1
|
Madhani HD. Mechanisms of Inheritance of Chromatin States: From Yeast to Human. Annu Rev Biophys 2025; 54:59-79. [PMID: 39715046 DOI: 10.1146/annurev-biophys-070524-091904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
In this article I review mechanisms that underpin epigenetic inheritance of CpG methylation and histone H3 lysine 9 methylation (H3K9me) in chromatin in fungi and mammals. CpG methylation can be faithfully inherited epigenetically at some sites for a lifetime in vertebrates and, remarkably, can be propagated for millions of years in some fungal lineages. Transmission of methylation patterns requires maintenance-type DNA methyltransferases (DNMTs) that recognize hemimethylated CpG DNA produced by replication. DNMT1 is the maintenance enzyme in vertebrates; we recently identified DNMT5 as an ATP-dependent CpG maintenance enzyme found in fungi and protists. In vivo, CpG methylation is coupled to H3K9me. H3K9me is itself reestablished after replication via local histone H3-H4 tetramer recycling involving mobile and nonmobile chaperones, de novo nucleosome assembly, and read-write mechanisms that modify naive nucleosomes. Additional proteins recognize hemimethylated CpG or fully methylated CpG-containing motifs and enhance restoration of methylation by recruiting and/or activating the maintenance methylase.
Collapse
Affiliation(s)
- Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA;
| |
Collapse
|
2
|
Dubocanin D, Hartley GA, Sedeño Cortés AE, Mao Y, Hedouin S, Ranchalis J, Agarwal A, Logsdon GA, Munson KM, Real T, Mallory BJ, Eichler EE, Biggins S, O'Neill RJ, Stergachis AB. Conservation of dichromatin organization along regional centromeres. CELL GENOMICS 2025; 5:100819. [PMID: 40147439 PMCID: PMC12008808 DOI: 10.1016/j.xgen.2025.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/20/2024] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
The attachment of the kinetochore to the centromere is essential for genome maintenance, yet the highly repetitive nature of satellite regional centromeres limits our understanding of their chromatin organization. We demonstrate that single-molecule chromatin fiber sequencing (Fiber-seq) can uniquely co-resolve kinetochore and surrounding chromatin architectures along point centromeres, revealing largely homogeneous single-molecule kinetochore occupancy. In contrast, the application of Fiber-seq to regional centromeres exposed marked per-molecule heterogeneity in their chromatin organization. Regional centromere cores uniquely contain a dichotomous chromatin organization (dichromatin) composed of compacted nucleosome arrays punctuated with highly accessible chromatin patches. CENP-B occupancy phases dichromatin to the underlying alpha-satellite repeat within centromere cores but is not necessary for dichromatin formation. Centromere core dichromatin is conserved between humans and primates, including along regional centromeres lacking satellite repeats. Overall, the chromatin organization of regional centromeres is defined by marked per-molecule heterogeneity, buffering kinetochore attachment against sequence and structural variability within regional centromeres.
Collapse
Affiliation(s)
- Danilo Dubocanin
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Gabrielle A Hartley
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Adriana E Sedeño Cortés
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Yizi Mao
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sabrine Hedouin
- Fred Hutchinson Cancer Center, Basic Sciences Division, Seattle, WA 98109, USA
| | - Jane Ranchalis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Aman Agarwal
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Taylor Real
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Benjamin J Mallory
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Rachel J O'Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; Department of Genomics and Genome Sciences, UConn Health, Farmington, CT 06269, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
3
|
Ahmad JN, Modrak M, Fajfrova M, Sotoca BMB, Benada O, Sebo P. Bordetella adenylate cyclase toxin elicits chromatin remodeling and transcriptional reprogramming that blocks differentiation of monocytes into macrophages. mBio 2025; 16:e0013825. [PMID: 40105369 PMCID: PMC11980580 DOI: 10.1128/mbio.00138-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
Bordetella pertussis infects human upper airways and deploys an array of immunosuppressive virulence factors, among which the adenylate cyclase toxin (CyaA) plays a prominent role in disarming host phagocytes. CyaA binds the complement receptor-3 (CR3 aka αMβ2 integrin CD11b/CD18 or Mac-1) of myeloid cells and delivers into their cytosol an adenylyl cyclase enzyme that hijacks cellular signaling through unregulated conversion of cytosolic ATP to cAMP. We found that the action of as little CyaA as 22 pM (4 ng/mL) blocks macrophage colony-stimulating factor (M-CSF)-driven transition of migratory human CD14+ monocytes into macrophages. Global transcriptional profiling (RNAseq) revealed that exposure of monocytes to 22 pM CyaA for 40 hours in culture with 20 ng/mL of M-CSF led to upregulation of genes that exert negative control of monocyte to macrophage differentiation (e.g., SERPINB2, DLL1, and CSNK1E). The sustained CyaA action yielded downregulation of numerous genes involved in processes crucial for host defense, such as myeloid cell differentiation, chemotaxis of inflammatory cells, antigen presentation, phagocytosis, and bactericidal activities. CyaA-elicited signaling also promoted deacetylation and trimethylation of lysines 9 and 27 of histone 3 (H3K9me3 and H3K27me3) and triggered the formation of transcriptionally repressive heterochromatin patches in the nuclei of CyaA-exposed monocytes. These effects were partly reversed by the G9a methyltransferase inhibitor UNC 0631 and by the pleiotropic HDAC inhibitor Trichostatin-A, revealing that CyaA-elicited epigenetic alterations mediate transcriptional reprogramming of monocytes and play a role in CyaA-triggered block of monocyte differentiation into bactericidal macrophage cells.IMPORTANCETo proliferate on host airway mucosa and evade elimination by patrolling sentinel cells, the whooping cough agent Bordetella pertussis produces a potently immunosubversive adenylate cyclase toxin (CyaA) that blocks opsonophagocytic killing of bacteria by phagocytes like neutrophils and macrophages. Indeed, chemotactic migration of CD14+ monocytes to the infection site and their transition into bactericidal macrophages, thus replenishing the exhausted mucosa-patrolling macrophages, represents one of the key mechanisms of innate immune defense to infection. We show that the cAMP signaling action of CyaA already at a very low toxin concentration triggers massive transcriptional reprogramming of monocytes that is accompanied by chromatin remodeling and epigenetic histone modifications, which block the transition of migratory monocytes into bactericidal macrophage cells. This reveals a novel layer of toxin action-mediated hijacking of functional differentiation of innate immune cells for the sake of mucosal pathogen proliferation and transmission to new hosts.
Collapse
Affiliation(s)
- Jawid Nazir Ahmad
- Institute of Microbiology of Czech Academy of Sciences, Prague, Czechia
| | - Martin Modrak
- Institute of Microbiology of Czech Academy of Sciences, Prague, Czechia
| | - Marketa Fajfrova
- Institute of Microbiology of Czech Academy of Sciences, Prague, Czechia
| | | | - Oldrich Benada
- Institute of Microbiology of Czech Academy of Sciences, Prague, Czechia
| | - Peter Sebo
- Institute of Microbiology of Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
4
|
Furukawa A, Yonezawa K, Negami T, Yoshimura Y, Hayashi A, Nakayama JI, Adachi N, Senda T, Shimizu K, Terada T, Shimizu N, Nishimura Y. A dynamic structural unit of phase-separated heterochromatin protein 1α as revealed by integrative structural analyses. Nucleic Acids Res 2025; 53:gkaf154. [PMID: 40138713 PMCID: PMC11930357 DOI: 10.1093/nar/gkaf154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
The heterochromatin protein HP1α consists of an N-terminal disordered tail (N-tail), chromodomain (CD), hinge region (HR), and C-terminal chromo shadow domain (CSD). While CD binds to the lysine9-trimethylated histone H3 (H3K9me3) tail in nucleosomes, CSD forms a dimer bridging two nucleosomes with H3K9me3. Phosphorylation of serine residues in the N-tail enhances both H3K9me3 binding and liquid-liquid phase separation (LLPS) by HP1α. We have used integrative structural methods, including nuclear magnetic resonance, small-angle X-ray scattering (SAXS), and multi-angle-light scattering combined with size-exclusion chromatography, and coarse-grained molecular dynamics simulation with SAXS, to probe the HP1α dimer and its CSD deletion monomer. We show that dynamic intra- and intermolecular interactions between the N-tails and basic segments in CD and HR depend on N-tail phosphorylation. While the phosphorylated HP1α dimer undergoes LLPS via the formation of aggregated multimers, the N-tail phosphorylated mutant without CSD still undergoes LLPS, but its structural unit is a dynamic intermolecular dimer formed via the phosphorylated N-tail and a basic segment at the CD end. Furthermore, we reveal that mutation of this basic segment in HP1α affects the size of heterochromatin foci in cultured mammalian cells, suggesting that this interaction plays an important role in heterochromatin formation in vivo.
Collapse
Affiliation(s)
- Ayako Furukawa
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kento Yonezawa
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Center for Digital Green-innovation (CDG), Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tatsuki Negami
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuriko Yoshimura
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Aki Hayashi
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Jun-ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Basic Biology Program, The Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Naruhiko Adachi
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Kentaro Shimizu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Mathematical and Physical Sciences, Faculty of Science, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-0015, Japan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
5
|
Hovet O, Nahali N, Halaburkova A, Haugen LH, Paulsen J, Progida C. Nuclear mechano-confinement induces geometry-dependent HP1α condensate alterations. Commun Biol 2025; 8:308. [PMID: 40000755 PMCID: PMC11862009 DOI: 10.1038/s42003-025-07732-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Cells sense external physical cues through complex processes involving signaling pathways, cytoskeletal dynamics, and transcriptional regulation to coordinate a cellular response. A key emerging principle underlying such mechanoresponses is the interplay between nuclear morphology, chromatin organization, and the dynamic behavior of nuclear bodies such as HP1α condensates. Here, applying Airyscan super-resolution live cell imaging, we report a hitherto undescribed level of mechanoresponse triggered by cell confinement below their resting nuclear diameter, which elicits changes in the number, size and dynamics of HP1α nuclear condensates. Utilizing biophysical polymer models, we observe radial redistribution of HP1α condensates within the nucleus, influenced by changes in nuclear geometry. These insights shed new light on the complex relationship between external forces and changes in nuclear shape and chromatin organization in cell mechanoreception.
Collapse
Affiliation(s)
- Oda Hovet
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Negar Nahali
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Andrea Halaburkova
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Linda Hofstad Haugen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Jonas Paulsen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway.
| | - Cinzia Progida
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
6
|
Attar AG, Paturej J, Sariyer OS, Banigan EJ, Erbas A. Peripheral heterochromatin tethering is required for chromatin-based nuclear mechanical response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637704. [PMID: 39990304 PMCID: PMC11844546 DOI: 10.1101/2025.02.12.637704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The cell nucleus is a mechanically responsive structure that governs how external forces affect chromosomes. Chromatin, particularly transcriptionally inactive heterochromatin, resists nuclear deformations through its mechanical response. However, chromatin also exhibits liquid-like properties, casting ambiguity on the physical mechanisms of chromatin-based nuclear elasticity. To determine how heterochromatin strengthens nuclear mechanical response, we performed polymer physics simulations of a nucleus model validated by micromechanical measurements and chromosome conformation capture data. The attachment of peripheral heterochromatin to the lamina is required to transmit forces directly to the chromatin and elicit its elastic response. Thus, increases in heterochromatin levels increase nuclear rigidity by increasing the linkages between chromatin and the lamina. Crosslinks within heterochromatin, such as HP1 α proteins, can also stiffen nuclei, but only if chromatin is peripherally tethered. In contrast, heterochromatin affinity interactions that may drive liquid-liquid phase separation do not contribute to nuclear rigidity. When the nucleus is stretched, gel-like peripheral heterochromatin can bear stresses and deform, while the more fluid-like interior euchromatin is less perturbed. Thus, heterochromatin's internal structure and stiffness may regulate nuclear mechanics via peripheral attachment to the lamina, while also enabling nuclear mechanosensing of external forces and external measurement of the nucleus' internal architecture.
Collapse
|
7
|
Brennan L, Kim HK, Colmenares S, Ego T, Ryu JK, Karpen G. HP1a promotes chromatin liquidity and drives spontaneous heterochromatin compartmentalization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.18.618981. [PMID: 39868136 PMCID: PMC11761810 DOI: 10.1101/2024.10.18.618981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Compartmentalization of the nucleus into heterochromatin and euchromatin is highly conserved across eukaryotes. Constitutive heterochromatin (C-Het) constitutes a liquid-like condensate that packages the repetitive regions of the genome through the enrichment of histone modification H3K9me3 and recruitment of its cognate reader protein Heterochromatin Protein-1 (HP1a). The ability for well-ordered nucleosome arrays and HP1a to independently form biomolecular condensates suggests that the emergent material properties of C-Het compartments may contribute to its functions such as force-buffering, dosage-dependent gene silencing, and selective permeability. Using an in vitro reconstitution system we directly assess the contributions of H3K9me3 and HP1a on the biophysical properties of C-Het. In the presence of HP1a, H3K9me3 (Me-) and unmodified (U-) chromatin form co-condensates composed of distinct, immiscible domains. These chromatin domains form spontaneously and are reversible. Independently of HP1a, H3K9me3 modifications are sufficient to increase linker-DNA length within chromatin arrays and slow chromatin condensate growth. HP1a increases the liquidity of chromatin condensates while dramatically differentiating the viscoelastic properties of Me-chromatin versus U-chromatin. Mutating key residues in HP1a show that HP1a interactions with itself and chromatin determine the relative interfacial tension between chromatin compartments, however the formation of condensates is driven by the underlying chromatin. These direct measurements map the energetic landscape that determines C-Het compartmentalization, demonstrating that nuclear compartmentalization is a spontaneous and energetically favorable process in which HP1a plays a critical role in establishing a hierarchy of affinities between H3K9me3-chromatin and unmodified-chromatin.
Collapse
Affiliation(s)
- Lucy Brennan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Hyeong-Ku Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, South Korea
| | - Serafin Colmenares
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Tatum Ego
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Je-Kyung Ryu
- Department of Physics and Astronomy, Seoul National University, Seoul, South Korea
- Institute of Applied Physics of Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
- Department of Biological Sciences, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, South Korea
| | - Gary Karpen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of BioEngineering and BioMedical Sciences, Lawrence Berkeley National Laboratory, Berkeley, USA
| |
Collapse
|
8
|
Ohta S, Ohzeki JI, Sato N, Tanizawa H, Chung CL, Noma KI, Masumoto H. Novel role of zinc-finger protein 518 in heterochromatin formation on α-satellite DNA. Nucleic Acids Res 2025; 53:gkae1162. [PMID: 39673523 PMCID: PMC11754734 DOI: 10.1093/nar/gkae1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/26/2024] [Accepted: 11/07/2024] [Indexed: 12/16/2024] Open
Abstract
Aneuploidy is caused by chromosomal missegregation and is frequently observed in cancers and hematological diseases. Therefore, it is important to understand the molecular mechanisms underlying chromosomal segregation. The centromere's intricate structure is crucial for proper chromosome segregation, with heterochromatin at the pericentromeric α-satellites playing a key role. However, the mechanism targeting heterochromatin to pericentromeres remains elusive. This study identifies a novel mechanism involving two homologous zinc-finger proteins ZNF518A and ZNF518B in human pericentric heterochromatin formation. Our investigation demonstrated that ZNF518s localize to the centromere via centromere protein B (CENP-B). Moreover, ZNF518s interact with heterochromatin protein 1 (HP1) and H3K9 methyltransferase G9A, recruiting the heterochromatin components to pericentromeres. We found that centromeric histone H3K9 trimethylation was diminished in the absence of ZNF518s when another H3K9 methyltransferase, SUV39H1, was depleted. In somatic cells, the ZNF518s-G9a axis is not the principal pathway for heterochromatin formation but plays a supplementary role. Furthermore, ZNF518s are involved in histone H3K9 trimethylation at ectopic sites, indicating their broad role in heterochromatin establishment. Consequently, we propose that ZNF518s participate in the mechanism underlying heterochromatin establishment at pericentromeres. Our findings shed light on the novel mechanism underlying pericentromeric heterochromatin formation, highlighting the central role of ZNF518 in this process.
Collapse
Affiliation(s)
- Shinya Ohta
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
- Department of Biochemistry, Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Jun-Ichirou Ohzeki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
- Chromosome Engineering Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Nobuko Sato
- Department of Biochemistry, Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Hideki Tanizawa
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Claire Yik-Lok Chung
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Ken-Ichi Noma
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
- Institute of Molecular Biology, University of Oregon, 1370 Franklin Blvd, Eugene, OR 97403, USA
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
| |
Collapse
|
9
|
Kamp D, Vizjak P, Stigler J. Assessing the Effect of Chromatin-Binding Enzymes on Condensed Chromatin with Optical Tweezers. Methods Mol Biol 2025; 2881:345-355. [PMID: 39704952 DOI: 10.1007/978-1-0716-4280-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The formation of biomolecular condensates in vitro and in vivo has become an increasingly important subject of studies. One particular area of interest is the phase separation of chromatin in the nucleus. However, the interplay of condensed chromatin and chromatin-binding enzymes has barely been studied as of now. Here, we show an optical tweezer-based assay that uses controlled fusion of two condensates to probe the effect of enzymes, such as chromatin remodeling motor proteins, on the fluidity of condensates. The assay provides a powerful tool that enables the study of if and how chromatin-enzyme interactions alter biophysical properties in these dense chromatin condensates.
Collapse
Affiliation(s)
- Dieter Kamp
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Petra Vizjak
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Stigler
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
10
|
Zhang J, Donahue G, Gilbert MB, Lapidot T, Nicetto D, Zaret KS. Distinct H3K9me3 heterochromatin maintenance dynamics govern different gene programmes and repeats in pluripotent cells. Nat Cell Biol 2024; 26:2115-2128. [PMID: 39482359 DOI: 10.1038/s41556-024-01547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
H3K9me3 heterochromatin, established by lysine methyltransferases (KMTs) and compacted by heterochromatin protein 1 (HP1) isoforms, represses alternative lineage genes and DNA repeats. Our understanding of H3K9me3 heterochromatin stability is presently limited to individual domains and DNA repeats. Here we engineered Suv39h2-knockout mouse embryonic stem cells to degrade remaining two H3K9me3 KMTs within 1 hour and found that both passive dilution and active removal contribute to H3K9me3 decay within 12-24 hours. We discovered four different H3K9me3 decay rates across the genome and chromatin features and transcription factor binding patterns that predict the stability classes. A 'binary switch' governs heterochromatin compaction, with HP1 rapidly dissociating from heterochromatin upon KMT depletion and a particular threshold level of HP1 limiting pioneer factor binding, chromatin opening and exit from pluripotency within 12 h. Unexpectedly, receding H3K9me3 domains unearth residual HP1β peaks enriched with heterochromatin-inducing proteins. Our findings reveal distinct H3K9me3 heterochromatin maintenance dynamics governing gene networks and repeats that together safeguard pluripotency.
Collapse
Affiliation(s)
- Jingchao Zhang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Greg Donahue
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael B Gilbert
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomer Lapidot
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dario Nicetto
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
- Department Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Sokolova V, Miratsky J, Svetlov V, Brenowitz M, Vant J, Lewis TS, Dryden K, Lee G, Sarkar S, Nudler E, Singharoy A, Tan D. Structural mechanism of HP1⍺-dependent transcriptional repression and chromatin compaction. Structure 2024; 32:2094-2106.e6. [PMID: 39383876 PMCID: PMC11560701 DOI: 10.1016/j.str.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
Heterochromatin protein 1 (HP1) plays a central role in establishing and maintaining constitutive heterochromatin. However, the mechanisms underlying HP1-nucleosome interactions and their contributions to heterochromatin functions remain elusive. Here, we present the cryoelectron microscopy (cryo-EM) structure of an HP1α dimer bound to an H2A.Z-nucleosome, revealing two distinct HP1α-nucleosome interfaces. The primary HP1α binding site is located at the N terminus of histone H3, specifically at the trimethylated lysine 9 (K9me3) region, while a secondary binding site is situated near histone H2B, close to nucleosome superhelical location 4 (SHL4). Our biochemical data further demonstrates that HP1α binding influences the dynamics of DNA on the nucleosome. It promotes DNA unwrapping near the nucleosome entry and exit sites while concurrently restricting DNA accessibility in the vicinity of SHL4. Our study offers a model for HP1α-mediated heterochromatin maintenance and gene silencing. It also sheds light on the H3K9me-independent role of HP1 in responding to DNA damage.
Collapse
Affiliation(s)
- Vladyslava Sokolova
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Jacob Miratsky
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael Brenowitz
- Departments of Biochemistry and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John Vant
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Tyler S Lewis
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Kelly Dryden
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Gahyun Lee
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Shayan Sarkar
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Dongyan Tan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
12
|
Kennedy DR, Lemiere J, Tan C, Simental E, Braxton J, Maxwell RA, Amine AAA, Al-Sady B. Phosphorylation of HP1/Swi6 relieves competition with Suv39/Clr4 on nucleosomes and enables H3K9 trimethyl spreading. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620326. [PMID: 39554105 PMCID: PMC11565791 DOI: 10.1101/2024.10.25.620326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Heterochromatin formation in Schizosaccharomyces pombe requires the spreading of histone 3 (H3) Lysine 9 (K9) methylation (me) from nucleation centers by the H3K9 methylase, Suv39/Clr4, and the reader protein, HP1/Swi6. To accomplish this, Suv39/Clr4 and HP1/Swi6 have to associate with nucleosomes both nonspecifically, binding DNA and octamer surfaces and specifically, via recognition of methylated H3K9 by their respective chromodomains. However, how both proteins avoid competition for the same nucleosomes in this process is unclear. Here, we show that phosphorylation tunes the nucleosome affinity of HP1/Swi6 such that it preferentially partitions onto Suv39/Clr4's trimethyl product rather than its unmethylated substrates. Preferential partitioning enables efficient conversion from di-to trimethylation on nucleosomes in vitro and H3K9me3 spreading in vivo. Together, our data suggests that phosphorylation of HP1/Swi6 creates a regime that relieves competition with the "read-write" mechanism of Suv39/Clr4 for productive heterochromatin spreading.
Collapse
Affiliation(s)
- Dana R Kennedy
- Department of Microbiology and Immunology and GW Hooper Foundation, UCSF
- TETRAD graduate program, UCSF
| | | | - Catherine Tan
- Biomedical Sciences graduate program, UCSF
- Department of Cell and Tissue Biology, UCSF
| | - Eric Simental
- Department of Microbiology and Immunology and GW Hooper Foundation, UCSF
- TETRAD graduate program, UCSF
| | - Julian Braxton
- Chemistry and Chemical Biology graduate program, UCSF
- Institute for Neurodegenerative Diseases, UCSF
| | - Robert A Maxwell
- The Vincent J. Coates Proteomics/Mass Spectrometry Core Laboratory, University of California, Berkeley, CA, USA
| | - Ahmed AA Amine
- Department of Microbiology and Immunology and GW Hooper Foundation, UCSF
| | - Bassem Al-Sady
- Department of Microbiology and Immunology and GW Hooper Foundation, UCSF
| |
Collapse
|
13
|
Kim HS, Roche B, Bhattacharjee S, Todeschini L, Chang AY, Hammell C, Verdel A, Martienssen RA. Clr4 SUV39H1 ubiquitination and non-coding RNA mediate transcriptional silencing of heterochromatin via Swi6 phase separation. Nat Commun 2024; 15:9384. [PMID: 39477922 PMCID: PMC11526040 DOI: 10.1038/s41467-024-53417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Transcriptional silencing by RNAi paradoxically relies on transcription, but how the transition from transcription to silencing is achieved has remained unclear. The Cryptic Loci Regulator complex (CLRC) in Schizosaccharomyces pombe is a cullin-ring E3 ligase required for silencing that is recruited by RNAi. We found that the E2 ubiquitin conjugating enzyme Ubc4 interacts with CLRC and mono-ubiquitinates the histone H3K9 methyltransferase Clr4SUV39H1, promoting the transition from co-transcriptional gene silencing (H3K9me2) to transcriptional gene silencing (H3K9me3). Ubiquitination of Clr4 occurs in an intrinsically disordered region (Clr4IDR), which undergoes liquid droplet formation in vitro, along with Swi6HP1 the effector of transcriptional gene silencing. Our data suggests that phase separation is exquisitely sensitive to non-coding RNA (ncRNA) which promotes self-association of Clr4, chromatin association, and di-, but not tri- methylation instead. Ubc4-CLRC also targets the transcriptional co-activator Bdf2BRD4, down-regulating centromeric transcription and small RNA (sRNA) production. The deubiquitinase Ubp3 counteracts both activities.
Collapse
Affiliation(s)
- Hyun-Soo Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Benjamin Roche
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
- University of North Dakota, School of Medicine & Health Sciences, 1301 N Columbia Rd. Stop 9037, Grand Forks, ND, 58202, USA
| | | | - Leila Todeschini
- Institute for Advanced Biosciences, UMR InsermU1209/CNRS5309/UGA, University of Grenoble Alpes, Grenoble, France
| | - An-Yun Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | | | - André Verdel
- Institute for Advanced Biosciences, UMR InsermU1209/CNRS5309/UGA, University of Grenoble Alpes, Grenoble, France
| | - Robert A Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA.
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA.
| |
Collapse
|
14
|
Lou J, Deng Q, Zhang X, Bell C, Das A, Bediaga N, Zlatic C, Johanson T, Allan R, Griffin MW, Paradkar P, Harvey K, Dawson M, Hinde E. Heterochromatin protein 1 alpha (HP1α) undergoes a monomer to dimer transition that opens and compacts live cell genome architecture. Nucleic Acids Res 2024; 52:10918-10933. [PMID: 39193905 PMCID: PMC11472067 DOI: 10.1093/nar/gkae720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Our understanding of heterochromatin nanostructure and its capacity to mediate gene silencing in a living cell has been prevented by the diffraction limit of optical microscopy. Thus, here to overcome this technical hurdle, and directly measure the nucleosome arrangement that underpins this dense chromatin state, we coupled fluorescence lifetime imaging microscopy (FLIM) of Förster resonance energy transfer (FRET) between histones core to the nucleosome, with molecular editing of heterochromatin protein 1 alpha (HP1α). Intriguingly, this super-resolved readout of nanoscale chromatin structure, alongside fluorescence fluctuation spectroscopy (FFS) and FLIM-FRET analysis of HP1α protein-protein interaction, revealed nucleosome arrangement to be differentially regulated by HP1α oligomeric state. Specifically, we found HP1α monomers to impart a previously undescribed global nucleosome spacing throughout genome architecture that is mediated by trimethylation on lysine 9 of histone H3 (H3K9me3) and locally reduced upon HP1α dimerisation. Collectively, these results demonstrate HP1α to impart a dual action on chromatin that increases the dynamic range of nucleosome proximity. We anticipate that this finding will have important implications for our understanding of how live cell heterochromatin structure regulates genome function.
Collapse
Affiliation(s)
- Jieqiong Lou
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Qiji Deng
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Xiaomeng Zhang
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Charles C Bell
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Andrew B Das
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Naiara G Bediaga
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Courtney O Zlatic
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Timothy M Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - PrasadN Paradkar
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong3220, Australia
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Elizabeth Hinde
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
15
|
Zhang J, Donahue G, Gilbert MB, Lapidot T, Nicetto D, Zaret KS. Distinct H3K9me3 heterochromatin maintenance dynamics govern different gene programs and repeats in pluripotent cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613328. [PMID: 39345615 PMCID: PMC11429881 DOI: 10.1101/2024.09.16.613328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
H3K9me3-heterochromatin, established by lysine methyltransferases (KMTs) and compacted by HP1 isoforms, represses alternative lineage genes and DNA repeats. Our understanding of H3K9me3-heterochromatin stability is presently limited to individual domains and DNA repeats. We engineered Suv39h2 KO mouse embryonic stem cells to degrade remaining two H3K9me3-KMTs within one hour and found that both passive dilution and active removal contribute to H3K9me3 decay within 12-24 hours. We discovered four different H3K9me3 decay rates across the genome and chromatin features and transcription factor binding patterns that predict the stability classes. A "binary switch" governs heterochromatin compaction, with HP1 rapidly dissociating from heterochromatin upon KMTs' depletion and a particular threshold level of HP1 limiting pioneer factor binding, chromatin opening, and exit from pluripotency within 12 hr. Unexpectedly, receding H3K9me3 domains unearth residual HP1β peaks enriched with heterochromatin-inducing proteins. Our findings reveal distinct H3K9me3-heterochromatin maintenance dynamics governing gene networks and repeats that together safeguard pluripotency.
Collapse
Affiliation(s)
- Jingchao Zhang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Dept. Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Greg Donahue
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Dept. Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael B. Gilbert
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tomer Lapidot
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Dario Nicetto
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Dept. Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kenneth S. Zaret
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Dept. Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
16
|
Shao Z, Lu J, Khudaverdyan N, Song J. Multi-layered heterochromatin interaction as a switch for DIM2-mediated DNA methylation. Nat Commun 2024; 15:6815. [PMID: 39122718 PMCID: PMC11315935 DOI: 10.1038/s41467-024-51246-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Functional crosstalk between DNA methylation, histone H3 lysine-9 trimethylation (H3K9me3) and heterochromatin protein 1 (HP1) is essential for proper heterochromatin assembly and genome stability. However, how repressive chromatin cues guide DNA methyltransferases for region-specific DNA methylation remains largely unknown. Here, we report structure-function characterizations of DNA methyltransferase Defective-In-Methylation-2 (DIM2) in Neurospora. The DNA methylation activity of DIM2 requires the presence of both H3K9me3 and HP1. Our structural study reveals a bipartite DIM2-HP1 interaction, leading to a disorder-to-order transition of the DIM2 target-recognition domain that is essential for substrate binding. Furthermore, the structure of DIM2-HP1-H3K9me3-DNA complex reveals a substrate-binding mechanism distinct from that for its mammalian orthologue DNMT1. In addition, the dual recognition of H3K9me3 peptide by the DIM2 RFTS and BAH1 domains allosterically impacts the DIM2-substrate binding, thereby controlling DIM2-mediated DNA methylation. Together, this study uncovers how multiple heterochromatin factors coordinately orchestrate an activity-switching mechanism for region-specific DNA methylation.
Collapse
Affiliation(s)
- Zengyu Shao
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Nelli Khudaverdyan
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
17
|
Ames A, Seman M, Larkin A, Raiymbek G, Chen Z, Levashkevich A, Kim B, Biteen JS, Ragunathan K. Epigenetic memory is governed by an effector recruitment specificity toggle in Heterochromatin Protein 1. Nat Commun 2024; 15:6276. [PMID: 39054315 PMCID: PMC11272775 DOI: 10.1038/s41467-024-50538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
HP1 proteins are essential for establishing and maintaining transcriptionally silent heterochromatin. They dimerize, forming a binding interface to recruit diverse chromatin-associated factors. Although HP1 proteins are known to rapidly evolve, the extent of variation required to achieve functional specialization is unknown. To investigate how changes in amino acid sequence impacts heterochromatin formation, we performed a targeted mutagenesis screen of the S. pombe HP1 homolog, Swi6. Substitutions within an auxiliary surface adjacent to the HP1 dimerization interface produce Swi6 variants with divergent maintenance properties. Remarkably, substitutions at a single amino acid position lead to the persistent gain or loss of epigenetic inheritance. These substitutions increase Swi6 chromatin occupancy in vivo and altered Swi6-protein interactions that reprogram H3K9me maintenance. We show how relatively minor changes in Swi6 amino acid composition in an auxiliary surface can lead to profound changes in epigenetic inheritance providing a redundant mechanism to evolve HP1-effector specificity.
Collapse
Affiliation(s)
- Amanda Ames
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Melissa Seman
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Ajay Larkin
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Gulzhan Raiymbek
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ziyuan Chen
- Department of Biophysics, University of Michigan, Ann Arbor, MI, 48104, USA
| | | | - Bokyung Kim
- Department of Biochemistry, Brandeis University, Waltham, MA, 02453, USA
| | - Julie Suzanne Biteen
- Department of Biophysics, University of Michigan, Ann Arbor, MI, 48104, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48104, USA
| | | |
Collapse
|
18
|
Williams JF, Surovtsev IV, Schreiner SM, Chen Z, Raiymbek G, Nguyen H, Hu Y, Biteen JS, Mochrie SGJ, Ragunathan K, King MC. The condensation of HP1α/Swi6 imparts nuclear stiffness. Cell Rep 2024; 43:114373. [PMID: 38900638 PMCID: PMC11348953 DOI: 10.1016/j.celrep.2024.114373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/04/2023] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
Biomolecular condensates have emerged as major drivers of cellular organization. It remains largely unexplored, however, whether these condensates can impart mechanical function(s) to the cell. The heterochromatin protein HP1α (Swi6 in Schizosaccharomyces pombe) crosslinks histone H3K9 methylated nucleosomes and has been proposed to undergo condensation to drive the liquid-like clustering of heterochromatin domains. Here, we leverage the genetically tractable S. pombe model and a separation-of-function allele to elucidate a mechanical function imparted by Swi6 condensation. Using single-molecule imaging, force spectroscopy, and high-resolution live-cell imaging, we show that Swi6 is critical for nuclear resistance to external force. Strikingly, it is the condensed yet dynamic pool of Swi6, rather than the chromatin-bound molecules, that is essential to imparting mechanical stiffness. Our findings suggest that Swi6 condensates embedded in the chromatin meshwork establish the emergent mechanical behavior of the nucleus as a whole, revealing that biomolecular condensation can influence organelle and cell mechanics.
Collapse
Affiliation(s)
- Jessica F Williams
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Ivan V Surovtsev
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA
| | - Sarah M Schreiner
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Ziyuan Chen
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gulzhan Raiymbek
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hang Nguyen
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Yan Hu
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Julie S Biteen
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Simon G J Mochrie
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA
| | | | - Megan C King
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
19
|
Ukmar‐Godec T, Yu T, de Opakua AI, Pantoja CF, Munari F, Zweckstetter M. Conformational diversity of human HP1α. Protein Sci 2024; 33:e5079. [PMID: 38895997 PMCID: PMC11187854 DOI: 10.1002/pro.5079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Heterochromatin protein 1 alpha (HP1α) is an evolutionarily conserved protein that binds chromatin and is important for gene silencing. The protein comprises 191 residues arranged into three disordered regions and two structured domains, the chromo and chromoshadow domain, which associates into a homodimer. While high-resolution structures of the isolated domains of HP1 proteins are known, the structural properties of full-length HP1α remain largely unknown. Using a combination of NMR spectroscopy and structure predictions by AlphaFold2 we provide evidence that the chromo and chromoshadow domain of HP1α engage in direct contacts resulting in a compact chromo/chromoshadow domain arrangement. We further show that HP1β and HP1γ have increased interdomain dynamics when compared to HP1α which may contribute to the distinct roles of different Hp1 isoforms in gene silencing and activation.
Collapse
Affiliation(s)
- Tina Ukmar‐Godec
- German Center for Neurodegenerative Diseases (DZNE)Translational Structural BiologyGöttingenGermany
| | - Taekyung Yu
- German Center for Neurodegenerative Diseases (DZNE)Translational Structural BiologyGöttingenGermany
| | - Alain Ibanez de Opakua
- German Center for Neurodegenerative Diseases (DZNE)Translational Structural BiologyGöttingenGermany
| | - Christian F. Pantoja
- German Center for Neurodegenerative Diseases (DZNE)Translational Structural BiologyGöttingenGermany
| | | | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE)Translational Structural BiologyGöttingenGermany
- Department of NMR‐based Structural BiologyMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| |
Collapse
|
20
|
Atinbayeva N, Valent I, Zenk F, Loeser E, Rauer M, Herur S, Quarato P, Pyrowolakis G, Gomez-Auli A, Mittler G, Cecere G, Erhardt S, Tiana G, Zhan Y, Iovino N. Inheritance of H3K9 methylation regulates genome architecture in Drosophila early embryos. EMBO J 2024; 43:2685-2714. [PMID: 38831123 PMCID: PMC11217351 DOI: 10.1038/s44318-024-00127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
Constitutive heterochromatin is essential for transcriptional silencing and genome integrity. The establishment of constitutive heterochromatin in early embryos and its role in early fruitfly development are unknown. Lysine 9 trimethylation of histone H3 (H3K9me3) and recruitment of its epigenetic reader, heterochromatin protein 1a (HP1a), are hallmarks of constitutive heterochromatin. Here, we show that H3K9me3 is transmitted from the maternal germline to the next generation. Maternally inherited H3K9me3, and the histone methyltransferases (HMT) depositing it, are required for the organization of constitutive heterochromatin: early embryos lacking H3K9 methylation display de-condensation of pericentromeric regions, centromere-centromere de-clustering, mitotic defects, and nuclear shape irregularities, resulting in embryo lethality. Unexpectedly, quantitative CUT&Tag and 4D microscopy measurements of HP1a coupled with biophysical modeling revealed that H3K9me2/3 is largely dispensable for HP1a recruitment. Instead, the main function of H3K9me2/3 at this developmental stage is to drive HP1a clustering and subsequent heterochromatin compaction. Our results show that HP1a binding to constitutive heterochromatin in the absence of H3K9me2/3 is not sufficient to promote proper embryo development and heterochromatin formation. The loss of H3K9 HMTs and H3K9 methylation alters genome organization and hinders embryonic development.
Collapse
Affiliation(s)
- Nazerke Atinbayeva
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
- Albert-Ludwigs-Universität Freiburg, Fahnenbergplatz, 79085, Freiburg im Breisgau, Germany
| | - Iris Valent
- Karlsruhe Institute of Technology (KIT), Zoological Institute, 76131, Karlsruhe, Germany
| | - Fides Zenk
- Brain Mind Institute, School of Life Sciences EPFL, SV3809, 1015, Lausanne, Switzerland
| | - Eva Loeser
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Michael Rauer
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Shwetha Herur
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Piergiuseppe Quarato
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Giorgos Pyrowolakis
- Centre for Biological signaling studies, University of Freiburg, 79104, Freiburg im Breisgau, Germany
| | - Alejandro Gomez-Auli
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Germano Cecere
- Institute Pasteur, Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, UMR3738, CNRS, 75724, Cedex 15, Paris, France
| | - Sylvia Erhardt
- Karlsruhe Institute of Technology (KIT), Zoological Institute, 76131, Karlsruhe, Germany
| | - Guido Tiana
- Università degli Studi di Milano and INFN, Milan, Italy
| | - Yinxiu Zhan
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milan, Italy.
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany.
| |
Collapse
|
21
|
Valsakumar D, Voigt P. Nucleosomal asymmetry: a novel mechanism to regulate nucleosome function. Biochem Soc Trans 2024; 52:1219-1232. [PMID: 38778762 PMCID: PMC11346421 DOI: 10.1042/bst20230877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Nucleosomes constitute the fundamental building blocks of chromatin. They are comprised of DNA wrapped around a histone octamer formed of two copies each of the four core histones H2A, H2B, H3, and H4. Nucleosomal histones undergo a plethora of posttranslational modifications that regulate gene expression and other chromatin-templated processes by altering chromatin structure or by recruiting effector proteins. Given their symmetric arrangement, the sister histones within a nucleosome have commonly been considered to be equivalent and to carry the same modifications. However, it is now clear that nucleosomes can exhibit asymmetry, combining differentially modified sister histones or different variants of the same histone within a single nucleosome. Enabled by the development of novel tools that allow generating asymmetrically modified nucleosomes, recent biochemical and cell-based studies have begun to shed light on the origins and functional consequences of nucleosomal asymmetry. These studies indicate that nucleosomal asymmetry represents a novel regulatory mechanism in the establishment and functional readout of chromatin states. Asymmetry expands the combinatorial space available for setting up complex sets of histone marks at individual nucleosomes, regulating multivalent interactions with histone modifiers and readers. The resulting functional consequences of asymmetry regulate transcription, poising of developmental gene expression by bivalent chromatin, and the mechanisms by which oncohistones deregulate chromatin states in cancer. Here, we review recent progress and current challenges in uncovering the mechanisms and biological functions of nucleosomal asymmetry.
Collapse
Affiliation(s)
- Devisree Valsakumar
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, U.K
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Philipp Voigt
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, U.K
| |
Collapse
|
22
|
Dhankhar M, Guo Z, Kant A, Basir R, Joshi R, Heo SC, Mauck RL, Lakadamyali M, Shenoy VB. Revealing the Biophysics of Lamina-Associated Domain Formation by Integrating Theoretical Modeling and High-Resolution Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600310. [PMID: 38979207 PMCID: PMC11230226 DOI: 10.1101/2024.06.24.600310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The interactions between chromatin and the nuclear lamina orchestrate cell type-specific gene activity by forming lamina-associated domains (LADs) which preserve cellular characteristics through gene repression. However, unlike the interactions between chromatin segments, the strength of chromatin-lamina interactions and their dependence on cellular environment are not well understood. Here, we develop a theory to predict the size and shape of peripheral heterochromatin domains by considering the energetics of chromatin-chromatin interactions, the affinity between chromatin and the nuclear lamina and the kinetics of methylation and acetylation9in human mesenchymal stem cells (hMSCs). Through the analysis of super-resolution images of peripheral heterochromatin domains using this theoretical framework, we determine the nuclear lamina-wide distribution of chromatin-lamina affinities. We find that the extracted affinity is highly spatially heterogeneous and shows a bimodal distribution, indicating regions along the lamina with strong chromatin binding and those exhibiting vanishing chromatin affinity interspersed with some regions exhibiting a relatively diminished chromatin interactions, in line with the presence of structures such as nuclear pores. Exploring the role of environmental cues on peripheral chromatin, we find that LAD thickness increases when hMSCs are cultured on a softer substrate, in correlation with contractility-dependent translocation of histone deacetylase 3 (HDAC3) from the cytosol to the nucleus. In soft microenvironments, chromatin becomes sequestered at the nuclear lamina, likely due to the interactions of HDAC3 with the chromatin anchoring protein LAP2 β ,increasing chromatin-lamina affinity, as well as elevated levels of the intranuclear histone methylation. Our findings are further corroborated by pharmacological interventions that inhibit contractility, as well as by manipulating methylation levels using epigenetic drugs. Notably, in the context of tendinosis, a chronic condition characterized by collagen degeneration, we observed a similar increase in the thickness of peripheral chromatin akin to that of cells cultured on soft substrates consistent with theoretical predictions. Our findings underscore the pivotal role of the microenvironment in shaping genome organization and highlight its relevance in pathological conditions.
Collapse
|
23
|
Wakim JG, Spakowitz AJ. Physical modeling of nucleosome clustering in euchromatin resulting from interactions between epigenetic reader proteins. Proc Natl Acad Sci U S A 2024; 121:e2317911121. [PMID: 38900792 PMCID: PMC11214050 DOI: 10.1073/pnas.2317911121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/15/2024] [Indexed: 06/22/2024] Open
Abstract
Euchromatin is an accessible phase of genetic material containing genes that encode proteins with increased expression levels. The structure of euchromatin in vitro has been described as a 30-nm fiber formed from ordered nucleosome arrays. However, recent advances in microscopy have revealed an in vivo euchromatin architecture that is much more disordered, characterized by variable-length linker DNA and sporadic nucleosome clusters. In this work, we develop a theoretical model to elucidate factors contributing to the disordered in vivo architecture of euchromatin. We begin by developing a 1D model of nucleosome positioning that captures the interactions between bound epigenetic reader proteins to predict the distribution of DNA linker lengths between adjacent nucleosomes. We then use the predicted linker lengths to construct 3D chromatin configurations consistent with the physical properties of DNA within the nucleosome array, and we evaluate the distribution of nucleosome cluster sizes in those configurations. Our model reproduces experimental cluster-size distributions, which are dramatically influenced by the local pattern of epigenetic marks and the concentration of reader proteins. Based on our model, we attribute the disordered arrangement of euchromatin to the heterogeneous binding of reader proteins and subsequent short-range interactions between bound reader proteins on adjacent nucleosomes. By replicating experimental results with our physics-based model, we propose a mechanism for euchromatin organization in the nucleus that impacts gene regulation and the maintenance of epigenetic marks.
Collapse
Affiliation(s)
- Joseph G. Wakim
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
| | - Andrew J. Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305
- Biophysics Program, Stanford University, Stanford, CA94305
- Department of Applied Physics, Stanford University, Stanford, CA94305
| |
Collapse
|
24
|
Kant A, Guo Z, Vinayak V, Neguembor MV, Li WS, Agrawal V, Pujadas E, Almassalha L, Backman V, Lakadamyali M, Cosma MP, Shenoy VB. Active transcription and epigenetic reactions synergistically regulate meso-scale genomic organization. Nat Commun 2024; 15:4338. [PMID: 38773126 PMCID: PMC11109243 DOI: 10.1038/s41467-024-48698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
In interphase nuclei, chromatin forms dense domains of characteristic sizes, but the influence of transcription and histone modifications on domain size is not understood. We present a theoretical model exploring this relationship, considering chromatin-chromatin interactions, histone modifications, and chromatin extrusion. We predict that the size of heterochromatic domains is governed by a balance among the diffusive flux of methylated histones sustaining them and the acetylation reactions in the domains and the process of loop extrusion via supercoiling by RNAPII at their periphery, which contributes to size reduction. Super-resolution and nano-imaging of five distinct cell lines confirm the predictions indicating that the absence of transcription leads to larger heterochromatin domains. Furthermore, the model accurately reproduces the findings regarding how transcription-mediated supercoiling loss can mitigate the impacts of excessive cohesin loading. Our findings shed light on the role of transcription in genome organization, offering insights into chromatin dynamics and potential therapeutic targets.
Collapse
Affiliation(s)
- Aayush Kant
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zixian Guo
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vinayak Vinayak
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Wing Shun Li
- Department of Applied Physics, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60202, USA
| | - Vasundhara Agrawal
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60202, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Emily Pujadas
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60202, USA
| | - Luay Almassalha
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60202, USA
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, IL, 60611, USA
| | - Vadim Backman
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60202, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Melike Lakadamyali
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
- ICREA, Barcelona, 08010, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
25
|
Canova PN, Charron AJ, Leib DA. Models of Herpes Simplex Virus Latency. Viruses 2024; 16:747. [PMID: 38793628 PMCID: PMC11125678 DOI: 10.3390/v16050747] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Our current understanding of HSV latency is based on a variety of clinical observations, and in vivo, ex vivo, and in vitro model systems, each with unique advantages and drawbacks. The criteria for authentically modeling HSV latency include the ability to easily manipulate host genetics and biological pathways, as well as mimicking the immune response and viral pathogenesis in human infections. Although realistically modeling HSV latency is necessary when choosing a model, the cost, time requirement, ethical constraints, and reagent availability are also equally important. Presently, there remains a pressing need for in vivo models that more closely recapitulate human HSV infection. While the current in vivo, ex vivo, and in vitro models used to study HSV latency have limitations, they provide further insights that add to our understanding of latency. In vivo models have shed light on natural infection routes and the interplay between the host immune response and the virus during latency, while in vitro models have been invaluable in elucidating molecular pathways involved in latency. Below, we review the relative advantages and disadvantages of current HSV models and highlight insights gained through each.
Collapse
Affiliation(s)
- Paige N. Canova
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA;
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH 03755, USA;
| | - Audra J. Charron
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH 03755, USA;
| | - David A. Leib
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH 03755, USA;
| |
Collapse
|
26
|
Ames A, Seman M, Larkin A, Raiymbek G, Chen Z, Levashkevich A, Kim B, Biteen JS, Ragunathan K. Epigenetic memory is governed by an effector recruitment specificity toggle in Heterochromatin Protein 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.28.569027. [PMID: 38077059 PMCID: PMC10705379 DOI: 10.1101/2023.11.28.569027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
HP1 proteins are essential for establishing and maintaining transcriptionally silent heterochromatin. They dimerize, forming a binding interface to recruit diverse chromatin-associated factors. HP1 proteins are specialized and rapidly evolve, but the extent of variation required to achieve functional specialization is unknown. To investigate how changes in amino acid sequence impacts epigenetic inheritance, we performed a targeted mutagenesis screen of the S. pombe HP1 homolog, Swi6. Substitutions within an auxiliary surface adjacent to the HP1 dimerization interface produced Swi6 variants with divergent maintenance properties. Remarkably, substitutions at a single amino acid position led to the persistent gain or loss of epigenetic inheritance. These substitutions increased Swi6 chromatin occupancy in vivo and altered Swi6-protein interactions that reprogram H3K9me maintenance. We show that relatively minor changes in Swi6 amino acid composition can lead to profound changes in epigenetic inheritance which provides a redundant mechanism to evolve novel effector specificity. .
Collapse
|
27
|
Movilla Miangolarra A, Saxton DS, Yan Z, Rine J, Howard M. Two-way feedback between chromatin compaction and histone modification state explains Saccharomyces cerevisiae heterochromatin bistability. Proc Natl Acad Sci U S A 2024; 121:e2403316121. [PMID: 38593082 PMCID: PMC11032488 DOI: 10.1073/pnas.2403316121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/02/2024] [Indexed: 04/11/2024] Open
Abstract
Compact chromatin is closely linked with gene silencing in part by sterically masking access to promoters, inhibiting transcription factor binding and preventing polymerase from efficiently transcribing a gene. However, a broader hypothesis suggests that chromatin compaction can be both a cause and a consequence of the locus histone modification state, with a tight bidirectional interaction underpinning bistable transcriptional states. To rigorously test this hypothesis, we developed a mathematical model for the dynamics of the HMR locus in Saccharomyces cerevisiae, that incorporates activating histone modifications, silencing proteins, and a dynamic, acetylation-dependent, three-dimensional locus size. Chromatin compaction enhances silencer protein binding, which in turn feeds back to remove activating histone modifications, leading to further compaction. The bistable output of the model was in good agreement with prior quantitative data, including switching rates from expressed to silent states (and vice versa), and protein binding/histone modification levels within the locus. We then tested the model by predicting changes in switching rates as the genetic length of the locus was increased, which were then experimentally verified. Such bidirectional feedback between chromatin compaction and the histone modification state may be a widespread and important regulatory mechanism given the hallmarks of many heterochromatic regions: physical chromatin compaction and dimerizing (or multivalent) silencing proteins.
Collapse
Affiliation(s)
| | - Daniel S. Saxton
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Zhi Yan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Jasper Rine
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| |
Collapse
|
28
|
Wang J, Tan S, Zhang Y, Xu J, Li Y, Cheng Q, Ding C, Liu X, Chang J. Set7/9 aggravates ischemic brain injury via enhancing glutamine metabolism in a blocking Sirt5 manner. Cell Death Differ 2024; 31:511-523. [PMID: 38365969 PMCID: PMC11043079 DOI: 10.1038/s41418-024-01264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
The aberrant expression of methyltransferase Set7/9 plays a role in various diseases. However, the contribution of Set7/9 in ischemic stroke remains unclear. Here, we show ischemic injury results in a rapid elevation of Set7/9, which is accompanied by the downregulation of Sirt5, a deacetylase reported to protect against injury. Proteomic analysis identifies the decrease of chromobox homolog 1 (Cbx1) in knockdown Set7/9 neurons. Mechanistically, Set7/9 promotes the binding of Cbx1 to H3K9me2/3 and forms a transcription repressor complex at the Sirt5 promoter, ultimately repressing Sirt5 transcription. Thus, the deacetylation of Sirt5 substrate, glutaminase, which catalyzes the hydrolysis of glutamine to glutamate and ammonia, is decreased, promoting glutaminase expression and triggering excitotoxicity. Blocking Set7/9 eliminates H3K9me2/3 from the Sirt5 promoter and normalizes Sirt5 expression and Set7/9 knockout efficiently ameliorates brain ischemic injury by reducing the accumulation of ammonia and glutamate in a Sirt5-dependent manner. Collectively, the Set7/9-Sirt5 axis may be a promising epigenetic therapeutic target.
Collapse
Affiliation(s)
- Jinghuan Wang
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Subei Tan
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 201203, China
| | - Yuyu Zhang
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Jie Xu
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Yuhui Li
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Qianwen Cheng
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 201203, China.
| | - Xinhua Liu
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Jun Chang
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
29
|
Saab C, Stephan J, Akoury E. Structural insights into the binding mechanism of Clr4 methyltransferase to H3K9 methylated nucleosome. Sci Rep 2024; 14:5438. [PMID: 38443490 PMCID: PMC10914790 DOI: 10.1038/s41598-024-56248-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/04/2024] [Indexed: 03/07/2024] Open
Abstract
The establishment and maintenance of heterochromatin, a specific chromatin structure essential for genomic stability and regulation, rely on intricate interactions between chromatin-modifying enzymes and nucleosomal histone proteins. However, the precise trigger for these modifications remains unclear, thus highlighting the need for a deeper understanding of how methyltransferases facilitate histone methylation among others. Here, we investigate the molecular mechanisms underlying heterochromatin assembly by studying the interaction between the H3K9 methyltransferase Clr4 and H3K9-methylated nucleosomes. Using a combination of liquid-state nuclear magnetic resonance spectroscopy and cryo-electron microscopy, we elucidate the structural basis of Clr4 binding to H3K9-methylated nucleosomes. Our results reveal that Clr4 engages with nucleosomes through its chromodomain and disordered regions to promote de novo methylation. This study provides crucial insights into the molecular mechanisms governing heterochromatin formation by highlighting the significance of chromatin-modifying enzymes in genome regulation and disease pathology.
Collapse
Affiliation(s)
- Christopher Saab
- Department of Natural Sciences, Lebanese American University, Beirut, 1102-2801, Lebanon
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3AOB8, Canada
| | - Joseph Stephan
- School of Medicine, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Elias Akoury
- Department of Natural Sciences, Lebanese American University, Beirut, 1102-2801, Lebanon.
| |
Collapse
|
30
|
Knodel F, Pinter S, Kroll C, Rathert P. Fluorescent Reporter Systems to Investigate Chromatin Effector Proteins in Living Cells. Methods Mol Biol 2024; 2842:225-252. [PMID: 39012599 DOI: 10.1007/978-1-0716-4051-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Epigenetic research faces the challenge of the high complexity and tight regulation in chromatin modification networks. Although many isolated mechanisms of chromatin-mediated gene regulation have been described, solid approaches for the comprehensive analysis of specific processes as parts of the bigger epigenome network are missing. In order to expand the toolbox of methods by a system that will help to capture and describe the complexity of transcriptional regulation, we describe here a robust protocol for the generation of stable reporter systems for transcriptional activity and summarize their applications. The system allows for the induced recruitment of a chromatin regulator to a fluorescent reporter gene, followed by the detection of transcriptional changes using flow cytometry. The reporter gene is integrated into an endogenous chromatin environment, thus enabling the detection of regulatory dependencies of the investigated chromatin regulator on endogenous cofactors. The system allows for an easy and dynamic readout at the single-cell level and the ability to compensate for cell-to-cell variances of transcription. The modular design of the system enables the simple adjustment of the method for the investigation of different chromatin regulators in a broad panel of cell lines. We also summarize applications of this technology to characterize the silencing velocity of different chromatin effectors, removal of activating histone modifications, analysis of stability and reversibility of epigenome modifications, the investigation of the effects of small molecule on chromatin effectors and of functional effector-coregulator relationships. The presented method allows to investigate the complexity of transcriptional regulation by epigenetic effector proteins in living cells.
Collapse
Affiliation(s)
- Franziska Knodel
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Sabine Pinter
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Carolin Kroll
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
31
|
Sokolova V, Miratsky J, Svetlov V, Brenowitz M, Vant J, Lewis T, Dryden K, Lee G, Sarkar S, Nudler E, Singharoy A, Tan D. Structural mechanism of HP1α-dependent transcriptional repression and chromatin compaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569387. [PMID: 38076844 PMCID: PMC10705452 DOI: 10.1101/2023.11.30.569387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Heterochromatin protein 1 (HP1) plays a central role in establishing and maintaining constitutive heterochromatin. However, the mechanisms underlying HP1-nucleosome interactions and their contributions to heterochromatin functions remain elusive. In this study, we employed a multidisciplinary approach to unravel the interactions between human HP1α and nucleosomes. We have elucidated the cryo-EM structure of an HP1α dimer bound to an H2A.Z nucleosome, revealing that the HP1α dimer interfaces with nucleosomes at two distinct sites. The primary binding site is located at the N-terminus of histone H3, specifically at the trimethylated K9 (K9me3) region, while a novel secondary binding site is situated near histone H2B, close to nucleosome superhelical location 4 (SHL4). Our biochemical data further demonstrates that HP1α binding influences the dynamics of DNA on the nucleosome. It promotes DNA unwrapping near the nucleosome entry and exit sites while concurrently restricting DNA accessibility in the vicinity of SHL4. This study offers a model that explains how HP1α functions in heterochromatin maintenance and gene silencing, particularly in the context of H3K9me-dependent mechanisms. Additionally, it sheds light on the H3K9me-independent role of HP1 in responding to DNA damage.
Collapse
Affiliation(s)
- Vladyslava Sokolova
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, NY, USA
| | - Jacob Miratsky
- School of Molecular Sciences, Arizona State University; Tempe, AZ, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael Brenowitz
- Departments of Biochemistry and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John Vant
- School of Molecular Sciences, Arizona State University; Tempe, AZ, USA
| | - Tyler Lewis
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, NY, USA
| | - Kelly Dryden
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903 USA
| | - Gahyun Lee
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, NY, USA
| | - Shayan Sarkar
- Department of Pathology, Stony Brook University; Stony Brook, New York, 11794 USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Dongyan Tan
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, NY, USA
| |
Collapse
|
32
|
Seman M, Levashkevich A, Larkin A, Huang F, Ragunathan K. Uncoupling the distinct functions of HP1 proteins during heterochromatin establishment and maintenance. Cell Rep 2023; 42:113428. [PMID: 37952152 DOI: 10.1016/j.celrep.2023.113428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/28/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
H3K9 methylation (H3K9me) marks transcriptionally silent genomic regions called heterochromatin. HP1 proteins are required to establish and maintain heterochromatin. HP1 proteins bind to H3K9me, recruit factors that promote heterochromatin formation, and oligomerize to form phase-separated condensates. We do not understand how these different HP1 properties are involved in establishing and maintaining transcriptional silencing. Here, we demonstrate that the S. pombe HP1 homolog, Swi6, can be completely bypassed to establish silencing at ectopic and endogenous loci when an H3K4 methyltransferase, Set1, and an H3K14 acetyltransferase, Mst2, are deleted. Deleting Set1 and Mst2 enhances Clr4 enzymatic activity, leading to higher H3K9me levels and spreading. In contrast, Swi6 and its capacity to oligomerize were indispensable during epigenetic maintenance. Our results demonstrate the role of HP1 proteins in regulating histone modification crosstalk during establishment and identify a genetically separable function in maintaining epigenetic memory.
Collapse
Affiliation(s)
- Melissa Seman
- Department of Biology, Brandeis University, Waltham, MA 02451, USA
| | | | - Ajay Larkin
- Department of Biology, Brandeis University, Waltham, MA 02451, USA
| | - Fengting Huang
- Department of Biology, Brandeis University, Waltham, MA 02451, USA
| | | |
Collapse
|
33
|
Chou MC, Wang YH, Chen FY, Kung CY, Wu KP, Kuo JC, Chan SJ, Cheng ML, Lin CY, Chou YC, Ho MC, Firestine S, Huang JR, Chen RH. PAICS ubiquitination recruits UBAP2 to trigger phase separation for purinosome assembly. Mol Cell 2023; 83:4123-4140.e12. [PMID: 37848033 DOI: 10.1016/j.molcel.2023.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Purinosomes serve as metabolons to enhance de novo purine synthesis (DNPS) efficiency through compartmentalizing DNPS enzymes during stressed conditions. However, the mechanism underpinning purinosome assembly and its pathophysiological functions remains elusive. Here, we show that K6-polyubiquitination of the DNPS enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase (PAICS) by cullin-5/ankyrin repeat and SOCS box containing 11 (Cul5/ASB11)-based ubiquitin ligase plays a driving role in purinosome assembly. Upon several purinosome-inducing cues, ASB11 is upregulated by relieving the H3K9me3/HP1α-mediated transcriptional silencing, thus stimulating PAICS polyubiquitination. The polyubiquitinated PAICS recruits ubiquitin-associated protein 2 (UBAP2), a ubiquitin-binding protein with multiple stretches of intrinsically disordered regions, thereby inducing phase separation to trigger purinosome assembly for enhancing DNPS pathway flux. In human melanoma, ASB11 is highly expressed to facilitate a constitutive purinosome formation to which melanoma cells are addicted for supporting their proliferation, viability, and tumorigenesis in a xenograft model. Our study identifies a driving mechanism for purinosome assembly in response to cellular stresses and uncovers the impact of purinosome formation on human malignancies.
Collapse
Affiliation(s)
- Ming-Chieh Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Hsuan Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Fei-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Ying Kung
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Shu-Jou Chan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Chih-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Steven Firestine
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Jie-Rong Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
34
|
Hamali B, Amine AAA, Al-Sady B. Regulation of the heterochromatin spreading reaction by trans-acting factors. Open Biol 2023; 13:230271. [PMID: 37935357 PMCID: PMC10645111 DOI: 10.1098/rsob.230271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
Heterochromatin is a gene-repressive protein-nucleic acid ultrastructure that is initially nucleated by DNA sequences. However, following nucleation, heterochromatin can then propagate along the chromatin template in a sequence-independent manner in a reaction termed spreading. At the heart of this process are enzymes that deposit chemical information on chromatin, which attracts the factors that execute chromatin compaction and transcriptional or co/post-transcriptional gene silencing. Given that these enzymes deposit guiding chemical information on chromatin they are commonly termed 'writers'. While the processes of nucleation and central actions of writers have been extensively studied and reviewed, less is understood about how the spreading process is regulated. We discuss how the chromatin substrate is prepared for heterochromatic spreading, and how trans-acting factors beyond writer enzymes regulate it. We examine mechanisms by which trans-acting factors in Suv39, PRC2, SETDB1 and SIR writer systems regulate spreading of the respective heterochromatic marks across chromatin. While these systems are in some cases evolutionarily and mechanistically quite distant, common mechanisms emerge which these trans-acting factors exploit to tune the spreading reaction.
Collapse
Affiliation(s)
- Bulut Hamali
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- The G. W. Hooper Foundation, San Francisco, CA 94143, USA
- College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Ahmed A A Amine
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- The G. W. Hooper Foundation, San Francisco, CA 94143, USA
| | - Bassem Al-Sady
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- The G. W. Hooper Foundation, San Francisco, CA 94143, USA
| |
Collapse
|
35
|
Seman M, Levashkevich A, Larkin A, Huang F, Ragunathan K. Uncoupling the distinct functions of HP1 proteins during heterochromatin establishment and maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.30.538869. [PMID: 37961629 PMCID: PMC10634687 DOI: 10.1101/2023.04.30.538869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
H3K9 methylation (H3K9me) marks transcriptionally silent genomic regions called heterochromatin. HP1 proteins are required to establish and maintain heterochromatin. HP1 proteins bind to H3K9me, recruit factors that promote heterochromatin formation, and oligomerize to form phase-separated condensates. We do not understand how HP1 protein binding to heterochromatin establishes and maintains transcriptional silencing. Here, we demonstrate that the S.pombe HP1 homolog, Swi6, can be completely bypassed to establish silencing at ectopic and endogenous loci when an H3K4 methyltransferase, Set1 and an H3K14 acetyltransferase, Mst2 are deleted. Deleting Set1 and Mst2 enhances Clr4 enzymatic activity, leading to higher H3K9me levels and spreading. In contrast, Swi6 and its capacity to oligomerize were indispensable during epigenetic maintenance. Our results demonstrate the role of HP1 proteins in regulating histone modification crosstalk during establishment and identifies a genetically separable function in maintaining epigenetic memory.
Collapse
Affiliation(s)
- Melissa Seman
- Department of Biology, Brandeis University, Waltham, MA 02451 USA
| | | | - Ajay Larkin
- Department of Biology, Brandeis University, Waltham, MA 02451 USA
| | - Fengting Huang
- Department of Biology, Brandeis University, Waltham, MA 02451 USA
| | - Kaushik Ragunathan
- Department of Biology, Brandeis University, Waltham, MA 02451 USA
- Lead Contact
| |
Collapse
|
36
|
Lee GE, Byun J, Lee CJ, Cho YY. Molecular Mechanisms for the Regulation of Nuclear Membrane Integrity. Int J Mol Sci 2023; 24:15497. [PMID: 37895175 PMCID: PMC10607757 DOI: 10.3390/ijms242015497] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
The nuclear membrane serves a critical role in protecting the contents of the nucleus and facilitating material and signal exchange between the nucleus and cytoplasm. While extensive research has been dedicated to topics such as nuclear membrane assembly and disassembly during cell division, as well as interactions between nuclear transmembrane proteins and both nucleoskeletal and cytoskeletal components, there has been comparatively less emphasis on exploring the regulation of nuclear morphology through nuclear membrane integrity. In particular, the role of type II integral proteins, which also function as transcription factors, within the nuclear membrane remains an area of research that is yet to be fully explored. The integrity of the nuclear membrane is pivotal not only during cell division but also in the regulation of gene expression and the communication between the nucleus and cytoplasm. Importantly, it plays a significant role in the development of various diseases. This review paper seeks to illuminate the biomolecules responsible for maintaining the integrity of the nuclear membrane. It will delve into the mechanisms that influence nuclear membrane integrity and provide insights into the role of type II membrane protein transcription factors in this context. Understanding these aspects is of utmost importance, as it can offer valuable insights into the intricate processes governing nuclear membrane integrity. Such insights have broad-reaching implications for cellular function and our understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Ga-Eun Lee
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Jiin Byun
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Cheol-Jung Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-gu, Daejeon 34133, Chungcheongnam-do, Republic of Korea
| | - Yong-Yeon Cho
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
- RCD Control and Material Research Institute, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| |
Collapse
|
37
|
Abstract
Many cellular processes require large-scale rearrangements of chromatin structure. Structural maintenance of chromosomes (SMC) protein complexes are molecular machines that can provide structure to chromatin. These complexes can connect DNA elements in cis, walk along DNA, build and processively enlarge DNA loops and connect DNA molecules in trans to hold together the sister chromatids. These DNA-shaping abilities place SMC complexes at the heart of many DNA-based processes, including chromosome segregation in mitosis, transcription control and DNA replication, repair and recombination. In this Review, we discuss the latest insights into how SMC complexes such as cohesin, condensin and the SMC5-SMC6 complex shape DNA to direct these fundamental chromosomal processes. We also consider how SMC complexes, by building chromatin loops, can counteract the natural tendency of alike chromatin regions to cluster. SMC complexes thus control nuclear organization by participating in a molecular tug of war that determines the architecture of our genome.
Collapse
Affiliation(s)
- Claire Hoencamp
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Benjamin D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Tortora MMC, Brennan LD, Karpen G, Jost D. HP1-driven phase separation recapitulates the thermodynamics and kinetics of heterochromatin condensate formation. Proc Natl Acad Sci U S A 2023; 120:e2211855120. [PMID: 37549295 PMCID: PMC10438847 DOI: 10.1073/pnas.2211855120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 06/28/2023] [Indexed: 08/09/2023] Open
Abstract
The spatial segregation of pericentromeric heterochromatin (PCH) into distinct, membrane-less nuclear compartments involves the binding of Heterochromatin Protein 1 (HP1) to H3K9me2/3-rich genomic regions. While HP1 exhibits liquid-liquid phase separation properties in vitro, its mechanistic impact on the structure and dynamics of PCH condensate formation in vivo remains largely unresolved. Here, using a minimal theoretical framework, we systematically investigate the mutual coupling between self-interacting HP1-like molecules and the chromatin polymer. We reveal that the specific affinity of HP1 for H3K9me2/3 loci facilitates coacervation in nucleo and promotes the formation of stable PCH condensates at HP1 levels far below the concentration required to observe phase separation in purified protein assays in vitro. These heterotypic HP1-chromatin interactions give rise to a strong dependence of the nucleoplasmic HP1 density on HP1-H3K9me2/3 stoichiometry, consistent with the thermodynamics of multicomponent phase separation. The dynamical cross talk between HP1 and the viscoelastic chromatin scaffold also leads to anomalously slow equilibration kinetics, which strongly depend on the genomic distribution of H3K9me2/3 domains and result in the coexistence of multiple long-lived, microphase-separated PCH compartments. The morphology of these complex coacervates is further found to be governed by the dynamic establishment of the underlying H3K9me2/3 landscape, which may drive their increasingly abnormal, aspherical shapes during cell development. These findings compare favorably to 4D microscopy measurements of HP1 condensate formation in live Drosophila embryos and suggest a general quantitative model of PCH formation based on the interplay between HP1-based phase separation and chromatin polymer mechanics.
Collapse
Affiliation(s)
- Maxime M. C. Tortora
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 69007Lyon, France
| | - Lucy D. Brennan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Gary Karpen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Department of BioEngineering and BioMedical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Daniel Jost
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 69007Lyon, France
| |
Collapse
|
39
|
Miller JM, Prange S, Ji H, Rau AR, Khodaverdian VY, Li X, Patel A, Butova N, Lutter A, Chung H, Merigliano C, Rawal CC, Hanscom T, McVey M, Chiolo I. Alternative end-joining results in smaller deletions in heterochromatin relative to euchromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.03.531058. [PMID: 37645729 PMCID: PMC10461932 DOI: 10.1101/2023.03.03.531058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Pericentromeric heterochromatin is highly enriched for repetitive sequences prone to aberrant recombination. Previous studies showed that homologous recombination (HR) repair is uniquely regulated in this domain to enable 'safe' repair while preventing aberrant recombination. In Drosophila cells, DNA double-strand breaks (DSBs) relocalize to the nuclear periphery through nuclear actin-driven directed motions before recruiting the strand invasion protein Rad51 and completing HR repair. End-joining (EJ) repair also occurs with high frequency in heterochromatin of fly tissues, but how alternative EJ (alt-EJ) pathways operate in heterochromatin remains largely uncharacterized. Here, we induce DSBs in single euchromatic and heterochromatic sites using a new system that combines the DR- white reporter and I-SceI expression in spermatogonia of flies. Using this approach, we detect higher frequency of HR repair in heterochromatin, relative to euchromatin. Further, sequencing of mutagenic repair junctions reveals the preferential use of different EJ pathways across distinct euchromatic and heterochromatic sites. Interestingly, synthesis-dependent microhomology-mediated end joining (SD-MMEJ) appears differentially regulated in the two domains, with a preferential use of motifs close to the cut site in heterochromatin relative to euchromatin, resulting in smaller deletions. Together, these studies establish a new approach to study repair outcomes in fly tissues, and support the conclusion that heterochromatin uses more HR and less mutagenic EJ repair relative to euchromatin.
Collapse
|
40
|
Kuroda Y, Iwata-Otsubo A, Dias KR, Temple SEL, Nagao K, De Hayr L, Zhu Y, Isobe SY, Nishibuchi G, Fiordaliso SK, Fujita Y, Rippert AL, Baker SW, Leung ML, Koboldt DC, Harman A, Keena BA, Kazama I, Subramanian GM, Manickam K, Schmalz B, Latsko M, Zackai EH, Edwards M, Evans CA, Dulik MC, Buckley MF, Yamashita T, O'Brien WT, Harvey RJ, Obuse C, Roscioli T, Izumi K. Dominant-negative variants in CBX1 cause a neurodevelopmental disorder. Genet Med 2023; 25:100861. [PMID: 37087635 DOI: 10.1016/j.gim.2023.100861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/16/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023] Open
Abstract
PURPOSE This study aimed to establish variants in CBX1, encoding heterochromatin protein 1β (HP1β), as a cause of a novel syndromic neurodevelopmental disorder. METHODS Patients with CBX1 variants were identified, and clinician researchers were connected using GeneMatcher and physician referrals. Clinical histories were collected from each patient. To investigate the pathogenicity of identified variants, we performed in vitro cellular assays and neurobehavioral and cytological analyses of neuronal cells obtained from newly generated Cbx1 mutant mouse lines. RESULTS In 3 unrelated individuals with developmental delay, hypotonia, and autistic features, we identified heterozygous de novo variants in CBX1. The identified variants were in the chromodomain, the functional domain of HP1β, which mediates interactions with chromatin. Cbx1 chromodomain mutant mice displayed increased latency-to-peak response, suggesting the possibility of synaptic delay or myelination deficits. Cytological and chromatin immunoprecipitation experiments confirmed the reduction of mutant HP1β binding to heterochromatin, whereas HP1β interactome analysis demonstrated that the majority of HP1β-interacting proteins remained unchanged between the wild-type and mutant HP1β. CONCLUSION These collective findings confirm the role of CBX1 in developmental disabilities through the disruption of HP1β chromatin binding during neurocognitive development. Because HP1β forms homodimers and heterodimers, mutant HP1β likely sequesters wild-type HP1β and other HP1 proteins, exerting dominant-negative effects.
Collapse
Affiliation(s)
- Yukiko Kuroda
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Aiko Iwata-Otsubo
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Kerith-Rae Dias
- Randwick Genomics Laboratory, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia; Neuroscience Research Australia (NeuRA) and Prince of Wales Clinical School, University of New South Wales, Kensington, NSW, Australia
| | - Suzanna E L Temple
- Randwick Genomics Laboratory, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia; Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Koji Nagao
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Lachlan De Hayr
- School of Health, University of the Sunshine Coast, Maroochydore, QLD, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Ying Zhu
- Randwick Genomics Laboratory, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Shin-Ya Isobe
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Gohei Nishibuchi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Sarah K Fiordaliso
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Alyssa L Rippert
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Samuel W Baker
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Marco L Leung
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH; Department of Pathology, The Ohio State University College of Medicine, Columbus, OH
| | - Daniel C Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| | - Adele Harman
- Transgenic core, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Beth A Keena
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Izumi Kazama
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Kandamurugu Manickam
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH; Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Betsy Schmalz
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Maeson Latsko
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Elaine H Zackai
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Matt Edwards
- Hunter Genetics, Newcastle, NSW, Australia; University of Western Sydney School of Medicine, Sydney, NSW, Australia
| | - Carey-Anne Evans
- Randwick Genomics Laboratory, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia; Neuroscience Research Australia (NeuRA) and Prince of Wales Clinical School, University of New South Wales, Kensington, NSW, Australia
| | - Matthew C Dulik
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Michael F Buckley
- Randwick Genomics Laboratory, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - W Timothy O'Brien
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Robert J Harvey
- School of Health, University of the Sunshine Coast, Maroochydore, QLD, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Chikashi Obuse
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Tony Roscioli
- Randwick Genomics Laboratory, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia; Neuroscience Research Australia (NeuRA) and Prince of Wales Clinical School, University of New South Wales, Kensington, NSW, Australia
| | - Kosuke Izumi
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Roberts Individualized Medical Genetics Center, The Children's Hospital of Philadelphia, Philadelphia, PA; Laboratory of Rare Disease Research, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan; Division of Genetics and Metabolism, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
41
|
Marchi E, Zhan Y, Tiana G. Locality of contacts determines the subdiffusion exponents in polymeric models of chromatin. Phys Rev E 2023; 107:064406. [PMID: 37464651 DOI: 10.1103/physreve.107.064406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023]
Abstract
Loop extrusion by motor proteins mediates the attractive interactions in chromatin on the length scale of megabases, providing the polymer with a well-defined structure and at the same time determining its dynamics. The mean-square displacement of chromatin loci varies from a Rouse-like scaling to a more constrained subdiffusion, depending on cell type, genomic region, and time scale. With a simple polymeric model, we show that such a Rouse-like dynamics occurs when the parameters of the model are chosen so that contacts are local along the chain, while in the presence of nonlocal contacts we observe subdiffusion at short time scales with exponents smaller than 0.5. Such exponents are independent of the detailed choice of the parameters and build a master curve that depends only on the mean locality of the resulting contacts. We compare the loop-extrusion model with a polymeric model with static links, showing that also in this case only the presence of nonlocal contacts can produce low-exponent subdiffusion. We interpret these results in terms of a simple analytical model.
Collapse
Affiliation(s)
- Edoardo Marchi
- Department of Physics, Universitá degli Studi di Milano and INFN, via Celoria 16, 20133 Milano, Italy
| | - Yinxiu Zhan
- Department of Experimental Oncology, European Institute of Oncology IRCCS, via Adamello 16, 20139 Milano, Italy
| | - Guido Tiana
- Department of Physics and Center for Complexity and Biosystems, Universitá degli Studi di Milano and INFN, via Celoria 16, 20133 Milano, Italy
| |
Collapse
|
42
|
Grewal SIS. The molecular basis of heterochromatin assembly and epigenetic inheritance. Mol Cell 2023; 83:1767-1785. [PMID: 37207657 PMCID: PMC10309086 DOI: 10.1016/j.molcel.2023.04.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023]
Abstract
Heterochromatin plays a fundamental role in gene regulation, genome integrity, and silencing of repetitive DNA elements. Histone modifications are essential for the establishment of heterochromatin domains, which is initiated by the recruitment of histone-modifying enzymes to nucleation sites. This leads to the deposition of histone H3 lysine-9 methylation (H3K9me), which provides the foundation for building high-concentration territories of heterochromatin proteins and the spread of heterochromatin across extended domains. Moreover, heterochromatin can be epigenetically inherited during cell division in a self-templating manner. This involves a "read-write" mechanism where pre-existing modified histones, such as tri-methylated H3K9 (H3K9me3), support chromatin association of the histone methyltransferase to promote further deposition of H3K9me. Recent studies suggest that a critical density of H3K9me3 and its associated factors is necessary for the propagation of heterochromatin domains across multiple generations. In this review, I discuss the key experiments that have highlighted the importance of modified histones for epigenetic inheritance.
Collapse
Affiliation(s)
- Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Hsia CR, Melters DP, Dalal Y. The Force is Strong with This Epigenome: Chromatin Structure and Mechanobiology. J Mol Biol 2023; 435:168019. [PMID: 37330288 PMCID: PMC10567996 DOI: 10.1016/j.jmb.2023.168019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
All life forms sense and respond to mechanical stimuli. Throughout evolution, organisms develop diverse mechanosensing and mechanotransduction pathways, leading to fast and sustained mechanoresponses. Memory and plasticity characteristics of mechanoresponses are thought to be stored in the form of epigenetic modifications, including chromatin structure alterations. These mechanoresponses in the chromatin context share conserved principles across species, such as lateral inhibition during organogenesis and development. However, it remains unclear how mechanotransduction mechanisms alter chromatin structure for specific cellular functions, and if altered chromatin structure can mechanically affect the environment. In this review, we discuss how chromatin structure is altered by environmental forces via an outside-in pathway for cellular functions, and the emerging concept of how chromatin structure alterations can mechanically affect nuclear, cellular, and extracellular environments. This bidirectional mechanical feedback between chromatin of the cell and the environment can potentially have important physiological implications, such as in centromeric chromatin regulation of mechanobiology in mitosis, or in tumor-stroma interactions. Finally, we highlight the current challenges and open questions in the field and provide perspectives for future research.
Collapse
Affiliation(s)
- Chieh-Ren Hsia
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/JeremiahHsia
| | - Daniël P Melters
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/dpmelters
| | - Yamini Dalal
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/NCIYaminiDalal
| |
Collapse
|
44
|
Cermakova K, Hodges HC. Interaction modules that impart specificity to disordered protein. Trends Biochem Sci 2023; 48:477-490. [PMID: 36754681 PMCID: PMC10106370 DOI: 10.1016/j.tibs.2023.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 02/09/2023]
Abstract
Intrinsically disordered regions (IDRs) are especially enriched among proteins that regulate chromatin and transcription. As a result, mechanisms that influence specificity of IDR-driven interactions have emerged as exciting unresolved issues for understanding gene regulation. We review the molecular elements frequently found within IDRs that confer regulatory specificity. In particular, we summarize the differing roles of disordered low-complexity regions (LCRs) and short linear motifs (SLiMs) towards selective nuclear regulation. Examination of IDR-driven interactions highlights SLiMs as organizers of selectivity, with widespread roles in gene regulation and integration of cellular signals. Analysis of recurrent interactions between SLiMs and folded domains suggests diverse avenues for SLiMs to influence phase-separated condensates and highlights opportunities to manipulate these interactions for control of biological activity.
Collapse
Affiliation(s)
- Katerina Cermakova
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - H Courtney Hodges
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
45
|
Dupont C, Chahar D, Trullo A, Gostan T, Surcis C, Grimaud C, Fisher D, Feil R, Llères D. Evidence for low nanocompaction of heterochromatin in living embryonic stem cells. EMBO J 2023:e110286. [PMID: 37082862 DOI: 10.15252/embj.2021110286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/22/2023] Open
Abstract
Despite advances in the identification of chromatin regulators and genome interactions, the principles of higher-order chromatin structure have remained elusive. Here, we applied FLIM-FRET microscopy to analyse, in living cells, the spatial organisation of nanometre range proximity between nucleosomes, which we called "nanocompaction." Both in naive embryonic stem cells (ESCs) and in ESC-derived epiblast-like cells (EpiLCs), we find that, contrary to expectations, constitutive heterochromatin is much less compacted than bulk chromatin. The opposite was observed in fixed cells. HP1α knockdown increased nanocompaction in living ESCs, but this was overridden by loss of HP1β, indicating the existence of a dynamic HP1-dependent low compaction state in pluripotent cells. Depletion of H4K20me2/3 abrogated nanocompaction, while increased H4K20me3 levels accompanied the nuclear reorganisation during EpiLCs induction. Finally, the knockout of the nuclear cellular-proliferation marker Ki-67 strongly reduced both interphase and mitotic heterochromatin nanocompaction in ESCs. Our data indicate that, contrary to prevailing models, heterochromatin is not highly compacted at the nanoscale but resides in a dynamic low nanocompaction state that depends on H4K20me2/3, the balance between HP1 isoforms, and Ki-67.
Collapse
Affiliation(s)
- Claire Dupont
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| | - Dhanvantri Chahar
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| | - Antonio Trullo
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| | - Thierry Gostan
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| | - Caroline Surcis
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| | - Charlotte Grimaud
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, Montpellier, France
| | - Daniel Fisher
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| | - David Llères
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
46
|
Siouda M, Dujardin AD, Dekeyzer B, Schaeffer L, Mulligan P. Chromodomain on Y-like 2 (CDYL2) implicated in mitosis and genome stability regulation via interaction with CHAMP1 and POGZ. Cell Mol Life Sci 2023; 80:47. [PMID: 36658409 PMCID: PMC11072993 DOI: 10.1007/s00018-022-04659-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 01/21/2023]
Abstract
Histone H3 trimethylation on lysine 9 (H3K9me3) is a defining feature of mammalian pericentromeres, loss of which results in genome instability. Here we show that CDYL2 is recruited to pericentromeres in an H3K9me3-dependent manner and is required for faithful mitosis and genome stability. CDYL2 RNAi in MCF-7 breast cancer cells and Hela cervical cancer cells inhibited their growth, induced apoptosis, and provoked both nuclear and mitotic aberrations. Mass spectrometry analysis of CDYL2-interacting proteins identified the neurodevelopmental disease-linked mitotic regulators CHAMP1 and POGZ, which are associated with a central non-conserved region of CDYL2. RNAi rescue assays identified both the CDYL2 chromodomain and the CHAMP1-POGZ interacting region as required and, together, sufficient for CDYL2 regulation of mitosis and genome stability. CDYL2 RNAi caused loss of CHAMP1 localization at pericentromeres. We propose that CDYL2 functions as an adaptor protein that connects pericentromeric H3K9me3 with CHAMP1 and POGZ to ensure mitotic fidelity and genome stability.
Collapse
Affiliation(s)
- Maha Siouda
- Centre Léon Bérard, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Audrey D Dujardin
- Centre Léon Bérard, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Blanche Dekeyzer
- Centre Léon Bérard, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Laurent Schaeffer
- Faculté de Médecine, Physiopathology and Genetics of Neurons and Muscles Division, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, INSERM U1217, CNRS, UMR5310, 3ème étage, Aile B, 8 Avenue Rockefeller, 69008, Lyon, France
- Centre de Biotechnologie Cellulaire, CBC Biotec, CHU de Lyon - HCL Groupement Est, 59 Bvd Pinel, 69677, Cedex Bron, France
| | - Peter Mulligan
- Centre Léon Bérard, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France.
- Faculté de Médecine, Physiopathology and Genetics of Neurons and Muscles Division, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, INSERM U1217, CNRS, UMR5310, 3ème étage, Aile B, 8 Avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
47
|
Mechanisms of DNA methylation and histone modifications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:51-92. [PMID: 37019597 DOI: 10.1016/bs.pmbts.2023.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The field of genetics has expanded a lot in the past few decades due to the accessibility of human genome sequences, but still, the regulation of transcription cannot be explicated exclusively by the sequence of DNA of an individual. The coordination and crosstalk between chromatin factors which are conserved is indispensable for all living creatures. The regulation of gene expression has been dependent on the methylation of DNA, post-translational modifications of histones, effector proteins, chromatin remodeler enzymes that affect the chromatin structure and function, and other cellular activities such as DNA replication, DNA repair, proliferation and growth. The mutation and deletion of these factors can lead to human diseases. Various studies are being performed to identify and understand the gene regulatory mechanisms in the diseased state. The information from these high throughput screening studies is able to aid the treatment developments based on the epigenetics regulatory mechanisms. This book chapter will discourse on various modifications and their mechanisms that take place on histones and DNA that regulate the transcription of genes.
Collapse
|
48
|
Spracklin G, Abdennur N, Imakaev M, Chowdhury N, Pradhan S, Mirny LA, Dekker J. Diverse silent chromatin states modulate genome compartmentalization and loop extrusion barriers. Nat Struct Mol Biol 2023; 30:38-51. [PMID: 36550219 PMCID: PMC9851908 DOI: 10.1038/s41594-022-00892-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Abstract
The relationships between chromosomal compartmentalization, chromatin state and function are poorly understood. Here by profiling long-range contact frequencies in HCT116 colon cancer cells, we distinguish three silent chromatin states, comprising two types of heterochromatin and a state enriched for H3K9me2 and H2A.Z that exhibits neutral three-dimensional interaction preferences and which, to our knowledge, has not previously been characterized. We find that heterochromatin marked by H3K9me3, HP1α and HP1β correlates with strong compartmentalization. We demonstrate that disruption of DNA methyltransferase activity greatly remodels genome compartmentalization whereby domains lose H3K9me3-HP1α/β binding and acquire the neutrally interacting state while retaining late replication timing. Furthermore, we show that H3K9me3-HP1α/β heterochromatin is permissive to loop extrusion by cohesin but refractory to CTCF binding. Together, our work reveals a dynamic structural and organizational diversity of the silent portion of the genome and establishes connections between the regulation of chromatin state and chromosome organization, including an interplay between DNA methylation, compartmentalization and loop extrusion.
Collapse
Affiliation(s)
- George Spracklin
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Nezar Abdennur
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Maxim Imakaev
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Neil Chowdhury
- Program for Research in Mathematics, Engineering and Science for High School Students (PRIMES), MIT, Cambridge, MA, USA
| | - Sriharsa Pradhan
- Genome Biology Division, New England Biolabs, Inc., Ipswich, MA, USA
| | - Leonid A Mirny
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, USA.
| |
Collapse
|
49
|
Fraser CJ, Whitehall SK. Heterochromatin in the fungal plant pathogen, Zymoseptoria tritici: Control of transposable elements, genome plasticity and virulence. Front Genet 2022; 13:1058741. [DOI: 10.3389/fgene.2022.1058741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Heterochromatin is a repressive chromatin state that plays key roles in the functional organisation of eukaryotic genomes. In fungal plant pathogens, effector genes that are required for host colonization tend to be associated with heterochromatic regions of the genome that are enriched with transposable elements. It has been proposed that the heterochromatin environment silences effector genes in the absence of host and dynamic chromatin remodelling facilitates their expression during infection. Here we discuss this model in the context of the key wheat pathogen, Zymoseptoria tritici. We cover progress in understanding the deposition and recognition of heterochromatic histone post translational modifications in Z. tritici and the role that heterochromatin plays in control of genome plasticity and virulence.
Collapse
|
50
|
Ohhara Y, Kato Y, Kamiyama T, Yamakawa-Kobayashi K. Su(var)2-10- and Su(var)205-dependent upregulation of the heterochromatic gene neverland is required for developmental transition in Drosophila. Genetics 2022; 222:iyac137. [PMID: 36149288 PMCID: PMC9630985 DOI: 10.1093/genetics/iyac137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/29/2022] [Indexed: 11/14/2022] Open
Abstract
Animals develop from juveniles to sexually mature adults through the action of steroid hormones. In insect metamorphosis, a surge of the steroid hormone ecdysone prompts the transition from the larval to the adult stage. Ecdysone is synthesized by a series of biosynthetic enzymes that are specifically expressed in an endocrine organ, the prothoracic gland. At the late larval stage, the expression levels of ecdysone biosynthetic enzymes are upregulated through the action of numerous transcription factors, thus initiating metamorphosis. In contrast, the mechanism by which chromatin regulators support the expression of ecdysone biosynthetic genes is largely unknown. Here, we demonstrate that Su(var)2-10 and Su(var)205, suppressor of variegation [Su(var)] genes encoding a chromatin regulator Su(var)2-10 and nonhistone heterochromatic protein 1a, respectively, regulate the transcription of one of the heterochromatic ecdysone biosynthetic genes, neverland, in Drosophila melanogaster. Knockdown of Su(var)2-10 and Su(var)205 in the prothoracic gland caused a decrease in neverland expression, resulting in a defect in larval-to-prepupal transition. Furthermore, overexpression of neverland and administration of 7-dehydrocholesterol, a biosynthetic precursor of ecdysone produced by Neverland, rescued developmental defects in Su(var)2-10 and Su(var)205 knockdown animals. These results indicate that Su(var)2-10- and Su(var)205-mediated proper expression of neverland is required for the initiation of metamorphosis. Given that Su(var)2-10-positive puncta are juxtaposed with the pericentromeric heterochromatic region, we propose that Su(var)2-10- and Su(var)205-dependent regulation of inherent heterochromatin structure at the neverland gene locus is essential for its transcriptional activation.
Collapse
Affiliation(s)
- Yuya Ohhara
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
| | - Yuki Kato
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
| | - Takumi Kamiyama
- College of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kimiko Yamakawa-Kobayashi
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|