1
|
Fu X, Wang Y, Lu Y, Liu J, Li H. Association between metabolic syndrome and benign prostatic hyperplasia: The underlying molecular connection. Life Sci 2024; 358:123192. [PMID: 39488266 DOI: 10.1016/j.lfs.2024.123192] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/08/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Benign prostatic hyperplasia (BPH), a common cause of lower urinary tract symptoms (LUTS), has been recently regarded as a metabolic disease. Metabolic syndrome (MetS) is a constellation of metabolic disarrangements, including insulin resistance, obesity, hypertension, and dyslipidemia, and it has been established that these components of MetS are important contributing factors exacerbating the degree of prostatic enlargement and bladder outlet obstruction among patients with BPH. Clinical and experimental studies demonstrated that many molecules, such as insulin, insulin-like growth factor 1 (IGF-1), androgen and estrogen, and adipokines, are involved in the overlapping pathogenesis of BPH and MetS, indicating that clinicians might be able to simultaneously alleviate or cure two diseases by choosing appropriate medications. This article aims to systematically review the pathophysiological aspect and traditional etiology and pathogenesis of BPH and discuss the intricate association between MetS and BPH from the molecular point of view, in an attempt to provide stronger evidence for better treatment of two diseases.
Collapse
Affiliation(s)
- Xun Fu
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Yutao Wang
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Yi Lu
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Jiang Liu
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Hongjun Li
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China.
| |
Collapse
|
2
|
Fan X, Yuan W, Huang W, Lin Z. Recent progress in leptin signaling from a structural perspective and its implications for diseases. Biochimie 2023; 212:60-75. [PMID: 37080418 DOI: 10.1016/j.biochi.2023.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
As a multi-potency cytokine, leptin not only plays a crucial role in controlling weight and energy homeostasis but also participates in the metabolic balance in the human body. Leptin is a small helical protein with a molecular weight of 16 kDa. It can interact with multiple subtypes of its receptors to initiate intracellular signal transduction and exerts physiological effects. Disturbances in leptin signaling may lead to obesity and a variety of metabolic diseases. Leptin was also found to be a critical factor in many diseases of the elderly. In this review, we focus on recent advances in the structural and molecular mechanisms of leptin signaling through its receptors with the aim of a deeper understanding of leptin-related diseases.
Collapse
Affiliation(s)
- Xiao Fan
- School of Life Sciences, Tianjin University, Tianjin, 300072, PR China
| | - Wensu Yuan
- School of Life Sciences, Tianjin University, Tianjin, 300072, PR China
| | - Weidong Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China.
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
3
|
Funcke JB, Moepps B, Roos J, von Schnurbein J, Verstraete K, Fröhlich-Reiterer E, Kohlsdorf K, Nunziata A, Brandt S, Tsirigotaki A, Dansercoer A, Suppan E, Haris B, Debatin KM, Savvides SN, Farooqi IS, Hussain K, Gierschik P, Fischer-Posovszky P, Wabitsch M. Rare Antagonistic Leptin Variants and Severe, Early-Onset Obesity. N Engl J Med 2023; 388:2253-2261. [PMID: 37314706 DOI: 10.1056/nejmoa2204041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hormone absence or inactivity is common in congenital disease, but hormone antagonism remains controversial. Here, we characterize two novel homozygous leptin variants that yielded antagonistic proteins in two unrelated children with intense hyperphagia, severe obesity, and high circulating levels of leptin. Both variants bind to the leptin receptor but trigger marginal, if any, signaling. In the presence of nonvariant leptin, the variants act as competitive antagonists. Thus, treatment with recombinant leptin was initiated at high doses, which were gradually lowered. Both patients eventually attained near-normal weight. Antidrug antibodies developed in the patients, although they had no apparent effect on efficacy. No severe adverse events were observed. (Funded by the German Research Foundation and others.).
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Barbara Moepps
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Julian Roos
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Julia von Schnurbein
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Kenneth Verstraete
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Elke Fröhlich-Reiterer
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Katja Kohlsdorf
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Adriana Nunziata
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Stephanie Brandt
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Alexandra Tsirigotaki
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Ann Dansercoer
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Elisabeth Suppan
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Basma Haris
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Klaus-Michael Debatin
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Savvas N Savvides
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - I Sadaf Farooqi
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Khalid Hussain
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Peter Gierschik
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Pamela Fischer-Posovszky
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Martin Wabitsch
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| |
Collapse
|
4
|
Hung A, Choi E. How to control hunger. Nat Struct Mol Biol 2023; 30:409-411. [PMID: 37072587 DOI: 10.1038/s41594-023-00963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Affiliation(s)
- Albert Hung
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Simien JM, Orellana GE, Phan HTN, Hu Y, Kurth EA, Ruf C, Kricek F, Wang Q, Smrcka AV, Haglund E. A Small Contribution to a Large System: The Leptin Receptor Complex. J Phys Chem B 2023; 127:2457-2465. [PMID: 36912891 DOI: 10.1021/acs.jpcb.3c01090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Obesity is a classified epidemic, increasing the risk of secondary diseases such as diabetes, inflammation, cardiovascular disease, and cancer. The pleiotropic hormone leptin is the proposed link for the gut-brain axis controlling nutritional status and energy expenditure. Research into leptin signaling provides great promise toward discovering therapeutics for obesity and its related diseases targeting leptin and its cognate leptin receptor (LEP-R). The molecular basis underlying the human leptin receptor complex assembly remains obscure, due to the lack of structural information regarding the biologically active complex. In this work, we investigate the proposed receptor binding sites in human leptin utilizing designed antagonist proteins combined with AlphaFold predictions. Our results show that binding site I has a more intricate role in the active signaling complex than previously described. We hypothesize that the hydrophobic patch in this region engages a third receptor forming a higher-order complex, or a new LEP-R binding site inducing allosteric rearrangement.
Collapse
Affiliation(s)
- Jennifer M Simien
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Grace E Orellana
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Hoa T N Phan
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Yao Hu
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Emily A Kurth
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Christine Ruf
- NBS-C BioScience & Consulting GmbH, Vienna, 1230, Austria
| | - Franz Kricek
- NBS-C BioScience & Consulting GmbH, Vienna, 1230, Austria
| | - Qian Wang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Alan V Smrcka
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Ellinor Haglund
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
6
|
Tsirigotaki A, Dansercoer A, Verschueren KHG, Marković I, Pollmann C, Hafer M, Felix J, Birck C, Van Putte W, Catteeuw D, Tavernier J, Fernando Bazan J, Piehler J, Savvides SN, Verstraete K. Mechanism of receptor assembly via the pleiotropic adipokine Leptin. Nat Struct Mol Biol 2023; 30:551-563. [PMID: 36959263 DOI: 10.1038/s41594-023-00941-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/06/2023] [Indexed: 03/25/2023]
Abstract
The adipokine Leptin activates its receptor LEP-R in the hypothalamus to regulate body weight and exerts additional pleiotropic functions in immunity, fertility and cancer. However, the structure and mechanism of Leptin-mediated LEP-R assemblies has remained unclear. Intriguingly, the signaling-competent isoform of LEP-R is only lowly abundant amid several inactive short LEP-R isoforms contributing to a mechanistic conundrum. Here we show by X-ray crystallography and cryo-EM that, in contrast to long-standing paradigms, Leptin induces type I cytokine receptor assemblies featuring 3:3 stoichiometry and demonstrate such Leptin-induced trimerization of LEP-R on living cells via single-molecule microscopy. In mediating these assemblies, Leptin undergoes drastic restructuring that activates its site III for binding to the Ig domain of an adjacent LEP-R. These interactions are abolished by mutations linked to obesity. Collectively, our study provides the structural and mechanistic framework for how evolutionarily conserved Leptin:LEP-R assemblies with 3:3 stoichiometry can engage distinct LEP-R isoforms to achieve signaling.
Collapse
Affiliation(s)
- Alexandra Tsirigotaki
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Ann Dansercoer
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Koen H G Verschueren
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Iva Marković
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Christoph Pollmann
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Maximillian Hafer
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Jan Felix
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Catherine Birck
- Integrated Structural Biology Platform, Centre for Integrative Biology (CBI), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U1258, University of Strasbourg, Illkirch, France
| | | | - Dominiek Catteeuw
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences, Ghent, Belgium
| | - J Fernando Bazan
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- ħ Bioconsulting llc, Stillwater, MN, USA
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Savvas N Savvides
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
| | - Kenneth Verstraete
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
| |
Collapse
|
7
|
Buonaiuto R, Napolitano F, Parola S, De Placido P, Forestieri V, Pecoraro G, Servetto A, Formisano L, Formisano P, Giuliano M, Arpino G, De Placido S, De Angelis C. Insight on the Role of Leptin: A Bridge from Obesity to Breast Cancer. Biomolecules 2022; 12:biom12101394. [PMID: 36291602 PMCID: PMC9599120 DOI: 10.3390/biom12101394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 11/26/2022] Open
Abstract
Leptin is a peptide hormone, mainly known for its role as a mediator of adipose tissue endocrine functions, such as appetite control and energy homeostasis. In addition, leptin signaling is involved in several physiological processes as modulation of innate and adaptive immune responses and regulation of sex hormone levels. When adipose tissue expands, an imbalance of adipokines secretion may occur and increasing leptin levels contribute to promoting a chronic inflammatory state, which is largely acknowledged as a hallmark of cancer. Indeed, upon binding its receptor (LEPR), leptin activates several oncogenic pathways, such as JAK/STAT, MAPK, and PI3K/AKT, and seems to affect cancer immune response by inducing a proinflammatory immune polarization and eventually enhancing T-cell exhaustion. In particular, obesity-associated hyperleptinemia has been related to breast cancer risk development, although the underlying mechanism is yet to be completely clarified and needs to be deemed in light of multiple variables, such as menopausal state and immune response. The aim of this review is to provide an overview of the potential role of leptin as a bridge between obesity and breast cancer and to establish the physio-pathological basis of the linkage between these major health concerns in order to identify appropriate and novel therapeutic strategies to adopt in daily clinical practice.
Collapse
Affiliation(s)
- Roberto Buonaiuto
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Fabiana Napolitano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Sara Parola
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Pietro De Placido
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Valeria Forestieri
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Giovanna Pecoraro
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Alberto Servetto
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Grazia Arpino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Sabino De Placido
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
8
|
López-Hidalgo M, Caro-Gómez LA, Romo-Rodríguez R, Herrera-Zuñiga LD, Anaya-Reyes M, Rosas-Trigueros JL, Benítez-Cardoza CG. Atomistic mechanism of leptin and leptin-receptor association. J Biomol Struct Dyn 2022; 41:2231-2248. [PMID: 35075977 DOI: 10.1080/07391102.2022.2029568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The leptin-leptin receptor complex is at the very core of energy homeostasis and immune system regulation, among many other functions. In this work, we built homology models of leptin and the leptin binding domain (LBD) of the receptor from humans and mice. Docking analyses were used to obtain the coordinates of the native leptin-LBD complexes and a mixed heterodimer formed by human leptin and mouse LBD. Molecular dynamics (MD) simulations were performed using all models (monomers and heterodimers) as initial coordinates and the GROMACS program. The overall structural and dynamical behaviors are similar for the three complexes. Upon MD simulations, several new interactions appear. In particular, hydrophobic interactions, with more than 90% persistence, seem to be the most relevant for the stability of the dimers, as well as the pair formed by Asp85Lep and Arg468LBD. This in silico analysis provides structural and dynamical information, at the atomistic level, about the mechanism of leptin-LBD complex formation and leptin receptor activation. This knowledge might be used in the rational drug design of therapeutics to modulate leptin signaling.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Marisol López-Hidalgo
- Laboratorio de Bioquímica y Biofísica Computacional, ENMH, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis A Caro-Gómez
- Tecnológico de Estudios Superiores de Huixquilucan, Subdirección de Estudios Profesionales, State of Mexico, Mexico
| | - Rubí Romo-Rodríguez
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, México.,Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Leonardo D Herrera-Zuñiga
- Tecnológico de Estudios Superiores de Huixquilucan, Subdirección de Estudios Profesionales, State of Mexico, Mexico
| | - Maricruz Anaya-Reyes
- Departamento de Investigación Clínica, Productos Medix, S.A. de C.V, Mexico City, Mexico
| | - Jorge L Rosas-Trigueros
- Laboratorio Transdisciplinario de Investigación en Sistemas Evolutivos, SEPI de la ESCOM del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Claudia G Benítez-Cardoza
- Laboratorio de Bioquímica y Biofísica Computacional, ENMH, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
9
|
Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol 2022; 915:174611. [PMID: 34798121 DOI: 10.1016/j.ejphar.2021.174611] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity is a major health crisis affecting over a third of the global population. This multifactorial disease is regulated via interoceptive neural circuits in the brain, whose alteration results in excessive body weight. Certain central neuronal populations in the brain are recognised as crucial nodes in energy homeostasis; in particular, the hypothalamic arcuate nucleus (ARC) region contains two peptide microcircuits that control energy balance with antagonistic functions: agouti-related peptide/neuropeptide-Y (AgRP/NPY) signals hunger and stimulates food intake; and pro-opiomelanocortin (POMC) signals satiety and reduces food intake. These neuronal peptides levels react to energy status and integrate signals from peripheral ghrelin, leptin, and insulin to regulate feeding and energy expenditure. To manage obesity comprehensively, it is crucial to understand cellular and molecular mechanisms of information processing in ARC neurons, since these regulate energy homeostasis. Importantly, a specific strategy focusing on ARC circuits needs to be devised to assist in treating obese patients and maintaining weight loss with minimal or no side effects. The aim of this review is to elucidate the recent developments in the study of AgRP-, NPY- and POMC-producing neurons, specific to their role in controlling metabolism. The impact of ghrelin, leptin, and insulin signalling via action of these neurons is also surveyed, since they also impact energy balance through this route. Lastly, we present key proteins, targeted genes, compounds, drugs, and therapies that actively work via these neurons and could potentially be used as therapeutic targets for treating obesity conditions.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
10
|
Dey S, Lee J, Noguchi CT. Erythropoietin Non-hematopoietic Tissue Response and Regulation of Metabolism During Diet Induced Obesity. Front Pharmacol 2021; 12:725734. [PMID: 34603036 PMCID: PMC8479821 DOI: 10.3389/fphar.2021.725734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Erythropoietin (EPO) receptor (EPOR) determines EPO response. High level EPOR on erythroid progenitor cells gives rise to EPO regulated production of red blood cells. Animal models provide evidence for EPO activity in non-hematopoietic tissue mediated by EPOR expression. Beyond erythropoiesis, EPO activity includes neuroprotection in brain ischemia and trauma, endothelial nitric oxide production and cardioprotection, skeletal muscle wound healing, and context dependent bone remodeling affecting bone repair or bone loss. This review highlights examples of EPO protective activity in select non-hematopoietic tissue with emphasis on metabolic response mediated by EPOR expression in fat and brain and sex-specific regulation of fat mass and inflammation associated with diet induced obesity. Endogenous EPO maintains glucose and insulin tolerance and protects against fat mass accumulation and inflammation. Accompanying the increase in erythropoiesis with EPO treatment is improved glucose tolerance and insulin response. During high fat diet feeding, EPO also decreases fat mass accumulation in male mice. The increased white adipose tissue inflammation and macrophage infiltration associated with diet induced obesity are also reduced with EPO treatment with a shift toward an anti-inflammatory state and decreased inflammatory cytokine production. In female mice the protective effect of estrogen against obesity supersedes EPO regulation of fat mass and inflammation, and requires estrogen receptor alpha activity. In brain, EPOR expression in the hypothalamus localizes to proopiomelanocortin neurons in the arcuate nucleus that promotes a lean phenotype. EPO stimulation of proopiomelanocortin neurons increases STAT3 signaling and production of proopiomelanocortin. Cerebral EPO contributes to metabolic response, and elevated brain EPO reduces fat mass and hypothalamus inflammation during diet induced obesity in male mice without affecting EPO stimulated erythropoiesis. Ovariectomy abrogates the sex-specific metabolic response of brain EPO. The sex-dimorphic EPO metabolic response associated with fat mass accumulation and inflammation during diet induced obesity provide evidence for crosstalk between estrogen and EPO in their anti-obesity potential in female mice mediated in part via tissue specific response in brain and white adipose tissue. Endogenous and exogenous EPO response in non-hematopoietic tissue demonstrated in animal models suggests additional activity by which EPO treatment may affect human health beyond increased erythropoiesis.
Collapse
Affiliation(s)
- Soumyadeep Dey
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jeeyoung Lee
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Constance T Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Berger C, Klöting N. Leptin Receptor Compound Heterozygosity in Humans and Animal Models. Int J Mol Sci 2021; 22:4475. [PMID: 33922961 PMCID: PMC8123313 DOI: 10.3390/ijms22094475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 01/10/2023] Open
Abstract
Leptin and its receptor are essential for regulating food intake, energy expenditure, glucose homeostasis and fertility. Mutations within leptin or the leptin receptor cause early-onset obesity and hyperphagia, as described in human and animal models. The effect of both heterozygous and homozygous variants is much more investigated than compound heterozygous ones. Recently, we discovered a spontaneous compound heterozygous mutation within the leptin receptor, resulting in a considerably more obese phenotype than described for the homozygous leptin receptor deficient mice. Accordingly, we focus on compound heterozygous mutations of the leptin receptor and their effects on health, as well as possible therapy options in human and animal models in this review.
Collapse
Affiliation(s)
- Claudia Berger
- Medical Department III, Endocrinology, Nephrology, Rheumatology, CRC1052, University of Leipzig Medical Center, 04103 Leipzig, Germany;
| | - Nora Klöting
- Medical Department III, Endocrinology, Nephrology, Rheumatology, CRC1052, University of Leipzig Medical Center, 04103 Leipzig, Germany;
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
12
|
Olea-Flores M, Juárez-Cruz JC, Zuñiga-Eulogio MD, Acosta E, García-Rodríguez E, Zacapala-Gomez AE, Mendoza-Catalán MA, Ortiz-Ortiz J, Ortuño-Pineda C, Navarro-Tito N. New Actors Driving the Epithelial-Mesenchymal Transition in Cancer: The Role of Leptin. Biomolecules 2020; 10:E1676. [PMID: 33334030 PMCID: PMC7765557 DOI: 10.3390/biom10121676] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 12/24/2022] Open
Abstract
Leptin is a hormone secreted mainly by adipocytes; physiologically, it participates in the control of appetite and energy expenditure. However, it has also been linked to tumor progression in different epithelial cancers. In this review, we describe the effect of leptin on epithelial-mesenchymal transition (EMT) markers in different study models, including in vitro, in vivo, and patient studies and in various types of cancer, including breast, prostate, lung, and ovarian cancer. The different studies report that leptin promotes the expression of mesenchymal markers and a decrease in epithelial markers, in addition to promoting EMT-related processes such as cell migration and invasion and poor prognosis in patients with cancer. Finally, we report that leptin has the greatest biological relevance in EMT and tumor progression in breast, lung, prostate, esophageal, and ovarian cancer. This relationship could be due to the key role played by the enriched tumor microenvironment in adipose tissue. Together, these findings demonstrate that leptin is a key biomolecule that drives EMT and metastasis in cancer.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Juan C. Juárez-Cruz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Miriam D. Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Erika Acosta
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Eduardo García-Rodríguez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Ana E. Zacapala-Gomez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Miguel A. Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Julio Ortiz-Ortiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Carlos Ortuño-Pineda
- Laboratorio de Ácidos Nucleicos y Proteinas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico;
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| |
Collapse
|
13
|
Tao P, Kuang Y, Li Y, Li W, Gao Z, Liu L, Qiang M, Zha Z, Fan K, Ma P, Friedman JM, Yang G, Lerner RA. Selection of a Full Agonist Combinatorial Antibody that Rescues Leptin Deficiency In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000818. [PMID: 32832353 PMCID: PMC7435230 DOI: 10.1002/advs.202000818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Indexed: 05/15/2023]
Abstract
Growth factor deficiency in adulthood constitutes a distinct clinical syndrome with significant morbidities including abnormal body composition, reduced energy, affective disturbances, dyslipidemia, and increased cardiovascular risk. Protein replacement therapies using recombinant proteins or enzymes represent the only approved treatment. Combinatorial antibodies have shown great promise as a new class of therapeutic molecules because they act as "mechanism-based antibodies" with both agonist and antagonist activities. Using leptin, a key hormone in energy metabolism, as an example, a function-guided approach is developed to select combinatorial antibodies with high potency and full agonist activity that substitute natural growth factors in vivo. The identified antibody shows identical biochemical properties and cellular profiles as leptin, and rescues leptin-deficiency in ob/ob mice. Remarkably, the antibody activates leptin receptors that are otherwise nonfunctional because of mutations (L372A and A409E). Combinatorial antibodies have significant advantages over recombinant proteins for chronical usage in terms of immunological tolerance and biological stability.
Collapse
Affiliation(s)
- Pingdong Tao
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
- School of Life Science and Technology
ShanghaiTech UniversityShanghai201210China
- Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yuanyuan Kuang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
- School of Life Science and Technology
ShanghaiTech UniversityShanghai201210China
- Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yu Li
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
- School of Life Science and Technology
ShanghaiTech UniversityShanghai201210China
- Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wenping Li
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
- School of Life Science and Technology
ShanghaiTech UniversityShanghai201210China
- Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zibei Gao
- School of Life Science and Technology
ShanghaiTech UniversityShanghai201210China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Min Qiang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Zhao Zha
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Kun Fan
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
- School of Life Science and Technology
ShanghaiTech UniversityShanghai201210China
- Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Jeffrey M. Friedman
- Laboratory of Molecular GeneticsHoward Hughes Medical InstituteThe Rockefeller UniversityNew YorkNY10065USA
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | | |
Collapse
|
14
|
Danielsson J, Noel JK, Simien JM, Duggan BM, Oliveberg M, Onuchic JN, Jennings PA, Haglund E. The Pierced Lasso Topology Leptin has a Bolt on Dynamic Domain Composed by the Disordered Loops I and III. J Mol Biol 2020; 432:3050-3063. [PMID: 32081588 DOI: 10.1016/j.jmb.2020.01.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/18/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
Leptin is an important signaling hormone, mostly known for its role in energy expenditure and satiety. Furthermore, leptin plays a major role in other proteinopathies, such as cancer, marked hyperphagia, impaired immune function, and inflammation. In spite of its biological relevance in human health, there are no NMR resonance assignments of the human protein available, obscuring high-resolution characterization of the soluble protein and/or its conformational dynamics, suggested as being important for receptor interaction and biological activity. Here, we report the nearly complete backbone resonance assignments of human leptin. Chemical shift-based secondary structure prediction confirms that in solution leptin forms a four-helix bundle including a pierced lasso topology. The conformational dynamics, determined on several timescales, show that leptin is monomeric, has a rigid four-helix scaffold, and a dynamic domain, including a transiently formed helix. The dynamic domain is anchored to the helical scaffold by a secondary hydrophobic core, pinning down the long loops of leptin to the protein body, inducing motional restriction without a well-defined secondary or tertiary hydrogen bond stabilized structure. This dynamic region is well suited for and may be involved in functional allosteric dynamics upon receptor binding.
Collapse
Affiliation(s)
- Jens Danielsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | | | | | - Brendan Michael Duggan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, USA
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, USA; Department of Physics and Astronomy, Department of Chemistry, And Department of Biosciences, Rice University, Houston, USA
| | - Patricia Ann Jennings
- Department of Chemistry and Biochemistry, The University of California at San Diego, La Jolla, USA
| | - Ellinor Haglund
- The Department of Chemistry, University of Hawaii, Manoa, Honolulu, USA.
| |
Collapse
|
15
|
Inagaki-Ohara K. Gastric Leptin and Tumorigenesis: Beyond Obesity. Int J Mol Sci 2019; 20:ijms20112622. [PMID: 31141984 PMCID: PMC6600422 DOI: 10.3390/ijms20112622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Leptin, an adipocyte-derived hormone and its receptor (ObR) expressed in the hypothalamus are well known as an essential regulator of appetite and energy expenditure. Obesity induces abundant leptin production, however, reduced sensitivity to leptin leads to the development of metabolic disorders, so called leptin resistance. The stomach has been identified as an organ that simultaneously expresses leptin and ObR. Accumulating evidence has shown gastric leptin to perform diverse functions, such as those in nutrient absorption and carcinogenesis in the gastrointestinal system, independent of its well-known role in appetite regulation and obesity. Overexpression of leptin and phosphorylated ObR is implicated in gastric cancer in humans and in murine model, and diet-induced obesity causes precancerous lesions in the stomach in mice. While the underlying pathomechanisms remain unclear, leptin signaling can affect gastric mucosal milieu. In this review, we focus on the significant role of the gastric leptin signaling in neoplasia and tumorigenesis in stomach in the context of hereditary and diet-induced obesity.
Collapse
Affiliation(s)
- Kyoko Inagaki-Ohara
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima 727-0023, Japan.
| |
Collapse
|
16
|
Molecular dynamic (MD) studies on Gln233Arg (rs1137101) polymorphism of leptin receptor gene and associated variations in the anthropometric and metabolic profiles of Saudi women. PLoS One 2019; 14:e0211381. [PMID: 30763324 PMCID: PMC6375553 DOI: 10.1371/journal.pone.0211381] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/12/2019] [Indexed: 01/07/2023] Open
Abstract
The Gln233Arg (A>G; rs1137101) polymorphism of the leptin receptor gene (LEPR) has been investigated extensively and is reported to be associated with different metabolic states. In this investigation, we aimed to study the frequency of Gln233Arg genotypes and alleles in a group of Saudi women stratified by their body mass index (BMI), to correlate the LEPR genotypes with variations in anthropometric, lipid and hormonal parameters and to investigate conformational and structural variations in the mutant LEPR using molecular dynamic (MD) investigations. The study group included 122 Saudi women (normal weight = 60; obese = 62) attending the clinics for a routine checkup. Anthropometric data: height, weight, waist and hip circumference were recorded and fasting serum sample was used to estimate glucose, lipids, ghrelin, leptin and insulin. BMI, W/H ratio, and HOMA-IR values were calculated. Whole blood sample was used to extract DNA; exon 6 of the LEPR gene was amplified by PCR and sequencing was conducted on an ABI 3100 Avant Genetic Analyser. Molecular Dynamic Simulation studies were carried out using different softwares. The results showed the presence of all three genotypes of Gln233Arg in Saudi women, but the frequencies were significantly different when compared to reports from some populations. No differences were seen in the genotype and allele frequencies between the normal weight and obese women. Stratification by the genotypes showed significantly higher BMI, waist and hip circumference, leptin, insulin, fasting glucose and HOMA-IR and lower ghrelin levels in obese women carrying the GG genotype. Even in the normal weight group, individuals with GG genotype had higher BMI, waist and hip circumference and significantly lower ghrelin levels. The MD studies showed a significant effect of the Gln/Arg substitution on the conformation, flexibility, root-mean-square fluctuation (RMSF), radius of gyration (Rg) values, solvent-accessible surface area (SASA) and number of inter- and intra-molecular H-bonds. The results suggest that the structural changes brought about by the mutation, influence the signaling pathways by some unknown mechanism, which may be contributing to the abnormalities seen in the individuals carrying the G allele of rs1137101.
Collapse
|
17
|
Olea-Flores M, Juárez-Cruz JC, Mendoza-Catalán MA, Padilla-Benavides T, Navarro-Tito N. Signaling Pathways Induced by Leptin during Epithelial⁻Mesenchymal Transition in Breast Cancer. Int J Mol Sci 2018; 19:E3493. [PMID: 30404206 PMCID: PMC6275018 DOI: 10.3390/ijms19113493] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/27/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
Leptin is an adipokine that is overexpressed in obese and overweight people. Interestingly, women with breast cancer present high levels of leptin and of its receptor ObR. Leptin plays an important role in breast cancer progression due to the biological processes it participates in, such as epithelial⁻mesenchymal transition (EMT). EMT consists of a series of orchestrated events in which cell⁻cell and cell⁻extracellular matrix interactions are altered and lead to the release of epithelial cells from the surrounding tissue. The cytoskeleton is also re-arranged, allowing the three-dimensional movement of epithelial cells into the extracellular matrix. This transition provides cells with the ability to migrate and invade adjacent or distal tissues, which is a classic feature of invasive or metastatic carcinoma cells. In recent years, the number of cases of breast cancer has increased, making this disease a public health problem worldwide and the leading cause of death due to cancer in women. In this review, we focus on recent advances that establish: (1) leptin as a risk factor for the development of breast cancer, and (2) leptin as an inducer of EMT, an event that promotes tumor progression.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, México.
| | - Juan Carlos Juárez-Cruz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, México.
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, México.
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, México.
| |
Collapse
|
18
|
Dam J. [Traffic and signalisation of the leptin receptor]. Biol Aujourdhui 2018; 212:35-43. [PMID: 30362454 DOI: 10.1051/jbio/2018020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Indexed: 11/14/2022]
Abstract
Receptors are the master regulators conveying the information provided by the hormone from the extracellular environment to the intracellular milieu. As a result, the level of receptors at the cell surface can determine the signaling strength. Regulation of receptor trafficking to the cell surface or receptor retention processes in intracellular compartments are key mechanisms for leptin receptor (ObR) activity. An alteration of these mechanisms leads to the development of obesity. However, the canonical mechanism of plasma membrane receptors activation is challenged by the discovery that intracellular receptors also have their own signaling activity inside specific intracellular compartments. These intracellular receptors can trigger signaling that regulates a particular function, different from, or in continuity with, surface receptor signaling. We will address both these aspects by focusing particularly on the case of the leptin receptor (ObR), i.e., i) the regulation of its level of exposure to the cell surface and its impact on the development of obesity, and ii) the discovery of its location and signaling in some intracellular compartments.
Collapse
Affiliation(s)
- Julie Dam
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, 22 Rue Méchain, 75014 Paris, France
| |
Collapse
|
19
|
Haglund E, Nguyen L, Schafer NP, Lammert H, Jennings PA, Onuchic JN. Uncovering the molecular mechanisms behind disease-associated leptin variants. J Biol Chem 2018; 293:12919-12933. [PMID: 29950524 PMCID: PMC6102133 DOI: 10.1074/jbc.ra118.003957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/14/2018] [Indexed: 01/21/2023] Open
Abstract
The pleiotropic hormone leptin has a pivotal role in regulating energy balance by inhibiting hunger and increasing energy expenditure. Homozygous mutations found in the leptin gene are associated with extreme obesity, marked hyperphagia, and impaired immune function. Although these mutations have been characterized in vivo, a detailed understanding of how they affect leptin structure and function remains elusive. In the current work, we used NMR, differential scanning calorimetry, molecular dynamics simulations, and bioinformatics calculations to characterize the effects of these mutations on leptin structure and function and binding to its cognate receptor. We found that mutations identified in patients with congenital leptin deficiency not only cause leptin misfolding or aggregation, but also cause changes in the dynamics of leptin residues on the receptor-binding interface. Therefore, we infer that mutation-induced leptin deficiency may arise from several distinct mechanisms including (i) blockade of leptin receptor interface II, (ii) decreased affinity in the second step of leptin's interaction with its receptor, (iii) leptin destabilization, and (iv) unsuccessful threading through the covalent loop, leading to leptin misfolding/aggregation. We propose that this expanded framework for understanding the mechanisms underlying leptin deficiency arising from genetic mutations may be useful in designing therapeutics for leptin-associated disorders.
Collapse
Affiliation(s)
- Ellinor Haglund
- Center for Theoretical Biological Physics, and Biosciences, Rice University, Houston, Texas 77005.
| | - Lannie Nguyen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093
| | - Nicholas Peter Schafer
- Center for Theoretical Biological Physics, and Biosciences, Rice University, Houston, Texas 77005
| | - Heiko Lammert
- Center for Theoretical Biological Physics, and Biosciences, Rice University, Houston, Texas 77005
| | - Patricia Ann Jennings
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093.
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, and Biosciences, Rice University, Houston, Texas 77005; Departments of Physics and Astronomy, Chemistry, and Biosciences, Rice University, Houston, Texas 77005.
| |
Collapse
|
20
|
Ferrao RD, Wallweber HJ, Lupardus PJ. Receptor-mediated dimerization of JAK2 FERM domains is required for JAK2 activation. eLife 2018; 7:38089. [PMID: 30044226 PMCID: PMC6078494 DOI: 10.7554/elife.38089] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
Cytokines and interferons initiate intracellular signaling via receptor dimerization and activation of Janus kinases (JAKs). How JAKs structurally respond to changes in receptor conformation induced by ligand binding is not known. Here, we present two crystal structures of the human JAK2 FERM and SH2 domains bound to Leptin receptor (LEPR) and Erythropoietin receptor (EPOR), which identify a novel dimeric conformation for JAK2. This 2:2 JAK2/receptor dimer, observed in both structures, identifies a previously uncharacterized receptor interaction essential to dimer formation that is mediated by a membrane-proximal peptide motif called the ‘switch’ region. Mutation of the receptor switch region disrupts STAT phosphorylation but does not affect JAK2 binding, indicating that receptor-mediated formation of the JAK2 FERM dimer is required for kinase activation. These data uncover the structural and molecular basis for how a cytokine-bound active receptor dimer brings together two JAK2 molecules to stimulate JAK2 kinase activity.
Collapse
Affiliation(s)
- Ryan D Ferrao
- Department of Structural Biology, Genentech, Inc., South San Francisco, United States
| | - Heidi Ja Wallweber
- Department of Structural Biology, Genentech, Inc., South San Francisco, United States
| | - Patrick J Lupardus
- Department of Structural Biology, Genentech, Inc., South San Francisco, United States
| |
Collapse
|
21
|
Haglund E, Pilko A, Wollman R, Jennings PA, Onuchic JN. Pierced Lasso Topology Controls Function in Leptin. J Phys Chem B 2017; 121:706-718. [PMID: 28035835 DOI: 10.1021/acs.jpcb.6b11506] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein engineering is a powerful tool in drug design and therapeutics, where disulphide bridges are commonly introduced to stabilize proteins. However, these bonds also introduce covalent loops, which are often neglected. These loops may entrap the protein backbone on opposite sides, leading to a "knotted" topology, forming a so-called Pierced Lasso (PL). In this elegant system, the "knot" is held together with a single disulphide bridge where part of the polypeptide chain is threaded through. The size and position of these covalent loops can be manipulated through protein design in vitro, whereas nature uses polymorphism to switch the PL topology. The PL protein leptin shows genetic modification of an N-terminal residue, adding a third cysteine to the same sequence. In an effort to understand the mechanism of threading of these diverse topologies, we designed three loop variants to mimic the polymorphic sequence. This adds elegance to the system under study, as it allows the generation of three possible covalent loops; they are the original wild-type C-terminal loop protein, the fully circularized unthreaded protein, and the N-terminal loop protein, responsible for different lasso topologies. The size of the loop changes the threading mechanism from a slipknotting to a plugging mechanism, with increasing loop size. Interestingly, the ground state of the native protein structure is largely unaffected, but biological assays show that the activity is maximized by properly controlled dynamics in the threaded state. A threaded topology with proper conformational dynamics is important for receptor interaction and activation of the signaling pathways in vivo.
Collapse
Affiliation(s)
- Ellinor Haglund
- Center for Theoretical Biological Physics (CTBP) and Departments of Physics and Astronomy, Chemistry and Biosciences, Rice University , Houston, Texas, United States
| | - Anna Pilko
- Department of Chemistry and Biochemistry, The University of California, San Diego (UCSD) , La Jolla, California, United States
| | - Roy Wollman
- Department of Chemistry and Biochemistry, The University of California, San Diego (UCSD) , La Jolla, California, United States
| | - Patricia Ann Jennings
- Department of Chemistry and Biochemistry, The University of California, San Diego (UCSD) , La Jolla, California, United States
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics (CTBP) and Departments of Physics and Astronomy, Chemistry and Biosciences, Rice University , Houston, Texas, United States
| |
Collapse
|
22
|
Londraville RL, Prokop JW, Duff RJ, Liu Q, Tuttle M. On the Molecular Evolution of Leptin, Leptin Receptor, and Endospanin. Front Endocrinol (Lausanne) 2017; 8:58. [PMID: 28443063 PMCID: PMC5385356 DOI: 10.3389/fendo.2017.00058] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/15/2017] [Indexed: 12/16/2022] Open
Abstract
Over a decade passed between Friedman's discovery of the mammalian leptin gene (1) and its cloning in fish (2) and amphibians (3). Since 2005, the concept of gene synteny conservation (vs. gene sequence homology) was instrumental in identifying leptin genes in dozens of species, and we now have leptin genes from all major classes of vertebrates. This database of LEP (leptin), LEPR (leptin receptor), and LEPROT (endospanin) genes has allowed protein structure modeling, stoichiometry predictions, and even functional predictions of leptin function for most vertebrate classes. Here, we apply functional genomics to model hundreds of LEP, LEPR, and LEPROT proteins from both vertebrates and invertebrates. We identify conserved structural motifs in each of the three leptin signaling proteins and demonstrate Drosophila Dome protein's conservation with vertebrate leptin receptors. We model endospanin structure for the first time and identify endospanin paralogs in invertebrate genomes. Finally, we argue that leptin is not an adipostat in fishes and discuss emerging knockout models in fishes.
Collapse
Affiliation(s)
- Richard Lyle Londraville
- Program in Integrative Bioscience, Department of Biology, University of Akron, Akron, OH, USA
- *Correspondence: Richard Lyle Londraville,
| | | | - Robert Joel Duff
- Program in Integrative Bioscience, Department of Biology, University of Akron, Akron, OH, USA
| | - Qin Liu
- Program in Integrative Bioscience, Department of Biology, University of Akron, Akron, OH, USA
| | - Matthew Tuttle
- Program in Integrative Bioscience, Department of Biology, University of Akron, Akron, OH, USA
| |
Collapse
|
23
|
Wauman J, Zabeau L, Tavernier J. The Leptin Receptor Complex: Heavier Than Expected? Front Endocrinol (Lausanne) 2017; 8:30. [PMID: 28270795 PMCID: PMC5318964 DOI: 10.3389/fendo.2017.00030] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/01/2017] [Indexed: 12/31/2022] Open
Abstract
Under normal physiological conditions, leptin and the leptin receptor (ObR) regulate the body weight by balancing food intake and energy expenditure. However, this adipocyte-derived hormone also directs peripheral processes, including immunity, reproduction, and bone metabolism. Leptin, therefore, can act as a metabolic switch connecting the body's nutritional status to high energy consuming processes. We provide an extensive overview of current structural insights on the leptin-ObR interface and ObR activation, coupling to signaling pathways and their negative regulation, and leptin functioning under normal and pathophysiological conditions (obesity, autoimmunity, cancer, … ). We also discuss possible cross-talk with other receptor systems on the receptor (extracellular) and signaling cascade (intracellular) levels.
Collapse
Affiliation(s)
- Joris Wauman
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Lennart Zabeau
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Jan Tavernier
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
- *Correspondence: Jan Tavernier,
| |
Collapse
|
24
|
|
25
|
Procaccini C, La Rocca C, Carbone F, De Rosa V, Galgani M, Matarese G. Leptin as immune mediator: Interaction between neuroendocrine and immune system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:120-129. [PMID: 27288847 DOI: 10.1016/j.dci.2016.06.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 05/27/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
Leptin is an adipocyte-derived hormone/cytokine that links nutritional status with neuroendocrine and immune functions. Initially described as an anti-obesity hormone, leptin has subsequently been shown to exert pleiotropic effects, being also able to influence haematopoiesis, thermogenesis, reproduction, angiogenesis, and more importantly immune homeostasis. As a cytokine, leptin can affect both innate and adaptive immunity, by inducing a pro-inflammatory response and thus playing a key role in the regulation of the pathogenesis of several autoimmune/inflammatory diseases. In this review, we discuss the most recent advances on the role of leptin as immune-modulator in mammals and we also provide an overview on its main functions in non-mammalian vertebrates.
Collapse
Affiliation(s)
- Claudio Procaccini
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Fortunata Carbone
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy; Unità di NeuroImmunologia, Fondazione Santa Lucia, 00143 Roma, Italy
| | - Mario Galgani
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy.
| |
Collapse
|
26
|
Alshaker H, Sacco K, Alfraidi A, Muhammad A, Winkler M, Pchejetski D. Leptin signalling, obesity and prostate cancer: molecular and clinical perspective on the old dilemma. Oncotarget 2016; 6:35556-63. [PMID: 26376613 PMCID: PMC4742124 DOI: 10.18632/oncotarget.5574] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/16/2015] [Indexed: 01/22/2023] Open
Abstract
The prevalence of global obesity is increasing. Obesity is associated with general cancer-related morbidity and mortality and is a known risk factor for development of specific cancers. A recent large systematic review of 24 studies based on meta-analysis of 11,149 patients with prostate cancer showed a significant correlation between obesity and the risk of advanced prostate cancer. Further, a sustained reduction in BMI correlates with a decreased risk of developing aggressive disease. On the other hand, the correlation between consuming different products and prostate cancer occurrence/risk is limited.Here, we review the role of adipose tissue from an endocrine perspective and outline the effect of adipokines on cancer metabolism, with particular focus on leptin. Leptin exerts its physiological and pathological effects through modification of intracellular signalling, most notably activating the Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3 pathway and recently shown sphingolipid pathway. Both high levels of leptin in circulation and leptin receptor mutation are associated with prostate cancer risk in human patients; however, the in vivo mechanistic evidence is less conclusive.Given the complexity of metabolic cancer pathways, it is possible that leptin may have varying effects on prostate cancer at different stages of its development, a point that may be addressed by further epidemiological studies.
Collapse
Affiliation(s)
- Heba Alshaker
- Department of Surgery and Cancer, Imperial College London, London, UK.,Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, Petra University, Amman, Jordan
| | - Keith Sacco
- University of Malta Medical School, Mater Dei Hospital, Tal-Qroqq, MSD, Malta
| | - Albandri Alfraidi
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Aun Muhammad
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Mathias Winkler
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | |
Collapse
|
27
|
Bio-nanocapsule-based scaffold improves the sensitivity and ligand-binding capacity of mammalian receptors on the sensor chip. Biotechnol J 2016; 11:805-13. [DOI: 10.1002/biot.201500443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/13/2016] [Accepted: 04/08/2016] [Indexed: 12/19/2022]
|
28
|
Dey S, Li X, Teng R, Alnaeeli M, Chen Z, Rogers H, Noguchi CT. Erythropoietin regulates POMC expression via STAT3 and potentiates leptin response. J Mol Endocrinol 2016; 56:55-67. [PMID: 26563310 PMCID: PMC4692057 DOI: 10.1530/jme-15-0171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2015] [Indexed: 01/02/2023]
Abstract
The arcuate nucleus of the hypothalamus is essential for metabolic homeostasis and responds to leptin by producing several neuropeptides including proopiomelanocortin (POMC). We previously reported that high-dose erythropoietin (Epo) treatment in mice while increasing hematocrit reduced body weight, fat mass, and food intake and increased energy expenditure. Moreover, we showed that mice with Epo receptor (EpoR) restricted to erythroid cells (ΔEpoRE) became obese and exhibited decreased energy expenditure. Epo/EpoR signaling was found to promote hypothalamus POMC expression independently from leptin. Herein we used WT and ΔEpoRE mice and hypothalamus-derived neural culture system to study the signaling pathways activated by Epo in POMC neurons. We show that Epo stimulation activated STAT3 signaling and upregulated POMC expression in WT neural cultures. ΔEpoRE mice hypothalamus showed reduced POMC levels and lower STAT3 phosphorylation, with and without leptin treatment, compared to in vivo and ex vivo WT controls. Collectively, these data show that Epo regulates hypothalamus POMC expression via STAT3 activation, and provide a previously unrecognized link between Epo and leptin response.
Collapse
|
29
|
Dias CC, Nogueira-Pedro A, Tokuyama PY, Martins MNC, Segreto HRC, Buri MV, Miranda A, Paredes-Gamero EJ. A synthetic fragment of leptin increase hematopoietic stem cell population and improve its engraftment ability. J Cell Biochem 2016; 116:1334-40. [PMID: 25735790 DOI: 10.1002/jcb.25090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023]
Abstract
Several studies have shown the important actions of cytokine leptin that regulates food intake and energy expenditure. Additionally, the ability to modulate hematopoiesis has also been demonstrated. Previous reports have shown that some synthetic sequences of leptin molecules can activate leptin receptor. Herein, decapeptides encompassing amino acids from positions 98 to 122 of the leptin molecule were constructed to evaluate their effects on hematopoiesis. Among them, the synthetic peptide Lep(110-119)-NH2 (LEP F) was the only peptide that possessed the ability to increase the percentage of hematopoietic stem cells (HSC). Moreover, LEP F also produced an increase of granulocyte/macrophage colony-forming units and activated leptin receptor. Furthermore, LEP F also improves the grafting of HSC in bone marrow, but did not accelerate the recovery of bone marrow after ablation with 5-fluorouracil. These results show that LEP F is a positive modulator of the in vivo expansion of HSC and could be useful in bone marrow transplantation.
Collapse
Affiliation(s)
- Carolina C Dias
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio 100, São Paulo, SP, 04044-020, Brazil
| | - Amanda Nogueira-Pedro
- Departmento de Biofísica, Universidade Federal de São Paulo, Rua Três de Maio 100, São Paulo, SP, 04044-020, Brazil
| | - Paula Yumi Tokuyama
- Departmento de Biofísica, Universidade Federal de São Paulo, Rua Três de Maio 100, São Paulo, SP, 04044-020, Brazil
| | - Marta N C Martins
- Departmento de Biofísica, Universidade Federal de São Paulo, Rua Três de Maio 100, São Paulo, SP, 04044-020, Brazil
| | - Helena Regina Comodo Segreto
- Departamento de Oncologia Clínica e Experimental, Universidade Federal de São Paulo, R. Napoleão de Barros, 715, São Paulo, Brazil
| | - Marcus V Buri
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio 100, São Paulo, SP, 04044-020, Brazil
| | - Antonio Miranda
- Departmento de Biofísica, Universidade Federal de São Paulo, Rua Três de Maio 100, São Paulo, SP, 04044-020, Brazil
| | - Edgar J Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio 100, São Paulo, SP, 04044-020, Brazil.,Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP, Brazil
| |
Collapse
|
30
|
Leptin: From structural insights to the design of antagonists. Life Sci 2015; 140:49-56. [PMID: 25998027 DOI: 10.1016/j.lfs.2015.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 12/20/2022]
Abstract
After its discovery in 1994, it soon became clear that leptin acts as an adipocyte-derived hormone with a central role in the control of body weight and energy homeostasis. However, a growing body of evidence has revealed that leptin is a pleiotropic cytokine with activities on many peripheral cell types. Inappropriate leptin signaling can promote autoimmunity, certain cardiovascular diseases, elevated blood pressure and cancer, which makes leptin and the leptin receptor interesting targets for antagonism. Profound insights in the leptin receptor (LR) activation mechanisms are a prerequisite for the rational design of these antagonists. In this review, we focus on the molecular mechanisms underlying leptin receptor activation and signaling. We also discuss the current strategies to interfere with leptin signaling and their therapeutic potential.
Collapse
|
31
|
Morath V, Bolze F, Schlapschy M, Schneider S, Sedlmayer F, Seyfarth K, Klingenspor M, Skerra A. PASylation of Murine Leptin Leads to Extended Plasma Half-Life and Enhanced in Vivo Efficacy. Mol Pharm 2015; 12:1431-42. [PMID: 25811325 DOI: 10.1021/mp5007147] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Leptin plays a central role in the control of energy homeostasis and appetite and, thus, has attracted attention for therapeutic approaches in spite of its limited pharmacological activity owing to the very short circulation in the body. To improve drug delivery and prolong plasma half-life, we have fused murine leptin with Pro/Ala/Ser (PAS) polypeptides of up to 600 residues, which adopt random coil conformation with expanded hydrodynamic volume in solution and, consequently, retard kidney filtration in a similar manner as polyethylene glycol (PEG). Relative to unmodified leptin, size exclusion chromatography and dynamic light scattering revealed an approximately 21-fold increase in apparent size and a much larger molecular diameter of around 18 nm for PAS(600)-leptin. High receptor-binding activity for all PASylated leptin versions was confirmed in BIAcore measurements and cell-based dual-luciferase assays. Pharmacokinetic studies in mice revealed a much extended plasma half-life after ip injection, from 26 min for the unmodified leptin to 19.6 h for the PAS(600) fusion. In vivo activity was investigated after single ip injection of equimolar doses of each leptin version. Strongly increased and prolonged hypothalamic STAT3 phosphorylation was detected for PAS(600)-leptin. Also, a reduction in daily food intake by up to 60% as well as loss in body weight of >10% lasting for >5 days was observed, whereas unmodified leptin was merely effective for 1 day. Notably, application of a PASylated superactive mouse leptin antagonist (SMLA) led to the opposite effects. Thus, PASylated leptin not only provides a promising reagent to study its physiological role in vivo but also may offer a superior drug candidate for clinical therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Arne Skerra
- ∥XL-protein GmbH, Lise-Meitner-Strasse 30, 85354 Freising, Germany
| |
Collapse
|
32
|
Zabeau L, Peelman F, Tavernier J. Antagonizing leptin: current status and future directions. Biol Chem 2014; 395:499-514. [PMID: 24523306 DOI: 10.1515/hsz-2013-0283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/05/2014] [Indexed: 11/15/2022]
Abstract
The adipocyte-derived hormone/cytokine leptin acts as a metabolic switch, connecting the body's nutritional status to high energy consuming processes such as reproduction and immune responses. Inappropriate leptin responses can promote autoimmune diseases and tumorigenesis. In this review we discuss the current strategies to modulate leptin signaling and the possibilities for their use in research and therapy.
Collapse
|
33
|
Ostermeir K, Zacharias M. Hamiltonian replica exchange combined with elastic network analysis to enhance global domain motions in atomistic molecular dynamics simulations. Proteins 2014; 82:3410-9. [DOI: 10.1002/prot.24695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Katja Ostermeir
- Physik-Department T38; Technische Universität München; 85748 Garching Germany
| | - Martin Zacharias
- Physik-Department T38; Technische Universität München; 85748 Garching Germany
| |
Collapse
|
34
|
Londraville RL, Macotela Y, Duff RJ, Easterling MR, Liu Q, Crespi EJ. Comparative endocrinology of leptin: assessing function in a phylogenetic context. Gen Comp Endocrinol 2014; 203:146-57. [PMID: 24525452 PMCID: PMC4128956 DOI: 10.1016/j.ygcen.2014.02.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/11/2022]
Abstract
As we approach the end of two decades of leptin research, the comparative biology of leptin is just beginning. We now have several leptin orthologs described from nearly every major clade among vertebrates, and are moving beyond gene descriptions to functional studies. Even at this early stage, it is clear that non-mammals display clear functional similarities and differences with their better-studied mammalian counterparts. This review assesses what we know about leptin function in mammals and non-mammals, and gives examples of how these data can inform leptin biology in humans.
Collapse
Affiliation(s)
- Richard L Londraville
- Department of Biology and Program in Integrated Biosciences, University of Akron, Akron, OH, USA.
| | - Yazmin Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Robert J Duff
- Department of Biology and Program in Integrated Biosciences, University of Akron, Akron, OH, USA
| | - Marietta R Easterling
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Qin Liu
- Department of Biology and Program in Integrated Biosciences, University of Akron, Akron, OH, USA
| | - Erica J Crespi
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
35
|
Moharana K, Zabeau L, Peelman F, Ringler P, Stahlberg H, Tavernier J, Savvides S. Structural and Mechanistic Paradigm of Leptin Receptor Activation Revealed by Complexes with Wild-Type and Antagonist Leptins. Structure 2014; 22:866-77. [DOI: 10.1016/j.str.2014.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 12/18/2022]
|
36
|
Abstract
Studies in human populations and mouse models of disease have linked the common leptin receptor Q223R mutation to obesity, multiple forms of cancer, adverse drug reactions, and susceptibility to enteric and respiratory infections. Contradictory results cast doubt on the phenotypic consequences of this variant. We set out to determine whether the Q223R substitution affects leptin binding kinetics using surface plasmon resonance (SPR), a technique that allows sensitive real-time monitoring of protein-protein interactions. We measured the binding and dissociation rate constants for leptin to the extracellular domain of WT and Q223R murine leptin receptors expressed as Fc-fusion proteins and found that the mutant receptor does not significantly differ in kinetics of leptin binding from the WT leptin receptor. (WT: ka 1.76×106±0.193×106 M−1 s−1, kd 1.21×10−4±0.707×10−4 s−1, KD 6.47×10−11±3.30×10−11 M; Q223R: ka 1.75×106±0.0245×106 M−1 s−1, kd 1.47×10−4±0.0505×10−4 s−1, KD 8.43×10−11±0.407×10−11 M). Our results support earlier findings that differences in affinity and kinetics of leptin binding are unlikely to explain mechanistically the phenotypes that have been linked to this common genetic variant. Future studies will seek to elucidate the mechanism by which this mutation influences susceptibility to metabolic, infectious, and malignant pathologies.
Collapse
|
37
|
Vashisth H, Skiniotis G, Brooks CL. Collective variable approaches for single molecule flexible fitting and enhanced sampling. Chem Rev 2014; 114:3353-65. [PMID: 24446720 PMCID: PMC3983124 DOI: 10.1021/cr4005988] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Harish Vashisth
- Department
of Chemical Engineering, University of New
Hampshire, Durham, New Hampshire 03824, United States
| | - Georgios Skiniotis
- Life Sciences Institute, Department
of Biological Chemistry, and
Biophysics Program, and Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles Lee Brooks
- Life Sciences Institute, Department
of Biological Chemistry, and
Biophysics Program, and Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
38
|
Prokop JW, Schmidt C, Gasper D, Duff RJ, Milsted A, Ohkubo T, Ball HC, Shawkey MD, Mays HL, Cogburn LA, Londraville RL. Discovery of the elusive leptin in birds: identification of several 'missing links' in the evolution of leptin and its receptor. PLoS One 2014; 9:e92751. [PMID: 24663438 PMCID: PMC3963946 DOI: 10.1371/journal.pone.0092751] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/24/2014] [Indexed: 01/09/2023] Open
Abstract
Leptin is a pleiotropic protein best known for regulation of appetite and fat storage in mammals. While many leptin orthologs have been identified among vertebrates, an authentic leptin in birds has remained elusive and controversial. Here we identify leptin sequence from the Peregrine falcon, Falco peregrinus (pfleptin), and identify sequences from two other birds (mallard and zebra finch), and 'missing' vertebrates (elephant shark, alligator, Indian python, Chinese soft-shelled turtle, and coelacanth). The pattern of genes surrounding leptin (snd1, rbm28) is syntenic between the falcon and mammalian genomes. Phylogenetic analysis of all known leptin protein sequences improves our understanding of leptin's evolution. Structural modeling of leptin orthologs highlights a highly conserved hydrophobic core in the four-helix cytokine packing domain. A docked model of leptin with the leptin receptor for Peregrine falcon reveals several conserved amino acids important for the interaction and possible coevolution of leptin with its receptor. We also show for the first time, an authentic avian leptin sequence that activates the JAK-STAT signaling pathway. These newly identified sequences, structures, and tools for avian leptin and its receptor will allow elucidation of the function of these proteins in feral and domestic birds.
Collapse
Affiliation(s)
- Jeremy W. Prokop
- Integrated Biosciences Program, The University of Akron, Akron, Ohio, United States of America
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Cameron Schmidt
- Integrated Biosciences Program, The University of Akron, Akron, Ohio, United States of America
| | - Donald Gasper
- Integrated Biosciences Program, The University of Akron, Akron, Ohio, United States of America
| | - Robert J. Duff
- Integrated Biosciences Program, The University of Akron, Akron, Ohio, United States of America
| | - Amy Milsted
- Integrated Biosciences Program, The University of Akron, Akron, Ohio, United States of America
| | - Takeshi Ohkubo
- College of Agriculture, Ibaraki University, Amimachi, Ibaraki, Japan
| | - Hope C. Ball
- Integrated Biosciences Program, The University of Akron, Akron, Ohio, United States of America
| | - Matthew D. Shawkey
- Integrated Biosciences Program, The University of Akron, Akron, Ohio, United States of America
| | - Herman L. Mays
- Geier Collections and Research Center, Cincinnati Museum Center, Cincinnati, Ohio, United States of America
| | - Larry A. Cogburn
- Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
- * E-mail: (RLL), cogburn@udel (LAG)
| | - Richard L. Londraville
- Integrated Biosciences Program, The University of Akron, Akron, Ohio, United States of America
- * E-mail: (RLL), cogburn@udel (LAG)
| |
Collapse
|
39
|
Roujeau C, Jockers R, Dam J. New pharmacological perspectives for the leptin receptor in the treatment of obesity. Front Endocrinol (Lausanne) 2014; 5:167. [PMID: 25352831 PMCID: PMC4195360 DOI: 10.3389/fendo.2014.00167] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/26/2014] [Indexed: 12/24/2022] Open
Abstract
After its discovery in 1994, leptin became the great hope as an anti-obesity treatment based on its ability to reduce food intake and increase energy expenditure. However, treating obese people with exogenous leptin was unsuccessful in most cases since most of them present already high circulating leptin levels to which they do not respond anymore defining the so-called state of "leptin resistance." Indeed, leptin therapy is unsuccessful to lower body weight in commonly obese people but effective in people with rare single gene mutations of the leptin gene. Consequently, treatment of obese people with leptin was given less attention and the focus of obesity research shifted toward the prevention and reversal of the state of leptin resistance. Many of these new promising approaches aim to restore or sensitize the impaired function of the leptin receptor by pharmacological means. The current review will focus on the different emerging therapeutic strategies in obesity research that are related to leptin and its receptor.
Collapse
Affiliation(s)
- Clara Roujeau
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Ralf Jockers
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Julie Dam
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
- *Correspondence: Julie Dam, Institut Cochin, 22 rue Méchain, 75014, Paris, France e-mail:
| |
Collapse
|
40
|
Angotzi AR, Stefansson SO, Nilsen TO, Rathore RM, Rønnestad I. Molecular cloning and genomic characterization of novel leptin-like genes in salmonids provide new insight into the evolution of the Leptin gene family. Gen Comp Endocrinol 2013; 187:48-59. [PMID: 23583470 DOI: 10.1016/j.ygcen.2013.03.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/04/2013] [Accepted: 03/08/2013] [Indexed: 11/29/2022]
Abstract
In the current study we describe the identification of novel leptin B homologous gene/s in the four salmonid species Atlantic salmon (Salmo salar), rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta) and Arctic charr (Salvelinus alpinus). Homology modeling of Salmo salar (Ss) LepB1/B2 suggests that the protein satisfies parameters as long-chain four helical cytokine family and that the basic structural pattern of the protein follows that of human leptin (Zhang et al., 1997). Importantly, the docking studies suggested the SsLepB has binding affinity to the AA residues that identify the leptin binding and FNIII domains of the SsLep receptor (Rønnestad et al., 2010). Phylogenetic analyses support that LepB paralogs have most probably originated by 4R whole genome duplication (WGD) before speciation of the salmonid lineages. LepB1 and LepB2 genes are both present in the two closest relatives, the Atlantic salmon and the brown trout, while rainbow trout and charr have only preserved the long LepB1 variant in their genome. We have defined the sites of SsLepB mRNA expression at key life stages in Atlantic salmon and found that SsLepB1 and SsLepB2, although to different extent, were expressed in redundant and mostly complementary fashion in brain and gills throughout the lifecycle, suggesting that this pair of paralogs is likely undergoing early stages of subfunctionalization. Furthermore, we have quantified the expression profiles of SsLepB genes and of other two recently duplicated salmon leptins (SsLepA1, SsLepA2) during early development and show evidence that in fish, as in mammals and amphibians, leptin could play important roles in growth and development. This study provides an essential groundwork to further elucidate structural and functional evolution of this important hormone in salmonids as well as in other teleosts.
Collapse
Affiliation(s)
- Anna R Angotzi
- Department of Biology, University of Bergen, Thormolensgate 55, Bergen 5020, Norway.
| | | | | | | | | |
Collapse
|
41
|
Abstract
Activation of the IL-6 (interleukin 6) receptor subunit gp130 (glycoprotein 130) has been linked to the formation of complexes with IL-6 and the IL-6 receptor, as well as to gp130 dimerization. However, it has been shown that gp130 is present as a pre-formed dimer, indicating that its activation is not solely dependent on dimerization. Therefore the detailed mechanism of gp130 activation still remains to be deciphered. Recently, deletion mutations of gp130 have been found in inflammatory hepatocellular adenoma. The mutations clustered around one IL-6-binding epitope of gp130 and resulted in a ligand-independent constitutively active gp130. We therefore hypothesized that conformational changes of this particular IL-6-binding epitope precedes gp130 activation. Using a rational structure-based approach we identified for the first time amino acids critical for gp130 activation. We can show that gp130 D2–D3 interdomain connectivity by hydrophobic residues stabilizes inactive gp130 conformation. Conformational destabilization of the EF loop present in domain D2 and disruption of D2–D3 hydrophobic interactions resulted in ligand-independent gp130 activation. Furthermore we show that the N-terminal amino acid residues of domain D1 participate in the activation of the gp130 deletion mutants. Taken together we present novel insights into the molecular basis of the activation of a cytokine receptor signalling subunit.
Collapse
|