1
|
Muszka Z, Jenei V, Mácsik R, Mezhonova E, Diyab S, Csősz R, Bácsi A, Mázló A, Koncz G. Life-threatening risk factors contribute to the development of diseases with the highest mortality through the induction of regulated necrotic cell death. Cell Death Dis 2025; 16:273. [PMID: 40216765 PMCID: PMC11992264 DOI: 10.1038/s41419-025-07563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 02/17/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
Chronic diseases affecting the cardiovascular system, diabetes mellitus, neurodegenerative diseases, and various other organ-specific conditions, involve different underlying pathological processes. However, they share common risk factors that contribute to the development and progression of these diseases, including air pollution, hypertension, obesity, high cholesterol levels, smoking and alcoholism. In this review, we aim to explore the connection between four types of diseases with different etiologies and various risk factors. We highlight that the presence of risk factors induces regulated necrotic cell death, leading to the release of damage-associated molecular patterns (DAMPs), ultimately resulting in sterile inflammation. Therefore, DAMP-mediated inflammation may be the link explaining how risk factors can lead to the development and maintenance of chronic diseases. To explore these processes, we summarize the main cell death pathways activated by the most common life-threatening risk factors, the types of released DAMPs and how these events are associated with the pathophysiology of diseases with the highest mortality. Various risk factors, such as smoking, air pollution, alcoholism, hypertension, obesity, and high cholesterol levels induce regulated necrosis. Subsequently, the release of DAMPs leads to chronic inflammation, which increases the risk of many diseases, including those with the highest mortality rates.
Collapse
Affiliation(s)
- Zsuzsa Muszka
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Viktória Jenei
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
- Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Rebeka Mácsik
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Evgeniya Mezhonova
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Silina Diyab
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Réka Csősz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary.
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary.
| |
Collapse
|
2
|
Ki MS, Shin JH, Sung MD, Chang S, Leem AY, Lee SH, Park MS, Kim YS, Chung KS. Association Between Plasma Granzyme B Levels, Organ Failure, and 28-Day Mortality Prediction in Patients with Sepsis. J Clin Med 2025; 14:1461. [PMID: 40094854 PMCID: PMC11900419 DOI: 10.3390/jcm14051461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025] Open
Abstract
Background/Objectives: Sepsis is basically an inflammatory disease that involves the host's immune response. Granzyme B, a cytotoxic protease, has garnered attention for its involvement in modulating immune responses. This study aimed to elucidate the clinical implications of granzyme B in critically ill patients with sepsis, focusing on plasma granzyme B levels as a potential prognostic marker. Methods: We conducted a retrospective analysis of sequentially collected blood samples from 57 sepsis patients admitted to the medical intensive care unit at Severance Hospital, a tertiary hospital in Seoul, South Korea. Clinical and laboratory data were comparatively analyzed between 28-day survivors and nonsurvivors. Results: The number of patients in the survivor and nonsurvivor groups was 32 (56.1%) and 25 (43.9%), respectively. Compared to survivors, nonsurvivors had higher APACHE II (23.5 vs. 34, p = 0.007) and SOFA (10 vs. 15, p = 0.001) scores, as well as increased levels of serum lactate (1.8 vs. 9.2 mmol/L, p < 0.001) and plasma granzyme B (28.2 vs. 71 pg/mL, p < 0.001). Granzyme B exhibited a robust area under the receiving operating characteristic (AUROC) for predicting 28-day mortality (AUROC = 0.794), comparable to lactate (0.804), SOFA (0.764), and APACHE II (0.709). The combined index of lactate and granzyme B demonstrated the highest AUROC (0.838) among all investigated predictors. Significant positive correlations were observed between log granzyme B and various inflammatory cytokines, including log IFN-γ (r = 0.780), IL-4 (r = 0.540), IL-10 (r = 0.534), and IL-6 (r = 0.520). Conclusions: Plasma granzyme B demonstrated fair short-term mortality prediction among patients admitted to the ICU, suggesting its potential utility for risk stratification and managing patients with sepsis.
Collapse
Affiliation(s)
- Min Seo Ki
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.S.K.)
- Division of Pulmonology, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang 10444, Republic of Korea
| | - Ju Hye Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.S.K.)
| | - Min Dong Sung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.S.K.)
| | - Shihwan Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.S.K.)
| | - Ah Young Leem
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.S.K.)
| | - Su Hwan Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.S.K.)
| | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.S.K.)
| | - Young Sam Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.S.K.)
| | - Kyung Soo Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.S.K.)
| |
Collapse
|
3
|
Diaz-Barreiro A, Talabot-Ayer D, Huard A, Cereghetti G, Tonacini J, Maillasson M, Francés-Monerris A, Mortier E, Palmer G. Full-length and N-terminally truncated recombinant interleukin-38 variants are similarly inefficient in antagonizing interleukin-36 and interleukin-1 receptors. Cell Commun Signal 2025; 23:34. [PMID: 39833821 PMCID: PMC11744908 DOI: 10.1186/s12964-025-02035-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Interleukin (IL)-38 is an IL-1 family cytokine that was proposed to exert anti-inflammatory effects. However, its mechanisms of action are not well understood and the identity of the IL-38 receptor(s) remains debated. Proposed candidates include the IL-1 receptor (IL-1R1), the IL-36 receptor (IL-36R) and the orphan receptor IL-1RAPL1. Yet, in literature, IL-38 is often presented as an IL-36R antagonist. METHODS The N-terminus of the IL-38 protein produced in a human keratinocyte cell line and of endogenous epidermal IL-38 isolated from healthy human skin was characterized by mass spectrometry. The effects of various recombinant forms of IL-38 on IL-36R- and IL-1R1-mediated responses were assessed in IL-36R HEK Blue reporter cells and in a normal human keratinocyte cell line. IL-8 and IL-6 production was quantified by ELISA. Binding of recombinant IL-38 proteins to the IL-36R was assessed by surface plasmon resonance. RESULTS Analysis of its native N-terminus revealed that the IL-38 protein produced by human keratinocytes starts at cysteine 2. In cell-based assays, neither full-length amino acid 2-152 IL-38 nor two N-terminally truncated forms of the protein showed efficient antagonist activity on IL-36R- and IL-1R1-mediated responses. The recombinant IL-38 proteins bound to the IL-36R with only moderate affinity, which may provide a mechanistic explanation for inefficient IL-36R antagonism. CONCLUSIONS Our results argue against meaningful inhibitory effects of any of the recombinant IL-38 variants tested on IL-36R or IL-1R1-mediated responses. The mechanisms underlying reported anti-inflammatory effects of IL-38 are thus still unclear, but seem unlikely to be mediated by classical IL-36R or IL-1R1 antagonism.
Collapse
Affiliation(s)
- Alejandro Diaz-Barreiro
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, CH-1211, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Dominique Talabot-Ayer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, CH-1211, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Arnaud Huard
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, CH-1211, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Gea Cereghetti
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jenna Tonacini
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, CH-1211, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Mike Maillasson
- Nantes Université, CNRS, Inserm, CRCI 2 NA, Nantes, France
- Nantes Université, Centre Hospitalo-Universitaire (CHU) Nantes, Inserm, CNRS, SFR Bonamy, UMS BioCore, Imp@ct Platform, Inserm, Nantes, France
| | | | - Erwan Mortier
- Nantes Université, CNRS, Inserm, CRCI 2 NA, Nantes, France
- Nantes Université, Centre Hospitalo-Universitaire (CHU) Nantes, Inserm, CNRS, SFR Bonamy, UMS BioCore, Imp@ct Platform, Inserm, Nantes, France
| | - Gaby Palmer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, CH-1211, Switzerland.
- Geneva Centre for Inflammation Research, Geneva, Switzerland.
| |
Collapse
|
4
|
Hänggi K, Li J, Gangadharan A, Liu X, Celias DP, Osunmakinde O, Keske A, Davis J, Ahmad F, Giron A, Anadon CM, Gardner A, DeNardo DG, Shaw TI, Beg AA, Yu X, Ruffell B. Interleukin-1α release during necrotic-like cell death generates myeloid-driven immunosuppression that restricts anti-tumor immunity. Cancer Cell 2024; 42:2015-2031.e11. [PMID: 39577420 PMCID: PMC11631672 DOI: 10.1016/j.ccell.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/27/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Necroptosis can promote antigen-specific immune responses, suggesting induced necroptosis as a therapeutic approach for cancer. Here we sought to determine the mechanism of immune activation but found the necroptosis mediators RIPK3 and MLKL dispensable for tumor growth in genetic and implantable models of breast or lung cancer. Surprisingly, inducing necroptosis within established breast tumors generates a myeloid suppressive microenvironment that inhibits T cell function, promotes tumor growth, and reduces survival. This was dependent upon the release of the nuclear alarmin interleukin-1α (IL-1α) by dying cells. Critically, IL-1α release occurs during chemotherapy and targeting this molecule reduces the immunosuppressive capacity of tumor myeloid cells and promotes CD8+ T cell recruitment and effector function. Neutralizing IL-1α enhances the efficacy of single agent paclitaxel or combination therapy with PD-1 blockade in preclinical models. Low IL1A levels correlates with positive patient outcome in several solid malignancies, particularly in patients treated with chemotherapy.
Collapse
Affiliation(s)
- Kay Hänggi
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | - Jie Li
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - Achintyan Gangadharan
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - Xiaoxian Liu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Daiana P Celias
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Olabisi Osunmakinde
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - Aysenur Keske
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Joshua Davis
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Faiz Ahmad
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Auriane Giron
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Carmen M Anadon
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Alycia Gardner
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - David G DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Amer A Beg
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
5
|
Han E, Choi HY, Kwon HJ, Chung YR, Shin HC, Kim EK, Suh KJ, Kim SH, Kim JH, Park SY. Characterization of tumor-infiltrating lymphocytes and their spatial distribution in triple-negative breast cancer. Breast Cancer Res 2024; 26:180. [PMID: 39643914 PMCID: PMC11622547 DOI: 10.1186/s13058-024-01932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND The tumor immune microenvironment, particularly tumor-infiltrating lymphocytes (TILs), plays a critical role in disease progression and treatment response in triple-negative breast cancers (TNBCs). This study was aimed to characterize the composition of TILs and investigate their clinicopathological and prognostic significance with a special focus on the spatial distribution of TILs in TNBCs. METHODS We analyzed TNBC samples through PanCancer Immune Profiling using NanoString nCounter assays to identify immune-related genes that are expressed differentially in relation to TIL levels and evaluated protein expression of selected markers through immunohistochemical staining on tissue microarrays. For a comprehensive assessment of the expression of cytotoxic T lymphocyte (CTL) and natural killer (NK) cell markers, a CTL-NK score was devised based on CD8+, CD56+, CD57+, GNLY+, and GZMB+ TIL levels. RESULTS Gene expression analysis revealed significant upregulation of CTL and NK cell-associated genes including GNLY, KLRC2, and GZMB in TIL-high TNBCs. Immunohistochemical validation confirmed that TNBCs with higher TILs had a greater amount of CD56+, CD57+, GNLY+, and GZMB+ TILs not only in absolute number but also in proportion relative to CD4+ or CD8+ TILs. High TIL and its subset (CD4+, CD8+, CD56+, CD57+, GNLY+, and GZMB+ TIL) infiltration correlated with favorable clinicopathological features of tumor. In survival analysis, high CTL-NK score was found to be an independent prognostic factor for better disease-free survival (DFS) of the patients. Furthermore, uniformly high TIL infiltration was linked to better DFS, whereas cases with heterogeneous TIL infiltration showed no difference in survival compared to those with uniformly low TIL infiltration. CONCLUSION Our study showed that CTL and NK cell-associated gene expression and protein levels differ significantly according to TIL levels and that CTL-NK score and distribution of TILs within tumors have a prognostic value. These findings emphasize the importance of CTLs and NK cells as well as the spatial uniformity of TIL infiltration in clinical outcome of TNBC patients, providing valuable insights for refining prognostic assessments and guiding immunotherapeutic strategies.
Collapse
Affiliation(s)
- Eunkyung Han
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea
| | - Hye Yeon Choi
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea
| | - Hyun Jung Kwon
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea
| | - Yul Ri Chung
- Pathology Center, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Hee-Chul Shin
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea
| | - Eun-Kyu Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea
| | - Koung Jin Suh
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea
| | - Se Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea
| | - Jee Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea.
- Department of Pathology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi, 13620, Republic of Korea.
| |
Collapse
|
6
|
Mickens KL, Dillon SM, Guo K, Thompson AN, Barrett BS, Wood C, Kechris K, Santiago ML, Wilson CC. Death and survival of gut CD4 T cells following HIV-1 infection ex vivo. PNAS NEXUS 2024; 3:pgae486. [PMID: 39780917 PMCID: PMC11707799 DOI: 10.1093/pnasnexus/pgae486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/09/2024] [Indexed: 01/11/2025]
Abstract
The gastrointestinal tract is ground zero for the massive and sustained CD4 T cell depletion during acute HIV-1 infection. To date, the molecular mechanisms governing this fundamental pathogenic process remain unclear. HIV-1 infection in the gastrointestinal tract is associated with chronic inflammation due to a disrupted epithelial barrier that results in microbial translocation. Here, we utilized the lamina propria aggregate culture model to demonstrate that the profound induction of granzyme B by bacteria in primary gut CD4 T cells ex vivo significantly contributes to HIV-1-mediated CD4 T cell death. Counterintuitively, a substantial fraction of gut granzyme B+ CD4 T cells harboring high levels of HIV-1 infection survive via a pathway linked to CD120b/TNFR2. Our findings underscore previously undescribed mechanisms governing the death and survival of gut CD4 T cells during HIV-1 infection that could inform strategies to counter HIV-1 pathogenesis and persistence in this critical tissue compartment.
Collapse
Affiliation(s)
- Kaylee L Mickens
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA
| | - Stephanie M Dillon
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
| | - Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
| | - Ashley N Thompson
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA
| | - Bradley S Barrett
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Center for Innovative Design and Analysis, 13001 E 17th Place, Mail Stop B119, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Center for Innovative Design and Analysis, 13001 E 17th Place, Mail Stop B119, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mario L Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA
| | - Cara C Wilson
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Emtenani S, Lebhar H, Marquis CP, Ludwig RJ, Schmidt E. Granzyme B inhibition reduces autoantibody-induced dermal-epidermal separation in an ex vivo model of epidermolysis bullosa acquisita. Exp Dermatol 2024; 33:e15172. [PMID: 39219105 DOI: 10.1111/exd.15172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
The pemphigoid disease epidermolysis bullosa acquisita (EBA) is an autoimmune blistering skin disease characterized by autoantibodies against type VII collagen (COL7), immune cell infiltrates at the dermal-epidermal junction and subepidermal blistering. Proteases, particularly granzyme B (GzmB), have been established as therapeutic targets for the treatment of EBA and other pemphigoid diseases. We investigated the impact of the novel GzmB inhibitor SNT-6935 on anti-COL7 IgG-induced subepidermal blistering in a well-established EBA ex vivo model. Our findings demonstrate that pharmacological targeting of GzmB with its selective inhibitor SNT-6935 significantly reduced autoantibody-induced dermal-epidermal separation in human skin cryosections. Interestingly, treatment of skin cryosections with recombinant human GzmB alone did not cause dermal-epidermal separation, suggesting that additional mechanisms alongside GzmB are required for tissue damage in EBA. In conclusion, our study highlights the significant contribution of GzmB to the pathogenesis of EBA and supports the notion of GzmB as a therapeutic target in EBA and other pemphigoid diseases.
Collapse
Affiliation(s)
- Shirin Emtenani
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Hélène Lebhar
- Recombinant Products Facility, MWAC, UNSW, Sydney, Australia
| | | | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
8
|
Fong A, Rochus CM, Shandilya UK, Muniz MMM, Sharma A, Schenkel FS, Karrow NA, Baes CF. The role of interleukin-10 receptor alpha (IL10Rα) in Mycobacterium avium subsp. paratuberculosis infection of a mammary epithelial cell line. BMC Genom Data 2024; 25:58. [PMID: 38867147 PMCID: PMC11167801 DOI: 10.1186/s12863-024-01234-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Johne's disease is a chronic wasting disease caused by the bacterium Mycobacterium avium subspecies paratuberculosis (MAP). Johne's disease is highly contagious and MAP infection in dairy cattle can eventually lead to death. With no available treatment for Johne's disease, genetic selection and improvements in management practices could help reduce its prevalence. In a previous study, the gene coding interleukin-10 receptor subunit alpha (IL10Rα) was associated with Johne's disease in dairy cattle. Our objective was to determine how IL10Rα affects the pathogenesis of MAP by examining the effect of a live MAP challenge on a mammary epithelial cell line (MAC-T) that had IL10Rα knocked out using CRISPR/cas9. The wild type and the IL10Rα knockout MAC-T cell lines were exposed to live MAP bacteria for 72 h. Thereafter, mRNA was extracted from infected and uninfected cells. Differentially expressed genes were compared between the wild type and the IL10Rα knockout cell lines. Gene ontology was performed based on the differentially expressed genes to determine which biological pathways were involved. RESULTS Immune system processes pathways were targeted to determine the effect of IL10Rα on the response to MAP infection. There was a difference in immune response between the wild type and IL10Rα knockout MAC-T cell lines, and less difference in immune response between infected and not infected IL10Rα knockout MAC-T cells, indicating IL10Rα plays an important role in the progression of MAP infection. Additionally, these comparisons allowed us to identify other genes involved in inflammation-mediated chemokine and cytokine signalling, interleukin signalling and toll-like receptor pathways. CONCLUSIONS Identifying differentially expressed genes in wild type and ILR10α knockout MAC-T cells infected with live MAP bacteria provided further evidence that IL10Rα contributes to mounting an immune response to MAP infection and allowed us to identify additional potential candidate genes involved in this process. We found there was a complex immune response during MAP infection that is controlled by many genes.
Collapse
Affiliation(s)
- Aisha Fong
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Christina M Rochus
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada.
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - Umesh K Shandilya
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Maria M M Muniz
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ankita Sharma
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Flavio S Schenkel
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Niel A Karrow
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Christine F Baes
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada.
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3002, Switzerland.
| |
Collapse
|
9
|
Aubert A, Jung K, Hiroyasu S, Pardo J, Granville DJ. Granzyme serine proteases in inflammation and rheumatic diseases. Nat Rev Rheumatol 2024; 20:361-376. [PMID: 38689140 DOI: 10.1038/s41584-024-01109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 05/02/2024]
Abstract
Granzymes (granule-secreted enzymes) are a family of serine proteases that have been viewed as redundant cytotoxic enzymes since their discovery more than 30 years ago. Predominantly produced by cytotoxic lymphocytes and natural killer cells, granzymes are delivered into the cytoplasm of target cells through immunological synapses in cooperation with the pore-forming protein perforin. After internalization, granzymes can initiate cell death through the cleavage of intracellular substrates. However, evidence now also demonstrates the existence of non-cytotoxic, pro-inflammatory, intracellular and extracellular functions that are granzyme specific. Under pathological conditions, granzymes can be produced and secreted extracellularly by immune cells as well as by non-immune cells. Depending on the granzyme, accumulation in the extracellular milieu might contribute to inflammation, tissue injury, impaired wound healing, barrier dysfunction, osteoclastogenesis and/or autoantigen generation.
Collapse
Affiliation(s)
- Alexandre Aubert
- International Collaboration on Repair Discoveries (ICORD) Centre; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD) Centre; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sho Hiroyasu
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA); Department of Microbiology, Radiology, Paediatrics and Public Health, University of Zaragoza, Zaragoza, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD) Centre; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- Centre for Heart Lung Innovation, Providence Research, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
10
|
Narros-Fernández P, Chomanahalli Basavarajappa S, Walsh PT. Interleukin-1 family cytokines at the crossroads of microbiome regulation in barrier health and disease. FEBS J 2024; 291:1849-1869. [PMID: 37300849 DOI: 10.1111/febs.16888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
Recent advances in understanding how the microbiome can influence both the physiology and the pathogenesis of disease in humans have highlighted the importance of gaining a deeper insight into the complexities of the host-microbial dialogue. In tandem with this progress, has been a greater understanding of the biological pathways which regulate both homeostasis and inflammation at barrier tissue sites, such as the skin and the gut. In this regard, the Interleukin-1 family of cytokines, which can be segregated into IL-1, IL-18 and IL-36 subfamilies, have emerged as important custodians of barrier health and immunity. With established roles as orchestrators of various inflammatory diseases in both the skin and intestine, it is now becoming clear that IL-1 family cytokine activity is not only directly influenced by external microbes, but can also play important roles in shaping the composition of the microbiome at barrier sites. This review explores the current knowledge surrounding the evidence that places these cytokines as key mediators at the interface between the microbiome and human health and disease at the skin and intestinal barrier tissues.
Collapse
Affiliation(s)
- Paloma Narros-Fernández
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Shrikanth Chomanahalli Basavarajappa
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Patrick T Walsh
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| |
Collapse
|
11
|
Cigalotto L, Martinvalet D. Granzymes in health and diseases: the good, the bad and the ugly. Front Immunol 2024; 15:1371743. [PMID: 38646541 PMCID: PMC11026543 DOI: 10.3389/fimmu.2024.1371743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Granzymes are a family of serine proteases, composed of five human members: GA, B, H, M and K. They were first discovered in the 1980s within cytotoxic granules released during NK cell- and T cell-mediated killing. Through their various proteolytic activities, granzymes can trigger different pathways within cells, all of which ultimately lead to the same result, cell death. Over the years, the initial consideration of granzymes as mere cytotoxic mediators has changed due to surprising findings demonstrating their expression in cells other than immune effectors as well as new intracellular and extracellular activities. Additional roles have been identified in the extracellular milieu, following granzyme escape from the immunological synapse or their release by specific cell types. Outside the cell, granzyme activities mediate extracellular matrix alteration via the degradation of matrix proteins or surface receptors. In certain contexts, these processes are essential for tissue homeostasis; in others, excessive matrix degradation and extensive cell death contribute to the onset of chronic diseases, inflammation, and autoimmunity. Here, we provide an overview of both the physiological and pathological roles of granzymes, highlighting their utility while also recognizing how their unregulated presence can trigger the development and/or worsening of diseases.
Collapse
Affiliation(s)
- Lavinia Cigalotto
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| | - Denis Martinvalet
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
12
|
Barisas DAG, Choi K. Extramedullary hematopoiesis in cancer. Exp Mol Med 2024; 56:549-558. [PMID: 38443597 PMCID: PMC10985111 DOI: 10.1038/s12276-024-01192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 03/07/2024] Open
Abstract
Hematopoiesis can occur outside of the bone marrow during inflammatory stress to increase the production of primarily myeloid cells at extramedullary sites; this process is known as extramedullary hematopoiesis (EMH). As observed in a broad range of hematologic and nonhematologic diseases, EMH is now recognized for its important contributions to solid tumor pathology and prognosis. To initiate EMH, hematopoietic stem cells (HSCs) are mobilized from the bone marrow into the circulation and to extramedullary sites such as the spleen and liver. At these sites, HSCs primarily produce a pathological subset of myeloid cells that contributes to tumor pathology. The EMH HSC niche, which is distinct from the bone marrow HSC niche, is beginning to be characterized. The important cytokines that likely contribute to initiating and maintaining the EMH niche are KIT ligands, CXCL12, G-CSF, IL-1 family members, LIF, TNFα, and CXCR2. Further study of the role of EMH may offer valuable insights into emergency hematopoiesis and therapeutic approaches against cancer. Exciting future directions for the study of EMH include identifying common and distinct EMH mechanisms in cancer, infectious diseases, and chronic autoimmune diseases to control these conditions.
Collapse
Affiliation(s)
- Derek A G Barisas
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
13
|
Xu C, Tsihlis G, Chau K, Trinh K, Rogers NM, Julovi SM. Novel Perspectives in Chronic Kidney Disease-Specific Cardiovascular Disease. Int J Mol Sci 2024; 25:2658. [PMID: 38473905 PMCID: PMC10931927 DOI: 10.3390/ijms25052658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Chronic kidney disease (CKD) affects > 10% of the global adult population and significantly increases the risk of cardiovascular disease (CVD), which remains the leading cause of death in this population. The development and progression of CVD-compared to the general population-is premature and accelerated, manifesting as coronary artery disease, heart failure, arrhythmias, and sudden cardiac death. CKD and CV disease combine to cause multimorbid cardiorenal syndrome (CRS) due to contributions from shared risk factors, including systolic hypertension, diabetes mellitus, obesity, and dyslipidemia. Additional neurohormonal activation, innate immunity, and inflammation contribute to progressive cardiac and renal deterioration, reflecting the strong bidirectional interaction between these organ systems. A shared molecular pathophysiology-including inflammation, oxidative stress, senescence, and hemodynamic fluctuations characterise all types of CRS. This review highlights the evolving paradigm and recent advances in our understanding of the molecular biology of CRS, outlining the potential for disease-specific therapies and biomarker disease detection.
Collapse
Affiliation(s)
- Cuicui Xu
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
| | - George Tsihlis
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia;
| | - Katrina Chau
- Department of Renal Services, Blacktown Hospital, Blacktown, NSW 2148, Australia;
- Blacktown Clinical School, School of Medicine, Western Sydney University, Sydney, NSW 2148, Australia
| | - Katie Trinh
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Department of Renal Services, Blacktown Hospital, Blacktown, NSW 2148, Australia;
| | - Natasha M. Rogers
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia;
- Faculty of Medicine and Health, The University of Sydney, Science Rd., Camperdown, NSW 2050, Australia
| | - Sohel M. Julovi
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Faculty of Medicine and Health, The University of Sydney, Science Rd., Camperdown, NSW 2050, Australia
| |
Collapse
|
14
|
Bourne CM, Taabazuing CY. Harnessing Pyroptosis for Cancer Immunotherapy. Cells 2024; 13:346. [PMID: 38391959 PMCID: PMC10886719 DOI: 10.3390/cells13040346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Cancer immunotherapy is a novel pillar of cancer treatment that harnesses the immune system to fight tumors and generally results in robust antitumor immunity. Although immunotherapy has achieved remarkable clinical success for some patients, many patients do not respond, underscoring the need to develop new strategies to promote antitumor immunity. Pyroptosis is an immunostimulatory type of regulated cell death that activates the innate immune system. A hallmark of pyroptosis is the release of intracellular contents such as cytokines, alarmins, and chemokines that can stimulate adaptive immune activation. Recent studies suggest that pyroptosis promotes antitumor immunity. Here, we review the mechanisms by which pyroptosis can be induced and highlight new strategies to induce pyroptosis in cancer cells for antitumor defense. We discuss how pyroptosis modulates the tumor microenvironment to stimulate adaptive immunity and promote antitumor immunity. We also suggest research areas to focus on for continued development of pyroptosis as an anticancer treatment. Pyroptosis-based anticancer therapies offer a promising new avenue for treating immunologically 'cold' tumors.
Collapse
Affiliation(s)
| | - Cornelius Y. Taabazuing
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
15
|
Ben-Eltriki M, Ahmadi AR, Nakao Y, Golla K, Lakschevitz F, Häkkinen L, Granville DJ, Kim H. Granzyme B promotes matrix metalloproteinase-1 (MMP-1) release from gingival fibroblasts in a PAR1- and Erk1/2-dependent manner: A novel role in periodontal inflammation. J Periodontal Res 2024; 59:94-103. [PMID: 37873693 DOI: 10.1111/jre.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/10/2023] [Accepted: 09/01/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVE To gain insights into how proteases signal to connective tissues cells in the periodontium. BACKGROUND The connective tissue degradation observed in periodontitis is largely due to matrix metalloproteinase (MMP) release by gingival fibroblasts. Granzyme B (GzmB) is a serine protease whose role in periodontitis is undefined. METHODS Human gingival crevicular fluid (GCF) samples were obtained from sites with periodontal disease and healthy control sites. GzmB was quantified in the GCF ([GzmB]GCF ) by ELISA. Gingival fibroblasts (GF) were cultured in the presence or absence of recombinant GzmB. Culture supernatants were analyzed by ELISA to quantify GzmB-induced release of interstitial collagenase (MMP-1). In some experiments, cells were pre-treated with the inhibitor PD98059 to block MEK/ERK signaling. The protease-activated receptor-1 (PAR-1) was blocked with ATAP-2 neutralizing antibody prior to GzmB stimulation. Systemic MMP-1 levels were measured in plasma from wild-type (WT) and granzyme-B-knockout (GzmB-/- ) mice. RESULTS The [GzmB]GCF in human samples was ~4-5 fold higher at sites of periodontal disease (gingivitis/periodontitis) compared to healthy control sites, suggesting an association between GzmB and localized matrix degradation. GzmB induced a ~4-5-fold increase in MMP-1 secretion by cultured fibroblasts. GzmB induced phosphorylation of Erk1/2, which was abrogated by PD98059. GzmB-induced upregulation of MMP-1 secretion was also reduced by PD98059. Blockade of PAR-1 function by ATAP-2 abrogated the increase in MMP-1 secretion by GF. Circulating MMP-1 was similar in WT and GzmB-/- mice, suggesting that GzmB's effects on MMP-1 release are not reflected systemically. CONCLUSION These data point to a novel GzmB-driven signaling pathway in fibroblasts in which MMP-1 secretion is upregulated in a PAR1- and Erk1/2-dependent manner.
Collapse
Affiliation(s)
- Mohamed Ben-Eltriki
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amir Reza Ahmadi
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuya Nakao
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kalyan Golla
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Flavia Lakschevitz
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lari Häkkinen
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - David J Granville
- ICORD Centre and Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Chen L, Ding L, Wang X, Huang Y, Gao SJ. Activation of glucocorticoid receptor signaling inhibits KSHV-induced inflammation and tumorigenesis. mBio 2024; 15:e0301123. [PMID: 38117084 PMCID: PMC10790708 DOI: 10.1128/mbio.03011-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Kaposi's sarcoma (KS) is the most common cancer in HIV-infected patients caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Hyperinflammation is the hallmark of KS. In this study, we have shown that KSHV mediates hyperinflammation by inducing IL-1α and suppressing IL-1Ra. Mechanistically, KSHV miRNAs and vFLIP induce hyperinflammation by activating the NF-κB pathway. A common anti-inflammatory agent dexamethasone blocks KSHV-induced hyperinflammation and tumorigenesis by activating glucocorticoid receptor signaling to suppress IL-1α and induce IL-1Ra. This work has identified IL-1-mediated inflammation as a potential therapeutic target and dexamethasone as a potential therapeutic agent for KSHV-induced malignancies.
Collapse
Affiliation(s)
- Luping Chen
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ling Ding
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xian Wang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yufei Huang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Davidovich P, Higgins CA, Najda Z, Longley DB, Martin SJ. cFLIP L acts as a suppressor of TRAIL- and Fas-initiated inflammation by inhibiting assembly of caspase-8/FADD/RIPK1 NF-κB-activating complexes. Cell Rep 2023; 42:113476. [PMID: 37988267 DOI: 10.1016/j.celrep.2023.113476] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 08/16/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023] Open
Abstract
TRAIL and FasL are potent inducers of apoptosis but can also promote inflammation through assembly of cytoplasmic caspase-8/FADD/RIPK1 (FADDosome) complexes, wherein caspase-8 acts as a scaffold to drive FADD/RIPK1-mediated nuclear factor κB (NF-κB) activation. cFLIP is also recruited to FADDosomes and restricts caspase-8 activity and apoptosis, but whether cFLIP also regulates death receptor-initiated inflammation is unclear. Here, we show that silencing or deletion of cFLIP leads to robustly enhanced Fas-, TRAIL-, or TLR3-induced inflammatory cytokine production, which can be uncoupled from the effects of cFLIP on caspase-8 activation and apoptosis. Mechanistically, cFLIPL suppresses Fas- or TRAIL-initiated NF-κB activation through inhibiting the assembly of caspase-8/FADD/RIPK1 FADDosome complexes, due to the low affinity of cFLIPL for FADD. Consequently, increased cFLIPL occupancy of FADDosomes diminishes recruitment of FADD/RIPK1 to caspase-8, thereby suppressing NF-κB activation and inflammatory cytokine production downstream. Thus, cFLIP acts as a dual suppressor of apoptosis and inflammation via distinct modes of action.
Collapse
Affiliation(s)
- Pavel Davidovich
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Catherine A Higgins
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK
| | - Zaneta Najda
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
18
|
Chen HC, Wang CW, Toh WH, Lee HE, Chung WH, Chen CB. Advancing Treatment in Bullous Pemphigoid: A Comprehensive Review of Novel Therapeutic Targets and Approaches. Clin Rev Allergy Immunol 2023; 65:331-353. [PMID: 37897588 DOI: 10.1007/s12016-023-08973-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 10/30/2023]
Abstract
Bullous pemphigoid is one of the most common autoimmune bullous diseases occurring primarily in the elderly. Pathogenic autoantibodies against BP180 and BP230 at the dermal-epidermal junction cause subepidermal blisters, erosions, and intense pruritus, all of which adversely affect the patients' quality of life and may increase their morbidity and mortality. Current systemic treatment options for bullous pemphigoid are limited to corticosteroids and immunosuppressants, which can have substantial side effects on these vulnerable patients that even exceed their therapeutic benefits. Therefore, more precisely, targeting therapies to the pathogenic cells and molecules in bullous pemphigoid is an urgent issue. In this review, we describe the pathophysiology of bullous pemphigoid, focusing on autoantibodies, complements, eosinophils, neutrophils, proteases, and the T helper 2 and 17 axes since they are crucial in promoting proinflammatory environments. We also highlight the emerging therapeutic targets for bullous pemphigoid and their latest discoveries in clinical trials or experimental studies. Further well-designed studies are required to establish the efficacy and safety of these prospective therapeutic options.
Collapse
Affiliation(s)
- Hsuan-Chi Chen
- Department of Medical Education, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Linkou, Taipei, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
| | - Wu Han Toh
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Hua-En Lee
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Linkou, Taipei, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Linkou, Taipei, Taiwan.
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan.
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung, Taiwan.
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China.
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan.
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan.
- Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Chun-Bing Chen
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Linkou, Taipei, Taiwan.
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan.
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung, Taiwan.
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China.
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China.
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
19
|
Oleszycka E, O’Brien EC, Freeley M, Lavelle EC, Long A. Bile acids induce IL-1α and drive NLRP3 inflammasome-independent production of IL-1β in murine dendritic cells. Front Immunol 2023; 14:1285357. [PMID: 38090554 PMCID: PMC10711081 DOI: 10.3389/fimmu.2023.1285357] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Bile acids are amphipathic molecules that are synthesized from cholesterol in the liver and facilitate intestinal absorption of lipids and nutrients. They are released into the small intestine upon ingestion of a meal where intestinal bacteria can modify primary into secondary bile acids. Bile acids are cytotoxic at high concentrations and have been associated with inflammatory diseases such as liver inflammation and Barrett's Oesophagus. Although bile acids induce pro-inflammatory signalling, their role in inducing innate immune cytokines and inflammation has not been fully explored to date. Here we demonstrate that the bile acids, deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) induce IL-1α and IL-1β secretion in vitro in primed bone marrow derived dendritic cells (BMDCs). The secretion of IL-1β was found not to require expression of NLRP3, ASC or caspase-1 activity; we can't rule out all inflammasomes. Furthermore, DCA and CDCA were shown to induce the recruitment of neutrophils and monocytes to the site of injection an intraperitoneal model of inflammation. This study further underlines a mechanistic role for bile acids in the pathogenesis of inflammatory diseases through stimulating the production of pro-inflammatory cytokines and recruitment of innate immune cells.
Collapse
Affiliation(s)
- Ewa Oleszycka
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Eoin C. O’Brien
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Michael Freeley
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Ed C. Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aideen Long
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Chen L, Ding L, Wang X, Huang Y, Gao SJ. Activation of glucocorticoid receptor signaling inhibits KSHV-induced inflammation and tumorigenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566578. [PMID: 38014281 PMCID: PMC10680621 DOI: 10.1101/2023.11.10.566578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Hyperinflammation is the hallmark of Kaposi's sarcoma (KS), the most common cancer in AIDS patients caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. However, the role and mechanism of induction of inflammation in KS remain unclear. In a screening for inhibitors of KSHV-induced oncogenesis, over half of the identified candidates were anti-inflammatory agents including dexamethasone functions by activating glucocorticoid receptor (GR) signaling. Here, we examined the mechanism mediating KSHV-induced inflammation. We found that numerous inflammatory pathways were activated in KSHV-transformed cells. Particularly, interleukin-1 alpha (IL-1α) and IL-1 receptor antagonist (IL-1Ra) from the IL-1 family were the most induced and suppressed cytokines, respectively. We found that KSHV miRNAs mediated IL-1α induction while both miRNAs and vFLIP mediated IL-1Ra suppression. Furthermore, GR signaling was inhibited in KSHV-transformed cells, which was mediated by vFLIP and vCyclin. Dexamethasone treatment activated GR signaling, and inhibited cell proliferation and colony formation in soft agar of KSHV-transformed cells but had a minimal effect on matched primary cells. Consequently, dexamethasone suppressed the initiation and growth of KSHV-induced tumors in mice. Mechanistically, dexamethasone suppressed IL-1α but induced IL-1Ra expression. Treatment with recombinant IL-1α protein rescued the inhibitory effect of dexamethasone while overexpression of IL-1Ra caused a weak growth inhibition of KSHV-transformed cells. Furthermore, dexamethasone induced IκBα expression resulting in inhibition of NF-κB pathway and IL-1α expression. These results reveal an important role of IL-1 pathway in KSHV-induced inflammation and oncogenesis, which can be inhibited by dexamethasone-activated GR signaling, and identify IL-1-mediated inflammation as a potential therapeutic target for KSHV-induced malignancies.
Collapse
Affiliation(s)
- Luping Chen
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ling Ding
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xian Wang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yufei Huang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
de Fàbregues O, Sellés M, Ramos-Vicente D, Roch G, Vila M, Bové J. Relevance of tissue-resident memory CD8 T cells in the onset of Parkinson's disease and examination of its possible etiologies: infectious or autoimmune? Neurobiol Dis 2023; 187:106308. [PMID: 37741513 DOI: 10.1016/j.nbd.2023.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/05/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023] Open
Abstract
Tissue-resident memory CD8 T cells are responsible for local immune surveillance in different tissues, including the brain. They constitute the first line of defense against pathogens and cancer cells and play a role in autoimmunity. A recently published study demonstrated that CD8 T cells with markers of residency containing distinct granzymes and interferon-γ infiltrate the parenchyma of the substantia nigra and contact dopaminergic neurons in an early premotor stage of Parkinson's disease. This infiltration precedes α-synuclein aggregation and neuronal loss in the substantia nigra, suggesting a relevant role for CD8 T cells in the onset of the disease. To date, the nature of the antigen that initiates the adaptive immune response remains unknown. This review will discuss the role of tissue-resident memory CD8 T cells in brain immune homeostasis and in the onset of Parkinson's disease and other neurological diseases. We also discuss how aging and genetic factors can affect the CD8 T cell immune response and how animal models can be misleading when studying human-related immune response. Finally, we speculate about a possible infectious or autoimmune origin of Parkinson's disease.
Collapse
Affiliation(s)
- Oriol de Fàbregues
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Movement Disorders Unit, Neurology Department, Vall d'Hebron University Hospital
| | - Maria Sellés
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - David Ramos-Vicente
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Gerard Roch
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Catalonia, Spain; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain.
| |
Collapse
|
22
|
Anderson-Crannage M, Ascensión AM, Ibanez-Solé O, Zhu H, Schaefer E, Ottomanelli D, Hochberg B, Pan J, Luo W, Tian M, Chu Y, Cairo MS, Izeta A, Liao Y. Inflammation-mediated fibroblast activation and immune dysregulation in collagen VII-deficient skin. Front Immunol 2023; 14:1211505. [PMID: 37809094 PMCID: PMC10557493 DOI: 10.3389/fimmu.2023.1211505] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/17/2023] [Indexed: 10/10/2023] Open
Abstract
Inflammation is known to play a critical role in all stages of tumorigenesis; however, less is known about how it predisposes the tissue microenvironment preceding tumor formation. Recessive dystrophic epidermolysis bullosa (RDEB), a skin-blistering disease secondary to COL7A1 mutations and associated with chronic wounding, inflammation, fibrosis, and cutaneous squamous cell carcinoma (cSCC), models this dynamic. Here, we used single-cell RNA sequencing (scRNAseq) to analyze gene expression patterns in skin cells from a mouse model of RDEB. We uncovered a complex landscape within the RDEB dermal microenvironment that exhibited altered metabolism, enhanced angiogenesis, hyperproliferative keratinocytes, infiltration and activation of immune cell populations, and inflammatory fibroblast priming. We demonstrated the presence of activated neutrophil and Langerhans cell subpopulations and elevated expression of PD-1 and PD-L1 in T cells and antigen-presenting cells, respectively. Unsupervised clustering within the fibroblast population further revealed two differentiation pathways in RDEB fibroblasts, one toward myofibroblasts and the other toward a phenotype that shares the characteristics of inflammatory fibroblast subsets in other inflammatory diseases as well as the IL-1-induced inflammatory cancer-associated fibroblasts (iCAFs) reported in various cancer types. Quantitation of inflammatory cytokines indicated dynamic waves of IL-1α, TGF-β1, TNF, IL-6, and IFN-γ concentrations, along with dermal NF-κB activation preceding JAK/STAT signaling. We further demonstrated the divergent and overlapping roles of these cytokines in inducing inflammatory phenotypes in RDEB patients as well as RDEB mouse-derived fibroblasts together with their healthy controls. In summary, our data have suggested a potential role of inflammation, driven by the chronic release of inflammatory cytokines such as IL-1, in creating an immune-suppressed dermal microenvironment that underlies RDEB disease progression.
Collapse
Affiliation(s)
- Morgan Anderson-Crannage
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
| | - Alex M. Ascensión
- Biodonostia Health Research Institute, Tissue Engineering Group, San Sebastian, Spain
| | - Olga Ibanez-Solé
- Biodonostia Health Research Institute, Tissue Engineering Group, San Sebastian, Spain
| | - Hongwen Zhu
- Department of Research & Development, Guizhou Atlasus Technology Co., Ltd., Guiyang, China
| | - Edo Schaefer
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Darcy Ottomanelli
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Bruno Hochberg
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Jian Pan
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Meijuan Tian
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Mitchell S. Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
- Department of Medicine, New York Medical College, Valhalla, NY, United States
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Ander Izeta
- Biodonostia Health Research Institute, Tissue Engineering Group, San Sebastian, Spain
- Department of Biomedical Engineering and Science, School of Engineering, Tecnun University of Navarra, San Sebastian, Spain
| | - Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
23
|
Lv SJ, Sun JN, Gan L, Sun J. Identification of molecular subtypes and immune infiltration in endometriosis: a novel bioinformatics analysis and In vitro validation. Front Immunol 2023; 14:1130738. [PMID: 37662927 PMCID: PMC10471803 DOI: 10.3389/fimmu.2023.1130738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Endometriosis is a worldwide gynacological diseases, affecting in 6-10% of women of reproductive age. The aim of this study was to investigate the gene network and potential signatures of immune infiltration in endometriosis. Methods The expression profiles of GSE51981, GSE6364, and GSE7305 were obtained from the Gene Expression Omnibus (GEO) database. Core modules and central genes related to immune characteristics were identified using a weighted gene coexpression network analysis. Bioinformatics analysis was performed to identify central genes in immune infiltration. Protein-protein interaction (PPI) network was used to identify the hub genes. We then constructed subtypes of endometriosis samples and calculated their correlation with hub genes. qRTPCR and Western blotting were used to verify our findings. Results We identified 10 candidate hub genes (GZMB, PRF1, KIR2DL1, KIR2DL3, KIR3DL1, KIR2DL4, FGB, IGFBP1, RBP4, and PROK1) that were significantly correlated with immune infiltration. Our study established a detailed immune network and systematically elucidated the molecular mechanism underlying endometriosis from the aspect of immune infiltration. Discussion Our study provides comprehensive insights into the immunology involved in endometriosis and might contribute to the development of immunotherapy for endometriosis. Furthermore, our study sheds light on the underlying molecular mechanism of endometriosis and might help improve the diagnosis and treatment of this condition.
Collapse
Affiliation(s)
- Si-ji Lv
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia-ni Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lei Gan
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Jing Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
24
|
Dawodu D, Sand S, Nikolouli E, Werfel T, Mommert S. The mRNA expression and secretion of granzyme B are up-regulated via the histamine H2 receptor in human CD4 + T cells. Inflamm Res 2023; 72:1525-1538. [PMID: 37470818 PMCID: PMC10499701 DOI: 10.1007/s00011-023-01759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023] Open
Abstract
INTRODUCTION Granzyme B (GZMB), a serine protease with cytotoxic and immunomodulatory functions, shows elevated levels in blood plasma of patients with atopic dermatitis (AD). It has been observed that GZMB expression in CD4+ and CD8+ T cells is higher in lesional skin in AD than in healthy skin. Since histamine is present in high concentration in the skin of AD patients, we investigated the regulation of GZMB in human CD4+ T cells by histamine. METHODS Naïve CD4+ T cells polarized into Th2 cells, total CD4+ T cells treated with IL-4 for 72 h and CD4+ T cells isolated from healthy donors and AD patients were investigated. The cells were stimulated with histamine or with different histamine-receptor agonists. Gene expression was evaluated by RNA-Seq. GZMB mRNA expression was detected by quantitative real time PCR, whereas GZMB secretion was measured by ELISpot and ELISA. T cell degranulation was evaluated by flow cytometry using CD107a surface expression as a degranulation marker. RESULTS By RNA-Seq, we identified the up-regulation of various genes of the cytotoxic pathway, in particular of GZMB, by histamine in Th2-polarized CD4+ T cells. In Th2-polarized CD4+ T cells and in CD4+ T cells activated by IL-4 the mRNA expression of GZMB was significantly up-regulated by histamine and by histamine H2 receptor (H2R) agonists. The induction of GZMB secretion by histamine was significantly higher in CD4+ T cells from AD patients than in those from healthy donors. CD107a surface expression was up-regulated by trend in response to histamine in Th2-polarized CD4+ T cells. CONCLUSION Our findings may help to elucidate novel mechanisms of the H2R and to achieve a better understanding of the role of GZMB in the pathogenesis of AD.
Collapse
Affiliation(s)
- Damilola Dawodu
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Sophie Sand
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Eirini Nikolouli
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Susanne Mommert
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
25
|
Cazzola M, Hanania NA, Page CP, Matera MG. Novel Anti-Inflammatory Approaches to COPD. Int J Chron Obstruct Pulmon Dis 2023; 18:1333-1352. [PMID: 37408603 PMCID: PMC10318108 DOI: 10.2147/copd.s419056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Airway inflammation, driven by different types of inflammatory cells and mediators, plays a fundamental role in COPD and its progression. Neutrophils, eosinophils, macrophages, and CD4+ and CD8+ T lymphocytes are key players in this process, although the extent of their participation varies according to the patient's endotype. Anti-inflammatory medications may modify the natural history and progression of COPD. However, since airway inflammation in COPD is relatively resistant to corticosteroid therapy, innovative pharmacological anti-inflammatory approaches are required. The heterogeneity of inflammatory cells and mediators in annethe different COPD endo-phenotypes requires the development of specific pharmacologic agents. Indeed, over the past two decades, several mechanisms that influence the influx and/or activity of inflammatory cells in the airways and lung parenchyma have been identified. Several of these molecules have been tested in vitro models and in vivo in laboratory animals, but only a few have been studied in humans. Although early studies have not been encouraging, useful information emerged suggesting that some of these agents may need to be further tested in specific subgroups of patients, hopefully leading to a more personalized approach to treating COPD.
Collapse
Affiliation(s)
- Mario Cazzola
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, UK
| | - Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
26
|
Yadav B, Prasad N, Agrawal V, Agarwal V, Jain M. Lower Circulating Cytotoxic T-Cell Frequency and Higher Intragraft Granzyme-B Expression Are Associated with Inflammatory Interstitial Fibrosis and Tubular Atrophy in Renal Allograft Recipients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1175. [PMID: 37374379 PMCID: PMC10305683 DOI: 10.3390/medicina59061175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: Inflammatory interstitial fibrosis and tubular atrophy (i-IFTA) is an inflammation in the area of tubular atrophy and fibrosis. i-IFTA is poorly associated with graft outcome and associated with infiltration of inflammatory mononuclear cells. A cytotoxic T cell is a granzyme B+CD8+CD3+ T cell, mainly secret granzyme B. Granzyme B is a serine protease that may mediate allograft injury and inflammatory interstitial fibrosis and tubular atrophy (i-IFTA). However, there is no report identifying the association of granzyme B with i-IFTA after a long post-transplant interval. Material and Methods: In this study, we have measured the cytotoxic T-cell frequency with flow cytometry, serum and PBMCs culture supernatants granzyme-B levels with ELISA and intragraft granzyme-B mRNA transcript expression with the RT-PCR in RTRs in 30 patients with biopsy-proven i-IFTA and 10 patients with stable graft function. Result: The frequency of cytotoxic T cells (CD3+CD8+ granzyme B+) in SGF vs. i-IFTA was (27.96 ± 4.86 vs. 23.19 ± 3.85%, p = 0.011), the serum granzyme-B level was (100.82 ± 22.41 vs. 130.32 ± 46.60, p = 0.038 pg/mL) and the intragraft granzyme-B mRNA transcript expression was (1.01 ± 0.048 vs. 2.10 ± 1.02, p < 0.001 fold). The frequency of CD3+ T cells in SGF vs. i-IFTA was (66.08 ± 6.8 vs. 65.18 ± 9.35%; p = 0.68) and that of CD3+CD8+ T cells was (37.29 ± 4.11 vs. 34.68 ± 5.43%; p = 0.28), which were similar between the 2 groups. CTLc frequency was negatively correlated with urine proteinuria (r = -0.51, p < 0.001), serum creatinine (r = -0.28, p = 0.007) and eGFR (r = -0.28, p = 0.037). Similarly, the PBMC culture supernatants granzyme-B level was negatively correlated with urine proteinuria (r = -0.37, p < 0.001) and serum creatinine (r = -0.31, p = 0.002), while the serum granzyme-B level (r = 0.343, p = 0.001) and intragraft granzyme-B mRNA transcript expression (r = 0.38, p < 0.001) were positively correlated with proteinuria. Conclusions: A decrease in the CTLc frequency in circulation and an increased serum granzyme-B level and intragraft granzyme-B mRNA expression shows that cytotoxic T cells may mediate the allograft injury in RTRs with i-IFTA by releasing granzyme B in serum and intragraft tissue.
Collapse
Affiliation(s)
- Brijesh Yadav
- Department of Nephrology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Narayan Prasad
- Department of Nephrology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Vinita Agrawal
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (V.A.); (M.J.)
| | - Vikas Agarwal
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Manoj Jain
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (V.A.); (M.J.)
| |
Collapse
|
27
|
Wiggins KA, Pyrillou K, Humphry M, Butterworth AS, Clarke MCH. The common IL1A single nucleotide polymorphism rs17561 is a hypomorphic mutation that significantly reduces interleukin-1α release from human blood cells. Immunology 2023; 168:459-472. [PMID: 36175368 PMCID: PMC11495263 DOI: 10.1111/imm.13584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/24/2022] [Indexed: 02/02/2023] Open
Abstract
Interleukin-1 alpha (IL-1α) is a powerful cytokine that drives inflammation and modulates adaptive immunity. Due to these powerful effects, IL-1α is controlled at multiple levels from transcription to cleavage and release from the cell. Genome-wide association studies can identify loci that drive important diseases, although often the functional effect of the variant on phenotype remains unknown or small, with most risk variants in non-coding regions. We find that the common variant rs17561 changes a conserved amino acid in the central region of IL-1α linking the pro piece to the cytokine domain. Using a recall-by-genotype study and whole blood stimulation, we find that minor allele homozygotes release ~50% less IL-1α than the major allele, with IL-1β release equivalent. IL-1α transcript level was identical between groups, implying a post-transcriptional effect, whilst cleavage of recombinant pro-IL-1α by multiple proteases was also equivalent for both forms. Importantly, transfected macrophages also release less minor allele IL-1α upon inflammasome activation, revealing that reduced secretion is directly caused by the missense amino acid substitution and more minor allele IL-1α was retained within the cell. Thus, rs17561 represents a very common hypomorphic mutation in IL-1α. We believe this novel data will be important for determining the potential contribution of IL-1α to disease and/or physiological processes, for example, by Mendelian randomisation, and may aid patient stratification when considering anti-IL-1 therapies.
Collapse
Affiliation(s)
- Kimberley A. Wiggins
- Section of CardioRespiratory Medicine, Department of MedicineUniversity of Cambridge, The Heart & Lung Research InstituteCambridgeUK
| | - Katerina Pyrillou
- Section of CardioRespiratory Medicine, Department of MedicineUniversity of Cambridge, The Heart & Lung Research InstituteCambridgeUK
| | - Melanie Humphry
- Section of CardioRespiratory Medicine, Department of MedicineUniversity of Cambridge, The Heart & Lung Research InstituteCambridgeUK
| | - Adam S. Butterworth
- Dept of Public Health and Primary CareUniversity of Cambridge, The Heart & Lung Research InstituteCambridgeUK
| | - Murray CH. Clarke
- Section of CardioRespiratory Medicine, Department of MedicineUniversity of Cambridge, The Heart & Lung Research InstituteCambridgeUK
| |
Collapse
|
28
|
Exconde PM, Hernandez-Chavez C, Bray MB, Lopez JL, Srivastava T, Egan MS, Zhang J, Shin S, Discher BM, Taabazuing CY. The tetrapeptide sequence of IL-1β regulates its recruitment and activation by inflammatory caspases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528859. [PMID: 36824844 PMCID: PMC9949112 DOI: 10.1101/2023.02.16.528859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The mammalian innate immune system uses germline-encoded cytosolic pattern-recognition receptors (PRRs) to detect intracellular danger signals. At least six of these PRRs are known to form multiprotein complexes called inflammasomes which activate cysteine proteases known as caspases. Canonical inflammasomes recruit and activate caspase-1 (CASP1), which in turn cleaves and activates inflammatory cytokines such as IL-1β and IL-18, as well as the pore forming protein, gasdermin D (GSDMD), to induce pyroptotic cell death. In contrast, non-canonical inflammasomes, caspases-4/-5 (CASP4/5) in humans and caspase-11 (CASP11) in mice, are activated by intracellular LPS to cleave GSDMD, but their role in direct processing of inflammatory cytokines has not been established. Here we show that active CASP4/5 directly cleave IL-18 to generate the active species. Surprisingly, we also discovered that CASP4/5/11 cleave IL-1β at D27 to generate a 27 kDa fragment that is predicted to be inactive and cannot signal to the IL-1 receptor. Mechanistically, we discovered that the sequence identity of the P4-P1 tetrapeptide sequence adjacent to the caspase cleavage site (D116) regulates the recruitment and processing of IL-1β by inflammatory caspases to generate the bioactive species. Thus, we have identified new substrates of the non-canonical inflammasomes and reveal key mechanistic details regulating inflammation.
Collapse
Affiliation(s)
- Patrick M. Exconde
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Claudia Hernandez-Chavez
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mark B. Bray
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jan L. Lopez
- Present address: Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Tamanna Srivastava
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Marisa S. Egan
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jenna Zhang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Bohdana M. Discher
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cornelius Y. Taabazuing
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Kaji T, Kuroishi T, Bando K, Takahashi M, Sugawara S. N-acetyl cysteine inhibits IL-1α release from murine keratinocytes induced by 2-hydroxyethyl methacrylate. J Toxicol Sci 2023; 48:557-569. [PMID: 37778984 DOI: 10.2131/jts.48.557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The hydrophilic compound 2-hydroxyethyl methacrylate (HEMA) is a major component of dental bonding materials, and it enhances the binding of resin-composites to biomolecules. However, HEMA is a well-known contact sensitizer. We reported previously that intradermal injection of HEMA induces the production of IL-1 locally in the skin. Keratinocytes are the first barrier against chemical insults and constitutively express IL-1α. In this study, we analyzed whether HEMA induces the production of inflammatory cytokines from murine keratinocyte cell line Pam212 cells. We demonstrated that HEMA induced the release of 17-kDa mature IL-1α and caused cytotoxicity. The activity of calpain, an IL-1α processing enzyme, was significantly higher in HEMA-treated cells. The thiol-containing antioxidant N-acetyl cysteine (NAC) inhibited HEMA-induced IL-1α release but not cytotoxicity. NAC inhibited intracellular calpain activity and reactive oxygen species (ROS) production induced by HEMA. NAC post-treatment also inhibited IL-1α release and intracellular ROS production induced by HEMA. Furthermore, HEMA-induced in vivo inflammation also inhibited by NAC. NAC inhibited polymerization of HEMA through adduct formation via sulfide bonds between the thiol group of NAC and the reactive double bond of HEMA. HEMA-induced IL-1α release and cytotoxicity were also inhibited if HEMA and NAC were pre-incubated before adding to the cells. These results suggested that NAC inhibited IL-1α release through decreases in intracellular ROS and the adduct formation with HEMA. We concluded that HEMA induces IL-1α release from skin keratinocytes, and NAC may be a promising candidate as a therapeutic agent against inflammation induced by HEMA.
Collapse
Affiliation(s)
- Takahiro Kaji
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry
| | - Toshinobu Kuroishi
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry
| | - Kanan Bando
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry
| | - Masatoshi Takahashi
- Division of Dental Biomaterials, Tohoku University Graduate School of Dentistry
| | - Shunji Sugawara
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry
| |
Collapse
|
30
|
Li Y, Jiang Q. Uncoupled pyroptosis and IL-1β secretion downstream of inflammasome signaling. Front Immunol 2023; 14:1128358. [PMID: 37090724 PMCID: PMC10117957 DOI: 10.3389/fimmu.2023.1128358] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Inflammasomes are supramolecular platforms that organize in response to various damage-associated molecular patterns and pathogen-associated molecular patterns. Upon activation, inflammasome sensors (with or without the help of ASC) activate caspase-1 and other inflammatory caspases that cleave gasdermin D and pro-IL-1β/pro-IL-18, leading to pyroptosis and mature cytokine secretion. Pyroptosis enables intracellular pathogen niche disruption and intracellular content release at the cost of cell death, inducing pro-inflammatory responses in the neighboring cells. IL-1β is a potent pro-inflammatory regulator for neutrophil recruitment, macrophage activation, and T-cell expansion. Thus, pyroptosis and cytokine secretion are the two main mechanisms that occur downstream of inflammasome signaling; they maintain homeostasis, drive the innate immune response, and shape adaptive immunity. This review aims to discuss the possible mechanisms, timing, consequences, and significance of the two uncoupling preferences downstream of inflammasome signaling. While pyroptosis and cytokine secretion may be usually coupled, pyroptosis-predominant and cytokine-predominant uncoupling are also observed in a stimulus-, cell type-, or context-dependent manner, contributing to the pathogenesis and development of numerous pathological conditions such as cryopyrin-associated periodic syndromes, LPS-induced sepsis, and Salmonella enterica serovar Typhimurium infection. Hyperactive cells consistently release IL-1β without LDH leakage and pyroptotic death, thereby leading to prolonged inflammation, expanding the lifespans of pyroptosis-resistant neutrophils, and hyperactivating stimuli-challenged macrophages, dendritic cells, monocytes, and specific nonimmune cells. Death inflammasome activation also induces GSDMD-mediated pyroptosis with no IL-1β secretion, which may increase lethality in vivo. The sublytic GSDMD pore formation associated with lower expressions of pyroptotic components, GSDMD-mediated extracellular vesicles, or other GSDMD-independent pathways that involve unconventional secretion could contribute to the cytokine-predominant uncoupling; the regulation of caspase-1 dynamics, which may generate various active species with different activities in terms of GSDMD or pro-IL-1β, could lead to pyroptosis-predominant uncoupling. These uncoupling preferences enable precise reactions to different stimuli of different intensities under specific conditions at the single-cell level, promoting cooperative cell and host fate decisions and participating in the pathogen "game". Appropriate decisions in terms of coupling and uncoupling are required to heal tissues and eliminate threats, and further studies exploring the inflammasome tilt toward pyroptosis or cytokine secretion may be helpful.
Collapse
|
31
|
Sullivan GP, Davidovich P, Muñoz-Wolf N, Ward RW, Hernandez Santana YE, Clancy DM, Gorman A, Najda Z, Turk B, Walsh PT, Lavelle EC, Martin SJ. Myeloid cell-derived proteases produce a proinflammatory form of IL-37 that signals via IL-36 receptor engagement. Sci Immunol 2022; 7:eade5728. [PMID: 36525507 DOI: 10.1126/sciimmunol.ade5728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Interleukin-1 (IL-1) family cytokines are key barrier cytokines that are typically expressed as inactive, or partially active, precursors that require proteolysis within their amino termini for activation. IL-37 is an enigmatic member of the IL-1 family that has been proposed to be activated by caspase-1 and to exert anti-inflammatory activity through engagement of the IL-18R and SIGIRR. However, here we show that the longest IL-37 isoform, IL-37b, exhibits robust proinflammatory activity upon amino-terminal proteolysis by neutrophil elastase or cathepsin S. In sharp contrast, caspase-1 failed to process or activate IL-37 at concentrations that robustly activated its canonical substrate, IL-1β. IL-37 and IL-36 exhibit high structural homology, and, consistent with this, a K53-truncated form of IL-37, mimicking the cathepsin S-processed form of this cytokine, was found to exert its proinflammatory effects via IL-36 receptor engagement and produced an inflammatory signature practically identical to IL-36. Administration of K53-truncated IL-37b intraperitoneally into wild-type mice also elicited an inflammatory response that was attenuated in IL-36R-/- animals. These data demonstrate that, in common with other IL-1 family members, mature IL-37 can also elicit proinflammatory effects upon processing by specific proteases.
Collapse
Affiliation(s)
- Graeme P Sullivan
- Molecular Cell Biology Laboratory, Department of Genetics, Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Pavel Davidovich
- Molecular Cell Biology Laboratory, Department of Genetics, Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Natalia Muñoz-Wolf
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland.,4National Children's Research Centre, CHI-Crumlin, Dublin, Ireland
| | - Ross W Ward
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | | | - Danielle M Clancy
- Molecular Cell Biology Laboratory, Department of Genetics, Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Aoife Gorman
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Zaneta Najda
- Molecular Cell Biology Laboratory, Department of Genetics, Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Boris Turk
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Patrick T Walsh
- Department of Clinical Medicine, School of Medicine, Trinity College, Dublin 2, Ireland.,Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, Smurfit Institute, Trinity College, Dublin 2, Ireland
| |
Collapse
|
32
|
Nüssing S, Sutton VR, Trapani JA, Parish IA. Beyond target cell death - Granzyme serine proteases in health and disease. Mol Aspects Med 2022; 88:101152. [PMID: 36368281 DOI: 10.1016/j.mam.2022.101152] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 10/06/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022]
Abstract
Granzymes are a family of small (∼32 kDa) serine proteases with a range of substrate specificities that are stored in, and released from, the cytoplasmic secretory vesicles ('granules') of cytotoxic T lymphocytes and natural killer cells. Granzymes are not digestive proteases but finely tuned processing enzymes that target their substrates in specific ways to activate various signalling pathways, or to inactivate viral proteins and other targets. Great emphasis has been placed on studying the pro-apoptotic functions of granzymes, which largely depend on their synergy with the pore-forming protein perforin, on which they rely for penetration into the target cell cytosol to access their substrates. While a critical role for granzyme B in target cell apoptosis is undisputed, both it and the remaining granzymes also influence a variety of other biological processes (including important immunoregulatory functions), which are discussed in this review. This includes the targeting of many extracellular as well as intracellular substrates, and can also lead to deleterious outcomes for the host if granzyme expression or function are dysregulated or abrogated. A final important consideration is that granzyme repertoire, biochemistry and function vary considerably across species, probably resulting from the pressures applied by viruses and other pathogens across evolutionary time. This has implications for the interpretation of granzyme function in preclinical models of disease.
Collapse
Affiliation(s)
- Simone Nüssing
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Vivien R Sutton
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Joseph A Trapani
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia.
| | - Ian A Parish
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia; John Curtin School of Medical Research, ANU, ACT, Australia.
| |
Collapse
|
33
|
Aubert A, Lane M, Jung K, Granville DJ. Granzyme B as a therapeutic target: an update in 2022. Expert Opin Ther Targets 2022; 26:979-993. [PMID: 36542784 DOI: 10.1080/14728222.2022.2161890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Granzyme B is a serine protease extensively studied for its implication in cytotoxic lymphocyte-mediated apoptosis. In recent years, the paradigm that the role of granzyme B is restricted to immune cell-mediated killing has been challenged as extracellular roles for the protease have emerged. While mostly absent from healthy tissues, granzyme B levels are elevated in several autoimmune and/or chronic inflammatory conditions. In the skin, its accumulation significantly impairs proper wound healing. AREAS COVERED After an overview of the current knowledge on granzyme B, a description of newly identified functions will be presented, focussing on granzyme B ability to promote cell-cell and dermal-epidermal junction disruption, extracellular matrix degradation, vascular permeabilization, and epithelial barrier dysfunction. Progress in granzyme B inhibition, as well as the use of granzyme B inhibitors for the treatment of tissue damage, will be discussed. EXPERT OPINION The absence of endogenous extracellular inhibitors renders extracellular granzyme B accumulation deleterious for the proper healing of chronic wounds due to sustained proteolytic activity. Consequently, specific granzyme B inhibitors have been developed as new therapeutic approaches. Beyond applications in wound healing, other autoimmune and/or chronic inflammatory conditions related to exacerbated granzyme B activity may also benefit from the development of these inhibitors.
Collapse
Affiliation(s)
- Alexandre Aubert
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - Michael Lane
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| |
Collapse
|
34
|
Richardson KC, Jung K, Pardo J, Turner CT, Granville DJ. Noncytotoxic Roles of Granzymes in Health and Disease. Physiology (Bethesda) 2022; 37:323-348. [PMID: 35820180 DOI: 10.1152/physiol.00011.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Granzymes are serine proteases previously believed to play exclusive and somewhat redundant roles in lymphocyte-mediated target cell death. However, recent studies have challenged this paradigm. Distinct substrate profiles and functions have since emerged for each granzyme while their dysregulated proteolytic activities have been linked to diverse pathologies.
Collapse
Affiliation(s)
- Katlyn C Richardson
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain.,Department of Microbiology, Radiology, Pediatrics and Public Health, University of Zaragoza, Zaragoza, Spain.,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Zaragoza, Spain
| | - Christopher T Turner
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
35
|
Zhang Q, Wang Q, Zhang LX. Granzyme B: A novel therapeutic target for treatment of atopic dermatitis. Indian J Dermatol Venereol Leprol 2022; 89:166-169. [PMID: 36331826 DOI: 10.25259/ijdvl_260_2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/01/2022] [Indexed: 11/04/2022]
Abstract
Granzyme B is a serine protease that can play multiple roles in intracellular and extracellular perforin-dependent or non-perforin-dependent mechanisms. Granzyme B has been found to be an important factor involved in the pathogenesis of atopic dermatitis and is increased in both skin lesions and peripheral blood of atopic dermatitis patients. In this article, we review the correlation between granzyme B and atopic dermatitis to provide a novel therapeutic targeting option for clinical treatment of the latter.
Collapse
Affiliation(s)
| | | | - Li-Xia Zhang
- Department of Dermatology & Venerology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
36
|
The alarmin interleukin-1α triggers secondary degeneration through reactive astrocytes and endothelium after spinal cord injury. Nat Commun 2022; 13:5786. [PMID: 36184639 PMCID: PMC9527244 DOI: 10.1038/s41467-022-33463-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/16/2022] [Indexed: 01/18/2023] Open
Abstract
Spinal cord injury (SCI) triggers neuroinflammation, and subsequently secondary degeneration and oligodendrocyte (OL) death. We report that the alarmin interleukin (IL)-1α is produced by damaged microglia after SCI. Intra-cisterna magna injection of IL-1α in mice rapidly induces neutrophil infiltration and OL death throughout the spinal cord, mimicking the injury cascade seen in SCI sites. These effects are abolished through co-treatment with the IL-1R1 antagonist anakinra, as well as in IL-1R1-knockout mice which demonstrate enhanced locomotor recovery after SCI. Conditional restoration of IL-1R1 expression in astrocytes or endothelial cells (ECs), but not in OLs or microglia, restores IL-1α-induced effects, while astrocyte- or EC-specific Il1r1 deletion reduces OL loss. Conditioned medium derived from IL-1α-stimulated astrocytes results in toxicity for OLs; further, IL-1α-stimulated astrocytes generate reactive oxygen species (ROS), and blocking ROS production in IL-1α-treated or SCI mice prevented OL loss. Thus, after SCI, microglia release IL-1α, inducing astrocyte- and EC-mediated OL degeneration.
Collapse
|
37
|
Targeting innate immunity-driven inflammation in CKD and cardiovascular disease. Nat Rev Nephrol 2022; 18:762-778. [PMID: 36064794 DOI: 10.1038/s41581-022-00621-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/08/2022]
Abstract
Mortality among patients with chronic kidney disease (CKD) is largely a consequence of cardiovascular disease (CVD) and is a particular concern given the increasing prevalence of CKD. Sterile inflammation triggered by activation of the innate immune system is an important driver of both CKD and associated CVD. Several endogenous mediators, including lipoproteins, crystals such as silica, urate and cholesterol crystals, or compounds released from dying cells interact with pattern recognition receptors expressed on a variety of different cell types, leading to the release of pro-inflammatory cytokines. Disturbed regulation of the haematopoietic system by damage-associated molecular patterns, or as a consequence of clonal haematopoiesis or trained innate immunity, also contributes to the development of inflammation. In observational and genetic association studies, inflammation is linked to the progression of CKD and cardiovascular events. In 2017, the CANTOS trial of canakinumab provided evidence that inhibiting inflammation driven by NLRP3-IL-1-IL-6-mediated signalling significantly reduced cardiovascular event rates in individuals with and without CKD. Other approaches to target innate immune pathways are now under investigation for their ability to reduce cardiovascular events and slow disease progression among patients with atherosclerosis and stage 3 and 4 CKD. This Review summarizes current understanding of the role of inflammation in the pathogenesis of CKD and its associated CVD, and how this knowledge may translate into novel therapeutics.
Collapse
|
38
|
Iznardo H, Puig L. IL-1 Family Cytokines in Inflammatory Dermatoses: Pathogenetic Role and Potential Therapeutic Implications. Int J Mol Sci 2022; 23:ijms23169479. [PMID: 36012744 PMCID: PMC9409147 DOI: 10.3390/ijms23169479] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/15/2022] Open
Abstract
The interleukin-1 (IL-1) family is involved in the correct functioning and regulation of the innate immune system, linking innate and adaptative immune responses. This complex family is composed by several cytokines, receptors, and co-receptors, all working in a balanced way to maintain homeostasis. Dysregulation of these processes results in tissue inflammation and is involved in the pathogenesis of common inflammatory dermatoses such as psoriasis, hidradenitis suppurativa, and atopic dermatitis. Therefore, therapeutic targeting of IL-1 pathways has been studied, and several monoclonal antibodies are currently being assessed in clinical trials. So far, promising results have been obtained with anti-IL-36R spesolimab and imsidolimab in pustular psoriasis, and their efficacy is being tested in other conditions.
Collapse
Affiliation(s)
- Helena Iznardo
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
| | - Luís Puig
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Correspondence:
| |
Collapse
|
39
|
Metabolic Pathways and Ion Channels Involved in Skeletal Muscle Atrophy: A Starting Point for Potential Therapeutic Strategies. Cells 2022; 11:cells11162566. [PMID: 36010642 PMCID: PMC9406740 DOI: 10.3390/cells11162566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle tissue has the important function of supporting and defending the organism. It is the largest apparatus in the human body, and its function is important for contraction and movements. In addition, it is involved in the regulation of protein synthesis and degradation. In fact, inhibition of protein synthesis and/or activation of catabolism determines a pathological condition called muscle atrophy. Muscle atrophy is a reduction in muscle mass resulting in a partial or complete loss of function. It has been established that many physiopathological conditions can cause a reduction in muscle mass. Nevertheless, it is not well known that the molecular mechanisms and signaling processes caused this dramatic event. There are multiple concomitant processes involved in muscle atrophy. In fact, the gene transcription of some factors, oxidative stress mechanisms, and the alteration of ion transport through specific ion channels may contribute to muscle function impairment. In this review, we focused on the molecular mechanisms responsible for muscle damage and potential drugs to be used to alleviate this disabling condition.
Collapse
|
40
|
Hasel de Carvalho E, Bartok E, Stölting H, Bajoghli B, Leptin M. Revisiting the origin of interleukin 1 in anamniotes and sub-functionalization of interleukin 1 in amniotes. Open Biol 2022; 12:220049. [PMID: 35975650 PMCID: PMC9382457 DOI: 10.1098/rsob.220049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The cytokine interleukin 1 (IL-1) is an evolutionary innovation of vertebrates. Fish and amphibian have one IL1 gene, while mammals have two copies of IL1, IL1A and IL1B, with distinct expression patterns and differences in their proteolytic activation. Our current understanding of the evolutionary history of IL-1 is mainly based on phylogenetic analysis, but this approach provides no information on potentially different functions of IL-1 homologues, and it remains unclear which biological activities identified for IL-1α and IL-1β in mammals are present in lower vertebrates. Here, we use in vitro and in vivo experimental models to examine the expression patterns and cleavage of IL-1 proteins from various species. We found that IL-1 in the teleost medaka shares the transcriptional patterns of mammalian IL-1α, and its processing also resembles that of mammalian IL-1α, which is sensitive to cysteine protease inhibitors specific for the calpain and cathepsin families. By contrast, IL-1 proteins in reptiles also include biological properties of IL-1β. Therefore, we propose that the duplication of the ancestral IL1 gene led to the segregation of expression patterns and protein processing that characterizes the two extant forms of IL-1 in mammals.
Collapse
Affiliation(s)
- Eva Hasel de Carvalho
- European Molecular Biology Laboratory (EMBL), Directors' Research, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Eva Bartok
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Venusberg Campus 1, 53127 Bonn, Germany.,Unit of Experimental Immunology, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Helen Stölting
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Baubak Bajoghli
- European Molecular Biology Laboratory (EMBL), Directors' Research, Meyerhofstrasse 1, 69117 Heidelberg, Germany.,Department of Hematology, Oncology, Immunology, and Rheumatology, University Hospital of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Maria Leptin
- European Molecular Biology Laboratory (EMBL), Directors' Research, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
41
|
Activation of NLRP3 Is Required for a Functional and Beneficial Microglia Response after Brain Trauma. Pharmaceutics 2022; 14:pharmaceutics14081550. [PMID: 35893807 PMCID: PMC9332196 DOI: 10.3390/pharmaceutics14081550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Despite the numerous research studies on traumatic brain injury (TBI), many physiopathologic mechanisms remain unknown. TBI is a complex process, in which neuroinflammation and glial cells play an important role in exerting a functional immune and damage-repair response. The activation of the NLRP3 inflammasome is one of the first steps to initiate neuroinflammation and so its regulation is essential. Using a closed-head injury model and a pharmacological (MCC950; 3 mg/kg, pre- and post-injury) and genetical approach (NLRP3 knockout (KO) mice), we defined the transcriptional and behavioral profiles 24 h after TBI. Wild-type (WT) mice showed a strong pro-inflammatory response, with increased expression of inflammasome components, microglia and astrocytes markers, and cytokines. There was no difference in the IL1β production between WT and KO, nor compensatory mechanisms of other inflammasomes. However, some microglia and astrocyte markers were overexpressed in KO mice, resulting in an exacerbated cytokine expression. Pretreatment with MCC950 replicated the behavioral and blood-brain barrier results observed in KO mice and its administration 1 h after the lesion improved the damage. These findings highlight the importance of NLRP3 time-dependent activation and its role in the fine regulation of glial response.
Collapse
|
42
|
Frezza V, Najda Z, Davidovich P, Sullivan GP, Martin SJ. IL-1α and IL-36 Family Cytokines Can Undergo Processing and Activation by Diverse Allergen-Associated Proteases. Front Immunol 2022; 13:879029. [PMID: 35844537 PMCID: PMC9280268 DOI: 10.3389/fimmu.2022.879029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammation driven by environmental allergens is an important source of morbidity in diseases such as asthma and eczema. How common allergens promote inflammation is still poorly understood, but previous studies have implicated the protease activity associated with many allergens as an important component of the pro-inflammatory properties of these agents. The IL-1 family cytokine, IL-33, has recently been shown to undergo processing and activation by proteases associated with multiple common allergens. However, it remains unclear whether the sensing of exogenous protease activity—as a proxy for the detection of invasive microbes, allergens and parasitic worms—is a general property of IL-1 family cytokines. In common with the majority of IL-1 family members, cytokines within the IL-36 sub-family (IL-36α, IL-36β and IL-36γ) are expressed as inactive precursors that require proteolysis within their N-termini for activation. Here we show that proteases associated with multiple common allergens of plant, insect, fungal and bacterial origin (including: Aspergillus fumigatus, ragweed, rye, house dust mite, cockroach and Bacillus licheniformis) are capable of processing and activating IL-36 family cytokines, with IL-36β being particularly susceptible to activation by multiple allergens. Furthermore, extracts from several allergens also processed and enhanced IL-1α activity. This suggests that multiple IL-1 family cytokines may serve as sentinels for exogenous proteases, coupling detection of such activity to unleashing the pro-inflammatory activity of these cytokines. Taken together with previous data on the diversity of proteases capable of activating IL-1 family cytokines, this suggests that members of this cytokine family may function as ‘activity recognition receptors’ for aberrant protease activity associated with infection, tissue injury or programmed necrosis.
Collapse
|
43
|
Lin D, Mei Y, Lei L, Binte Hanafi Z, Jin Z, Liu Y, Song Y, Zhang Y, Hu B, Liu C, Lu J, Liu H. Immune suppressive function of IL-1α release in the tumor microenvironment regulated by calpain 1. Oncoimmunology 2022; 11:2088467. [PMID: 35756844 PMCID: PMC9225674 DOI: 10.1080/2162402x.2022.2088467] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interleukin-1α (IL-1α) plays an important role in inflammation and hematopoiesis. Many tumors have increased IL-1α expression. However, the immune regulatory role of secreted IL-1α in tumor development and whether it can be targeted for cancer therapy are still unclear. Here, we found that tumoral-secreted IL-1α significantly promoted hepatocellular carcinoma (HCC) development in vivo. Tumoral-released IL-1α were found to inhibit T and NK cell activation, and the killing capacity of CD8+ T cells. Moreover, MDSCs were dramatically increased by tumoral-released IL-1α in both spleens and tumors. Indeed, higher tumoral IL-1α expression is associated with increased tumoral infiltration of MDSCs in HCC patients. Further studies showed that tumoral-released IL-1α promoted MDSC recruitment to the tumor microenvironment through a CXCR2-dependent mechanism. Depletion of MDSCs could diminish the tumor-promoting effect of tumoral-released IL-1α. On the contrary, systemic administration of recombinant IL-1α protein significantly inhibited tumor development by activating T cells. In fact, IL-1α protein could promote T cell activation and enhance the cytotoxicity of CD8+ T cells in vitro. Thus, our study demonstrated that tumoral-released IL-1α promoted tumor development through recruiting MDSCs to inhibit T cell activation, while systemic IL-1α directly promoted anti-tumor T cell responses. We further identified calpain 1 as the major intracellular protease mediating tumoral IL-1α secretion. Calpain 1 KO tumors had diminished IL-1α release and reduced tumor development. Thus, our findings provide new insights into the functions of secreted IL-1α in tumor immunity and its implications for immunotherapy.
Collapse
Affiliation(s)
- Dandan Lin
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Yu Mei
- Immunology Translational Research Programme, Department of Microbiology of Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Lei Lei
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Zuhairah Binte Hanafi
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China.,Immunology Translational Research Programme, Department of Microbiology of Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Ziqi Jin
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Yonghao Liu
- Immunology Translational Research Programme, Department of Microbiology of Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Yuan Song
- Immunology Translational Research Programme, Department of Microbiology of Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Yinsheng Zhang
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Bo Hu
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Chunliang Liu
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Jinhua Lu
- Immunology Translational Research Programme, Department of Microbiology of Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Haiyan Liu
- Immunology Translational Research Programme, Department of Microbiology of Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
44
|
Evavold CL, Kagan JC. Diverse Control Mechanisms of the Interleukin-1 Cytokine Family. Front Cell Dev Biol 2022; 10:910983. [PMID: 35832789 PMCID: PMC9272893 DOI: 10.3389/fcell.2022.910983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 11/15/2022] Open
Abstract
The majority of interleukin-1 (IL-1) family cytokines lack amino terminal secretion signals or transmembrane domains for secretion along the conventional biosynthetic pathway. Yet, these factors must be translocated from the cytoplasm across the plasma membrane into the extracellular space in order to regulate inflammation. Recent work has identified an array of mechanisms by which IL-1 family cytokines can be released into the extracellular space, with supramolecular organizing centers known as inflammasomes serving as dominant drivers of this process. In this review, we discuss current knowledge of the mechanisms of IL-1 family cytokine synthesis, processing, and release from cells. Using this knowledge, we propose a model whereby host metabolic state dictates the route of IL-1β secretion, with implications for microbial infection and sterile inflammation.
Collapse
Affiliation(s)
- Charles L. Evavold
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
- *Correspondence: Charles L. Evavold, ; Jonathan C. Kagan,
| | - Jonathan C. Kagan
- Division of Gastroenterology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Charles L. Evavold, ; Jonathan C. Kagan,
| |
Collapse
|
45
|
Martin SJ, Frezza V, Davidovich P, Najda Z, Clancy DM. IL-1 family cytokines serve as 'activity recognition receptors' for aberrant protease activity indicative of danger. Cytokine 2022; 157:155935. [PMID: 35759924 DOI: 10.1016/j.cyto.2022.155935] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 11/03/2022]
Abstract
Members of the extended IL-1 cytokine family play key roles as instigators of inflammation in numerous infectious and sterile injury contexts and are highly enriched at barrier surfaces such as the skin, lungs and intestinal mucosa. Because IL-1 family cytokines do not possess conventional ER-golgi trafficking and secretory signals, these cytokines are typically released into the extracellular space due to tissue damage resulting in necrosis, or pathogen detection resulting in pyroptosis. The latter feature, in combination with other factors, suggests that IL-1 family cytokines serve as canonical damage-associated molecular patterns (DAMPs), which instigate inflammation in response to tissue damage. However, IL-1 family cytokines also require a proteolytic activation step and diverse intracellular, extracellular and non-self proteases have been identified that are capable of processing and activating members of this family. This suggests that IL-1 family members function as sentinels for aberrant protease activity, which is frequently associated with infection or tissue damage. Here, we overview the diversity of proteases implicated in the activation of IL-1 family cytokines and suggest that this ancient cytokine family may have evolved to complement 'pattern recognition receptors', by serving as 'activity recognition receptors' enabling the detection of aberrant enzyme activity indicative of 'danger'.
Collapse
Affiliation(s)
- Seamus J Martin
- Molecular Cell Biology Laboratory, Dept. of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland.
| | - Valentina Frezza
- Molecular Cell Biology Laboratory, Dept. of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Pavel Davidovich
- Molecular Cell Biology Laboratory, Dept. of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Zaneta Najda
- Molecular Cell Biology Laboratory, Dept. of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Danielle M Clancy
- Molecular Cell Biology Laboratory, Dept. of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| |
Collapse
|
46
|
Matarazzo L, Hernandez Santana YE, Walsh PT, Fallon PG. The IL-1 cytokine family as custodians of barrier immunity. Cytokine 2022; 154:155890. [DOI: 10.1016/j.cyto.2022.155890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
|
47
|
Frisch SM. Interleukin-1α: Novel functions in cell senescence and antiviral response. Cytokine 2022; 154:155875. [PMID: 35447531 DOI: 10.1016/j.cyto.2022.155875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/14/2022] [Accepted: 04/01/2022] [Indexed: 12/21/2022]
Abstract
The interleukin-1 proteins are a hub of innate inflammatory signaling that activates diverse aspects of adaptive immunity. Until recently, the IL-1α isoform was relatively incompletely understood compared with IL-1β. This review briefly summarizes novel and surprising aspects of IL-1α biology. IL-1α localizes to the nucleus, cytoplasm, mitochondria, cell membrane or extracellular space in various contexts, with corresponding distinct functions. In particular, we focus on multiple pathways by which IL-1α promotes the senescent cell phenotype, unexpectedly involving signaling molecules including mTOR, GATA4, mitochondrial cardiolipin and caspases-4/5. Finally, I review a novel pathway by which IL-1α promotes antiviral immunity.
Collapse
Affiliation(s)
- Steven M Frisch
- Department of Biochemistry and WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
48
|
Dillon SM, Mickens KL, Thompson TA, Cooper EH, Nesladek S, Christians AJ, Castleman M, Guo K, Wood C, Frank DN, Kechris K, Santiago ML, Wilson CC. Granzyme B + CD4 T cells accumulate in the colon during chronic HIV-1 infection. Gut Microbes 2022; 14:2045852. [PMID: 35258402 PMCID: PMC8920224 DOI: 10.1080/19490976.2022.2045852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chronic HIV-1 infection results in the sustained disruption of gut homeostasis culminating in alterations in microbial communities (dysbiosis) and increased microbial translocation. Major questions remain on how interactions between translocating microbes and gut immune cells impact HIV-1-associated gut pathogenesis. We previously reported that in vitro exposure of human gut cells to enteric commensal bacteria upregulated the serine protease and cytotoxic marker Granzyme B (GZB) in CD4 T cells, and GZB expression was further increased in HIV-1-infected CD4 T cells. To determine if these in vitro findings extend in vivo, we evaluated the frequencies of GZB+ CD4 T cells in colon biopsies and peripheral blood of untreated, chronically infected people with HIV-1 (PWH). Colon and blood GZB+ CD4 T cells were found at significantly higher frequencies in PWH. Colon, but not blood, GZB+ CD4 T cell frequencies were associated with gut and systemic T cell activation and Prevotella species abundance. In vitro, commensal bacteria upregulated GZB more readily in gut versus blood or tonsil-derived CD4 T cells, particularly in inflammatory T helper 17 cells. Bacteria-induced GZB expression in gut CD4 T cells required the presence of accessory cells, the IL-2 pathway and in part, MHC Class II. Overall, we demonstrate that GZB+ CD4 T cells are prevalent in the colon during chronic HIV-1 infection and may emerge following interactions with translocated bacteria in an IL-2 and MHC Class II-dependent manner. Associations between GZB+ CD4 T cells, dysbiosis and T cell activation suggest that GZB+ CD4 T cells may contribute to gut HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Stephanie M. Dillon
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kaylee L. Mickens
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tezha A. Thompson
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Emily H. Cooper
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Sabrina Nesladek
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Moriah Castleman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kejun Guo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Daniel N. Frank
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Mario L. Santiago
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Cara C. Wilson
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA,contact Cara C. Wilson Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
49
|
Jung K, Pawluk MA, Lane M, Nabai L, Granville DJ. Granzyme B in Epithelial Barrier Dysfunction and Related Skin Diseases. Am J Physiol Cell Physiol 2022; 323:C170-C189. [PMID: 35442832 DOI: 10.1152/ajpcell.00052.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The predominant function of the skin is to serve as a barrier - to protect against external insults and to prevent water loss. Junctional and structural proteins in the stratum corneum, the outermost layer of the epidermis, are critical to the integrity of the epidermal barrier as it balances ongoing outward migration, differentiation, and desquamation of keratinocytes in the epidermis. As such, epidermal barrier function is highly susceptible to upsurges of proteolytic activity in the stratum corneum and epidermis. Granzyme B is a serine protease scarce in healthy tissues but present at high levels in tissues encumbered by chronic inflammation. Discovered in the 1980s, Granzyme B is currently recognized for its intracellular roles in immune cell-mediated targeted apoptosis as well as extracellular roles in inflammation, chronic injuries, tissue remodeling, and processing of cytokines, matrix proteins, and autoantigens. Increasing evidence has emerged in recent years supporting a role for Granzyme B in promoting barrier dysfunction in the epidermis by direct cleavage of barrier proteins and eliciting immunoreactivity. Likewise, Granzyme B contributes to impaired epithelial function of the airways, retina, gut and vessels. In the present review, the role of Granzyme B in cutaneous epithelial dysfunction is discussed in the context of specific conditions with an overview of underlying mechanisms as well as utility of current experimental and therapeutic inhibitors.
Collapse
Affiliation(s)
- Karen Jung
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - Megan A Pawluk
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - Michael Lane
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - Layla Nabai
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| |
Collapse
|
50
|
Di Gioacchino M, Della Valle L, Allegra A, Pioggia G, Gangemi S. AllergoOncology: Role of immune cells and immune proteins. Clin Transl Allergy 2022; 12:e12133. [PMID: 35344301 PMCID: PMC8967267 DOI: 10.1002/clt2.12133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/21/2021] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Background Immune cells and immune proteins play a pivotal role in host responses to pathogens, allergens and cancer. Understanding the crosstalk between allergic response and cancer, immune surveillance, immunomodulation, role of immunoglobulin E (IgE)‐mediated functions and help to develop novel therapeutic strategies. Allergy and oncology show two opposite scenarios: whereas immune tolerance is desired in allergy, it is detrimental in cancer. Aim The current review provides an update on the role of immune cells and immune proteins in allergy and cancer fields. Methods Authors investigated the role of relevant immunological markers and the correlation with cancer progression or cancer suppression. Results Activated immune cells such as macrophages ‘M1’, dendritic cells (DCs), innate lymphoid cells (ILC2), NK cells, Th1, follicular T helper cells (TFH), TCD8+, B lymphocytes and eosinophils have inhibitory effects on tumourigenesis, while tolerogenic cells such as macrophages ‘M2,’ tolerogenic DCs, ILC3, T and B regulatory lymphocytes appear to favour carcinogenesis. Mastocytes and alarmins can have both effects. RIgE antibodies and CCCL5 chemokine have an anticancer role, whereas IgG4, free light chains, Il‐10, TGF‐β, lipocalin‐2, CCL1 chemokine promote cancer progression. Fundamental is also the contribution of epigenetic changes regulated by the microRNA in cancer progression. Conclusion This knowledge represents the key to developing new anticancer therapies.
Collapse
Affiliation(s)
- Mario Di Gioacchino
- Center for Advanced Science and Technology, G. d'Annunzio University, Chieti, Italy.,IDA - Institute of Clinical Immunotherapy and Advanced Biological Treatments, Pescara, Italy
| | - Loredana Della Valle
- Center for Advanced Science and Technology, G. d'Annunzio University, Chieti, Italy.,IDA - Institute of Clinical Immunotherapy and Advanced Biological Treatments, Pescara, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood 'Gaetano Barresi', University of Messina, Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, and Operative Unit of Allergy and Clinical Immunology, University of Messina, Messina, Italy
| |
Collapse
|