1
|
Jiao Y, Sengodan K, Chen J, Palli SR. Role of histone methylation in insect development: KMT5A regulates ecdysteroid biosynthesis during metamorphosis of Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104316. [PMID: 40287070 PMCID: PMC12066215 DOI: 10.1016/j.ibmb.2025.104316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/09/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Methylation levels of core histones play important roles in the regulation of gene expression and impact animal development. However, the methyltransferases and demethylases that determine histone methylation levels remain largely unexplored in insects. Most of our current understanding of histone methylation comes from mammalian studies. In this study, we first identified potential histone methyltransferases and demethylases encoded in the genome of the red flour beetle Tribolium castaneum. The function of these histone methylation enzymes in the metamorphosis was investigated by knocking down genes coding for these enzymes using RNA interference (RNAi). Our results showed that a lysine methyltransferase, KMT5A, plays a critical role in T. castaneum metamorphosis by regulating the biosynthesis of ecdysteroids. Treating KMT5A-knockdown larvae with 20 hydroxyecdysone can partially rescue T. castaneum pupation. Western blot analysis showed that KMT5A catalyzes H4K20 mono-methylation. However, further studies suggest that KMT5A may regulate T. castaneum pupation through mechanisms independent of H4K20 methylation. These data uncovered the roles of histone methylation enzymes in T. castaneum metamorphosis and KMT5A as a critical regulator of ecdysteroid biosynthesis.
Collapse
Affiliation(s)
- Yaoyu Jiao
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| | - Karthi Sengodan
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Jiasheng Chen
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
2
|
Dho SE, Othman K, Zhang Y, McGlade CJ. NUMB alternative splicing and isoform-specific functions in development and disease. J Biol Chem 2025; 301:108215. [PMID: 39863103 PMCID: PMC11889595 DOI: 10.1016/j.jbc.2025.108215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The NUMB gene encodes a conserved adaptor protein with roles in asymmetric cell division and cell fate determination. First described as an inhibitor of Notch signaling, multifunctional NUMB proteins regulate multiple cellular pathways through protein complexes with ubiquitin ligases, polarity proteins and the endocytic machinery. The vertebrate NUMB protein isoforms were identified over 2 decades ago, yet the majority of functional studies exploring NUMB function in endocytosis, cell migration and adhesion, development and disease have largely neglected the potential for distinct isoform activity in design and interpretation. In this review we consolidate the literature that has directly addressed individual NUMB isoform functions, as well as interpret other functional studies through the lens of the specific isoforms that were utilized. We also summarize the emerging literature on the mechanisms that regulate alternative splicing of NUMB, and how this is subverted in disease. Finally, the importance of relative NUMB isoform expression as a determinant of activity and considerations for future studies of NUMB isoforms as unique proteins with distinct functions are discussed.
Collapse
Affiliation(s)
- Sascha E Dho
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kamal Othman
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yangjing Zhang
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - C Jane McGlade
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Qiu Y, Li Y, Li M, Wang Y, Shen M, Shao J, Zhang F, Xu X, Wang F, Zhang Z, Zheng S. NUMB endocytic adaptor protein (NUMB) mediates the anti-hepatic fibrosis effect of artesunate (ART) by inducing senescence in hepatic stellate cells (HSCs). Chin J Nat Med 2025; 23:322-333. [PMID: 40122662 DOI: 10.1016/s1875-5364(25)60836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 03/25/2025]
Abstract
Developing and identifying effective medications and targets for treating hepatic fibrosis is an urgent priority. Our previous research demonstrated the efficacy of artesunate (ART) in alleviating liver fibrosis by eliminating activated hepatic stellate cells (HSCs). However, the underlying mechanism remains unclear despite these findings. Notably, endocytic adaptor protein (NUMB) has significant implications for treating hepatic diseases, but current research primarily focuses on liver regeneration and hepatocellular carcinoma. The precise function of NUMB in liver fibrosis, particularly its ability to regulate HSCs, requires further investigation. This study aims to elucidate the role of NUMB in the anti-hepatic fibrosis action of ART in HSCs. We observed that the expression level of NUMB significantly decreased in activated HSCs compared to quiescent HSCs, exhibiting a negative correlation with the progression of liver fibrosis. Additionally, ART induced senescence in activated HSCs through the NUMB/P53 tumor suppressor (P53) axis. We identified NUMB as a crucial regulator of senescence in activated HSCs and as a mediator of ART in determining cell fate. This research examines the specific target of ART in eliminating activated HSCs, providing both theoretical and experimental evidence for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yangling Qiu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengran Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingqian Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Min Shen
- Department of Biochemistry and Molecular Biology, Medical College, Yangzhou University, Yangzhou 225009, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuefen Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feixia Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
4
|
Dakal TC, Kumar A, Maurya PK. CircRNA-miRNA-mRNA interactome analysis in endometrial cancer. J Biomol Struct Dyn 2025; 43:1486-1497. [PMID: 38084757 DOI: 10.1080/07391102.2023.2291834] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/23/2023] [Indexed: 01/16/2025]
Abstract
In recent years, exploring the potential of miRNAs as novel diagnostic, prognostic and diagnostic markers have gained much attention. In current study, we conducted an in-depth circRNA-miRNA-mRNA interactome to reveal significant molecular processes and biological pathways putatively associated with endometrial cancer (EC). Firstly, we retrieved two circRNAs from circad, hsa_circ_0002577 & hsa_circ_0109046, based on their association with the EC. Subsequently, we predicted miRNAs sponging sites in the two circRNAs and the potential target mRNAs of the predicted miRNAs. Sequestered miRNAs target a number of oncogenes (CBL, MET, KRAS), tumor suppressor (CFT R), receptor protein kinases & GT Pase (MET, KRAS, RAB1B), methyltransferases (SET D8), receptors associated factors (T RAF2, GRB2), growth factors (FGF20), autophagy (BECN1, AT G14), apoptotic regulators (BCL2), transcription factors (T Fs) (CREB1, RUNX1, RUNX2) and gene regulators (CCND1, HIF1A); and others, including some novel gene candidates (CREB1, FGF20, IFI27), that have never been implicated in EC earlier. The expression of hsa-miR-433-3p showed significant predictive relevance (Fold Change = 1.8, AUC = 0.736, Mann-Whitney test p-value = 6.1 e- 14) suggesting its predictive relevance in assessing patients' response to chemotherapy. The hsamiR- 188-3p targets autophagic and apoptotic regulators and its upregulation in endometriosis may be used as for the early stage diagnostic purpose. The hsa-miR-502-5p targets SET D8, T RAF2 and others and suggests additional genomic/epigenomic molecular targets for promising therapeutic interventions in EC. Predicted miRNAs target a number of mRNAs having varied functional impacts and offer an in-depth mechanistic insights for expatiating the biological and regulatory role in EC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| | - Abhishek Kumar
- International Technology Park, Whitefield, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
5
|
Xu T, Du T, Zhuang X, He X, Yan Y, Wu J, Zhou H, Li Y, Liao X, He J, Liu C, Dong Y, Ou J, Lin S, Chen D, Huang Z. Loss of NAT10 Reduces the Translation of Kmt5a mRNA Through ac4C Modification in Cardiomyocytes and Induces Heart Failure. J Am Heart Assoc 2024; 13:e035714. [PMID: 39392166 PMCID: PMC11935563 DOI: 10.1161/jaha.124.035714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND In the past decade, the biological functions of various RNA modifications in mammals have been uncovered. N4-acetylcytidine (ac4C), a highly conserved RNA modification, has been implicated in human diseases. Despite this, the involvement of RNA ac4C modification in cardiac physiology and pathology remains incompletely understood. NAT10 (N-acetyltransferase 10) stands as the sole acetyltransferase known to catalyze RNA ac4C modification. This study aims to explore the role of NAT10 and ac4C modification in cardiac physiology and pathology. METHODS AND RESULTS Cardiac-specific knockout of NAT10, leading to reduced RNA ac4C modification, during both neonatal and adult stages resulted in severe heart failure. NAT10 deficiency induced cardiomyocyte apoptosis, a crucial step in heart failure pathogenesis, supported by in vitro data. Activation of the p53 signaling pathway was closely associated with enhanced apoptosis in NAT10-deficient cardiomyocytes. As ac4C modification on mRNA influences translational efficiency, we employed ribosome footprints coupled with RNA sequencing to explore genome-wide translational efficiency changes caused by NAT10 deficiency. We identified and validated that the translational efficiency of Kmt5a was suppressed in NAT10 knockout hearts due to reduced ac4C modification on its mRNA. This finding was consistent with the observation that Kmt5a protein levels were reduced in heart failure despite unchanged mRNA expression. Knockdown of Kmt5a in cardiomyocytes recapitulated the phenotype of NAT10 deficiency, including increased cardiomyocyte apoptosis and activated p53 signaling. Finally, overexpression of Kmt5a rescued cardiomyocyte apoptosis and p53 activation induced by NAT10 inhibition. CONCLUSIONS Our study highlights the significance of NAT10 in cardiomyocyte physiology, demonstrating that NAT10 loss is sufficient to induce cardiomyocyte apoptosis and heart failure. NAT10 regulates the translational efficiency of Kmt5a, a key mediator, through mRNA ac4C modification during heart failure.
Collapse
Affiliation(s)
- Ting Xu
- Department of Cardiology, Center for Translational MedicineInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat‐sen University)GuangzhouChina
| | - Tailai Du
- Department of Cardiology, Center for Translational MedicineInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat‐sen University)GuangzhouChina
| | - Xiaodong Zhuang
- Department of Cardiology, Center for Translational MedicineInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat‐sen University)GuangzhouChina
| | - Xin He
- Department of Cardiology, Center for Translational MedicineInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat‐sen University)GuangzhouChina
| | - Youchen Yan
- Department of Cardiology, Center for Translational MedicineInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat‐sen University)GuangzhouChina
| | - Jialing Wu
- Department of Cardiology, Center for Translational MedicineInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat‐sen University)GuangzhouChina
| | - Huimin Zhou
- Department of Cardiology, Center for Translational MedicineInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat‐sen University)GuangzhouChina
| | - Yan Li
- Department of Cardiology, Center for Translational MedicineInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat‐sen University)GuangzhouChina
- Division of Cardiac SurgeryNational‐Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Assisted Circulation and Vascular DiseasesChinese Academy of Medical Sciences, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Xinxue Liao
- Department of Cardiology, Center for Translational MedicineInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat‐sen University)GuangzhouChina
| | - Jiangui He
- Department of Cardiology, Center for Translational MedicineInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat‐sen University)GuangzhouChina
| | - Chen Liu
- Department of Cardiology, Center for Translational MedicineInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat‐sen University)GuangzhouChina
- Key Laboratory of Assisted Circulation and Vascular DiseasesChinese Academy of Medical Sciences, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Yugang Dong
- Department of Cardiology, Center for Translational MedicineInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat‐sen University)GuangzhouChina
| | - Jingsong Ou
- Department of Cardiology, Center for Translational MedicineInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat‐sen University)GuangzhouChina
- Division of Cardiac SurgeryNational‐Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Assisted Circulation and Vascular DiseasesChinese Academy of Medical Sciences, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Shuibin Lin
- Department of Cardiology, Center for Translational MedicineInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Demeng Chen
- Department of Cardiology, Center for Translational MedicineInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Zhan‐Peng Huang
- Department of Cardiology, Center for Translational MedicineInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat‐sen University)GuangzhouChina
- Division of Cardiac SurgeryNational‐Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Assisted Circulation and Vascular DiseasesChinese Academy of Medical Sciences, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
6
|
Huang M, Jiang Z, Xu Y, Wu C, Wei D, Meng X, Qian D. Methylation modification of non-histone proteins in breast cancer: an emerging targeted therapeutic strategy. Pharmacol Res 2024; 208:107354. [PMID: 39154671 DOI: 10.1016/j.phrs.2024.107354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Breast cancer is a major public health concern worldwide, being the most commonly diagnosed cancer among women and a leading cause of cancer-related deaths. Recent studies have highlighted the significance of non-histone methylation in breast cancer, which modulates the activity, interaction, localization, and stability of target proteins. This regulation affects critical processes such as oncogenesis, tumor growth, proliferation, invasion, migration, and immune responses. This review delves into the enzymes responsible for non-histone methylation, such as protein arginine methyltransferases (PRMTs), lysine methyltransferases (KMTs), and demethylases, and explores their roles in breast cancer. By elucidating the molecular mechanisms and functional consequences of non-histone methylation, this review aims to provide insights into novel therapeutic strategies targeting these pathways. The therapeutic potential of targeting non-histone methylation to overcome drug resistance and enhance treatment efficacy in breast cancer is also discussed, highlighting promising avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Mingyao Huang
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350011, China
| | - Zirong Jiang
- Department of Thyroid and Breast Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde 352100, China
| | - Yadan Xu
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Chaoshen Wu
- Central Laboratory, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, China
| | - Ding Wei
- Department of Human Resources, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Xuli Meng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| | - Da Qian
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Central Laboratory, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, China; Department of Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, China.
| |
Collapse
|
7
|
Li J, Song H, Chen T, Zhang S, Zhang C, Ma C, Zhang L, Wang T, Qian Y, Deng X. Lysine Methyltransferase 5A Promotes the Progression of Growth Hormone Pituitary Neuroendocrine Tumors through the Wnt/β-Catenin Signaling Pathway. Neuroendocrinology 2024; 114:589-601. [PMID: 38565081 PMCID: PMC11152009 DOI: 10.1159/000538560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Growth hormone (GH) secreting pituitary adenoma is considered one of the most harmful types of Pituitary Neuroendocrine Tumors (PitNETs). Our previous research has found that high expression of Lysine methyltransferase 5A (KMT5A) is closely related to the proliferation of PitNETs. The aim of this study was to investigate the role and molecular mechanism of KMT5A in the progression of GH PitNETs. METHODS Immunohistochemistry, qRT-PCR, and Western blot (WB) were used to assess the expression levels of KMT5A in human normal pituitary and GH PitNETs, as well as in rat normal pituitary and GH3 cells. Additionally, we utilized RNA interference technology and treatment with a selective KMT5A inhibitor to decrease the expression of KMT5A in GH3 cells. CCK-8, EdU, flow cytometry (FCM), clone formation, and WB assay were further employed to evaluate the impact of KMT5A on the proliferation of GH3 cells in vitro. A xenograft model was established to evaluate the role of KMT5A in GH PitNETs progression in vivo. RESULTS KMT5A was highly expressed in GH PitNETs and GH3 cells. Moreover, the reduction of KMT5A expression led to inhibited growth of GH PitNETs and increased apoptosis of tumor cells, as indicated by the findings from CCK-8, EdU, clone formation, and FCM assays. Additionally, WB analysis identified the Wnt/β-catenin signaling pathway as a potential mechanism through which KMT5A promotes GH PitNETs progression. CONCLUSION Our research suggests that KMT5A may facilitate the progression of GH PitNETs via the Wnt/β-catenin signaling pathway. Therefore, KMT5A may serve as a potential therapeutic target and molecular biomarker for GH PitNETs.
Collapse
Affiliation(s)
- Junjun Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hao Song
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Guangyuan Central Hospital, Guangyuan, China
| | - Ting Chen
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Sixi Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chao Zhang
- Xiangyang First People’s Hospital, Xiangyang, China
| | - Chen Ma
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lingye Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tengfei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuan Qian
- The Clinical Medical Research Center for Obstetrics and Gynecology (Yunnan Joint Key Laboratory), Kunming City of Maternal and Child Health Hospital, Kunming City of Women and Children Hospital, Kunming, China
| | - Xingli Deng
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Puer People’s Hospital, Puer, China
| |
Collapse
|
8
|
Wazahat R, Zaidi R, Kumar P. Epigenetic regulations in Mycobacterium tuberculosis infection. Indian J Tuberc 2024; 71:204-212. [PMID: 38589125 DOI: 10.1016/j.ijtb.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 04/10/2024]
Abstract
Mycobacterium tuberculosis (Mtb) employs several sophisticated strategies to evade host immunity and facilitate its intracellular survival. One of them is the epigenetic manipulation of host chromatin by three strategies i.e., DNA methylation, histone modifications and miRNA involvement. A host-directed therapeutic can be an attractive approach that targets these host epigenetics or gene regulations and circumvent manipulation of host cell machinery by Mtb. Given the complexity of the nature of intracellular infection by Mtb, there are challenges in identifying the important host proteins, non-coding RNA or the secretory proteins of Mtb itself that directly or indirectly bring upon the epigenetic modifications in the host chromatin. Equally challenging is developing the methods of targeting these epigenetic factors through chemical or non-chemical approaches as host-directed therapeutics. The current review article briefly summarizes several of the epigenetic factors that serve to bring upon potential changes in the host transcriptional machinery and targets the immune system for immunosuppression and disease progression in Mtb infection.
Collapse
Affiliation(s)
- Rushna Wazahat
- Department of Biochemistry, Jamia Hamdard, New Delhi 110062, India.
| | - Rana Zaidi
- Department of Biochemistry, Jamia Hamdard, New Delhi 110062, India
| | - Pankaj Kumar
- Department of Biochemistry, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
9
|
Nagasaka M, Inoue Y, Nagao Y, Miyajima C, Morishita D, Aoki H, Aoyama M, Imamura T, Hayashi H. SET8 is a novel negative regulator of TGF-β signaling in a methylation-independent manner. Sci Rep 2023; 13:22877. [PMID: 38129484 PMCID: PMC10739863 DOI: 10.1038/s41598-023-49961-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Transforming growth factor β (TGF-β) is a multifunctional cytokine that induces a diverse set of cellular processes principally through Smad-dependent transcription. Transcriptional responses induced by Smads are tightly regulated by Smad cofactors and histone modifications; however, the underlying mechanisms have not yet been elucidated in detail. We herein report lysine methyltransferase SET8 as a negative regulator of TGF-β signaling. SET8 physically associates with Smad2/3 and negatively affects transcriptional activation by TGF-β in a catalytic activity-independent manner. The depletion of SET8 results in an increase in TGF-β-induced plasminogen activator inhibitor-1 (PAI-1) and p21 expression and enhances the antiproliferative effects of TGF-β. Mechanistically, SET8 occupies the PAI-1 and p21 promoters, and a treatment with TGF-β triggers the replacement of the suppressive binding of SET8 with p300 on these promoters, possibly to promote gene transcription. Collectively, the present results reveal a novel role for SET8 in the negative regulation of TGF-β signaling.
Collapse
Affiliation(s)
- Mai Nagasaka
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| | - Yuji Nagao
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Daisuke Morishita
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Ehime, 791-0295, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| |
Collapse
|
10
|
Rahimian N, Sheida A, Rajabi M, Heidari MM, Tobeiha M, Esfahani PV, Ahmadi Asouri S, Hamblin MR, Mohamadzadeh O, Motamedzadeh A, Khaksary Mahabady M. Non-coding RNAs and exosomal non-coding RNAs in pituitary adenoma. Pathol Res Pract 2023; 248:154649. [PMID: 37453360 DOI: 10.1016/j.prp.2023.154649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
Pituitary adenoma (PA) is the third most common primary intracranial tumor in terms of overall disease incidence. Although they are benign tumors, they can have a variety of clinical symptoms, but are mostly asymptomatic, which often leads to diagnosis at an advanced stage when surgical intervention is ineffective. Earlier identification of PA could reduce morbidity and allow better clinical management of the affected patients. Non-coding RNAs (ncRNAs) do not generally code for proteins, but can modulate biological processes at the post-transcriptional level through a variety of molecular mechanisms. An increased number of ncRNA expression profiles have been found in PAs. Therefore, understanding the expression patterns of different ncRNAs could be a promising method for developing non-invasive biomarkers. This review summarizes the expression patterns of dysregulated ncRNAs (microRNAs, long non-coding RNAs, and circular RNAs) involved in PA, which could one day serve as innovative biomarkers or therapeutic targets for the treatment of this neoplasia. We also discuss the potential molecular pathways by which the dysregulated ncRNAs could cause PA and affect its progression.
Collapse
Affiliation(s)
- Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadreza Rajabi
- Department of Pathology, Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdi Heidari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Tobeiha
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Pegah Veradi Esfahani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Omid Mohamadzadeh
- Department of Neurological Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
11
|
Wang X, Cao C, Tan X, Liao X, Du X, Wang X, Liu T, Gong D, Hu Z, Tian X. SETD8, a frequently mutated gene in cervical cancer, enhances cisplatin sensitivity by impairing DNA repair. Cell Biosci 2023; 13:107. [PMID: 37308924 DOI: 10.1186/s13578-023-01054-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/17/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Cisplatin is commonly used to treat cervical cancer while drug resistance limits its effectiveness. There is an urgent need to identify strategies that increase cisplatin sensitivity and improve the outcomes of chemotherapy. RESULTS We performed whole exome sequencing (WES) of 156 cervical cancer tissues to assess genomic features related to platinum-based chemoresistance. By using WES, we identified a frequently mutated locus SETD8 (7%), which was associated with drug sensitivity. Cell functional assays, in vivo xenografts tumor growth experiments, and survival analysis were used to investigate the functional significance and mechanism of chemosensitization after SETD8 downregulation. Knockdown of SETD8 increased the responsiveness of cervical cancer cells to cisplatin treatment. The mechanism is exerted by reduced binding of 53BP1 to DNA breaks and inhibition of the non-homologous end joining (NHEJ) repair pathway. In addition, SETD8 expression was positively correlated with resistance to cisplatin and negatively associated with the prognosis of cervical cancer patients. Further, UNC0379 as a small molecule inhibitor of SETD8 was found to enhance cisplatin sensitivity both in vitro and in vivo. CONCLUSIONS SETD8 was a promising therapeutic target to ameliorate cisplatin resistance and improve the efficacy of chemotherapy.
Collapse
Affiliation(s)
- Xin Wang
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chen Cao
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Xiangyu Tan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xueyao Liao
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Xiaofang Du
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Xueqian Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ting Liu
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Danni Gong
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Zheng Hu
- Department of Gynecologic Oncology, Women and Children's Hospital Affiliated to Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
| | - Xun Tian
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China.
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
12
|
Discovery of cysteine-targeting covalent histone methyltransferase inhibitors. Eur J Med Chem 2023; 246:115028. [PMID: 36528996 DOI: 10.1016/j.ejmech.2022.115028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Post-translational methylation of histone lysine or arginine residues by histone methyltransferases (HMTs) plays crucial roles in gene regulation and diverse physiological processes and is implicated in a plethora of human diseases, especially cancer. Therefore, histone methyltransferases have been increasingly recognized as potential therapeutic targets. Consequently, the discovery and development of histone methyltransferase inhibitors have been pursued with steadily increasing interest over the past decade. However, the disadvantages of limited clinical efficacy, moderate selectivity, and propensity for acquired resistance have hindered the development of HMTs inhibitors. Targeted covalent modification represents a proven strategy for kinase drug development and has gained increasing attention in HMTs drug discovery. In this review, we focus on the discovery, characterization, and biological applications of covalent inhibitors for HMTs with emphasis on advancements in the field. In addition, we identify the challenges and future directions in this fast-growing research area of drug discovery.
Collapse
|
13
|
Ortega-Campos SM, García-Heredia JM. The Multitasker Protein: A Look at the Multiple Capabilities of NUMB. Cells 2023; 12:333. [PMID: 36672267 PMCID: PMC9856935 DOI: 10.3390/cells12020333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
NUMB, a plasma membrane-associated protein originally described in Drosophila, is involved in determining cell function and fate during early stages of development. It is secreted asymmetrically in dividing cells, with one daughter cell inheriting NUMB and the other inheriting its antagonist, NOTCH. NUMB has been proposed as a polarizing agent and has multiple functions, including endocytosis and serving as an adaptor in various cellular pathways such as NOTCH, Hedgehog, and the P53-MDM2 axis. Due to its role in maintaining cellular homeostasis, it has been suggested that NUMB may be involved in various human pathologies such as cancer and Alzheimer's disease. Further research on NUMB could aid in understanding disease mechanisms and advancing the field of personalized medicine and the development of new therapies.
Collapse
Affiliation(s)
- Sara M. Ortega-Campos
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Manuel García-Heredia
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
14
|
Kukita A, Sone K, Kaneko S, Kawakami E, Oki S, Kojima M, Wada M, Toyohara Y, Takahashi Y, Inoue F, Tanimoto S, Taguchi A, Fukuda T, Miyamoto Y, Tanikawa M, Mori-Uchino M, Tsuruga T, Iriyama T, Matsumoto Y, Nagasaka K, Wada-Hiraike O, Oda K, Hamamoto R, Osuga Y. The Histone Methyltransferase SETD8 Regulates the Expression of Tumor Suppressor Genes via H4K20 Methylation and the p53 Signaling Pathway in Endometrial Cancer Cells. Cancers (Basel) 2022; 14:5367. [PMID: 36358786 PMCID: PMC9655767 DOI: 10.3390/cancers14215367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 08/01/2023] Open
Abstract
The histone methyltransferase SET domain-containing protein 8 (SETD8), which methylates histone H4 lysine 20 (H4K20) and non-histone proteins such as p53, plays key roles in human carcinogenesis. Our aim was to determine the involvement of SETD8 in endometrial cancer and its therapeutic potential and identify the downstream genes regulated by SETD8 via H4K20 methylation and the p53 signaling pathway. We examined the expression profile of SETD8 and evaluated whether SETD8 plays a critical role in the proliferation of endometrial cancer cells using small interfering RNAs (siRNAs). We identified the prognostically important genes regulated by SETD8 via H4K20 methylation and p53 signaling using chromatin immunoprecipitation sequencing, RNA sequencing, and machine learning. We confirmed that SETD8 expression was elevated in endometrial cancer tissues. Our in vitro results suggest that the suppression of SETD8 using siRNA or a selective inhibitor attenuated cell proliferation and promoted the apoptosis of endometrial cancer cells. In these cells, SETD8 regulates genes via H4K20 methylation and the p53 signaling pathway. We also identified the prognostically important genes related to apoptosis, such as those encoding KIAA1324 and TP73, in endometrial cancer. SETD8 is an important gene for carcinogenesis and progression of endometrial cancer via H4K20 methylation.
Collapse
Affiliation(s)
- Asako Kukita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Eiryo Kawakami
- Graduate School of Medicine, Chiba University, Chiba 263-8522, Japan
| | - Shinya Oki
- National Hospital Organization Tokyo Medical Center, Tokyo 152-8902, Japan
| | - Machiko Kojima
- Tazuke Kofukai, Medical Research Institute, Kitano Hospital, Osaka 530-8480, Japan
| | - Miku Wada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yusuke Toyohara
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yu Takahashi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Futaba Inoue
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Saki Tanimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomohiko Fukuda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yuichiro Miyamoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mayuyo Mori-Uchino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tetsushi Tsuruga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoko Matsumoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kazunori Nagasaka
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Katsutoshi Oda
- Division of Integrated Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
15
|
Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:353. [PMID: 36198685 PMCID: PMC9535022 DOI: 10.1038/s41392-022-01200-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 11/08/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death across the world. Unlike lung adenocarcinoma, patients with lung squamous cell carcinoma (LSCC) have not benefitted from targeted therapies. Although immunotherapy has significantly improved cancer patients' outcomes, the relatively low response rate and severe adverse events hinder the clinical application of this promising treatment in LSCC. Therefore, it is of vital importance to have a better understanding of the mechanisms underlying the pathogenesis of LSCC as well as the inner connection among different signaling pathways, which will surely provide opportunities for more effective therapeutic interventions for LSCC. In this review, new insights were given about classical signaling pathways which have been proved in other cancer types but not in LSCC, including PI3K signaling pathway, VEGF/VEGFR signaling, and CDK4/6 pathway. Other signaling pathways which may have therapeutic potentials in LSCC were also discussed, including the FGFR1 pathway, EGFR pathway, and KEAP1/NRF2 pathway. Next, chromosome 3q, which harbors two key squamous differentiation markers SOX2 and TP63 is discussed as well as its related potential therapeutic targets. We also provided some progress of LSCC in epigenetic therapies and immune checkpoints blockade (ICB) therapies. Subsequently, we outlined some combination strategies of ICB therapies and other targeted therapies. Finally, prospects and challenges were given related to the exploration and application of novel therapeutic strategies for LSCC.
Collapse
|
16
|
Bloskie T, Storey KB. Epigenetics of the frozen brain: roles for lysine methylation in hypometabolism. FEBS Lett 2022; 596:2007-2020. [PMID: 35770350 DOI: 10.1002/1873-3468.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/08/2022]
Abstract
Wood frog (Rana sylvatica) freeze tolerance necessitates metabolic rate depression, where costly processes such as gene transcription are commonly suppressed. Epigenetic mechanisms, such as histone lysine methylation, have recently been implicated in hypometabolic states of various animals, although they are underreported in nervous tissues. In the present study, we track the expression of eight lysine methyltransferases, as well as the activity on, and abundance of putative histone products across the freeze-thaw cycle and freeze-associated sub-stresses (anoxia, dehydration) of wood frog brains. Our results suggest that hypomethylation of transcriptionally repressive H3K9 may be a key facet of metabolic recovery during the thawing of nervous tissue, which we speculate may have a positive effect on global gene transcription. Some non-histone roles for lysine methylation are also proposed.
Collapse
Affiliation(s)
- Tighe Bloskie
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
17
|
Cao YC, Shan SK, Guo B, Li CC, Li FXZ, Zheng MH, Xu QS, Wang Y, Lei LM, Tang KX, Ou-Yang WL, Duan JY, Wu YY, Ullah MHE, Zhou ZA, Xu F, Lin X, Wu F, Liao XB, Yuan LQ. Histone Lysine Methylation Modification and Its Role in Vascular Calcification. Front Endocrinol (Lausanne) 2022; 13:863708. [PMID: 35784574 PMCID: PMC9243330 DOI: 10.3389/fendo.2022.863708] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/06/2022] [Indexed: 01/10/2023] Open
Abstract
Histone methylation is an epigenetic change mediated by histone methyltransferase, and has been connected to the beginning and progression of several diseases. The most common ailments that affect the elderly are cardiovascular and cerebrovascular disorders. They are the leading causes of death, and their incidence is linked to vascular calcification (VC). The key mechanism of VC is the transformation of vascular smooth muscle cells (VSMCs) into osteoblast-like phenotypes, which is a highly adjustable process involving a variety of complex pathophysiological processes, such as metabolic abnormalities, apoptosis, oxidative stress and signalling pathways. Many researchers have investigated the mechanism of VC and related targets for the prevention and treatment of cardiovascular and cerebrovascular diseases. Their findings revealed that histone lysine methylation modification may play a key role in the various stages of VC. As a result, a thorough examination of the role and mechanism of lysine methylation modification in physiological and pathological states is critical, not only for identifying specific molecular markers of VC and new therapeutic targets, but also for directing the development of new related drugs. Finally, we provide this review to discover the association between histone methylation modification and VC, as well as diverse approaches with which to investigate the pathophysiology of VC and prospective treatment possibilities.
Collapse
Affiliation(s)
- Ye-Chi Cao
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Lu Ou-Yang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yue Duan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Yun Wu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Muhammad Hasnain Ehsan Ullah
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Ang Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Bo Liao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Crain AT, Klusza S, Armstrong RL, Santa Rosa P, Temple BRS, Strahl BD, McKay DJ, Matera AG, Duronio RJ. Distinct developmental phenotypes result from mutation of Set8/KMT5A and histone H4 lysine 20 in Drosophila melanogaster. Genetics 2022; 221:iyac054. [PMID: 35404465 PMCID: PMC9157153 DOI: 10.1093/genetics/iyac054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Mono-methylation of histone H4 lysine 20 (H4K20me1) is catalyzed by Set8/KMT5A and regulates numerous aspects of genome organization and function. Loss-of-function mutations in Drosophila melanogaster Set8 or mammalian KMT5A prevent H4K20me1 and disrupt development. Set8/KMT5A also has non-histone substrates, making it difficult to determine which developmental functions of Set8/KMT5A are attributable to H4K20me1 and which to other substrates or to non-catalytic roles. Here, we show that human KMT5A can functionally substitute for Set8 during Drosophila development and that the catalytic SET domains of the two enzymes are fully interchangeable. We also uncovered a role in eye development for the N-terminal domain of Set8 that cannot be complemented by human KMT5A. Whereas Set820/20 null mutants are inviable, we found that an R634G mutation in Set8 predicted from in vitro experiments to ablate catalytic activity resulted in viable adults. Additionally, Set8(R634G) mutants retain significant, albeit reduced, H4K20me1, indicating that the R634G mutation does not eliminate catalytic activity in vivo and is functionally hypomorphic rather than null. Flies engineered to express only unmodifiable H4 histones (H4K20A) can also complete development, but are phenotypically distinct from H4K20R, Set820/20 null, and Set8R634G mutants. Taken together, our results demonstrate functional conservation of KMT5A and Set8 enzymes, as well as distinct roles for Set8 and H4K20me1 in Drosophila development.
Collapse
Affiliation(s)
- Aaron T Crain
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Stephen Klusza
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Robin L Armstrong
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
| | | | - Brenda R S Temple
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Brian D Strahl
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Daniel J McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599 USA
| |
Collapse
|
19
|
Feoli A, Viviano M, Cipriano A, Milite C, Castellano S, Sbardella G. Lysine methyltransferase inhibitors: where we are now. RSC Chem Biol 2022; 3:359-406. [PMID: 35441141 PMCID: PMC8985178 DOI: 10.1039/d1cb00196e] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Protein lysine methyltransferases constitute a large family of epigenetic writers that catalyse the transfer of a methyl group from the cofactor S-adenosyl-l-methionine to histone- and non-histone-specific substrates. Alterations in the expression and activity of these proteins have been linked to the genesis and progress of several diseases, including cancer, neurological disorders, and growing defects, hence they represent interesting targets for new therapeutic approaches. Over the past two decades, the identification of modulators of lysine methyltransferases has increased tremendously, clarifying the role of these proteins in different physio-pathological states. The aim of this review is to furnish an updated outlook about the protein lysine methyltransferases disclosed modulators, reporting their potency, their mechanism of action and their eventual use in clinical and preclinical studies.
Collapse
Affiliation(s)
- Alessandra Feoli
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Monica Viviano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Alessandra Cipriano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Ciro Milite
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Sabrina Castellano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Gianluca Sbardella
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| |
Collapse
|
20
|
Xu L, Zhang L, Sun J, Hu X, Kalvakolanu DV, Ren H, Guo B. Roles for the methyltransferase SETD8 in DNA damage repair. Clin Epigenetics 2022; 14:34. [PMID: 35246238 PMCID: PMC8897848 DOI: 10.1186/s13148-022-01251-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/20/2022] [Indexed: 12/28/2022] Open
Abstract
Epigenetic posttranslational modifications are critical for fine-tuning gene expression in various biological processes. SETD8 is so far the only known lysyl methyltransferase in mammalian cells to produce mono-methylation of histone H4 at lysine 20 (H4K20me1), a prerequisite for di- and tri-methylation. Importantly, SETD8 is related to a number of cellular activities, impinging upon tissue development, senescence and tumorigenesis. The double-strand breaks (DSBs) are cytotoxic DNA damages with deleterious consequences, such as genomic instability and cancer origin, if unrepaired. The homology-directed repair and canonical nonhomologous end-joining are two most prominent DSB repair pathways evolved to eliminate such aberrations. Emerging evidence implies that SETD8 and its corresponding H4K20 methylation are relevant to establishment of DSB repair pathway choice. Understanding how SETD8 functions in DSB repair pathway choice will shed light on the molecular basis of SETD8-deficiency related disorders and will be valuable for the development of new treatments. In this review, we discuss the progress made to date in roles for the lysine mono-methyltransferase SETD8 in DNA damage repair and its therapeutic relevance, in particular illuminating its involvement in establishment of DSB repair pathway choice, which is crucial for the timely elimination of DSBs.
Collapse
Affiliation(s)
- Libo Xu
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.,Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, People's Republic of China
| | - Ling Zhang
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.,Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, People's Republic of China
| | - Jicheng Sun
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Xindan Hu
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology, University of Maryland School Medicine, Baltimore, MD, USA
| | - Hui Ren
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.
| | - Baofeng Guo
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
21
|
Xiao L, Liang H, Jiang G, Ding X, Liu X, Sun J, Jiang Y, Song L, Duan X. Proteome-wide identification of non-histone lysine methylation in tomato during fruit ripening. J Adv Res 2022; 42:177-188. [PMID: 36513412 PMCID: PMC9788949 DOI: 10.1016/j.jare.2022.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Histone and non-histone methylations are important post-translational modifications in plants. Histone methylation plays a crucial role in regulating chromatin structure and gene expression. However, the involvement of non-histone methylation in plant biological processes remains largely unknown. METHODS The methylated substrates and methylation sites during tomato fruit ripening were identified by LC-MS/MS. Bioinformatics of lysine methylated proteins was conducted to analyze the possible role of methylated proteins. The effects of methylation modification on protein functions were preliminarily investigated by site-directed mutation simulation. RESULTS A total of 241 lysine methylation (mono-, di- and trimethylation) sites in 176 proteins were identified with two conserved methylation motifs: xxxxxxExxx_K_xxxExxxxxx and xxxxxxExxx_K_xxxxxxxxxx. These methylated proteins were mainly related to fruit ripening and senescence, oxidation reduction process, signal transduction, stimulus and stress responses, and energy metabolism. Three representative proteins, thioredoxin (Trx), glutathione S-transferase T1 (GST T1), and NADH dehydrogenase (NOX), were selected to investigate the effect of methylation modifications on protein activity. Mimicking demethylation led to decreased Trx activity but increased GST T1 and NOX activities. In addition, RT-qPCR exhibited that the expression of many genes that encode proteins subjected to methylation was upregulated during fruit ripening. CONCLUSION Our study suggests that tomato fruit ripening undergo non-histone lysine methylation, which may participate in the regulation of fruit ripening. It is the first report of methyl proteome profiling of non-histone lysine in horticultural crops.
Collapse
Affiliation(s)
- Lu Xiao
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China,Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China,Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Hanzhi Liang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxiang Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xiaochun Ding
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuncheng Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jian Sun
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an 311300, Zhejiang Province, China,Corresponding authors at: Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China (X. Duan).
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China,Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China,Corresponding authors at: Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China (X. Duan).
| |
Collapse
|
22
|
Peng Y, Liu H, Liu J, Long J. Post-translational modifications on mitochondrial metabolic enzymes in cancer. Free Radic Biol Med 2022; 179:11-23. [PMID: 34929314 DOI: 10.1016/j.freeradbiomed.2021.12.264] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/26/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022]
Abstract
Mitochondrion is the powerhouse of the cell. The research of nearly a century has expanded our understanding of mitochondrion, far beyond the view that mitochondrion is an important energy generator of cells. During the initiation, growth and survival of tumor cells, significant mitochondrial metabolic changes have taken place in the important enzymes of respiratory chain and tricarboxylic acid cycle, mitochondrial biogenesis and dynamics, oxidative stress regulation and molecular signaling. Therefore, mitochondrial metabolic proteins are the key mediators of tumorigenesis. Post-translational modification is the molecular switch that regulates protein function. Understanding how these mitochondria-related post-translational modification function during tumorigenesis will bring new ideas for the next generation of cancer treatment.
Collapse
Affiliation(s)
- Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huadong Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
23
|
Li X, Liu Z, Xia C, Yan K, Fang Z, Fan Y. SETD8 stabilized by USP17 epigenetically activates SREBP1 pathway to drive lipogenesis and oncogenesis of ccRCC. Cancer Lett 2021; 527:150-163. [PMID: 34942305 DOI: 10.1016/j.canlet.2021.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Recently, epigenetic modifications, including DNA methylation, histone modification and noncoding RNA (ncRNA)-associated gene silencing, have received increasing attention from the scientific community. Many studies have demonstrated that epigenetic regulation can render dynamic alterations in the transcriptional potential of a cell, which then affects the cell's biological function. The initiation and development of clear cell renal cell carcinoma (ccRCC), the most common subtype of renal cell cancer (RCC), is also closely related to genomic alterations by epigenetic modification. For ccRCC, lipid accumulation is one of the most typical characteristics. In other words, dysregulation of lipid uptake and synthesis occurs in ccRCC, which inversely promotes cancer proliferation and progression. However, the link among epigenetic alterations, lipid biosynthesis and renal cancer progression remains unclear. SETD8 is a histone methyltransferase and plays pivotal roles in cell cycle regulation and oncogenesis of various cancers, but its role in RCC is not well understood. In this study, we discovered that SETD8 was significantly overexpressed in RCC tumors, which was positively related to lipid storage and correlated with advanced tumor grade and stage and poor patient prognosis. Depletion of SETD8 by siRNAs or inhibitor UNC0379 diminished fatty acid (FA) de novo synthesis, cell proliferation and metastasis in ccRCC cells. Mechanistically, SETD8, which was posttranslationally stabilized by USP17, could transcriptionally modulate sterol regulatory element-binding protein 1 (SREBP1), a key transcription factor in fatty acid biosynthesis and lipogenesis, by monomethylating the 20th lysine of the H4 histone, elevating lipid biosynthesis and accumulation in RCC and further promoting cancer progression and metastasis. Taken together, the USP17/SETD8/SREBP1 signaling pathway plays a pivotal role in promoting RCC progression. SETD8 might be a novel biomarker and potential therapeutic target for treating RCC.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji Nan 250012, Shandong, China; Key Laboratory of Cardio-vascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, China.
| | - Zhengfang Liu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji Nan 250012, Shandong, China.
| | - Chuanyou Xia
- The First Affiliated Hospital of Shandong First Medical University/Shandong Provincial Qian-Fo-Shan Hospital, China.
| | - Keqiang Yan
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji Nan 250012, Shandong, China.
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji Nan 250012, Shandong, China.
| | - Yidong Fan
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji Nan 250012, Shandong, China.
| |
Collapse
|
24
|
Herviou L, Ovejero S, Izard F, Karmous-Gadacha O, Gourzones C, Bellanger C, De Smedt E, Ma A, Vincent L, Cartron G, Jin J, De Bruyne E, Grimaud C, Julien E, Moreaux J. Targeting the methyltransferase SETD8 impairs tumor cell survival and overcomes drug resistance independently of p53 status in multiple myeloma. Clin Epigenetics 2021; 13:174. [PMID: 34530900 PMCID: PMC8447659 DOI: 10.1186/s13148-021-01160-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 08/27/2021] [Indexed: 01/04/2023] Open
Abstract
Background Multiple myeloma (MM) is a malignancy of plasma cells that largely remains incurable. The search for new therapeutic targets is therefore essential. In addition to a wide panel of genetic mutations, epigenetic alterations also appear as important players in the development of this cancer, thereby offering the possibility to reveal novel approaches and targets for effective therapeutic intervention. Results Here, we show that a higher expression of the lysine methyltransferase SETD8, which is responsible for the mono-methylation of histone H4 at lysine 20, is an adverse prognosis factor associated with a poor outcome in two cohorts of newly diagnosed patients. Primary malignant plasma cells are particularly addicted to the activity of this epigenetic enzyme. Indeed, the inhibition of SETD8 by the chemical compound UNC-0379 and the subsequent decrease in histone H4 methylation at lysine 20 are highly toxic in MM cells compared to normal cells from the bone marrow microenvironment. At the molecular level, RNA sequencing and functional studies revealed that SETD8 inhibition induces a mature non-proliferating plasma cell signature and, as observed in other cancers, triggers an activation of the tumor suppressor p53, which together cause an impairment of myeloma cell proliferation and survival. However, a deadly level of replicative stress was also observed in p53-deficient myeloma cells treated with UNC-0379, indicating that the cytotoxicity associated with SETD8 inhibition is not necessarily dependent on p53 activation. Consistent with this, UNC-0379 triggers a p53-independent nucleolar stress characterized by nucleolin delocalization and reduction of nucleolar RNA synthesis. Finally, we showed that SETD8 inhibition is strongly synergistic with melphalan and may overcome resistance to this alkylating agent widely used in MM treatment. Conclusions Altogether, our data indicate that the up-regulation of the epigenetic enzyme SETD8 is associated with a poor outcome and the deregulation of major signaling pathways in MM. Moreover, we provide evidences that myeloma cells are dependent on SETD8 activity and its pharmacological inhibition synergizes with melphalan, which could be beneficial to improve MM treatment in high-risk patients whatever their status for p53. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01160-z.
Collapse
Affiliation(s)
- Laurie Herviou
- IGH, CNRS, Univ Montpellier, Montpellier, France.,Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, CHU Montpellier, Montpellier, France.,University of Montpellier, 34090, Montpellier, France
| | - Sara Ovejero
- IGH, CNRS, Univ Montpellier, Montpellier, France.,Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, CHU Montpellier, Montpellier, France.,University of Montpellier, 34090, Montpellier, France
| | - Fanny Izard
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), 34298, Montpellier, France.,University of Montpellier, 34090, Montpellier, France
| | - Ouissem Karmous-Gadacha
- Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | | | | | - Eva De Smedt
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Anqi Ma
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Laure Vincent
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Guillaume Cartron
- University of Montpellier, 34090, Montpellier, France.,Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elke De Bruyne
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Charlotte Grimaud
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), 34298, Montpellier, France.,University of Montpellier, 34090, Montpellier, France.,Centre National de La Recherche Scientifique (CNRS), 34293, Montpellier, France
| | - Eric Julien
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), 34298, Montpellier, France. .,University of Montpellier, 34090, Montpellier, France. .,Centre National de La Recherche Scientifique (CNRS), 34293, Montpellier, France.
| | - Jérôme Moreaux
- IGH, CNRS, Univ Montpellier, Montpellier, France. .,Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, CHU Montpellier, Montpellier, France. .,University of Montpellier, 34090, Montpellier, France. .,Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
25
|
Lu X, Xu M, Zhu Q, Zhang J, Liu G, Bao Y, Gu L, Tian Y, Wen H, Zhu WG. RNF8-ubiquitinated KMT5A is required for RNF168-induced H2A ubiquitination in response to DNA damage. FASEB J 2021; 35:e21326. [PMID: 33710666 DOI: 10.1096/fj.202002234r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
Histone modifications play critical roles in DNA damage repair to safeguard genome integrity. However, how different histone modifiers coordinate to build appropriate chromatin context for DNA damage repair is largely unknown. Here, we report a novel interplay between the histone methyltransferase KMT5A and two E3 ligases RNF8 and RNF168 in establishing the histone modification status for DNA damage repair. KMT5A is a newly identified substrate of RNF8 in vitro and in vivo. In response to DNA double-strand breaks (DSBs), RNF8 promotes KMT5A recruitment onto damaged chromatin in a ubiquitination-dependent manner. RNF8-induced KMT5A ubiquitination increases the binding capacity of KMT5A to RNF168. Interestingly, KMT5A not only drives a local increase in H4K20 monomethylation at DSBs, but also promotes RNF168's activity in catalyzing H2A ubiquitination. We proved that the interaction between the H2A acidic patch and KMT5A R188/R189 residues is critical for KMT5A-mediated regulation of H2A ubiquitination. Taken together, our results highlight a new role for KMT5A in linking H4K20 methylation and H2A ubiquitination and provide insight into the histone modification network during DNA damage repair.
Collapse
Affiliation(s)
- Xiaopeng Lu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Min Xu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Qian Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jun Zhang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Ge Liu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yantao Bao
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Luo Gu
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yuan Tian
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen University School of Medicine, Shenzhen, China
| | - He Wen
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen University School of Medicine, Shenzhen, China.,International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
26
|
LncRNA LINC00473 is involved in the progression of invasive pituitary adenoma by upregulating KMT5A via ceRNA-mediated miR-502-3p evasion. Cell Death Dis 2021; 12:580. [PMID: 34091587 PMCID: PMC8179925 DOI: 10.1038/s41419-021-03861-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) and their crosstalks with other RNAs have been revealed to be closely related to tumorigenesis and development, but their role in invasive pituitary adenoma (IPA) remains largely unclear. In our study, LINC00473 was identified as the most upregulated lncRNA in IPA by whole transcriptome RNA sequencing (RNA-Seq). Further, its related signaling pathway LINC00473/miR-502-3p/KMT5A was obtained by constructing a competing endogenous RNA (ceRNA) regulatory network. Their expression in IPA and non-invasive pituitary adenoma (NIPA) tissues was verified by qRT-PCR. Then the effects and mechanisms of LINC00473 and its ceRNA network on the proliferation of pituitary adenoma (PA) cells were confirmed by gene overexpression or silencing techniques combined with CCK-8 assay, EdU staining, flow cytometry assay, and double luciferase reporter gene assay in PA cell lines AtT-20 and GT1-1 in vitro and in a xenograft model in vivo. LINC00473 is overexpressed in IPA and can promote PA cells proliferation. Mechanistically, overexpression of LINC00473 restricts miR-502-3p through the ceRNA mechanism, upregulates KMT5A expression, and promotes the expression of cyclin D1 and CDK2, which is conducive to the cell cycle process, thereby promoting the proliferation of PA cells, involving IPA progression.
Collapse
|
27
|
Histone lysine methyltransferase SET8 is a novel therapeutic target for cancer treatment. Drug Discov Today 2021; 26:2423-2430. [PMID: 34022460 DOI: 10.1016/j.drudis.2021.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022]
Abstract
SET8 is the only lysine methyltransferase that can specifically monomethylate the histone H4K20. SET8-mediated protein modifications are largely involved in the regulation of cell cycle, DNA repair, gene transcription, cell apoptosis, and other vital physiological processes. The aberrant expression of SET8 is closely linked to the proliferation, invasion, metastasis, and prognosis of a variety of cancers. As a consequence, targeting SET8 could be an appealing strategy for cancer therapy. In this article, we introduce the molecular structure of SET8, followed by summarizing its roles in various biological pathways. Crucially, we highlight the potential functions of SET8 in tumors, as well as progress in the development of SET inhibitors for cancer treatment.
Collapse
|
28
|
Proteome-wide Prediction of Lysine Methylation Leads to Identification of H2BK43 Methylation and Outlines the Potential Methyllysine Proteome. Cell Rep 2021; 32:107896. [PMID: 32668242 DOI: 10.1016/j.celrep.2020.107896] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/29/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Protein Lys methylation plays a critical role in numerous cellular processes, but it is challenging to identify Lys methylation in a systematic manner. Here we present an approach combining in silico prediction with targeted mass spectrometry (MS) to identify Lys methylation (Kme) sites at the proteome level. We develop MethylSight, a program that predicts Kme events solely on the physicochemical properties of residues surrounding the putative methylation sites, which then requires validation by targeted MS. Using this approach, we identify 70 new histone Kme marks with a 90% validation rate. H2BK43me2, which undergoes dynamic changes during stem cell differentiation, is found to be a substrate of KDM5b. Furthermore, MethylSight predicts that Lys methylation is a prevalent post-translational modification in the human proteome. Our work provides a useful resource for guiding systematic exploration of the role of Lys methylation in human health and disease.
Collapse
|
29
|
Abstract
Methylation at DNA, RNA and protein levels plays critical roles in many cellular processes and is associated with diverse differentiation events, physiological activities and human diseases. To aid in the diagnostic and therapeutic design for cancer treatment utilising methylation, this review provides a boutique yet comprehensive overview on methylation at different levels including the mechanisms, cross-talking and clinical implications with a particular focus on cancers. We conclude that DNA methylation is the sole type of methylation that has been largely translated into clinics and used for, mostly, early diagnosis. Translating the onco-therapeutic and prognostic values of RNA and protein methylations into clinical use deserves intensive efforts. Simultaneous examination of methylations at multiple levels or together with other forms of molecular markers represents an interesting research direction with profound clinical translational potential.
Collapse
|
30
|
Lukinović V, Casanova AG, Roth GS, Chuffart F, Reynoird N. Lysine Methyltransferases Signaling: Histones are Just the Tip of the Iceberg. Curr Protein Pept Sci 2021; 21:655-674. [PMID: 31894745 DOI: 10.2174/1871527319666200102101608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/15/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022]
Abstract
Protein lysine methylation is a functionally diverse post-translational modification involved in various major cellular processes. Lysine methylation can modulate proteins activity, stability, localization, and/or interaction, resulting in specific downstream signaling and biological outcomes. Lysine methylation is a dynamic and fine-tuned process, deregulation of which often leads to human pathologies. In particular, the lysine methylome and its associated signaling network can be linked to carcinogenesis and cancer progression. Histone modifications and chromatin regulation is a major aspect of lysine methylation importance, but increasing evidence suggests that a high relevance and impact of non-histone lysine methylation signaling has emerged in recent years. In this review, we draw an updated picture of the current scientific knowledge regarding non-histone lysine methylation signaling and its implication in physiological and pathological processes. We aim to demonstrate the significance of lysine methylation as a major and yet underestimated posttranslational modification, and to raise the importance of this modification in both epigenetic and cellular signaling by focusing on the observed activities of SET- and 7β-strandcontaining human lysine methyltransferases. Recent evidence suggests that what has been observed so far regarding lysine methylation's implication in human pathologies is only the tip of the iceberg. Therefore, the exploration of the "methylome network" raises the possibility to use these enzymes and their substrates as promising new therapeutic targets for the development of future epigenetic and methyllysine signaling cancer treatments.
Collapse
Affiliation(s)
- Valentina Lukinović
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Alexandre G Casanova
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Gael S Roth
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Florent Chuffart
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Nicolas Reynoird
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| |
Collapse
|
31
|
Wang K, Huang W, Chen R, Lin P, Zhang T, Ni YF, Li H, Wu J, Sun XX, Geng JJ, Zhu YM, Nan G, Zhang W, Chen X, Zhu P, Bian H, Chen ZN. Di-methylation of CD147-K234 Promotes the Progression of NSCLC by Enhancing Lactate Export. Cell Metab 2021; 33:160-173.e6. [PMID: 33406400 DOI: 10.1016/j.cmet.2020.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/17/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022]
Abstract
CD147 is a tumor-associated glycoprotein that regulates cell metabolism. However, CD147 methylation and its subsequent role in cancer cell metabolism remain unclear. Here, we detect CD147 di-methylation in 16 non-small-cell lung cancer (NSCLC) tissues using liquid chromatography-tandem mass spectrometry. CD147 is di-methylated to CD147-K234me2 by lysine methyltransferase 5A (KMT5A). The increase in KMT5A expression boosts the levels of CD147-K234me2, further promoting the interaction between CD147 and monocarboxylate transporter 4 (MCT4), which enhances the translocation of MCT4 from the cytoplasm to the membrane. Overexpression of CD147-K234me2 and KMT5A enhances glycolysis and lactate export in NSCLC cells. Clinical analysis shows that high CD147-K234me2 expression is significantly related to cancer progression and overall survival, and has prognostic significance in individuals with NSCLC, especially for those in the early stages. Our findings indicate that CD147-K234me2 plays a critical role in cancer metabolism, and it can be a highly promising therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Ke Wang
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Wan Huang
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Ruo Chen
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Peng Lin
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Tao Zhang
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Yun-Feng Ni
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Hao Li
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Jiao Wu
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Xiu-Xuan Sun
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Jie-Jie Geng
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yu-Meng Zhu
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Gang Nan
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Wei Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Xi Chen
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, China
| | - Ping Zhu
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China; Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology and Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
32
|
Epigenetic Modifier SETD8 as a Therapeutic Target for High-Grade Serous Ovarian Cancer. Biomolecules 2020; 10:biom10121686. [PMID: 33339442 PMCID: PMC7766894 DOI: 10.3390/biom10121686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
The histone methyltransferase SETD8, which methylates the lysine 20 of histone H4 (H4K20), is reportedly involved in human carcinogenesis along with nonhistone proteins such as p53. However, its expression profiles and functions in the context of high-grade serous ovarian carcinoma (HGSOC) are still unknown. The purpose of this study was to investigate the role of SETD8 in HGSOC. We performed quantitative real-time PCR and immunohistochemistry to detect the expression of SETD8 in HGSOC samples and normal ovarian specimens. Then, we assessed the effect of the inhibition of SETD8 expression using small interfering RNA (siRNA) and a selective inhibitor (UNC0379) on cell proliferation and apoptosis in HGSOC cells. The expression of SETD8 was significantly upregulated in clinical ovarian cancer specimens compared to that in the corresponding normal ovary. In addition, suppression of SETD8 expression in HGSOC cells with either siRNA or UNC0379 resulted in reduced levels of H4K20 monomethylation, inhibition of cell proliferation, and induction of apoptosis. Furthermore, UNC0379 showed a long-term antitumor effect against HGSOC cells, as demonstrated by colony-formation assays. SETD8 thus constitutes a promising therapeutic target for HGSOC, warranting further functional studies.
Collapse
|
33
|
MiRNAs directly targeting the key intermediates of biological pathways in pancreatic cancer. Biochem Pharmacol 2020; 189:114357. [PMID: 33279497 DOI: 10.1016/j.bcp.2020.114357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic Cancer (PC) is a severe form of malignancy all over the world. Delayed diagnosis and chemoresistance are the major factors contributing to its poor prognosis and high mortality rate. The genetic and epigenetic regulations of biological pathways further complicate the progression and chemotherapy response to this cancer. MicroRNAs (MiRNAs) involvement has been observed in all types of cancers including PC. The understanding and categorization of miRNAs according to their specific targets are very important to develop early diagnostic and therapeutic interventions. The current review, emphasizing recent research findings, has categorized miRNAs that directly target the potential onco-factors that act as central converging signal-nodes in five major cancer-related pathways i.e., MAPK/ERK, JAK/STAT, Wnt/β-catenin, AKT/mTOR, and TGFβ in PC. The therapeutic perspectives of miRNAs in PC have also been discussed. This will help to understand the interplay of various miRNAs within foremost signaling pathways and develop a multifactorial approach to treat difficult-to-treat PC.
Collapse
|
34
|
Abstract
Histone posttranslational modifications (PTMs) have been shown to be dysregulated in multiple cancers including melanoma, and as they are abundant and easily detectable, they make ideal biomarkers. The aim of this study was to identify histone PTMs that could be potential biomarkers for melanoma diagnosis. Previously, we utilized mass spectrometry to identify histone PTMs that were dysregulated in matched melanoma cell lines and found two modifications, H3 lysine 27 trimethylation (histone H3K27me3) and H4 lysine 20 monomethylation (histone H4K20me), that were differentially expressed in the more aggressive compared to the less aggressive cell line. In this study, we performed immunohistochemistry on tissue microarrays containing 100 patient tissue spots; 18 benign nevi, 62 primary, and 20 metastatic melanoma tissues. We stained for histone H3K27me3 and histone H4K20me to ascertain whether these histone PTMs could be used to distinguish different stages of melanoma. Loss of histone H4K20me was observed in 66% of malignant patient tissues compared to 14% of benign nevi. A majority (79%) of benign nevi had low histone H3K27me3 staining, while 72% of malignant patient tissues showed either a complete loss or had strong histone H3K27me3 staining. When we analyzed the staining for both marks together, we found that we could identify 71% of the benign nevi and 89% of malignant melanomas. Histone H3K27me3 or histone H4K20me display differential expression patterns that can be used to distinguish benign nevi from melanoma; however, when considered together the diagnostic utility of these PTMs increased significantly. The work presented supports the use of combination immunohistochemistry of histone PTMs to increase accuracy and confidence in the diagnosis of melanoma.
Collapse
|
35
|
Li M, Wang H, Liao H, Shen J, Wu Y, Wu Y, Weng Q, Zhu C, Geng X, Lan F, Xia Y, Zhang B, Zou H, Zhang N, Zhou Y, Chen Z, Shen H, Ying S, Li W. SETD8C302R Mutation Revealed from Myofibroblastoma-Discordant Monozygotic Twins Leads to p53/p21 Deficit and WEE1 Inhibitor Sensitivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001041. [PMID: 33042742 PMCID: PMC7539211 DOI: 10.1002/advs.202001041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/21/2020] [Indexed: 06/11/2023]
Abstract
High-throughput gene sequencing has identified various genetic variants as the culprits for some common hereditary cancers. However, the heritability of a substantial proportion of cancers remains unexplained, which may result from rare deleterious mutations hidden in a myriad of nonsense genetic variations. This poses a great challenge to the understanding of the pathology and thus the rational design of effective treatments for affected patients. Here, whole genome sequencing is employed in a representative case in which one monozygotic twin is discordant for lung inflammatory myofibroblastoma to disclose rare tumor-related mutations. A missense single nucleotide variation rs61955126 T>C in the lysine methyltransferase SETD8 (accession: NM_020382, SETD8C302R ) is exposed. It is shown that SETD8 is vital for genomic integrity by promoting faithful DNA replication, and its C302R mutation downregulates the p53/p21 pathway. Importantly, the SETD8C302R mutation significantly increases the sensitivity of cancer cells to WEE1 inhibition. Given that WEE1 inhibitors have shown great promise for clinical approval, these results impart a potential therapeutic approach using WEE1 inhibitor for cancer patients carrying the same mutation, and indicate that genome sequencing and genetic functional studies can be integrated into individualized therapies.
Collapse
Affiliation(s)
- Miao Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310009China
| | - Hongwu Wang
- Department of Respiratory and Critical Care MedicineEmergency General HospitalBeijing100028China
| | - Hongwei Liao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310009China
| | - Jiaxin Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310009China
| | - Yinfang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310009China
| | - Yanping Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310009China
| | - Qingyu Weng
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310009China
| | - Chen Zhu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310009China
| | - Xinwei Geng
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310009China
| | - Fen Lan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310009China
| | - Yang Xia
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310009China
| | - Bin Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310009China
| | - Hang Zou
- Department of Respiratory and Critical Care MedicineEmergency General HospitalBeijing100028China
| | - Nan Zhang
- Department of Respiratory and Critical Care MedicineEmergency General HospitalBeijing100028China
| | - Yunzhi Zhou
- Department of Respiratory and Critical Care MedicineEmergency General HospitalBeijing100028China
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310009China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310009China
| | - Songmin Ying
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310009China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310009China
| |
Collapse
|
36
|
Luo Z, Mu L, Zheng Y, Shen W, Li J, Xu L, Zhong B, Liu Y, Zhou Y. NUMB enhances Notch signaling by repressing ubiquitination of NOTCH1 intracellular domain. J Mol Cell Biol 2020; 12:345-358. [PMID: 31504682 PMCID: PMC7288735 DOI: 10.1093/jmcb/mjz088] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/05/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023] Open
Abstract
The release and nuclear translocation of the intracellular domain of Notch receptor (NICD) is the prerequisite for Notch signaling-mediated transcriptional activation. NICD is subjected to various posttranslational modifications including ubiquitination. Here, we surprisingly found that NUMB proteins stabilize the intracellular domain of NOTCH1 receptor (N1ICD) by regulating the ubiquitin-proteasome machinery, which is independent of NUMB's role in modulating endocytosis. BAP1, a deubiquitinating enzyme (DUB), was further identified as a positive N1ICD regulator, and NUMB facilitates the association between N1ICD and BAP1 to stabilize N1ICD. Intriguingly, BAP1 stabilizes N1ICD independent of its DUB activity but relying on the BRCA1-inhibiting function. BAP1 strengthens Notch signaling and maintains stem-like properties of cortical neural progenitor cells. Thus, NUMB enhances Notch signaling by regulating the ubiquitinating activity of the BAP1-BRCA1 complex.
Collapse
Affiliation(s)
- Zhiyuan Luo
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Lili Mu
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Yue Zheng
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Wenchen Shen
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Jiali Li
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Lichao Xu
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Bo Zhong
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Ying Liu
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Yan Zhou
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| |
Collapse
|
37
|
Shikata D, Yamamoto T, Honda S, Ikeda S, Minami N. H4K20 monomethylation inhibition causes loss of genomic integrity in mouse preimplantation embryos. J Reprod Dev 2020; 66:411-419. [PMID: 32378528 PMCID: PMC7593633 DOI: 10.1262/jrd.2020-036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Maintaining genomic integrity in mammalian early embryos, which are deficient in DNA damage repair, is critical for normal preimplantation and subsequent
development. Abnormalities in DNA damage repair in preimplantation embryos can cause not only developmental arrest, but also diseases such as congenital
disorders and cancers. Histone H4 lysine 20 monomethylation (H4K20me1) is involved in DNA damage repair and regulation of gene expression. However, little is
known about the role of H4K20me1 during mouse preimplantation development. In this study, we revealed that H4K20me1 mediated by SETD8 is involved in maintaining
genomic integrity. H4K20me1 was present throughout preimplantation development. In addition, reduction in the level of H4K20me1 by inhibition of SETD8 activity
or a dominant-negative mutant of histone H4 resulted in developmental arrest at the S/G2 phase and excessive accumulation of DNA double-strand breaks. Together,
our results suggest that H4K20me1, a type of epigenetic modification, is associated with the maintenance of genomic integrity and is essential for
preimplantation development. A better understanding of the mechanisms involved in maintaining genome integrity during preimplantation development could
contribute to advances in reproductive medicine and technology.
Collapse
Affiliation(s)
- Daiki Shikata
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takuto Yamamoto
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Shinnosuke Honda
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Shuntaro Ikeda
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
38
|
Liu H, Sun Y, Zhang X, Li S, Hu D, Xiao L, Chen Y, He L, Wang DW. Integrated Analysis of Summary Statistics to Identify Pleiotropic Genes and Pathways for the Comorbidity of Schizophrenia and Cardiometabolic Disease. Front Psychiatry 2020; 11:256. [PMID: 32425817 PMCID: PMC7212438 DOI: 10.3389/fpsyt.2020.00256] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/17/2020] [Indexed: 12/31/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified abundant risk loci associated with schizophrenia (SCZ), cardiometabolic disease (CMD) including body mass index, coronary artery diseases, type 2 diabetes, low- and high-density lipoprotein, total cholesterol, and triglycerides. Although recent studies have suggested that genetic risk shared between these disorders, the pleiotropic genes and biological pathways shared between them are still vague. Here we integrated comprehensive multi-dimensional data from GWAS, expression quantitative trait loci (eQTL), and gene set database to systematically identify potential pleiotropic genes and biological pathways shared between SCZ and CMD. By integrating the results from different approaches including FUMA, Sherlock, SMR, UTMOST, FOCUS, and DEPICT, we revealed 21 pleiotropic genes that are likely to be shared between SCZ and CMD. These genes include VRK2, SLC39A8, NT5C2, AMBRA1, ARL6IP4, OGFOD2, PITPNM2, CDK2AP1, C12orf65, ABCB9, SETD8, MPHOSPH9, FES, FURIN, INO80E, YPEL3, MAPK3, SREBF1, TOM1L2, GATAD2A, and TM6SF2. In addition, we also performed the gene-set enrichment analysis using the software of GSA-SNP2 and MAGMA with GWAS summary statistics and identified three biological pathways (MAPK-TRK signaling, growth hormone signaling, and regulation of insulin secretion signaling) shared between them. Our study provides insights into the pleiotropic genes and biological pathways underlying mechanisms for the comorbidity of SCZ and CMD. However, further genetic and functional studies are required to validate the role of these potential pleiotropic genes and pathways in the etiology of the comorbidity of SCZ and CMD, which should provide potential targets for future diagnostics and therapeutics.
Collapse
Affiliation(s)
- Hao Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Genetics and Development, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xinxin Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Genetics and Development, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, China
| | - Shiyang Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dong Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Lei Xiao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yanghui Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Genetics and Development, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
39
|
Wei S, Qiu T, Yao X, Wang N, Jiang L, Jia X, Tao Y, Wang Z, Pei P, Zhang J, Zhu Y, Yang G, Liu X, Liu S, Sun X. Arsenic induces pancreatic dysfunction and ferroptosis via mitochondrial ROS-autophagy-lysosomal pathway. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121390. [PMID: 31735470 DOI: 10.1016/j.jhazmat.2019.121390] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 05/16/2023]
Abstract
Chronic arsenic exposure is a significantly risk factor for pancreatic dysfunction and type 2 diabetes (T2D). Ferroptosis is a newly identified iron-dependent form of oxidative cell death that relies on lipid peroxidation. Previous data have indicated that ferroptosis is involved in various diseases, including cancers, neurodegenerative diseases, and T2D. However, the concrete effect and mechanism of ferroptosis on pancreatic dysfunction triggered by arsenic remains unknown. In this study, we verified that ferroptosis occurred in animal models of arsenic-induced pancreatic dysfunction through assessing proferroptotic markers and morphological changes in mitochondria. In vitro, arsenic caused execution of ferroptosis in a dose-dependent manner, which could be significantly reduced by ferrostatin-1. Additionally, arsenic damaged mitochondria manifested as diminishing of mitochondrial membrane potential, reduced cytochrome c level and production of mitochondrial reactive oxygen species (MtROS) in MIN6 cells. Using the Mito-TEMPO, we found the autophagy level and subsequent ferroptotic cell death induced by arsenic were both alleviated. With autophagy inhibitor chloroquine, we further revealed that ferritin regulated ferroptosis through the MtROS-autophagy pathway. Collectively, NaAsO2-induced ferroptotic cell death is relied on the MtROS-dependent autophagy by regulating the iron homeostasis. Ferroptosis is involved in pancreatic dysfunction triggered by arsenic, and arsenic-induced ferroptosis involves MtROS, autophagy, ferritin.
Collapse
Affiliation(s)
- Sen Wei
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Tianming Qiu
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xiaofeng Yao
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Ningning Wang
- Experimental Teaching Center of Public Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Liping Jiang
- Experimental Teaching Center of Public Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xue Jia
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Ye Tao
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Zhidong Wang
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Pei Pei
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Jingyuan Zhang
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Yuhan Zhu
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Guang Yang
- Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xiaofang Liu
- Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Shuang Liu
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xiance Sun
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China; Global Health Research Center, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| |
Collapse
|
40
|
Wei R, Liu X, Voss C, Qin W, Dagnino L, Li L, Vigny M, Li SSC. NUMB regulates the endocytosis and activity of the anaplastic lymphoma kinase in an isoform-specific manner. J Mol Cell Biol 2019; 11:994-1005. [PMID: 30726988 PMCID: PMC6927325 DOI: 10.1093/jmcb/mjz003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/07/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
NUMB is an evolutionarily conserved protein that plays an important role in cell adhesion, migration, polarity, and cell fate determination. It has also been shown to play a role in the pathogenesis of certain cancers, although it remains controversial whether NUMB functions as an oncoprotein or tumor suppressor. Here, we show that NUMB binds to anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase aberrantly activated in several forms of cancer, and this interaction regulates the endocytosis and activity of ALK. Intriguingly, the function of the NUMB-ALK interaction is isoform-dependent. While both p66-NUMB and p72-NUMB isoforms are capable of mediating the endocytosis of ALK, the former directs ALK to the lysosomal degradation pathway, thus decreasing the overall ALK level and the downstream MAP kinase signal. In contrast, the p72-NUMB isoform promotes ALK recycling back to the plasma membrane, thereby maintaining the kinase in its active state. Our work sheds light on the controversial role of different isoforms of NUMB in tumorigenesis and provides mechanistic insight into ALK regulation.
Collapse
Affiliation(s)
- Ran Wei
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Xuguang Liu
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Courtney Voss
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Wentao Qin
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lina Dagnino
- Physiology and Pharmacology and Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lei Li
- School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, China
| | - Marc Vigny
- Université Pierre et Marie Curie, UPMC, INSERM UMRS-839, Paris, France
| | - Shawn Shun-Cheng Li
- Departments of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Oncology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
41
|
Levy D. Lysine methylation signaling of non-histone proteins in the nucleus. Cell Mol Life Sci 2019; 76:2873-2883. [PMID: 31123776 PMCID: PMC11105312 DOI: 10.1007/s00018-019-03142-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
Lysine methylation, catalyzed by protein lysine methyltransferases (PKMTs), is a central post-translational modification regulating many signaling pathways. It has direct and indirect effects on chromatin structure and transcription. Accumulating evidence suggests that dysregulation of PKMT activity has a fundamental impact on the development of many pathologies. While most of these works involve in-depth analysis of methylation events in the context of histones, in recent years, it has become evident that methylation of non-histone proteins also plays a pivotal role in cell processes. This review highlights the importance of non-histone methylation, with focus on methylation events taking place in the nucleus. Known experimental platforms which were developed to identify new methylation events, as well as examples of specific lysine methylation signaling events which regulate key transcription factors, are presented. In addition, the role of these methylation events in normal and disease states is emphasized.
Collapse
Affiliation(s)
- Dan Levy
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beersheba, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beersheba, Israel.
| |
Collapse
|
42
|
Zouaz A, Fernando C, Perez Y, Sardet C, Julien E, Grimaud C. Cell-cycle regulation of non-enzymatic functions of the Drosophila methyltransferase PR-Set7. Nucleic Acids Res 2019; 46:2834-2849. [PMID: 29373730 PMCID: PMC5888314 DOI: 10.1093/nar/gky034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/16/2018] [Indexed: 12/27/2022] Open
Abstract
Tight cell-cycle regulation of the histone H4-K20 methyltransferase PR-Set7 is essential for the maintenance of genome integrity. In mammals, this mainly involves the interaction of PR-Set7 with the replication factor PCNA, which triggers the degradation of the enzyme by the CRL4CDT2 E3 ubiquitin ligase. PR-Set7 is also targeted by the SCFβ-TRCP ligase, but the role of this additional regulatory pathway remains unclear. Here, we show that Drosophila PR-Set7 undergoes a cell-cycle proteolytic regulation, independently of its interaction with PCNA. Instead, Slimb, the ortholog of β-TRCP, is specifically required for the degradation of the nuclear pool of PR-Set7 prior to S phase. Consequently, inactivation of Slimb leads to nuclear accumulation of PR-Set7, which triggers aberrant chromatin compaction and G1/S arrest. Strikingly, these phenotypes result from non-enzymatic PR-Set7 functions that prevent proper histone H4 acetylation independently of H4K20 methylation. Altogether, these results identify the Slimb-mediated PR-Set7 proteolysis as a new critical regulatory mechanism required for proper interphase chromatin organization at G1/S transition.
Collapse
Affiliation(s)
- Amel Zouaz
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), Montpellier F-34298, France.,University of Montpellier, Montpellier F-34090, France
| | - Céline Fernando
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), Montpellier F-34298, France.,University of Montpellier, Montpellier F-34090, France
| | - Yannick Perez
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), Montpellier F-34298, France.,University of Montpellier, Montpellier F-34090, France
| | - Claude Sardet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), Montpellier F-34298, France.,University of Montpellier, Montpellier F-34090, France
| | - Eric Julien
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), Montpellier F-34298, France.,University of Montpellier, Montpellier F-34090, France
| | - Charlotte Grimaud
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), Montpellier F-34298, France.,University of Montpellier, Montpellier F-34090, France
| |
Collapse
|
43
|
Wang H, Xiang D, Liu B, He A, Randle HJ, Zhang KX, Dongre A, Sachs N, Clark AP, Tao L, Chen Q, Botchkarev VV, Xie Y, Dai N, Clevers H, Li Z, Livingston DM. Inadequate DNA Damage Repair Promotes Mammary Transdifferentiation, Leading to BRCA1 Breast Cancer. Cell 2019; 178:135-151.e19. [PMID: 31251913 PMCID: PMC6716369 DOI: 10.1016/j.cell.2019.06.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 03/04/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022]
Abstract
Loss of BRCA1 p220 function often results in basal-like breast cancer (BLBC), but the underlying disease mechanism is largely opaque. In mammary epithelial cells (MECs), BRCA1 interacts with multiple proteins, including NUMB and HES1, to form complexes that participate in interstrand crosslink (ICL) DNA repair and MEC differentiation control. Unrepaired ICL damage results in aberrant transdifferentiation to a mesenchymal state of cultured, human basal-like MECs and to a basal/mesenchymal state in primary mouse luminal MECs. Loss of BRCA1, NUMB, or HES1 or chemically induced ICL damage in primary murine luminal MECs results in persistent DNA damage that triggers luminal to basal/mesenchymal transdifferentiation. In vivo single-cell analysis revealed a time-dependent evolution from normal luminal MECs to luminal progenitor-like tumor cells with basal/mesenchymal transdifferentiation during murine BRCA1 BLBC development. Growing DNA damage accompanied this malignant transformation.
Collapse
Affiliation(s)
- Hua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Dongxi Xiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ben Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Aina He
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Helena J Randle
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | - Anushka Dongre
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Norman Sachs
- Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Allison P Clark
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Luwei Tao
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Qing Chen
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Vladimir V Botchkarev
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ying Xie
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ning Dai
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, New Brunswick, NJ 08901, USA
| | - Hans Clevers
- Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - David M Livingston
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Chen S, Wiewiora RP, Meng F, Babault N, Ma A, Yu W, Qian K, Hu H, Zou H, Wang J, Fan S, Blum G, Pittella-Silva F, Beauchamp KA, Tempel W, Jiang H, Chen K, Skene RJ, Zheng YG, Brown PJ, Jin J, Luo C, Chodera JD, Luo M. The dynamic conformational landscape of the protein methyltransferase SETD8. eLife 2019; 8:45403. [PMID: 31081496 PMCID: PMC6579520 DOI: 10.7554/elife.45403] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022] Open
Abstract
Elucidating the conformational heterogeneity of proteins is essential for understanding protein function and developing exogenous ligands. With the rapid development of experimental and computational methods, it is of great interest to integrate these approaches to illuminate the conformational landscapes of target proteins. SETD8 is a protein lysine methyltransferase (PKMT), which functions in vivo via the methylation of histone and nonhistone targets. Utilizing covalent inhibitors and depleting native ligands to trap hidden conformational states, we obtained diverse X-ray structures of SETD8. These structures were used to seed distributed atomistic molecular dynamics simulations that generated a total of six milliseconds of trajectory data. Markov state models, built via an automated machine learning approach and corroborated experimentally, reveal how slow conformational motions and conformational states are relevant to catalysis. These findings provide molecular insight on enzymatic catalysis and allosteric mechanisms of a PKMT via its detailed conformational landscape. Our cells contain thousands of proteins that perform many different tasks. Such tasks often involve significant changes in the shape of a protein that allow it to interact with other proteins or ligands. Understanding these shape changes can be an essential step for predicting and manipulating how proteins work or designing new drugs. Some changes in protein shape happen quickly, whereas others take longer. Existing experimental approaches generally only capture some, but not all, of the different shapes an individual protein adopts. A family of proteins known as protein lysine methyltransferases (PKMTs) help to regulate the activities of other proteins by adding small tags called methyl groups to specific positions on their target proteins. PKMTs play important roles in many life processes including in activating genes, maintaining stem cells and controlling how organs develop. It is important for cells to properly control the activity of PKMTs because too much, or too little, activity can promote cancers and neurological diseases. For example, genetic mutations that increase the levels of a PKMT known as SETD8 appear to promote the progression of some breast cancers and childhood leukemia. There is a pressing need to develop new drugs that can inhibit SETD8 and other PKMTs in human patients. However, these efforts are hindered by the lack of understanding of exactly how the shape of PKMT proteins change as they operate in cells. Chen, Wiewiora et al. used a technique called X-ray crystallography to generate structural models of the human SETD8 protein in the presence or absence of native or foreign ligands. These models were used to develop computer simulations of how the shape of SETD8 changes as it operates. Further computational analysis and laboratory experiments revealed how slow changes in the shape of SETD8 contribute to the ability of the protein to attach methyl groups to other proteins. This work is a significant stepping-stone to developing a complete model of how the SETD8 protein works, as well as understanding how genetic mutations may affect the protein’s role in the body. The next step is to refine the model by integrating data from other approaches including biophysical models and mathematical calculations of the energy associated with the shape changes, with a long-term goal to better understand and then manipulate the function of SETD8.
Collapse
Affiliation(s)
- Shi Chen
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, United States.,Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Rafal P Wiewiora
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, United States.,Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Fanwang Meng
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Nicolas Babault
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Anqi Ma
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Wenyu Yu
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Kun Qian
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, United States
| | - Hao Hu
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, United States
| | - Hua Zou
- Takeda California, Science Center Drive, San Diego, United States
| | - Junyi Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Shijie Fan
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Gil Blum
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Fabio Pittella-Silva
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Kyle A Beauchamp
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Hualiang Jiang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kaixian Chen
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Robert J Skene
- Takeda California, Science Center Drive, San Diego, United States
| | - Yujun George Zheng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, United States
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Cheng Luo
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - John D Chodera
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Minkui Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States.,Program of Pharmacology, Weill Cornell Medical College of Cornell University, New York, United States
| |
Collapse
|
45
|
Chen X, Ding X, Wu Q, Qi J, Zhu M, Miao C. Monomethyltransferase SET8 facilitates hepatocellular carcinoma growth by enhancing aerobic glycolysis. Cell Death Dis 2019; 10:312. [PMID: 30952833 PMCID: PMC6450876 DOI: 10.1038/s41419-019-1541-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive cancers worldwide. Despite such a public health importance, efficient therapeutic agents are still lacking for this malignancy. Most tumor cells use aerobic glycolysis to sustain anabolic growth, including HCC, and the preference of glycolysis often leads to a close association with poorer clinical outcomes. The histone methyltransferase SET8 plays crucial roles in controlling cell-cycle progression, transcription regulation, and tumorigenesis. However, it remains largely undefined whether SET8 affects the glucose metabolism in HCC. Here, we report that upregulation of SET8 is positively correlated with a poor survival rate in HCC patients. Both in vitro and in vivo studies revealed that SET8 deficiency conferred an impaired glucose metabolism phenotype and thus inhibited the progression of HCC tumors. By contrast, SET8 overexpression aggravated the glycolytic alterations and tumor progression. Mechanistically, SET8 directly binds to and inactivates KLF4, resulting in suppression of its downstream SIRT4. We also provided further evidence that mutations in SET8 failed to restrain the transactivation of SIRT4 by KLF4. Our data collectively uncover a novel mechanism of SET8 in mediating glycolytic metabolism in HCC cells and may provide a basis for targeting SET8 as a therapeutic strategy in HCC.
Collapse
Affiliation(s)
- Xiangyuan Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, shanghai, 200032, China
| | - Xiaowei Ding
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, shanghai, 200032, China
| | - Qichao Wu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, shanghai, 200032, China
| | - Jie Qi
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, shanghai, 200032, China
| | - Minmin Zhu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, shanghai, 200032, China.
| | - Changhong Miao
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, shanghai, 200032, China.
| |
Collapse
|
46
|
Liu S, Dong H, Wu J, Wang C. Association of an miR-502-binding site polymorphism in the 3'-untranslated region of SET8 with colorectal cancer. Oncol Lett 2019; 17:3960-3964. [PMID: 30881512 DOI: 10.3892/ol.2019.10026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/07/2018] [Indexed: 01/04/2023] Open
Abstract
The histone methyltransferase SET8 is regulated by microRNA-502 through the binding site in its 3'-untranslated region, and the rs16917496 polymorphism at the miR-502-binding site in the SET8 gene has been implicated in a number of cancer types. The rs16917496 polymorphism including CC, CT and TT genotypes was analyzed in patients with colorectal cancer; the CC genotype was identified to be independently associated with longer post-operative survival times using multivariate analysis (relative risk, 2.406; 95% confidence interval, 1.017-5.691; P=0.046). In addition, decreased SET8 expression was associated with the SET8 CC genotype and longer survival times for patients with colorectal cancer. The results of the present study indicated that miR-502 mediates SET8 expression at least partly by altering the binding affinity between miR-502 and SET8 so as to modify the colorectal cancer outcome. The results indicate that SET8 may be a novel target for colorectal cancer therapy.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Pathology, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
| | - Hailing Dong
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jianhua Wu
- Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Cuiju Wang
- Department of Gynaecology Ultrasound, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
47
|
Histone 4 Lysine 20 Methylation: A Case for Neurodevelopmental Disease. BIOLOGY 2019; 8:biology8010011. [PMID: 30832413 PMCID: PMC6466304 DOI: 10.3390/biology8010011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
Neurogenesis is an elegantly coordinated developmental process that must maintain a careful balance of proliferation and differentiation programs to be compatible with life. Due to the fine-tuning required for these processes, epigenetic mechanisms (e.g., DNA methylation and histone modifications) are employed, in addition to changes in mRNA transcription, to regulate gene expression. The purpose of this review is to highlight what we currently know about histone 4 lysine 20 (H4K20) methylation and its role in the developing brain. Utilizing publicly-available RNA-Sequencing data and published literature, we highlight the versatility of H4K20 methyl modifications in mediating diverse cellular events from gene silencing/chromatin compaction to DNA double-stranded break repair. From large-scale human DNA sequencing studies, we further propose that the lysine methyltransferase gene, KMT5B (OMIM: 610881), may fit into a category of epigenetic modifier genes that are critical for typical neurodevelopment, such as EHMT1 and ARID1B, which are associated with Kleefstra syndrome (OMIM: 610253) and Coffin-Siris syndrome (OMIM: 135900), respectively. Based on our current knowledge of the H4K20 methyl modification, we discuss emerging themes and interesting questions on how this histone modification, and particularly KMT5B expression, might impact neurodevelopment along with current challenges and potential avenues for future research.
Collapse
|
48
|
Zhang J, Zheng ZQ, Yuan YW, Zhang PP, Li YQ, Wang YQ, Tang XR, Wen X, Hong XH, Lei Y, He QM, Yang XJ, Sun Y, Ma J, Liu N. NFAT1 Hypermethylation Promotes Epithelial-Mesenchymal Transition and Metastasis in Nasopharyngeal Carcinoma by Activating ITGA6 Transcription. Neoplasia 2019; 21:311-321. [PMID: 30772768 PMCID: PMC6378632 DOI: 10.1016/j.neo.2019.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022] Open
Abstract
DNA methylation is an important epigenetic change in carcinogenesis. However, the function and mechanism of DNA methylation dysregulation in nasopharyngeal carcinoma (NPC) is still largely unclear. Our previous genome-wide microarray data showed that NFAT1 is one of the most hypermethylated transcription factor genes in NPC tissues. Here, we found that NFAT1 hypermethylation contributes to its down-regulation in NPC. NFAT1 overexpression inhibited cell migration, invasion, and epithelial-mesenchymal transition in vitro and tumor metastasis in vivo. We further established that the tumor suppressor effect of NFAT1 is mediated by its inactivation of ITGA6 transcription. Our findings suggest the significance of activating NFAT1/ITGA6 signaling in aggressive NPC, defining a novel critical signaling mechanism that drives NPC invasion and metastasis and providing a novel target for future personalized therapy.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China; Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, PR China
| | - Zi-Qi Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Ya-Wei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, PR China
| | - Pan-Pan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Ying-Qin Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Ya-Qin Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xin-Ran Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xin Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xiao-Hong Hong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Yuan Lei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Qing-Mei He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xiao-Jing Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| |
Collapse
|
49
|
Veo B, Danis E, Pierce A, Sola I, Wang D, Foreman NK, Jin J, Ma A, Serkova N, Venkataraman S, Vibhakar R. Combined functional genomic and chemical screens identify SETD8 as a therapeutic target in MYC-driven medulloblastoma. JCI Insight 2019; 4:122933. [PMID: 30626740 DOI: 10.1172/jci.insight.122933] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/27/2018] [Indexed: 01/11/2023] Open
Abstract
Medulloblastoma (MB) is the most prevalent malignant brain tumor in children, accounting for 20% of all childhood brain tumors. The molecular profiling of MB into 4 major subgroups (WNT, SHH, Grp3, and Grp4) emphasizes the heterogeneity of MB and opens paths in which treatments may be targeted to molecularly aggressive and distinct tumors. Current therapeutic strategies for Group 3 MB are challenging and can be accompanied by long-term side effects from treatment. The involvement of altered epigenetic machinery in neoplastic transformation in MB has become more evident. Thus, we performed an epigenomic RNAi and chemical screen and identified SETD8/PRE-SET7/KMT5a as a critical player in maintaining proliferation and cell survival of MB cells. We have found that inhibition of SETD8 effects the migration/invasive ability of MB cells. SETD8 alters H4K20me chromatin occupancy at key genes involved in tumor invasiveness and pluripotency. Interestingly, these results link the aggressive and metastatic behavior of MYC-driven MB with SETD8 activity. Based on our results, we suggest that SETD8 has a critical role mediating Group 3 MB tumorigenesis. Establishing a role for SETD8 as a factor in MYC-driven MB has potential to lead to more effective therapies needed to improve outcomes in high-risk patients.
Collapse
Affiliation(s)
- Bethany Veo
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Etienne Danis
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angela Pierce
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Ismail Sola
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dong Wang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nicholas K Foreman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado, USA.,Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado, USA
| | - Jian Jin
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anqi Ma
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Sujatha Venkataraman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado, USA.,Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado, USA.,Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
50
|
Wei R, Kaneko T, Liu X, Liu H, Li L, Voss C, Liu E, He N, Li SSC. Interactome Mapping Uncovers a General Role for Numb in Protein Kinase Regulation. Mol Cell Proteomics 2018; 17:2216-2228. [PMID: 29217616 PMCID: PMC6210222 DOI: 10.1074/mcp.ra117.000114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/04/2017] [Indexed: 12/24/2022] Open
Abstract
Cellular functions are frequently regulated by protein-protein interactions involving the binding of a modular domain in one protein to a specific peptide sequence in another. This mechanism may be explored to identify binding partners for proteins harboring a peptide-recognition domain. Here we report a proteomic strategy combining peptide and protein microarray screening with biochemical and cellular assays to identify modular domain-mediated protein-protein interactions in a systematic manner. We applied this strategy to Numb, a multi-functional protein containing a phosphotyrosine-binding (PTB) domain. Through the screening of a protein microarray, we identified >100 protein kinases, including both Tyr and Ser/Thr kinases, that could potentially interact with the Numb PTB domain, suggesting a general role for Numb in regulating kinase function. The putative interactions between Numb and several tyrosine kinases were subsequently validated by GST pull-down and/or co-immunoprecipitation assays. Furthermore, using the Oriented Peptide Array Library approach, we defined the specificity of the Numb PTB domain which, in turn, allowed us to predict binding partners for Numb at the genome level. The combination of the protein microarray screening with computer-aided prediction produced the most expansive interactome for Numb to date, implicating Numb in regulating phosphorylation signaling through protein kinases and phosphatases. Not only does the data generated from this study provide an important resource for hypothesis-driven research to further define the function of Numb, the proteomic strategy described herein may be employed to uncover the interactome for other peptide-recognition domains whose consensus motifs are known or can be determined.
Collapse
Affiliation(s)
- Ran Wei
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Tomonori Kaneko
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Xuguang Liu
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Huadong Liu
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
- §Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shanxi, China
| | - Lei Li
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
- ¶School of Basic Medical Sciences, Qingdao University, Qingdao 266021, Shangdong, China
- ‖College of Pharmacy, Qingdao University, Qingdao 26601, Shangdong, China
| | - Courtney Voss
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Eric Liu
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Ningning He
- ¶School of Basic Medical Sciences, Qingdao University, Qingdao 266021, Shangdong, China
- ‖College of Pharmacy, Qingdao University, Qingdao 26601, Shangdong, China
| | - Shawn S-C Li
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada;
- **Department of Oncology and Child Health Research Institute, Western University
| |
Collapse
|