1
|
Shi SM, Suh RJ, Shon DJ, Garcia FJ, Buff JK, Atkins M, Li L, Lu N, Sun B, Luo J, To NS, Cheung TH, McNerney MW, Heiman M, Bertozzi CR, Wyss-Coray T. Glycocalyx dysregulation impairs blood-brain barrier in ageing and disease. Nature 2025; 639:985-994. [PMID: 40011765 PMCID: PMC11946907 DOI: 10.1038/s41586-025-08589-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/03/2025] [Indexed: 02/28/2025]
Abstract
The blood-brain barrier (BBB) is highly specialized to protect the brain from harmful circulating factors in the blood and maintain brain homeostasis1,2. The brain endothelial glycocalyx layer, a carbohydrate-rich meshwork composed primarily of proteoglycans, glycoproteins and glycolipids that coats the BBB lumen, is a key structural component of the BBB3,4. This layer forms the first interface between the blood and brain vasculature, yet little is known about its composition and roles in supporting BBB function in homeostatic and diseased states. Here we find that the brain endothelial glycocalyx is highly dysregulated during ageing and neurodegenerative disease. We identify significant perturbation in an underexplored class of densely O-glycosylated proteins known as mucin-domain glycoproteins. We demonstrate that ageing- and disease-associated aberrations in brain endothelial mucin-domain glycoproteins lead to dysregulated BBB function and, in severe cases, brain haemorrhaging in mice. Finally, we demonstrate that we can improve BBB function and reduce neuroinflammation and cognitive deficits in aged mice by restoring core 1 mucin-type O-glycans to the brain endothelium using adeno-associated viruses. Cumulatively, our findings provide a detailed compositional and structural mapping of the ageing brain endothelial glycocalyx layer and reveal important consequences of ageing- and disease-associated glycocalyx dysregulation on BBB integrity and brain health.
Collapse
Affiliation(s)
- Sophia M Shi
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan J Suh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - D Judy Shon
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Francisco J Garcia
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Josephine K Buff
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Micaiah Atkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
| | - Lulin Li
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Nannan Lu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Bryan Sun
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Jian Luo
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Ning-Sum To
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Tom H Cheung
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - M Windy McNerney
- Department of Psychiatry, Stanford University School of Medicine, Stanford, CA, USA
- MIRECC, Department of Veterans Affairs, Palo Alto, CA, USA
| | - Myriam Heiman
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Tony Wyss-Coray
- Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Kohsaka S, Yagishita S, Shirai Y, Matsuno Y, Ueno T, Kojima S, Ikeuchi H, Ikegami M, Kitada R, Yoshioka KI, Toshimitsu K, Tabata K, Yokoi A, Doi T, Yamamoto N, Owa T, Hamada A, Mano H. A molecular glue RBM39-degrader induces synthetic lethality in cancer cells with homologous recombination repair deficiency. NPJ Precis Oncol 2024; 8:117. [PMID: 38789724 PMCID: PMC11126574 DOI: 10.1038/s41698-024-00610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
E7820 and Indisulam (E7070) are sulfonamide molecular glues that modulate RNA splicing by degrading the splicing factor RBM39 via ternary complex formation with the E3 ligase adaptor DCAF15. To identify biomarkers of the antitumor efficacy of E7820, we treated patient-derived xenograft (PDX) mouse models established from 42 patients with solid tumors. The overall response rate was 38.1% (16 PDXs), and tumor regression was observed across various tumor types. Exome sequencing of the PDX genome revealed that loss-of-function mutations in genes of the homologous recombination repair (HRR) system, such as ATM, were significantly enriched in tumors that responded to E7820 (p = 4.5 × 103). Interestingly, E7820-mediated double-strand breaks in DNA were increased in tumors with BRCA2 dysfunction, and knockdown of BRCA1/2 transcripts or knockout of ATM, ATR, or BAP1 sensitized cancer cells to E7820. Transcriptomic analyses revealed that E7820 treatment resulted in the intron retention of mRNAs and decreased transcription, especially for HRR genes. This induced HRR malfunction probably leads to the synthetic lethality of tumor cells with homologous recombination deficiency (HRD). Furthermore, E7820, in combination with olaparib, exerted a synergistic effect, and E7820 was even effective in an olaparib-resistant cell line. In conclusion, HRD is a promising predictive biomarker of E7820 efficacy and has a high potential to improve the prognosis of patients with HRD-positive cancers.
Collapse
Affiliation(s)
- Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Shigehiro Yagishita
- Division of Molecular Pharmacology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yukina Shirai
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, 2-1-1 Hongo,Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Yusuke Matsuno
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hiroshi Ikeuchi
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of General Thoracic Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Masachika Ikegami
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Rina Kitada
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ken-Ichi Yoshioka
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kohta Toshimitsu
- Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba-shi, Ibaraki, 300-2635, Japan
| | - Kimiyo Tabata
- Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba-shi, Ibaraki, 300-2635, Japan
| | - Akira Yokoi
- Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba-shi, Ibaraki, 300-2635, Japan
| | - Toshihiko Doi
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Chiba, 277-8577, Japan
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Center Hospital, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takashi Owa
- Eisai Inc., 200 Metro Blvd., Nutley, NJ, 07110, USA
| | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
3
|
Agrawal P, Chen S, de Pablos A, Jame-Chenarboo F, Miera Saenz de Vega E, Darvishian F, Osman I, Lujambio A, Mahal LK, Hernando E. Integrated in vivo functional screens and multi-omics analyses identify α-2,3-sialylation as essential for melanoma maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584072. [PMID: 38559078 PMCID: PMC10979837 DOI: 10.1101/2024.03.08.584072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Glycosylation is a hallmark of cancer biology, and altered glycosylation influences multiple facets of melanoma growth and progression. To identify glycosyltransferases, glycans, and glycoproteins essential for melanoma maintenance, we conducted an in vivo growth screen with a pooled shRNA library of glycosyltransferases, lectin microarray profiling of benign nevi and melanoma patient samples, and mass spectrometry-based glycoproteomics. We found that α-2,3 sialyltransferases ST3GAL1 and ST3GAL2 and corresponding α-2,3-linked sialosides are upregulated in melanoma compared to nevi and are essential for melanoma growth in vivo and in vitro. Glycoproteomics revealed that glycoprotein targets of ST3GAL1 and ST3GAL2 are enriched in transmembrane proteins involved in growth signaling, including the amino acid transporter Solute Carrier Family 3 Member 2 (SLC3A2/CD98hc). CD98hc suppression mimicked the effect of ST3GAL1 and ST3GAL2 silencing, inhibiting melanoma cell proliferation. We found that both CD98hc protein stability and its pro-survival effect in melanoma are dependent upon α-2,3 sialylation mediated by ST3GAL1 and ST3GAL2. In summary, our studies reveal that α-2,3-sialosides functionally contribute to melanoma maintenance, supporting ST3GAL1 and ST3GAL2 as novel therapeutic targets in these tumors.
Collapse
Affiliation(s)
- Praveen Agrawal
- Department of Pathology, NYU Grossman School of Medicine, New York
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Shuhui Chen
- Department of Chemistry, New York University
| | - Ana de Pablos
- Department of Pathology, NYU Grossman School of Medicine, New York
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health
- Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain
| | | | | | | | - Iman Osman
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health
- Department of Dermatology, NYU Grossman School of Medicine, New York
| | | | - Lara K. Mahal
- Department of Chemistry, New York University
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health
| |
Collapse
|
4
|
Schütz M, Wangen C, Sommerer M, Kögler M, Eickhoff J, Degenhart C, Klebl B, Naing Z, Egilmezer E, Hamilton ST, Rawlinson WD, Sticht H, Marschall M. Cytomegalovirus cyclin-dependent kinase ortholog vCDK/pUL97 undergoes regulatory interaction with human cyclin H and CDK7 to codetermine viral replication efficiency. Virus Res 2023; 335:199200. [PMID: 37591314 PMCID: PMC10445456 DOI: 10.1016/j.virusres.2023.199200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Human cytomegalovirus (HCMV) infection is shaped by a tightly regulated interplay between viral and cellular proteins. Distinct kinase activities, such as the viral cyclin-dependent kinase ortholog (vCDK) pUL97 and cellular CDK7 are both crucial for efficient viral replication. Previously, we reported that both kinases, vCDK/pUL97 and CDK7, interact with cyclin H, thereby achieving an enhanced level of kinase activity and overall functionality in viral replication. Here we provide a variety of novel results, as generated on a methodologically extended basis, and present a concept for the codetermination of viral replication efficiency through these kinase activities: (i) cyclin H expression, in various human cell types, is substantially upregulated by strains of HCMV including the clinically relevant HCMV Merlin; (ii) vCDK/pUL97 interacts with human cyclin H in both HCMV-infected and plasmid-transfected cell systems; (iii) a doxycycline-inducible shRNA-dependent knock-down (KD) of cyclin H significantly reduces pUL97 activity (qSox in vitro kinase assay); (iv) accordingly, pUL97 in vitro kinase activity is seen significantly increased upon addition of recombinant cyclin H; (v) as a point of specific importance, human CDK7 activity shows an increase by vCDK/pUL97-mediated trans-stimulation (whereas pUL97 is not stimulated by CDK7); (vi) phosphosite-specific antibodies indicate an upregulated CDK7 phosphorylation upon HCMV infection, as mediated through a pUL97-specific modulatory effect (i.e. shown by pUL97 inhibitor treatment or pUL97-deficient viral mutant); (vii) finally, an efficient KD of cyclin H in primary fibroblasts generally results in an impaired HCMV replication efficiency as measured on protein and genomic levels. These results show evidence for the codetermination of viral replication by vCDK/pUL97, cyclin H and CDK7, thus supporting the specific importance of cyclin H as a central regulatory factor, and suggesting novel targeting options for antiviral drugs.
Collapse
Affiliation(s)
- Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, Erlangen 91054, Germany.
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, Erlangen 91054, Germany
| | - Mona Sommerer
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, Erlangen 91054, Germany
| | - Melanie Kögler
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, Erlangen 91054, Germany
| | | | | | - Bert Klebl
- Lead Discovery Center GmbH, Dortmund, Germany
| | - Zin Naing
- Serology and Virology Division, NSW Health Pathology Microbiology, Prince of Wales Hospital, and Schools of Women's and Children's Health, Medicine and Biotechnology and Biomolecular Sciences, University of New South Wales, High Street, Sydney, Australia
| | - Ece Egilmezer
- Serology and Virology Division, NSW Health Pathology Microbiology, Prince of Wales Hospital, and Schools of Women's and Children's Health, Medicine and Biotechnology and Biomolecular Sciences, University of New South Wales, High Street, Sydney, Australia
| | - Stuart T Hamilton
- Serology and Virology Division, NSW Health Pathology Microbiology, Prince of Wales Hospital, and Schools of Women's and Children's Health, Medicine and Biotechnology and Biomolecular Sciences, University of New South Wales, High Street, Sydney, Australia
| | - William D Rawlinson
- Serology and Virology Division, NSW Health Pathology Microbiology, Prince of Wales Hospital, and Schools of Women's and Children's Health, Medicine and Biotechnology and Biomolecular Sciences, University of New South Wales, High Street, Sydney, Australia
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, FAU, Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, Erlangen 91054, Germany.
| |
Collapse
|
5
|
Vail ME, Farnsworth RH, Hii L, Allen S, Arora S, Anderson RL, Dickins RA, Orimo A, Wu SZ, Swarbrick A, Scott AM, Janes PW. Inhibition of EphA3 Expression in Tumour Stromal Cells Suppresses Tumour Growth and Progression. Cancers (Basel) 2023; 15:4646. [PMID: 37760615 PMCID: PMC10527215 DOI: 10.3390/cancers15184646] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Tumour progression relies on interactions with untransformed cells in the tumour microenvironment (TME), including cancer-associated fibroblasts (CAFs), which promote blood supply, tumour progression, and immune evasion. Eph receptor tyrosine kinases are cell guidance receptors that are most active during development but re-emerge in cancer and are recognised drug targets. EphA3 is overexpressed in a wide range of tumour types, and we previously found expression particularly in stromal and vascular tissues of the TME. To investigate its role in the TME, we generated transgenic mice with inducible shRNA-mediated knockdown of EphA3 expression. EphA3 knockdown was confirmed in aortic mesenchymal stem cells (MSCs), which displayed reduced angiogenic capacity. In mice with syngeneic lung tumours, EphA3 knockdown reduced vasculature and CAF/MSC-like cells in tumours, and inhibited tumour growth, which was confirmed also in a melanoma model. Single cell RNA sequencing analysis of multiple human tumour types confirmed EphA3 expression in CAFs, including in breast cancer, where EphA3 was particularly prominent in perivascular- and myofibroblast-like CAFs. Our results thus indicate expression of the cell guidance receptor EphA3 in distinct CAF subpopulations is important in supporting tumour angiogenesis and tumour growth, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Mary E. Vail
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Rae H. Farnsworth
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Linda Hii
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Stacey Allen
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Sakshi Arora
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Robin L. Anderson
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Ross A. Dickins
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Akira Orimo
- Department of Pathology and Oncology, School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Sunny Z. Wu
- Garvan Institute of Medical Research and School of Clinical Medicine, University of NSW, Darlinghurst, NSW 2010, Australia
| | - Alexander Swarbrick
- Garvan Institute of Medical Research and School of Clinical Medicine, University of NSW, Darlinghurst, NSW 2010, Australia
| | - Andrew M. Scott
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Peter W. Janes
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
6
|
Hoffmann T, Hörmann A, Corcokovic M, Zmajkovic J, Hinterndorfer M, Salkanovic J, Spreitzer F, Köferle A, Gitschtaler K, Popa A, Oberndorfer S, Andersch F, Schaefer M, Fellner M, Budano N, Ruppert JG, Chetta P, Wurm M, Zuber J, Neumüller RA. Precision RNAi using synthetic shRNAmir target sites. eLife 2023; 12:RP84792. [PMID: 37552050 PMCID: PMC10409502 DOI: 10.7554/elife.84792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Loss-of-function genetic tools are widely applied for validating therapeutic targets, but their utility remains limited by incomplete on- and uncontrolled off-target effects. We describe artificial RNA interference (ARTi) based on synthetic, ultra-potent, off-target-free shRNAs that enable efficient and inducible suppression of any gene upon introduction of a synthetic target sequence into non-coding transcript regions. ARTi establishes a scalable loss-of-function tool with full control over on- and off-target effects.
Collapse
Affiliation(s)
- Thomas Hoffmann
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University at Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Alexandra Hörmann
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Maja Corcokovic
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Jakub Zmajkovic
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1ViennaAustria
| | | | - Jasko Salkanovic
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Fiona Spreitzer
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Anna Köferle
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Katrin Gitschtaler
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Alexandra Popa
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Sarah Oberndorfer
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Florian Andersch
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1ViennaAustria
| | - Markus Schaefer
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1ViennaAustria
| | - Michaela Fellner
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1ViennaAustria
| | - Nicole Budano
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Jan G Ruppert
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Paolo Chetta
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Melanie Wurm
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1ViennaAustria
- Medical University of Vienna, Vienna BioCenterViennaAustria
| | - Ralph A Neumüller
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-GasseViennaAustria
| |
Collapse
|
7
|
Zhao G, Ho W, Chu J, Xiong X, Hu B, Boakye-Yiadom KO, Xu X, Zhang XQ. Inhalable siRNA Nanoparticles for Enhanced Tumor-Targeting Treatment of KRAS-Mutant Non-Small-Cell Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37354089 DOI: 10.1021/acsami.3c05007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Kirsten rat sarcoma (KRAS) is the most commonly mutated oncogene in lung cancers. Gene therapy is emerging as a promising cancer treatment modality; however, the systemic administration of gene therapy has been limited by inefficient delivery to the lungs and systemic toxicity. Herein, we report a noninvasive aerosol inhalation nanoparticle (NP) system, termed "siKRAS@GCLPP NPs," to treat KRAS-mutant non-small-cell lung cancer (NSCLC). The self-assembled siKRAS@GCLPP NPs are capable of maintaining structural integrity during nebulization, with preferential distribution within the tumor-bearing lung. Inhalable siKRAS@GCLPP NPs show not only significant tumor-targeting capability but also enhanced antitumor activity in an orthotopic mouse model of human KRAS-mutant NSCLC. The nebulized delivery of siKRAS@GCLPP NPs demonstrates potent knockdown of mutated KRAS in tumor-bearing lungs without causing any observable adverse effects, exhibiting a better biosafety profile than the systemic delivery approach. The results present a promising inhaled gene therapy approach for the treatment of KRAS-mutant NSCLC and other respiratory diseases.
Collapse
Affiliation(s)
- Guolin Zhao
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - William Ho
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Jinxian Chu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaojian Xiong
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Hu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kofi Oti Boakye-Yiadom
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Xue-Qing Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Yogev O, Weissbrod O, Battistoni G, Bressan D, Naamati A, Falciatori I, Berkyurek AC, Rasnic R, Izuagbe R, Hosmillo M, Ilan S, Grossman I, McCormick L, Honeycutt CC, Johnston T, Gagne M, Douek DC, Goodfellow I, Hannon GJ, Erlich Y. From a genome-wide screen of RNAi molecules against SARS-CoV-2 to a validated broad-spectrum and potent prophylaxis. Commun Biol 2023; 6:277. [PMID: 36928598 PMCID: PMC10019795 DOI: 10.1038/s42003-023-04589-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
Expanding the arsenal of prophylactic approaches against SARS-CoV-2 is of utmost importance, specifically those strategies that are resistant to antigenic drift in Spike. Here, we conducted a screen of over 16,000 RNAi triggers against the SARS-CoV-2 genome, using a massively parallel assay to identify hyper-potent siRNAs. We selected Ten candidates for in vitro validation and found five siRNAs that exhibited hyper-potent activity (IC50 < 20 pM) and strong blockade of infectivity in live-virus experiments. We further enhanced this activity by combinatorial pairing of the siRNA candidates and identified cocktails that were active against multiple types of variants of concern (VOC). We then examined over 2,000 possible mutations in the siRNA target sites by using saturation mutagenesis and confirmed broad protection of the leading cocktail against future variants. Finally, we demonstrated that intranasal administration of this siRNA cocktail effectively attenuates clinical signs and viral measures of disease in the gold-standard Syrian hamster model. Our results pave the way for the development of an additional layer of antiviral prophylaxis that is orthogonal to vaccines and monoclonal antibodies.
Collapse
Affiliation(s)
- Ohad Yogev
- Eleven Therapeutics, Cambridge, United Kingdom.
| | | | - Giorgia Battistoni
- Eleven Therapeutics, Cambridge, United Kingdom
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Dario Bressan
- Eleven Therapeutics, Cambridge, United Kingdom
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Adi Naamati
- Eleven Therapeutics, Cambridge, United Kingdom
| | | | | | | | - Rhys Izuagbe
- University of Cambridge, Department of Pathology, Division of Virology, Cambridge, United Kingdom
| | - Myra Hosmillo
- University of Cambridge, Department of Pathology, Division of Virology, Cambridge, United Kingdom
| | | | | | - Lauren McCormick
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Cole Honeycutt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Timothy Johnston
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ian Goodfellow
- University of Cambridge, Department of Pathology, Division of Virology, Cambridge, United Kingdom
| | - Gregory James Hannon
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | | |
Collapse
|
9
|
Corcoran M, Chernyshev M, Mandolesi M, Narang S, Kaduk M, Ye K, Sundling C, Färnert A, Kreslavsky T, Bernhardsson C, Larena M, Jakobsson M, Karlsson Hedestam GB. Archaic humans have contributed to large-scale variation in modern human T cell receptor genes. Immunity 2023; 56:635-652.e6. [PMID: 36796364 DOI: 10.1016/j.immuni.2023.01.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/21/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023]
Abstract
Human T cell receptors (TCRs) are critical for mediating immune responses to pathogens and tumors and regulating self-antigen recognition. Yet, variations in the genes encoding TCRs remain insufficiently defined. Detailed analysis of expressed TCR alpha, beta, gamma, and delta genes in 45 donors from four human populations-African, East Asian, South Asian, and European-revealed 175 additional TCR variable and junctional alleles. Most of these contained coding changes and were present at widely differing frequencies in the populations, a finding confirmed using DNA samples from the 1000 Genomes Project. Importantly, we identified three Neanderthal-derived, introgressed TCR regions including a highly divergent TRGV4 variant, which mediated altered butyrophilin-like molecule 3 (BTNL3) ligand reactivity and was frequent in all modern Eurasian population groups. Our results demonstrate remarkable variation in TCR genes in both individuals and populations, providing a strong incentive for including allelic variation in studies of TCR function in human biology.
Collapse
Affiliation(s)
- Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Mark Chernyshev
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marco Mandolesi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sanjana Narang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mateusz Kaduk
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kewei Ye
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Sundling
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Anna Färnert
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Taras Kreslavsky
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carolina Bernhardsson
- Department of Organismal Biology, Human Evolution, Norbyvägen 18C, 752 63 Uppsala, Sweden
| | - Maximilian Larena
- Department of Organismal Biology, Human Evolution, Norbyvägen 18C, 752 63 Uppsala, Sweden
| | - Mattias Jakobsson
- Department of Organismal Biology, Human Evolution, Norbyvägen 18C, 752 63 Uppsala, Sweden
| | | |
Collapse
|
10
|
Dhital B, Santasusagna S, Kirthika P, Xu M, Li P, Carceles-Cordon M, Soni RK, Li Z, Hendrickson RC, Schiewer MJ, Kelly WK, Sternberg CN, Luo J, Lujambio A, Cordon-Cardo C, Alvarez-Fernandez M, Malumbres M, Huang H, Ertel A, Domingo-Domenech J, Rodriguez-Bravo V. Harnessing transcriptionally driven chromosomal instability adaptation to target therapy-refractory lethal prostate cancer. Cell Rep Med 2023; 4:100937. [PMID: 36787737 PMCID: PMC9975292 DOI: 10.1016/j.xcrm.2023.100937] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/27/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Abstract
Metastatic prostate cancer (PCa) inevitably acquires resistance to standard therapy preceding lethality. Here, we unveil a chromosomal instability (CIN) tolerance mechanism as a therapeutic vulnerability of therapy-refractory lethal PCa. Through genomic and transcriptomic analysis of patient datasets, we find that castration and chemotherapy-resistant tumors display the highest CIN and mitotic kinase levels. Functional genomics screening coupled with quantitative phosphoproteomics identify MASTL kinase as a survival vulnerability specific of chemotherapy-resistant PCa cells. Mechanistically, MASTL upregulation is driven by transcriptional rewiring mechanisms involving the non-canonical transcription factors androgen receptor splice variant 7 and E2F7 in a circuitry that restrains deleterious CIN and prevents cell death selectively in metastatic therapy-resistant PCa cells. Notably, MASTL pharmacological inhibition re-sensitizes tumors to standard therapy and improves survival of pre-clinical models. These results uncover a targetable mechanism promoting high CIN adaptation and survival of lethal PCa.
Collapse
Affiliation(s)
- Brittiny Dhital
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA; Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Sandra Santasusagna
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA
| | - Perumalraja Kirthika
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael Xu
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Peiyao Li
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | | | - Rajesh K Soni
- Microchemistry and Proteomics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zhuoning Li
- Microchemistry and Proteomics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronald C Hendrickson
- Microchemistry and Proteomics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew J Schiewer
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - William K Kelly
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Cora N Sternberg
- Englander Institute for Precision Medicine, Weill Cornell Department of Medicine, Meyer Cancer Center, New York-Presbyterian Hospital, New York, NY 10021, USA
| | - Jun Luo
- Urology Department, Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amaia Lujambio
- Oncological Sciences Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Cordon-Cardo
- Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Monica Alvarez-Fernandez
- Head & Neck Cancer Department, Institute de Investigación Sanitaria Principado de Asturias (ISPA), Institute Universitario de Oncología Principado de Asturias (IUOPA), 33011 Oviedo, Spain
| | - Marcos Malumbres
- Cell Division & Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; Cancer Cell Cycle group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Haojie Huang
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA
| | - Adam Ertel
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Josep Domingo-Domenech
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA.
| | - Veronica Rodriguez-Bravo
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
11
|
Evaluation of a Novel Oncolytic Adenovirus Silencing SYVN1. Int J Mol Sci 2022; 23:ijms232315430. [PMID: 36499754 PMCID: PMC9737683 DOI: 10.3390/ijms232315430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Oncolytic adenoviruses are promising new anticancer agents. To realize their full anticancer potential, they are being engineered to express therapeutic payloads. Tumor suppressor p53 function contributes to oncolytic adenovirus activity. Many cancer cells carry an intact TP53 gene but express p53 inhibitors that compromise p53 function. Therefore, we hypothesized that oncolytic adenoviruses could be made more effective by suppressing p53 inhibitors in selected cancer cells. To investigate this concept, we attenuated the expression of the established p53 inhibitor synoviolin (SYVN1) in A549 lung cancer cells by RNA interference. Silencing SYVN1 inhibited p53 degradation, thereby increasing p53 activity, and promoted adenovirus-induced A549 cell death. Based on these observations, we constructed a new oncolytic adenovirus that expresses a short hairpin RNA against SYVN1. This virus killed A549 cells more effectively in vitro and inhibited A549 xenograft tumor growth in vivo. Surprisingly, increased susceptibility to adenovirus-mediated cell killing by SYVN1 silencing was also observed in A549 TP53 knockout cells. Hence, while the mechanism of SYVN1-mediated inhibition of adenovirus replication is not fully understood, our results clearly show that RNA interference technology can be exploited to design more potent oncolytic adenoviruses.
Collapse
|
12
|
Mainz L, Sarhan MAFE, Roth S, Sauer U, Kalogirou C, Eckstein M, Gerhard-Hartmann E, Seibert HD, Voelker HU, Geppert C, Rosenwald A, Eilers M, Schulze A, Diefenbacher M, Rosenfeldt MT. Acute systemic knockdown of Atg7 is lethal and causes pancreatic destruction in shRNA transgenic mice. Autophagy 2022; 18:2880-2893. [PMID: 35343375 PMCID: PMC9673934 DOI: 10.1080/15548627.2022.2052588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The notion that macroautophagy/autophagy is a potentially attractive therapeutic target for a variety of diseases, including cancer, largely stems from pre-clinical mouse studies. Most of these examine the effects of irreversible and organ confined autophagy deletion using site specific Cre-loxP recombination of the essential autophagy regulating genes Atg7 or Atg5. Model systems with the ability to impair autophagy systemically and reversibly at all disease stages would allow a more realistic approach to evaluate the consequences of authophagy inhibition as a therapeutic concept and its potential side effects. Here, we present shRNA transgenic mice that via doxycycline (DOX) regulable expression of a highly efficient miR30-E-based shRNA enabled knockdown of Atg7 simultaneously in the majority of organs, with the brain and spleen being noteable exceptions. Induced animals deteriorated rapidly and experienced profound destruction of the exocrine pancreas, severe hypoglycemia and depletion of hepatic glycogen storages. Cessation of DOX application restored apparent health, glucose homeostasis and pancreatic integrity. In a similar Atg5 knockdown model we neither observed loss of pancreatic integrity nor diminished survival after DOX treatment, but identified histological changes consistent with steatohepatitis and hepatic fibrosis in the recovery period after termination of DOX. Regulable Atg7-shRNA mice are valuable tools that will enable further studies on the role of autophagy impairment at various disease stages and thereby help to evaluate the consequences of acute autophagy inhibition as a therapeutic concept.Abbreviations: ACTB: actin, beta; AMY: amylase complex; ATG4B: autophagy related 4B, cysteine peptidase; ATG5: autophagy related 5; ATG7: autophagy related 7; Cag: CMV early enhancer/chicken ACTB promoter; Col1a1: collagen, type I, alpha 1; Cre: cre recombinase; DOX: doxycycline; GCG: glucagon; GFP: green fluorescent protein; INS: insulin; LC3: microtubule-associated protein 1 light chain 3; miR30-E: optimized microRNA backbone; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; PNLIP: pancreatic lipase; rtTA: reverse tetracycline transactivator protein; SQSTM1/p62: sequestome 1; TRE: tetracycline responsive element.
Collapse
Affiliation(s)
- Laura Mainz
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany,Comprehensive Cancer Center Mainfranke, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Mohamed A. F. E. Sarhan
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany,Comprehensive Cancer Center Mainfranke, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Sabine Roth
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Ursula Sauer
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany,Comprehensive Cancer Center Mainfranke, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Charis Kalogirou
- Department of Urology and Pediatric Urology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elena Gerhard-Hartmann
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany,Comprehensive Cancer Center Mainfranke, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Helen-Desiree Seibert
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany,Comprehensive Cancer Center Mainfranke, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Hans-Ulrich Voelker
- Department of Pathology, Leopoldina Medizinisches Versorgungszentrum, Schweinfurt, Germany
| | - Carol Geppert
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany,Comprehensive Cancer Center Mainfranke, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Martin Eilers
- Biocenter, Department of Biochemistry and Molecular Biology, Julius-Maximilians-University of Würzburg, Germany
| | - Almut Schulze
- Division of Metabolism and Microenvironment, Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Germany
| | - Markus Diefenbacher
- Biocenter, Department of Biochemistry and Molecular Biology, Julius-Maximilians-University of Würzburg, Germany
| | - Mathias T. Rosenfeldt
- Institute of Pathology, Julius-Maximilians-University of Würzburg, Würzburg, Germany,Comprehensive Cancer Center Mainfranke, Julius-Maximilians-University of Würzburg, Würzburg, Germany,CONTACT Mathias T. Rosenfeldt Institute of Pathology – University of Würzburg, Josef-Schneider-Str. 2,97080Würzburg, Germany
| |
Collapse
|
13
|
Zhao C, Xu N, Tan J, Cheng Q, Xie W, Xu J, Wei Z, Ye J, Yu L, Feng W. ILGBMSH: an interpretable classification model for the shRNA target prediction with ensemble learning algorithm. Brief Bioinform 2022; 23:6731717. [PMID: 36184189 DOI: 10.1093/bib/bbac429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/03/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022] Open
Abstract
Short hairpin RNA (shRNA)-mediated gene silencing is an important technology to achieve RNA interference, in which the design of potent and reliable shRNA molecules plays a crucial role. However, efficient shRNA target selection through biological technology is expensive and time consuming. Hence, it is crucial to develop a more precise and efficient computational method to design potent and reliable shRNA molecules. In this work, we present an interpretable classification model for the shRNA target prediction using the Light Gradient Boosting Machine algorithm called ILGBMSH. Rather than utilizing only the shRNA sequence feature, we extracted 554 biological and deep learning features, which were not considered in previous shRNA prediction research. We evaluated the performance of our model compared with the state-of-the-art shRNA target prediction models. Besides, we investigated the feature explanation from the model's parameters and interpretable method called Shapley Additive Explanations, which provided us with biological insights from the model. We used independent shRNA experiment data from other resources to prove the predictive ability and robustness of our model. Finally, we used our model to design the miR30-shRNA sequences and conducted a gene knockdown experiment. The experimental result was perfectly in correspondence with our expectation with a Pearson's coefficient correlation of 0.985. In summary, the ILGBMSH model can achieve state-of-the-art shRNA prediction performance and give biological insights from the machine learning model parameters.
Collapse
Affiliation(s)
- Chengkui Zhao
- Institute of Intelligent System and Bioinformatics, College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Nan Xu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, No, 3663 North Zhongshan Road, Shanghai 200065, China.,Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, No 1525 Minqiang Road, Shanghai, 201612, China
| | - Jingwen Tan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, No, 3663 North Zhongshan Road, Shanghai 200065, China.,Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, No 1525 Minqiang Road, Shanghai, 201612, China
| | - Qi Cheng
- Institute of Intelligent System and Bioinformatics, College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Weixin Xie
- Institute of Intelligent System and Bioinformatics, College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jiayu Xu
- Institute of Intelligent System and Bioinformatics, College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Zhenyu Wei
- Institute of Intelligent System and Bioinformatics, College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Ye
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, No, 3663 North Zhongshan Road, Shanghai 200065, China.,Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, No 1525 Minqiang Road, Shanghai, 201612, China
| | - Lei Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, No, 3663 North Zhongshan Road, Shanghai 200065, China.,Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, No 1525 Minqiang Road, Shanghai, 201612, China
| | - Weixing Feng
- Institute of Intelligent System and Bioinformatics, College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
14
|
Cortés-López M, Schulz L, Enculescu M, Paret C, Spiekermann B, Quesnel-Vallières M, Torres-Diz M, Unic S, Busch A, Orekhova A, Kuban M, Mesitov M, Mulorz MM, Shraim R, Kielisch F, Faber J, Barash Y, Thomas-Tikhonenko A, Zarnack K, Legewie S, König J. High-throughput mutagenesis identifies mutations and RNA-binding proteins controlling CD19 splicing and CART-19 therapy resistance. Nat Commun 2022; 13:5570. [PMID: 36138008 PMCID: PMC9500061 DOI: 10.1038/s41467-022-31818-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
Following CART-19 immunotherapy for B-cell acute lymphoblastic leukaemia (B-ALL), many patients relapse due to loss of the cognate CD19 epitope. Since epitope loss can be caused by aberrant CD19 exon 2 processing, we herein investigate the regulatory code that controls CD19 splicing. We combine high-throughput mutagenesis with mathematical modelling to quantitatively disentangle the effects of all mutations in the region comprising CD19 exons 1-3. Thereupon, we identify ~200 single point mutations that alter CD19 splicing and thus could predispose B-ALL patients to developing CART-19 resistance. Furthermore, we report almost 100 previously unknown splice isoforms that emerge from cryptic splice sites and likely encode non-functional CD19 proteins. We further identify cis-regulatory elements and trans-acting RNA-binding proteins that control CD19 splicing (e.g., PTBP1 and SF3B4) and validate that loss of these factors leads to pervasive CD19 mis-splicing. Our dataset represents a comprehensive resource for identifying predictive biomarkers for CART-19 therapy. Multiple alternative splicing events in CD19 mRNA have been associated with resistance/relapse to CD19 CAR-T therapy in patients with B cell malignancies. Here, by combining patient data and a high-throughput mutagenesis screen, the authors identify single point mutations and RNA-binding proteins that can control CD19 splicing and be associated with CD19 CAR-T therapy resistance.
Collapse
Affiliation(s)
| | - Laura Schulz
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Mihaela Enculescu
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Claudia Paret
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany.,German Cancer Consortium (DKTK), site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Bea Spiekermann
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Mathieu Quesnel-Vallières
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Manuel Torres-Diz
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sebastian Unic
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Allmandring 30E, 70569, Stuttgart, Germany
| | - Anke Busch
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Anna Orekhova
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Monika Kuban
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Allmandring 30E, 70569, Stuttgart, Germany
| | - Mikhail Mesitov
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Miriam M Mulorz
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Rawan Shraim
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Fridolin Kielisch
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Jörg Faber
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany.,German Cancer Consortium (DKTK), site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Str. 15, 60438, Frankfurt, Germany. .,Faculty Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt, Germany.
| | - Stefan Legewie
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany. .,Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Allmandring 30E, 70569, Stuttgart, Germany. .,Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany.
| | - Julian König
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| |
Collapse
|
15
|
Amen AM, Loughran RM, Huang CH, Lew RJ, Ravi A, Guan Y, Schatoff EM, Dow LE, Emerling BM, Fellmann C. Endogenous spacing enables co-processing of microRNAs and efficient combinatorial RNAi. CELL REPORTS METHODS 2022; 2:100239. [PMID: 35880017 PMCID: PMC9308131 DOI: 10.1016/j.crmeth.2022.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
We present Multi-miR, a microRNA-embedded shRNA system modeled after endogenous microRNA clusters that enables simultaneous expression of up to three or four short hairpin RNAs (shRNAs) from a single promoter without loss of activity, enabling robust combinatorial RNA interference (RNAi). We further developed complementary all-in-one vectors that are over one log-scale more sensitive to doxycycline-mediated activation in vitro than previous methods and resistant to shRNA inactivation in vivo. We demonstrate the utility of this system for intracranial expression of shRNAs in a glioblastoma model. Additionally, we leverage this platform to target the redundant RAF signaling node in a mouse model of KRAS-mutant cancer and show that robust combinatorial synthetic lethality efficiently abolishes tumor growth.
Collapse
Affiliation(s)
- Alexandra M. Amen
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ryan M. Loughran
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, USA
| | - Chun-Hao Huang
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Rachel J. Lew
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Archna Ravi
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, USA
| | | | - Emma M. Schatoff
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Lukas E. Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Brooke M. Emerling
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, USA
| | - Christof Fellmann
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
- Mirimus Inc., Brooklyn, NY, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
16
|
A Special Phenotype of Aconidial Aspergillus niger SH2 and Its Mechanism of Formation via CRISPRi. J Fungi (Basel) 2022; 8:jof8070679. [PMID: 35887436 PMCID: PMC9319794 DOI: 10.3390/jof8070679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
The complex morphological structure of Aspergillus niger influences its production of proteins, metabolites, etc., making the genetic manipulation and clonal purification of this species increasingly difficult, especially in aconidial Aspergillus niger. In this study, we found that N-acetyl-D-glucosamine (GlcNAc) could induce the formation of spore-like propagules in the aconidial Aspergillus niger SH2 strain. The spore-like propagules possessed life activities such as drug resistance, genetic transformation, and germination. Transcriptomic analysis indicated that the spore-like propagules were resting conidia entering dormancy and becoming more tolerant to environmental stresses. The Dac1 gene and the metabolic pathway of GlcNAc converted to glycolysis are related to the formation of the spore-like propagules, as evidenced by the CRISPRi system, qPCR, and semi-quantitative RT-PCR. Moreover, a method based on the CRISPR-Cas9 tool to rapidly recycle screening tags and recover genes was suitable for Aspergillus niger SH2. To sum up, this suggests that the spore-like propagules are resting conidia and the mechanism of their formation is the metabolic pathway of GlcNAc converted to glycolysis, particularly the Dac1 gene. This study can improve our understanding of the critical factors involved in mechanisms of phenotypic change and provides a good model for researching phenotypic change in filamentous fungi.
Collapse
|
17
|
Kuo Y, Falk BW. Artificial microRNA guide strand selection from duplexes with no mismatches shows a purine-rich preference for virus- and non-virus-based expression vectors in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1069-1084. [PMID: 35113475 PMCID: PMC9129084 DOI: 10.1111/pbi.13786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Artificial microRNA (amiRNA) technology has allowed researchers to direct efficient silencing of specific transcripts using as few as 21 nucleotides (nt). However, not all the artificially designed amiRNA constructs result in selection of the intended ~21-nt guide strand amiRNA. Selection of the miRNA guide strand from the mature miRNA duplex has been studied in detail in human and insect systems, but not so much for plants. Here, we compared a nuclear-replicating DNA viral vector (tomato mottle virus, ToMoV, based), a cytoplasmic-replicating RNA viral vector (tobacco mosaic virus, TMV, based), and a non-viral binary vector to express amiRNAs in plants. We then used deep sequencing and mutational analysis and show that when the structural factors caused by base mismatches in the mature amiRNA duplex were excluded, the nucleotide composition of the mature amiRNA region determined the guide strand selection. We found that the strand with excess purines was preferentially selected as the guide strand and the artificial miRNAs that had no mismatches in the amiRNA duplex were predominantly loaded into AGO2 instead of loading into AGO1 like the majority of the plant endogenous miRNAs. By performing assays for target effects, we also showed that only when the intended strand was selected as the guide strand and showed AGO loading, the amiRNA could provide the expected RNAi effects. Thus, by removing mismatches in the mature amiRNA duplex and designing the intended guide strand to contain excess purines provide better control of the guide strand selection of amiRNAs for functional RNAi effects.
Collapse
Affiliation(s)
- Yen‐Wen Kuo
- Department of Plant PathologyUniversity of California DavisDavisCAUSA
| | - Bryce W. Falk
- Department of Plant PathologyUniversity of California DavisDavisCAUSA
| |
Collapse
|
18
|
Erdogmus S, Concepcion AR, Yamashita M, Sidhu I, Tao AY, Li W, Rocha PP, Huang B, Garippa R, Lee B, Lee A, Hell JW, Lewis RS, Prakriya M, Feske S. Cavβ1 regulates T cell expansion and apoptosis independently of voltage-gated Ca 2+ channel function. Nat Commun 2022; 13:2033. [PMID: 35440113 PMCID: PMC9018955 DOI: 10.1038/s41467-022-29725-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
Abstract
TCR stimulation triggers Ca2+ signals that are critical for T cell function and immunity. Several pore-forming α and auxiliary β subunits of voltage-gated Ca2+ channels (VGCC) were reported in T cells, but their mechanism of activation remains elusive and their contribution to Ca2+ signaling in T cells is controversial. We here identify CaVβ1, encoded by Cacnb1, as a regulator of T cell function. Cacnb1 deletion enhances apoptosis and impairs the clonal expansion of T cells after lymphocytic choriomeningitis virus (LCMV) infection. By contrast, Cacnb1 is dispensable for T cell proliferation, cytokine production and Ca2+ signaling. Using patch clamp electrophysiology and Ca2+ recordings, we are unable to detect voltage-gated Ca2+ currents or Ca2+ influx in human and mouse T cells upon depolarization with or without prior TCR stimulation. mRNAs of several VGCC α1 subunits are detectable in human (CaV3.3, CaV3.2) and mouse (CaV2.1) T cells, but they lack transcription of many 5' exons, likely resulting in N-terminally truncated and non-functional proteins. Our findings demonstrate that although CaVβ1 regulates T cell function, these effects are independent of VGCC channel activity.
Collapse
Affiliation(s)
- Serap Erdogmus
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Axel R Concepcion
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Ikjot Sidhu
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Anthony Y Tao
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Wenyi Li
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- National Cancer Institute, NIH, Bethesda, MD, USA
| | - Bonnie Huang
- National Institute of Allergy and Infectious Disease, Bethesda, MD, USA
- National Human Genome Research Institute, Bethesda, MD, USA
| | - Ralph Garippa
- Department of Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Boram Lee
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Amy Lee
- Department of Neuroscience, University of Texas-Austin, Austin, TX, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Richard S Lewis
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Chicago, IL, USA.
| | - Stefan Feske
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
19
|
Yogev O, Weissbrod O, Battistoni G, Bressan D, Naamti A, Falciatori I, Berkyurek AC, Rasnic R, Hosmillo M, Ilan S, Grossman I, McCormick L, Honeycutt CC, Johnston T, Gagne M, Douek DC, Goodfellow I, Hannon GJ, Erlich Y. Genome wide screen of RNAi molecules against SARS-CoV-2 creates a broadly potent prophylaxis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.04.12.488010. [PMID: 35441162 PMCID: PMC9016640 DOI: 10.1101/2022.04.12.488010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Expanding the arsenal of prophylactic approaches against SARS-CoV-2 is of utmost importance, specifically those strategies that are resistant to antigenic drift in Spike. Here, we conducted a screen with over 16,000 RNAi triggers against the SARS-CoV-2 genome using a massively parallel assay to identify hyper-potent siRNAs. We selected 10 candidates for in vitro validation and found five siRNAs that exhibited hyper-potent activity with IC50<20pM and strong neutralisation in live virus experiments. We further enhanced the activity by combinatorial pairing of the siRNA candidates to develop siRNA cocktails and found that these cocktails are active against multiple types of variants of concern (VOC). We examined over 2,000 possible mutations to the siRNA target sites using saturation mutagenesis and identified broad protection against future variants. Finally, we demonstrated that intranasal administration of the siRNA cocktail effectively attenuates clinical signs and viral measures of disease in the Syrian hamster model. Our results pave the way to development of an additional layer of antiviral prophylaxis that is orthogonal to vaccines and monoclonal antibodies.
Collapse
Affiliation(s)
- Ohad Yogev
- Eleven Therapeutics, Cambridge, United Kingdom
| | | | - Giorgia Battistoni
- Eleven Therapeutics, Cambridge, United Kingdom
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, United Kingdom
| | - Dario Bressan
- Eleven Therapeutics, Cambridge, United Kingdom
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, United Kingdom
| | - Adi Naamti
- Eleven Therapeutics, Cambridge, United Kingdom
| | | | | | | | - Myra Hosmillo
- University of Cambridge, Department of Pathology, Division of Virology, Cambridge, United Kingdom
| | | | | | - Lauren McCormick
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher C. Honeycutt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Timothy Johnston
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ian Goodfellow
- University of Cambridge, Department of Pathology, Division of Virology, Cambridge, United Kingdom
| | - Gregory J. Hannon
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, United Kingdom
| | | |
Collapse
|
20
|
Tang Y, Jiao J, Zhao L, Zhuang Z, Wang X, Fu Q, Huang H, Huang L, Qin Y, Zhang J, Yan Q. The contribution of exbB gene to pathogenicity of Pseudomonas plecoglossicida and its interactions with Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2022; 120:610-619. [PMID: 34968708 DOI: 10.1016/j.fsi.2021.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
To study the roles of the exbB gene in Pseudomonas plecoglossicida during interactions with Epinephelus coioides, five short hairpin RNAs (shRNAs) were designed and synthesized to silence the exbB gene in P. plecoglossicida which resulted in significant reductions in exbB mRNA expression. The mutant with the best silencing efficiency (89.3%) was selected for further study. Silencing exbB in the exbB-RNA interference (RNAi) strain resulted in a 70% increase in the survival rate and a 3-day delay in the onset of infection in E. coioides. Silencing of the exbB gene also resulted in a significant decrease in the number of white spots on the spleen surface and in the spleen pathogen load. The results of dual RNA-seq showed that exbB silencing in P. plecoglossicida also resulted in a significant change in both the pathogen and host transcriptomes in the spleens of infected E. coioides. Comparative transcriptome analysis showed that silencing exbB caused significant changes in multiple signaling molecules and interaction- and immune system-related genes in E. coioides. Gene silencing also resulted in the differential expression of flagellar assembly and the bacterial secretion system in P. plecoglossicida during the infection period, and most of the DEGs were down-regulation. These host-pathogen interactions may make it easier for E. coioides to eliminate the exbB-RNAi strain of P. plecoglossicida, suggesting a significant decrease in the pathogenicity of this strain. These results indicated that exbB was a virulence gene of P. plecoglossicida which contributed a lot in the pathogen-host interactions with E. coioides.
Collapse
Affiliation(s)
- Yi Tang
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Jiping Jiao
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Zhixia Zhuang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China
| | - Xiaoru Wang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China
| | - Qi Fu
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China
| | - Huabin Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China; College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China; Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China.
| |
Collapse
|
21
|
Wang W, Zhou P, Wang X, Chen F, Christensen E, Thompson J, Ren X, Kells A, Stanek L, Carter T, Hou J, Sah D. Efficient and Precise Processing of the Optimized Pri-amiRNA in a Huntingtin-Lowering AAV Gene Therapy in Vitro and in Mice and Nonhuman Primates. Hum Gene Ther 2021; 33:37-60. [PMID: 34806402 PMCID: PMC10112875 DOI: 10.1089/hum.2021.221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Huntington's Disease is a fatal neurodegenerative disorder caused by an inherited mutation in the huntingtin gene (HTT) comprising an expanded cytosine-adenine-guanine (CAG) trinucleotide repeat sequence that results in a pathogenic huntingtin protein. AAV gene therapy containing a primary artificial microRNA (pri-amiRNA) specifically targeting HTT mRNA has the potential to provide long-lasting therapeutic benefit, via durable reduction of mutant HTT expression after a single administration. The efficiency and precision of processing of the pri-amiRNA precursor to the mature guide strand by transduced cells is critical for specific and potent HTT lowering. The selection of the optimized pri-amiRNA comprised a series of in vitro studies followed by in vivo studies in small and then large mammals. Our studies demonstrate the predictivity of certain cell culture systems and rodent models for nonhuman primates (NHP) with respect to some, but not all key features of pri-amiRNA processing. In addition, our results show that the processing of pri-amiRNAs to the mature guide strand can differ greatly across different scaffolds and sequences while providing the same levels of target lowering. Importantly, our data demonstrate that there is a combinatorial effect of guide and passenger strand sequences, together with the scaffold, on pri-amiRNA processing, with different guide and passenger strand sequences within the same scaffold dramatically altering pri-amiRNA processing. Taken together, our results highlight the importance of optimizing not only target lowering, but also the efficiency and precision of pri-amiRNA processing in vitro, in rodents and in large mammals to identify the most potent and selective AAV gene therapy that harnesses the endogenous miRNA biogenesis pathway for target lowering without perturbing the endogenous cellular miRNA profile. The optimized pri-amiRNA was selected with this focus on efficiency and precision of pri-amiRNA processing in addition to its pharmacological activity on HTT lowering, and general tolerability in vivo.
Collapse
Affiliation(s)
- Wei Wang
- Voyager Therapeutics Inc, 461444, Cambridge, Massachusetts, United States;
| | - Pengcheng Zhou
- Voyager Therapeutics Inc, 461444, Cambridge, Massachusetts, United States;
| | - Xin Wang
- Voyager Therapeutics Inc, 461444, Cambridge, Massachusetts, United States;
| | - Fen Chen
- Voyager Therapeutics Inc, 461444, Cambridge, Massachusetts, United States;
| | - Emily Christensen
- Voyager Therapeutics Inc, 461444, Cambridge, Massachusetts, United States;
| | - Jeffrey Thompson
- Voyager Therapeutics Inc, 461444, Cambridge, Massachusetts, United States;
| | - Xiaoqin Ren
- Voyager Therapeutics Inc, 461444, Cambridge, Massachusetts, United States;
| | - Adrian Kells
- Voyager Therapeutics Inc, 461444, Cambridge, Massachusetts, United States;
| | - Lisa Stanek
- Sanofi Genzyme, 2194, Cambridge, Massachusetts, United States;
| | - Todd Carter
- Voyager Therapeutics Inc, 461444, Cambridge, Massachusetts, United States;
| | - Jay Hou
- Voyager Therapeutics Inc, 461444, Cambridge, Massachusetts, United States;
| | - Dinah Sah
- Voyager Therapeutics Inc, 461444, 75 Sidney Street, Cambridge, Massachusetts, United States, 02139;
| |
Collapse
|
22
|
He L, Wang L, Zhao L, Zhuang Z, Wang X, Huang H, Fu Q, Huang L, Qin Y, Wang P, Yan Q. Integration of RNA-seq and RNAi reveals the contribution of znuA gene to the pathogenicity of Pseudomonas plecoglossicida and to the immune response of Epinephelus coioides. JOURNAL OF FISH DISEASES 2021; 44:1831-1841. [PMID: 34339054 DOI: 10.1111/jfd.13502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Pseudomonas plecoglossicida is an important pathogen in aquaculture and causes serious economic losses. Our previous study indicated that znuA gene might play an important role in the pathogenicity of P. plecoglossicida. Five shRNAs were designed and synthesized to silence the znuA gene of P. plecoglossicida. Two of the five mutants of P. plecoglossicida exhibited significant reduction in the expression level of znuA mRNA with different efficiencies. The mutant with the highest silencing efficiency of 89.2% was chosen for further studies. Intrapleural injection of the znuA-RNAi strain at a dose of 105 cfu/fish did not cause the death of Epinephelus coioides, and no significant signs were observed at the spleen surface of infected E. coioides, while the counterpart E. coioides infected by the same dose of wild-type strain of P. plecoglossicida all died in 5 days post-infection (dpi). The expression of znuA gene of znuA-RNAi strain in E. coioides was always lower than that in wild-type strain of P. plecoglossicida. The pathogen load in the early stage of infection was higher than that in the later stage of infection. Although the infection of the znuA-RNAi strain of P. plecoglossicida could induce the production of antibodies in E. coioides, it failed to produce a good immune protection against the infection of wild-type strain of P. plecoglossicida. Compared with the transcriptome data of E. coioides infected by the wild-type strain of P. plecoglossicida, the transcriptome data of E. coioides infected by the znuA-RNAi strain of P. plecoglossicida have altered significantly. Among them, KEGG enrichment analysis showed that the focal adhesion pathway was significantly enriched and exhibited the largest number of 302 DEMs (differentially expressed mRNAs). These results showed that the immune response of E. coioides to P. plecoglossicida infection was significantly affected by the RNAi of znuA gene.
Collapse
Affiliation(s)
- Le He
- Fisheries College, Jimei University, Xiamen, China
| | - Luying Wang
- Fisheries College, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, China
| | - Zhixia Zhuang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Xiaoru Wang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Huabin Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Qi Fu
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, China
| | - Pan Wang
- Key Laboratory of Aquatic Functional Feed and Environmental Regulation of Fujian Province, Fujian Dabeinong Aquatic Sci. & Tech. Co., Ltd., Zhangzhou, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
23
|
Inhibition of CBP synergizes with the RNA-dependent mechanisms of Azacitidine by limiting protein synthesis. Nat Commun 2021; 12:6060. [PMID: 34663789 PMCID: PMC8523560 DOI: 10.1038/s41467-021-26258-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 09/22/2021] [Indexed: 01/25/2023] Open
Abstract
The nucleotide analogue azacitidine (AZA) is currently the best treatment option for patients with high-risk myelodysplastic syndromes (MDS). However, only half of treated patients respond and of these almost all eventually relapse. New treatment options are urgently needed to improve the clinical management of these patients. Here, we perform a loss-of-function shRNA screen and identify the histone acetyl transferase and transcriptional co-activator, CREB binding protein (CBP), as a major regulator of AZA sensitivity. Compounds inhibiting the activity of CBP and the closely related p300 synergistically reduce viability of MDS-derived AML cell lines when combined with AZA. Importantly, this effect is specific for the RNA-dependent functions of AZA and not observed with the related compound decitabine that is only incorporated into DNA. The identification of immediate target genes leads us to the unexpected finding that the effect of CBP/p300 inhibition is mediated by globally down regulating protein synthesis.
Collapse
|
24
|
Clapes T, Polyzou A, Prater P, Sagar, Morales-Hernández A, Ferrarini MG, Kehrer N, Lefkopoulos S, Bergo V, Hummel B, Obier N, Maticzka D, Bridgeman A, Herman JS, Ilik I, Klaeylé L, Rehwinkel J, McKinney-Freeman S, Backofen R, Akhtar A, Cabezas-Wallscheid N, Sawarkar R, Rebollo R, Grün D, Trompouki E. Chemotherapy-induced transposable elements activate MDA5 to enhance haematopoietic regeneration. Nat Cell Biol 2021; 23:704-717. [PMID: 34253898 PMCID: PMC8492473 DOI: 10.1038/s41556-021-00707-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
Haematopoietic stem cells (HSCs) are normally quiescent, but have evolved mechanisms to respond to stress. Here, we evaluate haematopoietic regeneration induced by chemotherapy. We detect robust chromatin reorganization followed by increased transcription of transposable elements (TEs) during early recovery. TE transcripts bind to and activate the innate immune receptor melanoma differentiation-associated protein 5 (MDA5) that generates an inflammatory response that is necessary for HSCs to exit quiescence. HSCs that lack MDA5 exhibit an impaired inflammatory response after chemotherapy and retain their quiescence, with consequent better long-term repopulation capacity. We show that the overexpression of ERV and LINE superfamily TE copies in wild-type HSCs, but not in Mda5-/- HSCs, results in their cycling. By contrast, after knockdown of LINE1 family copies, HSCs retain their quiescence. Our results show that TE transcripts act as ligands that activate MDA5 during haematopoietic regeneration, thereby enabling HSCs to mount an inflammatory response necessary for their exit from quiescence.
Collapse
Affiliation(s)
- Thomas Clapes
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Aikaterini Polyzou
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Pia Prater
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Sagar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | | | - Natalie Kehrer
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Stylianos Lefkopoulos
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Veronica Bergo
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Nadine Obier
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Daniel Maticzka
- Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Anne Bridgeman
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Josip S Herman
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ibrahim Ilik
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Lhéanna Klaeylé
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Rolf Backofen
- Department of Computer Science, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Nina Cabezas-Wallscheid
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
- Medical Research Council (MRC), University of Cambridge, Cambridge, UK
| | - Rita Rebollo
- Univ Lyon, INSA-Lyon, INRAE, BF2I, UMR0203, Villeurbanne, France
| | - Dominic Grün
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
25
|
Klotz-Noack K, Klinger B, Rivera M, Bublitz N, Uhlitz F, Riemer P, Lüthen M, Sell T, Kasack K, Gastl B, Ispasanie SSS, Simon T, Janssen N, Schwab M, Zuber J, Horst D, Blüthgen N, Schäfer R, Morkel M, Sers C. SFPQ Depletion Is Synthetically Lethal with BRAF V600E in Colorectal Cancer Cells. Cell Rep 2021; 32:108184. [PMID: 32966782 DOI: 10.1016/j.celrep.2020.108184] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 04/28/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Oncoproteins such as the BRAFV600E kinase endow cancer cells with malignant properties, but they also create unique vulnerabilities. Targeting of BRAFV600E-driven cytoplasmic signaling networks has proved ineffective, as patients regularly relapse with reactivation of the targeted pathways. We identify the nuclear protein SFPQ to be synthetically lethal with BRAFV600E in a loss-of-function shRNA screen. SFPQ depletion decreases proliferation and specifically induces S-phase arrest and apoptosis in BRAFV600E-driven colorectal and melanoma cells. Mechanistically, SFPQ loss in BRAF-mutant cancer cells triggers the Chk1-dependent replication checkpoint, results in decreased numbers and reduced activities of replication factories, and increases collision between replication and transcription. We find that BRAFV600E-mutant cancer cells and organoids are sensitive to combinations of Chk1 inhibitors and chemically induced replication stress, pointing toward future therapeutic approaches exploiting nuclear vulnerabilities induced by BRAFV600E.
Collapse
Affiliation(s)
- Kathleen Klotz-Noack
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bertram Klinger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; IRI Life Sciences & Institute of Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Maria Rivera
- EPO Experimentelle Pharmakologie und Onkologie Berlin-Buch GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Natalie Bublitz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florian Uhlitz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; IRI Life Sciences & Institute of Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Pamela Riemer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany
| | - Mareen Lüthen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Sell
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; IRI Life Sciences & Institute of Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Katharina Kasack
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bastian Gastl
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany
| | - Sylvia S S Ispasanie
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany
| | - Tincy Simon
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany
| | - Nicole Janssen
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology, Auerbachstraße 112, 70376 Stuttgart, Germany; University of Tuebingen, 72074 Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology, Auerbachstraße 112, 70376 Stuttgart, Germany; Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Auf der Morgenstelle 8, 72074 Tuebingen, Germany; German Cancer Consortium (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; Medical University of Vienna, VBC, 1030 Vienna, Austria
| | - David Horst
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nils Blüthgen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; IRI Life Sciences & Institute of Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Reinhold Schäfer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany; Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Chariteplatz 1, 10117 Berlin, Germany
| | - Markus Morkel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christine Sers
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
26
|
Jiménez-Alcázar M, Curiel-García Á, Nogales P, Perales-Patón J, Schuhmacher AJ, Galán-Ganga M, Zhu L, Lowe SW, Al-Shahrour F, Squatrito M. Dianhydrogalactitol Overcomes Multiple Temozolomide Resistance Mechanisms in Glioblastoma. Mol Cancer Ther 2021; 20:1029-1038. [PMID: 33846235 DOI: 10.1158/1535-7163.mct-20-0319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/18/2020] [Accepted: 03/24/2021] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary tumor type in the central nervous system in adults. Resistance to chemotherapy remains one of the major obstacles in GBM treatment. Identifying and overcoming the mechanisms of therapy resistance is instrumental to develop novel therapeutic approaches for patients with GBM. To determine the major drivers of temozolomide (TMZ) sensitivity, we performed shRNA screenings in GBM lines with different O6-methylguanine-DNA methyl-transferase (MGMT) status. We then evaluated dianhydrogalactitol (Val-083), a small alkylating molecule that induces interstrand DNA crosslinking, as a potential treatment to bypass TMZ-resistance mechanisms. We found that loss of mismatch repair (MMR) components and MGMT expression are mutually exclusive mechanisms driving TMZ resistance in vitro Treatment of established GBM cells and tumorsphere lines with Val-083 induces DNA damage and cell-cycle arrest in G2-M phase, independently of MGMT or MMR status, thus circumventing conventional resistance mechanisms to TMZ. Combination of TMZ and Val-083 shows a synergic cytotoxic effect in tumor cells in vitro, ex vivo, and in vivo We propose this combinatorial treatment as a potential approach for patients with GBM.
Collapse
Affiliation(s)
- Miguel Jiménez-Alcázar
- Seve Ballesteros Foundation-Brain Tumors Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Álvaro Curiel-García
- Seve Ballesteros Foundation-Brain Tumors Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Paula Nogales
- Seve Ballesteros Foundation-Brain Tumors Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Javier Perales-Patón
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alberto J Schuhmacher
- Seve Ballesteros Foundation-Brain Tumors Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Marcos Galán-Ganga
- Seve Ballesteros Foundation-Brain Tumors Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Lucía Zhu
- Brain Metastasis Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fátima Al-Shahrour
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Massimo Squatrito
- Seve Ballesteros Foundation-Brain Tumors Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| |
Collapse
|
27
|
Abstract
Glioblastoma is a highly lethal form of brain cancer with no current treatment options that substantially improve patient outcomes. A key therapeutic challenge is the identification of methods that reduce tumor burden while leaving normal cells unaffected. We show that TERT-promoter mutations, common in glioblastoma, lead to TERT reactivation through increased binding of GABPB1L-isoform–containing transcription factor complexes. In turn, we find that cancer-cell–specific inhibition of TERT through GABPB1L reduction results in near-term anti-growth effects and an impaired DNA damage response that profoundly increase the sensitivity of glioblastoma tumors to frontline chemotherapy. Our results thus provide rationale for GABPB1L inhibition combined with temozolomide chemotherapy treatment as a promising therapeutic strategy for glioblastoma. Most glioblastomas (GBMs) achieve cellular immortality by acquiring a mutation in the telomerase reverse transcriptase (TERT) promoter. TERT promoter mutations create a binding site for a GA binding protein (GABP) transcription factor complex, whose assembly at the promoter is associated with TERT reactivation and telomere maintenance. Here, we demonstrate increased binding of a specific GABPB1L-isoform–containing complex to the mutant TERT promoter. Furthermore, we find that TERT promoter mutant GBM cells, unlike wild-type cells, exhibit a critical near-term dependence on GABPB1L for proliferation, notably also posttumor establishment in vivo. Up-regulation of the protein paralogue GABPB2, which is normally expressed at very low levels, can rescue this dependence. More importantly, when combined with frontline temozolomide (TMZ) chemotherapy, inducible GABPB1L knockdown and the associated TERT reduction led to an impaired DNA damage response that resulted in profoundly reduced growth of intracranial GBM tumors. Together, these findings provide insights into the mechanism of cancer-specific TERT regulation, uncover rapid effects of GABPB1L-mediated TERT suppression in GBM maintenance, and establish GABPB1L inhibition in combination with chemotherapy as a therapeutic strategy for TERT promoter mutant GBM.
Collapse
|
28
|
Wang DG, Paddock MN, Lundquist MR, Sun JY, Mashadova O, Amadiume S, Bumpus TW, Hodakoski C, Hopkins BD, Fine M, Hill A, Yang TJ, Baskin JM, Dow LE, Cantley LC. PIP4Ks Suppress Insulin Signaling through a Catalytic-Independent Mechanism. Cell Rep 2020; 27:1991-2001.e5. [PMID: 31091439 PMCID: PMC6619495 DOI: 10.1016/j.celrep.2019.04.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/06/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022] Open
Abstract
Insulin stimulates the conversion of phosphatidylino-sitol-4,5-bisphosphate (PI(4,5)P2) to phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3), which mediates downstream cellular responses. PI(4,5)P2 is produced by phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) and by phosphatidylinositol-5-phos-phate 4-kinases (PIP4Ks). Here, we show that the loss of PIP4Ks (PIP4K2A, PIP4K2B, and PIP4K2C) in vitro results in a paradoxical increase in PI(4,5)P2 and a concomitant increase in insulin-stimulated production of PI(3,4,5)P3. The reintroduction of either wild-type or kinase-dead mutants of the PIP4Ks restored cellular PI(4,5)P2 levels and insulin stimulation of the PI3K pathway, suggesting a catalytic-independent role of PIP4Ks in regulating PI(4,5)P2 levels. These effects are explained by an increase in PIP5K activity upon the deletion of PIP4Ks, which normally suppresses PIP5K activity through a direct binding interaction mediated by the N-terminal motif VMLϕFPDD of PIP4K. Our work uncovers an allosteric function of PIP4Ks in suppressing PIP5K-mediated PI(4,5)P2 synthesis and insulin-dependent conversion to PI(3,4,5)P3 and suggests that the pharmacological depletion of PIP4K enzymes could represent a strategy for enhancing insulin signaling. PI(4,5)P2 is produced by both phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) and by phosphatidylinositol-5-phosphate 4-kinases (PIP4Ks). Wang et al. report an allosteric function of a conserved N-terminal motif of PIP4Ks in suppressing PIP5K-mediated PI(4,5)P2 synthesis and insulin-dependent conversion to PI(3,4,5) P3. This non-catalytic role has implications for the development of PIP4K targeted therapies.
Collapse
Affiliation(s)
- Diana G Wang
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell Medicine/Rockefeller University/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Marcia N Paddock
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mark R Lundquist
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Janet Y Sun
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Oksana Mashadova
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Solomon Amadiume
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Timothy W Bumpus
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Cindy Hodakoski
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Matthew Fine
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Amanda Hill
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - T Jonathan Yang
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Lukas E Dow
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
29
|
Reduced replication origin licensing selectively kills KRAS-mutant colorectal cancer cells via mitotic catastrophe. Cell Death Dis 2020; 11:499. [PMID: 32612138 PMCID: PMC7330027 DOI: 10.1038/s41419-020-2704-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022]
Abstract
To unravel vulnerabilities of KRAS-mutant CRC cells, a shRNA-based screen specifically inhibiting MAPK pathway components and targets was performed in CaCo2 cells harboring conditional oncogenic KRASG12V. The custom-designed shRNA library comprised 121 selected genes, which were previously identified to be strongly regulated in response to MEK inhibition. The screen showed that CaCo2 cells expressing KRASG12V were sensitive to the suppression of the DNA replication licensing factor minichromosome maintenance complex component 7 (MCM7), whereas KRASwt CaCo2 cells were largely resistant to MCM7 suppression. Similar results were obtained in an isogenic DLD-1 cell culture model. Knockdown of MCM7 in a KRAS-mutant background led to replication stress as indicated by increased nuclear RPA focalization. Further investigation showed a significant increase in mitotic cells after simultaneous MCM7 knockdown and KRASG12V expression. The increased percentage of mitotic cells coincided with strongly increased DNA damage in mitosis. Taken together, the accumulation of DNA damage in mitotic cells is due to replication stress that remained unresolved, which results in mitotic catastrophe and cell death. In summary, the data show a vulnerability of KRAS-mutant cells towards suppression of MCM7 and suggest that inhibiting DNA replication licensing might be a viable strategy to target KRAS-mutant cancers.
Collapse
|
30
|
Dunst J, Glaros V, Englmaier L, Sandoz PA, Önfelt B, Kisielow J, Kreslavsky T. Recognition of synthetic polyanionic ligands underlies "spontaneous" reactivity of Vγ1 γδTCRs. J Leukoc Biol 2020; 107:1033-1044. [PMID: 31943366 PMCID: PMC7317387 DOI: 10.1002/jlb.2ma1219-392r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 01/02/2023] Open
Abstract
Although γδTCRs were discovered more than 30 yr ago, principles of antigen recognition by these receptors remain unclear and the nature of these antigens is largely elusive. Numerous studies reported that T cell hybridomas expressing several Vγ1-containing TCRs, including the Vγ1Vδ6 TCR of γδNKT cells, spontaneously secrete cytokines. This property was interpreted as recognition of a self-ligand expressed on the hybridoma cells themselves. Here, we revisited this finding using a recently developed reporter system and live single cell imaging. We confirmed strong spontaneous signaling by Vγ1Vδ6 and related TCRs, but not by TCRs from several other γδ or innate-like αβ T cells, and demonstrated that both γ and δ chains contributed to this reactivity. Unexpectedly, live single cell imaging showed that activation of this signaling did not require any interaction between cells. Further investigation revealed that the signaling is instead activated by interaction with negatively charged surfaces abundantly present under regular cell culture conditions and was abrogated when noncharged cell culture vessels were used. This mode of TCR signaling activation was not restricted to the reporter cell lines, as interaction with negatively charged surfaces also triggered TCR signaling in ex vivo Vγ1 γδ T cells. Taken together, these results explain long-standing observations on the spontaneous reactivity of Vγ1Vδ6 TCR and demonstrate an unexpected antigen presentation-independent mode of TCR activation by a spectrum of chemically unrelated polyanionic ligands.
Collapse
Affiliation(s)
- Josefine Dunst
- Department of Medicine, Division of Immunology and Allergy, Karolinska InstitutetKarolinska University HospitalStockholmSweden
- Center for Molecular MedicineKarolinska InstitutetStockholmSweden
| | - Vassilis Glaros
- Department of Medicine, Division of Immunology and Allergy, Karolinska InstitutetKarolinska University HospitalStockholmSweden
- Center for Molecular MedicineKarolinska InstitutetStockholmSweden
| | - Lukas Englmaier
- Department of Medicine, Division of Immunology and Allergy, Karolinska InstitutetKarolinska University HospitalStockholmSweden
- Center for Molecular MedicineKarolinska InstitutetStockholmSweden
| | - Patrick A. Sandoz
- Department of Applied PhysicsScience for Life LaboratoryKTH Royal Institute of TechnologyStockholmSweden
| | - Björn Önfelt
- Department of Applied PhysicsScience for Life LaboratoryKTH Royal Institute of TechnologyStockholmSweden
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstituteSolnaSweden
| | - Jan Kisielow
- Institute of Molecular Health SciencesETHZurichSwitzerland
| | - Taras Kreslavsky
- Department of Medicine, Division of Immunology and Allergy, Karolinska InstitutetKarolinska University HospitalStockholmSweden
- Center for Molecular MedicineKarolinska InstitutetStockholmSweden
| |
Collapse
|
31
|
Gejman RS, Jones HF, Klatt MG, Chang AY, Oh CY, Chandran SS, Korontsvit T, Zakahleva V, Dao T, Klebanoff CA, Scheinberg DA. Identification of the Targets of T-cell Receptor Therapeutic Agents and Cells by Use of a High-Throughput Genetic Platform. Cancer Immunol Res 2020; 8:672-684. [PMID: 32184297 PMCID: PMC7310334 DOI: 10.1158/2326-6066.cir-19-0745] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/28/2019] [Accepted: 03/10/2020] [Indexed: 12/20/2022]
Abstract
T-cell receptor (TCR)-based therapeutic cells and agents have emerged as a new class of effective cancer therapies. These therapies work on cells that express intracellular cancer-associated proteins by targeting peptides displayed on MHC receptors. However, cross-reactivities of these agents to off-target cells and tissues have resulted in serious, sometimes fatal, adverse events. We have developed a high-throughput genetic platform (termed "PresentER") that encodes MHC-I peptide minigenes for functional immunologic assays and determines the reactivities of TCR-like therapeutic agents against large libraries of MHC-I ligands. In this article, we demonstrated that PresentER could be used to identify the on-and-off targets of T cells and TCR-mimic (TCRm) antibodies using in vitro coculture assays or binding assays. We found dozens of MHC-I ligands that were cross-reactive with two TCRm antibodies and two native TCRs and that were not easily predictable by other methods.
Collapse
Affiliation(s)
- Ron S Gejman
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Tri-Institutional MD-PhD Program (Memorial Sloan Kettering Cancer Center, Rockefeller University, Weill Cornell Medical College), New York, New York
- Weill Cornell Medicine, New York, New York
| | - Heather F Jones
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
| | - Martin G Klatt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aaron Y Chang
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
| | - Claire Y Oh
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
| | - Smita S Chandran
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tatiana Korontsvit
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Viktoriya Zakahleva
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christopher A Klebanoff
- Weill Cornell Medicine, New York, New York
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David A Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
32
|
let-7-Complex MicroRNAs Regulate Broad-Z3, Which Together with Chinmo Maintains Adult Lineage Neurons in an Immature State. G3-GENES GENOMES GENETICS 2020; 10:1393-1401. [PMID: 32071070 PMCID: PMC7144073 DOI: 10.1534/g3.120.401042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During Drosophila melanogaster metamorphosis, arrested immature neurons born during larval development differentiate into their functional adult form. This differentiation coincides with the downregulation of two zinc-finger transcription factors, Chronologically Inappropriate Morphogenesis (Chinmo) and the Z3 isoform of Broad (Br-Z3). Here, we show that br-Z3 is regulated by two microRNAs, let-7 and miR-125, that are activated at the larval-to-pupal transition and are known to also regulate chinmo. The br-Z3 3′UTR contains functional binding sites for both let-7 and miR-125 that confers sensitivity to both of these microRNAs, as determined by deletion analysis in reporter assays. Forced expression of let-7 and miR-125 miRNAs leads to early silencing of Br-Z3 and Chinmo and is associated with inappropriate neuronal sprouting and outgrowth. Similar phenotypes were observed by the combined but not separate depletion of br-Z3 and chinmo. Because persistent Br-Z3 was not detected in let-7-C mutants, this work suggests a model in which let-7 and miR-125 activation at the onset of metamorphosis may act as a failsafe mechanism that ensures the coordinated silencing of both br-Z3 and chinmo needed for the timely outgrowth of neurons arrested during larval development. The let-7 and miR-125 binding site sequences are conserved across Drosophila species and possibly other insects as well, suggesting that this functional relationship is evolutionarily conserved.
Collapse
|
33
|
Yuan S, Natesan R, Sanchez-Rivera FJ, Li J, Bhanu NV, Yamazoe T, Lin JH, Merrell AJ, Sela Y, Thomas SK, Jiang Y, Plesset JB, Miller EM, Shi J, Garcia BA, Lowe SW, Asangani IA, Stanger BZ. Global Regulation of the Histone Mark H3K36me2 Underlies Epithelial Plasticity and Metastatic Progression. Cancer Discov 2020; 10:854-871. [PMID: 32188706 DOI: 10.1158/2159-8290.cd-19-1299] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/19/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
Epithelial plasticity, reversible modulation of a cell's epithelial and mesenchymal features, is associated with tumor metastasis and chemoresistance, leading causes of cancer mortality. Although different master transcription factors and epigenetic modifiers have been implicated in this process in various contexts, the extent to which a unifying, generalized mechanism of transcriptional regulation underlies epithelial plasticity remains largely unknown. Here, through targeted CRISPR/Cas9 screening, we discovered two histone-modifying enzymes involved in the writing and erasing of H3K36me2 that act reciprocally to regulate epithelial-to-mesenchymal identity, tumor differentiation, and metastasis. Using a lysine-to-methionine histone mutant to directly inhibit H3K36me2, we found that global modulation of the mark is a conserved mechanism underlying the mesenchymal state in various contexts. Mechanistically, regulation of H3K36me2 reprograms enhancers associated with master regulators of epithelial-to-mesenchymal state. Our results thus outline a unifying epigenome-scale mechanism by which a specific histone modification regulates cellular plasticity and metastasis in cancer. SIGNIFICANCE: Although epithelial plasticity contributes to cancer metastasis and chemoresistance, no strategies exist for pharmacologically inhibiting the process. Here, we show that global regulation of a specific histone mark, H3K36me2, is a universal epigenome-wide mechanism that underlies epithelial-to-mesenchymal transition and mesenchymal-to-epithelial transition in carcinoma cells. These results offer a new strategy for targeting epithelial plasticity in cancer.This article is highlighted in the In This Issue feature, p. 747.
Collapse
Affiliation(s)
- Salina Yuan
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ramakrishnan Natesan
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Jinyang Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Natarajan V Bhanu
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Taiji Yamazoe
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey H Lin
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Allyson J Merrell
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yogev Sela
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stacy K Thomas
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yanqing Jiang
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jacqueline B Plesset
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Junwei Shi
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin A Garcia
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York.,Howard Hughes Medical Institute, New York, New York
| | - Irfan A Asangani
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z Stanger
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. .,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
34
|
Localized Inhibition of Protein Phosphatase 1 by NUAK1 Promotes Spliceosome Activity and Reveals a MYC-Sensitive Feedback Control of Transcription. Mol Cell 2020; 77:1322-1339.e11. [PMID: 32006464 PMCID: PMC7086158 DOI: 10.1016/j.molcel.2020.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 12/09/2019] [Accepted: 01/07/2020] [Indexed: 01/19/2023]
Abstract
Deregulated expression of MYC induces a dependence on the NUAK1 kinase, but the molecular mechanisms underlying this dependence have not been fully clarified. Here, we show that NUAK1 is a predominantly nuclear protein that associates with a network of nuclear protein phosphatase 1 (PP1) interactors and that PNUTS, a nuclear regulatory subunit of PP1, is phosphorylated by NUAK1. Both NUAK1 and PNUTS associate with the splicing machinery. Inhibition of NUAK1 abolishes chromatin association of PNUTS, reduces spliceosome activity, and suppresses nascent RNA synthesis. Activation of MYC does not bypass the requirement for NUAK1 for spliceosome activity but significantly attenuates transcription inhibition. Consequently, NUAK1 inhibition in MYC-transformed cells induces global accumulation of RNAPII both at the pause site and at the first exon-intron boundary but does not increase mRNA synthesis. We suggest that NUAK1 inhibition in the presence of deregulated MYC traps non-productive RNAPII because of the absence of correctly assembled spliceosomes. Nuclear NUAK1 associates with PP1 and phosphorylates its targeting subunit PNUTS NUAK1, PP1, and PNUTS form a trimer that associates with the splicing machinery Inhibition of NUAK1 reduces spliceosome activity and nascent RNA synthesis When MYC is deregulated, NUAK1 inhibition traps RNAPII at the intron-exon boundary
Collapse
|
35
|
Bok I, Vera O, Xu X, Jasani N, Nakamura K, Reff J, Nenci A, Gonzalez JG, Karreth FA. A Versatile ES Cell-Based Melanoma Mouse Modeling Platform. Cancer Res 2019; 80:912-921. [PMID: 31744817 DOI: 10.1158/0008-5472.can-19-2924] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/24/2019] [Accepted: 11/13/2019] [Indexed: 01/04/2023]
Abstract
The cumbersome and time-consuming process of generating new mouse strains and multiallelic experimental animals often hinders the use of genetically engineered mouse models (GEMM) in cancer research. Here, we describe the development and validation of an embryonic stem cell (ESC)-GEMM platform for rapid modeling of melanoma in mice. The platform incorporates 12 clinically relevant genotypes composed of combinations of four driver alleles (LSL-BrafV600E, LSL-NrasQ61R, PtenFlox, and Cdkn2aFlox) and regulatory alleles to spatiotemporally control the perturbation of genes of interest. The ESCs produce high-contribution chimeras, which recapitulate the melanoma phenotypes of conventionally bred mice. Using the ESC-GEMM platform to modulate Pten expression in melanocytes in vivo, we highlighted the utility and advantages of gene depletion by CRISPR-Cas9, RNAi, or conditional knockout for melanoma modeling. Moreover, complementary genetic methods demonstrated the impact of Pten restoration on the prevention and maintenance of Pten-deficient melanomas. Finally, we showed that chimera-derived melanoma cell lines retain regulatory allele competency and are a powerful resource to complement ESC-GEMM chimera experiments in vitro and in syngeneic grafts in vivo Thus, when combined with sophisticated genetic tools, the ESC-GEMM platform enables rapid, high-throughput, and versatile studies aimed at addressing outstanding questions in melanoma biology.Significance: This study presents a high-throughput and versatile ES cell-based mouse modeling platform that can be combined with state-of-the-art genetic tools to address unanswered questions in melanoma in vivo See related commentary by Thorkelsson et al., p. 655.
Collapse
Affiliation(s)
- Ilah Bok
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Cancer Biology PhD Program, University of South Florida, Tampa, Florida
| | - Olga Vera
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Neel Jasani
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Cancer Biology PhD Program, University of South Florida, Tampa, Florida
| | - Koji Nakamura
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jordan Reff
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Arianna Nenci
- Gene Targeting Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jose G Gonzalez
- Gene Targeting Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Florian A Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
36
|
Schmidt S, Gay D, Uthe FW, Denk S, Paauwe M, Matthes N, Diefenbacher ME, Bryson S, Warrander FC, Erhard F, Ade CP, Baluapuri A, Walz S, Jackstadt R, Ford C, Vlachogiannis G, Valeri N, Otto C, Schülein-Völk C, Maurus K, Schmitz W, Knight JRP, Wolf E, Strathdee D, Schulze A, Germer CT, Rosenwald A, Sansom OJ, Eilers M, Wiegering A. A MYC-GCN2-eIF2α negative feedback loop limits protein synthesis to prevent MYC-dependent apoptosis in colorectal cancer. Nat Cell Biol 2019; 21:1413-1424. [PMID: 31685988 PMCID: PMC6927814 DOI: 10.1038/s41556-019-0408-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
Abstract
Tumours depend on altered rates of protein synthesis for growth and survival, which suggests that mechanisms controlling mRNA translation may be exploitable for therapy. Here, we show that loss of APC, which occurs almost universally in colorectal tumours, strongly enhances the dependence on the translation initiation factor eIF2B5. Depletion of eIF2B5 induces an integrated stress response and enhances translation of MYC via an internal ribosomal entry site. This perturbs cellular amino acid and nucleotide pools, strains energy resources and causes MYC-dependent apoptosis. eIF2B5 limits MYC expression and prevents apoptosis in APC-deficient murine and patient-derived organoids and in APC-deficient murine intestinal epithelia in vivo. Conversely, the high MYC levels present in APC-deficient cells induce phosphorylation of eIF2α via the kinases GCN2 and PKR. Pharmacological inhibition of GCN2 phenocopies eIF2B5 depletion and has therapeutic efficacy in tumour organoids, which demonstrates that a negative MYC-eIF2α feedback loop constitutes a targetable vulnerability of colorectal tumours.
Collapse
Affiliation(s)
- Stefanie Schmidt
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | | | - Friedrich Wilhelm Uthe
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Sarah Denk
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | | | - Niels Matthes
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | | | | | | | - Florian Erhard
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Carsten Patrick Ade
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Apoorva Baluapuri
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Susanne Walz
- Comprehensive Cancer Center Mainfranken, Core Unit Bioinformatics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | | | | | | | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Department of Medicine, The Royal Marsden NHS Trust, London, UK
| | - Christoph Otto
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | | | - Katja Maurus
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Werner Schmitz
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | | | - Elmar Wolf
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | | | - Almut Schulze
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Christoph-Thomas Germer
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Andreas Rosenwald
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Owen James Sansom
- CRUK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Martin Eilers
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany.
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany.
| | - Armin Wiegering
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany.
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany.
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
37
|
Schatoff EM, Goswami S, Zafra MP, Foronda M, Shusterman M, Leach BI, Katti A, Diaz BJ, Dow LE. Distinct Colorectal Cancer-Associated APC Mutations Dictate Response to Tankyrase Inhibition. Cancer Discov 2019; 9:1358-1371. [PMID: 31337618 DOI: 10.1158/2159-8290.cd-19-0289] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022]
Abstract
The majority of colorectal cancers show hyperactivated WNT signaling due to inactivating mutations in the adenomatous polyposis coli (APC) tumor suppressor. Genetically restoring APC suppresses WNT and induces rapid and sustained tumor regression, implying that reengaging this endogenous tumor-suppressive mechanism may be an effective therapeutic strategy. Here, using new animal models, human cell lines, and ex vivo organoid cultures, we show that tankyrase (TNKS) inhibition can control WNT hyperactivation and provide long-term tumor control in vivo, but that effective responses are critically dependent on how APC is disrupted. Mutant APC proteins truncated within the mutation cluster region physically engage the destruction complex and suppress the WNT transcriptional program, while APC variants with early truncations (e.g., Apc Min) show limited interaction with AXIN1 and β-catenin, and do not respond to TNKS blockade. Together, this work shows that TNKS inhibition, like APC restoration, can reestablish endogenous control of WNT/β-catenin signaling, but that APC genotype is a crucial determinant of this response. SIGNIFICANCE: This study reveals how subtle changes to the mutations in a critical colorectal tumor suppressor, APC, influence the cellular response to a targeted therapy. It underscores how investigating the specific genetic alterations that occur in human cancer can identify important biological mechanisms of drug response and resistance.This article is highlighted in the In This Issue feature, p. 1325.
Collapse
Affiliation(s)
- Emma M Schatoff
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York.,Weill Cornell/Rockefeller/Sloan Kettering Tri-I MD-PhD program, New York, New York.,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York
| | - Sukanya Goswami
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Maria Paz Zafra
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Miguel Foronda
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Michael Shusterman
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Benjamin I Leach
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Alyna Katti
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York.,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York
| | - Bianca J Diaz
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York.,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York. .,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York.,Department of Biochemistry, Weill Cornell Medicine, New York, New York
| |
Collapse
|
38
|
Yuan TL, Amzallag A, Bagni R, Yi M, Afghani S, Burgan W, Fer N, Strathern LA, Powell K, Smith B, Waters AM, Drubin D, Thomson T, Liao R, Greninger P, Stein GT, Murchie E, Cortez E, Egan RK, Procter L, Bess M, Cheng KT, Lee CS, Lee LC, Fellmann C, Stephens R, Luo J, Lowe SW, Benes CH, McCormick F. Differential Effector Engagement by Oncogenic KRAS. Cell Rep 2019; 22:1889-1902. [PMID: 29444439 DOI: 10.1016/j.celrep.2018.01.051] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 10/02/2017] [Accepted: 01/17/2018] [Indexed: 12/25/2022] Open
Abstract
KRAS can bind numerous effector proteins, which activate different downstream signaling events. The best known are RAF, phosphatidylinositide (PI)-3' kinase, and RalGDS families, but many additional direct and indirect effectors have been reported. We have assessed how these effectors contribute to several major phenotypes in a quantitative way, using an arrayed combinatorial siRNA screen in which we knocked down 41 KRAS effectors nodes in 92 cell lines. We show that every cell line has a unique combination of effector dependencies, but in spite of this heterogeneity, we were able to identify two major subtypes of KRAS mutant cancers of the lung, pancreas, and large intestine, which reflect different KRAS effector engagement and opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Tina L Yuan
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 3rd Street, San Francisco, CA 94158, USA
| | - Arnaud Amzallag
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Rachel Bagni
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - Ming Yi
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - Shervin Afghani
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 3rd Street, San Francisco, CA 94158, USA
| | - William Burgan
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - Nicole Fer
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - Leslie A Strathern
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - Katie Powell
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - Brian Smith
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - Andrew M Waters
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - David Drubin
- Selventa, One Alewife Center, Suite 330, Cambridge, MA 02140, USA
| | - Ty Thomson
- Selventa, One Alewife Center, Suite 330, Cambridge, MA 02140, USA
| | - Rosy Liao
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Patricia Greninger
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Giovanna T Stein
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ellen Murchie
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Eliane Cortez
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Regina K Egan
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lauren Procter
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - Matthew Bess
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - Kwong Tai Cheng
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - Chih-Shia Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Liam Changwoo Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Christof Fellmann
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Robert Stephens
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Scott W Lowe
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Cyril H Benes
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 3rd Street, San Francisco, CA 94158, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA.
| |
Collapse
|
39
|
Hinterndorfer M, Zuber J. Functional-genetic approaches to understanding drug response and resistance. Curr Opin Genet Dev 2019; 54:41-47. [PMID: 30951975 DOI: 10.1016/j.gde.2019.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/03/2019] [Indexed: 12/13/2022]
Abstract
Drug development remains a slow and expensive process, while the effective use of established therapeutics is widely hampered by our limited understanding of response and resistance mechanisms. Functional-genetic tools such as CRISPR/Cas9, advanced RNAi methods, and targeted protein degradation, together with other emerging technologies such as time-resolved and single-cell transcriptomics, fundamentally change the way we can search for candidate therapeutic targets and evaluate them before drug development. In addition, for already available therapeutics these tools open vast opportunities for probing response mechanisms and predictive biomarkers, and thereby guide the development of personalized therapies. Here, we review promising applications and remaining limitations of recently established functional-genetic tools for high-throughput screening and the in-depth analysis of candidate targets and established drugs.
Collapse
Affiliation(s)
- Matthias Hinterndorfer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; Medical University of Vienna, Vienna BioCenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
40
|
O'Loughlin TA, Gilbert LA. Functional Genomics for Cancer Research: Applications In Vivo and In Vitro. ANNUAL REVIEW OF CANCER BIOLOGY 2019. [DOI: 10.1146/annurev-cancerbio-030518-055742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functional genomics holds great promise for the dissection of cancer biology. The elucidation of genetic cooperation and molecular details that govern oncogenesis, metastasis, and response to therapy is made possible by robust technologies for perturbing gene function coupled to quantitative analysis of cancer phenotypes resulting from genetic or epigenetic perturbations. Multiplexed genetic perturbations enable the dissection of cooperative genetic lesions as well as the identification of synthetic lethal gene pairs that hold particular promise for constructing innovative cancer therapies. Lastly, functional genomics strategies enable the highly multiplexed in vivo analysis of genes that govern tumorigenesis as well as of the complex multicellular biology of a tumor, such as immune response and metastasis phenotypes. In this review, we discuss both historical and emerging functional genomics approaches and their impact on the cancer research landscape.
Collapse
Affiliation(s)
- Thomas A. O'Loughlin
- Department of Urology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94158, USA
| | - Luke A. Gilbert
- Department of Urology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94158, USA
- Innovative Genomics Institute, University of California, San Francisco, California 94158, USA
| |
Collapse
|
41
|
MAP kinase and autophagy pathways cooperate to maintain RAS mutant cancer cell survival. Proc Natl Acad Sci U S A 2019; 116:4508-4517. [PMID: 30709910 DOI: 10.1073/pnas.1817494116] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Oncogenic mutations in the small GTPase KRAS are frequently found in human cancers, and, currently, there are no effective targeted therapies for these tumors. Using a combinatorial siRNA approach, we analyzed a panel of KRAS mutant colorectal and pancreatic cancer cell lines for their dependency on 28 gene nodes that represent canonical RAS effector pathways and selected stress response pathways. We found that RAF node knockdown best differentiated KRAS mutant and KRAS WT cancer cells, suggesting RAF kinases are key oncoeffectors for KRAS addiction. By analyzing all 376 pairwise combination of these gene nodes, we found that cotargeting the RAF, RAC, and autophagy pathways can improve the capture of KRAS dependency better than targeting RAF alone. In particular, codepletion of the oncoeffector kinases BRAF and CRAF, together with the autophagy E1 ligase ATG7, gives the best therapeutic window between KRAS mutant cells and normal, untransformed cells. Distinct patterns of RAS effector dependency were observed across KRAS mutant cell lines, indicative of heterogeneous utilization of effector and stress response pathways in supporting KRAS addiction. Our findings revealed previously unappreciated complexity in the signaling network downstream of the KRAS oncogene and suggest rational target combinations for more effective therapeutic intervention.
Collapse
|
42
|
Ghosh D, Venkataramani P, Nandi S, Bhattacharjee S. CRISPR-Cas9 a boon or bane: the bumpy road ahead to cancer therapeutics. Cancer Cell Int 2019; 19:12. [PMID: 30636933 PMCID: PMC6325665 DOI: 10.1186/s12935-019-0726-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022] Open
Abstract
Genome editing allows for the precise manipulation of DNA sequences in a cell making this technology essential for understanding gene function. CRISPR/Cas9 is a targeted genome-editing platform derived from bacterial adaptive immune system and has been repurposed into a genome-editing tool. The RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, making this technology easier, more efficient, scalable and an indispensable tool in biological research. This technology has helped genetically engineer animal models to understand disease mechanisms and elucidate molecular details that can be exploited for improved therapeutic outcomes. In this review, we describe the CRISPR-Cas9 gene-editing mechanism, CRISPR-screening methods, therapeutic targeting of CRISPR in animal models and in cancer immunotherapy. We also discuss the ongoing clinical trials using this tool, limitations of this tool that might impede the clinical applicability of CRISPR-Cas9 and future directions for developing effective CRISPR-Cas9 delivery systems that may improve cancer therapeutics.
Collapse
Affiliation(s)
- Debarati Ghosh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY USA
| | | | - Saikat Nandi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY USA
| | | |
Collapse
|
43
|
Genetically modified pigs are protected from classical swine fever virus. PLoS Pathog 2018; 14:e1007193. [PMID: 30543715 PMCID: PMC6292579 DOI: 10.1371/journal.ppat.1007193] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/31/2018] [Indexed: 01/01/2023] Open
Abstract
Classical swine fever (CSF) caused by classical swine fever virus (CSFV) is one of the most detrimental diseases, and leads to significant economic losses in the swine industry. Despite efforts by many government authorities to stamp out the disease from national pig populations, the disease remains widespread. Here, antiviral small hairpin RNAs (shRNAs) were selected and then inserted at the porcine Rosa26 (pRosa26) locus via a CRISPR/Cas9-mediated knock-in strategy. Finally, anti-CSFV transgenic (TG) pigs were produced by somatic nuclear transfer (SCNT). Notably, in vitro and in vivo viral challenge assays further demonstrated that these TG pigs could effectively limit the replication of CSFV and reduce CSFV-associated clinical signs and mortality, and disease resistance could be stably transmitted to the F1-generation. Altogether, our work demonstrated that RNA interference (RNAi) technology combining CRISPR/Cas9 technology offered the possibility to produce TG animal with improved resistance to viral infection. The use of these TG pigs can reduce CSF-related economic losses and this antiviral strategy may be useful for future antiviral research. Classical swine fever (CSF), caused by classical swine fever virus (CSFV), and is a highly contagious, often fatal porcine disease that causes significant economic losses. Due to the economic importance of this virus to the pig industry, the biology and pathogenesis of CSFV have been investigated extensively. Despite efforts by many government authorities to stamp out the disease from national pig populations, the disease remains widespread, and it is only a matter of time before the virus is reintroduced and the next round of disease outbreaks occurs. These findings highlight the necessity and urgency for developing effective approaches to eradicate the challenging CSFV. In this study, we successfully produced anti-CSFV TG pigs by combining RNAi technology and CRISPR/Cas9 technologies, and viral challenge results confirmed that these TG pigs could effectively limit the replication of CSFV in vivo and in vitro. Additionally, we confirmed that the disease resistance traits in the TG founders were stably transmitted to their F1-generation offspring. Altogether, our work reported the combinational application of CRISPR/Cas9 and RNA interference (RNAi) technology in the generation of anti-CSFV TG pigs, it provided an alternative strategy to change the virus. The results of this study suggested that these TG pigs offered potential benefits over commercial vaccination and reduced CSFV-related economic losses.
Collapse
|
44
|
Rodriguez-Bravo V, Pippa R, Song WM, Carceles-Cordon M, Dominguez-Andres A, Fujiwara N, Woo J, Koh AP, Ertel A, Lokareddy RK, Cuesta-Dominguez A, Kim RS, Rodriguez-Fernandez I, Li P, Gordon R, Hirschfield H, Prats JM, Reddy EP, Fatatis A, Petrylak DP, Gomella L, Kelly WK, Lowe SW, Knudsen KE, Galsky MD, Cingolani G, Lujambio A, Hoshida Y, Domingo-Domenech J. Nuclear Pores Promote Lethal Prostate Cancer by Increasing POM121-Driven E2F1, MYC, and AR Nuclear Import. Cell 2018; 174:1200-1215.e20. [PMID: 30100187 DOI: 10.1016/j.cell.2018.07.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/16/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022]
Abstract
Nuclear pore complexes (NPCs) regulate nuclear-cytoplasmic transport, transcription, and genome integrity in eukaryotic cells. However, their functional roles in cancer remain poorly understood. We interrogated the evolutionary transcriptomic landscape of NPC components, nucleoporins (Nups), from primary to advanced metastatic human prostate cancer (PC). Focused loss-of-function genetic screen of top-upregulated Nups in aggressive PC models identified POM121 as a key contributor to PC aggressiveness. Mechanistically, POM121 promoted PC progression by enhancing importin-dependent nuclear transport of key oncogenic (E2F1, MYC) and PC-specific (AR-GATA2) transcription factors, uncovering a pharmacologically targetable axis that, when inhibited, decreased tumor growth, restored standard therapy efficacy, and improved survival in patient-derived pre-clinical models. Our studies molecularly establish a role of NPCs in PC progression and give a rationale for NPC-regulated nuclear import targeting as a therapeutic strategy for lethal PC. These findings may have implications for understanding how NPC deregulation contributes to the pathogenesis of other tumor types.
Collapse
Affiliation(s)
- Veronica Rodriguez-Bravo
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Raffaella Pippa
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Won-Min Song
- Genetic and Genomic Sciences Department. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marc Carceles-Cordon
- Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ana Dominguez-Andres
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jungreem Woo
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna P Koh
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam Ertel
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alvaro Cuesta-Dominguez
- Oncological Sciences Department. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Liver Diseases, Medicine Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rosa S Kim
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Peiyao Li
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ronald Gordon
- Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hadassa Hirschfield
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Josep M Prats
- Urology Department, Hospital de Calella, Barcelona 08370, Spain
| | - E Premkumar Reddy
- Oncological Sciences Department. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alessandro Fatatis
- Pharmacology and Physiology Department, Drexler University, Philadelphia, PA 19104, USA
| | - Daniel P Petrylak
- Medical Oncology Department, Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Leonard Gomella
- Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - W Kevin Kelly
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Karen E Knudsen
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Matthew D Galsky
- Medical Oncology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Amaia Lujambio
- Oncological Sciences Department. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Liver Diseases, Medicine Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Josep Domingo-Domenech
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
45
|
Cassidy LD, Young ARJ, Pérez-Mancera PA, Nimmervoll B, Jaulim A, Chen HC, McIntyre DJO, Brais R, Ricketts T, Pacey S, De La Roche M, Gilbertson RJ, Rubinsztein DC, Narita M. A novel Atg5-shRNA mouse model enables temporal control of Autophagy in vivo. Autophagy 2018; 14:1256-1266. [PMID: 29999454 PMCID: PMC6103714 DOI: 10.1080/15548627.2018.1458172] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 01/23/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily conserved catabolic pathway whose modulation has been linked to diverse disease states, including age-associated disorders. Conventional and conditional whole-body knockout mouse models of key autophagy genes display perinatal death and lethal neurotoxicity, respectively, limiting their applications for in vivo studies. Here, we have developed an inducible shRNA mouse model targeting Atg5, allowing us to dynamically inhibit autophagy in vivo, termed ATG5i mice. The lack of brain-associated shRNA expression in this model circumvents the lethal phenotypes associated with complete autophagy knockouts. We show that ATG5i mice recapitulate many of the previously described phenotypes of tissue-specific knockouts. While restoration of autophagy in the liver rescues hepatomegaly and other pathologies associated with autophagy deficiency, this coincides with the development of hepatic fibrosis. These results highlight the need to consider the potential side effects of systemic anti-autophagy therapies.
Collapse
Affiliation(s)
- Liam D. Cassidy
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Andrew RJ. Young
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Birgit Nimmervoll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Adil Jaulim
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Hung-Chang Chen
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Rebecca Brais
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Thomas Ricketts
- Cambridge Institute for Medical Research, Department of Medical Genetics, Cambridge, UK
| | - Simon Pacey
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Maike De La Roche
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - David C. Rubinsztein
- Cambridge Institute for Medical Research, Department of Medical Genetics, Cambridge, UK
- UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge Biomedical Campus, Cambridge, UK
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
46
|
Morales-Hernández A, Martinat A, Chabot A, Kang G, McKinney-Freeman S. Elevated Oxidative Stress Impairs Hematopoietic Progenitor Function in C57BL/6 Substrains. Stem Cell Reports 2018; 11:334-347. [PMID: 30017822 PMCID: PMC6093083 DOI: 10.1016/j.stemcr.2018.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022] Open
Abstract
C57BL/6N (N) and C57BL/6J (J) mice possess key genetic differences, including a deletion in the Nicotinamide nucleotide transhydrogenase (Nnt) gene that results in a non-functional protein in J mice. NNT regulates mitochondrial oxidative stress. Although elevated oxidative stress can compromise hematopoietic stem and progenitor cell (HSPC) function, it is unknown whether N- and J-HSPCs are functionally equivalent. Here, we report that J-HSPCs display compromised short-term hematopoietic repopulating activity relative to N-HSPCs that is defined by a delay in lymphoid reconstitution and impaired function of specific multi-potent progenitor populations post transplant. J-HSPCs also displayed elevated reactive oxygen species (ROS) relative to N-HSPCs post transplant and upregulate ROS levels more in response to hematopoietic stress. Nnt knockdown in N-HSPCs recapitulated J-HSPCs’ short-term repopulating defect, indicating that NNT loss contributes to this defect. In summary, C57BL/6N and C57BL/6J HSPCs are not functionally equivalent, which should be considered when determining the substrain most appropriate for investigations of HSPC biology. C57BL/6J-HSPCs display a repopulating disadvantage relative to C57BL/6N-HSPCs C57BL/6J-HSPCs display greater oxidative stress post transplant than C57BL/6N-HSPCs Nnt loss contributes to the functional differences between C57BL/6N and C57BL/6J-HSPCs MPP3 and MPP4 are the HSPCs populations responsible for the repopulating differences
Collapse
Affiliation(s)
| | - Alice Martinat
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ashley Chabot
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Guolian Kang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
47
|
Labuhn M, Adams FF, Ng M, Knoess S, Schambach A, Charpentier EM, Schwarzer A, Mateo JL, Klusmann JH, Heckl D. Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications. Nucleic Acids Res 2018; 46:1375-1385. [PMID: 29267886 PMCID: PMC5814880 DOI: 10.1093/nar/gkx1268] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/27/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022] Open
Abstract
Genome editing with the CRISPR-Cas9 system has enabled unprecedented efficacy for reverse genetics and gene correction approaches. While off-target effects have been successfully tackled, the effort to eliminate variability in sgRNA efficacies-which affect experimental sensitivity-is in its infancy. To address this issue, studies have analyzed the molecular features of highly active sgRNAs, but independent cross-validation is lacking. Utilizing fluorescent reporter knock-out assays with verification at selected endogenous loci, we experimentally quantified the target efficacies of 430 sgRNAs. Based on this dataset we tested the predictive value of five recently-established prediction algorithms. Our analysis revealed a moderate correlation (r = 0.04 to r = 0.20) between the predicted and measured activity of the sgRNAs, and modest concordance between the different algorithms. We uncovered a strong PAM-distal GC-content-dependent activity, which enabled the exclusion of inactive sgRNAs. By deriving nine additional predictive features we generated a linear model-based discrete system for the efficient selection (r = 0.4) of effective sgRNAs (CRISPRater). We proved our algorithms' efficacy on small and large external datasets, and provide a versatile combined on- and off-target sgRNA scanning platform. Altogether, our study highlights current issues and efforts in sgRNA efficacy prediction, and provides an easily-applicable discrete system for selecting efficient sgRNAs.
Collapse
Affiliation(s)
- Maurice Labuhn
- Pediatric Hematology & Oncology, Hannover Medical School, Hannover, Germany
| | - Felix F Adams
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Michelle Ng
- Pediatric Hematology & Oncology, Hannover Medical School, Hannover, Germany
| | - Sabine Knoess
- Pediatric Hematology & Oncology, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Emmanuelle M Charpentier
- Department of Regulation in Infection Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Adrian Schwarzer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Juan L Mateo
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
- Department of Information Technology, University of Oviedo, Oviedo, Asturias, Spain
| | - Jan-Henning Klusmann
- Pediatric Hematology & Oncology, Hannover Medical School, Hannover, Germany
- Department of Pediatrics I, Pediatric Hematology and Oncology, University of Halle, Halle, Germany
| | - Dirk Heckl
- Pediatric Hematology & Oncology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
48
|
The IAP family member BRUCE regulates autophagosome-lysosome fusion. Nat Commun 2018; 9:599. [PMID: 29426817 PMCID: PMC5807552 DOI: 10.1038/s41467-018-02823-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/02/2018] [Indexed: 11/22/2022] Open
Abstract
Autophagy has an important role in cellular homeostasis by degrading and recycling cytotoxic components. Ubiquitination is known to target cargoes for autophagy; however, key components of this pathway remain elusive. Here we performed an RNAi screen to uncover ubiquitin modifiers that are required for starvation-induced macroautophagy in mammalian cells. Our screen uncovered BRUCE/Apollon/Birc6, an IAP protein, as a new autophagy regulator. Depletion of BRUCE leads to defective fusion of autophagosomes and lysosomes. Mechanistically, BRUCE selectively interacts with two ATG8 members GABARAP and GABARAPL1, as well as with Syntaxin 17, which are all critical regulators of autophagosome–lysosome fusion. In addition, BRUCE colocalizes with LAMP2. Interestingly, a non-catalytic N-terminal BRUCE fragment that is sufficient to bind GABARAP/GABARAPL1 and Syntaxin 17, and to colocalize with LAMP2, rescues autolysosome formation in Bruce−/− cells. Thus, BRUCE promotes autolysosome formation independently of its ubiquitin-conjugating activity and is a regulator of both macroautophagy and apoptosis. The inhibitor of apoptosis (IAP) protein, BRUCE is known to ubiquitinate apoptosis regulators for proteasomal degradation. Here the authors show that BRUCE provides a bridge between LAMP2 on lysosomes and Atg8 family proteins on autophagosomes to support autophagosome-lysosome fusion.
Collapse
|
49
|
Hubner EK, Lechler C, Kohnke-Ertel B, Zmoos AF, Sage J, Schmid RM, Ehmer U. An in vivo transfection system for inducible gene expression and gene silencing in murine hepatocytes. J Gene Med 2018; 19. [PMID: 28009940 DOI: 10.1002/jgm.2940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hydrodynamic tail vein injection (HTVI) of transposon-based integration vectors is an established system for stably transfecting mouse hepatocytes in vivo that has been successfully employed to study key questions in liver biology and cancer. Refining the vectors for transposon-mediated hepatocyte transfection will further expand the range of applications of this technique in liver research. In the present study, we report an advanced transposon-based system for manipulating gene expression in hepatocytes in vivo. METHODS Transposon-based vector constructs were generated to enable the constitutive expression of inducible Cre recombinase (CreER) together with tetracycline-inducible transgene or miR-small hairpin RNA (shRNA) expression (Tet-ON system). Transposon and transposase expression vectors were co-injected into R26R-mTmG reporter mice by HTVI. Cre-mediated gene recombination was induced by tamoxifen, followed by the administration of doxycycline to drive tetracycline-inducible gene or shRNA expression. Expression was visualized by immunofluorescence staining in livers of injected mice. RESULTS After HTVI, Cre recombination by tamoxifen led to the expression of membrane-bound green fluorescent protein in transfected hepatocytes. Activation of inducible gene or shRNA expression was detected by immunostaining in up to one-third of transfected hepatocytes, with an efficiency dependent on the promoter driving the Tet-ON system. CONCLUSIONS Our vector system combines Cre-lox mediated gene mutation with inducible gene expression or gene knockdown, respectively. It provides the opportunity for rapid and specific modification of hepatocyte gene expression and can be a useful tool for genetic screening approaches and analysis of target genes specifically in genetically engineered mouse models.
Collapse
Affiliation(s)
- Eric K Hubner
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Lechler
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Birgit Kohnke-Ertel
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Anne-Flore Zmoos
- Department of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Julien Sage
- Department of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Roland M Schmid
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ursula Ehmer
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
50
|
Abstract
Advances in translational research are often driven by new technologies. The advent of microarrays, next-generation sequencing, proteomics and RNA interference (RNAi) have led to breakthroughs in our understanding of the mechanisms of cancer and the discovery of new cancer drug targets. The discovery of the bacterial clustered regularly interspaced palindromic repeat (CRISPR) system and its subsequent adaptation as a tool for mammalian genome engineering has opened up new avenues for functional genomics studies. This review will focus on the utility of CRISPR in the context of cancer drug target discovery.
Collapse
Affiliation(s)
- Ji Luo
- Laboratory of Cancer Biology and Genomics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| |
Collapse
|