1
|
Wawro M, Kochan J, Kasza A. Regnases play a crucial role in guarding against cancer development. Biochim Biophys Acta Rev Cancer 2025; 1880:189352. [PMID: 40360134 DOI: 10.1016/j.bbcan.2025.189352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
Transcript turnover, a fundamental process in maintaining cellular homeostasis, involves intricate interactions between cis-acting sequences and trans-acting factors. Recent advancements in RNA decay research have illuminated novel ribonucleases (RNases) and regulatory elements within mRNA untranslated regions (UTRs), shedding light on the complexity of this process. Members of the Regnase/ZC3H12/MCPIP family (Regnase-1-4) emerge as multifaceted regulators in inflammation and cancer biology. Here, we focused on studies discussing the role of Regnases in cancer. Understanding the intricate roles of Regnase family proteins provides insights into cellular homeostasis and disease pathology, offering promising avenues for targeted therapeutic interventions in inflammation-related disorders and cancer.
Collapse
Affiliation(s)
- Mateusz Wawro
- Department of Cell Biochemistry, Faculty of Biotechnology, Biochemistry and Biophysics, Jagiellonian University, Krakow, Poland
| | - Jakub Kochan
- Department of Cell Biochemistry, Faculty of Biotechnology, Biochemistry and Biophysics, Jagiellonian University, Krakow, Poland
| | - Aneta Kasza
- Department of Cell Biochemistry, Faculty of Biotechnology, Biochemistry and Biophysics, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
2
|
Lichawska-Cieslar A, Szukala W, Ylla G, Machaj G, Ploskonka F, Chlebicka I, Szepietowski JC, Jura J. MCPIP1 modulates the miRNA‒mRNA landscape in keratinocyte carcinomas. J Exp Clin Cancer Res 2024; 43:290. [PMID: 39428471 PMCID: PMC11492624 DOI: 10.1186/s13046-024-03211-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Monocyte Chemotactic Protein 1-Induced Protein 1 (MCPIP1, also called Regnase-1) is a negative modulator of inflammation with tumor-suppressive properties. Mice with keratinocyte-specific deletion of the Zc3h12a gene, encoding MCPIP1, (Mcpip1eKO mice) are more susceptible to the development of epidermal papillomas initiated by 7,12-dimethylbenz[a]-anthracene (DMBA) and promoted by 2-O-tetradecanoylphorbol-13-acetate (TPA). METHODS The aim of this study was to investigate the MCPIP1 RNase-dependent microRNA (miRNA)‒mRNA regulatory network in chemically induced squamous cell carcinoma (SCC)-like skin papillomas. Next-generation sequencing (NGS) coupled with bioinformatic analysis was used to shortlist the MCPIP1-dependent changes in protein-coding genes and miRNAs. The expression levels of the selected miRNAs were analyzed by quantitative PCR in human keratinocytes with MCPIP1 silencing. Functional studies were performed in human keratinocytes transfected with appropriate miRNA mimics. The DIANA-microT-CDS algorithm and DIANA-TarBase v7 database were used to predict potential target genes and identify the experimentally validated targets of differentially expressed (DE) miRNAs. RESULTS RNA sequencing (RNA-Seq) analysis of control and Mcpip1eKO DMBA/TPA-induced papillomas revealed transcriptome changes, with 2400 DE protein-coding genes and 33 DE miRNAs. The expression of miR-223-3p, miR-376c-3p, and miR-139-5p was confirmed to be dependent on MCPIP1 activity in both murine and human models. We showed that MCPIP1 directly regulates the expression of miR-376c-3p via direct cleavage of the corresponding precursor miRNA. The pro-proliferative activity of miR-223-3p, miR-376c-3p, and miR-139-5p was experimentally confirmed in SCC-like keratinocytes. Bioinformatic prediction of the mRNA targets of the DE-miRNAs revealed 416 genes as putative targets of the 18 upregulated miRNAs and 425 genes as putative targets of the 15 downregulated miRNAs. Further analyses revealed the murine interactions that are conserved in humans. Functional analysis indicated that during the development of cutaneous SCC, the most important pathways/processes mediated by the miRNA‒mRNA MCPIP1-dependent network are the regulation of inflammatory processes, epithelial cell proliferation, Wnt signaling, and miRNA transcription. CONCLUSIONS Loss of MCPIP1 modulates the expression profiles of 33 miRNAs in chemically induced Mcpip1eKO papillomas, and these changes directly affect the miRNA‒mRNA network and the modulation of pathways and processes related to carcinogenesis.
Collapse
Affiliation(s)
- Agata Lichawska-Cieslar
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Weronika Szukala
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, Krakow, 30- 348, Poland
| | - Guillem Ylla
- Faculty of Biochemistry, Biophysics and Biotechnology, Laboratory of Bioinformatics and Genome Biology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Gabriela Machaj
- Faculty of Biochemistry, Biophysics and Biotechnology, Laboratory of Bioinformatics and Genome Biology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Faustyna Ploskonka
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Iwona Chlebicka
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, Wroclaw, 50-368, Poland
- Faculty of Medicine, Wroclaw University of Science and Technology, Grunwaldzki sq. 11, Wroclaw, 51-377, Polska
| | - Jacek C Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, Wroclaw, 50-368, Poland
- Faculty of Medicine, Wroclaw University of Science and Technology, Grunwaldzki sq. 11, Wroclaw, 51-377, Polska
| | - Jolanta Jura
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland.
| |
Collapse
|
3
|
Seok HY, Lee SY, Nguyen LV, Bayzid M, Jang Y, Moon YH. AtC3H3, an Arabidopsis Non-TZF Gene, Enhances Salt Tolerance by Increasing the Expression of Both ABA-Dependent and -Independent Stress-Responsive Genes. Int J Mol Sci 2024; 25:10943. [PMID: 39456724 PMCID: PMC11507560 DOI: 10.3390/ijms252010943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Salinity causes widespread crop loss and prompts plants to adapt through changes in gene expression. In this study, we aimed to investigate the function of the non-tandem CCCH zinc-finger (non-TZF) protein gene AtC3H3 in response to salt stress in Arabidopsis. AtC3H3, a gene from the non-TZF gene family known for its RNA-binding and RNase activities, was up-regulated under osmotic stress, such as high salt and drought. When overexpressed in Arabidopsis, AtC3H3 improved tolerance to salt stress, but not drought stress. The expression of well-known abscisic acid (ABA)-dependent salt stress-responsive genes, namely Responsive to Desiccation 29B (RD29B), RD22, and Responsive to ABA 18 (RAB18), and representative ABA-independent salt stress-responsive genes, namely Dehydration-Responsive Element Binding protein 2A (DREB2A) and DREB2B, was significantly higher in AtC3H3-overexpressing transgenic plants (AtC3H3 OXs) than in wild-type plants (WT) under NaCl treatment, indicating its significance in both ABA-dependent and -independent signal transduction pathways. mRNA-sequencing (mRNA-Seq) analysis using NaCl-treated WT and AtC3H3 OXs revealed no potential target mRNAs for the RNase function of AtC3H3, suggesting that the potential targets of AtC3H3 might be noncoding RNAs and not mRNAs. Through this study, we conclusively demonstrated that AtC3H3 plays a crucial role in salt stress tolerance by influencing the expression of salt stress-responsive genes. These findings offer new insights into plant stress response mechanisms and suggest potential strategies for improving crop resilience to salinity stress.
Collapse
Affiliation(s)
- Hye-Yeon Seok
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea; (H.-Y.S.); (S.-Y.L.)
| | - Sun-Young Lee
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea; (H.-Y.S.); (S.-Y.L.)
| | - Linh Vu Nguyen
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Md Bayzid
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; (M.B.); (Y.J.)
| | - Yunseong Jang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; (M.B.); (Y.J.)
| | - Yong-Hwan Moon
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea; (H.-Y.S.); (S.-Y.L.)
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; (M.B.); (Y.J.)
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Luo J, He L, Guo Y, Wang J, Liu H, Li Z. MCPIP1 Elicits a Therapeutic Effect on Cervical Cancer by Facilitating XIAP mRNA Decay via Its Endoribonuclease Activity. Int J Mol Sci 2024; 25:10285. [PMID: 39408613 PMCID: PMC11477132 DOI: 10.3390/ijms251910285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Cervical cancer is the fourth most common malignancy in women globally. Chemotherapies, targeted therapies, and immunotherapies in the treatment of cervical cancer are usually accompanied by effective and adverse effects. Therefore, finding other efficient and accurate molecular targets remains essential to improve the treatment benefits of cervical cancer patients. MCPIP1 (monocyte chemoattractant protein-induced protein 1) is a kind of endonuclease with a CCCH zinc finger domain and a PilT-N-terminal (PIN) domain, and its function in cervical cancer is unknown. We found that MCPIP1 inhibits cell proliferation and promotes cell apoptosis of cervical cancer. Additionally, MCPIP1 suppresses mRNA and protein expression of the apoptotic inhibitor XIAP by decreasing its mRNA stability. Mechanically, MCPIP1 binds to the XIAP mRNA via its CCCH zinc finger domain and degrades the XIAP mRNA via the endonuclease activity coming from its PIN domain. Our study clarifies that MCPIP1 promotes cervical cancer cell apoptosis by suppressing the expression of XIAP, thereby impeding cervical cancer progression. Moreover, targeted delivery of MCPIP1 with engineered Salmonella typhimurium leads to tumor growth retardation in the HeLa xenograft tumor model in mice. Therefore, our study may provide a theoretical basis for formulating clinical treatment strategies for cervical cancer.
Collapse
Affiliation(s)
- Junyun Luo
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha 410082, China
| | - Ling He
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha 410082, China
| | - Yanxia Guo
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Junzhi Wang
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha 410082, China
| | - Hui Liu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha 410082, China
| | - Zhaoyong Li
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology of College of Biology, Hunan University, Changsha 410082, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
5
|
Daniel Thomas S, Vijayakumar K, John L, Krishnan D, Rehman N, Revikumar A, Kandel Codi JA, Prasad TSK, S S V, Raju R. Machine Learning Strategies in MicroRNA Research: Bridging Genome to Phenome. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:213-233. [PMID: 38752932 DOI: 10.1089/omi.2024.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
MicroRNAs (miRNAs) have emerged as a prominent layer of regulation of gene expression. This article offers the salient and current aspects of machine learning (ML) tools and approaches from genome to phenome in miRNA research. First, we underline that the complexity in the analysis of miRNA function ranges from their modes of biogenesis to the target diversity in diverse biological conditions. Therefore, it is imperative to first ascertain the miRNA coding potential of genomes and understand the regulatory mechanisms of their expression. This knowledge enables the efficient classification of miRNA precursors and the identification of their mature forms and respective target genes. Second, and because one miRNA can target multiple mRNAs and vice versa, another challenge is the assessment of the miRNA-mRNA target interaction network. Furthermore, long-noncoding RNA (lncRNA)and circular RNAs (circRNAs) also contribute to this complexity. ML has been used to tackle these challenges at the high-dimensional data level. The present expert review covers more than 100 tools adopting various ML approaches pertaining to, for example, (1) miRNA promoter prediction, (2) precursor classification, (3) mature miRNA prediction, (4) miRNA target prediction, (5) miRNA- lncRNA and miRNA-circRNA interactions, (6) miRNA-mRNA expression profiling, (7) miRNA regulatory module detection, (8) miRNA-disease association, and (9) miRNA essentiality prediction. Taken together, we unpack, critically examine, and highlight the cutting-edge synergy of ML approaches and miRNA research so as to develop a dynamic and microlevel understanding of human health and diseases.
Collapse
Affiliation(s)
- Sonet Daniel Thomas
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Krithika Vijayakumar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Levin John
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Deepak Krishnan
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Niyas Rehman
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Amjesh Revikumar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
- Kerala Genome Data Centre, Kerala Development and Innovation Strategic Council, Thiruvananthapuram, Kerala, India
| | - Jalaluddin Akbar Kandel Codi
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | | | - Vinodchandra S S
- Department of Computer Science, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| |
Collapse
|
6
|
Zou X, Xie Y, Zhang Z, Feng Z, Han J, Ouyang Q, Hua S, Huang S, Li C, Liu Z, Cai Y, Zou Y, Tang Y, Chen H, Jiang X. MCPIP-1 knockdown enhances endothelial colony-forming cell angiogenesis via the TFRC/AKT/mTOR signaling pathway in the ischemic penumbra of MCAO mice. Exp Neurol 2023; 369:114532. [PMID: 37689231 DOI: 10.1016/j.expneurol.2023.114532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Cerebral ischemia is a serious disease characterized by brain tissue ischemia and hypoxic necrosis caused by the blockage of blood vessels within the central nervous system. Although stem cell therapy is a promising approach for treating ischemic stroke, the inflammatory, oxidative, and hypoxic environment generated by cerebral ischemia greatly reduces the survival and therapeutic effects of transplanted stem cells. Endothelial colony-forming cells (ECFCs) are a class of precursor cells with strong proliferative potential that can migrate and differentiate directly into mature vascular endothelial cells. Consequently, ECFCs can exert significant therapeutic and reparative effects in diseases associated with vascular injury. Monocyte chemoattractant protein-induced protein 1 (MCPIP-1) exerts multiple biological effects; however, no studies have yet reported its role in the angiogenic function of ECFCs. In this study, we performed Proteome Profiler™ Human Angiogenesis Antibody arrays and tandem mass tag protein profiling to investigate the effect of MCPIP-1 on ECFCs. We demonstrated that MCPIP-1 knockdown enhanced the proliferation, migration, and in vivo and in vitro angiogenic capacity of ECFCs by upregulating the transferrin receptor-activated AKT/m-TOR signaling pathway to promote cellular trophic factor secretion. Furthermore, we found that the lateral ventricular transplantation of ECFCs with lentiviral MCPIP-1 knockdown into mice with middle cerebral artery occlusion increased serum vacular endothelial growth factor(VEGF), angiopoietin-1, and HIF-1a levels, enhanced neovascularization and neurogenesis in the ischemic penumbra, reduced the size of cerebral infarcts, and promoted neurological recovery. Together, these findings suggest new avenues for enhancing the therapeutic efficacy of ECFCs.
Collapse
Affiliation(s)
- Xiaoxiong Zou
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yu Xie
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhongfei Zhang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhiming Feng
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jianbang Han
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Qian Ouyang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Shiting Hua
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Sixian Huang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Cong Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhizheng Liu
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yingqian Cai
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yuxi Zou
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yanping Tang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Haijia Chen
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xiaodan Jiang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
7
|
Lichawska-Cieslar A, Szukala W, Prajsnar TK, Pooranachandran N, Kulecka M, Dabrowska M, Mikula M, Rakus K, Chadzinska M, Jura J. MCPIP1 functions as a safeguard of early embryonic development. Sci Rep 2023; 13:16944. [PMID: 37805647 PMCID: PMC10560294 DOI: 10.1038/s41598-023-44294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023] Open
Abstract
Monocyte chemoattractant protein-induced protein 1 (MCPIP1), also called Regnase-1, is an RNase that has been described as a key negative modulator of inflammation. MCPIP1 also controls numerous tumor-related processes, such as proliferation, apoptosis and differentiation. In this study, we utilized a zebrafish model to investigate the role of Mcpip1 during embryogenic development. Our results demonstrated that during embryogenesis, the expression of the zc3h12a gene encoding Mcpip1 undergoes dynamic changes. Its transcript levels gradually increase from the 2-cell stage to the spherical stage and then decrease rapidly. We further found that ectopic overexpression of wild-type Mcpip1 but not the catalytically inactive mutant form resulted in an embryonic lethal phenotype in zebrafish embryos (24 hpf). At the molecular level, transcriptomic profiling revealed extensive changes in the expression of genes encoding proteins important in the endoplasmic reticulum stress response and in protein folding as well as involved in the formation of primary germ layer, mesendoderm and endoderm development, heart morphogenesis and cell migration. Altogether, our results demonstrate that the expression of zc3h12a must be tightly controlled during the first cell divisions of zebrafish embryos and that a rapid decrease in its mRNA expression is an important factor promoting proper embryo development.
Collapse
Affiliation(s)
- Agata Lichawska-Cieslar
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Weronika Szukala
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Kraków, Poland
| | - Tomasz K Prajsnar
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Niedharsan Pooranachandran
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Maria Kulecka
- Medical Center for Postgraduate Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Marymoncka 99/103, 01-813, Warsaw, Poland
- Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Michalina Dabrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Michal Mikula
- Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
8
|
Garnier N, Sane F, Massara L, Soncin F, Gosset P, Hober D, Szunerits S, Engelmann I. Genes Involved in miRNA Biogenesis Are Not Downregulated in SARS-CoV-2 Infection. Viruses 2023; 15:v15051177. [PMID: 37243263 DOI: 10.3390/v15051177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
miRNAs, small non-coding RNAs that regulate gene expression, are involved in various pathological processes, including viral infections. Virus infections may interfere with the miRNA pathway through the inhibition of genes involved in miRNA biogenesis. A reduction in the number and the levels of miRNAs expressed in nasopharyngeal swabs of patients with severe COVID-19 was lately observed by us, pointing towards the potential of miRNAs as possible diagnostic or prognostic biomarkers for predicting outcomes among patients with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. The objective of the present study was to investigate whether SARS-CoV-2 infection influences the expression levels of messenger RNAs (mRNAs) of key genes involved in miRNA biogenesis. mRNA levels of AGO2, DICER1, DGCR8, DROSHA, and Exportin-5 (XPO5) were measured by quantitative reverse-transcription polymerase chain reaction (RT-qPCR) in nasopharyngeal swab specimens from patients with COVID-19 and controls, as well as in cells infected with SARS-CoV-2 in vitro. Our data showed that the mRNA expression levels of AGO2, DICER1, DGCR8, DROSHA, and XPO5 were not significantly different in patients with severe COVID-19 when compared to patients with non-severe COVID-19 and controls. Similarly, the mRNA expression of these genes was not affected by SARS-CoV-2 infection in NHBE and Calu-3 cells. However, in Vero E6 cells, AGO2, DICER1, DGCR8, and XPO5 mRNA levels were slightly upregulated 24 h after infection with SARS-CoV-2. In conclusion, we did not find evidence for downregulation of mRNA levels of miRNA biogenesis genes during SARS-CoV-2 infection, neither ex vivo nor in vitro.
Collapse
Affiliation(s)
- Nathalie Garnier
- Laboratoire de Virologie ULR3610, University Lille and CHU Lille, F-59000 Lille, France
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Famara Sane
- Laboratoire de Virologie ULR3610, University Lille and CHU Lille, F-59000 Lille, France
| | - Layal Massara
- CNRS UMR 9017, Inserm U1019, CHU Lille, Institut Pasteur de Lille, CIIL-OpInfIELD, University Lille, F-59000 Lille, France
| | - Fabrice Soncin
- CNRS/IIS/Centre Oscar Lambret/Lille University SMMiL-E Project, CNRS Délégation Hauts-de-France, F-59000 Lille, France
- Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, CNRS IRL2820, Tokyo 113-0033, Japan
| | - Philippe Gosset
- CNRS UMR 9017, Inserm U1019, CHU Lille, Institut Pasteur de Lille, CIIL-OpInfIELD, University Lille, F-59000 Lille, France
| | - Didier Hober
- Laboratoire de Virologie ULR3610, University Lille and CHU Lille, F-59000 Lille, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Ilka Engelmann
- Laboratoire de Virologie ULR3610, University Lille and CHU Lille, F-59000 Lille, France
- PCCEI, University Montpellier, INSERM, EFS, CHU Montpellier, F-34000 Montpellier, France
| |
Collapse
|
9
|
The Role of ncRNAs in Cardiac Infarction and Regeneration. J Cardiovasc Dev Dis 2023; 10:jcdd10030123. [PMID: 36975887 PMCID: PMC10052289 DOI: 10.3390/jcdd10030123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Myocardial infarction is the most prevalent cardiovascular disease worldwide, and it is defined as cardiomyocyte cell death due to a lack of oxygen supply. Such a temporary absence of oxygen supply, or ischemia, leads to extensive cardiomyocyte cell death in the affected myocardium. Notably, reactive oxygen species are generated during the reperfusion process, driving a novel wave of cell death. Consequently, the inflammatory process starts, followed by fibrotic scar formation. Limiting inflammation and resolving the fibrotic scar are essential biological processes with respect to providing a favorable environment for cardiac regeneration that is only achieved in a limited number of species. Distinct inductive signals and transcriptional regulatory factors are key components that modulate cardiac injury and regeneration. Over the last decade, the impact of non-coding RNAs has begun to be addressed in many cellular and pathological processes including myocardial infarction and regeneration. Herein, we provide a state-of-the-art review of the current functional role of diverse non-coding RNAs, particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in different biological processes involved in cardiac injury as well as in distinct experimental models of cardiac regeneration.
Collapse
|
10
|
Pydyn N, Kadluczka J, Major P, Hutsch T, Belamri K, Malczak P, Radkowiak D, Budzynski A, Miekus K, Jura J, Kotlinowski J. Hepatic MCPIP1 protein levels are reduced in NAFLD patients and are predominantly expressed in cholangiocytes and liver endothelium. Hepatol Commun 2023; 7:e0008. [PMID: 36809310 PMCID: PMC9949814 DOI: 10.1097/hc9.0000000000000008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/20/2022] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND AND AIMS NAFLD is characterized by the excessive accumulation of fat in hepatocytes. NAFLD can range from simple steatosis to the aggressive form called NASH, which is characterized by both fatty liver and liver inflammation. Without proper treatment, NAFLD may further progress to life-threatening complications, such as fibrosis, cirrhosis, or liver failure. Monocyte chemoattractant protein-induced protein 1 (MCPIP1, alias Regnase 1) is a negative regulator of inflammation, acting through the cleavage of transcripts coding for proinflammatory cytokines and the inhibition of NF-κB activity. METHODS In this study, we investigated MCPIP1 expression in the liver and peripheral blood mononuclear cells (PBMCs) collected from a cohort of 36 control and NAFLD patients hospitalized due to bariatric surgery or primary inguinal hernia laparoscopic repair. Based on liver histology data (hematoxylin and eosin and Oil Red-O staining), 12 patients were classified into the NAFL group, 19 into the NASH group, and 5 into the control (non-NAFLD) group. Biochemical characterization of patient plasma was followed by expression analysis of genes regulating inflammation and lipid metabolism. The MCPIP1 protein level was reduced in the livers of NAFL and NASH patients in comparison to non-NAFLD control individuals. In addition, in all groups of patients, immunohistochemical staining showed that the expression of MCPIP1 was higher in the portal fields and bile ducts in comparison to the liver parenchyma and central vein. The liver MCPIP1 protein level negatively correlated with hepatic steatosis but not with patient body mass index or any other analyte. The MCPIP1 level in PBMCs did not differ between NAFLD patients and control patients. Similarly, in patients' PBMCs there were no differences in the expression of genes regulating β-oxidation (ACOX1, CPT1A, and ACC1) and inflammation (TNF, IL1B, IL6, IL8, IL10, and CCL2), or transcription factors controlling metabolism (FAS, LCN2, CEBPB, SREBP1, PPARA, and PPARG). CONCLUSION We have demonstrated that MCPIP1 protein levels are reduced in NAFLD patients, but further research is needed to investigate the specific role of MCPIP1 in NAFL initiation and the transition to NASH.
Collapse
Affiliation(s)
- Natalia Pydyn
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Kadluczka
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Piotr Major
- 2nd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz Hutsch
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
- Veterinary Diagnostic Laboratory ALAB Bioscience, Warsaw, Poland
| | - Kinga Belamri
- Veterinary Diagnostic Laboratory ALAB Bioscience, Warsaw, Poland
| | - Piotr Malczak
- 2nd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
| | - Dorota Radkowiak
- 2nd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
| | - Andrzej Budzynski
- 2nd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Miekus
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jerzy Kotlinowski
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
11
|
Abstract
MicroRNAs (miRNAs) are small RNA molecules, with their role in gene silencing and translational repression by binding to the target mRNAs. Since it was discovered in 1993, miRNA is found in all eukaryotic cells conserved across the species. miRNA-size molecules are also known to be found in prokaryotes. Regulation of miRNAs is extensively studied for their role in biological processes as well as in development and progression of various human diseases including neurodegenerative diseases, cardiovascular disease, and cancer. miRNA-based therapy has a promising application, and with a good delivery system, miRNA therapeutics can potentially be a success. miRNAs and EVs have potential therapeutic and prognostic application in a range of disease models. This chapter summarizes miRNA biogenesis and explores their potential roles in a variety of diseases. miRNAs hold huge potential for diagnostic and prognostic biomarkers and as predictors of drug response.
Collapse
Affiliation(s)
- Anchal Vishnoi
- Department of Biophysics, University of Delhi, New Delhi, India
| | - Sweta Rani
- Department of Science, South East Technological University, Waterford, Ireland.
| |
Collapse
|
12
|
Firatli Y, Firatli E, Loimaranta V, Elmanfi S, Gürsoy UK. Regulation of gingival keratinocyte monocyte chemoattractant protein-1-induced protein (MCPIP)-1 and mucosa-associated lymphoid tissue lymphoma translocation protein (MALT)-1 expressions by periodontal bacteria, lipopolysaccharide, and interleukin-1β. J Periodontol 2023; 94:130-140. [PMID: 35712915 PMCID: PMC10087685 DOI: 10.1002/jper.22-0093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND The aim of this study was to evaluate oral bacteria- and interleukin (IL)-1β-induced protein and mRNA expression profiles of monocyte chemoattractant protein-1-induced protein (MCPIP)-1 and mucosa-associated lymphoid tissue lymphoma translocation protein (MALT)-1 in human gingival keratinocyte monolayers and organotypic oral mucosal models. METHODS Human gingival keratinocyte (HMK) monolayers were incubated with Porphyromonas gingivalis, Fusobacterium nucleatum, P. gingivalis lipopolysaccharide (LPS) and IL-1β. The protein levels of MCPIP-1 and MALT-1 were examined by immunoblots and mRNA levels by qPCR. MCPIP-1 and MALT-1 protein expression levels were also analyzed immunohistochemically using an organotypic oral mucosal model. One-way analysis of variance followed by Tukey correction was used in statistical analyses. RESULTS In keratinocyte monolayers, MCPIP-1 protein expression was suppressed by F. nucleatum and MALT-1 protein expression was suppressed by F. nucleatum, P. gingivalis LPS and IL-1β. P. gingivalis seemed to degrade MCPIP-1 and MALT-1 at all tested time points and degradation was inhibited when P. gingivalis was heat-killed. MCPIP-1 mRNA levels were increased by P. gingivalis, F. nucleatum, and IL-1β, however, no changes were observed in MALT-1 mRNA levels. CONCLUSION Gingival keratinocyte MCPIP-1 and MALT-1 mRNA and protein expression responses are regulated by infection and inflammatory mediators. These findings suggest that periodontitis-associated bacteria-induced modifications in MCPIP-1 and MALT-1 responses can be a part of periodontal disease pathogenesis.
Collapse
Affiliation(s)
- Yigit Firatli
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland.,Department of Periodontology, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Erhan Firatli
- Department of Periodontology, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Vuokko Loimaranta
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Samira Elmanfi
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Ulvi K Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
13
|
MCPIP1 Suppresses the NF-κB Signaling Pathway Through Negative Regulation of K63-Linked Ubiquitylation of TRAF6 in Colorectal Cancer. Cancer Gene Ther 2023; 30:96-107. [PMID: 36076064 DOI: 10.1038/s41417-022-00528-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 01/19/2023]
Abstract
The abnormal activation of the nuclear factor-kappa B (NF-κB) signaling pathway is an important precipitating factor for the inception and development of colorectal cancer (CRC), one of the most common tumors worldwide. As a pro-apoptotic transcription factor, monocyte chemotactic protein-induced protein 1 (MCPIP1) has been closely associated with many tumor types. In the present study, the expression of MCPIP1 was firstly discovered reduced in CRC tissues and correlated with poor patient prognosis. The decreased expression was caused by promoter hypermethylation. Overexpressed MCPIP1 was found to inhibit the proliferative and migratory abilities of CRC cells, whereas knockdown of MCPIP1 produced the opposite result. The subsequent investigation demonstrated that MCPIP1 exerted its "anti-cancer" effect by suppression of the NF-κB signaling pathway through negative regulation of K63-linked ubiquitylation of TNF receptor associated factor 6 (TRAF6). Therefore, our results indicate a prognostic marker for CRC and a theoretical basis for MCPIP1 as a treatment.
Collapse
|
14
|
MCPIP1 alleviates inflammatory response through inducing autophagy in Aspergillus fumigatus keratitis. Int Immunopharmacol 2022; 113:109279. [DOI: 10.1016/j.intimp.2022.109279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022]
|
15
|
Roles of RNA-binding proteins in immune diseases and cancer. Semin Cancer Biol 2022; 86:310-324. [PMID: 35351611 DOI: 10.1016/j.semcancer.2022.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023]
Abstract
Genetic information that is transcribed from DNA to mRNA, and then translated from mRNA to protein, is regulated by complex and sophisticated post-transcriptional mechanisms. Recently, it has become clear that mRNA degradation not only acts to remove unnecessary mRNA, but is also closely associated with the regulation of translation initiation, and is essential for maintaining cellular homeostasis. Various RNA-binding proteins (RBPs) have been reported to play central roles in the mechanisms of mRNA stability and translation initiation through various signal transduction pathways, and to modulate gene expression faster than the transcription process via post-transcriptional modifications in response to intracellular and extracellular stimuli, without de novo protein synthesis. On the other hand, inflammation is necessary for the elimination of pathogens associated with infection, and is tightly controlled to avoid the overexpression of inflammatory cytokines, such as interleukin 6 (IL-6) and tumor necrosis factor (TNF). It is increasingly becoming clear that RBPs play important roles in the post-transcriptional regulation of these immune responses. Furthermore, it has been shown that the aberrant regulation of RBPs leads to chronic inflammation and autoimmune diseases. Although it has been recognized since the time of Rudolf Virchow in the 19th century that cancer-associated inflammation contributes to tumor onset and progression, involvement of the disruption of the balance between anti-tumor immunity via the immune surveillance system and pro-tumor immunity by cancer-associated inflammation in the malignant transformation of cancer remains elusive. Recently, the dysregulated expression and activation of representative RBPs involved in regulation of the production of pro-inflammatory cytokines have been shown to be involved in tumor progression. In this review, we summarize the recent progress in our understanding of the functional roles of these RBPs in several types of immune responses, and the involvement of RBP dysregulation in the pathogenesis of immune diseases and cancer, and discuss possible therapeutic strategies against cancer by targeting RBPs, coupled with immunotherapy.
Collapse
|
16
|
Tsai HY, Cheng HT, Tsai YT. Biogenesis of C. elegans spermatogenesis small RNAs is initiated by a zc3h12a-like ribonuclease. SCIENCE ADVANCES 2022; 8:eabm0699. [PMID: 35947655 PMCID: PMC9365287 DOI: 10.1126/sciadv.abm0699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Small RNAs regulate spermatogenesis across species ranging from Caenorhabditis elegans to humans. In C. elegans, two Argonaute proteins, ALG-3 and ALG-4, and their associated alg-3/4 26G-small RNAs are essential for spermiogenesis at 25°C. The alg-3/4 26G-small RNAs are antisense to their target mRNAs and produced by the RNA-dependent RNA polymerase, RRF-3. However, it remains unclear how the RNA templates for RRF-3 are generated and which cellular processes are affected by alg-3/4 26G-small RNAs. Here, we demonstrate a previously unidentified zc3h12a-like ribonuclease protein, NYN-3, in alg-3/4 26G-small RNAs biogenesis. NYN-3 is not only required for proper abundance of alg-3/4 26G-small RNAs but also crosslinked to their targeted mRNAs before RRF-3 from ePAR-CLIP-seq. Bioinformatics analysis was then used to parse the 26G-small RNA-targeted genes into functional subclasses. Collectively, these findings implicate NYN-3 as an initiator of alg-3/4 26G-small RNA generation.
Collapse
Affiliation(s)
- Hsin-Yue Tsai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Hsian-Tang Cheng
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Yi-Ting Tsai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan
| |
Collapse
|
17
|
Wang Y, Zhao J, Chen S, Li D, Yang J, Zhao X, Qin M, Guo M, Chen C, He Z, Zhou Y, Xu L. Let-7 as a Promising Target in Aging and Aging-Related Diseases: A Promise or a Pledge. Biomolecules 2022; 12:1070. [PMID: 36008964 PMCID: PMC9406090 DOI: 10.3390/biom12081070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
The abnormal regulation and expression of microRNA (miRNA) are closely related to the aging process and the occurrence and development of aging-related diseases. Lethal-7 (let-7) was discovered in Caenorhabditis elegans (C. elegans) and plays an important role in development by regulating cell fate regulators. Accumulating evidence has shown that let-7 is elevated in aging tissues and participates in multiple pathways that regulate the aging process, including affecting tissue stem cell function, body metabolism, and various aging-related diseases (ARDs). Moreover, recent studies have found that let-7 plays an important role in the senescence of B cells, suggesting that let-7 may also participate in the aging process by regulating immune function. Therefore, these studies show the diversity and complexity of let-7 expression and regulatory functions during aging. In this review, we provide a detailed overview of let-7 expression regulation as well as its role in different tissue aging and aging-related diseases, which may provide new ideas for enriching the complex expression regulation mechanism and pathobiological function of let-7 in aging and related diseases and ultimately provide help for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Ya Wang
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Shipeng Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Dongmei Li
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Jing Yang
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Ming Qin
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Zhixu He
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China;
| | - Ya Zhou
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Medical Physics, Zunyi Medical University, Zunyi 563000, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
18
|
Kwong AM, Luke PPW, Bhattacharjee RN. Carbon monoxide mechanism of protection against renal ischemia and reperfusion injury. Biochem Pharmacol 2022; 202:115156. [PMID: 35777450 DOI: 10.1016/j.bcp.2022.115156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/20/2022]
Abstract
Carbon monoxide is quickly moving past its historic label as a molecule once feared, to a therapeutic drug that modulates inflammation. The development of carbon monoxide releasing molecules and utilization of heme oxygenase-1 inducers have shown carbon monoxide to be a promising therapy in reducing renal ischemia and reperfusion injury and other inflammatory diseases. In this review, we will discuss the developments and application of carbon monoxide releasing molecules in renal ischemia and reperfusion injury, and transplantation. We will review the anti-inflammatory mechanisms of carbon monoxide in respect to mitigating apoptosis, suppressing dendritic cell maturation and signalling, inhibiting toll-like receptor activation, promoting anti-inflammatory responses, and the effects on renal vasculature.
Collapse
Affiliation(s)
- Aaron M Kwong
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Patrick P W Luke
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Surgery, London Health Sciences Centre, Canada; Matthew Mailing Centre for Translational Transplantation Studies, Canada.
| | - Rabindra N Bhattacharjee
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Surgery, London Health Sciences Centre, Canada; Matthew Mailing Centre for Translational Transplantation Studies, Canada.
| |
Collapse
|
19
|
Wang R, Sun S, Wang Z, Xu X, Jiang T, Liu H, Li X, Ren Z. MCPIP1 promotes cell proliferation, migration and angiogenesis of glioma via VEGFA-mediated ERK pathway. Exp Cell Res 2022; 418:113267. [PMID: 35752346 DOI: 10.1016/j.yexcr.2022.113267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022]
Abstract
Glioma is the most common primary malignant intracranial tumor in the population, and is often associated with abundant angiogenesis. However, how angiogenesis is regulated during glioma progression is still poorly understood. Data mining of cancer patient database shows that MCPIP1 is positively correlated with VEGFA expression and negatively with survival. In this study, we report that overexpressed MCPIP1 in glioma cells is a boost of angiogenesis. Mechanistically, MCPIP1 upregulates the expression of VEGFA in glioma, and promote the secretion of VEGFA to the surroundings, which could stimulate angiogenesis through ERK pathway. Blocking VEGFA expression and secretion inhibited MCPIP1-mediated angiogenesis and glioma progression in vitro and xenograft models. Collectively, these results identify a critical role for MCPIP1 in angiogenesis and glioma progression by regulating the VEGFA-mediated ERK pathway, suggesting that targeting MCPIP1 may be a potential glioma-selective therapeutic strategy.
Collapse
Affiliation(s)
- Rui Wang
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, China.
| | - Shuaichen Sun
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, China.
| | - Zizhuo Wang
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, China.
| | - Xiaoxiang Xu
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, China.
| | - Tao Jiang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| | - Huanzhong Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China.
| | - Xiaohui Li
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, China.
| | - Zhenhua Ren
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
20
|
Abstract
MicroRNAs (miRNAs) are key players in gene regulation that target specific mRNAs for degradation or translational repression. Each miRNA is synthesized as a miRNA duplex comprising two strands (5p and 3p). However, only one of the two strands becomes active and is selectively incorporated into the RNA-induced silencing complex in a process known as miRNA strand selection. Recently, significant progress has been made in understanding the factors and processes involved in strand selection. Here, we explore the selection and functionality of the miRNA star strand (either 5p or 3p), which is generally present in the cell at low levels compared to its partner strand and, historically, has been thought to possess no biological activity. We also highlight the concepts of miRNA arm switching and miRNA isomerism. Finally, we offer insights into the impact of aberrant strand selection on immunity and cancer. Leading us through this journey is miR-155, a well-established regulator of immunity and cancer, and the increasing evidence that its 3p strand plays a role in these arenas. Interestingly, the miR-155-5p/-3p ratio appears to vary dependent on the timing of the immune response, and the 3p strand seems to play a regulatory role upon its partner 5p strand.
Collapse
Affiliation(s)
- Owen Dawson
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
21
|
Szukala W, Lichawska-Cieslar A, Pietrzycka R, Kulecka M, Rumienczyk I, Mikula M, Chlebicka I, Konieczny P, Dziedzic K, Szepietowski JC, Fontemaggi G, Rys J, Jura J. Loss of epidermal MCPIP1 is associated with aggressive squamous cell carcinoma. J Exp Clin Cancer Res 2021; 40:391. [PMID: 34903245 PMCID: PMC8667402 DOI: 10.1186/s13046-021-02202-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Squamous cell carcinoma (SCC) of the skin is a common form of nonmelanoma skin cancer. Monocyte chemotactic protein 1-induced protein 1 (MCPIP1), also called Regnase-1, is an RNase with anti-inflammatory properties. In normal human skin, its expression is predominantly restricted to the suprabasal epidermis. The main aim of this study was to investigate whether MCPIP1 is involved in the pathogenesis of SCC. METHODS We analyzed the distribution of MCPIP1 in skin biopsies of patients with actinic keratoses (AKs) and SCCs. To explore the mechanisms by which MCPIP1 may modulate tumorigenesis in vivo, we established a mouse model of chemically induced carcinogenesis. RESULTS Skin expression of MCPIP1 changed during the transformation of precancerous lesions into cutaneous SCC. MCPIP1 immunoreactivity was high in the thickened area of the AK epidermis but was predominantly restricted to keratin pearls in fully developed SCC lesions. Accelerated development of chemically induced skin tumors was observed in mice with loss of epidermal MCPIP1 (Mcpip1eKO). Papillomas that developed in Mcpip1eKO mouse skin were larger and characterized by elevated expression of markers typical of keratinocyte proliferation and tumor angiogenesis. This phenotype was correlated with enhanced expression of IL-6, IL-33 and transforming growth factor-beta (TGF-β). Moreover, our results demonstrated that in keratinocytes, the RNase MCPIP1 is essential for the negative regulation of genes encoding SCC antigens and matrix metallopeptidase 9. CONCLUSIONS Overall, our results provide a mechanistic understanding of how MCPIP1 contributes to the development of epidermoid carcinoma.
Collapse
Affiliation(s)
- Weronika Szukala
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Agata Lichawska-Cieslar
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| | - Roza Pietrzycka
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Maria Kulecka
- Medical Center for Postgraduate Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Marymoncka 99/103, 01-813, Warsaw, Poland.,Maria Skłodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Izabela Rumienczyk
- Maria Skłodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Michal Mikula
- Maria Skłodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Iwona Chlebicka
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368, Wroclaw, Poland
| | - Piotr Konieczny
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Katarzyna Dziedzic
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Jacek C Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368, Wroclaw, Poland
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00-144, Rome, Italy
| | - Janusz Rys
- Maria Skłodowska-Curie National Research Institute of Oncology, Garncarska 11, 31-115, Krakow, Poland
| | - Jolanta Jura
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
22
|
Behrens G, Edelmann SL, Raj T, Kronbeck N, Monecke T, Davydova E, Wong EH, Kifinger L, Giesert F, Kirmaier ME, Hohn C, de Jonge LS, Pisfil MG, Fu M, Theurich S, Feske S, Kawakami N, Wurst W, Niessing D, Heissmeyer V. Disrupting Roquin-1 interaction with Regnase-1 induces autoimmunity and enhances antitumor responses. Nat Immunol 2021; 22:1563-1576. [PMID: 34811541 PMCID: PMC8996344 DOI: 10.1038/s41590-021-01064-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
Roquin and Regnase-1 proteins bind and post-transcriptionally regulate proinflammatory target messenger RNAs to maintain immune homeostasis. Either the sanroque mutation in Roquin-1 or loss of Regnase-1 cause systemic lupus erythematosus-like phenotypes. Analyzing mice with T cells that lack expression of Roquin-1, its paralog Roquin-2 and Regnase-1 proteins, we detect overlapping or unique phenotypes by comparing individual and combined inactivation. These comprised spontaneous activation, metabolic reprogramming and persistence of T cells leading to autoimmunity. Here, we define an interaction surface in Roquin-1 for binding to Regnase-1 that included the sanroque residue. Mutations in Roquin-1 impairing this interaction and cooperative regulation of targets induced T follicular helper cells, germinal center B cells and autoantibody formation. These mutations also improved the functionality of tumor-specific T cells by promoting their accumulation in the tumor and reducing expression of exhaustion markers. Our data reveal the physical interaction of Roquin-1 with Regnase-1 as a hub to control self-reactivity and effector functions in immune cell therapies.
Collapse
Affiliation(s)
- Gesine Behrens
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Stephanie L Edelmann
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
| | - Timsse Raj
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Nina Kronbeck
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Thomas Monecke
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Elena Davydova
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elaine H Wong
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Lisa Kifinger
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin E Kirmaier
- Cancer and Immunometabolism Research Group at the Gene Center, Ludwig-Maximilians-Universität in Munich, Munich, Germany
- Department of Medicine III, LMU University Hospital, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Christine Hohn
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Laura S de Jonge
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
| | - Mariano Gonzalez Pisfil
- Core Facility Bioimaging and Walter-Brendel-Centre of Experimental Medicine at the Biomedical Center, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Mingui Fu
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sebastian Theurich
- Cancer and Immunometabolism Research Group at the Gene Center, Ludwig-Maximilians-Universität in Munich, Munich, Germany
- Department of Medicine III, LMU University Hospital, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Naoto Kawakami
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Munich, Munich, Germany
- Technische Universität München, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, Munich, Germany
| | - Dierk Niessing
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany.
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany.
| |
Collapse
|
23
|
YTHDC1-mediated augmentation of miR-30d in repressing pancreatic tumorigenesis via attenuation of RUNX1-induced transcriptional activation of Warburg effect. Cell Death Differ 2021; 28:3105-3124. [PMID: 34021267 PMCID: PMC8563797 DOI: 10.1038/s41418-021-00804-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers. It thrives in a malnourished environment; however, little is known about the mechanisms by which PDAC cells actively promote aerobic glycolysis to maintain their metabolic needs. Gene Expression Omnibus (GEO) was used to identify differentially expressed miRNAs. The expression pattern of miR-30d in normal and PDAC tissues was studied by in situ hybridization. The role of miR-30d/RUNX1 in vitro and in vivo was evaluated by CCK8 assay and clonogenic formation as well as transwell experiment, subcutaneous xenograft model and liver metastasis model, respectively. Glucose uptake, ATP and lactate production were tested to study the regulatory effect of miR-30d/RUNX1 on aerobic glycolysis in PDAC cells. Quantitative real-time PCR, western blot, Chip assay, promoter luciferase activity, RIP, MeRIP, and RNA stability assay were used to explore the molecular mechanism of YTHDC1/miR-30d/RUNX1 in PDAC. Here, we discover that miR-30d expression was remarkably decreased in PDAC tissues and associated with good prognosis, contributed to the suppression of tumor growth and metastasis, and attenuation of Warburg effect. Mechanistically, the m6A reader YTHDC1 facilitated the biogenesis of mature miR-30d via m6A-mediated regulation of mRNA stability. Then, miR-30d inhibited aerobic glycolysis through regulating SLC2A1 and HK1 expression by directly targeting the transcription factor RUNX1, which bound to the promoters of the SLC2A1 and HK1 genes. Moreover, miR-30d was clinically inversely correlated with RUNX1, SLC2A1 and HK1, which function as adverse prognosis factors for overall survival in PDAC tissues. Overall, we demonstrated that miR-30d is a functional and clinical tumor-suppressive gene in PDAC. Our findings further uncover that miR-30d is a novel target for YTHDC1 through m6A modification, and miR-30d represses pancreatic tumorigenesis via suppressing aerobic glycolysis.
Collapse
|
24
|
Porcine Reproductive and Respiratory Syndrome Virus nsp11 Antagonizes Broad Antiviral Effects of MCPIP1 by Inducing Interleukin-17 Expression. J Virol 2021; 95:e0111921. [PMID: 34468170 DOI: 10.1128/jvi.01119-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Monocyte chemotactic protein-induced protein 1 (MCPIP1) is an inflammatory regulator in immune response and has broad antiviral effects by targeting viral RNA. Porcine reproductive and respiratory syndrome virus (PRRSV), a major viral pathogen in pigs, causes immune suppression leading to coinfection of swine pathogens, but the mechanisms are not fully clarified. In this study, MCPIP1 expression was found to be significantly upregulated in lungs of PRRSV-infected piglets, as well as in Marc-145 and porcine pulmonary alveolar macrophage (PAM) cells upon PRRSV stimulation. MCPIP1 overexpression significantly inhibited PRRSV replication, while MCPIP1 knockdown increased the virus titer. Various mutations in RNase functional domains of MCPIP1 impaired the inhibitory activity against PRRSV, while those in deubiquitinase domains failed to do so. MCPIP1 expression started to decrease from 60 h after PRRSV infection in PAMs. Meanwhile, infection with higher dose of PRRSV further downregulated MCPIP1, indicating the antagonizing effects from PRRSV against MCPIP1. Moreover, it was confirmed that MCPIP1 expression was downregulated in 3D4 cells with either interleukin-17 (IL-17) or nsp11 overexpression, while IL-17 inhibitor abolished the decrease of MCPIP1 caused by nsp11, indicating nsp11 employs IL-17 induction to inhibit MCPIP1. Furthermore, the PRRSV nsp11 mutant with a deficiency in IL-17 induction showed the recovered expression of MCPIP1 in infected cells, inspiring a strategy for virus attenuation. This is the first report about the role of MCPIP1 against PRRSV and the function of PRRSV nsp11 against innate immunity to facilitate virus replication via IL-17. The study not only illuminates PRRSV infection machinery but also enlightens alternative antiviral strategies, such as vaccine candidates. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses the innate immunity and leads to coinfection of swine pathogens. Monocyte chemotactic protein-induced protein 1 (MCPIP1) is a broad-spectrum host antiviral protein. Therefore, to further clarify the mechanism of PRRSV against innate immunity, we explored the relationship between MCPIP1 and PRRSV infection. The results showed that MCPIP1 inhibited PRRSV infection in the early stage of virus infection. Importantly, PRRSV nsp11 subsequently employed IL-17 induction to suppress MCPIP1 expression and antagonized anti-PRRSV effects. Furthermore, PRRSV with mutation of nsp11 S74A failed to induce MCPIP1 reduction. These findings confirmed the function of MCPIP1 against PRRSV and revealed that PRRSV nsp11 plays an important role in virus against innate immunity. This study enlightens a new strategy to develop safer attenuated vaccines against PRRSV by nsp11 mutation.
Collapse
|
25
|
Jin Z, Zheng E, Sareli C, Kolattukudy PE, Niu J. Monocyte Chemotactic Protein-Induced Protein 1 (MCPIP-1): A Key Player of Host Defense and Immune Regulation. Front Immunol 2021; 12:727861. [PMID: 34659213 PMCID: PMC8519509 DOI: 10.3389/fimmu.2021.727861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/08/2021] [Indexed: 01/14/2023] Open
Abstract
Inflammatory response is a host-protective mechanism against tissue injury or infections, but also has the potential to cause extensive immunopathology and tissue damage, as seen in many diseases, such as cardiovascular diseases, neurodegenerative diseases, metabolic syndrome and many other infectious diseases with public health concerns, such as Coronavirus Disease 2019 (COVID-19), if failure to resolve in a timely manner. Recent studies have uncovered a superfamily of endogenous chemical molecules that tend to resolve inflammatory responses and re-establish homeostasis without causing excessive damage to healthy cells and tissues. Among these, the monocyte chemoattractant protein-induced protein (MCPIP) family consisting of four members (MCPIP-1, -2, -3, and -4) has emerged as a group of evolutionarily conserved molecules participating in the resolution of inflammation. The focus of this review highlights the biological functions of MCPIP-1 (also known as Regnase-1), the best-studied member of this family, in the resolution of inflammatory response. As outlined in this review, MCPIP-1 acts on specific signaling pathways, in particular NFκB, to blunt production of inflammatory mediators, while also acts as an endonuclease controlling the stability of mRNA and microRNA (miRNA), leading to the resolution of inflammation, clearance of virus and dead cells, and promotion of tissue regeneration via its pleiotropic effects. Evidence from transgenic and knock-out mouse models revealed an involvement of MCPIP-1 expression in immune functions and in the physiology of the cardiovascular system, indicating that MCPIP-1 is a key endogenous molecule that governs normal resolution of acute inflammation and infection. In this review, we also discuss the current evidence underlying the roles of other members of the MCPIP family in the regulation of inflammatory processes. Further understanding of the proteins from this family will provide new insights into the identification of novel targets for both host effectors and microbial factors and will lead to new therapeutic treatments for infections and other inflammatory diseases.
Collapse
Affiliation(s)
- Zhuqing Jin
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - En Zheng
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Candice Sareli
- Office of Human Research, Memorial Healthcare System, Hollywood, FL, United States
| | - Pappachan E Kolattukudy
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Jianli Niu
- Office of Human Research, Memorial Healthcare System, Hollywood, FL, United States.,Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| |
Collapse
|
26
|
Baraban JM, Tuday E, Berkowitz DE, Das S. Deciphering the Role of microRNAs in Large-Artery Stiffness Associated With Aging: Focus on miR-181b. Front Physiol 2021; 12:747789. [PMID: 34646165 PMCID: PMC8504676 DOI: 10.3389/fphys.2021.747789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Large artery stiffness (LAS) is a major, independent risk factor underlying cardiovascular disease that increases with aging. The emergence of microRNA signaling as a key regulator of vascular structure and function has stimulated interest in assessing its role in the pathophysiology of LAS. Identification of several microRNAs that display age-associated changes in expression in aorta has focused attention on defining their molecular targets and deciphering their role in age-associated arterial stiffening. Inactivation of the microRNA-degrading enzyme, translin/trax, which reverses the age-dependent decline in miR-181b, confers protection from aging-associated arterial stiffening, suggesting that inhibitors targeting this enzyme may have translational potential. As LAS poses a major public health challenge, we anticipate that future studies based on these advances will yield innovative strategies to combat aging-associated arterial stiffening.
Collapse
Affiliation(s)
- Jay M Baraban
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, ML, United States
| | - Eric Tuday
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, United States.,Geriatric Research, Education and Clinical Center, VA Salt Lake City Health Care System, Salt Lake City, UT, United States
| | - Dan E Berkowitz
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sam Das
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, ML, United States.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medicine, Baltimore, ML, United States
| |
Collapse
|
27
|
Mino T, Takeuchi O. Regnase-1-related endoribonucleases in health and immunological diseases. Immunol Rev 2021; 304:97-110. [PMID: 34514623 DOI: 10.1111/imr.13023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Dynamic changes in gene expression are key factors in the development and activation of immune cells. RNA metabolism is one of the critical steps for the control of gene expression. Together with transcriptional regulation, mRNA decay by specific ribonucleases (RNases) plays a vital role in shaping gene expression. In addition to the canonical exoribonuclease-mediated mRNA degradation through the recognition of cis-elements in mRNA 3' untranslated regions by RNA-binding proteins (RBPs), endoribonucleases are involved in the control of mRNAs in immune cells. In this review, we gleam insights on how Regnase-1, an endoribonuclease necessary for regulating immune cell activation and maintenance of immune homeostasis, degrades RNAs involved in immune cell activation. Additionally, we provide insights on recent studies which uncover the role of Regnase-1-related RNases, including Regnase-2, Regnase-3, and Regnase-4, as well as N4BP1 and KHNYN, in immune regulation and antiviral immunity. As the dysregulation of immune mRNA decay leads to pathologies such as autoimmune diseases or impaired activation of immune responses, RNases are deemed as essential components of regulatory feedback mechanisms that modulate inflammation. Given the critical role of RNases in autoimmunity, RNases can be perceived as emerging targets in the development of novel therapeutics.
Collapse
Affiliation(s)
- Takashi Mino
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
28
|
Suk FM, Chang CC, Sun PC, Ke WT, Chung CC, Lee KL, Chan TS, Liang YC. MCPIP1 Enhances TNF-α-Mediated Apoptosis through Downregulation of the NF-κB/cFLIP Axis. BIOLOGY 2021; 10:biology10070655. [PMID: 34356509 PMCID: PMC8301320 DOI: 10.3390/biology10070655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
Monocyte chemoattractant protein-1-induced protein 1 (MCPIP1) is rapidly produced under proinflammatory stimuli, thereby feeding back to downregulate excessive inflammation. In this study, we used the stable, inducible expressions of wild-type (WT) MCPIP1 and an MCPIP1-D141N mutant in T-REx-293 cells by means of a tetracycline on (Tet-on) system. We found that WT MCPIP1 but not MCPIP1-D141N mutant expression dramatically increased apoptosis, caspase-3, -7, -8, and -9 activation, and c-Jun N-terminal kinase (JNK) phosphorylation in TNF-α-treated cells. The pan-caspase inhibitor, z-VAD-fmk, and the caspase-1 inhibitor, z-YVAD-fmk, but not the JNK inhibitor, SP600125, significantly reversed apoptosis and caspase activation in TNF-α/MCPIP1-treated cells. Surprisingly, MCPIP1 itself was also cleaved, and the cleavage was suppressed by treatment with the pan-caspase inhibitor and caspase-1 inhibitor. Moreover, MCPIP1 was found to contain a caspase-1/-4 consensus recognition sequence located in residues 234~238. As expected, the WT MCPIP1 but not the MCPIP1-D141N mutant suppressed NF-κB activation, as evidenced by inhibition of IκB kinase (IKK) phosphorylation and IκB degradation using Western blotting, IKK activity using in vitro kinase activity, and NF-κB translocation to nuclei using an immunofluorescence assay. Interestingly, MCPIP1 also significantly inhibited importin α3 and importin α4 expressions, which are major nuclear transporter receptors for NF-κB. Inhibition of NF-κB activation further downregulated expression of the caspase-8 inhibitor, cFLIP. In summary, the results suggest that MCPIP1 could enhance the TNF-α-induced apoptotic pathway through decreasing NF-κB activation and cFLIP expression.
Collapse
Affiliation(s)
- Fat-Moon Suk
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (F.-M.S.); (C.-C.C.); (T.-S.C.)
| | - Chi-Ching Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (F.-M.S.); (C.-C.C.); (T.-S.C.)
- Division of Rheumatology, Immunology and Allergy, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Pei-Chi Sun
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (P.-C.S.); (W.-T.K.); (C.-C.C.); (K.-L.L.)
| | - Wei-Ting Ke
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (P.-C.S.); (W.-T.K.); (C.-C.C.); (K.-L.L.)
| | - Chia-Chen Chung
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (P.-C.S.); (W.-T.K.); (C.-C.C.); (K.-L.L.)
| | - Kun-Lin Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (P.-C.S.); (W.-T.K.); (C.-C.C.); (K.-L.L.)
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Tze-Sian Chan
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (F.-M.S.); (C.-C.C.); (T.-S.C.)
| | - Yu-Chih Liang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (P.-C.S.); (W.-T.K.); (C.-C.C.); (K.-L.L.)
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
29
|
Wawro M, Kochan J, Sowinska W, Solecka A, Wawro K, Morytko A, Kwiecinska P, Grygier B, Kwitniewski M, Fu M, Cichy J, Kasza A. Molecular Mechanisms of ZC3H12C/Reg-3 Biological Activity and Its Involvement in Psoriasis Pathology. Int J Mol Sci 2021; 22:7311. [PMID: 34298932 PMCID: PMC8306088 DOI: 10.3390/ijms22147311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
The members of the ZC3H12/MCPIP/Regnase family of RNases have emerged as important regulators of inflammation. In contrast to Regnase-1, -2 and -4, a thorough characterization of Regnase-3 (Reg-3) has not yet been explored. Here we demonstrate that Reg-3 differs from other family members in terms of NYN/PIN domain features, cellular localization pattern and substrate specificity. Together with Reg-1, the most comprehensively characterized family member, Reg-3 shared IL-6, IER-3 and Reg-1 mRNAs, but not IL-1β mRNA, as substrates. In addition, Reg-3 was found to be the only family member which regulates transcript levels of TNF, a cytokine implicated in chronic inflammatory diseases including psoriasis. Previous meta-analysis of genome-wide association studies revealed Reg-3 to be among new psoriasis susceptibility loci. Here we demonstrate that Reg-3 transcript levels are increased in psoriasis patient skin tissue and in an experimental model of psoriasis, supporting the immunomodulatory role of Reg-3 in psoriasis, possibly through degradation of mRNA for TNF and other factors such as Reg-1. On the other hand, Reg-1 was found to destabilize Reg-3 transcripts, suggesting reciprocal regulation between Reg-3 and Reg-1 in the skin. We found that either Reg-1 or Reg-3 were expressed in human keratinocytes in vitro. However, in contrast to robustly upregulated Reg-1 mRNA levels, Reg-3 expression was not affected in the epidermis of psoriasis patients. Taken together, these data suggest that epidermal levels of Reg-3 are negatively regulated by Reg-1 in psoriasis, and that Reg-1 and Reg-3 are both involved in psoriasis pathophysiology through controlling, at least in part different transcripts.
Collapse
Affiliation(s)
- Mateusz Wawro
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (M.W.); (J.K.); (W.S.); (A.S.); (K.W.)
| | - Jakub Kochan
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (M.W.); (J.K.); (W.S.); (A.S.); (K.W.)
| | - Weronika Sowinska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (M.W.); (J.K.); (W.S.); (A.S.); (K.W.)
| | - Aleksandra Solecka
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (M.W.); (J.K.); (W.S.); (A.S.); (K.W.)
| | - Karolina Wawro
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (M.W.); (J.K.); (W.S.); (A.S.); (K.W.)
| | - Agnieszka Morytko
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.M.); (P.K.); (B.G.); (M.K.); (J.C.)
| | - Patrycja Kwiecinska
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.M.); (P.K.); (B.G.); (M.K.); (J.C.)
| | - Beata Grygier
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.M.); (P.K.); (B.G.); (M.K.); (J.C.)
| | - Mateusz Kwitniewski
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.M.); (P.K.); (B.G.); (M.K.); (J.C.)
| | - Mingui Fu
- Department of Biomedical Science and Shock/Trauma Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64110, USA;
| | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.M.); (P.K.); (B.G.); (M.K.); (J.C.)
| | - Aneta Kasza
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (M.W.); (J.K.); (W.S.); (A.S.); (K.W.)
| |
Collapse
|
30
|
Yan B, Guo Y, Gui Y, Jiang ZS, Zheng XL. Multifunctional RNase MCPIP1 and its Role in Cardiovascular Diseases. Curr Med Chem 2021; 28:3385-3405. [PMID: 33191882 DOI: 10.2174/0929867327999201113100918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/20/2020] [Accepted: 10/09/2020] [Indexed: 11/22/2022]
Abstract
Monocyte chemoattractant protein-1 induced protein 1 (MCPIP1), one of the MCPIP family members, is characterized by the presence of both C-x8-C-x5-C-x3-H (CCCH)- type zinc finger and PilT-N-terminal domains. As a potent regulator of innate immunity, MCPIP1 exerts anti-inflammatory effects through its ribonuclease (RNase) and deubiquitinating enzyme activities to degrade cytokine mRNAs and inhibit nuclear factor- kappa B (NF-κB), respectively. MCPIP1 is expressed not only in immune cells but also in many other cell types, including cardiomyocytes, vascular endothelial cells (ECs) and smooth muscle cells (SMCs). Increasing evidence indicates that MCPIP1 plays a role in the regulation of cardiac functions and is involved in the processes of vascular diseases, such as ischemia-reperfusion (I/R) and atherosclerosis. To better understand the emerging roles of MCPIP1 in the cardiovascular system, we reviewed the current literature with respect to MCPIP1 functions and discussed its association with the pathogenesis of cardiovascular diseases and the implication as a therapeutic target.
Collapse
Affiliation(s)
- Binjie Yan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Yanan Guo
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, ABT2N 4N1, Canada
| | - Yu Gui
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, ABT2N 4N1, Canada
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, ABT2N 4N1, Canada
| |
Collapse
|
31
|
Kook I, Ziegelbauer JM. Monocyte chemoattractant protein-induced protein 1 directly degrades viral miRNAs with a specific motif and inhibits KSHV infection. Nucleic Acids Res 2021; 49:4456-4471. [PMID: 33823555 DOI: 10.1093/nar/gkab215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/11/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) expresses miRNAs during latency. However, regulation of viral miRNAs remains largely unknown. Our prior studies demonstrated that MCPIP1 regulates KSHV miRNA biogenesis by degrading most KSHV pre-miRNAs through its RNase activity. Some viral pre-miRNAs are partially resistant to degradation by MCPIP1. Here, we further characterized MCPIP1 substrate specificity and its antiviral potential against KSHV infection. In vitro cleavage assays and binding assays showed that MCPIP1 cleavage efficiency is related to binding affinity. Motif-based sequence analysis identified that KSHV pre-miRNAs that are well degraded by MCPIP1 have a 5-base motif (M5 base motif) within their terminal loops and this motif region consists of multiple pyrimidine-purine-pyrimidine (YRY) motifs. We further demonstrated that mutation of this M5 base motif within terminal loop of pre-miRNAs inhibited MCPIP1-mediated RNA degradation. We also revealed that MCPIP1 has an antiviral effect against KSHV infection. MCPIP1 can reduce the expression of Dicer, which in turn restricts KSHV infection. Conclusively, our findings demonstrated that MCPIP1 inhibited KSHV infection and suppressed viral miRNA biogenesis by directly degrading KSHV pre-miRNAs and altering the expression of miRNA biogenesis factors.
Collapse
Affiliation(s)
- Insun Kook
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph M Ziegelbauer
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
let-7 microRNAs: Their Role in Cerebral and Cardiovascular Diseases, Inflammation, Cancer, and Their Regulation. Biomedicines 2021; 9:biomedicines9060606. [PMID: 34073513 PMCID: PMC8227213 DOI: 10.3390/biomedicines9060606] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
The let-7 family is among the first microRNAs found. Recent investigations have indicated that it is highly expressed in many systems, including cerebral and cardiovascular systems. Numerous studies have implicated the aberrant expression of let-7 members in cardiovascular diseases, such as stroke, myocardial infarction (MI), cardiac fibrosis, and atherosclerosis as well as in the inflammation related to these diseases. Furthermore, the let-7 microRNAs are involved in development and differentiation of embryonic stem cells in the cardiovascular system. Numerous genes have been identified as target genes of let-7, as well as a number of the let-7’ regulators. Further studies are necessary to identify the gene targets and signaling pathways of let-7 in cardiovascular diseases and inflammatory processes. The bulk of the let-7’ regulatory proteins are well studied in development, proliferation, differentiation, and cancer, but their roles in inflammation, cardiovascular diseases, and/or stroke are not well understood. Further knowledge on the regulation of let-7 is crucial for therapeutic advances. This review focuses on research progress regarding the roles of let-7 and their regulation in cerebral and cardiovascular diseases and associated inflammation.
Collapse
|
33
|
MCPIP1-mediated NFIC alternative splicing inhibits proliferation of triple-negative breast cancer via cyclin D1-Rb-E2F1 axis. Cell Death Dis 2021; 12:370. [PMID: 33824311 PMCID: PMC8024338 DOI: 10.1038/s41419-021-03661-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype with the worst prognosis and the highest metastatic and recurrence potential, which represents 15–20% of all breast cancers in Chinese females, and the 5-year overall survival rate is about 80% in Chinese women. Recently, emerging evidence suggested that aberrant alternative splicing (AS) plays a crucial role in tumorigenesis and progression. AS is generally controlled by AS-associated RNA binding proteins (RBPs). Monocyte chemotactic protein induced protein 1 (MCPIP1), a zinc finger RBP, functions as a tumor suppressor in many cancers. Here, we showed that MCPIP1 was downregulated in 80 TNBC tissues and five TNBC cell lines compared to adjacent paracancerous tissues and one human immortalized breast epithelial cell line, while its high expression levels were associated with increased overall survival in TNBC patients. We demonstrated that MCPIP1 overexpression dramatically suppressed cell cycle progression and proliferation of TNBC cells in vitro and repressed tumor growth in vivo. Mechanistically, MCPIP1 was first demonstrated to act as a splicing factor to regulate AS in TNBC cells. Furthermore, we demonstrated that MCPIP1 modulated NFIC AS to promote CTF5 synthesis, which acted as a negative regulator in TNBC cells. Subsequently, we showed that CTF5 participated in MCPIP1-mediated antiproliferative effect by transcriptionally repressing cyclin D1 expression, as well as downregulating its downstream signaling targets p-Rb and E2F1. Conclusively, our findings provided novel insights into the anti-oncogenic mechanism of MCPIP1, suggesting that MCPIP1 could serve as an alternative treatment target in TNBC.
Collapse
|
34
|
Dobosz E, Wadowska M, Kaminska M, Wilamowski M, Honarpisheh M, Bryzek D, Potempa J, Jura J, Lech M, Koziel J. MCPIP-1 Restricts Inflammation via Promoting Apoptosis of Neutrophils. Front Immunol 2021; 12:627922. [PMID: 33717148 PMCID: PMC7952515 DOI: 10.3389/fimmu.2021.627922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Monocyte chemoattractant protein-induced protein-1 (MCPIP-1) is a potent inhibitor of inflammatory response to pathogens. Acting as endonuclease against transcripts of inflammatory cytokines or transcription factors MCPIP-1 can significantly reduce the cytokine storm, thus limiting the tissue damage. As the adequate resolution of inflammation depends also on the efficient clearance of accumulated neutrophils, we focused on the role of MCPIP-1 in apoptosis and retention of neutrophils. We used peritoneal neutrophils from cell-specific MCPIP-1 knockout mice and showed prolonged survival of these cells. Moreover, we confirmed that MCPIP-1-dependent degradation of transcripts of antiapoptotic genes, including BCL3, BCL2A1, BCL2L1, and for the first time MCL-1, serves as an early event in spontaneous apoptosis of primary neutrophils. Additionally, we identified previously unknown miRNAs as potential binding partners to the MCPIP-1 transcript and their regulation suggest a role in MCPIP-1 half-life and translation. These phenomena may play a role as a molecular switch that balances the MCPIP-1-dependent apoptosis. Besides that, we determined these particular miRNAs as integral components of the GM-CSF-MCPIP-1 axis. Taken together, we identified the novel anti-inflammatory role of MCPIP-1 as a regulator of accumulation and survival of neutrophils that simultaneously promotes an adequate resolution of inflammation.
Collapse
Affiliation(s)
- Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Krakow, Poland
| | - Marta Wadowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Krakow, Poland
| | - Marta Kaminska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Krakow, Poland
| | - Mateusz Wilamowski
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Krakow, Poland
| | - Mohsen Honarpisheh
- Ludwig-Maximilians University Hospital, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians University, Munich, Germany
| | - Danuta Bryzek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Krakow, Poland.,Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Krakow, Poland
| | - Maciej Lech
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Krakow, Poland.,Ludwig-Maximilians University Hospital, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians University, Munich, Germany
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Krakow, Poland
| |
Collapse
|
35
|
Abstract
Posttranscriptional control of mRNA regulates various biological processes, including inflammatory and immune responses. RNA-binding proteins (RBPs) bind cis-regulatory elements in the 3' untranslated regions (UTRs) of mRNA and regulate mRNA turnover and translation. In particular, eight RBPs (TTP, AUF1, KSRP, TIA-1/TIAR, Roquin, Regnase, HuR, and Arid5a) have been extensively studied and are key posttranscriptional regulators of inflammation and immune responses. These RBPs sometimes collaboratively or competitively bind the same target mRNA to enhance or dampen regulatory activities. These RBPs can also bind their own 3' UTRs to negatively or positively regulate their expression. Both upstream signaling pathways and microRNA regulation shape the interactions between RBPs and target RNA. Dysregulation of RBPs results in chronic inflammation and autoimmunity. Here, we summarize the functional roles of these eight RBPs in immunity and their associated diseases.
Collapse
Affiliation(s)
- Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| | - Kazuhiko Maeda
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| |
Collapse
|
36
|
Nowak I, Boratyn E, Student S, Bernhart SF, Fallmann J, Durbas M, Stadler PF, Rokita H. MCPIP1 ribonuclease can bind and cleave AURKA mRNA in MYCN-amplified neuroblastoma cells. RNA Biol 2021; 18:144-156. [PMID: 32757706 PMCID: PMC7834091 DOI: 10.1080/15476286.2020.1804698] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023] Open
Abstract
The role of the inflammation-silencing ribonuclease, MCPIP1 (monocyte chemoattractant protein-induced protein 1), in neoplasia continuous to emerge. The ribonuclease can cleave not only inflammation-related transcripts but also some microRNAs (miRNAs) and viral RNAs. The suppressive effect of the protein has been hitherto suggested in breast cancer, clear cell renal cell carcinoma, osteosarcoma, and neuroblastoma. Our previous results have demonstrated a reduced levels of several oncogenes, as well as inhibited growth of neuroblastoma cells upon MCPIP1 overexpression. Here, we investigate the mechanisms underlying the suppression of MYCN proto-oncogene, bHLH transcription factor (MYCN)-amplified neuroblastoma cells overexpressing the MCPIP1 protein. We showed that the levels of several transcripts involved in cell cycle progression decreased in BE(2)-C and KELLY cells overexpressing MCPIP1 in a ribonucleolytic activity-dependent manner. However, RNA immunoprecipitation indicated that only AURKA mRNA (encoding for Aurora A kinase) interacts with the ribonuclease. Furthermore, the application of a luciferase assay suggested MCPIP1-dependent destabilization of the transcript. Further analyses demonstrated that the entire conserved region of AURKA seems to be indispensable for the interaction with the MCPIP1 protein. Additionally, we examined the effect of the ribonuclease overexpression on the miRNA expression profile in MYCN-amplified neuroblastoma cells. However, no significant alterations were observed. Our data indicate a key role of the binding and cleavage of the AURKA transcript in an MCPIP1-dependent suppressive effect on neuroblastoma cells.
Collapse
Affiliation(s)
- Iwona Nowak
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Elżbieta Boratyn
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Sebastian Student
- Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Stephan F. Bernhart
- Bioinformatics Group, Department of Computer Science & Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science & Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Małgorzata Durbas
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science & Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Hanna Rokita
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
37
|
Gorka J, Marona P, Kwapisz O, Waligórska A, Pospiech E, Dobrucki JW, Rys J, Jura J, Miekus K. MCPIP1 inhibits Wnt/β-catenin signaling pathway activity and modulates epithelial-mesenchymal transition during clear cell renal cell carcinoma progression by targeting miRNAs. Oncogene 2021; 40:6720-6735. [PMID: 34657130 PMCID: PMC8677621 DOI: 10.1038/s41388-021-02062-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023]
Abstract
Epithelial-mesenchymal transition (EMT) refers to the acquisition of mesenchymal properties in cells participating in tumor progression. One hallmark of EMT is the increased level of active β-catenin, which can trigger the transcription of Wnt-specific genes responsible for the control of cell fate. We investigated how Monocyte Chemotactic Protein-1-Induced Protein-1 (MCPIP1), a negative regulator of inflammatory processes, affects EMT in a clear cell renal cell carcinoma (ccRCC) cell line, patient tumor tissues and a xenotransplant model. We showed that MCPIP1 degrades miRNAs via its RNase activity and thus protects the mRNA transcripts of negative regulators of the Wnt/β-catenin pathway from degradation, which in turn prevents EMT. Mechanistically, the loss of MCPIP1 RNase activity led to the upregulation of miRNA-519a-3p, miRNA-519b-3p, and miRNA-520c-3p, which inhibited the expression of Wnt pathway inhibitors (SFRP4, KREMEN1, CXXC4, CSNK1A1 and ZNFR3). Thus, the level of active nuclear β-catenin was increased, leading to increased levels of EMT inducers (SNAI1, SNAI2, ZEB1 and TWIST) and, consequently, decreased expression of E-cadherin, increased expression of mesenchymal markers, and acquisition of the mesenchymal phenotype. This study revealed that MCPIP1 may act as a tumor suppressor that prevents EMT by stabilizing Wnt inhibitors and decreasing the levels of active β-catenin and EMT inducers.
Collapse
Affiliation(s)
- Judyta Gorka
- grid.5522.00000 0001 2162 9631Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Paulina Marona
- grid.5522.00000 0001 2162 9631Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Oliwia Kwapisz
- grid.5522.00000 0001 2162 9631Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Agnieszka Waligórska
- grid.5522.00000 0001 2162 9631Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Ewelina Pospiech
- grid.5522.00000 0001 2162 9631Human Genome Variation Research Group, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Jurek W. Dobrucki
- grid.5522.00000 0001 2162 9631Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Janusz Rys
- grid.418165.f0000 0004 0540 2543Department of Tumor Pathology, Centre of Oncology, Maria Skłodowska-Curie Memorial Institute, Cracow Branch, Garncarska 11, 31-115 Krakow, Poland
| | - Jolanta Jura
- grid.5522.00000 0001 2162 9631Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Katarzyna Miekus
- grid.5522.00000 0001 2162 9631Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|
38
|
Lin J, Li G, Xu C, Lu H, Zhang C, Pang Z, Liu Z. Monocyte Chemotactic Protein 1-Induced Protein 1 Is Highly Expressed in Inflammatory Bowel Disease and Negatively Regulates Neutrophil Activities. Mediators Inflamm 2020; 2020:8812020. [PMID: 33488293 PMCID: PMC7803109 DOI: 10.1155/2020/8812020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/06/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023] Open
Abstract
Monocyte chemotactic protein 1-induced protein 1 (MCPIP-1) is highly expressed in activated immune cells and plays an important role in negatively regulating immune responses. However, its role in regulating neutrophil functions in the pathogenesis of inflammatory bowel disease (IBD) is still unclear. Here, we found that MCPIP-1 was markedly increased at both the transcriptional and translational levels in inflamed mucosa of IBD patients compared with healthy controls, which was mainly expressed in neutrophils. Interestingly, MG-132, a proteasome inhibitor reducing the degradation of MCPIP-1, further facilitated neutrophils to express MCPIP-1 in vitro. Importantly, MCPIP-1 markedly downregulated the production of ROS, MPO, and proinflammatory cytokines (e.g., interleukin-1β, interleukin-6, tumor necrosis factor-α, interleukin-8, and interferon-γ) and suppressed the migration of IBD neutrophils. Consistently, the same functional changes were observed in neutrophils from mice with myeloid-targeted overexpression of MCPIP-1 as MG-132 did. Altogether, these findings suggest that MCPIP-1 plays a negative role in regulating neutrophil activities through suppressing the production of ROS, MPO, and proinflammatory cytokines and inhibiting the migration. MG-132 may partially modulate the function of neutrophils via the induction of MCPIP-1. Therefore, targeting MCPIP-1 or exogenous supplementation of MG-132 may provide a therapeutic approach in the treatment of IBD.
Collapse
Affiliation(s)
- Jian Lin
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
- Department of Gastroenterology, Affiliated Hospital of Putian University, Putian, China
| | - Gengfeng Li
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Chunjin Xu
- Department of Gastroenterology, The First People's Hospital of Shangqiu City Affiliated to Xinxiang Medical University, Shangqiu, China
| | - Huiying Lu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Cui Zhang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Zhi Pang
- Department of Gastroenterology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
39
|
Xu R, Li Y, Liu Y, Qu J, Cao W, Zhang E, He J, Cai Z. How are MCPIP1 and cytokines mutually regulated in cancer-related immunity? Protein Cell 2020; 11:881-893. [PMID: 32548715 PMCID: PMC7719135 DOI: 10.1007/s13238-020-00739-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
Cytokines are secreted by various cell types and act as critical mediators in many physiological processes, including immune response and tumor progression. Cytokines production is precisely and timely regulated by multiple mechanisms at different levels, ranging from transcriptional to post-transcriptional and posttranslational processes. Monocyte chemoattractant protein-1 induced protein 1 (MCPIP1), a potent immunosuppressive protein, was first described as a transcription factor in monocytes treated with monocyte chemoattractant protein-1 (MCP-1) and subsequently found to possess intrinsic RNase and deubiquitinase activities. MCPIP1 tightly regulates cytokines expression via various functions. Furthermore, cytokines such as interleukin 1 beta (IL-1B) and MCP-1 and inflammatory cytokines inducer lipopolysaccharide (LPS) strongly induce MCPIP1 expression. Mutually regulated MCPIP1 and cytokines form a complicated network in the tumor environment. In this review, we summarize how MCPIP1 and cytokines reciprocally interact and elucidate the effect of the network formed by these components in cancer-related immunity with aim of exploring potential clinical benefits of their mutual regulation.
Collapse
Affiliation(s)
- Ruyi Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China
| | - Yi Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China
| | - Yang Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China
| | - Jianwei Qu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China
| | - Wen Cao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China.
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
- Institution of Hematology, Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
40
|
Losko M, Dolicka D, Pydyn N, Jankowska U, Kedracka-Krok S, Kulecka M, Paziewska A, Mikula M, Major P, Winiarski M, Budzynski A, Jura J. Integrative genomics reveal a role for MCPIP1 in adipogenesis and adipocyte metabolism. Cell Mol Life Sci 2020; 77:4899-4919. [PMID: 31893310 PMCID: PMC7658075 DOI: 10.1007/s00018-019-03434-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 11/23/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022]
Abstract
Obesity is considered a serious chronic disease, associated with an increased risk of developing cardiovascular diseases, non-alcoholic fatty liver disease and type 2 diabetes. Monocyte chemoattractant protein-1-induced protein-1 (MCPIP1) is an RNase decreasing stability of transcripts coding for inflammation-related proteins. In addition, MCPIP1 plays an important role in the regulation of adipogenesis in vitro by reducing the expression of key transcription factors, including C/EBPβ. To elucidate the role of MCPIP1 in adipocyte biology, we performed RNA-Seq and proteome analysis in 3T3-L1 adipocytes overexpressing wild-type (WTMCPIP1) and the mutant form of MCPIP1 protein (D141NMCPIP1). Our RNA-Seq analysis followed by confirmatory Q-RT-PCR revealed that elevated MCPIP1 levels in 3T3-L1 adipocytes upregulated transcripts encoding proteins involved in signal transmission and cellular remodeling and downregulated transcripts of factors involved in metabolism. These data are consistent with our proteomic analysis, which showed that MCPIP1 expressing adipocytes exhibit upregulation of proteins involved in cellular organization and movement and decreased levels of proteins involved in lipid and carbohydrate metabolism. Moreover, MCPIP1 adipocytes are characterized by decreased level of insulin receptor, reduced insulin-induced Akt phosphorylation, as well as depleted Glut4 level and impaired glucose uptake. Overexpression of Glut4 in 3T3-L1 cells expressed WTMCPIP1 rescued adipogenesis. Interestingly, we found decreased level of MCPIP1 along with an increase in body mass index in subcutaneous adipose tissue. The presented data show a novel role of MCPIP1 in modulating insulin sensitivity in adipocytes. Overall, our findings demonstrate that MCPIP1 is an important regulator of adipogenesis and adipocyte metabolism.
Collapse
Affiliation(s)
- Magdalena Losko
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Dobrochna Dolicka
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Natalia Pydyn
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Urszula Jankowska
- Proteomics and Mass Spectrometry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland
| | - Sylwia Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Wawelska 15B, 02-034, Warsaw, Poland
| | - Piotr Major
- Second Department of General Surgery, Centre for Research, Training and Innovation in Surgery (CERTAIN Surgery), Jagiellonian University Medical College, Kopernika 21, 31-501, Kraków, Poland
| | - Marek Winiarski
- Second Department of General Surgery, Centre for Research, Training and Innovation in Surgery (CERTAIN Surgery), Jagiellonian University Medical College, Kopernika 21, 31-501, Kraków, Poland
| | - Andrzej Budzynski
- Second Department of General Surgery, Centre for Research, Training and Innovation in Surgery (CERTAIN Surgery), Jagiellonian University Medical College, Kopernika 21, 31-501, Kraków, Poland
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
41
|
MCPIP1 reduces HBV-RNA by targeting its epsilon structure. Sci Rep 2020; 10:20763. [PMID: 33247161 PMCID: PMC7699622 DOI: 10.1038/s41598-020-77166-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) is the major causative factor of chronic viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. We previously demonstrated that a proinflammatory cytokine IL-1β reduced the level of HBV RNA. However, the mechanism underlying IL-1β-mediated viral RNA reduction remains incompletely understood. In this study, we report that immune regulator Monocyte chemotactic protein-1-induced protein 1 (MCPIP1) can reduce HBV RNA in hepatocytes. MCPIP1 expression level was higher in the liver tissue of HBV-infected patients and mice. Overexpression of MCPIP1 decreased HBV RNA, whereas ablating MCPIP1 in vitro enhanced HBV production. The domains responsible for RNase activity or oligomerization, were required for MCPIP1-mediated viral RNA reduction. The epsilon structure of HBV RNA was important for its antiviral activity and cleaved by MCPIP1 in the cell-free system. Lastly, knocking out MCPIP1 attenuated the anti-HBV effect of IL-1β, suggesting that MCPIP1 is required for IL-1β-mediated HBV RNA reduction. Overall, these results suggest that MCPIP1 may be involved in the antiviral effect downstream of IL-1β.
Collapse
|
42
|
Vázquez A, Fernández-Sevilla LM, Jiménez E, Pérez-Cabrera D, Yañez R, Subiza JL, Varas A, Valencia J, Vicente A. Involvement of Mesenchymal Stem Cells in Oral Mucosal Bacterial Immunotherapy. Front Immunol 2020; 11:567391. [PMID: 33329530 PMCID: PMC7711618 DOI: 10.3389/fimmu.2020.567391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Recent clinical observations indicate that bacterial vaccines induce cross-protection against infections produced by different microorganisms. MV130, a polyvalent bacterial sublingual preparation designed to prevent recurrent respiratory infectious diseases, reduces the infection rate in patients with recurrent respiratory tract infections. On the other hand, mesenchymal stem cells (MSCs) are key cell components that contribute to the maintenance of tissue homeostasis and exert both immunostimulatory and immunosuppressive functions. Herein, we study the effects of MV130 in human MSC functionality as a potential mechanism that contributes to its clinical benefits. We provide evidence that during MV130 sublingual immunization of mice, resident oral mucosa MSCs can take up MV130 components and their numbers remain unchanged after vaccination, in contrast to granulocytes that are recruited from extramucosal tissues. MSCs treated in vitro with MV130 show an increased viability without affecting their differentiation potential. In the short-term, MSC treatment with MV130 induces higher leukocyte recruitment and T cell expansion. In contrast, once T-cell activation is initiated, MV130 stimulation induces an up-regulated expression of immunosuppressor factors in MSCs. Accordingly, MV130-primed MSCs reduce T lymphocyte proliferation, induce the differentiation of dendritic cells with immunosuppressive features and favor M2-like macrophage polarization, thus counterbalancing the immune response. In addition, MSCs trained with MV130 undergo functional changes, enhancing their immunomodulatory response to a secondary stimulus. Finally, we show that MSCs are able to uptake, process and retain a reservoir of the TLR ligands derived from MV130 digestion which can be subsequently transferred to dendritic cells, an additional feature that also may be associated to trained immunity.
Collapse
Affiliation(s)
- Alberto Vázquez
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Lidia M Fernández-Sevilla
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, Madrid, Spain
| | - Eva Jiménez
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, Madrid, Spain
| | - David Pérez-Cabrera
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Rosa Yañez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | | | - Alberto Varas
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, Madrid, Spain
| | - Jaris Valencia
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, Madrid, Spain
| | - Angeles Vicente
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
43
|
Ganguly K, Kishore U, Madan T. Interplay between C-type lectin receptors and microRNAs in cellular homeostasis and immune response. FEBS J 2020; 288:4210-4229. [PMID: 33085815 DOI: 10.1111/febs.15603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
C-type lectin receptors (CLRs) belong to the family of pattern recognition receptors (PRRs). They have a critical role to play in the regulation of a range of physiological functions including development, respiration, angiogenesis, inflammation, and immunity. CLRs can recognize distinct and conserved exogenous pathogen-associated as well as endogenous damage-associated molecular patterns. These interactions set off downstream signaling cascades, leading to the production of inflammatory mediators, activation of effector immune cells as well as regulation of the developmental and physiological homeostasis. CLR signaling must be tightly controlled to circumvent the excessive inflammatory burden and to maintain the cellular homeostasis. Recently, MicroRNAs (miRNAs) have been shown to be important regulators of expression of CLRs and their downstream signaling. The delicate balance between miRNAs and CLRs seems crucial in almost all aspects of multicellular life. Any dysregulations in the miRNA-CLR axes may lead to tumorigenesis or inflammatory diseases. Here, we present an overview of the current understanding of the central role of miRNAs in the regulation of CLR expression, profoundly impacting upon homeostasis and immunity, and thus, development of therapeutics against immune disorders.
Collapse
Affiliation(s)
- Kasturi Ganguly
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Taruna Madan
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
44
|
Musson R, Szukała W, Jura J. MCPIP1 RNase and Its Multifaceted Role. Int J Mol Sci 2020; 21:ijms21197183. [PMID: 33003343 PMCID: PMC7582464 DOI: 10.3390/ijms21197183] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammation is an organism’s physiological response to harmful septic and aseptic stimuli. This process begins locally through the influx of immune system cells to the damaged tissue and the subsequent activation and secretion of inflammatory mediators to restore homeostasis in the organism. Inflammation is regulated at many levels, and one of these levels is post-transcriptional regulation, which controls the half-life of transcripts that encode inflammatory mediators. One of the proteins responsible for controlling the amount of mRNA in a cell is the RNase monocyte chemoattractant protein-induced protein 1 (MCPIP1). The studies conducted so far have shown that MCPIP1 is involved not only in the regulation of inflammation but also in many other physiological and pathological processes. This paper provides a summary of the information on the role of MCPIP1 in adipogenesis, angiogenesis, cell differentiation, cancer, and skin inflammation obtained to date.
Collapse
|
45
|
The anti-inflammatory protein MCPIP1 inhibits the development of ccRCC by maintaining high levels of tumour suppressors. Eur J Pharmacol 2020; 888:173591. [PMID: 32971087 DOI: 10.1016/j.ejphar.2020.173591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer. It is highly vascularized and largely resistant to traditional chemo- and radiotherapy. Decreases in tumour suppressors and low levels of the anti-inflammatory Monocyte Chemoattractant Protein-Induced Protein 1 (MCPIP1) play important roles in the development and progression of ccRCC. MCPIP1, also called Regnase-1, possesses endonuclease activity and degrades the mRNA of proinflammatory cytokines such as IL-6, IL-1β, IL-12 and IL-2. We previously showed that the level of MCPIP1 decreases with ccRCC progression. In this study, we explored the role of MCPIP1 in regulating the levels of tumour suppressors. We found low levels of the suppressors PTEN, RECK and TIMP3 and high levels of MMPs in patients with ccRCC who had already been shown to have low MCPIP1 expression. We demonstrated that MCPIP1 regulates the expression levels of PTEN, RECK and TIMP3 in ccRCC cell lines as well as in vivo models of ccRCC. MCPIP1 overexpression increased the expression of tumour suppressors. Moreover, we observed that the RNase activity of MCPIP1 is responsible for the modulation of apoptosis and activation of prometastatic signalling pathways. Furthermore, we found a negative correlation between high levels of IL6, a direct target of MCPIP1 RNase activity, and TIMP3 in patients, indicating that MCPIP1 and TIMP3 might collectively cause the high levels of IL6 in ccRCC patients. Taken together, our results show the importance of MCPIP1 in regulating the level of tumour suppressors and, consequently, in ccRCC development and progression.
Collapse
|
46
|
Najminejad H, Farhadihosseinabadi B, Dabaghian M, Dezhkam A, Rigi Yousofabadi E, Najminejad R, Abdollahpour-Alitappeh M, Karimi MH, Bagheri N, Mahi-Birjand M, Ghasemi N, Mazaheri M, Kalantar SM, Seifalian A, Sheikhha MH. Key Regulatory miRNAs and their Interplay with Mechanosensing and Mechanotransduction Signaling Pathways in Breast Cancer Progression. Mol Cancer Res 2020; 18:1113-1128. [PMID: 32430354 DOI: 10.1158/1541-7786.mcr-19-1229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/14/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022]
Abstract
According to the WHO, breast cancer is the most common cancer in women worldwide. Identification of underlying mechanisms in breast cancer progression is the main concerns of researches. The mechanical forces within the tumor microenvironment, in addition to biochemical stimuli such as different growth factors and cytokines, activate signaling cascades, resulting in various changes in cancer cell physiology. Cancer cell proliferation, invasiveness, migration, and, even, resistance to cancer therapeutic agents are changed due to activation of mechanotransduction signaling. The mechanotransduction signaling is frequently dysregulated in breast cancer, indicating its important role in cancer cell features. So far, a variety of experimental investigations have been conducted to determine the main regulators of the mechanotransduction signaling. Currently, the role of miRNAs has been well-defined in the cancer process through advances in molecular-based approaches. miRNAs are small groups of RNAs (∼22 nucleotides) that contribute to various biological events in cells. The central role of miRNAs in the regulation of various mediators involved in the mechanotransduction signaling has been well clarified over the last decade. Unbalanced expression of miRNAs is associated with different pathologic conditions. Overexpression and downregulation of certain miRNAs were found to be along with dysregulation of mechanotransduction signaling effectors. This study aimed to critically review the role of miRNAs in the regulation of mediators involved in the mechanosensing pathways and clarify how the cross-talk between miRNAs and their targets affect the cell behavior and physiology of breast cancer cells.
Collapse
Affiliation(s)
- Hamid Najminejad
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Farhadihosseinabadi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Dabaghian
- Research and Development Department, Razi Vaccine and serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Asiyeh Dezhkam
- Department of Midwifery, School of Nursing and Midwifery, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | | | - Reza Najminejad
- Department of Internal Medicine, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | | | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Motahareh Mahi-Birjand
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nasrin Ghasemi
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahta Mazaheri
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mehdi Kalantar
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (Ltd), The London BioScience Innovation Centre, London, United Kingdom.
| | - Mohammad Hasan Sheikhha
- Genetics and Biotechnology Lab, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
47
|
Selective degradation of plasmid-derived mRNAs by MCPIP1 RNase. Biochem J 2020; 476:2927-2938. [PMID: 31530713 DOI: 10.1042/bcj20190646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 12/27/2022]
Abstract
Detection and degradation of foreign nucleic acids is an ancient form of host defense. However, the underlying mechanisms are not completely clear. MCPIP1 is an endoribonuclease and an important regulator in both innate and adaptive immunity by targeting inflammatory mRNA degradation. Here we report that MCPIP1 RNase can also selectively detect and degrade the mRNAs encoded by transfected plasmids. In transient transfection, MCPIP1 expression potently degraded the mRNA from exogenously transfected vectors, which is independent on the vector, genes and cell types used. Conversely, the expression of transfected plasmids in MCPIP1-null cells is significantly higher than that in wild-type cells. Interestingly, overexpression of MCPIP1 or MCPIP1 deficiency does not affect the expression of the exogenous genes incorporated into the host genome in a stable cell line or the global gene expression of host genome. This ability is not associated with PKR/RNase L system, as PKR inhibitors does not block MCPIP1-mediated mRNA degradation of exogenously transfected genes. Lastly, expression of MCPIP1 suppressed replication of Zika virus in infected cells. The study may provide a model for understanding the antiviral mechanisms of MCPIP1, and a putative tool to increase the expression of transfected exogenous genes.
Collapse
|
48
|
de Azevedo SSD, Ribeiro-Alves M, Côrtes FH, Delatorre E, Spangenberg L, Naya H, Seito LN, Hoagland B, Grinsztejn B, Veloso VG, Morgado MG, Souza TML, Bello G. Increased expression of CDKN1A/p21 in HIV-1 controllers is correlated with upregulation of ZC3H12A/MCPIP1. Retrovirology 2020; 17:18. [PMID: 32615986 PMCID: PMC7333275 DOI: 10.1186/s12977-020-00522-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Some multifunctional cellular proteins, as the monocyte chemotactic protein-induced protein 1 (ZC3H12A/MCPIP1) and the cyclin-dependent kinase inhibitor CDKN1A/p21, are able to modulate the cellular susceptibility to the human immunodeficiency virus type 1 (HIV-1). Several studies showed that CDKN1A/p21 is expressed at high levels ex vivo in cells from individuals who naturally control HIV-1 replication (HIC) and a recent study supports a coordinate regulation of ZC3H12A/MCPIP1 and CDKN1A/p21 transcripts in a model of renal carcinoma cells. Here, we explored the potential associations between mRNA expression of ZC3H12A/MCPIP1 and CDKN1A/p21 in HIC sustaining undetectable (elite controllers-EC) or low (viremic controllers-VC) viral loads. RESULTS We found a selective upregulation of ZC3H12A/MCPIP1 and CDKN1A/p21 mRNA levels in PBMC from HIC compared with both ART-suppressed and HIV-negative control groups (P≤ 0.02) and higher MCPIP1 and p21 proteins levels in HIC than in HIV-1 negative subjects. There was a moderate positive correlation (r ≥ 0.57; P ≤ 0.014) between expressions of both transcripts in HIC and in HIC combined with control groups. We found positive correlations between the mRNA level of CDKN1A/p21 with activated CD4+ T cells levels in HIC (r ≥ 0.53; P ≤ 0.017) and between the mRNA levels of both CDKN1A/p21 (r = 0.74; P = 0.005) and ZC3H12A/MCPIP1 (r = 0.58; P = 0.040) with plasmatic levels of sCD14 in EC. Reanalysis of published transcriptomic data confirmed the positive association between ZC3H12A/MCPIP1 and CDKN1A/p21 mRNA levels in CD4+ T cells and monocytes from disparate cohorts of HIC and other HIV-positive control groups. CONCLUSIONS These data show for the first time the simultaneous upregulation of ZC3H12A/MCPIP1 and CDKN1A/p21 transcripts in the setting of natural suppression of HIV-1 replication in vivo and the positive correlation of the expression of these cellular factors in disparate cohorts of HIV-positive individuals. The existence of a common regulatory pathway connecting ZC3H12A/MCPIP1 and CDKN1A/p21 could have a synergistic effect on HIV-1 replication control and pharmacological manipulation of these multifunctional host factors may open novel therapeutic perspectives to prevent HIV-1 replication and disease progression.
Collapse
Affiliation(s)
- Suwellen S. D. de Azevedo
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ 21045-900 Brazil
| | - Marcelo Ribeiro-Alves
- Laboratório de Pesquisa Clínica em DST-AIDS, Instituto Nacional de Infectologia Evandro Chagas-INI, FIOCRUZ, Rio de Janeiro, Brazil
| | - Fernanda H. Côrtes
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ 21045-900 Brazil
| | - Edson Delatorre
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Brazil
| | - Lucia Spangenberg
- Unidad de Bioinformática, Institut Pasteur Montevideo, Montevideo, Uruguay
- Departamento de Informática y Ciencias de la Computación, Facultad de Ingeniería y Tecnologías, Universidad Católica del Uruguay, Montevideo, Uruguay
| | - Hugo Naya
- Unidad de Bioinformática, Institut Pasteur Montevideo, Montevideo, Uruguay
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Leonardo N. Seito
- Laboratório de Farmacologia Aplicada, Instituto de Tecnologia em Fármacos–Farmanguinhos FIOCRUZ, Rio de Janeiro, Brazil
| | - Brenda Hoagland
- Laboratório de Pesquisa Clínica em DST-AIDS, Instituto Nacional de Infectologia Evandro Chagas-INI, FIOCRUZ, Rio de Janeiro, Brazil
| | - Beatriz Grinsztejn
- Laboratório de Pesquisa Clínica em DST-AIDS, Instituto Nacional de Infectologia Evandro Chagas-INI, FIOCRUZ, Rio de Janeiro, Brazil
| | - Valdilea G. Veloso
- Laboratório de Pesquisa Clínica em DST-AIDS, Instituto Nacional de Infectologia Evandro Chagas-INI, FIOCRUZ, Rio de Janeiro, Brazil
| | - Mariza G. Morgado
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ 21045-900 Brazil
| | - Thiago Moreno L. Souza
- National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDPN), FIOCRUZ, Center for Technological Development in Health-CDTS, Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Gonzalo Bello
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ 21045-900 Brazil
| |
Collapse
|
49
|
Systemic MCPIP1 deficiency in mice impairs lipid homeostasis. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2020; 1:1-9. [PMID: 34909637 PMCID: PMC8663940 DOI: 10.1016/j.crphar.2020.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 01/12/2023] Open
Abstract
Atherosclerosis involves interactions between inflammation system and dyslipidemia. MCPIP1 (Monocyte Chemotactic Protein induced Protein-1) is induced by proinflammatory molecules and serves as a negative feedback loop in regulating inflammatory responses. Our current study was designed to test the role of MCPIP1 in maintaining lipid homeostasis, the latter a pivotal factor that contributes to the pathogenesis of atherosclerosis. We found that MCPIP1 knockout mice displayed a decrease in levels of serum HDL-cholesterol and total triglycerides but an increase in serum LDL/VLDL-cholesterol levels when compared to wild-type mice. Additionally, ApoA-1 expression was reduced but LPL expression was upregulated in plasma from MCPIP1 knockout mice. The livers from the MCPIP1 knockout mice revealed a decrease in hepatocyte number and an increase in collagen deposition when compared to wild-type mice. These findings suggest that MCPIP1 deficiency can induce liver fibrosis, alter the expression of lipoproteins, and affect transportation and metabolism of lipids, indicating that MCPIP1 is involved in maintaining lipid homeostasis, possibly via negatively regulating inflammatory responses. Atherosclerosis is the result of interaction between inflammation and dyslipidemia. MCPIP1 is a negative regulator in inflammatory responses. MCPIP1 is upregulated in the atherosclerotic plaques. MCPIP1 deficiency induces dyslipidemia and hepatic remodeling. MCPIP1 deficiency may increase the risk of atherosclerosis.
Collapse
|
50
|
Santonico E. Old and New Concepts in Ubiquitin and NEDD8 Recognition. Biomolecules 2020; 10:biom10040566. [PMID: 32272761 PMCID: PMC7226360 DOI: 10.3390/biom10040566] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Post-translational modifications by ubiquitin and ubiquitin-like proteins (Ubls) have known roles in a myriad of cellular processes. Ubiquitin- and Ubl-binding domains transmit the information conferred by these post-translational modifications by recognizing functional surfaces and, when present, different chain structures. Numerous domains binding to ubiquitin have been characterized and their structures solved. Analogously, motifs selectively interacting with SUMO (small ubiquitin-like modifier) have been identified in several proteins and their role in SUMO-dependent processes investigated. On the other hand, proteins that specifically recognize other Ubl modifications are known only in a few cases. The high sequence identity between NEDD8 and ubiquitin has made the identification of specific NEDD8-binding domains further complicated due to the promiscuity in the recognition by several ubiquitin-binding domains. Two evolutionarily related domains, called CUBAN (cullin-binding domain associating with NEDD8) and CoCUN (cousin of CUBAN), have been recently described. The CUBAN binds monomeric NEDD8 and neddylated cullins, but it also interacts with di-ubiquitin chains. Conversely, the CoCUN domain only binds ubiquitin. CUBAN and CoCUN provide an intriguing example of how nature solved the issue of promiscuity versus selectivity in the recognition of these two highly related molecules. The structural information available to date suggests that the ancestor of CUBAN and CoCUN was a three-helix bundle domain that diversified in KHNYN (KH and NYN domain-containing) and N4BP1 (NEDD4-binding protein-1) by acquiring different features. Indeed, these domains diverged towards two recognition modes, that recall respectively the electrostatic interaction utilized by the E3-ligase RBX1/2 in the interaction with NEDD8, and the hydrophobic features described in the recognition of ubiquitin by CUE (coupling ubiquitin conjugation to ER degradation) domains. Intriguingly, CUBAN and CoCUN domains are only found in KHNYN and N4BP1, respectively, both proteins belonging to the PRORP family whose members are characterized by the combination of protein modules involved in RNA metabolism with domains mediating ubiquitin/NEDD8 recognition. This review recapitulates the current knowledge and recent findings of CUBAN and CoCUN domains and the proteins containing them.
Collapse
Affiliation(s)
- Elena Santonico
- Department of Biology, University of Rome Tor Vergata, Via della ricerca scientifica, 00133 Rome, Italy
| |
Collapse
|