1
|
Wang J, Wu L, Tian Z, Chen J. Effect of deubiquitinases in head and neck squamous cell carcinoma (Review). Oncol Lett 2025; 29:307. [PMID: 40337608 PMCID: PMC12056481 DOI: 10.3892/ol.2025.15053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/04/2025] [Indexed: 05/09/2025] Open
Abstract
HNSCC includes nasopharyngeal, laryngeal and oral cancers, and its pathogenesis is influenced by various factors. As an essential part of the ubiquitin (Ub)-proteasome system (UPS), deubiquitinating enzymes (DUBs) maintain the homeostasis of Ub molecules and influence the physiological functions of cells and disease processes by removing ubiquitinated proteins. Accumulating evidence has confirmed that the aberrant expression of DUBs is involved in cell proliferation, metastasis, and apoptosis during the development of HNSCC, with some acting as oncogenes and others as tumor-suppressor genes. In this review, the DUBs implicated in HNSCC were summarized and the mechanisms underlying abnormal DUBs expression in signaling pathways were discussed. In addition, given the important role of DUBs in tumorigenesis, recent studies were reviewed and agonists and inhibitors of DUBs were summarized to identify more effective therapeutic strategies.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Liangpei Wu
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Zhifeng Tian
- Cancer Center, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
2
|
Koch J, Elbæk CR, Priesmann D, Damgaard RB. The Molecular Toolbox for Linkage Type-Specific Analysis of Ubiquitin Signaling. Chembiochem 2025; 26:e202500114. [PMID: 40192223 DOI: 10.1002/cbic.202500114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/04/2025] [Indexed: 04/22/2025]
Abstract
Modification of proteins and other biomolecules with ubiquitin regulates virtually all aspects of eukaryotic cell biology. Ubiquitin can be attached to substrates as a monomer or as an array of polyubiquitin chains with defined linkages between the ubiquitin moieties. Each ubiquitin linkage type adopts a distinct structure, enabling the individual linkage types to mediate specific functions or outcomes in the cell. The dynamics, heterogeneity, and in some cases low abundance, make analysis of linkage type-specific ubiquitin signaling a challenging and complex task. Herein, the strategies and molecular tools available for enrichment, detection, and characterization of linkage type-specific ubiquitin signaling, are reviewed. The molecular "toolbox" consists of a range of molecularly different affinity reagents, including antibodies and antibody-like molecules, affimers, engineered ubiquitin-binding domains, catalytically inactive deubiquitinases, and macrocyclic peptides, each with their unique characteristics and binding modes. The molecular engineering of these ubiquitin-binding molecules makes them useful tools and reagents that can be coupled to a range of analytical methods, such as immunoblotting, fluorescence microscopy, mass spectrometry-based proteomics, or enzymatic analyses to aid in deciphering the ever-expanding complexity of ubiquitin modifications.
Collapse
Affiliation(s)
- Julian Koch
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kongens Lyngby, Denmark
| | - Camilla Reiter Elbæk
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kongens Lyngby, Denmark
| | - Dominik Priesmann
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kongens Lyngby, Denmark
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800, Kongens Lyngby, Denmark
| |
Collapse
|
3
|
McFarland MR, Kulathu Y. Emerging tools and methods to study cell signalling mediated by branched ubiquitin chains. Biochem Soc Trans 2025:BST20253015. [PMID: 40380883 DOI: 10.1042/bst20253015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/30/2025] [Indexed: 05/19/2025]
Abstract
Branched ubiquitin chains are complex molecular structures in which two or more ubiquitin moieties are attached to distinct lysine residues of a single ubiquitin molecule within a polyubiquitin chain. These bifurcated architectures significantly expand the signalling capacity of the ubiquitin system. Although branched chains constitute a substantial fraction of cellular polyubiquitin, their biological functions largely remain enigmatic due to their complex nature and the associated technical challenges of studying them. Recent technological innovations have enabled the identification of key molecular players and revealed essential roles for branched chains in diverse cellular processes. In this review, we discuss the bespoke strategies that have driven these discoveries, as well as the technologies needed to advance this rapidly evolving field.
Collapse
Affiliation(s)
- Matthew R McFarland
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, U.K
| | - Yogesh Kulathu
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, U.K
| |
Collapse
|
4
|
Wendrich K, Gallant K, Recknagel S, Petroulia S, Kazi NH, Hane JA, Führer S, Bezstarosti K, O'Dea R, Demmers J, Gersch M. Discovery and mechanism of K63-linkage-directed deubiquitinase activity in USP53. Nat Chem Biol 2025; 21:746-757. [PMID: 39587316 PMCID: PMC12037411 DOI: 10.1038/s41589-024-01777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024]
Abstract
Ubiquitin-specific proteases (USPs) represent the largest class of human deubiquitinases (DUBs) and comprise its phylogenetically most distant members USP53 and USP54, which are annotated as catalytically inactive pseudoenzymes. Conspicuously, mutations within the USP domain of USP53 cause progressive familial intrahepatic cholestasis. Here, we report the discovery that USP53 and USP54 are active DUBs with high specificity for K63-linked polyubiquitin. We demonstrate how USP53 mutations abrogate catalytic activity, implicating loss of DUB activity in USP53-mediated pathology. Depletion of USP53 increases K63-linked ubiquitination of tricellular junction components. Assays with substrate-bound polyubiquitin reveal that USP54 cleaves within K63-linked chains, whereas USP53 can en bloc deubiquitinate substrate proteins in a K63-linkage-dependent manner. Biochemical and structural analyses uncover underlying K63-specific S2 ubiquitin-binding sites within their catalytic domains. Collectively, our work revises the annotation of USP53 and USP54, provides reagents and a mechanistic framework to investigate K63-linked polyubiquitin decoding and establishes K63-linkage-directed deubiquitination as a new DUB activity.
Collapse
Affiliation(s)
- Kim Wendrich
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Kai Gallant
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Sarah Recknagel
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Stavroula Petroulia
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Nafizul Haque Kazi
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Jan André Hane
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Siska Führer
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rachel O'Dea
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Jeroen Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Malte Gersch
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
5
|
Guo Q, Qin H, Chen Z, Zhang W, Zheng L, Qin T. Key roles of ubiquitination in regulating critical regulators of cancer stem cell functionality. Genes Dis 2025; 12:101311. [PMID: 40034124 PMCID: PMC11875185 DOI: 10.1016/j.gendis.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 03/05/2025] Open
Abstract
The ubiquitin (Ub) system, a ubiquitous presence across eukaryotes, plays a crucial role in the precise orchestration of diverse cellular protein processes. From steering cellular signaling pathways and orchestrating cell cycle progression to guiding receptor trafficking and modulating immune responses, this process plays a crucial role in regulating various biological functions. The dysregulation of Ub-mediated signaling pathways in prevalent cancers ushers in a spectrum of clinical outcomes ranging from tumorigenesis and metastasis to recurrence and drug resistance. Ubiquitination, a linchpin process mediated by Ub, assumes a central mantle in molding cellular signaling dynamics. It navigates transitions in biological cues and ultimately shapes the destiny of proteins. Recent years have witnessed an upsurge in the momentum surrounding the development of protein-based therapeutics aimed at targeting the Ub system under the sway of cancer stem cells. The article provides a comprehensive overview of the ongoing in-depth discussions regarding the regulation of the Ub system and its impact on the development of cancer stem cells. Amidst the tapestry of insights, the article delves into the expansive roles of E3 Ub ligases, deubiquitinases, and transcription factors entwined with cancer stem cells. Furthermore, the spotlight turns to the interplay with pivotal signaling pathways the Notch, Hedgehog, Wnt/β-catenin, and Hippo-YAP signaling pathways all play crucial roles in the regulation of cancer stem cells followed by the specific modulation of Ub-proteasome.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Artificial Intelligence and IoT Smart Medical Engineering Research Center of Henan Province, Zhengzhou, Henan 450008, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| |
Collapse
|
6
|
Iwase R, Maisonet IJ, Lee K, Buhrlage SJ, Cole PA. Deubiquitinase processing of a non-natural linkage of ubiquitinated-PTEN. Bioorg Chem 2025; 157:108223. [PMID: 39919325 PMCID: PMC11911077 DOI: 10.1016/j.bioorg.2025.108223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
PTEN is an important tumor suppressor protein that is regulated by ubiquitination events which are modulated by deubiquitinases, or enzymes that remove ubiquitin from substrate proteins. As ubiquitinated substrates are beneficial to study deubiquitinase activity and substrate recognition, we have previously developed a semisynthetic strategy to site-specifically install a monoubiquitin on PTEN. This strategy uses a non-natural aminoAla-Cys functionality as a convenient alternative to the synthetically more challenging natural isopeptide linkage. However, the effective processing of this linkage by deubiquitinases other than by the deubiquitinase USP7 has not been evaluated. Therefore, we assessed whether the aminoAla-Cys linked monoubiquitinated PTEN can be processed by other known deubiquitinases. We found that USP10, USP11, and USP15 processed monoubiquitinated PTEN but BAP1 and OTUD3 could not under the conditions tested. This study demonstrates that ubiquitin linked to the aminoAla-Cys functionality is hydrolyzable by members of the USP family deubiquitinases and enables the systematic evaluation of deubiquitinase activities toward monoubiquitinated protein substrates.
Collapse
Affiliation(s)
- Reina Iwase
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, United States
| | - Isabella Jaen Maisonet
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States
| | - Kwangwoon Lee
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, United States
| | - Sara J Buhrlage
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States
| | - Philip A Cole
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, United States.
| |
Collapse
|
7
|
El‐Darzi N, Mast N, Li Y, Pikuleva IA. Dietary effects on the retina of hamsters. FASEB J 2025; 39:e70451. [PMID: 40099968 PMCID: PMC11917192 DOI: 10.1096/fj.202403390r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
The retina is a sensory tissue in the back of the eye, which captures visual information and relays it to the brain. The retinal pigment epithelium separates the neural retina from the choroidal (systemic) circulation and is thereby exposed to circulating lipoprotein particles. Herein, we used hamsters and conducted various retinal evaluations of animals fed either a normal diet or a Western-type diet (WTD). Prior to evaluations, hamsters were injected with indocyanine green (ICG), a fluorescent dye that binds to various proteins and lipids in the systemic circulation. The WTD increased plasma levels of total and HDL cholesterol 1.8- and 2.1-fold, respectively, and led to additional HDL2 and HDL3 subpopulations. The diet also increased the ICG fluorescence in the retinal pigment epithelium and the underlying choroidal circulation on histological tracking and altered retinal protein abundance as assessed by proteomics. Functional enrichments were found in the retinal gene expression, energy production, intracellular transport, cytoskeleton- and synapse-related processes, and protein ubiquitination. The biochemical basis linking the WTD, retinal energy production, and retinal neurotransmission was suggested as well. The data obtained were then compared with those from our previous investigations of hamsters and different mouse genotypes. We identified common retinal processes that can be affected by circulating lipoprotein particles regardless of the mechanism by which their levels and subpopulations were altered (through diet or genetic modification). Thus, we obtained novel mechanistic insights into how lipids in the systemic circulation can affect the retina.
Collapse
Affiliation(s)
- Nicole El‐Darzi
- Department of Ophthalmology and Visual SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Natalia Mast
- Department of Ophthalmology and Visual SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Yong Li
- Department of Ophthalmology and Visual SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Irina A. Pikuleva
- Department of Ophthalmology and Visual SciencesCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
8
|
Ernst LN, Jaag SJ, Wydra VR, Masberg B, Knappe C, Gerstenecker S, Serafim RAM, Liang XJ, Seidler NJ, Lämmerhofer M, Gehringer M, Boeckler FM. Screening of Covalent Kinase Inhibitors Yields Hits for Cysteine Protease USP7 / HAUSP. Drug Des Devel Ther 2025; 19:2253-2284. [PMID: 40165995 PMCID: PMC11955496 DOI: 10.2147/dddt.s513591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
Purpose The ubiquitin-specific protease 7 (USP7), also known as herpes-associated ubiquitin-specific protease (HAUSP) is an interesting target due to its role in the tumor suppressor p53 pathway. In recent years targeted covalent inhibitors have gained significant importance in pharmaceutical research. Thus, we have investigated a small library of 129 ligands bearing different types of covalent reactive groups ("warheads") from various kinase drug discovery projects for their reactivity towards the catalytic cysteine of USP7, as well as their influence on its melting temperature. These compounds mainly encompassed α,β-unsaturated amides specifically acrylamides, SNAr reacting compounds, aryl fluorosulfates and sulfonyl fluorides. Methods We analyzed an array of 129 electrophilic compounds which had been designed as covalent kinase inhibitors in a DSF-based (differential scanning fluorimetry) screen against USP7. The hits were evaluated for their ability to cause similar thermal shifts for a CYS-deficient USP7 control mutant (USP7asoc), where only the catalytic Cys223 was retained. Additionally, covalent binding was evaluated by intact protein mass spectrometry (MS). Results The DSF screen revealed that, predominantly 18 of the 129 tested compounds decreased the melting temperature of USP7 and its mutant USP7asoc. For 8 of these, the hypothesized covalent binding mode was corroborated with native and mutant USP7 by intact protein MS. Nearly all identified hits have a covalent warhead that reacts via nucleophilic aromatic substitution (SNAr). Conclusion The screening and evaluation of the kinase library revealed several initial hits of interest. Seven SNAr warheads and one acrylamide warhead compound covalently modified the target protein (USP7) and showed clear shifts in the melting temperatures ranging from -6.0 °C to +1.7 °C.
Collapse
Affiliation(s)
- Larissa N Ernst
- Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Laboratory for Molecular Design and Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Tübingen, 72076, Germany
| | - Simon J Jaag
- Department of Pharmacy and Biochemistry, Eberhard Karls Universität, Pharmaceutical (Bio-)Analysis, Institute of Pharmaceutical Sciences, Tübingen, 72076, Germany
| | - Valentin R Wydra
- Department of Pharmacy and Biochemistry, Eberhard Karls Universität, Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Tübingen, 72076, Germany
| | - Benedikt Masberg
- Department of Pharmacy and Biochemistry, Eberhard Karls Universität, Pharmaceutical (Bio-)Analysis, Institute of Pharmaceutical Sciences, Tübingen, 72076, Germany
| | - Cornelius Knappe
- Department of Pharmacy and Biochemistry, Eberhard Karls Universität, Pharmaceutical (Bio-)Analysis, Institute of Pharmaceutical Sciences, Tübingen, 72076, Germany
| | - Stefan Gerstenecker
- Department of Pharmacy and Biochemistry, Eberhard Karls Universität, Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Tübingen, 72076, Germany
| | - Ricardo A M Serafim
- Department of Pharmacy and Biochemistry, Eberhard Karls Universität, Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Tübingen, 72076, Germany
| | - Xiaojun Julia Liang
- Department of Medicinal Chemistry, Eberhard Karls Universität Tübingen, Faculty of Medicine, Institute for Biomedical Engineering, Tübingen, 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Nico J Seidler
- Department of Pharmacy and Biochemistry, Eberhard Karls Universität, Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Tübingen, 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Michael Lämmerhofer
- Department of Pharmacy and Biochemistry, Eberhard Karls Universität, Pharmaceutical (Bio-)Analysis, Institute of Pharmaceutical Sciences, Tübingen, 72076, Germany
| | - Matthias Gehringer
- Department of Pharmacy and Biochemistry, Eberhard Karls Universität, Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Tübingen, 72076, Germany
- Department of Medicinal Chemistry, Eberhard Karls Universität Tübingen, Faculty of Medicine, Institute for Biomedical Engineering, Tübingen, 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Frank M Boeckler
- Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Laboratory for Molecular Design and Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Tübingen, 72076, Germany
- Interfaculty Institute for Biomedical Informatics (IBMI), Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| |
Collapse
|
9
|
Wei R, Shi X, Qiu W, Yang M, Chen Y, Song S, Yang H, Liu J. ATXN3 deubiquitinates ZEB1 and facilitates epithelial-mesenchymal transition in glioblastoma. Sci Rep 2025; 15:7868. [PMID: 40050358 PMCID: PMC11885642 DOI: 10.1038/s41598-025-92317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
The activation of epithelial-mesenchymal transition (EMT) promotes glioblastoma (GBM) invasion, thereby enhancing its malignancy. Elucidating the underlying mechanisms that regulate EMT is essential for the development of effective treatments for GBM. In this study, we found that GBM tissues and cells exhibit significantly elevated expression levels of ataxin 3 (ATXN3). Functional experiments demonstrated that ATXN3 promotes the invasion, migration, and tumor growth of GBM cells by activating EMT. Mechanistically, ATXN3 was identified as a bona fide deubiquitinase for ZEB1, a key EMT-inducing transcription factor, in GBM cells. ATXN3 interacts directly with ZEB1, cleaves ubiquitin moieties from conjugated substrates and maintains the stability of ZEB1. Ectopic expression of ZEB1 significantly mitigates the inhibitory effects of ATXN3 depletion on the invasion, migration, and tumor growth of GBM cells. Furthermore, ATXN3 exhibits a positive correlation with ZEB1 expression levels and serves as a predictor of poor prognosis in human GBM specimens. Collectively, our study elucidates a critical ATXN3-ZEB1 signaling axis in EMT and invasion, thereby providing a rationale for potential therapeutic interventions against GBM.
Collapse
Affiliation(s)
- Ruting Wei
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
| | - Xueping Shi
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
| | - Wenjin Qiu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
| | - Ming Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
| | - Yimin Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
| | - Shibin Song
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
| | - Hua Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
| | - Jian Liu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China.
| |
Collapse
|
10
|
Yu ST, Sun ZY, Li N, Qu ZZ, Wang CH, Ju TT, Liu YQ, Mei ZT, Liu KW, Lu MX, Huang M, Li Y, Dou SK, Jiang JH, Zhang YZ, Huang CH, Pang XC, Jia YQ, Dong XH, Wu F, Zhang Y, Li WH, Yang BF, Du WJ. Mettl1 knockdown alleviates cardiac I/R injury in mice by inactivating the Mettl1-CYLD-P53 positive feedback loop. Acta Pharmacol Sin 2025; 46:592-605. [PMID: 39414959 PMCID: PMC11845720 DOI: 10.1038/s41401-024-01395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/09/2024] [Indexed: 10/18/2024]
Abstract
The N7-methylguanosine (m7G) methyltransferase Mettl1 has been recently implicated in cardiac repair and fibrosis. In this study we investigated the role of Mettl1 in mouse cardiomyocytes injury and the underlying mechanisms. Cardiac ischemia/reperfusion (I/R) I/R model was established in mice by ligation of the left anterior descending coronary artery (LAD) for 45 min followed by reperfusion for 24 h. We showed the mRNA and protein levels of Mettl1 were significantly upregulated in mouse I/R hearts and H2O2-treated neonatal mouse cardiomyocytes (NMCMs). Mettl1 knockdown markedly ameliorated cardiac I/R injury, evidenced by decreased infarct size, apoptosis, and improved cardiac function. Overexpression of Mettl1 triggered cardiomyocytes apoptosis in vivo and in vitro. By performing RNA sequencing combined with m7G methylated RNA sequencing in Mettl1-overexpressing mouse hearts, we revealed that Mettl1 catalyzed m7G modification of the deubiquitinase cylindromatosis (CYLD) mRNA to increase the expression of CYLD, which enhanced the stability of P53 via abrogating its ubiquitination degradation. Vice versa, P53 served as a transcriptional factor to positively regulate Mettl1 expression during I/R injury. Knockdown of CYLD mitigated cardiomyocytes apoptosis induced by Mettl1 overexpression or oxidative stress. From the available drug-targets databases and literature, we identified 4 small molecule inhibitors of m7G modification. Sinefungin, one of the Mettl1 inhibitors exerted profound protection against cardiac I/R injury in vivo and in vitro. Collectively, this study has identified Mettl1 as a key regulator of cardiomyocyte apoptosis, and targeting the Mettl1-CYLD-P53 positive feedback circuit may represent a novel therapeutic avenue for alleviating cardiac I/R injury.
Collapse
Affiliation(s)
- Shu-Ting Yu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zhi-Yong Sun
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Na Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhe-Zhe Qu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chang-Hao Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Tian-Tian Ju
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ying-Qi Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhong-Ting Mei
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Kui-Wu Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Mei-Xi Lu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Min Huang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ying Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shun-Kang Dou
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jian-Hao Jiang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yao-Zhi Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chuan-Hao Huang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiao-Chen Pang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ying-Qiong Jia
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xian-Hui Dong
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Fan Wu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yi Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wan-Hong Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Bao-Feng Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China.
| | - Wei-Jie Du
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
11
|
Bakkar M, Khalil S, Bhayekar K, Kushwaha ND, Samarbakhsh A, Dorandish S, Edwards H, Dou QP, Ge Y, Gavande NS. Ubiquitin-Specific Protease Inhibitors for Cancer Therapy: Recent Advances and Future Prospects. Biomolecules 2025; 15:240. [PMID: 40001543 PMCID: PMC11853158 DOI: 10.3390/biom15020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer management has traditionally depended on chemotherapy as the mainstay of treatment; however, recent advancements in targeted therapies and immunotherapies have offered new options. Ubiquitin-specific proteases (USPs) have emerged as promising therapeutic targets in cancer treatment due to their crucial roles in regulating protein homeostasis and various essential cellular processes. This review covers the following: (1) the structural and functional characteristics of USPs, highlighting their involvement in key cancer-related pathways, and (2) the discovery, chemical structures, mechanisms of action, and potential clinical implications of USP inhibitors in cancer therapy. Particular attention is given to the role of USP inhibitors in enhancing cancer immunotherapy, e.g., modulation of the tumor microenvironment, effect on regulatory T cell function, and influence on immune checkpoint pathways. Furthermore, this review summarizes the current progress and challenges of clinical trials involving USP inhibitors as cancer therapy. We also discuss the complexities of achieving target selectivity, the ongoing efforts to develop more specific and potent USP inhibitors, and the potential of USP inhibitors to overcome drug resistance and synergize with existing cancer treatments. We finally provide a perspective on future directions in targeting USPs, including the potential for personalized medicine based on specific gene mutations, underscoring their significant potential for enhancing cancer treatment. By elucidating their mechanisms of action, clinical progress, and potential future applications, we hope that this review could serve as a useful resource for both basic scientists and clinicians in the field of cancer therapeutics.
Collapse
Affiliation(s)
- Mohamad Bakkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI 48201, USA; (M.B.); (K.B.); (N.D.K.); (A.S.); (S.D.)
- Division of Pediatric Hematology and Oncology, Children’s Hospital of Michigan, Detroit, MI 48201, USA
| | - Sara Khalil
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.K.); (Q.P.D.)
| | - Komal Bhayekar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI 48201, USA; (M.B.); (K.B.); (N.D.K.); (A.S.); (S.D.)
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI 48201, USA; (M.B.); (K.B.); (N.D.K.); (A.S.); (S.D.)
| | - Amirreza Samarbakhsh
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI 48201, USA; (M.B.); (K.B.); (N.D.K.); (A.S.); (S.D.)
| | - Sadaf Dorandish
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI 48201, USA; (M.B.); (K.B.); (N.D.K.); (A.S.); (S.D.)
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute (KCI), Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Q. Ping Dou
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.K.); (Q.P.D.)
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute (KCI), Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.K.); (Q.P.D.)
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute (KCI), Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Navnath S. Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI 48201, USA; (M.B.); (K.B.); (N.D.K.); (A.S.); (S.D.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute (KCI), Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
12
|
Weng F, Jin X, Ragunathan S, Huang S, Kane T, Stoeckel M, Wang Y. Prenylation-dependent membrane localization of a deubiquitinating enzyme and its role in regulating G protein-mediated signaling in yeast. J Biol Chem 2025; 301:108180. [PMID: 39798877 PMCID: PMC11847538 DOI: 10.1016/j.jbc.2025.108180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
Miy1 is a highly conserved deubiquitinating enzyme in yeast with MINDY1 as its human homolog. Miy1 is known to act on K48-linked polyubiquitin chain, but its biological function is unknown. Miy1 has a putative prenylation site, suggesting it as a membrane-associated protein that may contribute to the regulation of cell signaling. Here, we demonstrate that Miy1 is localized in the plasma membrane and nuclear periphery. Mutating the putative prenylation site in Miy1 or disrupting the farnesyltransferase activity impairs its localization. Consistent with a role of Miy1 in regulating the ubiquitination status of membrane proteins, the miy1Δ mutants exhibit a higher level of ubiquitinated conjugates at the plasma membrane. To examine a role of Miy1 in regulating cell signaling across plasma membrane, we focused on the pheromone response, as both Ste2, the receptor for mating pheromone, and Gpa1, the cognate Gα protein of Ste2, are well known to be regulated by ubiquitination. We find that Miy1 interacts with Gpa1, regulates its level of ubiquitination and abundance. Pheromone-induced MAP kinase Fus3 activation is also altered in the MIY1-disrupted mutants. The findings demonstrate that Miy1 is a membrane-associated deubiquitinating enzyme and a regulator of G protein-mediated signaling.
Collapse
Affiliation(s)
- Fangli Weng
- Department of Biology, Saint Louis University, St Louis, Missouri, USA
| | - Xin Jin
- Department of Biology, Saint Louis University, St Louis, Missouri, USA
| | - Sindhu Ragunathan
- Department of Biology, Saint Louis University, St Louis, Missouri, USA
| | - Shan Huang
- Department of Biology, Saint Louis University, St Louis, Missouri, USA
| | - Thomas Kane
- Department of Biology, Saint Louis University, St Louis, Missouri, USA
| | - Matthew Stoeckel
- Department of Biology, Saint Louis University, St Louis, Missouri, USA
| | - Yuqi Wang
- Department of Biology, Saint Louis University, St Louis, Missouri, USA.
| |
Collapse
|
13
|
Campaniҫo A, Baran M, Bowie AG, Longley DB, Harrison T, McGouran JF. Chemical- and photo-activation of protein-protein thiol-ene coupling for protein profiling. Commun Chem 2025; 8:25. [PMID: 39880982 PMCID: PMC11779957 DOI: 10.1038/s42004-025-01412-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025] Open
Abstract
The thiol-ene reaction between an alkene and a thiol can be exploited for selective labelling of cysteine residues in protein profiling applications. Here, we explore thiol-ene activation in systems from chemical models to complex cellular milieus, using UV, visible wavelength and redox initiators. Initial studies in chemical models required an oxygen-free environment for efficient coupling and showed very poor activation when using a redox initiator. When thiol-ene activation was performed in protein and cell lysate models, all three initiation methods were successful. Faster thiol-ene reaction was observed as the cysteine and alkene were brought into proximity by a binding event prior to activation, leading to quicker adduct formation in the protein model system than the chemical models. Furthermore, in the protein-protein coupling, none of the activators required an oxygen-free environment. Taken together, these observations demonstrate the broad potential for thiol-ene coupling to be used in protein profiling.
Collapse
Affiliation(s)
- André Campaniҫo
- School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Marcin Baran
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Daniel B Longley
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Timothy Harrison
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | | |
Collapse
|
14
|
Vuorinen A, Kennedy CR, McPhie KA, McCarthy W, Pettinger J, Skehel JM, House D, Bush JT, Rittinger K. Enantioselective OTUD7B fragment discovery through chemoproteomics screening and high-throughput optimisation. Commun Chem 2025; 8:12. [PMID: 39809917 PMCID: PMC11732987 DOI: 10.1038/s42004-025-01410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Deubiquitinating enzymes (DUBs) are key regulators of cellular homoeostasis, and their dysregulation is associated with several human diseases. The ovarian tumour protease (OTU) family of DUBs are biochemically well-characterised and of therapeutic interest, yet only a few tool compounds exist to study their cellular function and therapeutic potential. Here we present a chemoproteomics fragment screening platform for identifying novel DUB-specific hit matter, that combines activity-based protein profiling with high-throughput chemistry direct-to-biology optimisation to enable rapid elaboration of initial fragment hits against OTU DUBs. Applying these approaches, we identify an enantioselective covalent fragment for OTUD7B, and validate it using chemoproteomics and biochemical DUB activity assays.
Collapse
Affiliation(s)
- Aini Vuorinen
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Cassandra R Kennedy
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Katherine A McPhie
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | - William McCarthy
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | | | - J Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - David House
- Crick-GSK Biomedical LinkLabs, GSK, Stevenage, Hertfordshire, UK
| | - Jacob T Bush
- Crick-GSK Biomedical LinkLabs, GSK, Stevenage, Hertfordshire, UK.
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
15
|
Li Y, Yu J, Zeng Z, Lin W. Regulation of ubiquitination in sepsis: from PAMP versus DAMP to peripheral inflammation and cell death. Front Immunol 2024; 15:1513206. [PMID: 39720715 PMCID: PMC11666442 DOI: 10.3389/fimmu.2024.1513206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
Sepsis (sepsis) is a systemic inflammatory response triggered by infection, and its pathologic features include overproduction of peripheral inflammatory factors (e.g., IL-1β, IL-6, TNF-α), which ultimately leads to cytokine storm and multiple organ dysfunction syndrome (MODS). Pathogen-associated molecular patterns (PAMP) and damage-associated molecular patterns (DAMP) induce strong immune responses and exacerbate inflammation by activating pattern recognition receptors (PRRs) in the host. Ubiquitination, as a key protein post-translational modification, dynamically regulates the activity of several inflammation-associated proteins (e.g., RIPK1, NLRP3) through the coordinated action of the E1, E2, and E3 enzymes, affects cell death pathways such as necroptosis and pyroptosis, and ultimately regulates the release of peripheral inflammatory factors. Deubiquitinating enzymes (DUBs), on the other hand, influence the intensity of the inflammatory response in sepsis by counter-regulating the ubiquitination process and balancing pro- and anti-inflammatory signals. This review focuses on how PAMP and DAMP activate inflammatory pathways via PRRs, and the central role of ubiquitination and deubiquitination in the development of sepsis, especially the mechanisms in regulating the secretion of peripheral inflammatory factors and cell death. By deeply dissecting the impact of the balance of ubiquitination and deubiquitination on inflammatory regulation, we further envision its potential as a therapeutic target in sepsis.
Collapse
Affiliation(s)
| | | | | | - Weixiong Lin
- Department of Anesthesiology I, Meizhou People’s Hospital,
Meizhou, Guangdong, China
| |
Collapse
|
16
|
Needham EJ, Hingst JR, Onslev JD, Diaz-Vegas A, Leandersson MR, Huckstep H, Kristensen JM, Kido K, Richter EA, Højlund K, Parker BL, Cooke K, Yang G, Pehmøller C, Humphrey SJ, James DE, Wojtaszewski JFP. Personalized phosphoproteomics of skeletal muscle insulin resistance and exercise links MINDY1 to insulin action. Cell Metab 2024; 36:2542-2559.e6. [PMID: 39577414 DOI: 10.1016/j.cmet.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/05/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Type 2 diabetes is preceded by a defective insulin response, yet our knowledge of the precise mechanisms is incomplete. Here, we investigate how insulin resistance alters skeletal muscle signaling and how exercise partially counteracts this effect. We measured parallel phenotypes and phosphoproteomes of insulin-resistant (IR) and insulin-sensitive (IS) men as they responded to exercise and insulin (n = 19, 114 biopsies), quantifying over 12,000 phosphopeptides in each biopsy. Insulin resistance involves selective and time-dependent alterations to signaling, including reduced insulin-stimulated mTORC1 and non-canonical signaling responses. Prior exercise promotes insulin sensitivity even in IR individuals by "priming" a portion of insulin signaling prior to insulin infusion. This includes MINDY1 S441, which we show is an AKT substrate. We found that MINDY1 knockdown enhances insulin-stimulated glucose uptake in rat myotubes. This work delineates the signaling alterations in IR skeletal muscle and identifies MINDY1 as a regulator of insulin action.
Collapse
Affiliation(s)
- Elise J Needham
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Janne R Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Johan D Onslev
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Alexis Diaz-Vegas
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Magnus R Leandersson
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Hannah Huckstep
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Jonas M Kristensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kohei Kido
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa, Japan
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Benjamin L Parker
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Kristen Cooke
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Guang Yang
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Christian Pehmøller
- Internal Medicine Research Unit, Pfizer Global Research and Development, Cambridge, MA, USA
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Lange SM, McFarland MR, Lamoliatte F, Carroll T, Krshnan L, Pérez-Ràfols A, Kwasna D, Shen L, Wallace I, Cole I, Armstrong LA, Knebel A, Johnson C, De Cesare V, Kulathu Y. VCP/p97-associated proteins are binders and debranching enzymes of K48-K63-branched ubiquitin chains. Nat Struct Mol Biol 2024; 31:1872-1887. [PMID: 38977901 PMCID: PMC11638074 DOI: 10.1038/s41594-024-01354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
Branched ubiquitin (Ub) chains constitute a sizable fraction of Ub polymers in human cells. Despite their abundance, our understanding of branched Ub function in cell signaling has been stunted by the absence of accessible methods and tools. Here we identify cellular branched-chain-specific binding proteins and devise approaches to probe K48-K63-branched Ub function. We establish a method to monitor cleavage of linkages within complex Ub chains and unveil ATXN3 and MINDY as debranching enzymes. We engineer a K48-K63 branch-specific nanobody and reveal the molecular basis of its specificity in crystal structures of nanobody-branched Ub chain complexes. Using this nanobody, we detect increased K48-K63-Ub branching following valosin-containing protein (VCP)/p97 inhibition and after DNA damage. Together with our discovery that multiple VCP/p97-associated proteins bind to or debranch K48-K63-linked Ub, these results suggest a function for K48-K63-branched chains in VCP/p97-related processes.
Collapse
Affiliation(s)
- Sven M Lange
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Matthew R McFarland
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Thomas Carroll
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Logesvaran Krshnan
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Anna Pérez-Ràfols
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Dominika Kwasna
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
| | - Linnan Shen
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Iona Wallace
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Isobel Cole
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Lee A Armstrong
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Clare Johnson
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Virginia De Cesare
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Yogesh Kulathu
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
| |
Collapse
|
18
|
Wu L, Wang J, Chai L, Chen J, Jin X. Roles of deubiquitinases in urologic cancers (Review). Oncol Lett 2024; 28:609. [PMID: 39525605 PMCID: PMC11544529 DOI: 10.3892/ol.2024.14743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Human health is endangered by the occurrence and progression of urological cancers, including renal cell carcinoma, prostate cancer and bladder cancer, which are usually associated with the activation of oncogenic factors and inhibition of cancer suppressors. The primary mechanism for protein breakdown in cells is the ubiquitin-proteasome system, whilst deubiquitinases contribute to the reversal of this process. However, both are important for protein homeostasis. Deubiquitination may also be involved in the control of the cell cycle, proliferation and apoptosis, and dysregulated deubiquitination is associated with the malignant transformation, invasion and metastasis of urologic malignancies. Therefore, a comprehensive summary of the mechanisms underlying deubiquitination in urological cancers may provide novel strategies and insights for diagnosis and treatment. The present review aimed to methodically clarify the role of deubiquitinating enzymes in urinary system cancers as well as their prospective application prospects for clinical treatment.
Collapse
Affiliation(s)
- Liangpei Wu
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jiahui Wang
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Lin Chai
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
19
|
Kumar S, Basu M, Ghosh MK. E3 ubiquitin ligases and deubiquitinases in colorectal cancer: Emerging molecular insights and therapeutic opportunities. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119827. [PMID: 39187067 DOI: 10.1016/j.bbamcr.2024.119827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Colorectal cancer (CRC) presents ongoing challenges due to limited treatment effectiveness and a discouraging prognosis, underscoring the need for ground-breaking therapeutic approaches. This review delves into the pivotal role of E3 ubiquitin ligases and deubiquitinases (DUBs), underscoring their role as crucial regulators for tumor suppression and oncogenesis in CRC. We spotlight the diverse impact of E3 ligases and DUBs on CRC's biological processes and their remarkable versatility. We closely examine their specific influence on vital signaling pathways, particularly Wnt/β-catenin and NF-κB. Understanding these regulatory mechanisms is crucial for unravelling the complexities of CRC progression. Importantly, we explore the untapped potential of E3 ligases and DUBs as novel CRC treatment targets, discussing aspects that may guide more effective therapeutic strategies. In conclusion, our concise review illuminates the E3 ubiquitin ligases and deubiquitinases pivotal role in CRC, offering insights to inspire innovative approaches for transforming the treatment landscape in CRC.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, PIN - 743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
20
|
Du WX, Goodman CA, Gregorevic P. Deubiquitinases in skeletal muscle-the underappreciated side of the ubiquitination coin. Am J Physiol Cell Physiol 2024; 327:C1651-C1665. [PMID: 39344415 DOI: 10.1152/ajpcell.00553.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Ubiquitination is a posttranslational modification that plays important roles in regulating protein stability, function, localization, and protein-protein interactions. Proteins are ubiquitinated via a process involving specific E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. Simultaneously, protein ubiquitination is opposed by deubiquitinating enzymes (DUBs). DUB-mediated deubiquitination can change protein function or fate and recycle ubiquitin to maintain the free ubiquitin pool. Approximately 100 DUBs have been identified in the mammalian genome, and characterized into seven classes [ubiquitin-specific protease (USP), ovarian tumor proteases (OTU), ubiquitin C-terminal hydrolase (UCH), Machado-Josephin disease (MJD), JAB1/MPN/Mov34 metalloprotease (JAMM), Ub-containing novel DUB family (MINDY), and zinc finger containing ubiquitin peptidase (ZUP) classes]. Of these 100 DUBs, there has only been relatively limited investigation of 20 specifically in skeletal muscle cells, in vitro or in vivo, using overexpression, knockdown, and knockout models. To date, evidence indicates roles for individual DUBs in regulating aspects of myogenesis, protein turnover, muscle mass, and muscle metabolism. However, the exact mechanism by which these DUBs act (i.e., the specific targets of these DUBs and the type of ubiquitin chains they target) is still largely unknown, underscoring how little we know about DUBs in skeletal muscle. This review endeavors to comprehensively summarize the current state of knowledge of the function of DUBs in skeletal muscle and highlight the opportunities for gaining a greater understanding through further research into this important area of skeletal muscle and ubiquitin biology.
Collapse
Affiliation(s)
- Wayne X Du
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Craig A Goodman
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul Gregorevic
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurology, The University of Washington School of Medicine, Seattle, Washington, United States
| |
Collapse
|
21
|
Suleman S, Madsen AL, Ängquist LH, Schubert M, Linneberg A, Loos RJF, Hansen T, Grarup N. Genetic Underpinnings of Fasting and Oral Glucose-stimulated Based Insulin Sensitivity Indices. J Clin Endocrinol Metab 2024; 109:2754-2763. [PMID: 38635292 PMCID: PMC11479690 DOI: 10.1210/clinem/dgae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
CONTEXT Insulin sensitivity (IS) is an important factor in type 2 diabetes (T2D) and can be estimated by many different indices. OBJECTIVE We aimed to compare the genetic components underlying IS indices obtained from fasting and oral glucose-stimulated plasma glucose and serum insulin levels. METHODS We computed 21 IS indices, classified as fasting, OGTT0,120, and OGTT0,30,120 indices, using fasting and oral glucose tolerance test (OGTT) data in 2 cohorts. We used data from a family cohort (n = 313) to estimate the heritability and the genetic and phenotypic correlations of IS indices. The population cohort, Inter99 (n = 5343), was used to test for associations between IS indices and 426 genetic variants known to be associated with T2D. RESULTS Heritability estimates of IS indices ranged between 19% and 38%. Fasting and OGTT0,30,120 indices had high genetic (ρG) and phenotypic (ρP) pairwise correlations (ρG and ρP: 0.88 to 1) The OGTT0,120 indices displayed a wide range of pairwise correlations (ρG: 0.17-1.00 and ρP: 0.13-0.97). We identified statistically significant associations between IS indices and established T2D-associated variants. The PPARG rs11709077 variant was associated only with fasting indices and PIK3R rs4976033 only with OGTT0,30,120 indices. The variants in FAM63A/MINDY1, GCK, C2CD4A/B, and FTO loci were associated only with OGTT0,120 indices. CONCLUSION Even though the IS indices mostly share a common genetic background, notable differences emerged between OGTT0,120 indices. The fasting and OGTT-based indices have distinct associations with T2D risk variants. This work provides a basis for future large-scale genetic investigations into the differences between IS indices.
Collapse
Affiliation(s)
- Sufyan Suleman
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Anne L Madsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Lars H Ängquist
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Mikkel Schubert
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Copenhagen 2000, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Ruth J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
22
|
Wang J, Fang S, Jiang Y, Hua Q. Unraveling the Mechanism of Action of Ubiquitin-Specific Protease 5 and Its Inhibitors in Tumors. Clin Med Insights Oncol 2024; 18:11795549241281932. [PMID: 39391229 PMCID: PMC11465303 DOI: 10.1177/11795549241281932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024] Open
Abstract
Ubiquitin-specific protease 5 (USP5), a member of the ubiquitin-specific proteases (USPs) family, functions by specifically removing ubiquitin chains from target proteins for stabilization and degrading unbound polyubiquitin chains to maintain a steady-state monoubiquitin pool. Ubiquitin-specific protease 5 regulates various cellular activities, including DNA double-strand break repair, transmission of neuropathic and inflammatory pain signals, immune response, and tumor cell proliferation. Furthermore, USP5 is involved in the development of multiple tumors such as liver, lung, pancreatic, and breast cancers as well as melanoma. Downstream regulatory mechanisms associated with USP5 are complex and diverse. Ubiquitin-specific protease 5 has been revealed as an emerging target for tumor treatment. This study has introduced some molecules upstream to control the expression of USP5 at the levels of transcription, translation, and post-translation. Furthermore, the study incorporated inhibitors known to be associated with USP5, including partially selective deubiquitinase (DUB) inhibitors such as WP1130, EOAI3402143, vialinin A, and chalcone derivatives. It also included the ubiquitin-activating enzyme E1 inhibitor, PYR-41. These small molecule inhibitors impact the occurrence and development of various tumors. Therefore, this article comprehensively reviews the pivotal role of USP5 in different signaling pathways during tumor progression and resumes the progress made in developing USP5 inhibitors, providing a theoretical foundation for their clinical translation.
Collapse
Affiliation(s)
| | | | - Yang Jiang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Mu M, Lu Y, Tu K, Tu L, Guo C, Li Z, Zhang X, Chen Y, Liu X, Xu Q, Huang D, Li X. FAM188B promotes the growth, metastasis, and invasion of hepatocellular carcinoma by targeting the hnRNPA1/PKM2 axis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119773. [PMID: 38844182 DOI: 10.1016/j.bbamcr.2024.119773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Hepatocellular carcinoma (HCC), the leading cause of cancer-related deaths worldwide, is characterised by rapid growth and marked invasiveness. Accumulating evidence suggests that deubiquitinases play a pivotal role in HCC growth and metastasis. However, the expression of the deubiquitinase FAM188B and its biological functions in HCC remain unknown. The aim of our study was to investigate the potential role of FAM188B in HCC. The expression of FAM188B was significantly upregulated in liver cancer cells compared to normal liver cells, both at the transcriptional and translational levels. Similarly, FAM188B expression was higher in liver cancer tissues than in normal liver tissues. Bioinformatic analysis revealed that high FAM188B expression was associated with poor prognosis in patients with HCC. We further demonstrated that FAM188B knockdown inhibited cell proliferation, epithelial-mesenchymal transition, migration and invasion both in vitro and in vivo. Mechanistically, FAM188B knockdown significantly inhibited the hnRNPA1/PKM2 pathway in HCC cells. FAM188B may inhibit ubiquitin-mediated degradation of hnRNPA1 through deubiquitination. Notably, we observed that the inhibitory effects of FAM188B knockdown on HCC cell proliferation, migration and invasion were reversed when hnRNPA1 expression was restored. In conclusion, FAM188B promotes HCC progression by enhancing the deubiquitination of hnRNPA1 and subsequently activating the hnRNPA1/PKM2 pathway. Therefore, targeting FAM188B is a potential strategy for HCC therapy.
Collapse
Affiliation(s)
- Mingshan Mu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou 310053, Zhejiang, China
| | - Yisong Lu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou 310053, Zhejiang, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Linglan Tu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 310053, Zhejiang, China
| | - Chaoqin Guo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou 310053, Zhejiang, China
| | - Zilin Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou 310053, Zhejiang, China
| | - Xu Zhang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou 310053, Zhejiang, China
| | - Yihong Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou 310053, Zhejiang, China
| | - Xin Liu
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Qiuran Xu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou 310053, Zhejiang, China; Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.
| | - Dongsheng Huang
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.
| | - Xiaoyan Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou 310053, Zhejiang, China; Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
24
|
Beretta GL, Costantino M, Mirra L, Pettinari P, Perego P. Deubiquitinases in Ovarian Cancer: Role in Drug Resistance and Tumor Aggressiveness. Int J Biol Sci 2024; 20:5208-5222. [PMID: 39430244 PMCID: PMC11489175 DOI: 10.7150/ijbs.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 10/22/2024] Open
Abstract
Ovarian cancer is a lethal disease due to late diagnosis and occurrence of drug resistance that limits the efficacy of platinum-based therapy. Drug resistance mechanisms include both tumor intrinsic and tumor microenvironment-related factors. A role for deubiquitinases (DUBs) is starting to emerge in ovarian cancer. DUBs are a large family of enzymes that remove ubiquitin from target proteins and participate in processes affecting drug resistance such as DNA damage repair and apoptosis. Besides, DUBs modulate the functions of T cell populations favoring an immune suppressed microenvironment. Three DUBs are proteasome-associated, whereas the large majority are not. Among the former DUBs, USP14 has been proposed to modulate transcription factors such as Bcl6 and BACH1. In addition, RPN11/PSMD14 interferes with various processes including epithelial mesenchymal transition, also favored by non-proteasomal DUBs such as USP1 by acting on Snail. Besides, USP8 by stabilizing HER family receptors can confer drug resistance. Overall, DUBs appear to be druggable, with several inhibitors under development. Based on DUBs biological role, DUBs targeting appears promising in view of combination strategies involving different therapeutic approaches. Here, we summarize the relevance of DUBs in ovarian carcinoma and provide insights into future challenges for the treatment of this disease.
Collapse
Affiliation(s)
| | | | | | | | - Paola Perego
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| |
Collapse
|
25
|
Colaco JC, Suresh B, Kaushal K, Singh V, Ramakrishna S. The Role of Deubiquitinating Enzymes in Primary Bone Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01254-y. [PMID: 39177860 DOI: 10.1007/s12033-024-01254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Bone is a living, intricate, and dynamic tissue providing locomotion and protection of the body. It also performs hematopoiesis and mineral homeostasis. Osteosarcoma (OS), Ewing sarcoma (ES), and chondrosarcoma (CS) are primary bone cancers. OS and ES mostly develop in younger individuals, and CS generally develops in adults. Ubiquitination regulates numerous cellular processes. The deubiquitinating enzymes (DUBs) detach the ubiquitin molecules from the ubiquitin labeled substrate, altering ubiquitinated protein functions and regulating protein stability via various signaling pathways. Protein homeostasis and bone remodeling are both crucially influenced by the UPS. Recently, there have been several reports on DUBs involved in bone homeostasis and various bone disorders through the regulation of osteoblasts and osteoclasts via NF-κB, Wnt/β-catenin, TRAF6, TGFβ, ERK1/2, and PI3K/Akt pathways. However, DUBs regulating function in bone homeostasis is still in its infancy. Here, we summarized several recent identifications on DUBs, with a focus on their role in bone cancer progression. Therefore, the study attempts to summarize association with the expression level of DUBs as key factors driving bone cancers and also provide new insights on DUBs as key pharmacologic targets for bone cancer therapeutics.
Collapse
Affiliation(s)
- Jencia Carminha Colaco
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, 382715, India.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.
- College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
26
|
Waltho A, Popp O, Lenz C, Pluska L, Lambert M, Dötsch V, Mertins P, Sommer T. K48- and K63-linked ubiquitin chain interactome reveals branch- and length-specific ubiquitin interactors. Life Sci Alliance 2024; 7:e202402740. [PMID: 38803224 PMCID: PMC11109483 DOI: 10.26508/lsa.202402740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
The ubiquitin (Ub) code denotes the complex Ub architectures, including Ub chains of different lengths, linkage types, and linkage combinations, which enable ubiquitination to control a wide range of protein fates. Although many linkage-specific interactors have been described, how interactors are able to decode more complex architectures is not fully understood. We conducted a Ub interactor screen, in humans and yeast, using Ub chains of varying lengths, as well as homotypic and heterotypic branched chains of the two most abundant linkage types-lysine 48-linked (K48) and lysine 63-linked (K63) Ub. We identified some of the first K48/K63-linked branch-specific Ub interactors, including histone ADP-ribosyltransferase PARP10/ARTD10, E3 ligase UBR4, and huntingtin-interacting protein HIP1. Furthermore, we revealed the importance of chain length by identifying interactors with a preference for Ub3 over Ub2 chains, including Ub-directed endoprotease DDI2, autophagy receptor CCDC50, and p97 adaptor FAF1. Crucially, we compared datasets collected using two common deubiquitinase inhibitors-chloroacetamide and N-ethylmaleimide. This revealed inhibitor-dependent interactors, highlighting the importance of inhibitor consideration during pulldown studies. This dataset is a key resource for understanding how the Ub code is read.
Collapse
Affiliation(s)
- Anita Waltho
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institute for Biology, Humboldt-University zu Berlin, Berlin, Germany
| | - Oliver Popp
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christopher Lenz
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Lukas Pluska
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institute for Biology, Humboldt-University zu Berlin, Berlin, Germany
| | - Mahil Lambert
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Volker Dötsch
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thomas Sommer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institute for Biology, Humboldt-University zu Berlin, Berlin, Germany
| |
Collapse
|
27
|
Xiong X, Huang B, Gan Z, Liu W, Xie Y, Zhong J, Zeng X. Ubiquitin-modifying enzymes in thyroid cancer:Mechanisms and functions. Heliyon 2024; 10:e34032. [PMID: 39091932 PMCID: PMC11292542 DOI: 10.1016/j.heliyon.2024.e34032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Thyroid cancer is the most common malignant tumor of the endocrine system, and evidence suggests that post-translational modifications (PTMs) and epigenetic alterations play an important role in its development. Recently, there has been increasing evidence linking dysregulation of ubiquitinating enzymes and deubiquitinases with thyroid cancer. This review aims to summarize our current understanding of the role of ubiquitination-modifying enzymes in thyroid cancer, including their regulation of oncogenic pathways and oncogenic proteins. The role of ubiquitination-modifying enzymes in thyroid cancer development and progression requires further study, which will provide new insights into thyroid cancer prevention, treatment and the development of novel agents.
Collapse
Affiliation(s)
- Xingmin Xiong
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - BenBen Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - Zhe Gan
- Ganzhou Key Laboratory of Thyroid Cancer, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Weixiang Liu
- Institute of Thyroid and Parathyroid Disease, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yang Xie
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- Ganzhou Key Laboratory of Thyroid Cancer, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - Xiangtai Zeng
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- Institute of Thyroid and Parathyroid Disease, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
28
|
Li B, Adam Eichhorn PJ, Chng WJ. Targeting the ubiquitin pathway in lymphoid malignancies. Cancer Lett 2024; 594:216978. [PMID: 38795760 DOI: 10.1016/j.canlet.2024.216978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Ubiquitination and related cellular processes control a variety of aspects in human cell biology, and defects in these processes contribute to multiple illnesses. In recent decades, our knowledge about the pathological role of ubiquitination in lymphoid cancers and therapeutic strategies to target the modified ubiquitination system has evolved tremendously. Here we review the altered signalling mechanisms mediated by the aberrant expression of cancer-associated E2s/E3s and deubiquitinating enzymes (DUBs), which result in the hyperactivation of oncoproteins or the frequently allied downregulation of tumour suppressors. We discuss recent highlights pertaining to the several different therapeutic interventions which are currently being evaluated to effectively block abnormal ubiquitin-proteasome pathway and the use of heterobifunctional molecules which recruit the ubiquitination system to degrade or stabilize non-cognate substrates. This review aids in comprehension of ubiquitination aberrance in lymphoid cancers and current targeting strategies and elicits further investigations to deeply understand the link between cellular ubiquitination and lymphoid pathogenesis as well as to ameliorate corresponding treatment interventions.
Collapse
Affiliation(s)
- Boheng Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Pieter Johan Adam Eichhorn
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia; Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia.
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute of Singapore, Singapore, Singapore; Department of Medicine, School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
29
|
Jiang X, You H, Niu Y, Ding Y, Chen Z, Wang H, Xu Y, Zhou P, Wei L, Deng D, Xue L, Peng Y, Yang Y, Fan L, Shao N. E2F1-regulated USP5 contributes to the tumorigenic capacity of glioma stem cells through the maintenance of OCT4 stability. Cancer Lett 2024; 593:216875. [PMID: 38643837 DOI: 10.1016/j.canlet.2024.216875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024]
Abstract
Mesenchymal glioma stem cells (MES GSCs) are a subpopulation of cells in glioblastoma (GBM) that contribute to a worse prognosis owing to their highly aggressive nature and resistance to radiation therapy. Here, OCT4 is characterized as a critical factor in sustaining the stemness phenotype of MES GSC. We find that OCT4 is expressed intensively in MES GSC and is intimately associated with poor prognosis, moreover, OCT4 depletion leads to diminished invasive capacity and impairment of the stem phenotype in MES GSC. Subsequently, we demonstrated that USP5 is a deubiquitinating enzyme which directly interacts with OCT4 and preserves OCT4 stability through its deubiquitination. USP5 was additionally proven to be aberrantly over-expressed in MES GSCs, and its depletion resulted in a noticeable diminution of OCT4 and consequently a reduced self-renewal and tumorigenic capacity of MES GSCs, which can be substantially restored by ectopic expression of OCT4. In addition, we detected the dominant molecule that regulates USP5 transcription, E2F1, with dual luciferase reporter gene analysis. In combination, targeting the E2F1-USP5-OCT4 axis is a potentially emerging strategy for the therapy of GBM.
Collapse
Affiliation(s)
- Xiao Jiang
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Hongtao You
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Yixuan Niu
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Yudan Ding
- Translational Medicine Research Center, Zhujiang Hospital of Southern Medical University, 510280, Guangdong Province, China.
| | - Zhengxin Chen
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| | - Huibo Wang
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| | - Yuan Xu
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Peng Zhou
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Li Wei
- Department of Blood Transfusion, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Danni Deng
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Lian Xue
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Ya Peng
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Yilin Yang
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Ligang Fan
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Naiyuan Shao
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| |
Collapse
|
30
|
Xu Z, Zhang N, Shi L. Potential roles of UCH family deubiquitinases in tumorigenesis and chemical inhibitors developed against them. Am J Cancer Res 2024; 14:2666-2694. [PMID: 39005671 PMCID: PMC11236784 DOI: 10.62347/oege2648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/30/2024] [Indexed: 07/16/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) are a large group of proteases that reverse ubiquitination process and maintain protein homeostasis. The DUBs have been classified into seven subfamilies according to their primary sequence and structural similarity. As a small subfamily of DUBs, the ubiquitin C-terminal hydrolases (UCHs) subfamily only contains four members including UCHL1, UCHL3, UCHL5, and BRCA1-associated protein-1 (BAP1). Despite sharing the deubiquitinase activity with a similar catalysis mechanism, the UCHs exhibit distinctive biological functions which are mainly determined by their specific subcellular localization and partner substrates. Besides, growing evidence indicates that the UCH enzymes are involved in human malignancies. In this review, the structural information and biological functions of the UCHs are briefly described. Meanwhile, the roles of these enzymes in tumorigenesis and the discovered inhibitors against them are also summarized to give an insight into the cancer therapy with the potential alternative strategy.
Collapse
Affiliation(s)
- Zhuo Xu
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi Road, Shanghai 201203, China
- University of The Chinese Academy of Sciences19A Yuquan Road, Beijing 100049, China
| | - Naixia Zhang
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi Road, Shanghai 201203, China
- University of The Chinese Academy of Sciences19A Yuquan Road, Beijing 100049, China
| | - Li Shi
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
31
|
Guo X, Ma Y, Zhang T, Liu R, Chang F, Yan X, Yu T, Wu P, Li Q, Xu L, Duan J, Li L, Su Y, Shao G. The deubiquitinating enzyme USP4 regulates BRCA1 stability and function. NPJ Breast Cancer 2024; 10:35. [PMID: 38734703 PMCID: PMC11088691 DOI: 10.1038/s41523-024-00641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
BRCA1 plays a suppressive role in breast tumorigenesis. Ubiquitin-dependent degradation is a common mechanism that regulates BRCA1 protein stability, and several ubiquitin ligases involved have been identified. However, the deubiquitinating enzyme for BRCA1 remains less defined. Here, we report that the deubiquitinase USP4 interacts with, deubiquitinates and stabilizes BRCA1, maintaining the protein level of BRCA1. USP4 knockdown results in a decreased BRCA1 protein level, impairment in homologous recombination mediated double-stranded break repair, and increased genome instability, and confers resistance to DNA damage-inducing agents and PARP inhibitors. Ectopic expression of USP4 stabilizes BRCA1 and reverse the effects caused by USP4 knockdown. Moreover, USP4 is low expressed in human breast cancer tissues and its low expression correlates with poorer survival of patients. Furthermore, we identified several loss-of-function mutations of USP4 in human gynecological cancers, the catalytic activity of which or their interaction with BRCA1 is disrupted. Together, we reveal that USP4 is a deubiquitinase for BRCA1. USP4 positively regulates the stability and function of BRCA1 through de-ubiquitination, and plays important role in the suppression of breast cancer.
Collapse
Affiliation(s)
- Xueyuan Guo
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yanfang Ma
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ting Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Runyu Liu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Fen Chang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xingyue Yan
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Tianyun Yu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Pengfei Wu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qin Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Luzheng Xu
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, 100191, China
| | - Junyi Duan
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Li Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yanrong Su
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center-Temple University Health System, Philadelphia, PA, 19111, USA
| | - Genze Shao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
32
|
Zhang P, Chen T, Yang M. Comparative analysis of prognosis and gene expression in prostate cancer patients with site-specific visceral metastases. Urol Oncol 2024; 42:160.e1-160.e10. [PMID: 38433022 DOI: 10.1016/j.urolonc.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION Prostate cancer patients with visceral metastases often exhibited poor prognoses. Few researches had compared the prognostic impact and gene expression profiles among distinct visceral metastatic sites. Therefore, we conducted a comprehensive study utilizing data from the Surveillance, Epidemiology, and End Results (SEER) database and the Gene Expression Omnibus database. PATIENTS AND METHODS We analyzed the prostate cancer-specific mortality (PCSM) risk for 8,170 patients diagnosed with metastatic prostate cancer (mPCa) between 2000 and 2019, utilizing data from the SEER 17 registry database. Patients with metastatic disease in nonregional lymph nodes, bones, brains, livers, and lungs were identified. Competing risks regression was employed to evaluate the effect of visceral metastatic disease sites on PCSM. Differentially expressed genes (DEGs) between visceral metastases were assessed using data from the GSE6752 dataset. A relative protein-protein interaction (PPI) network was constructed based on STRING analysis. Furthermore, we explored the distribution of DEGs in various normal tissues and tumor tissues using the Human Protein Atlas and GEPIA. RESULTS Competing risks regression analysis revealed that liver and lung metastases had a substantial impact on PCSM (hazard ratio 2.24, 95% confidence interval 1.70-2.95, P < 0.001; hazard ratio 1.30, 95% confidence interval 1.06-1.59, P = 0.012, respectively). Seven significant DEGs were identified from samples of liver and lung metastases (HERV-FRD, NUDT12, FAM63A, SCGB3A1, CEACAM6, LOC440416, SFTPB) and were associated with respiratory gaseous exchange, pulmonary surfactant metabolism, and fibronectin matrix formation in PPI network analysis. Notably, the expression levels of the three DEGs significantly upregulated in lung metastases were also found to be higher in normal lung tissues compared to normal liver tissues. CONCLUSION Patients diagnosed with mPCa and presenting with liver and/or lung metastases exhibit poorer prognoses. SCGB3A1, identified as a tumor suppressor gene, may contribute to the better survival prognosis observed in patients with prostate cancer lung metastases compared to those with liver metastases. The gene expression profiles in these two specific metastatic sites reveal a combination of both heterogeneity and homogeneity.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.
| | - Tieding Chen
- Department of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Ming Yang
- Department of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
33
|
Chen Y, Xue H, Jin J. Applications of protein ubiquitylation and deubiquitylation in drug discovery. J Biol Chem 2024; 300:107264. [PMID: 38582446 PMCID: PMC11087986 DOI: 10.1016/j.jbc.2024.107264] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024] Open
Abstract
The ubiquitin (Ub)-proteasome system (UPS) is the major machinery mediating specific protein turnover in eukaryotic cells. By ubiquitylating unwanted, damaged, or harmful proteins and driving their degradation, UPS is involved in many important cellular processes. Several new UPS-based technologies, including molecular glue degraders and PROTACs (proteolysis-targeting chimeras) to promote protein degradation, and DUBTACs (deubiquitinase-targeting chimeras) to increase protein stability, have been developed. By specifically inducing the interactions between different Ub ligases and targeted proteins that are not otherwise related, molecular glue degraders and PROTACs degrade targeted proteins via the UPS; in contrast, by inducing the proximity of targeted proteins to deubiquitinases, DUBTACs are created to clear degradable poly-Ub chains to stabilize targeted proteins. In this review, we summarize the recent research progress in molecular glue degraders, PROTACs, and DUBTACs and their applications. We discuss immunomodulatory drugs, sulfonamides, cyclin-dependent kinase-targeting molecular glue degraders, and new development of PROTACs. We also introduce the principle of DUBTAC and its applications. Finally, we propose a few future directions of these three technologies related to targeted protein homeostasis.
Collapse
Affiliation(s)
- Yilin Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Haoan Xue
- Life Sciences Institute, Zhejiang University, Hangzhou, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Jianping Jin
- Life Sciences Institute, Zhejiang University, Hangzhou, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
34
|
Kong L, Jin X. Dysregulation of deubiquitination in breast cancer. Gene 2024; 902:148175. [PMID: 38242375 DOI: 10.1016/j.gene.2024.148175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Breast cancer (BC) is a highly frequent malignant tumor that poses a serious threat to women's health and has different molecular subtypes, histological subtypes, and biological features, which act by activating oncogenic factors and suppressing cancer inhibitors. The ubiquitin-proteasome system (UPS) is the main process contributing to protein degradation, and deubiquitinases (DUBs) are reverse enzymes that counteract this process. There is growing evidence that dysregulation of DUBs is involved in the occurrence of BC. Herein, we review recent research findings in BC-associated DUBs, describe their nature, classification, and functions, and discuss the potential mechanisms of DUB-related dysregulation in BC. Furthermore, we present the successful treatment of malignant cancer with DUB inhibitors, as well as analyzing the status of targeting aberrant DUBs in BC.
Collapse
Affiliation(s)
- Lili Kong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
35
|
Cheng C, Yao H, Li H, Liu J, Liu Z, Wu Y, Zhu L, Hu H, Fang Z, Wu L. Blockade of the deubiquitinating enzyme USP48 degrades oncogenic HMGA2 and inhibits colorectal cancer invasion and metastasis. Acta Pharm Sin B 2024; 14:1624-1643. [PMID: 38572092 PMCID: PMC10985028 DOI: 10.1016/j.apsb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 04/05/2024] Open
Abstract
HMGA2, a pivotal transcription factor, functions as a versatile regulator implicated in the progression of diverse aggressive malignancies. In this study, mass spectrometry was employed to identify ubiquitin-specific proteases that potentially interact with HMGA2, and USP48 was identified as a deubiquitinating enzyme of HMGA2. The enforced expression of USP48 significantly increased HMGA2 protein levels by inhibiting its degradation, while the deprivation of USP48 promoted HMGA2 degradation, thereby suppressing tumor invasion and metastasis. We discovered that USP48 undergoes SUMOylation at lysine 258, which enhances its binding affinity to HMGA2. Through subsequent phenotypic screening of small molecules, we identified DUB-IN-2 as a remarkably potent pharmacological inhibitor of USP48. Interestingly, the small-molecule inhibitor targeting USP48 induces destabilization of HMGA2. Clinically, upregulation of USP48 or HMGA2 in cancerous tissues is indicative of poor prognosis for patients with colorectal cancer (CRC). Collectively, our study not only elucidates the regulatory mechanism of DUBs involved in HMGA2 stability and validates USP48 as a potential therapeutic target for CRC, but also identifies DUB-IN-2 as a potent inhibitor of USP48 and a promising candidate for CRC treatment.
Collapse
Affiliation(s)
- Can Cheng
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Hanhui Yao
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Heng Li
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Department of Comprehensive Surgery, Anhui Provincial Cancer Hospital, West District of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Jingwen Liu
- Anhui Provincial Hospital Health Management Center, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhengyi Liu
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450003, China
| | - Yang Wu
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Liang Zhu
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Hejie Hu
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhengdong Fang
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Liang Wu
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
36
|
Zhang T, Su F, Wang B, Liu L, Lu Y, Su H, Ling R, Yue P, Dai H, Yang T, Yang J, Chen R, Wu R, Zhu K, Zhao D, Hou X. Ubiquitin specific peptidase 38 epigenetically regulates KLF transcription factor 5 to augment malignant progression of lung adenocarcinoma. Oncogene 2024; 43:1190-1202. [PMID: 38409551 DOI: 10.1038/s41388-024-02985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Protein ubiquitination is a common post-translational modification and a critical mechanism for regulating protein stability. This study aimed to explore the role and potential molecular mechanism of ubiquitin-specific peptidase 38 (USP38) in the progression of lung adenocarcinoma (LUAD). USP38 expression was significantly higher in patients with LUAD than in their counterparts, and higher USP38 expression was closely associated with a worse prognosis. USP38 silencing suppresses the proliferation of LUAD cells in vitro and impedes the tumorigenic activity of cells in xenograft mouse models in vivo. Further, we found that USP38 affected the protein stability of transcription factor Krüppel-like factors 5 (KLF5) by inhibiting its degradation. Subsequent mechanistic investigations showed that the N-terminal of USP38 (residues 1-400aa) interacted with residues 1-200aa of KLF5, thereby stabilizing the KLF5 protein by deubiquitination. Moreover, we found that PIAS1-mediated SUMOylation of USP38 was promoted, whereas SENP2-mediated de-SUMOylation of USP38 suppressed the deubiquitination effects of USP38 on KLF5. Additionally, our results demonstrated that KLF5 overexpression restored the suppression of the malignant properties of LUAD cells by USP38 knockdown. SUMOylation of USP38 enhances the deubiquitination and stability of KLF5, thereby augmenting the malignant progression of LUAD.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Fei Su
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China.
| | - Bofang Wang
- The second clinical medical college of Lanzhou University, Lanzhou, Gansu, PR China
| | - Lixin Liu
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Yongbin Lu
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Hongxin Su
- Department of Radiotherapy, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Ruijiang Ling
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Peng Yue
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Huanyu Dai
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Tianning Yang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Jingru Yang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Rui Chen
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Ruiyue Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, PR China
| | - Kaili Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, PR China
| | - Da Zhao
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China.
| | - Xiaoming Hou
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China.
| |
Collapse
|
37
|
Kasturirangan S, Nancarrow DJ, Shah A, Lagisetty KH, Lawrence TS, Beer DG, Ray D. Isoform alterations in the ubiquitination machinery impacting gastrointestinal malignancies. Cell Death Dis 2024; 15:194. [PMID: 38453895 PMCID: PMC10920915 DOI: 10.1038/s41419-024-06575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
The advancement of RNAseq and isoform-specific expression platforms has led to the understanding that isoform changes can alter molecular signaling to promote tumorigenesis. An active area in cancer research is uncovering the roles of ubiquitination on spliceosome assembly contributing to transcript diversity and expression of alternative isoforms. However, the effects of isoform changes on functionality of ubiquitination machineries (E1, E2, E3, E4, and deubiquitinating (DUB) enzymes) influencing onco- and tumor suppressor protein stabilities is currently understudied. Characterizing these changes could be instrumental in improving cancer outcomes via the identification of novel biomarkers and targetable signaling pathways. In this review, we focus on highlighting reported examples of direct, protein-coded isoform variation of ubiquitination enzymes influencing cancer development and progression in gastrointestinal (GI) malignancies. We have used a semi-automated system for identifying relevant literature and applied established systems for isoform categorization and functional classification to help structure literature findings. The results are a comprehensive snapshot of known isoform changes that are significant to GI cancers, and a framework for readers to use to address isoform variation in their own research. One of the key findings is the potential influence that isoforms of the ubiquitination machinery have on oncoprotein stability.
Collapse
Affiliation(s)
| | - Derek J Nancarrow
- Surgery - Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ayush Shah
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kiran H Lagisetty
- Surgery - Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Theodore S Lawrence
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David G Beer
- Surgery - Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dipankar Ray
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
38
|
Kenny S, Lai CH, Chiang TS, Brown K, Hewitt CS, Krabill AD, Chang HT, Wang YS, Flaherty DP, Hsu STD, Das C. Altered Protein Dynamics and a More Reactive Catalytic Cysteine in a Neurodegeneration-associated UCHL1 Mutant. J Mol Biol 2024; 436:168438. [PMID: 38185323 PMCID: PMC11488486 DOI: 10.1016/j.jmb.2024.168438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
A mutant of ubiquitin C-terminal hydrolase L1 (UCHL1) detected in early-onset neurodegenerative patients, UCHL1R178Q, showed higher catalytic activity than wild-type UCHL1 (UCHL1WT). Lying within the active-site pocket, the arginine is part of an interaction network that holds the catalytic histidine in an inactive arrangement. However, the structural basis and mechanism of enzymatic activation upon glutamine substitution was not understood. We combined X-ray crystallography, protein nuclear magnetic resonance (NMR) analysis, enzyme kinetics, covalent inhibition analysis, and biophysical measurements to delineate activating factors in the mutant. While the crystal structure of UCHL1R178Q showed nearly the same arrangement of the catalytic residues and active-site pocket, the mutation caused extensive alteration in the chemical environment and dynamics of more than 30 residues, some as far as 15 Å away from the site of mutation. Significant broadening of backbone amide resonances in the HSQC spectra indicates considerable backbone dynamics changes in several residues, in agreement with solution small-angle X-ray scattering (SAXS) analyses which indicate an overall increase in protein flexibility. Enzyme kinetics show the activation is due to a kcat effect despite a slightly weakened substrate affinity. In line with this, the mutant shows a higher second-order rate constant (kinact/Ki) in a reaction with a substrate-derived irreversible inhibitor, Ub-VME, compared to the wild-type enzyme, an observation indicative of a more reactive catalytic cysteine in the mutant. Together, the observations underscore structural plasticity as a factor contributing to enzyme kinetic behavior which can be modulated through mutational effects.
Collapse
Affiliation(s)
- Sebastian Kenny
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Chih-Hsuan Lai
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Tsung-Sheng Chiang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Kwame Brown
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Chad S Hewitt
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, United States
| | - Aaron D Krabill
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, United States
| | - Hao-Ting Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Yong-Sheng Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, United States
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan; International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, United States.
| |
Collapse
|
39
|
Zhang N, Wang F, Yang X, Wang Q, Chang R, Zhu L, Feitelson MA, Chen Z. TMEM43 promotes the development of hepatocellular carcinoma by activating VDAC1 through USP7 deubiquitination. Transl Gastroenterol Hepatol 2024; 9:9. [PMID: 38317750 PMCID: PMC10838614 DOI: 10.21037/tgh-23-108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Background Transmembrane protein 43 (TMEM43), a member of the TMEM subfamily, is encoded by a highly conserved gene and widely expressed in most species from bacteria to humans. In previous studies, TMEM43 has been found to play an important role in a variety of tumors. However, the role of TMEM43 in cancer remains unclear. Methods We utilized the RNA sequencing (RNA-seq) and The Cancer Genome Atlas (TGCA) databases to explore and identify genes that may play an important role in the occurrence and development of hepatocellular carcinoma (HCC), such as TMEM43. The role of TMEM43 in HCC was explored through Cell Counting Kit-8 (CCK-8) cloning, flow cytometry, and Transwell experiments. The regulatory relationship between TMEM43 and voltage-dependent anion channel 1 (VDAC1) was investigated through coimmunoprecipitation (co-IP) and western blot (WB) experiments. WB was used to study the deubiquitination effect of ubiquitin-specific protease 7 (USP7) on TMEM43. Results In this study, we utilized the RNA-seq and TGCA databases to mine data and found that TMEM43 is highly expressed in HCC. The absence of TMEM43 in cancer cells was shown to inhibit tumor development. Further research detected an important regulatory relationship between TMEM43 and VDAC1. In addition, we found that USP7 affected the progression of HCC by regulating the ubiquitination level of TMEM43 through deubiquitination. Conclusions Our study demonstrated that USP7 participates in the growth of HCC tumors through TMEM43/VDAC1.Our results suggest that USP7/TMEM43/VDAC1 may have predictive value and represent a new treatment strategy for HCC.
Collapse
Affiliation(s)
- Nannan Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, China
| | - Feiran Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, China
| | - Xiaobing Yang
- Department of General Surgery, Huai’an Hospital of Huai’an City, Huai’an, China
| | - Quhui Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, China
| | - Renan Chang
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, China
| | - Lirong Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, China
| | - Mark A. Feitelson
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Zhong Chen
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, China
| |
Collapse
|
40
|
Buneeva O, Medvedev A. Ubiquitin Carboxyl-Terminal Hydrolase L1 and Its Role in Parkinson's Disease. Int J Mol Sci 2024; 25:1303. [PMID: 38279302 PMCID: PMC10816476 DOI: 10.3390/ijms25021303] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), also known as Parkinson's disease protein 5, is a highly expressed protein in the brain. It plays an important role in the ubiquitin-proteasome system (UPS), where it acts as a deubiquitinase (DUB) enzyme. Being the smallest member of the UCH family of DUBs, it catalyzes the reaction of ubiquitin precursor processing and the cleavage of ubiquitinated protein remnants, thus maintaining the level of ubiquitin monomers in the brain cells. UCHL1 mutants, containing amino acid substitutions, influence catalytic activity and its aggregability. Some of them protect cells and transgenic mice in toxin-induced Parkinson's disease (PD) models. Studies of putative protein partners of UCHL1 revealed about sixty individual proteins located in all major compartments of the cell: nucleus, cytoplasm, endoplasmic reticulum, plasma membrane, mitochondria, and peroxisomes. These include proteins related to the development of PD, such as alpha-synuclein, amyloid-beta precursor protein, ubiquitin-protein ligase parkin, and heat shock proteins. In the context of the catalytic paradigm, the importance of these interactions is not clear. However, there is increasing understanding that UCHL1 exhibits various effects in a catalytically independent manner through protein-protein interactions. Since this protein represents up to 5% of the soluble protein in the brain, PD-related changes in its structure will have profound effects on the proteomes/interactomes in which it is involved. Growing evidence is accumulating that the role of UCHL1 in PD is obviously determined by a balance of canonic catalytic activity and numerous activity-independent protein-protein interactions, which still need better characterization.
Collapse
Affiliation(s)
| | - Alexei Medvedev
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia;
| |
Collapse
|
41
|
Al-Balushi E, Al Marzouqi A, Tavoosi S, Baghsheikhi AH, Sadri A, Aliabadi LS, Salarabedi MM, Rahman SA, Al-Yateem N, Jarrahi AM, Halimi A, Ahmadvand M, Abdel-Rahman WM. Comprehensive analysis of the role of ubiquitin-specific peptidases in colorectal cancer: A systematic review. World J Gastrointest Oncol 2024; 16:197-213. [PMID: 38292842 PMCID: PMC10824112 DOI: 10.4251/wjgo.v16.i1.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/05/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most frequent and the second most fatal cancer. The search for more effective drugs to treat this disease is ongoing. A better understanding of the mechanisms of CRC development and progression may reveal new therapeutic strategies. Ubiquitin-specific peptidases (USPs), the largest group of the deubiquitinase protein family, have long been implicated in various cancers. There have been numerous studies on the role of USPs in CRC; however, a comprehensive view of this role is lacking. AIM To provide a systematic review of the studies investigating the roles and functions of USPs in CRC. METHODS We systematically queried the MEDLINE (via PubMed), Scopus, and Web of Science databases. RESULTS Our study highlights the pivotal role of various USPs in several processes implicated in CRC: Regulation of the cell cycle, apoptosis, cancer stemness, epithelial-mesenchymal transition, metastasis, DNA repair, and drug resistance. The findings of this study suggest that USPs have great potential as drug targets and noninvasive biomarkers in CRC. The dysregulation of USPs in CRC contributes to drug resistance through multiple mechanisms. CONCLUSION Targeting specific USPs involved in drug resistance pathways could provide a novel therapeutic strategy for overcoming resistance to current treatment regimens in CRC.
Collapse
Affiliation(s)
- Eman Al-Balushi
- College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Amina Al Marzouqi
- College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shima Tavoosi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan 81746-73441, Iran
| | - Amir Hossein Baghsheikhi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 11365/4435, Iran
| | - Arash Sadri
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Leyla Sharifi Aliabadi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Mohammad-Mahdi Salarabedi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Syed Azizur Rahman
- College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nabeel Al-Yateem
- Department of Nursing, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Alireza Mosavi Jarrahi
- Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Aram Halimi
- Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences , Tehran 1416634793, Iran
| | - Wael M Abdel-Rahman
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
42
|
Liu F, Gao C. Regulation of the Inflammasome Activation by Ubiquitination Machinery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:123-134. [PMID: 39546140 DOI: 10.1007/978-981-97-7288-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Inflammasomes are multiprotein complexes that assemble in response to the detection of stress- or infection-associated stimuli and lead to the activation of caspase-1 and consequent maturation of caspase-1 target molecules such as interleukin (IL)-1β and IL-18. Although inflammasome is the essential component of the innate immunity system to defense against insults, inappropriate or prolonged activation of inflammasome may be harmful and is associated with various diseases, e.g., gout, atherosclerosis, diabetes, and Alzheimer's disease. Therefore, regulating inflammasome activation is crucial for maintaining immune homeostasis. Studies have found that post-translational modifications (PTMs), e.g., ubiquitination and phosphorylation, are critical for inflammasome activation. Ubiquitination is an important form of post-translational modification of proteins that plays a pivotal role in various cellular functions. In recent years, its function in regulating inflammasome assembly has been a hot topic of interest. This study discussed the function and mechanism of the ubiquitin system controlling inflammasome activation and highlighted the challenges of this research area.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, Jinan, Shandong, P.R. China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, P.R. China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, Jinan, Shandong, P.R. China.
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, P.R. China.
| |
Collapse
|
43
|
Jin J, He J, Li X, Ni X, Jin X. The role of ubiquitination and deubiquitination in PI3K/AKT/mTOR pathway: A potential target for cancer therapy. Gene 2023; 889:147807. [PMID: 37722609 DOI: 10.1016/j.gene.2023.147807] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
The PI3K/AKT/mTOR pathway controls key cellular processes, including proliferation and tumor progression, and abnormally high activation of this pathway is a hallmark in human cancers. The post-translational modification, such as Ubiquitination and deubiquitination, fine-tuning the protein level and the activity of members in this pathway play a pivotal role in maintaining normal physiological process. Emerging evidence show that the unbalanced ubiquitination/deubiquitination modification leads to human diseases via PI3K/AKT/mTOR pathway. Therefore, a comprehensive understanding of the ubiquitination/deubiquitination regulation of PI3K/AKT/mTOR pathway may be helpful to uncover the underlying mechanism and improve the potential treatment of cancer via targeting this pathway. Herein, we summarize the latest research progress of ubiquitination and deubiquitination of PI3K/AKT/mTOR pathway, systematically discuss the associated crosstalk between them, as well as focus the clinical transformation via targeting ubiquitination process.
Collapse
Affiliation(s)
- Jiabei Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jian He
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xinming Li
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaoqi Ni
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
44
|
Jiang W, Li M, Peng S, Hu T, Long Y, Zhang J, Peng D, Shen Y. Ubiquitin ligase enzymes and de-ubiquitinating enzymes regulate innate immunity in the TLR, NLR, RLR, and cGAS-STING pathways. Immunol Res 2023; 71:800-813. [PMID: 37291329 DOI: 10.1007/s12026-023-09400-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Ubiquitination (or ubiquitylation) and de-ubiquitination, which are both post-translational modifications (PTMs) of proteins, have become a research hotspot in recent years. Some ubiquitinated or de-ubiquitinated signaling proteins have been found to promote or suppress innate immunity through Toll-like receptor (TLR), RIG-like receptor (RIG-I-like receptor, RLR), NOD-like receptor (NLR), and the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS)-STING pathway. This article aimed to provide a review on the role of ubiquitination and de-ubiquitination, especially ubiquitin ligase enzymes and de-ubiquitinating enzymes, in the above four pathways. We hope that our work can contribute to the research and development of treatment strategies for innate immunity-related diseases such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Wang Jiang
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Mengling Li
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Siyuan Peng
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Tian Hu
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Yan Long
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Jiayi Zhang
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Dan Peng
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Yueming Shen
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China.
| |
Collapse
|
45
|
Hu S, Wang L. The potential role of ubiquitination and deubiquitination in melanogenesis. Exp Dermatol 2023; 32:2062-2071. [PMID: 37846904 DOI: 10.1111/exd.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Melanogenesis is a critical biochemical process in which melanocytes produce melanin, a crucial element involved in the formation of coat colour in mammals. According to several earlier studies, melanocytes' post-translational modifications of proteins primarily control melanogenesis. Among the many post-translational changes that can affect melanin production, ubiquitination and deubiquitination can keep melanin production going by changing how proteins that are related to melanin are broken down or kept stable. Ubiquitination and deubiquitination maintain ubiquitin homeostasis, which is a highly dynamic process in balance under the action of E3 ubiquitin ligase and deubiquitinating enzymes. However, the regulatory mechanisms underlying ubiquitination and deubiquitination in melanogenesis are yet to be thoroughly investigated. As a result, there has been a growing focus on exploring the potential correlation between melanogenesis, ubiquitination and deubiquitination. This study discusses the mechanisms of ubiquitination and deubiquitination in the context of melanogenesis, a crucial process for enhancing mammalian coat coloration and addressing pigment-related diseases.
Collapse
Affiliation(s)
- Shuaishuai Hu
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Lu Wang
- College of Life Science, Luoyang Normal University, Luoyang, China
| |
Collapse
|
46
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
47
|
Xing Y, Ba-Tu J, Dong C, Cao X, Li B, Jia X, Juan Y, Lv X, Zhang H, Qin N, Han W, Wang D, Qi X, Wang Y, Hao X, Zhang S, Du X, Wang H, Wang M. Phosphorylation of USP27X by GSK3β maintains the stability and oncogenic functions of CBX2. Cell Death Dis 2023; 14:782. [PMID: 38030604 PMCID: PMC10687032 DOI: 10.1038/s41419-023-06304-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
Chromobox protein homolog 2 (CBX2) exerts a multifaceted impact on the progression of aggressive cancers. The proteasome-dependent pathway is crucial for modulating CBX2 regulation, while the specific regulatory roles and mechanisms of deubiquitinating enzymes targeting CBX2 remain poorly understood. Mass spectrometry analysis identified ubiquitin-specific peptidase 27X (USP27X) as a deubiquitinating enzyme that targets CBX2. Overexpression of USP27X significantly enhances CBX2 levels by promoting deubiquitination, while deficiency of USP27X leads to CBX2 degradation, thereby inhibiting tumorigenesis. Furthermore, it has been revealed that glycogen synthase kinase 3 beta (GSK3β) can directly bind to and phosphorylate USP27X, thereby enhancing the interaction between USP27X and CBX2 and leading to further stabilization of the CBX2 protein. Clinically, the co-expression of high levels of USP27X and CBX2 in breast cancer tissues is indicative of a poor prognosis for patients with this disease. These findings collectively underscore the critical regulatory role played by USP27X in modulating CBX2, thereby establishing the GSK3β-USP27X-CBX2 axis as a pivotal driver of malignant progression in breast cancer.
Collapse
Affiliation(s)
- Yushu Xing
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jirimu Ba-Tu
- Medical Innovation Center for Nationalities, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Chongyang Dong
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiaodong Cao
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Bing Li
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xin Jia
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yu Juan
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiaojie Lv
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Huiwen Zhang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Na Qin
- College of Mongolian Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Wuri Han
- College of Mongolian Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Dongfeng Wang
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiao Qi
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yutong Wang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xulu Hao
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Shuang Zhang
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiaoli Du
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| | - Huanyun Wang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| | - Minjie Wang
- Medical Experimental Center of Basic Medical School, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
48
|
Tang J, Long G, Hu K, Xiao D, Liu S, Xiao L, Zhou L, Tao Y. Targeting USP8 Inhibits O-GlcNAcylation of SLC7A11 to Promote Ferroptosis of Hepatocellular Carcinoma via Stabilization of OGT. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302953. [PMID: 37867237 PMCID: PMC10667802 DOI: 10.1002/advs.202302953] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/10/2023] [Indexed: 10/24/2023]
Abstract
Hepatocellular carcinoma (HCC) is a lethal and aggressive human malignancy. The present study examins the anti-tumor effects of deubiquitylating enzymes (DUB) inhibitors in HCC. It is found that the inhibitor of ubiquitin specific peptidase 8 (USP8) and DUB-IN-3 shows the most effective anti-cancer responses. Targeting USP8 inhibits the proliferation of HCC and induces cell ferroptosis. In vivo xenograft and metastasis experiments indicate that inhibition of USP8 suppresses tumor growth and lung metastasis. DUB-IN-3 treatment or USP8 depletion decrease intracellular cystine levels and glutathione biosynthesis while increasing the accumulation of reactive oxygen species (ROS). Mechanistical studies reveal that USP8 stabilizes O-GlcNAc transferase (OGT) via inhibiting K48-specific poly-ubiquitination process on OGT protein at K117 site, and STE20-like kinase (SLK)-mediated S716 phosphorylation of USP8 is required for the interaction with OGT. Most importantly, OGT O-GlcNAcylates solute carrier family 7, member 11 (SLC7A11) at Ser26 in HCC cells, which is essential for SLC7A11 to import the cystine from the extracellular environment. Collectively, this study demonstrates that pharmacological inhibition or knockout of USP8 can inhibit the progression of HCC and induce ferroptosis via decreasing the stability of OGT, which imposes a great challenge that targeting of USP8 is a potential approach for HCC treatment.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Liver SurgeryXiangya HospitalCentral South University110 Xiangya RoadChangshaHunan410078China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Guo Long
- Department of Liver SurgeryXiangya HospitalCentral South University110 Xiangya RoadChangshaHunan410078China
| | - Kuan Hu
- Department of Liver SurgeryXiangya HospitalCentral South University110 Xiangya RoadChangshaHunan410078China
| | - Desheng Xiao
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunan410078China
| | - Shuang Liu
- Department of OncologyInstitute of Medical SciencesNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410078China
| | - Liang Xiao
- Department of Liver SurgeryXiangya HospitalCentral South University110 Xiangya RoadChangshaHunan410078China
| | - Ledu Zhou
- Department of Liver SurgeryXiangya HospitalCentral South University110 Xiangya RoadChangshaHunan410078China
| | - Yongguang Tao
- Department of PathologyKey Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Xiangya HospitalCentral South University110 Xiangya RoadChangshaHunan410078China
- NHC Key Laboratory of Carcinogenesis (Central South University)Cancer Research Institute and School of Basic MedicineCentral South University110 Xiangya RoadChangshaHunan410078China
- Department of Thoracic SurgeryHunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer and Hunan Key Laboratory of Tumor Models and Individualized MedicineSecond Xiangya HospitalCentral South University110 Xiangya RoadChangshaHunan410011China
- Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University110 Xiangya RoadChangshaHunan410078China
| |
Collapse
|
49
|
Klonisch T, Logue SE, Hombach-Klonisch S, Vriend J. DUBing Primary Tumors of the Central Nervous System: Regulatory Roles of Deubiquitinases. Biomolecules 2023; 13:1503. [PMID: 37892185 PMCID: PMC10605193 DOI: 10.3390/biom13101503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The ubiquitin proteasome system (UPS) utilizes an orchestrated enzymatic cascade of E1, E2, and E3 ligases to add single or multiple ubiquitin-like molecules as post-translational modification (PTM) to proteins. Ubiquitination can alter protein functions and/or mark ubiquitinated proteins for proteasomal degradation but deubiquitinases (DUBs) can reverse protein ubiquitination. While the importance of DUBs as regulatory factors in the UPS is undisputed, many questions remain on DUB selectivity for protein targeting, their mechanism of action, and the impact of DUBs on the regulation of diverse biological processes. Furthermore, little is known about the expression and role of DUBs in tumors of the human central nervous system (CNS). In this comprehensive review, we have used publicly available transcriptional datasets to determine the gene expression profiles of 99 deubiquitinases (DUBs) from five major DUB families in seven primary pediatric and adult CNS tumor entities. Our analysis identified selected DUBs as potential new functional players and biomarkers with prognostic value in specific subtypes of primary CNS tumors. Collectively, our analysis highlights an emerging role for DUBs in regulating CNS tumor cell biology and offers a rationale for future therapeutic targeting of DUBs in CNS tumors.
Collapse
Affiliation(s)
- Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- CancerCare Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Susan E. Logue
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- CancerCare Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Jerry Vriend
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
50
|
Xu Q, He L, Zhang S, Di X, Jiang H. Deubiquitinase OTUD3: a double-edged sword in immunity and disease. Front Cell Dev Biol 2023; 11:1237530. [PMID: 37829187 PMCID: PMC10566363 DOI: 10.3389/fcell.2023.1237530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023] Open
Abstract
Deubiquitination is an important form of post-translational modification that regulates protein homeostasis. Ovarian tumor domain-containing proteins (OTUDs) subfamily member OTUD3 was identified as a deubiquitinating enzyme involved in the regulation of various physiological processes such as immunity and inflammation. Disturbances in these physiological processes trigger diseases in humans and animals, such as cancer, neurodegenerative diseases, diabetes, mastitis, etc. OTUD3 is aberrantly expressed in tumors and is a double-edged sword, exerting tumor-promoting or anti-tumor effects in different types of tumors affecting cancer cell proliferation, metastasis, and metabolism. OTUD3 is regulated at the transcriptional level by a number of MicroRNAs, such as miR-520h, miR-32, and miR101-3p. In addition, OTUD3 is regulated by a number of post-translational modifications, such as acetylation and ubiquitination. Therefore, understanding the regulatory mechanisms of OTUD3 expression can help provide insight into its function in human immunity and disease, offering the possibility of its use as a therapeutic target to diagnose or treat disease.
Collapse
Affiliation(s)
- Qiao Xu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lan He
- School of Biomedical Science, Hunan University, Changsha, Hunan, China
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaotang Di
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|