1
|
Jiang H, Ye J. The Warburg effect: The hacked mitochondrial-nuclear communication in cancer. Semin Cancer Biol 2025; 112:93-111. [PMID: 40147702 DOI: 10.1016/j.semcancer.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/23/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Mitochondrial-nuclear communication is vital for maintaining cellular homeostasis. This communication begins with mitochondria sensing environmental cues and transmitting signals to the nucleus through the retrograde cascade, involving metabolic signals such as substrates for epigenetic modifications, ATP and AMP levels, calcium flux, etc. These signals inform the nucleus about the cell's metabolic state, remodel epigenome and regulate gene expression, and modulate mitochondrial function and dynamics through the anterograde feedback cascade to control cell fate and physiology. Disruption of this communication can lead to cellular dysfunction and disease progression, particularly in cancer. The Warburg effect is the metabolic hallmark of cancer, characterized by disruption of mitochondrial respiration and increased lactate generation from glycolysis. This metabolic reprogramming rewires retrograde signaling, leading to epigenetic changes and dedifferentiation, further reprogramming mitochondrial function and promoting carcinogenesis. Understanding these processes and their link to tumorigenesis is crucial for uncovering tumorigenesis mechanisms. Therapeutic strategies targeting these disrupted pathways, including metabolic and epigenetic components, provide promising avenues for cancer treatment.
Collapse
Affiliation(s)
- Haowen Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Cagalinec M, Mohd A, Borecka S, Bultynck G, Choubey V, Yanovsky-Dagan S, Ezer S, Gasperikova D, Harel T, Jurkovicova D, Kaasik A, Liévens JC, Maurice T, Peviani M, Richard EM, Skoda J, Skopkova M, Tarot P, Van Gorp R, Zvejniece L, Delprat B. Improving mitochondria-associated endoplasmic reticulum membranes integrity as converging therapeutic strategy for rare neurodegenerative diseases and cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119954. [PMID: 40216201 DOI: 10.1016/j.bbamcr.2025.119954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/04/2025] [Accepted: 04/06/2025] [Indexed: 04/26/2025]
Abstract
Membrane contact sites harbor a distinct set of proteins with varying biological functions, thereby emerging as hubs for localized signaling nanodomains underlying adequate cell function. Here, we will focus on mitochondria-associated endoplasmic reticulum membranes (MAMs), which serve as hotspots for Ca2+ signaling, redox regulation, lipid exchange, mitochondrial quality and unfolded protein response pathway. A network of MAM-resident proteins contributes to the structural integrity and adequate function of MAMs. Beyond endoplasmic reticulum (ER)-mitochondrial tethering proteins, MAMs contain several multi-protein complexes that mediate the transfer of or are influenced by Ca2+, reactive oxygen species and lipids. Particularly, IP3 receptors, intracellular Ca2+-release channels, and Sigma-1 receptors (S1Rs), ligand-operated chaperones, serve as important platforms that recruit different accessory proteins and intersect with these local signaling processes. Furthermore, many of these proteins are directly implicated in pathophysiological conditions, where their dysregulation or mutation is not only causing diseases such as cancer and neurodegeneration, but also rare genetic diseases, for example familial Parkinson's disease (PINK1, Parkin, DJ-1), familial Amyotrophic lateral sclerosis (TDP43), Wolfram syndrome1/2 (WFS1 and CISD2), Harel-Yoon syndrome (ATAD3A). In this review, we will discuss the current state-of-the-art regarding the molecular components, protein platforms and signaling networks underlying MAM integrity and function in cell function and how their dysregulation impacts MAMs, thereby driving pathogenesis and/or impacting disease burden. We will highlight how these insights can generate novel, potentially therapeutically relevant, strategies to tackle disease outcomes by improving the integrity of MAMs and the signaling processes occurring at these membrane contact sites.
Collapse
Affiliation(s)
- Michal Cagalinec
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Adnan Mohd
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Silvia Borecka
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Geert Bultynck
- KU Leuven, Cellular and Molecular Medicine, Laboratory of Molecular & Cellular Signaling, Campus Gasthuisberg ON-1, Leuven, Belgium
| | - Vinay Choubey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | - Shlomit Ezer
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University Medical Center, Jerusalem, Israel
| | - Daniela Gasperikova
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University Medical Center, Jerusalem, Israel
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Marco Peviani
- Cellular and Molecular Neuropharmacology Lab., Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Martina Skopkova
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pauline Tarot
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Robbe Van Gorp
- KU Leuven, Cellular and Molecular Medicine, Laboratory of Molecular & Cellular Signaling, Campus Gasthuisberg ON-1, Leuven, Belgium
| | | | - Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France.
| |
Collapse
|
3
|
Martin-Vega A, Cobb MH. ERK1/2-MAPK signaling: Metabolic, organellar, and cytoskeletal interactions. Curr Opin Cell Biol 2025; 95:102526. [PMID: 40344863 DOI: 10.1016/j.ceb.2025.102526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/28/2025] [Accepted: 04/10/2025] [Indexed: 05/11/2025]
Abstract
Numerous stimuli activate the extracellular signal-regulated kinases ERK1/2, which phosphorylate a diverse range of substrates, regulating multiple cellular processes. The broad variety of functions controlled by these enzymes is enabled by complex intracellular organization, which requires precise spatiotemporal regulation. Scaffold proteins and the formation of molecular condensates by liquid-liquid phase separation (LLPS) are key in ERK1/2 signal modulation and output. This review provides an overview of ERK1/2 multifaceted actions, with a focus on the cytoskeleton, mitochondria, and metabolism, as well as ERK1/2 regulation by scaffolds and molecular condensates. We highlight recent findings that shed light on ERK1/2 regulation and discuss the implications for cellular functions, disease mechanisms, and therapeutic development.
Collapse
Affiliation(s)
- Ana Martin-Vega
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
| | - Melanie H Cobb
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Kamerkar SC, Liu A, Higgs HN. Mitochondrial fission - changing perspectives for future progress. J Cell Sci 2025; 138:jcs263640. [PMID: 40104946 DOI: 10.1242/jcs.263640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Mitochondrial fission is important for many aspects of cellular homeostasis, including mitochondrial distribution, stress response, mitophagy, mitochondrially derived vesicle production and metabolic regulation. Several decades of research has revealed much about fission, including identification of a key division protein - the dynamin Drp1 (also known as DNM1L) - receptors for Drp1 on the outer mitochondrial membrane (OMM), including Mff, MiD49 and MiD51 (also known as MIEF2 and MIEF1, respectively) and Fis1, and important Drp1 regulators, including post-translational modifications, actin filaments and the phospholipid cardiolipin. In addition, it is now appreciated that other organelles, including the endoplasmic reticulum, lysosomes and Golgi-derived vesicles, can participate in mitochondrial fission. However, a more holistic understanding of the process is lacking. In this Review, we address three questions that highlight knowledge gaps. First, how do we quantify mitochondrial fission? Second, how does the inner mitochondrial membrane (IMM) divide? Third, how many 'types' of fission exist? We also introduce a model that integrates multiple regulatory factors in mammalian mitochondrial fission. In this model, three possible pathways (cellular stimulation, metabolic switching or mitochondrial dysfunction) independently initiate Drp1 recruitment at the fission site, followed by a shared second step in which Mff mediates subsequent assembly of a contractile Drp1 ring. We conclude by discussing some perplexing issues in fission regulation, including the effects of Drp1 phosphorylation and the multiple Drp1 isoforms.
Collapse
Affiliation(s)
- Sukrut C Kamerkar
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Ao Liu
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
5
|
Niu C, Wei H, Pan X, Wang Y, Song H, Li C, Qie J, Qian J, Mo S, Zheng W, Zhuma K, Lv Z, Gao Y, Zhang D, Yang H, Liu R, Wang L, Tu W, Liu J, Chu Y, Luo F. Foxp3 confers long-term efficacy of chimeric antigen receptor-T cells via metabolic reprogramming. Cell Metab 2025:S1550-4131(25)00218-9. [PMID: 40328248 DOI: 10.1016/j.cmet.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 10/14/2024] [Accepted: 04/14/2025] [Indexed: 05/08/2025]
Abstract
The tumor microenvironment, characterized by low oxygen tension and scarce nutrients, impairs chimeric antigen receptor (CAR)-T cell metabolism, leading to T cell exhaustion and dysfunction. Notably, Foxp3 confers a metabolic advantage to regulatory T cells under such restrictive conditions. Exploiting this property, we generated CAR-TFoxp3 cells by co-expressing Foxp3 with a third-generation CAR construct. The CAR-TFoxp3 cells exhibited distinct metabolic reprogramming, marked by downregulated aerobic glycolysis and oxidative phosphorylation coupled with upregulated lipid metabolism. This metabolic shift was driven by Foxp3's interaction with dynamin-related protein 1. Crucially, CAR-TFoxp3 cells did not acquire regulatory T cell immunosuppressive functions but instead demonstrated enhanced antitumor potency and reduced expression of exhaustion markers via Foxp3-mediated adaptation. The potent antitumor effect and absence of immunosuppression were confirmed in a humanized immune system mouse model. Our findings establish a metabolic reprogramming-based strategy to enhance CAR-T cell adaptability within the hostile tumor microenvironment while preserving therapeutic efficacy.
Collapse
Affiliation(s)
- Congyi Niu
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Huan Wei
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xuanxuan Pan
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuedi Wang
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huan Song
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Congwen Li
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jingbo Qie
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jiawen Qian
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Shaocong Mo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanwei Zheng
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Kameina Zhuma
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zixin Lv
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yiyuan Gao
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Dan Zhang
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hui Yang
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ronghua Liu
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wenwei Tu
- Department of Paediatrics & Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jie Liu
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Feifei Luo
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
6
|
Kim HJ, Han CW, Jeong MS, Kwon TJ, Choi JY, Jang SB. Cryo-EM structure of HMGB1-RAGE complex and its inhibitory effect on lung cancer. Biomed Pharmacother 2025; 187:118088. [PMID: 40306174 DOI: 10.1016/j.biopha.2025.118088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025] Open
Abstract
Mitochondrial dysfunction and mitophagy are closely linked with human diseases such as neurodegenerative diseases, metabolic diseases, and cancer. High-mobility group box 1 (HMGB1) has been shown to mediate a wide range of pathological responses by binding with the receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLRs). Extracellular HMGB1 and its ligand RAGE stimulate the growth, metastasis, invasiveness, and treatment resistance of different cancer cells. Through extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, HMGB1 and RAGE lead to the phosphorylation of Drp1-S616 and Drp1-mediated mitochondrial fission, which consequently causes autophagy. Although the structure of the RAGE and HMGB1 complex is not clearly known, the complex has emerged as a potential therapeutic target. In the present study, the structure of the RAGE and HMGB1 complex was determined at a resolution of 5.19 Å using cryogenic electron microscopy. The structure revealed that the residues P66, G70, P71, S74, and R77 in RAGE and E145, K146, E153, and E156 in HMGB1 were the sites of interaction between the two proteins. Additionally, an HMGB1 peptide (151 LKEKYEK 157) was synthesized based on the RAGE-HMGB1 complex. We investigated the inhibitory function of the HMGB1 peptide and demonstrated that it inhibits tumor growth, metastasis, and invasion by binding to the RAGE protein in lung cancers. The HMGB1 peptide significantly suppressed mitochondrial dysfunction and the initiation of autophagy. Furthermore, the HMGB1 peptide dramatically reduced cell viability, migration, and mitophagy in the colorectal and pancreatic cancer cell lines HCT-116 and AsPC-1, respectively.
Collapse
Affiliation(s)
- Hyeon Jin Kim
- Insitute of Systems Biology, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Chang Woo Han
- Insitute of Systems Biology, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Mi Suk Jeong
- Insitute of Systems Biology, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Tae-Jun Kwon
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), 80, Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Jun Young Choi
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), 80, Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Insitute of Systems Biology, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
7
|
Pan J, Liu R, Lu W, Peng H, Yang J, Zhang Q, Yu T, Huo B, Wei X, Liang H, Zhou L, Sun Y, Hu Y, Wen S, Fu J, Chiao PJ, Xia X, Liu J, Huang P. SQLE-catalyzed squalene metabolism promotes mitochondrial biogenesis and tumor development in K-ras-driven cancer. Cancer Lett 2025; 616:217586. [PMID: 40015662 DOI: 10.1016/j.canlet.2025.217586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/13/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
It is well known that activation of oncogenic K-ras alone is insufficient to drive tumor development and that additional factors are needed for full malignant transformation, but the metabolic pathways and regulatory mechanisms that facilitate K-ras-driven cancer development remain to be characterized. Here we show that SQLE, a key enzyme in cholesterol synthesis, is upregulated in K-ras-driven cancer and its high expression is correlated with poor clinical outcome. K-ras regulates SQLE expression in a biphasic manner through reactive oxygen species and MYC signaling. Surprisingly, the pro-oncogenic role of SQLE is not mediated by promoting cholesterol synthesis, but by metabolic removal of squalene and thus mitigating its suppressive effect on the PGC-1α-mediated mitochondrial biogenesis and metabolism. Genetic silencing of SQLE in pancreatic cancer cells causes an accumulation of cellular squalene, which binds to Sp1 protein and causes a formation of a tight Sp1-TFAP2E promoter DNA complex with a highly negative binding score. This aberrant squalene/Sp1/TFAP2E promoter complex hinders the expression of TFAP2E and its downstream molecule PGC-1α, leading to suppression of mitochondrial metabolism and an almost complete inhibition of tumor formation in vivo. Importantly, administration of pharmacological squalene to mice bearing pancreatic cancer xenografts could significantly inhibit tumor growth. Our study has revealed a previously unrecognized role of SQLE in regulating gene expression and mitochondrial metabolism to facilitate K-ras-driven cancer development, and identified SQLE as a novel therapeutic target for potential treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Junchen Pan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Rui Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Wenhua Lu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Hongyu Peng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Jing Yang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Qianrui Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Tiantian Yu
- Metabolic Innovation Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bitao Huo
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China; Metabolic Innovation Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoying Wei
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Haixi Liang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Lin Zhou
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Yameng Sun
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Yumin Hu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Shijun Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Jie Fu
- Department of Cellular and Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul J Chiao
- Department of Cellular and Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaojun Xia
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Jinyun Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China; Hainan Academy of Biomedical Sciences, Hainan Medical University, Haiko, Hainan, China.
| | - Peng Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China; Metabolic Innovation Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Yates J, Kraft A, Boeva V. Filtering cells with high mitochondrial content depletes viable metabolically altered malignant cell populations in cancer single-cell studies. Genome Biol 2025; 26:91. [PMID: 40205439 PMCID: PMC11983838 DOI: 10.1186/s13059-025-03559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Single-cell transcriptomics has transformed our understanding of cellular diversity, yet noise from technical artifacts and low-quality cells can obscure key biological signals. A common practice is filtering out cells with a high percentage of mitochondrial RNA counts (pctMT), typically indicative of cell death. However, commonly used filtering thresholds, primarily derived from studies on healthy tissues, may be overly stringent for malignant cells, which often naturally exhibit higher baseline mitochondrial gene expression. RESULTS We examine nine public single-cell RNA-seq datasets from various cancers, including 441,445 cells from 134 patients, and public spatial transcriptomics data, assessing the viability of malignant cells with high pctMT. Our analysis reveals that malignant cells exhibit significantly higher pctMT than nonmalignant cells, without a notable increase in dissociation-induced stress scores. Malignant cells with high pctMT show metabolic dysregulation, including increased xenobiotic metabolism, relevant to therapeutic response. Analysis of pctMT in cancer cell lines further reveals links to drug resistance. We also observe associations between pctMT and malignant cell transcriptional heterogeneity, as well as patient clinical features. CONCLUSIONS This study provides insights into the functional characteristics of malignant cells with elevated pctMT, challenging current quality control practices in tumor single-cell RNA-seq analyses and offering potential improvements in data interpretation for future cancer studies.
Collapse
Affiliation(s)
- Josephine Yates
- Department of Computer Science, Institute for Machine Learning, ETH Zürich, Zurich, CH-8092, Switzerland
- ETH AI Center, Zurich, Switzerland
- Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland
| | - Agnieszka Kraft
- Department of Computer Science, Institute for Machine Learning, ETH Zürich, Zurich, CH-8092, Switzerland
- Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Valentina Boeva
- Department of Computer Science, Institute for Machine Learning, ETH Zürich, Zurich, CH-8092, Switzerland.
- ETH AI Center, Zurich, Switzerland.
- Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland.
- Cochin Institute, Inserm U1016, CNRS UMR 8104, Paris Descartes University UMR-S1016, Paris, 75014, France.
| |
Collapse
|
9
|
Wang N, Wang X, Lan B, Gao Y, Cai Y. DRP1, fission and apoptosis. Cell Death Discov 2025; 11:150. [PMID: 40195359 PMCID: PMC11977278 DOI: 10.1038/s41420-025-02458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 03/15/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Mitochondrial fission is a critical physiological process in eukaryotic cells, participating in various vital activities such as mitosis, mitochondria quality control, and mitophagy. Recent studies have revealed a tight connection between mitochondrial fission and the mitochondrial metabolism, as well as apoptosis, which involves multiple cellular events and interactions between organelles. As a pivotal molecule in the process of mitochondrial fission, the function of DRP1 is regulated at multiple levels, including transcription, post-translational modifications. This review follows the guidelines for Human Gene Nomenclature and will focus on DRP1, discussing its activity regulation, its role in mitochondrial fission, and the relationship between mitochondrial fission and apoptosis.
Collapse
Affiliation(s)
- Nan Wang
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xinwai Wang
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Beiwu Lan
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yufei Gao
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Yuanyuan Cai
- The First Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
10
|
Song Z, Cui Y, Xin L, Xiao R, Feng J, Li C, Yin Z, Wang H, Li Q, Wang M, Lin B, Zhang Y, Zhou Y, Huang L, He Y, Li X, Liu X, Liu S, Zhou F, Liu Z, Zhou HB, Fang P, Liang K. Mechano-oncogenic cytoskeletal remodeling drives leukemic transformation with mitochondrial vesicle-mediated STING activation. Cell Stem Cell 2025; 32:581-597.e11. [PMID: 39986274 DOI: 10.1016/j.stem.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/12/2024] [Accepted: 01/25/2025] [Indexed: 02/24/2025]
Abstract
Mitochondria are integrated within the cytoskeleton for structural integrity and functional regulation, yet the pathological exploitation of these interactions in cell fate decisions remains largely unexplored. Here, we identify a cytoskeleton-mitochondria remodeling mechanism underlying leukemic transformation by the core-binding factor subunit beta and smooth muscle myosin heavy-chain fusion (CBFβ-SMMHC). This chimera reconstructs a cytosolic filamentous cytoskeleton, inducing NMIIA phosphorylation and INF2-dependent filamentous actin (F-actin) assembly, which enhance cellular stiffness and tension, leading to calcium-mediated mitochondrial constriction, termed cytoskeletal co-option of mitochondrial constriction (CCMC). CCMC can also be triggered through diverse approaches independent of CBFβ-SMMHC, reconstructing a similar cytoskeleton and recapitulating acute myeloid leukemia (AML) with consistent immunophenotypes and inflammatory signatures. Notably, CCMC generates TOM20-PDH+mtDNA+ mitochondrial-derived vesicles that activate cGAS-STING signaling, with Sting knockout abrogating CCMC-induced leukemogenesis. Targeted inhibition of CCMC or STING suppresses AML propagation while sparing normal hematopoiesis. These findings establish CCMC as an intrinsic mechano-oncogenic process linking genetic mutations with cytoskeletal remodeling to oncogenic transformation, highlighting its promise as a therapeutic target.
Collapse
Affiliation(s)
- Zemin Song
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yali Cui
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Lilan Xin
- State Key Laboratory of Virology and Biosafety, Frontier Science Center for Immunology and Metabolism, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Ruijing Xiao
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jingjing Feng
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Conghui Li
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhinang Yin
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Honghong Wang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiuzi Li
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Mengxuan Wang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Baoyi Lin
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yiming Zhang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ying Zhou
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Li Huang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yanli He
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoqing Li
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoyan Liu
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shangqin Liu
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Zheng Liu
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hai-Bing Zhou
- State Key Laboratory of Virology and Biosafety, Frontier Science Center for Immunology and Metabolism, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Pingping Fang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Kaiwei Liang
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
11
|
Choi GE, Park JY, Park MR, Chae CW, Jung YH, Lim JR, Yoon JH, Cho JH, Han HJ. Restoration of Miro1's N-terminal GTPase function alleviates prenatal stress-induced mitochondrial fission via Drp1 modulation. Cell Commun Signal 2025; 23:166. [PMID: 40176126 PMCID: PMC11967123 DOI: 10.1186/s12964-025-02172-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Prenatal stress exposure irreversibly impairs mitochondrial dynamics, including mitochondrial trafficking and morphology in offspring, leading to neurodevelopmental and neuropsychiatric disorders in adulthood. Thus, understanding the molecular mechanism controlling mitochondrial dynamics in differentiating neurons is crucial to prevent the prenatal stress-induced impairments in behavior. We investigated the interplay between mitochondrial transport and fusion/fission in differentiating neurons exposed to prenatal stress, leading to ensuing behavior impairments, and then tried to identify the primary regulator that modulates both phenomena. METHODS We used primary hippocampal neurons of mice exposed to prenatal stress and human induced-pluripotent stem cell (hiPSC)-derived neurons, for investigating the impact of glucocorticoid on mitochondrial dynamics during differentiation. For constructing mouse models, we used AAV vectors into mouse pups exposed to prenatal stress to regulate protein expressions in hippocampal regions. RESULTS We first observed that prenatal exposure to glucocorticoids induced motility arrest and fragmentation of mitochondria in differentiating neurons derived from mouse fetuses (E18) and human induced pluripotent stem cells (hiPSCs). Further, glucocorticoid exposure during neurogenesis selectively downregulated Miro1 and increased Drp1 phosphorylation (Ser616). MIRO1 overexpression restored mitochondrial motility and increased intramitochondrial calcium influx through ER-mitochondria contact (ERMC) formation. Furthermore, we determined that the N-terminal GTPase domain of Miro1 plays a critical role in ERMC formation, which then decreased Drp1 phosphorylation (Ser616). Similarly, prenatal corticosterone exposure led to impaired neuropsychiatric and cognitive function in the offspring by affecting mitochondrial distribution and synaptogenesis, rescued by Miro1WT, but not N-terminal GTPase active form Miro1P26V, expression. CONCLUSION Prenatal glucocorticoid-mediated Miro1 downregulation contributes to dysfunction in mitochondrial dynamics through Drp1 phosphorylation (Ser616) in differentiating neurons.
Collapse
Affiliation(s)
- Gee Euhn Choi
- Laboratory of Veterinary Biochemistry, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, South Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, South Korea
| | - Ji Yong Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Mo Ran Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Chang Woo Chae
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, South Korea
| | - Young Hyun Jung
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Jae Ryong Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Jee Hyeon Yoon
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Ji Hyeon Cho
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
12
|
Lee HJ, Lim SH, Lee H, Han JM, Min DS. Phospholipase D6 activates Wnt/β-catenin signaling through mitochondrial metabolic reprogramming to promote tumorigenesis in colorectal cancer. Exp Mol Med 2025; 57:910-924. [PMID: 40259095 PMCID: PMC12046002 DOI: 10.1038/s12276-025-01446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/24/2025] [Accepted: 02/18/2025] [Indexed: 04/23/2025] Open
Abstract
Phospholipase D6 (PLD6) is a critical enzyme involved in mitochondrial fusion with a key role in spermatogenesis. However, the role of PLD6 in cancer remains unknown. Notably, Wnt signaling, energy metabolism and mitochondrial function show complex interactions in colorectal cancer (CRC) progression. Here we found that PLD6 is highly expressed in CRC and positively correlated with poor prognosis. We present a novel function of PLD6 in activating Wnt/β-catenin signaling by enhancing mitochondrial metabolism. PLD6 depletion suppresses the oncogenic properties of CRC cells and impairs mitochondrial respiration, leading to reduced mitochondrial length, membrane potential, calcium levels and reactive oxygen species. PLD6 depletion also disrupts mitochondrial metabolic reprogramming by inhibiting the tricarboxylic acid cycle and mitochondrial oxidative phosphorylation, resulting in altered intracellular levels of citrate and acetyl-CoA-both key modulators of Wnt/β-catenin activation. PLD6-mediated acetyl-CoA production enhances β-catenin stability by promoting its acetylation via the acetyltransferases CREB-binding protein and P300/CREB-binding-protein-associated factor. Consequently, PLD6 ablation reduces cancer stem cell-associated gene expression downstream of Wnt/β-catenin signaling, suppressing stem-like traits and chemoresistance to 5-fluorouracil. Furthermore, PLD6 depletion attenuates CRC tumorigenesis in both subcutaneous and orthotopic tumor models. Overall, PLD6 acts as an oncogenic switch by promoting mitochondria-mediated retrograde signaling, thereby regulating Wnt signaling in CRC.
Collapse
Affiliation(s)
- Hyun Ji Lee
- Department of Pharmacy, Yonsei University, Incheon, South Korea
| | - Seong Hun Lim
- Department of Pharmacy, Yonsei University, Incheon, South Korea
| | - Hyesung Lee
- Department of Pharmacy, Yonsei University, Incheon, South Korea
| | - Jung Min Han
- Department of Pharmacy, Yonsei University, Incheon, South Korea
- Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, South Korea
| | - Do Sik Min
- Department of Pharmacy, Yonsei University, Incheon, South Korea.
- Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, South Korea.
| |
Collapse
|
13
|
Zhao X, Wu G, Tao X, Dong D, Liu J. Targeted mitochondrial therapy for pancreatic cancer. Transl Oncol 2025; 54:102340. [PMID: 40048984 PMCID: PMC11928980 DOI: 10.1016/j.tranon.2025.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/05/2025] [Accepted: 02/27/2025] [Indexed: 03/18/2025] Open
Abstract
Pancreatic cancer (PC) is a highly invasive tumor characterized by delayed diagnosis, rapid progress, and resistance to chemotherapy. Mitochondria, as the "power chamber" of cells, not only play a central role in energy metabolism but also participate in the production of reactive oxygen species (ROS), calcium signaling, regulation, and differentiation of the cell cycle. The abnormal activity of mitochondria is closely related to the development of PC. In this paper, we discussed the key role of mitochondria in PC, including mitochondrial DNA, mitochondrial biogenesis, mitochondrial dynamics, metabolic regulation, ROS generation, and mitochondrial-dependent apoptosis. We elaborated on the importance of these mitochondrial mechanisms in the development of PC and emphasized the potential of targeted mitochondrial therapy strategies for these mechanisms in the treatment of PC. In addition, this article also reviews the latest developments in innovative drug carriers such as cell-penetrating peptides, nucleic acid aptamers, and nanomaterials, which can achieve precise localization of mitochondria and drug delivery. Therefore, this article comprehensively analyzed the important role of mitochondria in the treatment of PC and clarified the effectiveness and necessity of targeting mitochondria in the treatment of PC.
Collapse
Affiliation(s)
- Xinya Zhao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Guoyu Wu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
14
|
Zhou M, Tian M, Li Z, Wang C, Guo Z. Overview of splicing variation in ovarian cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189288. [PMID: 39993511 DOI: 10.1016/j.bbcan.2025.189288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Ovarian cancer remains one of the deadliest gynecological malignancies, with a persistently high mortality rate despite promising advancements in immunotherapy. Aberrant splicing events play a crucial role in cancer heterogeneity and treatment resistance. Many splicing variants, especially those involving key molecular markers such as BRCA1/2, are closely linked to disease progression and treatment outcomes. These variants and related splicing factors hold significant clinical value as diagnostic and prognostic biomarkers and therapeutic targets. This review provides a comprehensive overview of splicing variants in ovarian cancer, emphasizing their role in metastasis and resistance, and offers insights to advance biomarker development and treatment strategies.
Collapse
Affiliation(s)
- Min Zhou
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mengdie Tian
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhuoer Li
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunli Wang
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiqiang Guo
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
15
|
Mohan AA, Talwar P. MAM kinases: physiological roles, related diseases, and therapeutic perspectives-a systematic review. Cell Mol Biol Lett 2025; 30:35. [PMID: 40148800 PMCID: PMC11951743 DOI: 10.1186/s11658-025-00714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Mitochondria-associated membranes (MAMs) are tethering regions amid the membranes of the endoplasmic reticulum (ER) and mitochondria. They are a lipid raft-like structure occupied by various proteins that facilitates signal transduction between the two organelles. The MAM proteome participates in cellular functions such as calcium (Ca2+) homeostasis, lipid synthesis, ER stress, inflammation, autophagy, mitophagy, and apoptosis. The human kinome is a superfamily of homologous proteins consisting of 538 kinases. MAM-associated kinases participate in the aforementioned cellular functions and act as cell fate executors. Studies have proved the dysregulated kinase interactions in MAM as an etiology for various diseases including cancer, diabetes mellitus, neurodegenerative diseases, cardiovascular diseases (CVDs), and obesity. Several small kinase inhibitory molecules have been well explored as promising drug candidates in clinical trials with an accelerating impact in the field of precision medicine. This review narrates the physiological actions, pathophysiology, and therapeutic potential of MAM-associated kinases with recent updates in the field.
Collapse
Affiliation(s)
- A Anjana Mohan
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
16
|
Mehmood T, Nasir Q, Younis I, Muanprasat C. Inhibition of Mitochondrial Dynamics by Mitochondrial Division Inhibitor-1 Suppresses Cell Migration and Metastatic Markers in Colorectal Cancer HCT116 Cells. J Exp Pharmacol 2025; 17:143-157. [PMID: 40124420 PMCID: PMC11929422 DOI: 10.2147/jep.s510578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/23/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction The mitochondria are highly dynamic organelles. The mitochondrial morphology and spatial distribution within the cell is determined by fusion and fission processes of mitochondria. Several studies have used mitochondrial division inhibitor-1 (Mdivi.1) to explore the roles of mitochondrial dynamics in various pathological conditions, including diabetic cardiomyopathy, myocardial infarction, cardiac hypertrophy, Alzheimer's disease, Huntington's disease and cancers. Purpose The objective of the study was to investigate the role of mitochondrial dynamics in the invasiveness of HCT116 colorectal cancer cells. Material and Methods MTT assay was used to determine the Mdivi.1-induced toxicity in HCT116 cells. Wound healing, cell migration and colony forming assays were adopted to measure the migration and invasion activity of HCT116 cells. Furthermore, flow cytometry was used to determine the Mdivi.1-induced mitochondrial mass quantification, mitochondrial membrane potential and reactive oxygen species generation in HCT116 cells. Additionally, Western Blot analysis was used to determine the expression level of Drp1, p-Drp1, Mnf2, AMPK-α, p-AMPK-α, Cox-2, iNos and MMP9 in HCT116 cells. Results We found that Mdivi.1 induced toxicity and altered the morphology of HCT116 cells in concentration- and time-dependent manners. Mdivi.1 significantly increased mitochondrial mass and dissipated the mitochondrial membrane potential. Furthermore, Mdivi.1 induced reactive oxygen species (ROS) generation and mitochondrial superoxide production, leading to AMPK activation. Moreover, Mdivi.1 decreased dynamin-related protein-1 (Drp1) and phosphorylated-Drp1 expression and increased mitofusin-2 (Mfn2) expression in a concentration-dependent manner at 48 and 72 h post-treatment. Notably, Mdivi.1 induced inhibition of translocation of Drp1 from the cytosol to the outer mitochondrial membrane. Mdivi.1 significantly suppressed the invasion and migration of HCT116 cells and inhibited the formation of HCT116 cell colonies. In addition, Mdivi.1 significantly decreased the expression of metastatic markers including Cox-2, iNos, and MMP-9 in HCT116 cells. Conclusion Collectively, this study revealed that Mdivi.1 downregulates Drp1, upregulates Mfn2, and increases mitochondrial mass with attenuated oxidative metabolism, leading to the inhibition of cell invasion and metastasis in colorectal cancer HCT116 cells. Mitochondrial dynamics are regarded as possible drug targets for interrupting colorectal cancer cell migration and metastasis.
Collapse
Affiliation(s)
- Tahir Mehmood
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangpla, Bangplee, Samut Prakarn, Thailand
- Department of Biological Sciences, Superior University, Lahore, Punjab, Pakistan
| | - Qandeel Nasir
- Department of Biological Sciences, Superior University, Lahore, Punjab, Pakistan
| | - Iqra Younis
- Department of Biological Sciences, Superior University, Lahore, Punjab, Pakistan
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangpla, Bangplee, Samut Prakarn, Thailand
| |
Collapse
|
17
|
do Prado-Souza LFL, Ferraz LS, Citrangulo Tortelli T, Ribeiro CAJ, do Amaral DT, Arruda DC, de Oliveira ÉA, Chammas R, Maria-Engler SS, Rodrigues T. Exploiting Paradoxical Activation of Oncogenic MAPK Signaling by Targeting Mitochondria to Sensitize NRAS Mutant-Melanoma to Vemurafenib. Int J Mol Sci 2025; 26:2675. [PMID: 40141318 PMCID: PMC11942190 DOI: 10.3390/ijms26062675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Vemurafenib is a BRAF (rapidly accelerated fibrosarcoma B-type)-targeted therapy used to treat patients with advanced, unresectable melanoma. It inhibits the MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-regulated kinase) pathway and tumor proliferation in BRAFV600E-mutated melanoma cells. Resistance to vemurafenib has been reported in melanoma patients due to secondary NRAS (neuroblastoma RAS viral oncogene homolog) mutations, which lead to paradoxical MAPK pathway activation and tumor proliferation. However, the impact of this paradoxical activation on mitochondrial dynamics and function in NRAS-mutated melanoma is unclear. Here, we investigated the effects of vemurafenib on NRASQ61R-mutated melanoma cells, focusing on mitochondrial dynamics and function. As expected, vemurafenib did not exhibit cytotoxicity in SK-MEL-147 NRASQ61R-mutated melanoma cells, even after 72 h of incubation. However, it significantly enhanced the MAPK/ERK signaling through paradoxical activation, accompanied by decreased expression of mitochondrial fusion proteins and activation of the fission protein DRP1 (dynamin-related protein 1), leading to small, rounded mitochondrial morphology. These observations were corroborated by transcriptome data obtained from NRAS-mutated melanoma patients, showing MFN1 (mitofusin 1) and OPA1 (optic atrophy 1) downregulation and DNM1L (DRP1 gene) upregulation. Interestingly, inhibition of mitochondrial fission with mdivi-1 or modulation of oxidative phosphorylation via respiratory chain inhibition or uncoupling significantly sensitized NRASQ61R-mutated melanoma cells to vemurafenib. Despite vemurafenib's low cytotoxicity in NRAS-mutated melanoma, targeting mitochondrial dynamics and/or oxidative phosphorylation may offer a promising strategy for combined therapy.
Collapse
Affiliation(s)
- Laura Francisca Leite do Prado-Souza
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, Sao Paulo 09210-580, Brazil; (L.F.L.d.P.-S.); (L.S.F.); (C.A.J.R.); (D.T.d.A.)
| | - Letícia Silva Ferraz
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, Sao Paulo 09210-580, Brazil; (L.F.L.d.P.-S.); (L.S.F.); (C.A.J.R.); (D.T.d.A.)
| | - Tharcísio Citrangulo Tortelli
- Center for Translational Research in Oncology (LIM24), Cancer Institute of the State of Sao Paulo (ICESP), Clinical Hospital of the University of Sao Paulo Medical School (HCFMUSP), Sao Paulo 01246-000, Brazil; (T.C.T.J.); (R.C.)
- Comprehensive Center for Precision Oncology, University of São Paulo, Sao Paulo 05508-220, Brazil
| | - César Augusto João Ribeiro
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, Sao Paulo 09210-580, Brazil; (L.F.L.d.P.-S.); (L.S.F.); (C.A.J.R.); (D.T.d.A.)
| | - Danilo Trabuco do Amaral
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, Sao Paulo 09210-580, Brazil; (L.F.L.d.P.-S.); (L.S.F.); (C.A.J.R.); (D.T.d.A.)
| | - Denise Costa Arruda
- Integrated Biotechnology Nucleus (NIB), University of Mogi das Cruzes (UMC), Mogi das Cruzes, Sao Paulo 08780-911, Brazil;
| | | | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Cancer Institute of the State of Sao Paulo (ICESP), Clinical Hospital of the University of Sao Paulo Medical School (HCFMUSP), Sao Paulo 01246-000, Brazil; (T.C.T.J.); (R.C.)
- Comprehensive Center for Precision Oncology, University of São Paulo, Sao Paulo 05508-220, Brazil
| | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-220, Brazil;
| | - Tiago Rodrigues
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, Sao Paulo 09210-580, Brazil; (L.F.L.d.P.-S.); (L.S.F.); (C.A.J.R.); (D.T.d.A.)
| |
Collapse
|
18
|
Wang Y, Wang Y, Zhang W. Dysregulation of Mitochondrial in Pulmonary Hypertension-Related Right Ventricular Remodeling: Pathophysiological Features and Targeting Drugs. Rev Cardiovasc Med 2025; 26:25781. [PMID: 40160582 PMCID: PMC11951289 DOI: 10.31083/rcm25781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/14/2024] [Accepted: 11/29/2024] [Indexed: 04/02/2025] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening condition characterized by right ventricular (RV) remodeling, which is a major determinant of patient survival. The progression of right ventricular remodeling is significantly influenced by mitochondrial dysfunction, providing profound insights into vascular health and cardiovascular risk. In this review, we discuss the molecular targets, pathophysiological characteristics, and potential mechanisms underlying mitochondrial dysfunction in PH, encompassing disturbances in mitochondrial dynamics, inflammation, and dysregulation of mitochondrial energy metabolism. Finally, we review the primary therapeutic targets currently utilized to address cardiac dysfunction resulting from mitochondrial damage. Hopefully, this might inspire novel approaches to the management of cardiovascular disorders.
Collapse
Affiliation(s)
- Yuehan Wang
- Departments of Pharmacy, The Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
- Huankui Academy, Nanchang University, 330036 Nanchang, Jiangxi, China
| | - Yingzhuo Wang
- The First Clinical Medical College, Nanchang University, 330036 Nanchang, Jiangxi, China
| | - Weifang Zhang
- Departments of Pharmacy, The Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
- Huankui Academy, Nanchang University, 330036 Nanchang, Jiangxi, China
| |
Collapse
|
19
|
Li J, Zhang X, Hou L, Liu BY, Fan YM, Zhang Y, Wang F, Jia K, Li X, Tang Z, Yin X. Proteomic analysis reveals QiShenYiQi Pills ameliorates ischemia-induced heart failure through inhibition of mitochondrial fission. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156435. [PMID: 39892313 DOI: 10.1016/j.phymed.2025.156435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND QiShenYiQi Pills (QSYQ) has widely used in clinical treatment of cardiovascular diseases; however, the exact mechanism behind its effectiveness still requires further investigation. PURPOSE The purpose of the study was to explore the potential mechanism of QSYQ in the treatment of ischemic heart failure from the perspective of proteomics. METHODS In vivo, to observe QSYQ actions on the progression of ischemia-induced heart failure, cardiac function and remodeling was analyzed. The heart tissues of mice were used for Tandem Mass Tag (TMT)-based proteomic analysis. Cardiomyocytes were prepared and subjected to oxygen-glucose deprivation injury. QSYQ effects on differential proteins expressions, mitochondrial fission and mitochondrial function were assayed. RESULTS QSYQ treatment preserved cardiac function, limited cardiac fibrosis and alleviated cardiomyocyte hypertrophy in post-myocardial ischemia mice. Proteomic analysis revealed that QSYQ-responsive proteins were mainly involved in mitochondrial fission, including mitochondrial calcium uniporter (MCU), membrane associated ring-CH-type finger 5 (MARCHF5), and mitochondrial fission process 1 (MTFP1). Protein-protein interaction analysis revealed that MCU, MARCHF5 and MTFP1 commonly interacted with dynamin-related protein 1 (DRP1). Knockdown of MCU, MARCHF5, or MTFP1 attenuated excessive mitochondrial fission in cardiomyocytes through regulating DRP1 phosphorylation and its mitochondrial translocation. QSYQ decreased the phosphorylation of DRP1 at Ser616 and enhanced its inhibitory phosphorylation at Ser637, as well as mitigating the mitochondrial recruitment and oligomerization of DRP1, through downregulation of these three differential proteins. As a result, QSYQ alleviated aberrant mitochondrial fission, ameliorated mitochondrial dysfunction, and protected cardiomyocytes from ischemic injury. CONCLUSION The novelty lies in the proteomics-based investigation of the mechanism of QSYQ, uncovering that QSYQ mitigated ischemia-induced heart failure by suppressing MCU/MARCHF5/MTFP1-DRP1-driven mitochondrial fission.
Collapse
Affiliation(s)
- Jia Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China.
| | - Xinyao Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Liuqing Hou
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Bo-Yu Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Yuan-Ming Fan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Yajun Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Feizuo Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Keke Jia
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Xiang Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Zongxiang Tang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China.
| | - Xiaojian Yin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China; Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
20
|
Kovacheva E, Gevezova M, Mehterov N, Kazakova M, Sarafian V. The Intersection of Mitophagy and Autism Spectrum Disorder: A Systematic Review. Int J Mol Sci 2025; 26:2217. [PMID: 40076836 PMCID: PMC11899999 DOI: 10.3390/ijms26052217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental and biobehavioral conditions that arises from complex interactions between environmental factors and physiological development in genetically predisposed individuals. Among the most frequently observed metabolic abnormalities in ASD is mitochondrial dysfunction. Mitochondria respond to cellular stress by altering their dynamics or initiating mitophagy. In neurons, the buildup of dysfunctional mitochondria and reactive oxygen species (ROS) poses a significant risk, as these cells cannot regenerate through division. To safeguard mitochondrial health, cells rely on an efficient "clean-up mechanism" to remove compromised organelles. Mitophagy, a specific form of autophagy, is responsible for regulating the turnover of flawed and non-functional mitochondria. Impairments in this process result in the accumulation of defective mitochondria in neurons, a characteristic of several neurodegenerative disorders associated with behavioral abnormalities. This systematic review offers an in-depth summary of the present knowledge of mitophagy and underscores its pivotal role in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Eleonora Kovacheva
- Department of Medical Biology, Faculty of Medicine, Medical University—Plovdiv, 4000 Plovdiv, Bulgaria; (E.K.); (M.G.); (N.M.); (M.K.)
- Research Institute, Medical University—Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Gevezova
- Department of Medical Biology, Faculty of Medicine, Medical University—Plovdiv, 4000 Plovdiv, Bulgaria; (E.K.); (M.G.); (N.M.); (M.K.)
- Research Institute, Medical University—Plovdiv, 4000 Plovdiv, Bulgaria
| | - Nikolay Mehterov
- Department of Medical Biology, Faculty of Medicine, Medical University—Plovdiv, 4000 Plovdiv, Bulgaria; (E.K.); (M.G.); (N.M.); (M.K.)
- Research Institute, Medical University—Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Kazakova
- Department of Medical Biology, Faculty of Medicine, Medical University—Plovdiv, 4000 Plovdiv, Bulgaria; (E.K.); (M.G.); (N.M.); (M.K.)
- Research Institute, Medical University—Plovdiv, 4000 Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Faculty of Medicine, Medical University—Plovdiv, 4000 Plovdiv, Bulgaria; (E.K.); (M.G.); (N.M.); (M.K.)
- Research Institute, Medical University—Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
21
|
Ma X, Wei X, Niu M, Zhang C, Peng Z, Liu W, Yan J, Su X, Lu S, Cui W, Sesaki H, Zong WX, Ni HM, Ding WX. Disruption of Mitochondrial Dynamics and Stasis Leads to Liver Injury and Tumorigenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637688. [PMID: 39990472 PMCID: PMC11844448 DOI: 10.1101/2025.02.11.637688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Background & Aims Mitochondrial dysfunction has been implicated in aging and various cancer development. As highly dynamic organelles, mitochondria constantly undergo fission, mediated by dynamin-related protein 1 (DRP1, gene name Dnm1l ), and fusion, regulated by mitofusin 1 (MFN1), MFN2, and optic atrophy 1 (OPA1). However, whether and how dysregulation of mitochondria dynamics would be involved in liver pathogenesis and tumorigenesis is unknown. Methods Dnm1l Flox/Flox ( Dnm1l F/F ), Mfn1 F/F and Mfn2 F/F mice were crossed with albumin-Cre mice to generate liver-specific Dnm1l knockout (L- Dnm1l KO), L- Mfn1 KO, L- Mfn2 KO, L- Mfn1, Mfn2 double KO (DKO), and L- Mfn1, Mfn2, Dnm1l triple KO (TKO) mice. These mice were housed for various periods up to 18 months. Some mice also received hydrodynamic tail vein injections of a Sleeping Beauty transposon-transposase plasmid system with c-MYC and YAP . Blood and liver tissues were harvested for biochemical and histological analysis. Results L- Dnm1l KO mice had elevated serum alanine aminotransferase levels and increased hepatic fibrosis as early as two months of age. By 12 to 18 months, male L- Dnm1l KO mice developed spontaneous liver tumors, primarily hepatocellular adenomas. While female L- Dnm1l KO mice also developed liver tumors, their incidence was much lower. In contrast, neither L- Mfn1 KO nor L- Mfn2 KO mice had notable liver injury or tumorigenesis. However, a small portion of DKO mice developed tumors at 15-18 month-old. Increased DNA damage, senescence and compensatory proliferation were observed in L- Dnm1l KO mice but were less evident in L- Mfn1 KO, L- Mfn2 KO or DKO mice, indicating that mitochondrial fission is more important to maintain hepatocyte homeostasis and prevent liver tumorigenesis. Interestingly, further deletion of Mfn1 and Mfn2 in L- Dnm1l KO mice markedly abolished liver injury, fibrosis, and both spontaneous and oncogene-induced tumorigenesis. RNA sequencing and metabolomics analysis revealed significant activation of the cGAS-STING-interferon pathway and alterations in the tumor microenvironment pathways, alongside increased pyrimidine synthesis and metabolism in the livers of L- Dnm1l KO mice. Notably, the changes in gene expression and pyrimidine metabolism were considerably corrected in the TKO mice. Conclusions Mitochondrial dynamics and stability are essential for maintaining hepatic mitochondrial homeostasis and hepatocyte functions. Loss of hepatic DRP1 promotes liver tumorigenesis by increasing pyrimidine metabolism and activating the cGAS-STING-mediated innate immune response.
Collapse
|
22
|
Kim SH, Park WY, Song G, Park JY, Jung SJ, Ahn KS, Um JY. 4-hydroxybenzoic acid induces browning of white adipose tissue through the AMPK-DRP1 pathway in HFD-induced obese mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156353. [PMID: 39799892 DOI: 10.1016/j.phymed.2024.156353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Beige adipocytes have physiological functions similar to brown adipocytes, which are available to increase energy expenditure through uncoupling protein 1 (UCP1) within mitochondria. Recently, many studies showed white adipocytes can undergo remodeling into beige adipocytes, called "browning", by increasing fusion and fission events referred to as mitochondrial dynamics. PURPOSE In this study, we aimed to investigate the browning effects of 4-hydroxybenzoic acid (4-HA), one of the major compounds of black raspberries. METHODS We examined the mechanism underlying the browning properties of 4-HA focusing on UCP1-dependent non-shivering thermogenesis in 3T3-L1 white adipocytes, high-fat diet (HFD)-induced obese male C57BL/6J mice, and cold-exposed male C57BL/6J mice. RESULTS 4-HA treatment elevates browning markers such as UCP1, T-Box transcription factor 1, and PR domain containing 16, mitochondrial function factors like oxidative phosphorylation complex as well as mitochondrial dynamic-related factors like phosphorylated dynamin-related protein 1 (p-DRP1), DRP1, and mitofusin 1 in 3T3-L1 white adipocytes, which were also confirmed in inguinal white adipose tissue (iWAT) of HFD-induced obese mice. Mdivi-1 blocked the increased DRP1-mediated mitochondrial fission by 4-HA, and even the browning effect of 4-HA was abolished. Furthermore, 4-HA increased AMP-activated protein kinase (AMPK) in both the 3T3-L1 white adipocytes and iWAT of HFD-induced obese mice. Inhibition of AMPK with Compound C also blocked the 4-HA-induced mitochondrial fission and browning effect. CONCLUSIONS 4-HA induces the browning of white adipocytes into beige adipocytes by regulating the DRP1-mediated mitochondrial dynamics through AMPK. These findings suggest that 4-HA could serve as a therapeutic candidate for obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Sang Hee Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 02447, Seoul, South Korea
| | - Woo Yong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea
| | - Gahee Song
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea
| | - Ja Yeon Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 02447, Seoul, South Korea
| | - Se Jin Jung
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 02447, Seoul, South Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 02447, Seoul, South Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 02447, Seoul, South Korea; Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea.
| |
Collapse
|
23
|
Ghiglione N, Abbo D, Bushunova A, Costamagna A, Porporato PE, Martini M. Metabolic plasticity in pancreatic cancer: The mitochondrial connection. Mol Metab 2025; 92:102089. [PMID: 39736443 PMCID: PMC11846432 DOI: 10.1016/j.molmet.2024.102089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Cellular metabolism plays a pivotal role in the development and progression of pancreatic ductal adenocarcinoma (PDAC), with dysregulated metabolic pathways contributing to tumorigenesis and therapeutic resistance. Distinct metabolic heterogeneity in pancreatic cancer significantly impacts patient prognosis, as variations in metabolic profiles influence tumor behavior and treatment responses. SCOPE OF THE REVIEW This review explores the intricate interplay between mitochondrial dynamics, mitophagy, and cellular metabolism in PDAC. We discuss the significance of mitophagy dysregulation in PDAC pathogenesis, emphasizing its influence on treatment responses and prognosis. Furthermore, we analyze the impact of mitochondrial dynamics alterations, including fission and fusion processes, on PDAC progression and tumorigenesis. MAJOR CONCLUSION Targeting mitochondrial metabolism holds promise for advancing PDAC therapeutics. Ongoing clinical trials underscore the therapeutic potential of modulating key regulators of mitochondrial dynamics and mitophagy. Despite inherent challenges, these approaches offer diverse strategies to enhance treatment efficacy and improve patient outcomes.
Collapse
Affiliation(s)
- Noemi Ghiglione
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Damiano Abbo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Anastasia Bushunova
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Andrea Costamagna
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Paolo Ettore Porporato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy.
| |
Collapse
|
24
|
Borankova K, Solny M, Krchniakova M, Skoda J. Depleting chemoresponsive mitochondrial fission mediator DRP1 does not mitigate sarcoma resistance. Life Sci Alliance 2025; 8:e202402870. [PMID: 39643272 PMCID: PMC11629689 DOI: 10.26508/lsa.202402870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024] Open
Abstract
Specific patterns of mitochondrial dynamics have been repeatedly reported to promote drug resistance in cancer. However, whether targeting mitochondrial fission- and fusion-related proteins could be leveraged to combat multidrug-resistant pediatric sarcomas is poorly understood. Here, we demonstrated that the expression and activation of the mitochondrial fission mediator DRP1 are affected by chemotherapy exposure in common pediatric sarcomas, namely, rhabdomyosarcoma and osteosarcoma. Unexpectedly, decreasing DRP1 activity through stable DRP1 knockdown neither attenuated sarcoma drug resistance nor affected growth rate or mitochondrial network morphology. The minimal impact on sarcoma cell physiology, along with the up-regulation of fission adaptor proteins (MFF and FIS1) detected in rhabdomyosarcoma cells, suggests an alternative DRP1-independent mitochondrial fission mechanism that may efficiently compensate for the lack of DRP1 activity. By exploring the upstream mitophagy and mitochondrial fission regulator, AMPKα1, we found that markedly reduced AMPKα1 levels are sufficient to maintain AMPK signaling capacity without affecting chemosensitivity. Collectively, our findings challenge the direct involvement of DRP1 in pediatric sarcoma drug resistance and highlight the complexity of yet-to-be-characterized noncanonical regulators of mitochondrial dynamics.
Collapse
Affiliation(s)
- Karolina Borankova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Matyas Solny
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Maria Krchniakova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
25
|
Liu Q, Xie L, Chen W. Recombinant Porcine FGF1 Promotes Muscle Stem Cell Proliferation and Mitochondrial Function for Cultured Meat Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2008-2018. [PMID: 39772551 DOI: 10.1021/acs.jafc.4c09215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Cultured meat is an emerging technology with the potential to meet future protein demands while addressing the challenges associated with traditional livestock farming. The production of cultured meat requires efficient, animal component-free in vitro systems for muscle stem cell (MuSC) expansion. Fibroblast growth factor 1 (FGF1) is a critical growth factor that regulates the MuSC function. In this study, we established an efficient method for the soluble expression and purification of recombinant porcine FGF1 (rpFGF1) in Escherichia coli, achieving a yield of 48 mg of purified protein per liter of culture. Treatment with rpFGF1 significantly enhanced the proliferation of porcine MuSC under serum-free conditions. Furthermore, rpFGF1 induced mitochondrial fission and mitophagy by activating the ERK-dependent phosphorylation of DRP1 at Ser616, resulting in improved mitochondrial function and proliferation capacity in porcine MuSC. These findings highlight the potential of rpFGF1 in the development of serum-free media for scalable and sustainable cultured meat production.
Collapse
Affiliation(s)
- Qingying Liu
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lianghua Xie
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
26
|
Brandeburg ZC, Waheed SA, Derewonko CA, Dunn CE, Pfeiffer EC, Flusche AME, Sheaff RJ, Lamar AA. Synthesis and Biological Evaluation of N-(1H-Indol-6-ylmethyl)benzenesulfonamide Analogs as Metabolic Inhibitors of Mitochondrial ATP Production in Pancreatic Cancer Cells. ChemMedChem 2025; 20:e202400536. [PMID: 39317650 DOI: 10.1002/cmdc.202400536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
A library of 26 indolyl sulfonamides and 12 amide and ester analogs based upon the 6-indolyl framework has been synthesized in an effort to target pancreatic cancer. The cytotoxicity of the indolyl sulfonamide compounds has been determined using a traditional (48-h compound exposure) assay against 7 pancreatic cancer cell lines and 1 non-cancerous cell line. The potential role of the compounds as metabolic inhibitors of ATP production was evaluated using a rapid screening (2-h compound exposure) assay developed within our laboratories. The IC50 values of the active compounds were determined using the rapid assay and six compounds displayed an IC50 value <5 μM against one or more pancreatic cancer cell lines. The ester analogs also display activity as potential metabolic inhibitors of ATP production with four of the six compounds displaying an IC50 value <5 μM against one or more pancreatic cancer cell lines.
Collapse
Affiliation(s)
- Zachary C Brandeburg
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK, 74104, USA
| | - Sakariyau A Waheed
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK, 74104, USA
| | - Carina A Derewonko
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK, 74104, USA
| | - Caroline E Dunn
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK, 74104, USA
| | - Ethan C Pfeiffer
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK, 74104, USA
| | - Ann Marie E Flusche
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK, 74104, USA
| | - Robert J Sheaff
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK, 74104, USA
| | - Angus A Lamar
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK, 74104, USA
| |
Collapse
|
27
|
Yan H, Shao M, Lin X, Peng T, Chen C, Yang M, Zhong J, Yang J, Hui S. Resveratrol stimulates brown of white adipose via regulating ERK/DRP1-mediated mitochondrial fission and improves systemic glucose homeostasis. Endocrine 2025; 87:144-158. [PMID: 39198343 DOI: 10.1007/s12020-024-04008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/13/2024] [Indexed: 09/01/2024]
Abstract
PURPOSE Diabetes mellitus and metabolic homeostasis disorders may benefit from white adipose tissue (WAT) browning, which is associated with mitochondrial fission. Resveratrol, a dietary polyphenol, exhibits beneficial effects against abnormalities related to metabolic diseases. However, it remains unknown whether resveratrol contributes to WAT browning by regulating mitochondrial fission. METHODS We administered resveratrol (0.4% mixed with control) to db/db mice for 12 weeks, measuring body weight, oral glucose tolerance, insulin tolerance, and histological changes. The uncoupling protein 1 (UCP1) and dynamin-related protein 1 (DRP1) expressions in the epididymal WAT were assessed via immunoblotting. RESULTS We found that resveratrol improved systemic glucose homeostasis and insulin resistance in db/db mice, which was associated with increased UCP1 in epididymal WAT. Resveratrol-treated mice exhibited more fragmented mitochondria and increased phosphorylation of DRP1 in the epididymal WAT of the db/db mice. These results were further confirmed in vitro, where resveratrol induced extracellular signal-regulated kinase (ERK) signaling activation, leading to phosphorylation of DRP1 at the S616 site (p-DRP1S616) and mitochondrial fission, which was reversed by an ERK inhibitor in 3T3-L1 adipocytes. CONCLUSION Resveratrol plays a role in regulating the phosphorylation of ERK and DRP1, resulting in the promotion of beige cells with epididymal WAT and the improvement of glucose homeostasis. Our present study provides novel insights into the potential mechanism of resveratrol-mediated effects on WAT browning, suggesting that it is, at least in part, mediated through ERK/DRP1-mediated mitochondrial fission.
Collapse
Affiliation(s)
- Hongjia Yan
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The People's Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Muqing Shao
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqian Lin
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Peng
- Department of Clinical Nutrition, The People's Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Mei Yang
- Department of Endocrinology, The People's Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Jian Zhong
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Suocheng Hui
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
28
|
Zhang JN, Zhang Z, Huang ZL, Guo Q, Wu ZQ, Ke C, Lu B, Wang ZT, Ji LL. Isotoosendanin inhibits triple-negative breast cancer metastasis by reducing mitochondrial fission and lamellipodia formation regulated by the Smad2/3-GOT2-MYH9 signaling axis. Acta Pharmacol Sin 2024; 45:2672-2683. [PMID: 39009651 PMCID: PMC11579498 DOI: 10.1038/s41401-024-01335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024]
Abstract
Triple-negative breast cancer (TNBC) is incurable and prone to widespread metastasis. Therefore, identification of key targets for TNBC progression is urgently needed. Our previous study revealed that isotoosendanin (ITSN) reduced TNBC metastasis by targeting TGFβR1. ITSN is currently used as an effective chemical probe to further discover the key molecules involved in TNBC metastasis downstream of TGFβR1. The results showed that GOT2 was the gene downstream of Smad2/3 and that ITSN decreased GOT2 expression by abrogating the activation of the TGF-β-Smad2/3 signaling pathway through directly binding to TGFβR1. GOT2 was highly expressed in TNBC, and its knockdown decreased TNBC metastasis. However, GOT2 overexpression reversed the inhibitory effect of ITSN on TNBC metastasis both in vitro and in vivo. GOT2 interacted with MYH9 and hindered its binding to the E3 ubiquitin ligase STUB1, thereby reducing MYH9 ubiquitination and degradation. Moreover, GOT2 also enhanced the translocation of MYH9 to mitochondria and thus induced DRP1 phosphorylation, thereby promoting mitochondrial fission and lamellipodia formation in TNBC cells. ITSN-mediated inhibition of mitochondrial fission and lamellipodia formation was associated with reduced GOT2 expression. In conclusion, ITSN prevented MYH9-regulated mitochondrial fission and lamellipodia formation in TNBC cells by enhancing MYH9 protein degradation through a reduction in GOT2 expression, thus contributing to its inhibition of TNBC metastasis.
Collapse
Affiliation(s)
- Jing-Nan Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Ze Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhen-Lin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qian Guo
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ze-Qi Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chuang Ke
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zheng-Tao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li-Li Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
29
|
Luo W, Xu Z, Li F, Ding L, Wang R, Lin Y, Mao X, Chen X, Li Y, Lu Z, Xie H, Wang H, Zhu Z, Lu Y, Guo L, Yu X, Xia L, He HH, Li G. m6Am Methyltransferase PCIF1 Promotes LPP3 Mediated Phosphatidic Acid Metabolism and Renal Cell Carcinoma Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404033. [PMID: 39422663 PMCID: PMC11633504 DOI: 10.1002/advs.202404033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/29/2024] [Indexed: 10/19/2024]
Abstract
N6-methyl-2'-O-methyladenosine (m6Am), occurring adjacent to the 7-methylguanosine (m7G) cap structure and catalyzed by the newly identified writer PCIF1 (phosphorylated CTD interacting factor 1), has been implicated in the pathogenesis of various diseases. However, its involvement in renal cell carcinoma (RCC) remains unexplored. Here, significant upregulation of PCIF1 and m6Am levels in RCC tissues are identified, unveiling their oncogenic roles both in vitro and in vivo. Mechanically, employing m6Am-Exo-Seq, LPP3 (phospholipid phosphatase 3) mRNA is identified as a key downstream target whose translation is enhanced by m6Am modification. Furthermore, LPP3 is revealed as a key regulator of phosphatidic acid metabolism, critical for preventing its accumulation in mitochondria and facilitating mitochondrial fission. Consequently, Inhibition of the PCIF1/LPP3 axis significantly altered mitochondrial morphology and reduced RCC tumor progression. In addition, depletion of PCIF1 sensitizes RCC to sunitinib treatment. This study highlights the intricate interplay between m6Am modification, phosphatidic acid metabolism, and mitochondrial dynamics, offering a promising therapeutic avenue for RCC.
Collapse
Affiliation(s)
- Wenqin Luo
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Zhehao Xu
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Fan Li
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Lifeng Ding
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Ruyue Wang
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Yudong Lin
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Xudong Mao
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Xianjiong Chen
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Yang Li
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Zeyi Lu
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Haiyun Xie
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Huan Wang
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Ziwei Zhu
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Yi Lu
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Luying Guo
- Kidney Disease Center of First Affiliated HospitalZhejiang University School of MedicineHangzhou310000China
| | - Xiaojing Yu
- Department of RadiologySir Run Run Shaw hospitalZhejiang University School of MedicineHangzhou310016China
| | - Liqun Xia
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Housheng Hansen He
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
| | - Gonghui Li
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| |
Collapse
|
30
|
Rawal S, Randhawa V, Rizvi SHM, Sachan M, Wara AK, Pérez-Cremades D, Weisbrod RM, Hamburg NM, Feinberg MW. miR-369-3p ameliorates diabetes-associated atherosclerosis by regulating macrophage succinate-GPR91 signalling. Cardiovasc Res 2024; 120:1693-1712. [PMID: 38703377 PMCID: PMC11587565 DOI: 10.1093/cvr/cvae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/04/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024] Open
Abstract
AIMS Diabetes leads to dysregulated macrophage immunometabolism, contributing to accelerated atherosclerosis progression. Identifying critical factors to restore metabolic alterations and promote resolution of inflammation remains an unmet goal. MicroRNAs orchestrate multiple signalling events in macrophages, yet their therapeutic potential in diabetes-associated atherosclerosis remains unclear. METHODS AND RESULTS miRNA profiling revealed significantly lower miR-369-3p expression in aortic intimal lesions from Ldlr-/- mice on a high-fat sucrose-containing (HFSC) diet for 12 weeks. miR-369-3p was also reduced in peripheral blood mononuclear cells from diabetic patients with coronary artery disease (CAD). Cell-type expression profiling showed miR-369-3p enrichment in aortic macrophages. In vitro, oxLDL treatment reduced miR-369-3p expression in mouse bone marrow-derived macrophages (BMDMs). Metabolic profiling in BMDMs revealed that miR-369-3p overexpression blocked the oxidized low density lipoprotein (oxLDL)-mediated increase in the cellular metabolite succinate and reduced mitochondrial respiration (OXPHOS) and inflammation [Interleukin (lL)-1β, TNF-α, and IL-6]. Mechanistically, miR-369-3p targeted the succinate receptor (GPR91) and alleviated the oxLDL-induced activation of inflammasome signalling pathways. Therapeutic administration of miR-369-3p mimics in HFSC-fed Ldlr-/- mice reduced GPR91 expression in lesional macrophages and diabetes-accelerated atherosclerosis, evident by a decrease in plaque size and pro-inflammatory Ly6Chi monocytes. RNA-Seq analyses showed more pro-resolving pathways in plaque macrophages from miR-369-3p-treated mice, consistent with an increase in macrophage efferocytosis in lesions. Finally, a GPR91 antagonist attenuated oxLDL-induced inflammation in primary monocytes from human subjects with diabetes. CONCLUSION These findings establish a therapeutic role for miR-369-3p in halting diabetes-associated atherosclerosis by regulating GPR91 and macrophage succinate metabolism.
Collapse
MESH Headings
- Animals
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Macrophages/metabolism
- Macrophages/pathology
- Signal Transduction
- Humans
- Mice, Knockout
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Male
- Mice, Inbred C57BL
- Disease Models, Animal
- Lipoproteins, LDL/metabolism
- Succinic Acid/metabolism
- Plaque, Atherosclerotic
- Mice
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Receptors, LDL/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Aortic Diseases/genetics
- Aortic Diseases/prevention & control
- Aortic Diseases/immunology
- Cells, Cultured
- Gene Expression Regulation
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/prevention & control
- Female
- Middle Aged
Collapse
Affiliation(s)
- Shruti Rawal
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Vinay Randhawa
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Syed Husain Mustafa Rizvi
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, USA
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Madhur Sachan
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Akm Khyrul Wara
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Daniel Pérez-Cremades
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Department of Physiology, University of Valencia, INCLIVA Biomedical Research Institute, Valencia 46010, Spain
| | - Robert M Weisbrod
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, USA
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Naomi M Hamburg
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, USA
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
31
|
Minarrieta L, Annis MG, Audet-Delage Y, Kuasne H, Pacis A, St-Louis C, Nowakowski A, Biondini M, Khacho M, Park M, Siegel PM, St-Pierre J. Mitochondrial elongation impairs breast cancer metastasis. SCIENCE ADVANCES 2024; 10:eadm8212. [PMID: 39504368 PMCID: PMC11540020 DOI: 10.1126/sciadv.adm8212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 09/27/2024] [Indexed: 11/08/2024]
Abstract
Mitochondrial dynamics orchestrate many essential cellular functions, including metabolism, which is instrumental in promoting cancer growth and metastatic progression. However, how mitochondrial dynamics influences metastatic progression remains poorly understood. Here, we show that breast cancer cells with low metastatic potential exhibit a more fused mitochondrial network compared to highly metastatic cells. To study the impact of mitochondrial dynamics on metastasis, we promoted mitochondrial elongation in metastatic breast cancer cells by individual genetic deletion of three key regulators of mitochondrial fission (Drp1, Fis1, Mff) or by pharmacological intervention with leflunomide. Omics analyses revealed that mitochondrial elongation causes substantial alterations in metabolic pathways and processes related to cell adhesion. In vivo, enhanced mitochondrial elongation by loss of mitochondrial fission mediators or treatment with leflunomide notably reduced metastasis formation. Furthermore, the transcriptomic signature associated with elongated mitochondria correlated with improved clinical outcome in patients with breast cancer. Overall, our findings highlight mitochondrial dynamics as a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Lucía Minarrieta
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew G. Annis
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Yannick Audet-Delage
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hellen Kuasne
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
| | - Alain Pacis
- McGill Genome Centre, Montréal, QC, Canada
- Canadian Centre for Computational Genomics (C3G), McGill University, Montréal, QC, Canada
| | - Catherine St-Louis
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alexander Nowakowski
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Marco Biondini
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Mireille Khacho
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Morag Park
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
- Department of Oncology, McGill University, Montréal, QC, Canada
| | - Peter M. Siegel
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
- Department of Oncology, McGill University, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Julie St-Pierre
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
32
|
Shi L, Zha H, Huang H, Xia Y, Li H, Huang J, Yue R, Li C, Zhu J, Song Z. miR-199a-5p aggravates renal ischemia-reperfusion and transplant injury by targeting AKAP1 to disrupt mitochondrial dynamics. Am J Physiol Renal Physiol 2024; 327:F910-F929. [PMID: 39265082 DOI: 10.1152/ajprenal.00409.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a complex pathophysiological process and a major cause of delayed graft function (DGF) after transplantation. MicroRNA (miRNA) has important roles in the pathogenesis of IRI and may represent promising therapeutic targets for mitigating renal IRI. miRNA sequencing was performed to profile microRNA expression in mouse kidneys after cold storage and transplantation (CST). Lentivirus incorporating a miR-199a-5p modulator was injected into mouse kidney in situ before syngenetic transplantation and unilateral IRI to determine the effect of miR-199a-5p in vivo. miR-199a-5p mimic or inhibitor was transfected cultured tubular cells before ATP depletion recovery treatment to examine the role of miR-199a-5p in vitro. Sequencing data and microarray showed upregulation of miR-199a-5p in mice CST and human DGF samples. Lentivirus incorporating a miR-199a-5p mimic aggravated renal IRI, and protective effects were obtained with a miR-199a-5p inhibitor. Treatment with the miR-199a-5p inhibitor ameliorated graft function loss, tubular injury, and immune response after CST. In vitro experiments revealed exacerbation of mitochondria dysfunction upon ATP depletion and repletion model in the presence of the miR-199a-5p mimic, whereas dysfunction was attenuated when the miR-199a-5p inhibitor was applied. miR-199a-5p was shown to target A-kinase anchoring protein 1 (AKAP1) by double luciferase assay and miR-199a-5p activation reduced dynamin-related protein 1 (Drp1)-s637 phosphorylation and mitochondrial length. Overexpression of AKAP1 preserved Drp1-s637 phosphorylation and reduced mitochondrial fission. miR-199a-5p activation reduced AKAP1 expression, promoted Drp1-s637 dephosphorylation, aggravated the disruption of mitochondrial dynamics, and contributed to renal IRI.NEW & NOTEWORTHY This study identifies miR-199a-5p as a key regulator in renal ischemia-reperfusion injury through microRNA sequencing in mouse models and human delayed graft function. miR-199a-5p worsens renal IRI by aggravating graft dysfunction, tubular injury, and immune response, while its inhibition shows protective effects. miR-199a-5p downregulates A-kinase anchoring protein 1 (AKAP1), reducing dynamin-related protein 1 (Drp1)-s637 phosphorylation, increasing mitochondrial fission, and causing dysfunction. Targeting the miR-199a-5p/AKAP1/Drp1 axis offers therapeutic potential for renal IRI, as AKAP1 overexpression preserves mitochondrial integrity by maintaining Drp1-s637 phosphorylation.
Collapse
Affiliation(s)
- Lang Shi
- Department of Nephrology, The First Hospital of Lanzhou University, Lanzhou, China
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongchu Zha
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, China
| | - Hua Huang
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, China
| | - Yao Xia
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, China
| | - Huimin Li
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, China
| | - Jing Huang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruchi Yue
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, China
| | - Chenglong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiefu Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhixia Song
- Department of Nephrology, The People's Hospital of Longhua, Shenzhen, China
| |
Collapse
|
33
|
Mennuni M, Wilkie SE, Michon P, Alsina D, Filograna R, Lindberg M, Sanin DE, Rosenberger F, Schaaf A, Larsson E, Pearce EL, Larsson NG. High mitochondrial DNA levels accelerate lung adenocarcinoma progression. SCIENCE ADVANCES 2024; 10:eadp3481. [PMID: 39485842 PMCID: PMC11529711 DOI: 10.1126/sciadv.adp3481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
Lung adenocarcinoma is a common aggressive cancer and a leading cause of mortality worldwide. Here, we report an important in vivo role for mitochondrial DNA (mtDNA) copy number during lung adenocarcinoma progression in the mouse. We found that lung tumors induced by KRASG12D expression have increased mtDNA levels and enhanced mitochondrial respiration. To experimentally assess a possible causative role in tumor progression, we induced lung cancer in transgenic mice with a general increase in mtDNA copy number and found that they developed a larger tumor burden, whereas mtDNA depletion in tumor cells reduced tumor growth. Immune cell populations in the lung and cytokine levels in plasma were not affected by increased mtDNA levels. Analyses of large cancer databases indicate that mtDNA copy number is also important in human lung cancer. Our study thus reports experimental evidence for a tumor-intrinsic causative role for mtDNA in lung cancer progression, which could be exploited for development of future cancer therapies.
Collapse
Affiliation(s)
- Mara Mennuni
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Stephen E. Wilkie
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pauline Michon
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - David Alsina
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Roberta Filograna
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Markus Lindberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - David E. Sanin
- Bloomberg-Kimmel Institute of Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Florian Rosenberger
- Max Planck Institute of Biochemistry, Department of Proteomics and Signal Transduction, Munich, Germany
| | - Alina Schaaf
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Erika L. Pearce
- Bloomberg-Kimmel Institute of Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
34
|
Sweatt AJ, Griffiths CD, Groves SM, Paudel BB, Wang L, Kashatus DF, Janes KA. Proteome-wide copy-number estimation from transcriptomics. Mol Syst Biol 2024; 20:1230-1256. [PMID: 39333715 PMCID: PMC11535397 DOI: 10.1038/s44320-024-00064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/29/2024] Open
Abstract
Protein copy numbers constrain systems-level properties of regulatory networks, but proportional proteomic data remain scarce compared to RNA-seq. We related mRNA to protein statistically using best-available data from quantitative proteomics and transcriptomics for 4366 genes in 369 cell lines. The approach starts with a protein's median copy number and hierarchically appends mRNA-protein and mRNA-mRNA dependencies to define an optimal gene-specific model linking mRNAs to protein. For dozens of cell lines and primary samples, these protein inferences from mRNA outmatch stringent null models, a count-based protein-abundance repository, empirical mRNA-to-protein ratios, and a proteogenomic DREAM challenge winner. The optimal mRNA-to-protein relationships capture biological processes along with hundreds of known protein-protein complexes, suggesting mechanistic relationships. We use the method to identify a viral-receptor abundance threshold for coxsackievirus B3 susceptibility from 1489 systems-biology infection models parameterized by protein inference. When applied to 796 RNA-seq profiles of breast cancer, inferred copy-number estimates collectively re-classify 26-29% of luminal tumors. By adopting a gene-centered perspective of mRNA-protein covariation across different biological contexts, we achieve accuracies comparable to the technical reproducibility of contemporary proteomics.
Collapse
Affiliation(s)
- Andrew J Sweatt
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Cameron D Griffiths
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Sarah M Groves
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - B Bishal Paudel
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Lixin Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - David F Kashatus
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA.
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
35
|
Kumar P, Kumar R, Kumar P, Kushwaha S, Kumari S, Yadav N, Srikrishna S. LC-Orbitrap HRMS-Based Proteomics Reveals Novel Mitochondrial Dynamics Regulatory Proteins Associated with RasV12-Induced Glioblastoma (GBM) of Drosophila. J Proteome Res 2024; 23:5030-5047. [PMID: 39413821 DOI: 10.1021/acs.jproteome.4c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive brain tumor found in adult humans with a poor prognosis and average survival of 14-15 months. In order to have a comprehensive understanding of proteome and identify novel therapeutic targets, this study focused mainly on the differentially abundant proteins (DAPs) of RasV12-induced GBM. RasV12 is a constitutively active Ras mutant form essential for tumor progression by continuously activating signaling pathways leading to uncontrolled tumor growth. This study used a transgenic Drosophila model with RasV12 overexpression using the repo-GAL4 driver line, specifically in glial cells, to study GBM. The high-resolution mass spectrometry (HRMS)-based proteomic analysis of the GBM larval central nervous system identified three novel DAPs specific to mitochondria. These DAPs, probable maleylacetoacetate isomerase 2 (Q9VHD2), bifunctional methylene tetrahydrofolate dehydrogenase (Q04448), and glutamine synthetase1 (P20477), identified through HRMS were further validated by qRT-PCR. The protein-protein interaction analysis revealed interactions between RasV12 and DAPs, with functional links to mitochondrial dynamics regulators such as Drp1, Marf, Parkin, and HtrA2. Notably, altered expressions of Q9VHD2, P20477, and Q04448 were observed during GBM progression, which offers new insights into the involvement of mitochondrial dynamic regulators in RasV12-induced GBM pathophysiology.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Rohit Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Prabhat Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sunaina Kushwaha
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sandhya Kumari
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Neha Yadav
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
36
|
Chang EES, Liu H, Choi ZYK, Malki Y, Zhang SXY, Pang SYY, Kung MHW, Ramsden DB, Ho SL, Ho PWL. Loss of mitochondrial Ca 2+ response and CaMKII/ERK activation by LRRK2 R1441G mutation correlate with impaired depolarization-induced mitophagy. Cell Commun Signal 2024; 22:485. [PMID: 39390438 PMCID: PMC11465656 DOI: 10.1186/s12964-024-01844-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Stress-induced activation of ERK/Drp1 serves as a checkpoint in the segregation of damaged mitochondria for autophagic clearance (mitophagy). Elevated cytosolic calcium (Ca2+) activates ERK, which is pivotal to mitophagy initiation. This process is altered in Parkinson's disease (PD) with mutations in leucine-rich repeat kinase 2 (LRRK2), potentially contributing to mitochondrial dysfunction. Pathogenic LRRK2 mutation is linked to dysregulated cellular Ca2+ signaling but the mechanism involved remains unclear. METHODS Mitochondrial damages lead to membrane depolarization. To investigate how LRRK2 mutation impairs cellular response to mitochondrial damages, mitochondrial depolarization was induced by artificial uncoupler (FCCP) in wild-type (WT) and LRRK2R1441G mutant knockin (KI) mouse embryonic fibroblasts (MEFs). The resultant cytosolic Ca2+ flux was assessed using live-cell Ca2+ imaging. The role of mitochondria in FCCP-induced cytosolic Ca2+ surge was confirmed by co-treatment with the mitochondrial sodium-calcium exchanger (NCLX) inhibitor. Cellular mitochondrial quality and function were evaluated by Seahorse™ real-time cell metabolic analysis, flow cytometry, and confocal imaging. Mitochondrial morphology was visualized using transmission electron microscopy (TEM). Activation (phosphorylation) of stress response pathways were assessed by immunoblotting. RESULTS Acute mitochondrial depolarization induced by FCCP resulted in an immediate cytosolic Ca2+ surge in WT MEFs, mediated predominantly via mitochondrial NCLX. However, such cytosolic Ca2+ response was abolished in LRRK2 KI MEFs. This loss of response in KI was associated with impaired activation of Ca2+/calmodulin-dependent kinase II (CaMKII) and MEK, the two upstream kinases of ERK. Treatment of LRRK2 inhibitor did not rescue this phenotype indicating that it was not caused by mutant LRRK2 kinase hyperactivity. KI MEFs exhibited swollen mitochondria with distorted cristae, depolarized mitochondrial membrane potential, and reduced mitochondrial Ca2+ store and mitochondrial calcium uniporter (MCU) expression. These mutant cells also exhibited lower cellular ATP: ADP ratio albeit higher basal respiration than WT, indicating compensation for mitochondrial dysfunction. These defects may hinder cellular stress response and signals to Drp1-mediated mitophagy, as evident by impaired mitochondrial clearance in the mutant. CONCLUSIONS Pathogenic LRRK2R1441G mutation abolished mitochondrial depolarization-induced Ca2+ response and impaired the basal mitochondrial clearance. Inherent defects from LRRK2 mutation have weakened the cellular ability to scavenge damaged mitochondria, which may further aggravate mitochondrial dysfunction and neurodegeneration in PD.
Collapse
Affiliation(s)
- Eunice Eun-Seo Chang
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Huifang Liu
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Zoe Yuen-Kiu Choi
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yasine Malki
- Division of Neurology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Steffi Xi-Yue Zhang
- Division of Neurology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michelle Hiu-Wai Kung
- Division of Neurology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David B Ramsden
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Philip Wing-Lok Ho
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Mental Health Research Centre, PolyU Academy for Interdisciplinary Research, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- The State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
37
|
Khatun J, Gelles JD, Chipuk JE. Dynamic death decisions: How mitochondrial dynamics shape cellular commitment to apoptosis and ferroptosis. Dev Cell 2024; 59:2549-2565. [PMID: 39378840 PMCID: PMC11469553 DOI: 10.1016/j.devcel.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
The incorporation of mitochondria into early eukaryotes established organelle-based biochemistry and enabled metazoan development. Diverse mitochondrial biochemistry is essential for life, and its homeostatic control via mitochondrial dynamics supports organelle quality and function. Mitochondrial crosstalk with numerous regulated cell death (RCD) pathways controls the decision to die. In this review, we will focus on apoptosis and ferroptosis, two distinct forms of RCD that utilize divergent signaling to kill a targeted cell. We will highlight how proteins and processes involved in mitochondrial dynamics maintain biochemically diverse subcellular compartments to support apoptosis and ferroptosis machinery, as well as unite disparate RCD pathways through dual control of organelle biochemistry and the decision to die.
Collapse
Affiliation(s)
- Jesminara Khatun
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jesse D Gelles
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jerry Edward Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
38
|
Sharma A, Virmani T, Kumar G, Sharma A, Virmani R, Gugulothu D, Singh K, Misra SK, Pathak K, Chitranshi N, Coutinho HDM, Jain D. Mitochondrial signaling pathways and their role in cancer drug resistance. Cell Signal 2024; 122:111329. [PMID: 39098704 DOI: 10.1016/j.cellsig.2024.111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Mitochondria, traditionally known as cellular powerhouses, now emerge as critical signaling centers influencing cancer progression and drug resistance. The review highlights the role that apoptotic signaling, DNA mutations, mitochondrial dynamics and metabolism play in the development of resistance mechanisms and the advancement of cancer. Targeted approaches are discussed, with an emphasis on managing mitophagy, fusion, and fission of the mitochondria to make resistant cancer cells more susceptible to traditional treatments. Additionally, metabolic reprogramming can be used to effectively target metabolic enzymes such GLUT1, HKII, PDK, and PKM2 in order to avoid resistance mechanisms. Although there are potential possibilities for therapy, the complex structure of mitochondria and their subtle role in tumor development hamper clinical translation. Novel targeted medicines are put forth, providing fresh insights on combating drug resistance in cancer. The study also emphasizes the significance of glutamine metabolism, mitochondrial respiratory complexes, and apoptotic pathways as potential targets to improve treatment effectiveness against drug-resistant cancers. Combining complementary and nanoparticle-based techniques to target mitochondria has demonstrated encouraging results in the treatment of cancer, opening doors to reduce resistance and enable individualized treatment plans catered to the unique characteristics of each patient. Suggesting innovative approaches such as drug repositioning and mitochondrial drug delivery to enhance the efficacy of mitochondria-targeting therapies, presenting a pathway for advancements in cancer treatment. This thorough investigation is a major step forward in the treatment of cancer and has the potential to influence clinical practice and enhance patient outcomes.
Collapse
Affiliation(s)
- Ashwani Sharma
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India.
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India.
| | - Anjali Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Reshu Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India.
| | - Dalapathi Gugulothu
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Shashi Kiran Misra
- School of Pharmaceutical Sciences, CSJM University Kanpur, Kanpur 208024, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India
| | - Nitin Chitranshi
- Macquarie Medical School, Macquarie University, New South Wales, Australia; School of Science and Technology, the University of New England, Armidale, New South Wales, Australia.
| | | | - Divya Jain
- Department of Microbiology, School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
39
|
Lu W, Chen M, Zhou Y, Ramírez MDA, Liu Y, Zhang H, Yuan Z, Han Y, Weng Q. EGFR-ERK1/2 signaling and mitochondrial dynamics in seasonal ovarian steroidogenesis of the muskrats (Ondatra zibethicus). J Steroid Biochem Mol Biol 2024; 243:106558. [PMID: 38815727 DOI: 10.1016/j.jsbmb.2024.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024]
Abstract
The dynamic systems of mitochondria, including mitochondrial fusion and fission, are essential for ovarian endocrine and follicular development. Meanwhile, ERK1/2 signaling is an important mechanism mediating altered mitochondrial dynamics and steroidogenesis. The purpose of this study was to investigate the seasonal changes in ovarian steroidogenesis concerning EGFR-ERK1/2 signaling and mitochondrial dynamics of the muskrats (Ondatra zibethicus). The results showed that follicular development in the muskrats remained in the tertiary follicular stage during the non-breeding season, accompanied by a significant decrease in serum and ovarian concentrations of 17β-estradiol and progesterone from the breeding season to the non-breeding season. EGF, EGFR, ERK1/2, p-ERK1/2, and mitochondrial dynamics regulators were mainly localized in granulosa cells and theca cells of muskrats during the breeding and non-breeding seasons. The mRNA levels of Egfr, Erk1/2, Mfn1/2, Opa1, Drp1, and steroidogenic enzymes in the ovaries were remarkably higher during the breeding season. The 17β-estradiol concentrations in the serum and ovaries as well as the relative levels of Mfn1/2, Opa1, and Drp1 were positively associated with each other. Furthermore, transcriptomic analysis of the ovaries revealed that differentially expressed genes might be linked to steroid biosynthesis, estrogen signaling pathway, and mitochondrial membrane-related pathways. In conclusion, these results suggest that the up-regulation of mitochondrial dynamics regulators during the breeding season is closely associated with enhanced ovarian steroidogenesis in the muskrats, which may be regulated by upstream EGFR-ERK1/2 signaling.
Collapse
Affiliation(s)
- Wenjing Lu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Meiqi Chen
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yue Zhou
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | | | - Yuning Liu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhengrong Yuan
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Han
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Qiang Weng
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
40
|
Javed Z, Shin DH, Pan W, White SR, Elhaw AT, Kim YS, Kamlapurkar S, Cheng YY, Benson JC, Abdelnaby AE, Phaëton R, Wang HG, Yang S, Sullivan MLG, St Croix CM, Watkins SC, Mullett SJ, Gelhaus SL, Lee N, Coffman LG, Aird KM, Trebak M, Mythreye K, Walter V, Hempel N. Drp1 splice variants regulate ovarian cancer mitochondrial dynamics and tumor progression. EMBO Rep 2024; 25:4281-4310. [PMID: 39191946 PMCID: PMC11467262 DOI: 10.1038/s44319-024-00232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Aberrant mitochondrial fission/fusion dynamics are frequently associated with pathologies, including cancer. We show that alternative splice variants of the fission protein Drp1 (DNM1L) contribute to the complexity of mitochondrial fission/fusion regulation in tumor cells. High tumor expression of the Drp1 alternative splice variant lacking exon 16 relative to other transcripts is associated with poor outcome in ovarian cancer patients. Lack of exon 16 results in Drp1 localization to microtubules and decreased association with mitochondrial fission sites, culminating in fused mitochondrial networks, enhanced respiration, changes in metabolism, and enhanced pro-tumorigenic phenotypes in vitro and in vivo. These effects are inhibited by siRNAs designed to specifically target the endogenously expressed transcript lacking exon 16. Moreover, lack of exon 16 abrogates mitochondrial fission in response to pro-apoptotic stimuli and leads to decreased sensitivity to chemotherapeutics. These data emphasize the pathophysiological importance of Drp1 alternative splicing, highlight the divergent functions and consequences of changing the relative expression of Drp1 splice variants in tumor cells, and strongly warrant consideration of alternative splicing in future studies focused on Drp1.
Collapse
Affiliation(s)
- Zaineb Javed
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Dong Hui Shin
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Weihua Pan
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sierra R White
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amal Taher Elhaw
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Yeon Soo Kim
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Shriya Kamlapurkar
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ya-Yun Cheng
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ahmed Emam Abdelnaby
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rébécca Phaëton
- Department of Obstetrics & Gynecology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- GlaxoSmithKline, Collegeville, PA, USA
| | - Hong-Gang Wang
- Department of Pediatrics, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Mara L G Sullivan
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Claudette M St Croix
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stacy L Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nam Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Lan G Coffman
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katherine M Aird
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Mohamed Trebak
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Karthikeyan Mythreye
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vonn Walter
- Department of Public Health Sciences, Division of Biostatistics and Bioinformatics and Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Nadine Hempel
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
41
|
Murata D, Ito F, Tang G, Iwata W, Yeung N, West JJ, Ewald AJ, Wang X, Iijima M, Sesaki H. mCAUSE: Prioritizing mitochondrial targets that alleviate pancreatic cancer cell phenotypes. iScience 2024; 27:110880. [PMID: 39310760 PMCID: PMC11416656 DOI: 10.1016/j.isci.2024.110880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Substantial changes in energy metabolism are a hallmark of pancreatic cancer. To adapt to hypoxic and nutrient-deprived microenvironments, pancreatic cancer cells remodel their bioenergetics from oxidative phosphorylation to glycolysis. This bioenergetic shift makes mitochondria an Achilles' heel. Since mitochondrial function remains essential for pancreatic cancer cells, further depleting mitochondrial energy production is an appealing treatment target. However, identifying effective mitochondrial targets for treatment is challenging. Here, we developed an approach, mitochondria-targeted cancer analysis using survival and expression (mCAUSE), to prioritize target proteins from the entire mitochondrial proteome. Selected proteins were further tested for their impact on pancreatic cancer cell phenotypes. We discovered that targeting a dynamin-related GTPase, OPA1, which controls mitochondrial fusion and cristae, effectively suppresses pancreatic cancer activities. Remarkably, when combined with a mutation-specific KRAS inhibitor, OPA1 inhibition showed a synergistic effect. Our findings offer a therapeutic strategy against pancreatic cancer by simultaneously targeting mitochondria dynamics and KRAS signaling.
Collapse
Affiliation(s)
- Daisuke Murata
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fumiya Ito
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gongyu Tang
- Department of Pharmacology and Regenerative Medicine, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, USA
| | - Wakiko Iwata
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nelson Yeung
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Junior J. West
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew J. Ewald
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Giovanis Institute for Translational Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Xiaowei Wang
- Department of Pharmacology and Regenerative Medicine, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
Kaur S, Khullar N, Navik U, Bali A, Bhatti GK, Bhatti JS. Multifaceted role of dynamin-related protein 1 in cardiovascular disease: From mitochondrial fission to therapeutic interventions. Mitochondrion 2024; 78:101904. [PMID: 38763184 DOI: 10.1016/j.mito.2024.101904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Mitochondria are central to cellular energy production and metabolic regulation, particularly in cardiomyocytes. These organelles constantly undergo cycles of fusion and fission, orchestrated by key proteins like Dynamin-related Protein 1 (Drp-1). This review focuses on the intricate roles of Drp-1 in regulating mitochondrial dynamics, its implications in cardiovascular health, and particularly in myocardial infarction. Drp-1 is not merely a mediator of mitochondrial fission; it also plays pivotal roles in autophagy, mitophagy, apoptosis, and necrosis in cardiac cells. This multifaceted functionality is often modulated through various post-translational alterations, and Drp-1's interaction with intracellular calcium (Ca2 + ) adds another layer of complexity. We also explore the pathological consequences of Drp-1 dysregulation, including increased reactive oxygen species (ROS) production and endothelial dysfunction. Furthermore, this review delves into the potential therapeutic interventions targeting Drp-1 to modulate mitochondrial dynamics and improve cardiovascular outcomes. We highlight recent findings on the interaction between Drp-1 and sirtuin-3 and suggest that understanding this interaction may open new avenues for therapeutically modulating endothelial cells, fibroblasts, and cardiomyocytes. As the cardiovascular system increasingly becomes the focal point of aging and chronic disease research, understanding the nuances of Drp-1's functionality can lead to innovative therapeutic approaches.
Collapse
Affiliation(s)
- Satinder Kaur
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Anjana Bali
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda India.
| |
Collapse
|
43
|
Guo J, Wang Y, Shi C, Zhang D, Zhang Q, Wang L, Gong Z. Mitochondrial calcium uniporter complex: Unveiling the interplay between its regulators and calcium homeostasis. Cell Signal 2024; 121:111284. [PMID: 38964444 DOI: 10.1016/j.cellsig.2024.111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The mitochondrial calcium uniporter complex (MCUc), serving as the specific channel for calcium influx into the mitochondrial matrix, is integral to calcium homeostasis and cellular integrity. Given its importance, ongoing research spans various disease models to understand the properties of the MCUc in pathophysiological contexts, but reported a different conclusion. Therefore, this review delves into the profound connection between MCUc-mediated calcium transients and cellular signaling pathways, mitochondrial dynamics, metabolism, and cell death. Additionally, we shed light on the recent advancements concerning the structural intricacies and auxiliary components of the MCUc in both resting and activated states. Furthermore, emphasis is placed on novel extrinsic and intrinsic regulators of the MCUc and their therapeutic implications across a spectrum of diseases. Meanwhile, we employed molecular docking simulations and identified candidate traditional Chinese medicine components with potential binding sites to the MCUc, potentially offering insights for further research on MCUc modulation.
Collapse
Affiliation(s)
- Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingqi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
44
|
Yazicioglu YF, Mitchell RJ, Clarke AJ. Mitochondrial control of lymphocyte homeostasis. Semin Cell Dev Biol 2024; 161-162:42-53. [PMID: 38608498 DOI: 10.1016/j.semcdb.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Mitochondria play a multitude of essential roles within mammalian cells, and understanding how they control immunity is an emerging area of study. Lymphocytes, as integral cellular components of the adaptive immune system, rely on mitochondria for their function, and mitochondria can dynamically instruct their differentiation and activation by undergoing rapid and profound remodelling. Energy homeostasis and ATP production are often considered the primary functions of mitochondria in immune cells; however, their importance extends across a spectrum of other molecular processes, including regulation of redox balance, signalling pathways, and biosynthesis. In this review, we explore the dynamic landscape of mitochondrial homeostasis in T and B cells, and discuss how mitochondrial disorders compromise adaptive immunity.
Collapse
|
45
|
Sami Alkafaas S, Obeid OK, Ali Radwan M, Elsalahaty MI, Samy ElKafas S, Hafez W, Janković N, Hessien M. Novel insight into mitochondrial dynamin-related protein-1 as a new chemo-sensitizing target in resistant cancer cells. Bioorg Chem 2024; 150:107574. [PMID: 38936049 DOI: 10.1016/j.bioorg.2024.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Mitochondrial dynamics have pillar roles in several diseases including cancer. Cancer cell survival is monitored by mitochondria which impacts several cellular functions such as cell metabolism, calcium signaling, and ROS production. The equilibrium of death and survival rate of mitochondria is important for healthy cellular processes. Whereas inhibition of mitochondrial metabolism and dynamics can have crucial regulatory decisions between cell survival and death. The steady rate of physiological flux of both mitochondrial fission and fusion is strongly related to the preservation of cellular bioenergetics. Dysregulation of mitochondrial dynamics including fission and fusion is a critical machinery in cells accompanied by crosstalk in cancer progression and resistance. Many cancer cells express high levels of Drp-1 to induce cancer cell invasion, metastasis and chemoresistance including breast cancer, liver cancer, pancreatic cancer, and colon cancer. Targeting Drp-1 by inhibitors such as Midivi-1 helps to enhance the responsiveness of cancer cells towards chemotherapy. The review showed Drp-1 linked processes such as mitochondrial dynamics and relationship with cancer, invasion, and chemoresistance along with computational assessing of all publicly available Drp-1 inhibitors. Drp1-IN-1, Dynole 34-2, trimethyloctadecylammonium bromide, and Schaftoside showed potential inhibitory effects on Drp-1 as compared to standard Mdivi- 1. This emerging approach may have extensive strength in the context of cancer development and chemoresistance and further work is needed to aid in more effective cancer management.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, 31527, Egypt.
| | - Omar K Obeid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Mustafa Ali Radwan
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed I Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Sara Samy ElKafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt; Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Wael Hafez
- NMC Royal Hospital, 16th Street, Khalifa, Abu Dhabi 35233, United Arab Emirates; Department of Internal Medicine, Medical Research and Clinical Studies Institute, The National Research Centre, Cairo, Egypt
| | - Nenad Janković
- Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia.
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, 31527, Egypt
| |
Collapse
|
46
|
Kovale L, Singh MK, Kim J, Ha J. Role of Autophagy and AMPK in Cancer Stem Cells: Therapeutic Opportunities and Obstacles in Cancer. Int J Mol Sci 2024; 25:8647. [PMID: 39201332 PMCID: PMC11354724 DOI: 10.3390/ijms25168647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Cancer stem cells represent a resilient subset within the tumor microenvironment capable of differentiation, regeneration, and resistance to chemotherapeutic agents, often using dormancy as a shield. Their unique properties, including drug resistance and metastatic potential, pose challenges for effective targeting. These cells exploit certain metabolic processes for their maintenance and survival. One of these processes is autophagy, which generally helps in energy homeostasis but when hijacked by CSCs can help maintain their stemness. Thus, it is often referred as an Achilles heel in CSCs, as certain cancers tend to depend on autophagy for survival. Autophagy, while crucial for maintaining stemness in cancer stem cells (CSCs), can also serve as a vulnerability in certain contexts, making it a complex target for therapy. Regulators of autophagy like AMPK (5' adenosine monophosphate-activated protein kinase) also play a crucial role in maintaining CSCs stemness by helping CSCs in metabolic reprogramming in harsh environments. The purpose of this review is to elucidate the interplay between autophagy and AMPK in CSCs, highlighting the challenges in targeting autophagy and discussing therapeutic strategies to overcome these limitations. This review focuses on previous research on autophagy and its regulators in cancer biology, particularly in CSCs, addresses the remaining unanswered questions, and potential targets for therapy are also brought to attention.
Collapse
Affiliation(s)
- Lochana Kovale
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| | - Joungmok Kim
- Department of Oral Biochemistry and Molecular Biology, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| |
Collapse
|
47
|
Guevara-Cruz M, Hernández-Gómez KG, Condado-Huerta C, González-Salazar LE, Peña-Flores AK, Pichardo-Ontiveros E, Serralde-Zúñiga AE, Sánchez-Tapia M, Maya O, Medina-Vera I, Noriega LG, López-Barradas A, Rodríguez-Lima O, Mata I, Olin-Sandoval V, Torres N, Tovar AR, Velázquez-Villegas LA. Intermittent fasting, calorie restriction, and a ketogenic diet improve mitochondrial function by reducing lipopolysaccharide signaling in monocytes during obesity: A randomized clinical trial. Clin Nutr 2024; 43:1914-1928. [PMID: 39003957 DOI: 10.1016/j.clnu.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Mitochondrial dysfunction occurs in monocytes during obesity and contributes to a low-grade inflammatory state; therefore, maintaining good mitochondrial conditions is a key aspect of maintaining health. Dietary interventions are primary strategies for treating obesity, but little is known about their impact on monocyte bioenergetics. Thus, the aim of this study was to evaluate the effects of calorie restriction (CR), intermittent fasting (IF), a ketogenic diet (KD), and an ad libitum habitual diet (AL) on mitochondrial function in monocytes and its modulation by the gut microbiota. METHODS AND FINDINGS A randomized controlled clinical trial was conducted in which individuals with obesity were assigned to one of the 4 groups for 1 month. Subsequently, the subjects received rifaximin and continued with the assigned diet for another month. The oxygen consumption rate (OCR) was evaluated in isolated monocytes, as was the gut microbiota composition in feces and anthropometric and biochemical parameters. Forty-four subjects completed the study, and those who underwent CR, IF and KD interventions had an increase in the maximal respiration OCR (p = 0.025, n2p = 0.159 [0.05, 0.27] 95% confidence interval) in monocytes compared to that in the AL group. The improvement in mitochondrial function was associated with a decrease in monocyte dependence on glycolysis after the IF and KD interventions. Together, diet and rifaximin increased the gut microbiota diversity in the IF and KD groups (p = 0.0001), enriched the abundance of Phascolarctobacterium faecium (p = 0.019) in the CR group and Ruminococcus bromii (p = 0.020) in the CR and KD groups, and reduced the abundance of lipopolysaccharide (LPS)-producing bacteria after CR, IF and KD interventions compared to the AL group at the end of the study according to ANCOVA with covariate adjustment. Spearman's correlation between the variables measured highlighted LPS as a potential modulator of the observed effects. In line with this findings, serum LPS and intracellular signaling in monocytes decreased with the three interventions (CR, p = 0.002; IF, p = 0.001; and KD, p = 0.001) compared to those in the AL group at the end of the study. CONCLUSIONS We conclude that these dietary interventions positively regulate mitochondrial bioenergetic health and improve the metabolic profile of monocytes in individuals with obesity via modulation of the gut microbiota. Moreover, the evaluation of mitochondrial function in monocytes could be used as an indicator of metabolic and inflammatory status, with potential applications in future clinical trials. TRIAL REGISTRATION This trial was registered with ClinicalTrials.gov (NCT05200468).
Collapse
Affiliation(s)
- Martha Guevara-Cruz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Karla G Hernández-Gómez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Citlally Condado-Huerta
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Luis E González-Salazar
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Ana Karen Peña-Flores
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Edgar Pichardo-Ontiveros
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Aurora E Serralde-Zúñiga
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Otoniel Maya
- Chalmers e-Commons. Chalmers University of Technology, Gotemburg, Vastra Gotaland, Sweden
| | - Isabel Medina-Vera
- Departamento de Metodología de la Investigación, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Adriana López-Barradas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Oscar Rodríguez-Lima
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Irma Mata
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Viridiana Olin-Sandoval
- Laboratorio 43. Departamento de Biotecnología y Bioingeniería, Cinvestav-Zacatenco, Ciudad de México, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico.
| |
Collapse
|
48
|
Qian K, Gao S, Jiang Z, Ding Q, Cheng Z. Recent advances in mitochondria-targeting theranostic agents. EXPLORATION (BEIJING, CHINA) 2024; 4:20230063. [PMID: 39175881 PMCID: PMC11335472 DOI: 10.1002/exp.20230063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/07/2024] [Indexed: 08/24/2024]
Abstract
For its vital role in maintaining cellular activity and survival, mitochondrion is highly involved in various diseases, and several strategies to target mitochondria have been developed for specific imaging and treatment. Among these approaches, theranostic may realize both diagnosis and therapy with one integrated material, benefiting the simplification of treatment process and candidate drug evaluation. A variety of mitochondria-targeting theranostic agents have been designed based on the differential structure and composition of mitochondria, which enable more precise localization within cellular mitochondria at disease sites, facilitating the unveiling of pathological information while concurrently performing therapeutic interventions. Here, progress of mitochondria-targeting theranostic materials reported in recent years along with background information on mitochondria-targeting and therapy have been briefly summarized, determining to deliver updated status and design ideas in this field to readers.
Collapse
Affiliation(s)
- Kun Qian
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Shu Gao
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhaoning Jiang
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| | - Qihang Ding
- Department of ChemistryKorea UniversitySeoulRepublic of Korea
| | - Zhen Cheng
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| |
Collapse
|
49
|
Froehlich T, Jenner A, Cavarischia-Rega C, Fagbadebo FO, Lurz Y, Frecot DI, Kaiser PD, Nueske S, Scholz AM, Schäffer E, Garcia-Saez AJ, Macek B, Rothbauer U. Nanobodies as novel tools to monitor the mitochondrial fission factor Drp1. Life Sci Alliance 2024; 7:e202402608. [PMID: 38816213 PMCID: PMC11140114 DOI: 10.26508/lsa.202402608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
In cells, mitochondria undergo constant fusion and fission. An essential factor for fission is the mammalian dynamin-related protein 1 (Drp1). Dysregulation of Drp1 is associated with neurodegenerative diseases including Parkinson's, cardiovascular diseases and cancer, making Drp1 a pivotal biomarker for monitoring mitochondrial status and potential pathophysiological conditions. Here, we developed nanobodies (Nbs) as versatile binding molecules for proteomics, advanced microscopy and live cell imaging of Drp1. To specifically enrich endogenous Drp1 with interacting proteins for proteomics, we functionalized high-affinity Nbs into advanced capture matrices. Furthermore, we detected Drp1 by bivalent Nbs combined with site-directed fluorophore labelling in super-resolution STORM microscopy. For real-time imaging of Drp1, we intracellularly expressed fluorescently labelled Nbs, so-called chromobodies (Cbs). To improve the signal-to-noise ratio, we further converted Cbs into a "turnover-accelerated" format. With these imaging probes, we visualized the dynamics of endogenous Drp1 upon compound-induced mitochondrial fission in living cells. Considering the wide range of research applications, the presented Nb toolset will open up new possibilities for advanced functional studies of Drp1 in disease-relevant models.
Collapse
Affiliation(s)
- Theresa Froehlich
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Jenner
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Claudia Cavarischia-Rega
- Quantitative Proteomics, Department of Biology, Institute of Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Yannic Lurz
- Center for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Desiree I Frecot
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Philipp D Kaiser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Stefan Nueske
- Livestock Center of the Faculty of Veterinary Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Armin M Scholz
- Livestock Center of the Faculty of Veterinary Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Erik Schäffer
- Center for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ana J Garcia-Saez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Boris Macek
- Quantitative Proteomics, Department of Biology, Institute of Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| |
Collapse
|
50
|
Seo KJ, Yoon JH, Chung BY, Lee HK, Park WS, Chae HS. Effects of photobiomodulation on colon cancer cell line HT29 according to mitochondria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112966. [PMID: 38970968 DOI: 10.1016/j.jphotobiol.2024.112966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND/AIM Although photobiomodulation therapy (PBMt) is available to alleviate post-operative side effects of malignant diseases, its application is still controversial due to some potential of cancer recurrence and occurrence of a secondary malignancy. We investigated effect of PBMt on mitochondrial function in HT29 colon cancer cells. METHODS HT29 cell proliferation was determined with MTT assay after PBMt. Immunofluorescent staining was performed to determine mitochondrial biogenesis and reactive oxygen species (ROS). Mitochondrial membrane potential was measured with Mitotracker. Western blotting was executed to determine expression of fission, fusion, UCP2, and cyclin B1 and D1 proteins. In vivo study was performed by subcutaneously inoculating cancer cells into nude mice and immunohistochemistry was done to determine expression of FIS1, MFN2, UCP2, and p-AKT. RESULTS The proliferation and migration of HT29 cells reached maximum with PBMt (670 nm, light emitting diode, LED) at 2.0 J/cm2 compared to control (P < 0.05) with more expression of cyclin B1 and cyclin D1 (P < 0.05). Immunofluorescent staining showed that ROS and mitochondrial membrane potential were enhanced after PBMt compared to control. ATP synthesis of mitochondria was also higher in the PBMt group than in the control (P < 0.05). Expression levels of fission and fusion proteins were significantly increased in the PBMt group than in the control (P < 0.05). Electron microscopy revealed that the percentage of mitochondria showing fission was not significantly different between the two groups. Oncometabolites including D-2-hydoxyglutamate in the supernatant of cell culture were higher in the PBMt group than in the control with increased UCP2 expression (P < 0.05). Both tumor size and weight of xenograft in nude mice model were bigger and heavier in the PBMt group than in the control (P < 0.05). Immunohistologically, mitochondrial biogenesis proteins UCP2 and p-AKT in xenograft of nude mice were expressed more in the PBMt group than in the control (P < 0.05). CONCLUSIONS Treatment with PBM using red light LED may induce proliferation and progression of HT29 cancer cells by increasing mitochondrial activity and fission.
Collapse
Affiliation(s)
- Kyung Jin Seo
- Department of Pathology, Uijongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bom Yee Chung
- Department of Internal Medicine, Uijongbu St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hae Kyung Lee
- Department of Laboratory Medicine, Uijongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Won Sang Park
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Hiun Suk Chae
- Department of Internal Medicine, Uijongbu St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|