutic interventions of head and neck squamous cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565847. [PMID: 38076924 PMCID: PMC10705544 DOI: 10.1101/2023.11.06.565847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Approximately 20% of head and neck squamous cell carcinomas (HNSCC) exhibit reduced methylation on lysine 36 of histone H3 (H3K36me) due to mutations in histone methylase NSD1 or a lysine-to-methionine mutation in histone H3 (H3K36M). Whether such alterations of H3K36me can be exploited for therapeutic interventions is still unknown. Here, we show that HNSCC models expressing H3K36M can be divided into two groups: those that display aberrant accumulation of H3K27me3 and those that maintain steady levels of H3K27me3. The first group shows decreased proliferation, genome instability, and increased sensitivity to genotoxic agents, such as PARP1/2 inhibitors. In contrast, the H3K36M HNSCC models with steady H3K27me3 levels do not exhibit these characteristics unless H3K27me3 levels are elevated, either by DNA hypomethylating agents or by inhibiting the H3K27me3 demethylases KDM6A/B. Mechanistically, we found that H3K36M reduces H3K36me by directly impeding the activities of the histone methyltransferase NSD3 and the histone demethylase LSD2. Notably, we found that aberrant H3K27me3 levels induced by H3K36M expression is not a bona fide epigenetic mark in HNSCC since it requires continuous expression of H3K36M to be inherited. Moreover, increased sensitivity of H3K36M HNSCC models to PARP1/2 inhibitors solely depends on the increased H3K27me3 levels. Indeed, aberrantly high H3K27me3 levels decrease BRCA1 and FANCD2-dependent DNA repair, resulting in higher sensitivity to DNA breaks and replication stress. Finally, in support of our in vitro findings, a PARP1/2 inhibitor alone reduce tumor burden in a H3K36M HNSCC xenograft model with elevated H3K27me3, whereas in a H3K36M HNSCC xenograft model with consistent H3K27me3 levels, a combination of PARP1/2 inhibitors and agents that upregulate H3K27me3 proves to be successful. In conclusion, our findings underscore a delicate balance between H3K36 and H3K27 methylation, essential for maintaining genome stability. This equilibrium presents promising therapeutic opportunities for patients with H3K36me-deficient tumors.
Collapse
Affiliation(s)
- Lucas D. Caeiro
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yuichiro Nakata
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rodrigo L. Borges
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Liliana Garcia-Martinez
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carolina P. Bañuelos
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ho Lam Chan
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - John Brabson
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Diana Domínguez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Yusheng Zhang
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Peter W. Lewis
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Salvador Aznar-Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Luisa Cimmino
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ramiro E. Verdun
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Geriatric Research, Education, and Clinical Center, Miami VA Healthcare System, Miami, FL, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
17
|
Hossain AJ, Islam R, Seo JB, Park HS, Kim JI, Kumar V, Lee KW, Park JB. Association of Phosphorylated Pyruvate Dehydrogenase with Pyruvate Kinase M2 Promotes PKM2 Stability in Response to Insulin. Int J Mol Sci 2023; 24:13697. [PMID: 37761999 PMCID: PMC10531280 DOI: 10.3390/ijms241813697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Insulin is a crucial signalling molecule that primarily functions to reduce blood glucose levels through cellular uptake of glucose. In addition to its role in glucose homeostasis, insulin has been shown to regulate cell proliferation. Specifically, insulin enhances the phosphorylation of pyruvate dehydrogenase E1α (PDHA1) at the Ser293 residue and promotes the proliferation of HepG2 hepatocellular carcinoma cells. Furthermore, we previously observed that p-Ser293 PDHA1 bound with pyruvate kinase M2 (PKM2) as confirmed by coimmunoprecipitation. In this study, we used an in silico analysis to predict the structural conformation of the two binding proteins. However, the function of the protein complex remained unclear. To investigate further, we treated cells with si-PDHA1 and si-PKM2, which led to a reduction in PKM2 and p-Ser293 PDHA1 levels, respectively. Additionally, we found that the PDHA S293A dephospho-mimic reduced PKM2 levels and its associated enzyme activity. Treatment with MG132 and leupeptin impeded the PDHA1 S293A-mediated PKM2 reduction. These results suggest that the association between p-PDHA1 and PKM2 promotes their stability and protects them from protein degradation. Of interest, we observed that p-PDHA1 and PKM2 were localized in the nucleus in liver cancer patients. Under insulin stimulation, the knockdown of both PDHA1 and PKM2 led to a reduction in the expression of common genes, including KDMB1. These findings suggest that p-PDHA1 and PKM2 play a regulatory role in these proteins' expression and induce tumorigenesis in response to insulin.
Collapse
Affiliation(s)
- Abu Jubayer Hossain
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (A.J.H.); (R.I.)
| | - Rokibul Islam
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (A.J.H.); (R.I.)
- Institute of Cell Differentiation and Aging, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh
| | - Jong-Bok Seo
- Korea Basic Science Institute Seoul Center, Anamro 145, Seongbuk-gu, Seoul 02841, Republic of Korea;
| | - Hwee-Seon Park
- Department of Biomedical Sciences, Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.-S.P.); (J.-I.K.)
| | - Jong-Il Kim
- Department of Biomedical Sciences, Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.-S.P.); (J.-I.K.)
| | - Vikas Kumar
- Division of Life Science, Department of Bio and Medical Big-Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea; (V.K.); (K.W.L.)
| | - Keun Woo Lee
- Division of Life Science, Department of Bio and Medical Big-Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea; (V.K.); (K.W.L.)
- Angel i-Drug Design (AiDD), 33-3 Jinyangho-ro 44, Jinju 52650, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (A.J.H.); (R.I.)
- Institute of Cell Differentiation and Aging, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
18
|
Ma M, Liu F, Miles HN, Kim EJ, Fields L, Xu W, Li L. Proteome-wide Profiling of Asymmetric Dimethylated Arginine in Human Breast Tumors. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1692-1700. [PMID: 37463068 PMCID: PMC10726702 DOI: 10.1021/jasms.3c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Arginine methylation catalyzed by protein arginine methyltransferases (PRMTs) is a prevalent post-translational modification (PTM) that regulates diverse cellular processes. Aberrant expression of type I PRMTs that catalyze asymmetric arginine dimethylation (ADMA) is often found in cancer, though little is known about the ADMA status of substrate proteins in tumors. Using LC-MS/MS along with pan-specific ADMA antibodies, we performed global mapping of ADMA in five patient-derived xenograft (PDX) tumors representing different subtypes of human breast cancer. In total, 403 methylated sites from 213 proteins were identified, including 322 novel sites when compared to the PhosphositesPlus database. Moreover, using peptide arrays in vitro, approximately 70% of the putative substrates were validated to be methylated by PRMT1, PRMT4, and PRMT6. Notably, when compared with our previously identified ADMA sites from breast cancer cell lines, only 75 ADMA sites overlapped between cell lines and PDX tumors. Collectively, this study provides a useful resource for both PRMT and breast cancer communities for further exploitation of the functions of PRMT dysregulation during breast cancer progression.
Collapse
Affiliation(s)
- Min Ma
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Fabao Liu
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, 53705, United States
- Advanced Medical Research Institute, Shandong University, Shandong, 250012, PR China
| | - Hannah N. Miles
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Eui-Jun Kim
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, 53705, United States
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| |
Collapse
|
19
|
Huang L, Wang Q, Gu S, Cao N. Integrated metabolic and epigenetic mechanisms in cardiomyocyte proliferation. J Mol Cell Cardiol 2023; 181:79-88. [PMID: 37331466 DOI: 10.1016/j.yjmcc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
Heart disease continues to be the leading cause of mortality worldwide, primarily attributed to the restricted regenerative potential of the adult human heart following injury. In contrast to their adult counterparts, many neonatal mammals can spontaneously regenerate their myocardium in the first few days of life via extensive proliferation of the pre-existing cardiomyocytes. Reasons for the decline in regenerative capacity during postnatal development, and how to control it, remain largely unexplored. Accumulated evidence suggests that the preservation of regenerative potential depends on a conducive metabolic state in the embryonic and neonatal heart. Along with the postnatal increase in oxygenation and workload, the mammalian heart undergoes a metabolic transition, shifting its primary metabolic substrate from glucose to fatty acids shortly after birth for energy advantage. This metabolic switch causes cardiomyocyte cell-cycle arrest, which is widely regarded as a key mechanism for the loss of regenerative capacity. Beyond energy provision, emerging studies have suggested a link between this intracellular metabolism dynamics and postnatal epigenetic remodeling of the mammalian heart that reshapes the expression of many genes important for cardiomyocyte proliferation and cardiac regeneration, since many epigenetic enzymes utilize kinds of metabolites as obligate cofactors or substrates. This review summarizes the current state of knowledge of metabolism and metabolite-mediated epigenetic modifications in cardiomyocyte proliferation, with a particular focus on highlighting the potential therapeutic targets that hold promise to treat human heart failure via metabolic and epigenetic regulations.
Collapse
Affiliation(s)
- Liying Huang
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Qiyuan Wang
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Shanshan Gu
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Nan Cao
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China.
| |
Collapse
|
20
|
Xiao C, Fan T, Zheng Y, Tian H, Deng Z, Liu J, Li C, He J. H3K4 trimethylation regulates cancer immunity: a promising therapeutic target in combination with immunotherapy. J Immunother Cancer 2023; 11:e005693. [PMID: 37553181 PMCID: PMC10414074 DOI: 10.1136/jitc-2022-005693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 08/10/2023] Open
Abstract
With the advances in cancer immunity regulation and immunotherapy, the effects of histone modifications on establishing antitumor immunological ability are constantly being uncovered. Developing combination therapies involving epigenetic drugs (epi-drugs) and immune checkpoint blockades or chimeric antigen receptor-T cell therapies are promising to improve the benefits of immunotherapy. Histone H3 lysine 4 trimethylation (H3K4me3) is a pivotal epigenetic modification in cancer immunity regulation, deeply involved in modulating tumor immunogenicity, reshaping tumor immune microenvironment, and regulating immune cell functions. However, how to integrate these theoretical foundations to create novel H3K4 trimethylation-based therapeutic strategies and optimize available therapies remains uncertain. In this review, we delineate the mechanisms by which H3K4me3 and its modifiers regulate antitumor immunity, and explore the therapeutic potential of the H3K4me3-related agents combined with immunotherapies. Understanding the role of H3K4me3 in cancer immunity will be instrumental in developing novel epigenetic therapies and advancing immunotherapy-based combination regimens.
Collapse
Affiliation(s)
- Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Abdelaziz N, Therachiyil L, Sadida HQ, Ali AM, Khan OS, Singh M, Khan AQ, Akil ASAS, Bhat AA, Uddin S. Epigenetic inhibitors and their role in cancer therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:211-251. [PMID: 37657859 DOI: 10.1016/bs.ircmb.2023.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Epigenetic modifications to DNA are crucial for normal cellular and biological functioning. DNA methylation, histone modifications, and chromatin remodeling are the most common epigenetic mechanisms. These changes are heritable but still reversible. The aberrant epigenetic alterations, such as DNA methylation, histone modification, and non-coding RNA (ncRNA)-mediated gene regulation, play an essential role in developing various human diseases, including cancer. Recent studies show that synthetic and dietary epigenetic inhibitors attenuate the abnormal epigenetic modifications in cancer cells and therefore have strong potential for cancer treatment. In this chapter, we have highlighted various types of epigenetic modifications, their mechanism, and as drug targets for epigenetic therapy.
Collapse
Affiliation(s)
- Nouha Abdelaziz
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | | | - Omar S Khan
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Mayank Singh
- Department of Medical Oncology (Lab), BRAIRCH All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
22
|
Mao M, Song S, Li X, Lu J, Li J, Zhao W, Liu H, Liu J, Zeng B. Advances in epigenetic modifications of autophagic process in pulmonary hypertension. Front Immunol 2023; 14:1206406. [PMID: 37398657 PMCID: PMC10313199 DOI: 10.3389/fimmu.2023.1206406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Pulmonary hypertension is characterized by pulmonary arterial remodeling that results in increased pulmonary vascular resistance, right ventricular failure, and premature death. It is a threat to public health globally. Autophagy, as a highly conserved self-digestion process, plays crucial roles with autophagy-related (ATG) proteins in various diseases. The components of autophagy in the cytoplasm have been studied for decades and multiple studies have provided evidence of the importance of autophagic dysfunction in pulmonary hypertension. The status of autophagy plays a dynamic suppressive or promotive role in different contexts and stages of pulmonary hypertension development. Although the components of autophagy have been well studied, the molecular basis for the epigenetic regulation of autophagy is less understood and has drawn increasing attention in recent years. Epigenetic mechanisms include histone modifications, chromatin modifications, DNA methylation, RNA alternative splicing, and non-coding RNAs, which control gene activity and the development of an organism. In this review, we summarize the current research progress on epigenetic modifications in the autophagic process, which have the potential to be crucial and powerful therapeutic targets against the autophagic process in pulmonary hypertension development.
Collapse
Affiliation(s)
- Min Mao
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shasha Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Xin Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiayao Lu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Jie Li
- Marketing Department, Shenzhen Reyson Biotechnology Co., Ltd, Shenzhen, China
- Nanjing Evertop Electronics Ltd., Nanjing, China
| | - Weifang Zhao
- Quality Management Department International Registration, North China Pharmaceutical Co., Ltd. (NCPC), Hebei Huamin Pharmaceutical Co., Ltd., Shijiazhuang, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jingxin Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Bin Zeng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
23
|
Srivastava R, Singh R, Jauhari S, Lodhi N, Srivastava R. Histone Demethylase Modulation: Epigenetic Strategy to Combat Cancer Progression. EPIGENOMES 2023; 7:epigenomes7020010. [PMID: 37218871 DOI: 10.3390/epigenomes7020010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Epigenetic modifications are heritable, reversible changes in histones or the DNA that control gene functions, being exogenous to the genomic sequence itself. Human diseases, particularly cancer, are frequently connected to epigenetic dysregulations. One of them is histone methylation, which is a dynamically reversible and synchronously regulated process that orchestrates the three-dimensional epigenome, nuclear processes of transcription, DNA repair, cell cycle, and epigenetic functions, by adding or removing methylation groups to histones. Over the past few years, reversible histone methylation has become recognized as a crucial regulatory mechanism for the epigenome. With the development of numerous medications that target epigenetic regulators, epigenome-targeted therapy has been used in the treatment of malignancies and has shown meaningful therapeutic potential in preclinical and clinical trials. The present review focuses on the recent advances in our knowledge on the role of histone demethylases in tumor development and modulation, in emphasizing molecular mechanisms that control cancer cell progression. Finally, we emphasize current developments in the advent of new molecular inhibitors that target histone demethylases to regulate cancer progression.
Collapse
Affiliation(s)
- Rashmi Srivastava
- Department of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Rubi Singh
- Department of Hematology, Bioreference Laboratories, Elmwood Park, NJ 07407, USA
| | - Shaurya Jauhari
- Division of Education, Training, and Assessment, Global Education Center, Infosys Limited, Mysuru 570027, Karnataka, India
| | - Niraj Lodhi
- Clinical Research (Research and Development Division) Mirna Analytics LLC, Harlem Bio-Space, New York, NY 10027, USA
| | - Rakesh Srivastava
- Molecular Biology and Microbiology, GenTox Research and Development, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
24
|
Lin R, Wu J, You Z, Xu D, Li C, Wang W, Qian G. Induction of Hibernation and Changes in Physiological and Metabolic Indices in Pelodiscus sinensis. BIOLOGY 2023; 12:biology12050720. [PMID: 37237532 DOI: 10.3390/biology12050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Pelodiscus sinensis (P. sinensis) is a commonly cultivated turtle species with a habit of hibernation. To study the changes in histone expression and methylation of P. sinensis during hibernation induction, a model was established by artificial induction. Physiological and metabolic indices were measured, and the expression and localization of histone (H1, H2A, H2B, H3, and H4) and methylation-related genes (ASH2L, KMT2A, KMT2E, KDM1A, KDM1B, and KDM5A) were measured by quantitative PCR, immunohistochemistry, and Western blot analysis. The results indicated that the metabolism, antioxidation index, and relative expression of histone methyltransferase were significantly decreased (p < 0.05), whereas the activity and expression of histone demethyltransferase were significantly increased (p < 0.05). Although our results showed significant changes in physiological and gene expression after hibernation induction, we could not confirm that P. sinensis entered deep hibernation. Therefore, for the state after cooling-induced hibernation, cold torpor might be a more accurate description. The results indicate that the P. sinensis can enter cold torpor through artificial induction, and the expression of histones may promote gene transcription. Unlike histones expressed under normal conditions, histone methylation may activate gene transcription during hibernation induction. Western blot analysis revealed that the ASH2L and KDM5A proteins were differentially expressed in the testis at different months (p < 0.05), which may perform a role in regulating gene transcription. The immunohistochemical localization of ASH2L and KDM5A in spermatogonia and spermatozoa suggests that ASH2L and KDM5A may perform a role in mitosis and meiosis. In conclusion, this study is the first to report changes in histone-related genes in reptiles, which provides insight for further studies on the physiological metabolism and histone methylation regulation of P. sinensis during the hibernation induction and hibernation period.
Collapse
Affiliation(s)
- Runlan Lin
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Jiahao Wu
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Ziyi You
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Dongjie Xu
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Caiyan Li
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Wang
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Guoying Qian
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
25
|
Caroli J, Mattevi A. The NPAC-LSD2 complex in nucleosome demethylation. Enzymes 2023; 53:97-111. [PMID: 37748839 DOI: 10.1016/bs.enz.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
NPAC is a transcriptional co-activator widely associated with the H3K36me3 epigenetic marks present in the gene bodies. NPAC plays a fundamental role in RNA polymerase progression, and its depletion downregulates gene transcription. In this chapter, we review the current knowledge on the functional and structural features of this multi-domain protein. NPAC (also named GLYR1 or NP60) contains a PWWP motif, a chromatin binder and epigenetic reader that is proposed to weaken the DNA-histone contacts facilitating polymerase passage through the nucleosomes. The C-terminus of NPAC is a catalytically inactive dehydrogenase domain that forms a stable and rigid tetramer acting as an oligomerization module for the formation of co-transcriptional multimeric complexes. The PWWP and dehydrogenase domains are connected by a long, mostly disordered, linker that comprises putative sites for protein and DNA interactions. A short dodecapeptide sequence (residues 214-225) forms the binding site for LSD2, a flavin-dependent lysine-specific histone demethylase. This stretch of residues binds on the surface of LSD2 and facilitates the capture and processing of the H3 tail in the nucleosome context, thus promoting the H3K4me1/2 epigenetic mark removal. LSD2 is associated with other two chromatin modifiers, G9a and NSD3. The LSD2-G9a-NSD3 complex modifies the pattern of the post translational modifications deposited on histones, thus converting the relaxed chromatin into a transcriptionally refractory state after the RNA polymerase passage. NPAC is a scaffolding factor that organizes and coordinates the epigenetic activities required for optimal transcription elongation.
Collapse
Affiliation(s)
- Jonatan Caroli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
26
|
Su Z, Kon N, Yi J, Zhao H, Zhang W, Tang Q, Li H, Kobayashi H, Li Z, Duan S, Liu Y, Olive KP, Zhang Z, Honig B, Manfredi JJ, Rustgi AK, Gu W. Specific regulation of BACH1 by the hotspot mutant p53 R175H reveals a distinct gain-of-function mechanism. NATURE CANCER 2023; 4:564-581. [PMID: 36973430 PMCID: PMC10320414 DOI: 10.1038/s43018-023-00532-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023]
Abstract
Although the gain of function (GOF) of p53 mutants is well recognized, it remains unclear whether different p53 mutants share the same cofactors to induce GOFs. In a proteomic screen, we identified BACH1 as a cellular factor that recognizes the p53 DNA-binding domain depending on its mutation status. BACH1 strongly interacts with p53R175H but fails to effectively bind wild-type p53 or other hotspot mutants in vivo for functional regulation. Notably, p53R175H acts as a repressor for ferroptosis by abrogating BACH1-mediated downregulation of SLC7A11 to enhance tumor growth; conversely, p53R175H promotes BACH1-dependent tumor metastasis by upregulating expression of pro-metastatic targets. Mechanistically, p53R175H-mediated bidirectional regulation of BACH1 function is dependent on its ability to recruit the histone demethylase LSD2 to target promoters and differentially modulate transcription. These data demonstrate that BACH1 acts as a unique partner for p53R175H in executing its specific GOFs and suggest that different p53 mutants induce their GOFs through distinct mechanisms.
Collapse
Affiliation(s)
- Zhenyi Su
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Ning Kon
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Jingjie Yi
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Haiqing Zhao
- Departments of Biochemistry and Molecular Biophysics, Systems Biology, and Medical Sciences in Medicine, Zuckerman Institute Columbia University, New York, NY, USA
| | - Wanwei Zhang
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Qiaosi Tang
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Huan Li
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Hiroki Kobayashi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Zhiming Li
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Shoufu Duan
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Yanqing Liu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Kenneth P Olive
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Barry Honig
- Departments of Biochemistry and Molecular Biophysics, Systems Biology, and Medical Sciences in Medicine, Zuckerman Institute Columbia University, New York, NY, USA
| | - James J Manfredi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
27
|
Wang N, Ma T, Yu B. Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct Target Ther 2023; 8:69. [PMID: 36797239 PMCID: PMC9935618 DOI: 10.1038/s41392-023-01341-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 02/18/2023] Open
Abstract
Drug resistance is mainly responsible for cancer recurrence and poor prognosis. Epigenetic regulation is a heritable change in gene expressions independent of nucleotide sequence changes. As the common epigenetic regulation mechanisms, DNA methylation, histone modification, and non-coding RNA regulation have been well studied. Increasing evidence has shown that aberrant epigenetic regulations contribute to tumor resistance. Therefore, targeting epigenetic regulators represents an effective strategy to reverse drug resistance. In this review, we mainly summarize the roles of epigenetic regulation in tumor resistance. In addition, as the essential factors for epigenetic modifications, histone demethylases mediate the histone or genomic DNA modifications. Herein, we comprehensively describe the functions of the histone demethylase family including the lysine-specific demethylase family, the Jumonji C-domain-containing demethylase family, and the histone arginine demethylase family, and fully discuss their regulatory mechanisms related to cancer drug resistance. In addition, therapeutic strategies, including small-molecule inhibitors and small interfering RNA targeting histone demethylases to overcome drug resistance, are also described.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ting Ma
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Bin Yu
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
28
|
Song Y, Wang S, Yu B. Structural and Functional Landscape of FAD-Dependent Histone Lysine Demethylases for New Drug Discovery. J Med Chem 2023; 66:71-94. [PMID: 36537915 DOI: 10.1021/acs.jmedchem.2c01324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Small molecules targeting the flavin adenine dinucleotide (FAD)-dependent histone lysine demethylase LSD family have displayed therapeutic promise against various diseases. Nine clinical candidates targeting the classic demethylase-dependent functions of the LSD family are currently being investigated for treating cancers, neurodegenerative diseases, etc. Moreover, targeting noncatalytic functions of LSDs also represents an emerging strategy for treating human diseases. In this Perspective, we provide full structural and functional landscape of the LSD family and action modes of different types of LSD inhibitors including natural products, peptides, and synthetic compounds, aiming to reveal new druggable space for the design of new LSD inhibitors. Particularly, we first classify these inhibitors into three types based on their unique binding modes. Additionally, the strategies targeting the demethylase-independent functions of LSDs are also briefly discussed. This Perspective may benefit the discovery of new LSD inhibitors for probing LSD biology and/or treating human diseases.
Collapse
Affiliation(s)
- Yihui Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shu Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
29
|
Roy A, Niharika, Chakraborty S, Mishra J, Singh SP, Patra SK. Mechanistic aspects of reversible methylation modifications of arginine and lysine of nuclear histones and their roles in human colon cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:261-302. [PMID: 37019596 DOI: 10.1016/bs.pmbts.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Developmental proceedings and maintenance of cellular homeostasis are regulated by the precise orchestration of a series of epigenetic events that eventually control gene expression. DNA methylation and post-translational modifications (PTMs) of histones are well-characterized epigenetic events responsible for fine-tuning gene expression. PTMs of histones bear molecular logic of gene expression at chromosomal territory and have become a fascinating field of epigenetics. Nowadays, reversible methylation on histone arginine and lysine is gaining increasing attention as a significant PTM related to reorganizing local nucleosomal structure, chromatin dynamics, and transcriptional regulation. It is now well-accepted and reported that histone marks play crucial roles in colon cancer initiation and progression by encouraging abnormal epigenomic reprogramming. It is becoming increasingly clear that multiple PTM marks at the N-terminal tails of the core histones cross-talk with one another to intricately regulate DNA-templated biological processes such as replication, transcription, recombination, and damage repair in several malignancies, including colon cancer. These functional cross-talks provide an additional layer of message, which spatiotemporally fine-tunes the overall gene expression regulation. Nowadays, it is evident that several PTMs instigate colon cancer development. How colon cancer-specific PTM patterns or codes are generated and how they affect downstream molecular events are uncovered to some extent. Future studies would address more about epigenetic communication, and the relationship between histone modification marks to define cellular functions in depth. This chapter will comprehensively highlight the importance of histone arginine and lysine-based methylation modifications and their functional cross-talk with other histone marks from the perspective of colon cancer development.
Collapse
|
30
|
Dong L, Zhu J, Deng A, Wei J, Li J, Mao X, Jia Z. Relationship between histone demethylase LSD family and development and prognosis of gastric cancer. Front Immunol 2023; 14:1170773. [PMID: 37207209 PMCID: PMC10188996 DOI: 10.3389/fimmu.2023.1170773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 05/21/2023] Open
Abstract
Objective to elucidate the correlation between histone demethylase and gastric cancer. Research object histone demethylase and gastric cancer. Results As one of the important regulatory mechanisms in molecular biology and epigenetics, histone modification plays an important role in gastric cancer including downstream gene expression regulation and epigenetics effect. Both histone methyltransferase and histone demethylases are involved in the formation and maintaining different of histone methylation status, which in turn through a variety of vital molecules and signaling pathways involved in the recognition of histone methylation modification caused by the downstream biological process, eventually participate in the regulation of chromatin function, and with a variety of important physiological activities, especially closely related to the occurrence of gastric cancer and embryonic development. Conclusion This paper intends to review the research progress in this field from the aspects of histone methylation modification and the protein structure, catalytic mechanism and biological function of the important histone demethylases LSD1 and LSD2, in order to provide the theoretical reference for further understanding and exploration of histone demethylases in development and prognosis of gastric cancer.
Collapse
Affiliation(s)
- Liyan Dong
- Department of General Surgery, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jiaxing Zhu
- International Research Center for Precision Medicine, Beroni Group Limited, Sydney, NSW, Australia
| | - Anyi Deng
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Junping Wei
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Jiawei Li
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Xinru Mao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenghu Jia
- International Research Center for Precision Medicine, Beroni Group Limited, Sydney, NSW, Australia
- The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China
- Research and Development Center, Guangzhou Purui Biotechnology Co., Ltd, Guangzhou, China
- *Correspondence: Zhenghu Jia,
| |
Collapse
|
31
|
Mao F, Shi YG. Targeting the LSD1/KDM1 Family of Lysine Demethylases in Cancer and Other Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:15-49. [PMID: 37751134 DOI: 10.1007/978-3-031-38176-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) was the first histone demethylase discovered and the founding member of the flavin-dependent lysine demethylase family (KDM1). The human KDM1 family includes KDM1A and KDM1B, which primarily catalyze demethylation of histone H3K4me1/2. The KDM1 family is involved in epigenetic gene regulation and plays important roles in various biological and disease pathogenesis processes, including cell differentiation, embryonic development, hormone signaling, and carcinogenesis. Malfunction of many epigenetic regulators results in complex human diseases, including cancers. Regulators such as KDM1 have become potential therapeutic targets because of the reversibility of epigenetic control of genome function. Indeed, several classes of KDM1-selective small molecule inhibitors have been developed, some of which are currently in clinical trials to treat various cancers. In this chapter, we review the discovery, biochemical, and molecular mechanisms, atomic structure, genetics, biology, and pathology of the KDM1 family of lysine demethylases. Focusing on cancer, we also provide a comprehensive summary of recently developed KDM1 inhibitors and related preclinical and clinical studies to provide a better understanding of the mechanisms of action and applications of these KDM1-specific inhibitors in therapeutic treatment.
Collapse
Affiliation(s)
- Fei Mao
- Longevity and Aging Institute (LAI), IBS and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yujiang Geno Shi
- Longevity and Aging Institute (LAI), IBS and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Shannar A, Sarwar MS, Kong ANT. A New Frontier in Studying Dietary Phytochemicals in Cancer and in Health: Metabolic and Epigenetic Reprogramming. Prev Nutr Food Sci 2022; 27:335-346. [PMID: 36721757 PMCID: PMC9843711 DOI: 10.3746/pnf.2022.27.4.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 01/03/2023] Open
Abstract
Metabolic rewiring and epigenetic reprogramming are closely inter-related, and mutually regulate each other to control cell growth in cancer initiation, promotion, progression, and metastasis. Epigenetics plays a crucial role in regulating normal cellular functions as well as pathological conditions in many diseases, including cancer. Conversely, certain mitochondrial metabolites are considered as essential cofactors and regulators of epigenetic mechanisms. Furthermore, dysregulation of metabolism promotes tumor cell growth and reprograms the cells to produce metabolites and bioenergy needed to support cancer cell proliferation. Hence, metabolic reprogramming which alters the metabolites/epigenetic cofactors, would drive the epigenetic landscape, including DNA methylation and histone modification, that could lead to cancer initiation, promotion, and progression. Recognizing the diverse array of benefits of phytochemicals, they are gaining increasing interest in cancer interception and treatment. One of the significant mechanisms of cancer interception and treatment by phytochemicals is reprogramming of the key metabolic pathways and remodeling of cancer epigenetics. This review focuses on the metabolic remodeling and epigenetics reprogramming in cancer and investigates the potential mechanisms by which phytochemicals can mitigate cancer.
Collapse
Affiliation(s)
- Ahmad Shannar
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Md. Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA,
Correspondence to Ah-Ng Tony Kong,
| |
Collapse
|
33
|
Endocrine resistance and breast cancer plasticity are controlled by CoREST. Nat Struct Mol Biol 2022; 29:1122-1135. [PMID: 36344844 PMCID: PMC9707522 DOI: 10.1038/s41594-022-00856-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Resistance to cancer treatment remains a major clinical hurdle. Here, we demonstrate that the CoREST complex is a key determinant of endocrine resistance and ER+ breast cancer plasticity. In endocrine-sensitive cells, CoREST is recruited to regulatory regions co-bound to ERα and FOXA1 to regulate the estrogen pathway. In contrast, during temporal reprogramming towards a resistant state, CoREST is recruited to AP-1 sites. In reprogrammed cells, CoREST favors chromatin opening, cJUN binding to chromatin, and gene activation by controlling SWI/SNF recruitment independently of the demethylase activity of the CoREST subunit LSD1. Genetic and pharmacological CoREST inhibition reduces tumorigenesis and metastasis of endocrine-sensitive and endocrine-resistant xenograft models. Consistently, CoREST controls a gene signature involved in invasiveness in clinical breast tumors resistant to endocrine therapies. Our studies reveal CoREST functions that are co-opted to drive cellular plasticity and resistance to endocrine therapies and tumorigenesis, thus establishing CoREST as a potential therapeutic target for the treatment of advanced breast cancer.
Collapse
|
34
|
Hou C, Ye Z, Yang S, Jiang Z, Wang J, Wang E. Lysine demethylase 1B (Kdm1b) enhances somatic reprogramming through inducing pluripotent gene expression and promoting cell proliferation. Exp Cell Res 2022; 420:113339. [PMID: 36075448 DOI: 10.1016/j.yexcr.2022.113339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
Lysine demethylase 1B (Kdm1b) is known as an epigenetic modifier with demethylase activity against H3K4 and H3K9 histones and plays an important role in tumor progression and tumor stem cell enrichment. In this study, we attempted to elucidate the role of Kdm1b in somatic cell reprogramming. We found that exogenous expression of Kdm1b in human dermal fibroblasts (HDFs) can influence the epigenetic modifications of histones. Subsequent analysis further suggests that the overexpression of Kdm1b can promote cell proliferation, reprogram metabolism and inhibit cell apoptosis. In addition, a series of multipotent factors including Sox2 and Nanog, and several epigenetic factors that may reduce epigenetic barriers were upregulated to varying degrees. More importantly, HDFs transfected with the combination of Oct4 (POU5F1), Sox2, Klf4 and c-Myc and Kdm1b (OSKMK) achieved higher reprogramming efficiency. Therefore, we suggest that Kdm1b is an important epigenetic factor associated with pluripotency.
Collapse
Affiliation(s)
- Cuicui Hou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; College of Chemistry, Jilin University, Changchun, Jilin, 130021, PR China
| | - Zhikai Ye
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Songqin Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Zhenlong Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China.
| | - Jin Wang
- Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, United States.
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; College of Chemistry, Jilin University, Changchun, Jilin, 130021, PR China.
| |
Collapse
|
35
|
Integrative analysis reveals histone demethylase LSD1 promotes RNA polymerase II pausing. iScience 2022; 25:105049. [PMID: 36124234 PMCID: PMC9482124 DOI: 10.1016/j.isci.2022.105049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/18/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Lysine-specific demethylase 1 (LSD1) is well-known for its role in decommissioning enhancers during mouse embryonic stem cell (ESC) differentiation. Its role in gene promoters remains poorly understood despite its widespread presence at these sites. Here, we report that LSD1 promotes RNA polymerase II (RNAPII) pausing, a rate-limiting step in transcription regulation, in ESCs. We found the knockdown of LSD1 preferentially affects genes with higher RNAPII pausing. Next, we demonstrate that the co-localization sites of LSD1 and MYC, a factor known to regulate pause-release, are enriched for other RNAPII pausing factors. We show that LSD1 and MYC directly interact and MYC recruitment to genes co-regulated with LSD1 is dependent on LSD1 but not vice versa. The co-regulated gene set is significantly enriched for housekeeping processes and depleted of transcription factors compared to those bound by LSD1 alone. Collectively, our integrative analysis reveals a pleiotropic role of LSD1 in promoting RNAPII pausing. LSD1 promotes RNA polymerase II pausing in mouse embryonic stem cells LSD1 knockdown causes global reduction of RNAPII pausing Co-localized sites of LSD1 and MYC are enriched for RNAPII pausing and releasing factors MYC recruitment to co-regulated genes is dependent on LSD1 but not vice versa
Collapse
|
36
|
Feng J, Meng X. Histone modification and histone modification-targeted anti-cancer drugs in breast cancer: Fundamentals and beyond. Front Pharmacol 2022; 13:946811. [PMID: 36188615 PMCID: PMC9522521 DOI: 10.3389/fphar.2022.946811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/15/2022] [Indexed: 12/21/2022] Open
Abstract
Dysregulated epigenetic enzymes and resultant abnormal epigenetic modifications (EMs) have been suggested to be closely related to tumor occurrence and progression. Histone modifications (HMs) can assist in maintaining genome stability, DNA repair, transcription, and chromatin modulation within breast cancer (BC) cells. In addition, HMs are reversible, dynamic processes involving the associations of different enzymes with molecular compounds. Abnormal HMs (e.g. histone methylation and histone acetylation) have been identified to be tightly related to BC occurrence and development, even though their underlying mechanisms remain largely unclear. EMs are reversible, and as a result, epigenetic enzymes have aroused wide attention as anti-tumor therapeutic targets. At present, treatments to restore aberrant EMs within BC cells have entered preclinical or clinical trials. In addition, no existing studies have comprehensively analyzed aberrant HMs within BC cells; in addition, HM-targeting BC treatments remain to be further investigated. Histone and non-histone protein methylation is becoming an attractive anti-tumor epigenetic therapeutic target; such methylation-related enzyme inhibitors are under development at present. Consequently, the present work focuses on summarizing relevant studies on HMs related to BC and the possible mechanisms associated with abnormal HMs. Additionally, we also aim to analyze existing therapeutic agents together with those drugs approved and tested through pre-clinical and clinical trials, to assess their roles in HMs. Moreover, epi-drugs that target HMT inhibitors and HDAC inhibitors should be tested in preclinical and clinical studies for the treatment of BC. Epi-drugs that target histone methylation (HMT inhibitors) and histone acetylation (HDAC inhibitors) have now entered clinical trials or are approved by the US Food and Drug Administration (FDA). Therefore, the review covers the difficulties in applying HM-targeting treatments in clinics and proposes feasible approaches for overcoming such difficulties and promoting their use in treating BC cases.
Collapse
|
37
|
Musella M, Guarracino A, Manduca N, Galassi C, Ruggiero E, Potenza A, Maccafeo E, Manic G, Mattiello L, Soliman Abdel Rehim S, Signore M, Pietrosanto M, Helmer-Citterich M, Pallocca M, Fanciulli M, Bruno T, De Nicola F, Corleone G, Di Benedetto A, Ercolani C, Pescarmona E, Pizzuti L, Guidi F, Sperati F, Vitale S, Macchia D, Spada M, Schiavoni G, Mattei F, De Ninno A, Businaro L, Lucarini V, Bracci L, Aricò E, Ziccheddu G, Facchiano F, Rossi S, Sanchez M, Boe A, Biffoni M, De Maria R, Vitale I, Sistigu A. Type I IFNs promote cancer cell stemness by triggering the epigenetic regulator KDM1B. Nat Immunol 2022; 23:1379-1392. [PMID: 36002648 PMCID: PMC9477743 DOI: 10.1038/s41590-022-01290-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/17/2022] [Indexed: 12/14/2022]
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells endowed with high tumorigenic, chemoresistant and metastatic potential. Nongenetic mechanisms of acquired resistance are increasingly being discovered, but molecular insights into the evolutionary process of CSCs are limited. Here, we show that type I interferons (IFNs-I) function as molecular hubs of resistance during immunogenic chemotherapy, triggering the epigenetic regulator demethylase 1B (KDM1B) to promote an adaptive, yet reversible, transcriptional rewiring of cancer cells towards stemness and immune escape. Accordingly, KDM1B inhibition prevents the appearance of IFN-I-induced CSCs, both in vitro and in vivo. Notably, IFN-I-induced CSCs are heterogeneous in terms of multidrug resistance, plasticity, invasiveness and immunogenicity. Moreover, in breast cancer (BC) patients receiving anthracycline-based chemotherapy, KDM1B positively correlated with CSC signatures. Our study identifies an IFN-I → KDM1B axis as a potent engine of cancer cell reprogramming, supporting KDM1B targeting as an attractive adjunctive to immunogenic drugs to prevent CSC expansion and increase the long-term benefit of therapy.
Collapse
Affiliation(s)
- Martina Musella
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Guarracino
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
- Genomics Research Centre, Human Technopole, Milan, Italy
| | - Nicoletta Manduca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudia Galassi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ester Maccafeo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gwenola Manic
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Luca Mattiello
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Sara Soliman Abdel Rehim
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy
| | - Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Pietrosanto
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | | | - Matteo Pallocca
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Tiziana Bruno
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Giacomo Corleone
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Di Benedetto
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Cristiana Ercolani
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Edoardo Pescarmona
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Pizzuti
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Guidi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario 'A. Gemelli' - IRCCS, Rome, Italy
| | - Francesca Sperati
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Sara Vitale
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Daniele Macchia
- Center of Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Spada
- Center of Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Adele De Ninno
- Institute for Photonics and Nanotechnologies, Italian National Research Council, Rome, Italy
| | - Luca Businaro
- Institute for Photonics and Nanotechnologies, Italian National Research Council, Rome, Italy
| | - Valeria Lucarini
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Laura Bracci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Eleonora Aricò
- FaBioCell, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Ziccheddu
- Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Sanchez
- Cytometry Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Boe
- Cytometry Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Universitario 'A. Gemelli' - IRCCS, Rome, Italy.
| | - Ilio Vitale
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy.
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Universitario 'A. Gemelli' - IRCCS, Rome, Italy.
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
38
|
Chen C, Wang Z, Qin Y. Connections between metabolism and epigenetics: mechanisms and novel anti-cancer strategy. Front Pharmacol 2022; 13:935536. [PMID: 35935878 PMCID: PMC9354823 DOI: 10.3389/fphar.2022.935536] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/29/2022] [Indexed: 12/26/2022] Open
Abstract
Cancer cells undergo metabolic adaptations to sustain their growth and proliferation under several stress conditions thereby displaying metabolic plasticity. Epigenetic modification is known to occur at the DNA, histone, and RNA level, which can alter chromatin state. For almost a century, our focus in cancer biology is dominated by oncogenic mutations. Until recently, the connection between metabolism and epigenetics in a reciprocal manner was spotlighted. Explicitly, several metabolites serve as substrates and co-factors of epigenetic enzymes to carry out post-translational modifications of DNA and histone. Genetic mutations in metabolic enzymes facilitate the production of oncometabolites that ultimately impact epigenetics. Numerous evidences also indicate epigenome is sensitive to cancer metabolism. Conversely, epigenetic dysfunction is certified to alter metabolic enzymes leading to tumorigenesis. Further, the bidirectional relationship between epigenetics and metabolism can impact directly and indirectly on immune microenvironment, which might create a new avenue for drug discovery. Here we summarize the effects of metabolism reprogramming on epigenetic modification, and vice versa; and the latest advances in targeting metabolism-epigenetic crosstalk. We also discuss the principles linking cancer metabolism, epigenetics and immunity, and seek optimal immunotherapy-based combinations.
Collapse
|
39
|
Vetrivel P, Nachimuthu S, Abuyaseer A, Bhosale PB, Ha SE, Kim HH, Park MY, Kim GS. Investigation on the cellular mechanism of Prunetin evidenced through next generation sequencing and bioinformatic approaches against gastric cancer. Sci Rep 2022; 12:11852. [PMID: 35831348 PMCID: PMC9279440 DOI: 10.1038/s41598-022-15826-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Abstract
Gastric cancer is the common type of malignancy positioned at second in mortality rate causing burden worldwide with increasing treatment options. More accurate and reliable diagnostic methods/biomarkers are urgently needed. The application of transcriptomics technologies possesses the high efficiency of identifying key metabolic pathways and functional genes in cancer research. In this study, we performed a transcriptome analysis on Prunetin treated AGS cells. A total of 1,118 differentially expressed (DE) genes on Prunetin treated AGS cancer cells, among which 463 were up-regulated and 655 were down-regulated. Notably, around 40 genes were found to be related with necroptosis, among which 16 genes were found to be in close association with Receptor Interacting Protein Kinase (RIPK) family. Validation of the RIPK genes through GEPIA identified 8 genes (NRP1, MNX1, SSRP1, PRDX2, PLRG1, LGALS4, SNX5 and FXYD3) which are highly expressed in stomach cancer were significantly down-regulated in PRU treated samples. In conclusion, the sequencing data explores the expression of RIPK mediated genes through necroptosis signaling network in treating gastric cancer. The futuristic validations on the 8 genes as candidate biomarkers will offer a treatment approach against gastric cancer using PRU.
Collapse
Affiliation(s)
- Preethi Vetrivel
- Research Institute of Life science and College of Veterinary Medicine, Gyeongsang National University, Gajwa, Jinju, 52828, Republic of Korea.,Department of Pharmacy, National University of Singapore, Singapore, 119077, Singapore
| | - Santhi Nachimuthu
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, India
| | - Abusaliya Abuyaseer
- Research Institute of Life science and College of Veterinary Medicine, Gyeongsang National University, Gajwa, Jinju, 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Research Institute of Life science and College of Veterinary Medicine, Gyeongsang National University, Gajwa, Jinju, 52828, Republic of Korea
| | - Sang Eun Ha
- Research Institute of Life science and College of Veterinary Medicine, Gyeongsang National University, Gajwa, Jinju, 52828, Republic of Korea
| | - Hun Hwan Kim
- Research Institute of Life science and College of Veterinary Medicine, Gyeongsang National University, Gajwa, Jinju, 52828, Republic of Korea
| | - Min Young Park
- Research Institute of Life science and College of Veterinary Medicine, Gyeongsang National University, Gajwa, Jinju, 52828, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life science and College of Veterinary Medicine, Gyeongsang National University, Gajwa, Jinju, 52828, Republic of Korea.
| |
Collapse
|
40
|
Ren X, Tian S, Meng Q, Kim HM. Histone Demethylase AMX-1 Regulates Fertility in a p53/CEP-1 Dependent Manner. Front Genet 2022; 13:929716. [PMID: 35846143 PMCID: PMC9280695 DOI: 10.3389/fgene.2022.929716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Histone methylation shapes the epigenetic configuration and adjusts multiple fundamental nuclear processes, including transcription, cell cycle control and DNA repair. The absence of histone demethylase LSD1/SPR-5 leads to progressive fertility defects as well as a reduction in brood size. Similarly, C. elegans LSD2 homolog AMX-1 has been implicated in regulating H3K4me2 and maintaining interstrand crosslinks (ICL) susceptibility. However, the mechanisms of how lack of AMX-1 induces sterility have not been addressed so far. This study investigated the histone demethylase AMX-1 in C. elegans and uncovered how amx-1 contributes to sterility in a p53/CEP-1 dependent manner. We show that while sterility in spr-5 mutants exhibited progressive over generations, amx-1 mutants displayed non-transgenerational fertility defects. Also, amx-1 mutants exhibited a reduced number of sperms and produced low brood size (LBS) or sterile worms that retain neither sperms nor germline nuclei, suggesting that fertility defects originated from germline development failure. Surprisingly, sterility exhibited in amx-1 was mediated by p53/CEP-1 function. Consistent with this result, upregulation of Piwi expression in amx-1 mutants suggested that AMX-1 is essential for germline development by regulating Piwi gene expressions. We propose that AMX-1 is required for proper Piwi expression and transposon silencing in a p53/CEP-1 dependent manner; thus, the absence of AMX-1 expression leads to defective meiotic development and sterility. This study elucidates how LSD2/AMX-1 contributes to sterility, therefore, expanding the boundaries of histone demethylase function.
Collapse
Affiliation(s)
- Xiaojing Ren
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Sisi Tian
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Qinghao Meng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Hyun-Min Kim
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China
- *Correspondence: Hyun-Min Kim,
| |
Collapse
|
41
|
Estavoyer B, Messmer C, Echbicheb M, Rudd CE, Milot E, Affar EB. Mechanisms orchestrating the enzymatic activity and cellular functions of deubiquitinases. J Biol Chem 2022; 298:102198. [PMID: 35764170 PMCID: PMC9356280 DOI: 10.1016/j.jbc.2022.102198] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Deubiquitinases (DUBs) are required for the reverse reaction of ubiquitination and act as major regulators of ubiquitin signaling processes. Emerging evidence suggests that these enzymes are regulated at multiple levels in order to ensure proper and timely substrate targeting and to prevent the adverse consequences of promiscuous deubiquitination. The importance of DUB regulation is highlighted by disease-associated mutations that inhibit or activate DUBs, deregulating their ability to coordinate cellular processes. Here, we describe the diverse mechanisms governing protein stability, enzymatic activity, and function of DUBs. In particular, we outline how DUBs are regulated by their protein domains and interacting partners. Intramolecular interactions can promote protein stability of DUBs, influence their subcellular localization, and/or modulate their enzymatic activity. Remarkably, these intramolecular interactions can induce self-deubiquitination to counteract DUB ubiquitination by cognate E3 ubiquitin ligases. In addition to intramolecular interactions, DUBs can also oligomerize and interact with a wide variety of cellular proteins, thereby forming obligate or facultative complexes that regulate their enzymatic activity and function. The importance of signaling and post-translational modifications in the integrated control of DUB function will also be discussed. While several DUBs are described with respect to the multiple layers of their regulation, the tumor suppressor BAP1 will be outlined as a model enzyme whose localization, stability, enzymatic activity, and substrate recognition are highly orchestrated by interacting partners and post-translational modifications.
Collapse
Affiliation(s)
- Benjamin Estavoyer
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Clémence Messmer
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Mohamed Echbicheb
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Christopher E Rudd
- Laboratory for Cell Signaling in Immunotherapy, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
| | - Eric Milot
- Laboratory for Malignant Hematopoiesis and Epigenetic Regulation of Gene Expression, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
| | - El Bachir Affar
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada.
| |
Collapse
|
42
|
SMYD5 catalyzes histone H3 lysine 36 trimethylation at promoters. Nat Commun 2022; 13:3190. [PMID: 35680905 PMCID: PMC9184575 DOI: 10.1038/s41467-022-30940-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
Histone marks, carriers of epigenetic information, regulate gene expression. In mammalian cells, H3K36me3 is mainly catalyzed by SETD2 at gene body regions. Here, we find that in addition to gene body regions, H3K36me3 is enriched at promoters in primary cells. Through screening, we identify SMYD5, which is recruited to chromatin by RNA polymerase II, as a methyltransferase catalyzing H3K36me3 at promoters. The enzymatic activity of SMYD5 is dependent on its C-terminal glutamic acid-rich domain. Overexpression of full-length Smyd5, but not the C-terminal domain-truncated Smyd5, restores H3K36me3 at promoters in Smyd5 knockout cells. Furthermore, elevated Smyd5 expression contributes to tumorigenesis in liver hepatocellular carcinoma. Together, our findings identify SMYD5 as the H3K36me3 methyltransferase at promoters that regulates gene expression, providing insights into the localization and function of H3K36me3.
Collapse
|
43
|
Gray JS, Wani SA, Campbell MJ. Epigenomic alterations in cancer: mechanisms and therapeutic potential. Clin Sci (Lond) 2022; 136:473-492. [PMID: 35383835 DOI: 10.1042/cs20210449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022]
Abstract
The human cell requires ways to specify its transcriptome without altering the essential sequence of DNA; this is achieved through mechanisms which govern the epigenetic state of DNA and epitranscriptomic state of RNA. These alterations can be found as modified histone proteins, cytosine DNA methylation, non-coding RNAs, and mRNA modifications, such as N6-methyladenosine (m6A). The different aspects of epigenomic and epitranscriptomic modifications require protein complexes to write, read, and erase these chemical alterations. Reflecting these important roles, many of these reader/writer/eraser proteins are either frequently mutated or differentially expressed in cancer. The disruption of epigenetic regulation in the cell can both contribute to cancer initiation and progression, and increase the likelihood of developing resistance to chemotherapies. Development of therapeutics to target proteins involved in epigenomic/epitranscriptomic modifications has been intensive, but further refinement is necessary to achieve ideal treatment outcomes without too many off-target effects for cancer patients. Therefore, further integration of clinical outcomes combined with large-scale genomic analyses is imperative for furthering understanding of epigenomic mechanisms in cancer.
Collapse
Affiliation(s)
- Jaimie S Gray
- Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Sajad A Wani
- Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Moray J Campbell
- Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, U.S.A
- Biomedical Informatics Shared Resource, The Ohio State University, Columbus, OH 43210, U.S.A
| |
Collapse
|
44
|
LSD1: Expanding Functions in Stem Cells and Differentiation. Cells 2021; 10:cells10113252. [PMID: 34831474 PMCID: PMC8624367 DOI: 10.3390/cells10113252] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022] Open
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSC) provide a powerful model system to uncover fundamental mechanisms that control cellular identity during mammalian development. Histone methylation governs gene expression programs that play a key role in the regulation of the balance between self-renewal and differentiation of ESCs. Lysine-specific demethylase 1 (LSD1, also known as KDM1A), the first identified histone lysine demethylase, demethylates H3K4me1/2 and H3K9me1/2 at target loci in a context-dependent manner. Moreover, it has also been shown to demethylate non-histone substrates playing a central role in the regulation of numerous cellular processes. In this review, we summarize current knowledge about LSD1 and the molecular mechanism by which LSD1 influences the stem cells state, including the regulatory circuitry underlying self-renewal and pluripotency.
Collapse
|
45
|
Li W, Wu H, Sui S, Wang Q, Xu S, Pang D. Targeting Histone Modifications in Breast Cancer: A Precise Weapon on the Way. Front Cell Dev Biol 2021; 9:736935. [PMID: 34595180 PMCID: PMC8476812 DOI: 10.3389/fcell.2021.736935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 12/27/2022] Open
Abstract
Histone modifications (HMs) contribute to maintaining genomic stability, transcription, DNA repair, and modulating chromatin in cancer cells. Furthermore, HMs are dynamic and reversible processes that involve interactions between numerous enzymes and molecular components. Aberrant HMs are strongly associated with tumorigenesis and progression of breast cancer (BC), although the specific mechanisms are not completely understood. Moreover, there is no comprehensive overview of abnormal HMs in BC, and BC therapies that target HMs are still in their infancy. Therefore, this review summarizes the existing evidence regarding HMs that are involved in BC and the potential mechanisms that are related to aberrant HMs. Moreover, this review examines the currently available agents and approved drugs that have been tested in pre-clinical and clinical studies to evaluate their effects on HMs. Finally, this review covers the barriers to the clinical application of therapies that target HMs, and possible strategies that could help overcome these barriers and accelerate the use of these therapies to cure patients.
Collapse
Affiliation(s)
- Wei Li
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Hao Wu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shiyao Sui
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Qin Wang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shouping Xu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Da Pang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
46
|
Liu XY, Guo CH, Xi ZY, Xu XQ, Zhao QY, Li LS, Wang Y. Histone methylation in pancreatic cancer and its clinical implications. World J Gastroenterol 2021; 27:6004-6024. [PMID: 34629816 PMCID: PMC8476335 DOI: 10.3748/wjg.v27.i36.6004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive human cancer. Appropriate methods for the diagnosis and treatment of PC have not been found at the genetic level, thus making epigenetics a promising research path in studies of PC. Histone methylation is one of the most complicated types of epigenetic modifications and has proved crucial in the development of PC. Histone methylation is a reversible process regulated by readers, writers, and erasers. Some writers and erasers can be recognized as potential biomarkers and candidate therapeutic targets in PC because of their unusual expression in PC cells compared with normal pancreatic cells. Based on the impact that writers have on the development of PC, some inhibitors of writers have been developed. However, few inhibitors of erasers have been developed and put to clinical use. Meanwhile, there is not enough research on the reader domains. Therefore, the study of erasers and readers is still a promising area. This review focuses on the regulatory mechanism of histone methylation, and the diagnosis and chemotherapy of PC based on it. The future of epigenetic modification in PC research is also discussed.
Collapse
Affiliation(s)
- Xing-Yu Liu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Chuan-Hao Guo
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Zhi-Yuan Xi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Xin-Qi Xu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Qing-Yang Zhao
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Sha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Ying Wang
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
47
|
Fang Y, Tang Y, Zhang Y, Pan Y, Jia J, Sun Z, Zeng W, Chen J, Yuan Y, Fang D. The H3K36me2 methyltransferase NSD1 modulates H3K27ac at active enhancers to safeguard gene expression. Nucleic Acids Res 2021; 49:6281-6295. [PMID: 34107030 PMCID: PMC8216457 DOI: 10.1093/nar/gkab473] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/28/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Epigenetics, especially histone marks, functions beyond the DNA sequences to regulate gene expression. Depletion of NSD1, which catalyzes H3K36me2, leads to both up- and down-regulation of gene expression, indicating NSD1 is associated with both active and repressed gene expression. It's known that NSD1 regulates the deposition and expansion of H3K27me3, a repressive mark for gene expression, to keep active gene transcription. However, how NSD1 functions to repress gene expression is largely unknown. Here, we find that, when NSD1 is knocked out in mouse embryonic stem cells (mESCs), H3K27ac increases correlatively with the decrease of H3K36me2 at active enhancers, which is associated with mesoderm differentiation genes, leading to elevated gene expression. Mechanistically, NSD1 recruits HDAC1, the deacetylase of H3K27ac, to chromatin. Moreover, HDAC1 knockout (KO) recapitulates the increase of H3K27ac at active enhancers as the NSD1 depletion. Together, we propose that NSD1 deposits H3K36me2 and recruits HDAC1 at active enhancers to serve as a ‘safeguard’, preventing further activation of active enhancer-associated genes.
Collapse
Affiliation(s)
- Yuan Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yin Tang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yanjun Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yixin Pan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junqi Jia
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhongxing Sun
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weiwu Zeng
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiaqi Chen
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dong Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
48
|
Zhang M, Yang Y, Zhou M, Dong A, Yan X, Loppnau P, Min J, Liu Y. Histone and DNA binding ability studies of the NSD subfamily of PWWP domains. Biochem Biophys Res Commun 2021; 569:199-206. [PMID: 34271259 DOI: 10.1016/j.bbrc.2021.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
The NSD proteins, namely NSD1, NSD2 and NSD3, are lysine methyltransferases, which catalyze mono- and di-methylation of histone H3K36. They are multi-domain proteins, including two PWWP domains (PWWP1 and PWWP2) separated by some other domains. These proteins act as potent oncoproteins and are implicated in various cancers. However the biological functions of these PWWP domains are still largely unknown. To better understand the functions of these proteins' PWWP domains, we cloned, expressed and purified all the PWWP domains of these NSD proteins to characterize their interactions with methylated histone peptides and dsDNA by quantitative binding assays and crystallographic analysis. Our studies indicate that all these PWWP domains except NSD1_PWWP1 bind to trimethylated H3K36, H3K79 peptides and dsDNA weakly. Our crystal structures uncover that the NDS3_PWWP2 and NSD2_PWWP1 domains, which hold an extremely long α-helix and α-helix bundle, respectively, need a conformation adjustment to interact with nucleosome.
Collapse
Affiliation(s)
- Mengmeng Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yinxue Yang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Mengqi Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China; Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Xuemei Yan
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Peter Loppnau
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China; Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
49
|
Zhang X, Tian S, Beese-Sims SE, Chen J, Shin N, Colaiácovo MP, Kim HM. Histone demethylase AMX-1 is necessary for proper sensitivity to interstrand crosslink DNA damage. PLoS Genet 2021; 17:e1009715. [PMID: 34329293 PMCID: PMC8357103 DOI: 10.1371/journal.pgen.1009715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/11/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023] Open
Abstract
Histone methylation is dynamically regulated to shape the epigenome and adjust central nuclear processes including transcription, cell cycle control and DNA repair. Lysine-specific histone demethylase 2 (LSD2) has been implicated in multiple types of human cancers. However, its functions remain poorly understood. This study investigated the histone demethylase LSD2 homolog AMX-1 in C. elegans and uncovered a potential link between H3K4me2 modulation and DNA interstrand crosslink (ICL) repair. AMX-1 is a histone demethylase and mainly localizes to embryonic cells, the mitotic gut and sheath cells. Lack of AMX-1 expression resulted in embryonic lethality, a decreased brood size and disorganized premeiotic tip germline nuclei. Expression of AMX-1 and of the histone H3K4 demethylase SPR-5 is reciprocally up-regulated upon lack of each other and the mutants show increased H3K4me2 levels in the germline, indicating that AMX-1 and SPR-5 regulate H3K4me2 demethylation. Loss of AMX-1 function activates the CHK-1 kinase acting downstream of ATR and leads to the accumulation of RAD-51 foci and increased DNA damage-dependent apoptosis in the germline. AMX-1 is required for the proper expression of mismatch repair component MutL/MLH-1 and sensitivity against ICLs. Interestingly, formation of ICLs lead to ubiquitination-dependent subcellular relocalization of AMX-1. Taken together, our data suggest that AMX-1 functions in ICL repair in the germline.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Sisi Tian
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Sara E. Beese-Sims
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jingjie Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Nara Shin
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Monica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hyun-Min Kim
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
50
|
Sterling J, Menezes SV, Abbassi RH, Munoz L. Histone lysine demethylases and their functions in cancer. Int J Cancer 2021; 148:2375-2388. [PMID: 33128779 DOI: 10.1002/ijc.33375] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/29/2022]
Abstract
Histone lysine demethylases (KDMs) are enzymes that remove the methylation marks on lysines in nucleosomes' histone tails. These changes in methylation marks regulate gene transcription during both development and malignant transformation. Depending on which lysine residue is targeted, the effect of a given KDM on gene transcription can be either activating or repressing, and KDMs can regulate the expression of both oncogenes and tumour suppressors. Thus, the functions of KDMs can be regarded as both oncogenic and tumour suppressive, contingent on cell context and the enzyme isoform. Finally, KDMs also demethylate nonhistone proteins and have a variety of demethylase-independent functions. These epigenetic and other mechanisms that KDMs control make them important regulators of malignant tumours. Here, we present an overview of eight KDM subfamilies, their most-studied lysine targets and selected recent data on their roles in cancer stem cells, tumour aggressiveness and drug tolerance.
Collapse
Affiliation(s)
- Jayden Sterling
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Sharleen V Menezes
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ramzi H Abbassi
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Lenka Munoz
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|