1
|
Yu YS, Kim IS, Baek SH. Decoding the dual role of autophagy in cancer through transcriptional and epigenetic regulation. FEBS Lett 2025. [PMID: 40346781 DOI: 10.1002/1873-3468.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/12/2025]
Abstract
Autophagy is a conserved catabolic process that is essential for maintaining cellular homeostasis by degrading and recycling damaged organelles and misfolded proteins. In cancer, autophagy exhibits a context-dependent dual role: In early stages, autophagy acts as a tumor suppressor by preserving genomic integrity and limiting oxidative stress. In advanced stages, autophagy supports tumor progression by facilitating metabolic adaptation, therapy resistance, immune evasion, and metastasis. This review highlights the molecular mechanisms underlying this dual function and focuses on the transcriptional and epigenetic regulation of autophagy in cancer cells. Key transcription factors, including the MiT/TFE family, FOXO family, and p53, as well as additional regulators, are discussed in the context of stress-responsive pathways mediated by mTORC1 and AMPK. A deeper understanding of the transcriptional and epigenetic regulation of autophagy in cancer is crucial for developing context-specific therapeutic strategies to either promote or inhibit autophagy depending on the cancer stage, thereby improving clinical outcomes in cancer treatment.
Collapse
Affiliation(s)
- Young Suk Yu
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Ik Soo Kim
- Department of Microbiology, Gachon University College of Medicine, Incheon, South Korea
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
2
|
Sun L, Lv S, Song T. Monitoring Autophagy with GFP-LC3 Reporter. Methods Mol Biol 2025; 2879:51-61. [PMID: 37889422 DOI: 10.1007/7651_2023_501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Autophagy is a key process that maintains cellular homeostasis. Autophagy contributes to various physiological and pathophysiological processes. Development of methodologies for autophagy detection has greatly facilitated the research on autophagy. Among these methodologies, GFP-LC3 reporter has been popularly used in the literature. In this chapter, we will detail step-by-step the GFP-LC3 reporter protocol we have adapted in our lab. This protocol begins with the generation of lentivirus expressing GFP-LC3. Then, the cells are transduced with titrated virus. After selecting the positive cells, single colonies are isolated, characterized, validated, and used in further study.
Collapse
Affiliation(s)
- Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Suli Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Satarker S, Wilson J, Kolathur KK, Mudgal J, Lewis SA, Arora D, Nampoothiri M. Spermidine as an epigenetic regulator of autophagy in neurodegenerative disorders. Eur J Pharmacol 2024; 979:176823. [PMID: 39032763 DOI: 10.1016/j.ejphar.2024.176823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Autophagy is an abnormal protein degradation and recycling process that is impaired in various neurological diseases like Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease. Spermidine is a natural polyamine found in various plant- and meat-based diets that can induce autophagy, and is decreased in various neurodegenerative diseases. It acts on epigenetic enzymes like E1A-binding protein p300, HAT enzymes like Iki3p and Sas3p, and α-tubulin acetyltransferase 1 that modulate autophagy. Histone modifications like acetylation, phosphorylation, and methylation could influence autophagy. Autophagy is epigenetically regulated in various neurodegenerative disorders with many epigenetic enzymes and miRNAs. Polyamine regulation plays an essential role in the disease pathogenesis of AD and PD. Therefore, in this review, we discuss various enzymes and miRNAs involved in the epigenetic regulation of autophagy in neurodegenerative disorders and the role of spermidine as an autophagy enhancer. The alterations in spermidine-mediated regulation of Beclin-1, LC3-II, and p62 genes in AD and other PD-associated enzymes could impact the process of autophagy in these neurodegenerative diseases. With the ever-growing data and such promising effects of spermidine in autophagy, we feel it could be a promising target in this area and worth further detailed studies.
Collapse
Affiliation(s)
- Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Joel Wilson
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kiran Kumar Kolathur
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Devinder Arora
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
4
|
Lv C, Li R, Yang D, Song S, Cheng X, Chen T, Chen L, Xiong Y. Broad-spectrum antiviral effect of MoringaA-loaded exosomes against IAV by mediating the GCN5-TFEB-autolysosome pathway. J Med Virol 2024; 96:e29906. [PMID: 39262090 DOI: 10.1002/jmv.29906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Influenza virus-induced viral pneumonia is a major threat to human health, and specific therapeutic agents for viral pneumonia are still lacking. MoringaA (MA) is an anti-influenza virus active compound isolated from Moringa seeds, which can inhibit influenza virus by activating the TFEB-autophagic lysosomal pathway in host cells. In this study, we obtained exosomes from M2-type macrophages and encapsulated and delivered MA (MA-Exos), and we investigated the efficacy of MA-Exos in antiviral and viral pneumonia in vivo and in vitro, respectively. In addition, we provided insights into the mechanism by which MA-Exos regulates TFEB-lysosomal autophagy by RNA sequencing. The MA-Exos showed broad-spectrum inhibition of IAV, and significant promotion of the autophagic lysosomal pathway. Meanwhile, we found that GCN5 gene and protein were significantly down-regulated in IAV-infected cells after MA-Exos intervention, indicating its blocking the acetylation of TFEB by GCN5. In addition, MA-Exos also significantly promoted autophagy in lung tissue cells of mice with viral pneumonia. MA-Exos can inhibit and clear influenza virus by mediating the TFEB-autophagy lysosomal pathway by a mechanism related to the down-regulation of histone acetyltransferase GCN5. Our study provides a strategy for targeting MA-Exos for the treatment of viral pneumonia from both antiviral and virus-induced inflammation inhibition pathways.
Collapse
Affiliation(s)
- Chunmei Lv
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ruidong Li
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Dandan Yang
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shunqiang Song
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xu Cheng
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Tingting Chen
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Lei Chen
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yongai Xiong
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
5
|
Wu N, Zheng W, Zhou Y, Tian Y, Tang M, Feng X, Ashrafizadeh M, Wang Y, Niu X, Tambuwala M, Wang L, Tergaonkar V, Sethi G, Klionsky D, Huang L, Gu M. Autophagy in aging-related diseases and cancer: Principles, regulatory mechanisms and therapeutic potential. Ageing Res Rev 2024; 100:102428. [PMID: 39038742 DOI: 10.1016/j.arr.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autophagy in aging-associated pathologies and cancer is evaluated, highlighting the underlying molecular mechanisms that can affect longevity and disease pathogenesis. As a natural biological process, a reduction in autophagy is observed with aging, resulting in an accumulation of cell damage and the development of different diseases, including neurological disorders, cardiovascular diseases, and cancer. The MTOR, AMPK, and ATG proteins demonstrate changes during aging, and they are promising therapeutic targets. Insulin/IGF1, TOR, PKA, AKT/PKB, caloric restriction and mitochondrial respiration are vital for lifespan regulation and can modulate or have an interaction with autophagy. The specific types of autophagy, such as mitophagy that degrades mitochondria, can regulate aging by affecting these organelles and eliminating those mitochondria with genomic mutations. Autophagy and its specific types contribute to the regulation of carcinogenesis and they are able to dually enhance or decrease cancer progression. Cancer hallmarks, including proliferation, metastasis, therapy resistance and immune reactions, are tightly regulated by autophagy, supporting the conclusion that autophagy is a promising target in cancer therapy.
Collapse
Affiliation(s)
- Na Wu
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yundong Zhou
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yu Tian
- School of Public Health, Benedictine University, No.5700 College Road, Lisle, IL 60532, USA; Research Center, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Daniel Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China.
| | - Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
6
|
Oh SY, Kim J, Lee KY, Lee HJ, Kwon TG, Kim JW, Lee ST, Kim DG, Choi SY, Hong SH. Chromatin remodeling-driven autophagy activation induces cisplatin resistance in oral squamous cell carcinoma. Cell Death Dis 2024; 15:589. [PMID: 39138148 PMCID: PMC11322550 DOI: 10.1038/s41419-024-06975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
It is still challenging to predict the efficacy of cisplatin-based therapy, particularly in relation to the activation of macroautophagy/autophagy in oral squamous cell carcinoma (OSCC). We studied the effect of selected chromatin remodeling genes on the cisplatin resistance and their interplay with autophagy in 3-dimensional tumor model and xenografts. We analyzed gene expression patterns in the cisplatin-sensitive UMSCC1, and a paired cisplatin-resistant UM-Cis cells. Many histone protein gene clusters involved in nucleosome assembly showed significant difference of expression. Gain- and loss-of-function analyses revealed an inverse correlation between cisplatin resistance and HIST1H3D expression, while a positive correlation was observed with HIST3H2A or HIST3H2B expression. In UM-Cis, HIST3H2A- and HIST3H2B-mediated chromatin remodeling upregulates autophagy status, which results in cisplatin resistance. Additionally, knockdown of HIST3H2A or HIST3H2B downregulated autophagy-activating genes via chromatin compaction of their promoter regions. MiTF, one of the key autophagy regulators upregulated in UM-Cis, negatively regulated transcription of HIST1H3D, suggesting an interplay between chromatin remodeling-dependent cisplatin resistance and autophagy. On comparing the staining intensity between cisplatin-sensitive and -insensitive tissues from OSCC patients, protein expression pattern of the selected histone protein genes were matched with the in vitro data. By examining the relationship between autophagy and chromatin remodeling genes, we identified a set of candidate genes with potential use as markers predicting chemoresistance in OSCC biopsy samples.
Collapse
Affiliation(s)
- Su Young Oh
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jinkyung Kim
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Kah Young Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Heon-Jin Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Tae-Geon Kwon
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jin-Wook Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Sung-Tak Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Dae-Geon Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - So-Young Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| | - Su-Hyung Hong
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
7
|
Chakraborty S, Nandi P, Mishra J, Niharika, Roy A, Manna S, Baral T, Mishra P, Mishra PK, Patra SK. Molecular mechanisms in regulation of autophagy and apoptosis in view of epigenetic regulation of genes and involvement of liquid-liquid phase separation. Cancer Lett 2024; 587:216779. [PMID: 38458592 DOI: 10.1016/j.canlet.2024.216779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cellular physiology is critically regulated by multiple signaling nexuses, among which cell death mechanisms play crucial roles in controlling the homeostatic landscape at the tissue level within an organism. Apoptosis, also known as programmed cell death, can be induced by external and internal stimuli directing the cells to commit suicide in unfavourable conditions. In contrast, stress conditions like nutrient deprivation, infection and hypoxia trigger autophagy, which is lysosome-mediated processing of damaged cellular organelle for recycling of the degraded products, including amino acids. Apparently, apoptosis and autophagy both are catabolic and tumor-suppressive pathways; apoptosis is essential during development and cancer cell death, while autophagy promotes cell survival under stress. Moreover, autophagy plays dual role during cancer development and progression by facilitating the survival of cancer cells under stressed conditions and inducing death in extreme adversity. Despite having two different molecular mechanisms, both apoptosis and autophagy are interconnected by several crosslinking intermediates. Epigenetic modifications, such as DNA methylation, post-translational modification of histone tails, and miRNA play a pivotal role in regulating genes involved in both autophagy and apoptosis. Both autophagic and apoptotic genes can undergo various epigenetic modifications and promote or inhibit these processes under normal and cancerous conditions. Epigenetic modifiers are uniquely important in controlling the signaling pathways regulating autophagy and apoptosis. Therefore, these epigenetic modifiers of both autophagic and apoptotic genes can act as novel therapeutic targets against cancers. Additionally, liquid-liquid phase separation (LLPS) also modulates the aggregation of misfolded proteins and provokes autophagy in the cytosolic environment. This review deals with the molecular mechanisms of both autophagy and apoptosis including crosstalk between them; emphasizing epigenetic regulation, involvement of LLPS therein, and possible therapeutic approaches against cancers.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
8
|
Bai I, Keyser C, Zhang Z, Rosolia B, Hwang JY, Zukin RS, Yan J. Epigenetic regulation of autophagy in neuroinflammation and synaptic plasticity. Front Immunol 2024; 15:1322842. [PMID: 38455054 PMCID: PMC10918468 DOI: 10.3389/fimmu.2024.1322842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
Autophagy is a conserved cellular mechanism that enables the degradation and recycling of cellular organelles and proteins via the lysosomal pathway. In neurodevelopment and maintenance of neuronal homeostasis, autophagy is required to regulate presynaptic functions, synapse remodeling, and synaptic plasticity. Deficiency of autophagy has been shown to underlie the synaptic and behavioral deficits of many neurological diseases such as autism, psychiatric diseases, and neurodegenerative disorders. Recent evidence reveals that dysregulated autophagy plays an important role in the initiation and progression of neuroinflammation, a common pathological feature in many neurological disorders leading to defective synaptic morphology and plasticity. In this review, we will discuss the regulation of autophagy and its effects on synapses and neuroinflammation, with emphasis on how autophagy is regulated by epigenetic mechanisms under healthy and diseased conditions.
Collapse
Affiliation(s)
- Isaac Bai
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Cameron Keyser
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Ziyan Zhang
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Breandan Rosolia
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Jee-Yeon Hwang
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States
| | - R. Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - Jingqi Yan
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| |
Collapse
|
9
|
Michalczuk MT, Longo L, Keingeski MB, Basso BDS, Guerreiro GTS, Ferrari JT, Vargas JE, Oliveira CP, Uribe-Cruz C, Cerski CTS, Filippi-Chiela E, Álvares-da-Silva MR. Rifaximin on epigenetics and autophagy in animal model of hepatocellular carcinoma secondary to metabolic-dysfunction associated steatotic liver disease. World J Hepatol 2024; 16:75-90. [PMID: 38313241 PMCID: PMC10835481 DOI: 10.4254/wjh.v16.i1.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Prevalence of hepatocellular carcinoma (HCC) is increasing, especially in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). AIM To investigate rifaximin (RIF) effects on epigenetic/autophagy markers in animals. METHODS Adult Sprague-Dawley rats were randomly assigned (n = 8, each) and treated from 5-16 wk: Control [standard diet, water plus gavage with vehicle (Veh)], HCC [high-fat choline deficient diet (HFCD), diethylnitrosamine (DEN) in drinking water and Veh gavage], and RIF [HFCD, DEN and RIF (50 mg/kg/d) gavage]. Gene expression of epigenetic/autophagy markers and circulating miRNAs were obtained. RESULTS All HCC and RIF animals developed metabolic-dysfunction associated steatohepatitis fibrosis, and cirrhosis, but three RIF-group did not develop HCC. Comparing animals who developed HCC with those who did not, miR-122, miR-34a, tubulin alpha-1c (Tuba-1c), metalloproteinases-2 (Mmp2), and metalloproteinases-9 (Mmp9) were significantly higher in the HCC-group. The opposite occurred with Becn1, coactivator associated arginine methyltransferase-1 (Carm1), enhancer of zeste homolog-2 (Ezh2), autophagy-related factor LC3A/B (Map1 Lc3b), and p62/sequestosome-1 (p62/SQSTM1)-protein. Comparing with controls, Map1 Lc3b, Becn1 and Ezh2 were lower in HCC and RIF-groups (P < 0.05). Carm1 was lower in HCC compared to RIF (P < 0.05). Hepatic expression of Mmp9 was higher in HCC in relation to the control; the opposite was observed for p62/Sqstm1 (P < 0.05). Expression of p62/SQSTM1 protein was lower in the RIF-group compared to the control (P = 0.024). There was no difference among groups for Tuba-1c, Aldolase-B, alpha-fetoprotein, and Mmp2 (P > 0.05). miR-122 was higher in HCC, and miR-34a in RIF compared to controls (P < 0.05). miR-26b was lower in HCC compared to RIF, and the inverse was observed for miR-224 (P < 0.05). There was no difference among groups regarding miR-33a, miR-143, miR-155, miR-375 and miR-21 (P > 0.05). CONCLUSION RIF might have a possible beneficial effect on preventing/delaying liver carcinogenesis through epigenetic modulation in a rat model of MASLD-HCC.
Collapse
Affiliation(s)
- Matheus Truccolo Michalczuk
- Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Melina Belén Keingeski
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Bruno de Souza Basso
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Gabriel Tayguara Silveira Guerreiro
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Jessica T Ferrari
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - José Eduardo Vargas
- Laboratory of Inflammatory and Neoplastic Cells, Universidade Federal do Paraná, Paraná 81530900, Brazil
| | - Cláudia P Oliveira
- Department of Gastroenterology (LIM07), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246903, Brazil
| | - Carolina Uribe-Cruz
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Facultad de Ciencias de la Salud, Universidad Católica de las Misiones, Posadas, Misiones 3300, Argentina
| | - Carlos Thadeu Schmidt Cerski
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Unit of Surgical Pathology, Hospital de Clinicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Eduardo Filippi-Chiela
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.050-170, Rio Grande do Sul, Brazil
| | - Mário Reis Álvares-da-Silva
- Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Researcher, Brasília 71.605-001, Brazil.
| |
Collapse
|
10
|
Lewerissa EI, Nadif Kasri N, Linda K. Epigenetic regulation of autophagy-related genes: Implications for neurodevelopmental disorders. Autophagy 2024; 20:15-28. [PMID: 37674294 PMCID: PMC10761153 DOI: 10.1080/15548627.2023.2250217] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily highly conserved catabolic process that is important for the clearance of cytosolic contents to maintain cellular homeostasis and survival. Recent findings point toward a critical role for autophagy in brain function, not only by preserving neuronal health, but especially by controlling different aspects of neuronal development and functioning. In line with this, mutations in autophagy-related genes are linked to various key characteristics and symptoms of neurodevelopmental disorders (NDDs), including autism, micro-/macrocephaly, and epilepsy. However, the group of NDDs caused by mutations in autophagy-related genes is relatively small. A significant proportion of NDDs are associated with mutations in genes encoding epigenetic regulatory proteins that modulate gene expression, so-called chromatinopathies. Intriguingly, several of the NDD-linked chromatinopathy genes have been shown to regulate autophagy-related genes, albeit in non-neuronal contexts. From these studies it becomes evident that tight transcriptional regulation of autophagy-related genes is crucial to control autophagic activity. This opens the exciting possibility that aberrant autophagic regulation might underly nervous system impairments in NDDs with disturbed epigenetic regulation. We here summarize NDD-related chromatinopathy genes that are known to regulate transcriptional regulation of autophagy-related genes. Thereby, we want to highlight autophagy as a candidate key hub mechanism in NDD-related chromatinopathies.Abbreviations: ADNP: activity dependent neuroprotector homeobox; ASD: autism spectrum disorder; ATG: AutTophaGy related; CpG: cytosine-guanine dinucleotide; DNMT: DNA methyltransferase; EHMT: euchromatic histone lysine methyltransferase; EP300: E1A binding protein p300; EZH2: enhancer of zeste 2 polycomb repressive complex 2 subunit; H3K4me3: histone 3 lysine 4 trimethylation; H3K9me1/2/3: histone 3 lysine 9 mono-, di-, or trimethylation; H3K27me2/3: histone 3 lysine 27 di-, or trimethylation; hiPSCs: human induced pluripotent stem cells; HSP: hereditary spastic paraplegia; ID: intellectual disability; KANSL1: KAT8 regulatory NSL complex subunit 1; KAT8: lysine acetyltransferase 8; KDM1A/LSD1: lysine demethylase 1A; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; NDD: neurodevelopmental disorder; PHF8: PHD finger protein 8; PHF8-XLID: PHF8-X linked intellectual disability syndrome; PTM: post-translational modification; SESN2: sestrin 2; YY1: YY1 transcription factor; YY1AP1: YY1 associated protein 1.
Collapse
Affiliation(s)
- Elly I. Lewerissa
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Gelderland, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Gelderland, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behavior, Nijmegen, Gelderland, The Netherlands
| | - Katrin Linda
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Gelderland, The Netherlands
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Flemish Brabant, Belgium
- Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Flemish Brabant, Belgium
| |
Collapse
|
11
|
Dong S, Dimopoulos G. Aedes aegypti Argonaute 2 controls arbovirus infection and host mortality. Nat Commun 2023; 14:5773. [PMID: 37723154 PMCID: PMC10507101 DOI: 10.1038/s41467-023-41370-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
Ae. aegypti mosquitoes transmit some of the most important human viral diseases that are responsible for a significant public health burden worldwide. The small interfering RNA (siRNA) pathway is considered the major antiviral defense system in insects. Here we show that siRNA pathway disruption by CRISPR/Cas9-based Ago2 knockout impaired the mosquitoes' ability to degrade arbovirus RNA leading to hyper-infection accompanied by cell lysis and tissue damage. Ago2 disruption impaired DNA repair mechanisms and the autophagy pathway by altering histone abundance. This compromised DNA repair and removal of damaged cellular organelles and dysfunctional aggregates promoted mosquito death. We also report that hyper-infection of Ago2 knockout mosquitoes stimulated a broad-spectrum antiviral immunity, including apoptosis, which may counteract infection. Taken together, our studies reveal novel roles for Ago2 in protecting mosquitoes from arbovirus infection and associated death.
Collapse
Affiliation(s)
- Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA.
| |
Collapse
|
12
|
Khizar H, Hu Y, Wu Y, Yang J. The role and implication of autophagy in cholangiocarcinoma. Cell Death Discov 2023; 9:332. [PMID: 37666811 PMCID: PMC10477247 DOI: 10.1038/s41420-023-01631-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor that originates from the biliary epithelial cells. It is characterized by a difficult diagnosis and limited treatment options. Autophagy is a cellular survival mechanism that maintains nutrient and energy homeostasis and eliminates intracellular pathogens. It is involved in various physiological and pathological processes, including the development of cancer. However, the role, mechanism, and potential therapeutic targets of autophagy in CCA have not been thoroughly studied. In this review, we introduce the classification, characteristics, process, and related regulatory genes of autophagy. We summarize the regulation of autophagy on the progression of CCA and collect the latest research progress on some autophagy modulators with clinical potential in CCA. In conclusion, combining autophagy modulators with immunotherapy, chemotherapy, and targeted therapy has great potential in the treatment of CCA. This combination may be a potential therapeutic target for CCA in the future.
Collapse
Affiliation(s)
- Hayat Khizar
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of medicine, 310006, Hangzhou, Zhejiang, China
- Department of Oncology, The Fourth Affiliated Hospital, International Institute of Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yufei Hu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of medicine, 310006, Hangzhou, Zhejiang, China
- Department of Gastroenterology, The Fourth School of Clinical medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanhua Wu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of medicine, 310006, Hangzhou, Zhejiang, China
- Department of Gastroenterology, The Fourth School of Clinical medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of medicine, 310006, Hangzhou, Zhejiang, China.
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, 310006, Hangzhou, Zhejiang, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, 310006, Hangzhou, Zhejiang, China.
- Hangzhou Institute of Digestive Diseases, 310006, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Abokyi S, Ghartey-Kwansah G, Tse DYY. TFEB is a central regulator of the aging process and age-related diseases. Ageing Res Rev 2023; 89:101985. [PMID: 37321382 DOI: 10.1016/j.arr.2023.101985] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Old age is associated with a greater burden of disease, including neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, as well as other chronic diseases. Coincidentally, popular lifestyle interventions, such as caloric restriction, intermittent fasting, and regular exercise, in addition to pharmacological interventions intended to protect against age-related diseases, induce transcription factor EB (TFEB) and autophagy. In this review, we summarize emerging discoveries that point to TFEB activity affecting the hallmarks of aging, including inhibiting DNA damage and epigenetic modifications, inducing autophagy and cell clearance to promote proteostasis, regulating mitochondrial quality control, linking nutrient-sensing to energy metabolism, regulating pro- and anti-inflammatory pathways, inhibiting senescence and promoting cell regenerative capacity. Furthermore, the therapeutic impact of TFEB activation on normal aging and tissue-specific disease development is assessed in the contexts of neurodegeneration and neuroplasticity, stem cell differentiation, immune responses, muscle energy adaptation, adipose tissue browning, hepatic functions, bone remodeling, and cancer. Safe and effective strategies of activating TFEB hold promise as a therapeutic strategy for multiple age-associated diseases and for extending lifespan.
Collapse
Affiliation(s)
- Samuel Abokyi
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China.
| | - George Ghartey-Kwansah
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Dennis Yan-Yin Tse
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong SAR of China.
| |
Collapse
|
14
|
Song Y, Zhang J, Wang H, Wang H, Liu Y, Hu Z. Histone lysine demethylase 3B regulates autophagy via transcriptional regulation of GABARAPL1 in acute myeloid leukemia cells. Int J Oncol 2023; 63:87. [PMID: 37326062 PMCID: PMC10552699 DOI: 10.3892/ijo.2023.5535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Macroautophagy (hereafter referred to as autophagy) is a highly conserved self‑digestion process that is critical for maintaining homeostasis in response to various stresses. The autophagy‑related protein family, including the GABA type A receptor‑associated protein (GABARAP) and microtubule‑associated protein 1 light chain 3 subfamilies, is crucial for autophagosome biogenesis. Although the regulatory machinery of autophagy in the cytoplasm has been widely studied, its transcriptional and epigenetic regulatory mechanisms still require more targeted investigations. The present study identified histone lysine demethylase 3B (KDM3B) as a crucial component of autophagy on a panel of leukemia cell lines, including K562, THP1 and U937, resulting in transcriptional activation of the autophagy‑related gene GABA type A receptor‑associated protein like 1 (GABARAPL1). KDM3B expression promoted autophagosome formation and affected the autophagic flux in leukemia cells under the induction of external stimuli. Notably, RNA‑sequencing and reverse transcription‑quantitative PCR analysis showed that KDM3B knockout inhibited the expression of GABARAPL1. Chromatin immunoprecipitation‑quantitative PCR and luciferase assay showed that KDM3B was associated with the GABARAPL1 gene promoter under stimulation and enhanced its transcription. The present findings demonstrated that KDM3B was critical for regulating the GABARAPL1 gene and influencing the process of autophagy in leukemia cells. These results provide a new insight for exploring the association between autophagy and KDM3B epigenetic regulation in leukemia.
Collapse
Affiliation(s)
- Ying Song
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042
| | - Jiaqi Zhang
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042
- Granduate School, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Haihua Wang
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042
- Granduate School, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Haiying Wang
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042
| | - Yong Liu
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042
| | - Zhenbo Hu
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042
| |
Collapse
|
15
|
Mao M, Song S, Li X, Lu J, Li J, Zhao W, Liu H, Liu J, Zeng B. Advances in epigenetic modifications of autophagic process in pulmonary hypertension. Front Immunol 2023; 14:1206406. [PMID: 37398657 PMCID: PMC10313199 DOI: 10.3389/fimmu.2023.1206406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Pulmonary hypertension is characterized by pulmonary arterial remodeling that results in increased pulmonary vascular resistance, right ventricular failure, and premature death. It is a threat to public health globally. Autophagy, as a highly conserved self-digestion process, plays crucial roles with autophagy-related (ATG) proteins in various diseases. The components of autophagy in the cytoplasm have been studied for decades and multiple studies have provided evidence of the importance of autophagic dysfunction in pulmonary hypertension. The status of autophagy plays a dynamic suppressive or promotive role in different contexts and stages of pulmonary hypertension development. Although the components of autophagy have been well studied, the molecular basis for the epigenetic regulation of autophagy is less understood and has drawn increasing attention in recent years. Epigenetic mechanisms include histone modifications, chromatin modifications, DNA methylation, RNA alternative splicing, and non-coding RNAs, which control gene activity and the development of an organism. In this review, we summarize the current research progress on epigenetic modifications in the autophagic process, which have the potential to be crucial and powerful therapeutic targets against the autophagic process in pulmonary hypertension development.
Collapse
Affiliation(s)
- Min Mao
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shasha Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Xin Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiayao Lu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Jie Li
- Marketing Department, Shenzhen Reyson Biotechnology Co., Ltd, Shenzhen, China
- Nanjing Evertop Electronics Ltd., Nanjing, China
| | - Weifang Zhao
- Quality Management Department International Registration, North China Pharmaceutical Co., Ltd. (NCPC), Hebei Huamin Pharmaceutical Co., Ltd., Shijiazhuang, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jingxin Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Bin Zeng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
16
|
Yu YS, Kim H, Kim KI, Baek SH. Epigenetic regulation of autophagy by histone-modifying enzymes under nutrient stress. Cell Death Differ 2023; 30:1430-1436. [PMID: 36997734 PMCID: PMC10244364 DOI: 10.1038/s41418-023-01154-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/01/2023] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process that is induced in response to various stress factors in order to protect cells and maintain cellular homeostasis by degrading redundant components and dysfunctional organelles. Dysregulation of autophagy has been implicated in several conditions such as cancer, neurodegenerative diseases, and metabolic disorders. Although autophagy has been commonly considered as a cytoplasmic process, accumulating evidence has revealed that epigenetic regulation within the nucleus is also important for regulation of autophagy. In particular, when energy homeostasis is disrupted, for instance due to nutrient deprivation, cells increase autophagic activity at the transcriptional level, thereby also increasing the extent of overall autophagic flux. The transcription of genes associated with autophagy is strictly regulated by epigenetic factors through a network of histone-modifying enzymes along with histone modifications. A better understanding of the complex regulatory mechanisms of autophagy could reveal potential new therapeutic targets for autophagy-related diseases. In this review, we discuss the epigenetic regulation of autophagy in response to nutrient stress, focusing on histone-modifying enzymes and histone modifications.
Collapse
Affiliation(s)
- Young Suk Yu
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunkyung Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - Keun Il Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
17
|
Myszor IT, Gudmundsson GH. Modulation of innate immunity in airway epithelium for host-directed therapy. Front Immunol 2023; 14:1197908. [PMID: 37251385 PMCID: PMC10213533 DOI: 10.3389/fimmu.2023.1197908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Innate immunity of the mucosal surfaces provides the first-line defense from invading pathogens and pollutants conferring protection from the external environment. Innate immune system of the airway epithelium consists of several components including the mucus layer, mucociliary clearance of beating cilia, production of host defense peptides, epithelial barrier integrity provided by tight and adherens junctions, pathogen recognition receptors, receptors for chemokines and cytokines, production of reactive oxygen species, and autophagy. Therefore, multiple components interplay with each other for efficient protection from pathogens that still can subvert host innate immune defenses. Hence, the modulation of innate immune responses with different inducers to boost host endogenous front-line defenses in the lung epithelium to fend off pathogens and to enhance epithelial innate immune responses in the immunocompromised individuals is of interest for host-directed therapy. Herein, we reviewed possibilities of modulation innate immune responses in the airway epithelium for host-directed therapy presenting an alternative approach to standard antibiotics.
Collapse
Affiliation(s)
- Iwona T. Myszor
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Hrafn Gudmundsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Sharma P, Kaushal N, Saleth LR, Ghavami S, Dhingra S, Kaur P. Oxidative stress-induced apoptosis and autophagy: Balancing the contrary forces in spermatogenesis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166742. [PMID: 37146914 DOI: 10.1016/j.bbadis.2023.166742] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Spermatogenesis is a complex process in the testis and is a cornerstone of male infertility. The abundance of unsaturated fatty acid and high cell division rate make male germs cells prone to DNA deterioration. ROS-mediated oxidative stress triggers DNA damage, autophagy, and apoptosis in male germ cells, which are critical causative factors that lead to male infertility. The complex connection and molecular crosstalk between apoptosis and autophagy is seen at multifaceted levels that interconnect the signaling pathways of these two processes. Multilevel interaction between apoptosis and autophagy is a seamless state of survival and death in response to various stressors. Interaction between multiple genes and proteins such as the mTor signaling pathway, Atg12 proteins, and the death adapter proteins, such as Beclin 1, p53, and Bcl-2 family proteins, validates such a link between these two phenomena. Testicular cells being epigenetically different from somatic cells, undergo numerous significant epigenetic transitions, and ROS modulates the epigenetic framework of mature sperm. Epigenetic deregulation of apoptosis and autophagy under oxidative stress conditions can cause sperm cell damage. The current review recapitulates the current role of prevailing stressors that generate oxidative stress leading to the induction of apoptosis and autophagy in the male reproductive system. Considering the pathophysiological consequences of ROS-mediated apoptosis and autophagy, a combinatorial approach, including apoptosis inhibition and autophagy activation, a therapeutic strategy to treat male idiopathic infertility. Understanding the crosslink between apoptosis and autophagy under stress conditions in male germ cells may play an essential role in developing therapeutic strategies to treat infertility.
Collapse
Affiliation(s)
- Parul Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India
| | - Naveen Kaushal
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Leena Regi Saleth
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Research Institute of Hematology and Oncology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Parminder Kaur
- Department of Biotechnology, University Institute of Engineering & Technology, Panjab University, Chandigarh 160024, India.
| |
Collapse
|
19
|
González-Rodríguez P, Füllgrabe J, Joseph B. The hunger strikes back: an epigenetic memory for autophagy. Cell Death Differ 2023:10.1038/s41418-023-01159-4. [PMID: 37031275 DOI: 10.1038/s41418-023-01159-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Historical and demographical human cohorts of populations exposed to famine, as well as animal studies, revealed that exposure to food deprivation is associated to lasting health-related effects for the exposed individuals, as well as transgenerational effects in their offspring that affect their diseases' risk and overall longevity. Autophagy, an evolutionary conserved catabolic process, serves as cellular response to cope with nutrient starvation, allowing the mobilization of an internal source of stored nutrients and the production of energy. We review the evidence obtained in multiple model organisms that support the idea that autophagy induction, including through dietary regimes based on reduced food intake, is in fact associated to improved health span and extended lifespan. Thereafter, we expose autophagy-induced chromatin remodeling, such as DNA methylation and histone posttranslational modifications that are known heritable epigenetic marks, as a plausible mechanism for transgenerational epigenetic inheritance of hunger.
Collapse
Affiliation(s)
- Patricia González-Rodríguez
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jens Füllgrabe
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
20
|
Zhang K, Sowers ML, Cherryhomes EI, Singh VK, Mishra A, Restrepo BI, Khan A, Jagannath C. Sirtuin-dependent metabolic and epigenetic regulation of macrophages during tuberculosis. Front Immunol 2023; 14:1121495. [PMID: 36993975 PMCID: PMC10040548 DOI: 10.3389/fimmu.2023.1121495] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/01/2023] [Indexed: 03/14/2023] Open
Abstract
Macrophages are the preeminent phagocytic cells which control multiple infections. Tuberculosis a leading cause of death in mankind and the causative organism Mycobacterium tuberculosis (MTB) infects and persists in macrophages. Macrophages use reactive oxygen and nitrogen species (ROS/RNS) and autophagy to kill and degrade microbes including MTB. Glucose metabolism regulates the macrophage-mediated antimicrobial mechanisms. Whereas glucose is essential for the growth of cells in immune cells, glucose metabolism and its downsteam metabolic pathways generate key mediators which are essential co-substrates for post-translational modifications of histone proteins, which in turn, epigenetically regulate gene expression. Herein, we describe the role of sirtuins which are NAD+-dependent histone histone/protein deacetylases during the epigenetic regulation of autophagy, the production of ROS/RNS, acetyl-CoA, NAD+, and S-adenosine methionine (SAM), and illustrate the cross-talk between immunometabolism and epigenetics on macrophage activation. We highlight sirtuins as emerging therapeutic targets for modifying immunometabolism to alter macrophage phenotype and antimicrobial function.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Mark L. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ellie I. Cherryhomes
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Vipul K. Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Blanca I. Restrepo
- University of Texas Health Houston, School of Public Health, Brownsville, TX, United States
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| |
Collapse
|
21
|
Kwon J, Kim J, Kim KI. Crosstalk between endoplasmic reticulum stress response and autophagy in human diseases. Anim Cells Syst (Seoul) 2023; 27:29-37. [PMID: 36860271 PMCID: PMC9970256 DOI: 10.1080/19768354.2023.2181217] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Cells activate protective mechanisms to overcome stressful conditions that threaten cellular homeostasis, including imbalances in calcium, redox, and nutrient levels. Endoplasmic reticulum (ER) stress activates an intracellular signaling pathway, known as the unfolded protein response (UPR), to mitigate such circumstances and protect cells. Although ER stress is sometimes a negative regulator of autophagy, UPR induced by ER stress typically activates autophagy, a self-degradative pathway that further supports its cytoprotective role. Sustained activation of ER stress and autophagy is known to trigger cell death and is considered a therapeutic target for certain diseases. However, ER stress-induced autophagy can also lead to treatment resistance in cancer and exacerbation of certain diseases. Since the ER stress response and autophagy affect each other, and the degree of their activation is closely related to various diseases, understanding their relationship is very important. In this review, we summarize the current understanding of two fundamental cellular stress responses, the ER stress response and autophagy, and their crosstalk under pathological conditions to help develop therapies for inflammatory diseases, neurodegenerative disorders, and cancer.
Collapse
Affiliation(s)
- Junhee Kwon
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Jihyun Kim
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Keun Il Kim
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea, Keun Il Kim Department of Biological Sciences, Sookmyung Women’s University, Seoul04310, Republic of Korea
| |
Collapse
|
22
|
The mTORC1-G9a-H3K9me2 axis negatively regulates autophagy in fatty acid-induced hepatocellular lipotoxicity. J Biol Chem 2023; 299:102937. [PMID: 36690274 PMCID: PMC9957777 DOI: 10.1016/j.jbc.2023.102937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Defective autophagy and lipotoxicity are the hallmarks of nonalcoholic fatty liver disease. However, the precise molecular mechanism for the defective autophagy in lipotoxic conditions is not fully known. In the current study, we elucidated that activation of the mammalian target of rapamycin complex 1 (mTORC1)-G9a-H3K9me2 axis in fatty acid-induced lipotoxicity blocks autophagy by repressing key autophagy genes. The fatty acid-treated cells show mTORC1 activation, increased histone methyltransferase G9a levels, and suppressed autophagy as indicated by increased accumulation of the key autophagic cargo SQSTM1/p62 and decreased levels of autophagy-related proteins LC3II, Beclin1, and Atg7. Our chromatin immunoprecipitation analysis showed that decrease in autophagy was associated with increased levels of the G9a-mediated repressive H3K9me2 mark and decreased RNA polymerase II occupancy at the promoter regions of Beclin1 and Atg7 in fatty acid-treated cells. Inhibition of mTORC1 in fatty acid-treated cells decreased G9a-mediated H3K9me2 occupancy and increased polymerase II occupancy at Beclin1 and Atg7 promoters. Furthermore, mTORC1 inhibition increased the expression of Beclin1 and Atg7 in fatty acid-treated cells and decreased the accumulation of SQSTM1/p62. Interestingly, the pharmacological inhibition of G9a alone in fatty acid-treated cells decreased the H3K9me2 mark at Atg7 and Beclin1 promoters and restored the expression of Atg7 and Beclin1. Taken together, our findings have identified the mTORC1-G9a-H3K9me2 axis as a negative regulator of the autophagy pathway in hepatocellular lipotoxicity and suggest that the G9a-mediated epigenetic repression is mechanistically a key step during the repression of autophagy in lipotoxic conditions.
Collapse
|
23
|
Yu M, Qian K, Wang G, Xiao Y, Zhu Y, Ju L. Histone methyltransferase SETD2: An epigenetic driver in clear cell renal cell carcinoma. Front Oncol 2023; 13:1114461. [PMID: 37025591 PMCID: PMC10070805 DOI: 10.3389/fonc.2023.1114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
SET domain-containing 2 (SETD2) is a lysine methyltransferase that catalyzes histone H3 lysine36 trimethylation (H3K36me3) and has been revealed to play important roles in the regulation of transcriptional elongation, RNA splicing, and DNA damage repair. SETD2 mutations have been documented in several cancers, including clear cell renal cell carcinoma (ccRCC). SETD2 deficiency is associated with cancer occurrence and progression by regulating autophagy flux, general metabolic activity, and replication fork speed. Therefore, SETD2 is considered a potential epigenetic therapeutic target and is the subject of ongoing research on cancer-related diagnosis and treatment. This review presents an overview of the molecular functions of SETD2 in H3K36me3 regulation and its relationship with ccRCC, providing a theoretical basis for subsequent antitumor therapy based on SETD2 or H3K36me3 targets.
Collapse
Affiliation(s)
- Mengxue Yu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Yu Xiao
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yuan Zhu
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Yuan Zhu, ; Lingao Ju,
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, China
- *Correspondence: Yuan Zhu, ; Lingao Ju,
| |
Collapse
|
24
|
Cai L, Li J, Long R, Liao Z, Gong J, Zheng B, Zhang H. An autophagy-related diagnostic biomarker for uterine fibroids: FOS. Front Med (Lausanne) 2023; 10:1153537. [PMID: 37138755 PMCID: PMC10150886 DOI: 10.3389/fmed.2023.1153537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
Uterine fibroids (UFs) are the most common benign gynecologic tumors in reproductive-aged women. The typical diagnostic strategies of UFs are transvaginal ultrasonography and pathological feature, while molecular biomarkers are considered conventional options in the assessment of the origin and development of UFs in recent years. Here, we extracted the differential expression genes (DEGs) and differential DNA methylation genes (DMGs) of UFs from the Gene Expression Omnibus (GEO) database, GSE64763, GSE120854, GSE45188, and GSE45187. 167 DEGs with aberrant DNA methylation were identified, and further Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed by the relevant R package. We next discerned 2 hub genes (FOS, and TNFSF10) with autophagy involvement by overlapping 167 DEGs and 232 autophagic regulators from Human Autophagy Database. FOS was identified as the most crucial gene through the Protein-Protein Interactions (PPI) network with the correlation of the immune scores. Moreover, the down-regulated expression of FOS in UFs tissue at both mRNA and protein levels was validated by RT-qPCR and immunohistochemistry respectively. The area under the ROC curve (AUC) of FOS was 0.856, with a sensitivity of 86.2% and a specificity of 73.9%. Overall, we explored the possible biomarker of UFs undergoing DNA-methylated autophagy and provided clinicians with a comprehensive assessment of UFs.
Collapse
Affiliation(s)
- Lei Cai
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Long
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqi Liao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juejun Gong
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bowen Zheng
- Medical Record Department, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Hanwang Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hanwang Zhang,
| |
Collapse
|
25
|
Hou Y, Liu J, Huang S, Wang L, Hu J, Liu X. DOT1L Epigenetically Regulates Autophagy and Mitochondria Fusion in Cell Lines of Renal Cancer. Technol Cancer Res Treat 2023; 22:15330338231167249. [PMID: 37365941 PMCID: PMC10538554 DOI: 10.1177/15330338231167249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/18/2023] [Accepted: 03/13/2023] [Indexed: 06/28/2023] Open
Abstract
OBJECTIVES DOT1L, a histone methylase, is overexpression in renal cell cancer. However, the role and detailed molecular mechanism of DOT1L involved in renal cancer development remain unknown. METHODS The inhibition of DOT1L was used by SGC0946 and short hairpin RNA silencing. Monodansylcadaverine staining and transmission electron microscope were performed to detect autophagy changes as a result of the inhibition of DOT1L. MitoTracker Red assay was used to analyze mitochondrial morphology. The autophagy markers and mitochondria-related proteins were analyzed by Western blot, qPCR, or immunofluorescence. ChIP assay was performed to demonstrate H3K79me2 is involved in the direct regulation of Farnesoid X receptor transcription. RESULTS DOT1L inhibition increased autophagy activity and promoted mito chondria fusion in cell lines of renal cancer. Inhibition of DOT1L upregulated levels of LC3α/β, P62, MFN1, and MFN2, which contributed to autophagy activity or mitochondria fusion. DOT1L knockdown showed a similar the above process. DOT1L inhibition or silencing resulted in AMP-activated protein kinase activation and mammalian target of rapamycin inhibition. Mechanistically, the DOT1L inhibitor and its short hairpin RNAs decreased the expression of Farnesoid X receptor in a histone methylase-dependent manner. CONCLUSION We revealed the essential role of Farnesoid X receptor in regulating DOT1L-induced autophagy and mitochondrial fission through the AMP-activated protein kinase/mammalian target of rapamycin pathway in cell lines of renal cancer, which may provide new insights into the pathogenesis of renal cell cancer.
Collapse
Affiliation(s)
- Yanguang Hou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Wuhan University Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Jiachen Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Wuhan University Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Shiyu Huang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Wuhan University Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Juncheng Hu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Wuhan University Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
26
|
González-Rodríguez P, Cheray M, Keane L, Engskog-Vlachos P, Joseph B. ULK3-dependent activation of GLI1 promotes DNMT3A expression upon autophagy induction. Autophagy 2022; 18:2769-2780. [PMID: 35226587 PMCID: PMC9673947 DOI: 10.1080/15548627.2022.2039993] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Macroautophagy/autophagy is a tightly regulated catabolic process, which contributes at baseline level to cellular homeostasis, and upon its stimulation to the adaptive cellular response to intra- and extracellular stress stimuli. Decrease of autophagy activity is occurring upon aging and thought to contribute to age-related-diseases. Recently, we uncovered, upon autophagy induction, the role of de novo DNMT3A (DNA methyltransferase 3 alpha)-mediated DNA methylation on expression of the MAP1LC3 (microtubule associated protein 1 light chain 3) proteins, core components of the autophagy pathway, which resulted in reduced baseline autophagy activity. Here, we report that serine/threonine kinase ULK3 (unc-51 like kinase 3)-dependent activation of GLI1 (GLI family zinc finger 1) contributes to the transcriptional upregulation of DNMT3A gene expression upon autophagy induction, thereby bringing additional understanding of the long-term effect of autophagy induction and a possible mechanism for its decline upon aging, pathological conditions, or in response to treatment interventions.Abbreviations: CBZ: carbamazepine; ChIP: chromatin immunoprecipitation; Clon: clonidine; DNMT3A: DNA methyltransferase 3 alpha; GLI1: GLI family zinc finger 1; GLI2: GLI family zinc finger 2; MAP1LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PLA: proximity ligation assay; RT-qPCR: quantitative reverse transcription PCR; shRNA: small hairpin RNA; siRNA: small interfering RNA; Treh: trehalose; ULK3: unc-51 like kinase 3.
Collapse
Affiliation(s)
| | - Mathilde Cheray
- Institute of Environmental MedicineToxicology Unit, Karolinska Institutet, StockholmSweden
| | - Lily Keane
- Institute of Environmental MedicineToxicology Unit, Karolinska Institutet, StockholmSweden
| | | | - Bertrand Joseph
- Institute of Environmental MedicineToxicology Unit, Karolinska Institutet, StockholmSweden,Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway,CONTACT Bertrand Joseph Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm17177, Sweden; Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Zhou J, He H, Zhang JJ, Liu X, Yao W, Li C, Xu T, Yin SY, Wu DY, Dou CL, Li Q, Xiang J, Xiong WJ, Wang LY, Tang JM, Xue Z, Zhang X, Miao YL. ATG7-mediated autophagy facilitates embryonic stem cell exit from naive pluripotency and marks commitment to differentiation. Autophagy 2022; 18:2946-2968. [PMID: 35311460 PMCID: PMC9673953 DOI: 10.1080/15548627.2022.2055285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Macroautophagy/autophagy is a conserved cellular mechanism to degrade unneeded cytoplasmic proteins and organelles to recycle their components, and it is critical for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. Whereas autophagy is essential for early development of embryos, no information exists regarding its functions during the transition from naive-to-primed pluripotency. Here, by using an in vitro transition model of ESCs to epiblast-like cells (EpiLCs), we find that dynamic changes in ATG7-dependent autophagy are critical for the naive-to-primed transition, and are also necessary for germline specification. RNA-seq and ATAC-seq profiling reveal that NANOG acts as a barrier to prevent pluripotency transition, and autophagy-dependent NANOG degradation is important for dismantling the naive pluripotency expression program through decommissioning of naive-associated active enhancers. Mechanistically, we found that autophagy receptor protein SQSTM1/p62 translocated into the nucleus during the pluripotency transition period and is preferentially associated with K63 ubiquitinated NANOG for selective protein degradation. In vivo, loss of autophagy by ATG7 depletion disrupts peri-implantation development and causes increased chromatin association of NANOG, which affects neuronal differentiation by competitively binding to OTX2-specific neuroectodermal development-associated regions. Taken together, our findings reveal that autophagy-dependent degradation of NANOG plays a critical role in regulating exit from the naive state and marks distinct cell fate allocation during lineage specification.Abbreviations: 3-MA: 3-methyladenine; EpiLC: epiblast-like cell; ESC: embryonic stem cell; PGC: primordial germ cell.
Collapse
Affiliation(s)
- Jilong Zhou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Hainan He
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Jing-Jing Zhang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Xin Liu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chengyu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tian Xu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Shu-Yuan Yin
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Dan-Ya Wu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Cheng-Li Dou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Qiao Li
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Jiani Xiang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Wen-Jing Xiong
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Li-Yan Wang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhouyiyuan Xue
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Xia Zhang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China,Hubei Hongshan Laboratory, Wuhan, Hubei, China,CONTACT Yi-Liang Miao Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
28
|
González-Rodríguez P, Delorme-Axford E, Bernard A, Keane L, Stratoulias V, Grabert K, Engskog-Vlachos P, Füllgrabe J, Klionsky DJ, Joseph B. SETD2 transcriptional control of ATG14L/S isoforms regulates autophagosome-lysosome fusion. Cell Death Dis 2022; 13:953. [PMID: 36371383 PMCID: PMC9653477 DOI: 10.1038/s41419-022-05381-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
Macroautophagy/autophagy is an evolutionarily conserved and tightly regulated catabolic process involved in the maintenance of cellular homeostasis whose dysregulation is implicated in several pathological processes. Autophagy begins with the formation of phagophores that engulf cytoplasmic cargo and mature into double-membrane autophagosomes; the latter fuse with lysosomes/vacuoles for cargo degradation and recycling. Here, we report that yeast Set2, a histone lysine methyltransferase, and its mammalian homolog, SETD2, both act as positive transcriptional regulators of autophagy. However, whereas Set2 regulates the expression of several autophagy-related (Atg) genes upon nitrogen starvation, SETD2 effects in mammals were found to be more restricted. In fact, SETD2 appears to primarily regulate the differential expression of protein isoforms encoded by the ATG14 gene. SETD2 promotes the expression of a long ATG14 isoform, ATG14L, that contains an N-terminal cysteine repeats domain, essential for the efficient fusion of the autophagosome with the lysosome, that is absent in the short ATG14 isoform, ATG14S. Accordingly, SETD2 loss of function decreases autophagic flux, as well as the turnover of aggregation-prone proteins such as mutant HTT (huntingtin) leading to increased cellular toxicity. Hence, our findings bring evidence to the emerging concept that the production of autophagy-related protein isoforms can differentially affect core autophagy machinery bringing an additional level of complexity to the regulation of this biological process in more complex organisms.
Collapse
Affiliation(s)
- Patricia González-Rodríguez
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177, Stockholm, Sweden
- Department of Oncology Pathology, Cancer Centrum Karolinska, Karolinska Institutet, 171 76, Stockholm, Sweden
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Elizabeth Delorme-Axford
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Amélie Bernard
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- University of Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140, Villenave d'Ornon, France
| | - Lily Keane
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Vassilis Stratoulias
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177, Stockholm, Sweden
- Department of Oncology Pathology, Cancer Centrum Karolinska, Karolinska Institutet, 171 76, Stockholm, Sweden
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kathleen Grabert
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Pinelopi Engskog-Vlachos
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Jens Füllgrabe
- Department of Oncology Pathology, Cancer Centrum Karolinska, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Daniel J Klionsky
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177, Stockholm, Sweden.
| |
Collapse
|
29
|
Hao W, Dian M, Zhou Y, Zhong Q, Pang W, Li Z, Zhao Y, Ma J, Lin X, Luo R, Li Y, Jia J, Shen H, Huang S, Dai G, Wang J, Sun Y, Xiao D. Autophagy induction promoted by m 6A reader YTHDF3 through translation upregulation of FOXO3 mRNA. Nat Commun 2022; 13:5845. [PMID: 36195598 PMCID: PMC9532426 DOI: 10.1038/s41467-022-32963-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/24/2022] [Indexed: 12/08/2022] Open
Abstract
Autophagy is crucial for maintaining cellular energy homeostasis and for cells to adapt to nutrient deficiency, and nutrient sensors regulating autophagy have been reported previously. However, the role of eiptranscriptomic modifications such as m6A in the regulation of starvation-induced autophagy is unclear. Here, we show that the m6A reader YTHDF3 is essential for autophagy induction. m6A modification is up-regulated to promote autophagosome formation and lysosomal degradation upon nutrient deficiency. METTL3 depletion leads to a loss of functional m6A modification and inhibits YTHDF3-mediated autophagy flux. YTHDF3 promotes autophagy by recognizing m6A modification sites around the stop codon of FOXO3 mRNA. YTHDF3 also recruits eIF3a and eIF4B to facilitate FOXO3 translation, subsequently initiating autophagy. Overall, our study demonstrates that the epitranscriptome regulator YTHDF3 functions as a nutrient responder, providing a glimpse into the post-transcriptional RNA modifications that regulate metabolic homeostasis.
Collapse
Affiliation(s)
- WeiChao Hao
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510080, Guangzhou, China
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - MeiJuan Dian
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, 510515, Guangzhou, China
| | - Ying Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, 510515, Guangzhou, China
| | - QiuLing Zhong
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - WenQian Pang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - ZiJian Li
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - YaYan Zhao
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510080, Guangzhou, China
| | - JiaCheng Ma
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 10084, Beijing, China
| | - XiaoLin Lin
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - RenRu Luo
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, 518107, Guangdong, China
| | - YongLong Li
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, 510515, Guangzhou, China
| | - JunShuang Jia
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - HongFen Shen
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - ShiHao Huang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, 510515, Guangzhou, China
| | - GuanQi Dai
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, 510515, Guangzhou, China
| | - JiaHong Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China.
| | - Yan Sun
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, Guangzhou, China.
| | - Dong Xiao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China.
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, 510515, Guangzhou, China.
- National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
30
|
Crosstalk between Glycogen-Selective Autophagy, Autophagy and Apoptosis as a Road towards Modifier Gene Discovery and New Therapeutic Strategies for Glycogen Storage Diseases. Life (Basel) 2022; 12:life12091396. [PMID: 36143432 PMCID: PMC9504455 DOI: 10.3390/life12091396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
Glycogen storage diseases (GSDs) are rare metabolic monogenic disorders characterized by an excessive accumulation of glycogen in the cell. However, monogenic disorders are not simple regarding genotype–phenotype correlation. Genes outside the major disease-causing locus could have modulatory effect on GSDs, and thus explain the genotype–phenotype inconsistencies observed in these patients. Nowadays, when the sequencing of all clinically relevant genes, whole human exomes, and even whole human genomes is fast, easily available and affordable, we have a scientific obligation to holistically analyze data and draw smarter connections between genotype and phenotype. Recently, the importance of glycogen-selective autophagy for the pathophysiology of disorders of glycogen metabolism have been described. Therefore, in this manuscript, we review the potential role of genes involved in glycogen-selective autophagy as modifiers of GSDs. Given the small number of genes associated with glycogen-selective autophagy, we also include genes, transcription factors, and non-coding RNAs involved in autophagy. A cross-link with apoptosis is addressed. All these genes could be analyzed in GSD patients with unusual discrepancies between genotype and phenotype in order to discover genetic variants potentially modifying their phenotype. The discovery of modifier genes related to glycogen-selective autophagy and autophagy will start a new chapter in understanding of GSDs and enable the usage of autophagy-inducing drugs for the treatment of this group of rare-disease patients.
Collapse
|
31
|
Patra SK, Szyf M. Epigenetic perspectives of COVID-19: Virus infection to disease progression and therapeutic control. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166527. [PMID: 36002132 PMCID: PMC9393109 DOI: 10.1016/j.bbadis.2022.166527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
Abstract
COVID-19 has caused numerous deaths as well as imposed social isolation and upheaval world-wide. Although, the genome and the composition of the virus, the entry process and replication mechanisms are well investigated from by several laboratories across the world, there are many unknown remaining questions. For example, what are the functions of membrane lipids during entry, packaging and exit of virus particles? Also, the metabolic aspects of the infected tissue cells are poorly understood. In the course of virus replication and formation of virus particles within the host cell, the enhanced metabolic activities of the host is directly proportional to viral loads. The epigenetic landscape of the host cells is also altered, particularly the expression/repression of genes associated with cellular metabolism as well as cellular processes that are antagonistic to the virus. Metabolic pathways are enzyme driven processes and the expression profile and mechanism of regulations of the respective genes encoding those enzymes during the course of pathogen invasion might be highly informative on the course of the disease. Recently, the metabolic profile of the patients' sera have been analysed from few patients. In view of this, and to gain further insights into the roles that epigenetic mechanisms might play in this scenario in regulation of metabolic pathways during the progression of COVID-19 are discussed and summarised in this contribution for ensuring best therapy.
Collapse
Affiliation(s)
- Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics, McIntyre Medical Sciences Building, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
32
|
Ghavami S, Zamani M, Ahmadi M, Erfani M, Dastghaib S, Darbandi M, Darbandi S, Vakili O, Siri M, Grabarek BO, Boroń D, Zarghooni M, Wiechec E, Mokarram P. Epigenetic regulation of autophagy in gastrointestinal cancers. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166512. [PMID: 35931405 DOI: 10.1016/j.bbadis.2022.166512] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
The development of novel therapeutic approaches is necessary to manage gastrointestinal cancers (GICs). Considering the effective molecular mechanisms involved in tumor growth, the therapeutic response is pivotal in this process. Autophagy is a highly conserved catabolic process that acts as a double-edged sword in tumorigenesis and tumor inhibition in a context-dependent manner. Depending on the stage of malignancy and cellular origin of the tumor, autophagy might result in cancer cell survival or death during the GICs' progression. Moreover, autophagy can prevent the progression of GIC in the early stages but leads to chemoresistance in advanced stages. Therefore, targeting specific arms of autophagy could be a promising strategy in the prevention of chemoresistance and treatment of GIC. It has been revealed that autophagy is a cytoplasmic event that is subject to transcriptional and epigenetic regulation inside the nucleus. The effect of epigenetic regulation (including DNA methylation, histone modification, and expression of non-coding RNAs (ncRNAs) in cellular fate is still not completely understood. Recent findings have indicated that epigenetic alterations can modify several genes and modulators, eventually leading to inhibition or promotion of autophagy in different cancer stages, and mediating chemoresistance or chemosensitivity. The current review focuses on the links between autophagy and epigenetics in GICs and discusses: 1) How autophagy and epigenetics are linked in GICs, by considering different epigenetic mechanisms; 2) how epigenetics may be involved in the alteration of cancer-related phenotypes, including cell proliferation, invasion, and migration; and 3) how epidrugs modulate autophagy in GICs to overcome chemoresistance.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institute of Hematology and Oncology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland.
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mehran Erfani
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran; Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Sara Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran; Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology, and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland; Department of Gynecology and Obstetrics in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology, and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland; Department of Gynecology and Obstetrics in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Maryam Zarghooni
- Department of Laboratory Medicine and Pathobiology, University of Toronto Alumni, Toronto, Canada
| | - Emilia Wiechec
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
33
|
Park SW, Kim J, Oh S, Lee J, Cha J, Lee HS, Kim KI, Park D, Baek SH. PHF20 is crucial for epigenetic control of starvation-induced autophagy through enhancer activation. Nucleic Acids Res 2022; 50:7856-7872. [PMID: 35821310 PMCID: PMC9371932 DOI: 10.1093/nar/gkac584] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is a catabolic pathway that maintains cellular homeostasis under various stress conditions, including conditions of nutrient deprivation. To elevate autophagic flux to a sufficient level under stress conditions, transcriptional activation of autophagy genes occurs to replenish autophagy components. Thus, the transcriptional and epigenetic control of the genes regulating autophagy is essential for cellular homeostasis. Here, we applied integrated transcriptomic and epigenomic profiling to reveal the roles of plant homeodomain finger protein 20 (PHF20), which is an epigenetic reader possessing methyl binding activity, in controlling the expression of autophagy genes. Phf20 deficiency led to impaired autophagic flux and autophagy gene expression under glucose starvation. Interestingly, the genome-wide characterization of chromatin states by Assay for Transposase-Accessible Chromatin (ATAC)-sequencing revealed that the PHF20-dependent chromatin remodelling occurs in enhancers that are co-occupied by dimethylated lysine 36 on histone H3 (H3K36me2). Importantly, the recognition of H3K36me2 by PHF20 was found to be highly correlated with increased levels of H3K4me1/2 at the enhancer regions. Collectively, these results indicate that PHF20 regulates autophagy genes through enhancer activation via H3K36me2 recognition as an epigenetic reader. Our findings emphasize the importance of nuclear events in the regulation of autophagy.
Collapse
Affiliation(s)
- Se Won Park
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jaehoon Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Sungryong Oh
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jeongyoon Lee
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Joowon Cha
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hyun Sik Lee
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Keun Il Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, South Korea
| | - Daechan Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea.,Department of Biological Sciences, Ajou University, Suwon 16499, South Korea
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
34
|
Behrouj H, Vakili O, Sadeghdoust A, Aligolighasemabadi N, Khalili P, Zamani M, Mokarram P. Epigenetic regulation of autophagy in coronavirus disease 2019 (COVID-19). Biochem Biophys Rep 2022; 30:101264. [PMID: 35469237 PMCID: PMC9021360 DOI: 10.1016/j.bbrep.2022.101264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has become the most serious global public health issue in the past two years, requiring effective therapeutic strategies. This viral infection is a contagious disease caused by new coronaviruses (nCoVs), also called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Autophagy, as a highly conserved catabolic recycling process, plays a significant role in the growth and replication of coronaviruses (CoVs). Therefore, there is great interest in understanding the mechanisms that underlie autophagy modulation. The modulation of autophagy is a very complex and multifactorial process, which includes different epigenetic alterations, such as histone modifications and DNA methylation. These mechanisms are also known to be involved in SARS-CoV-2 replication. Thus, molecular understanding of the epigenetic pathways linked with autophagy and COVID-19, could provide novel therapeutic targets for COVID-19 eradication. In this context, the current review highlights the role of epigenetic regulation of autophagy in controlling COVID-19, focusing on the potential therapeutic implications.
Collapse
Affiliation(s)
- Hamid Behrouj
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Adel Sadeghdoust
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Aligolighasemabadi
- Department of Internal Medicine, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parnian Khalili
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Iran
| |
Collapse
|
35
|
Seok S, Kim YC, Zhang Y, Kong B, Guo G, Ma J, Kemper B, Kemper JK. Feeding activates FGF15-SHP-TFEB-mediated lipophagy in the gut. EMBO J 2022; 41:e109997. [PMID: 35686465 PMCID: PMC9434102 DOI: 10.15252/embj.2021109997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 01/18/2023] Open
Abstract
Lysosome‐mediated macroautophagy, including lipophagy, is activated under nutrient deprivation but is repressed after feeding. We show that, unexpectedly, feeding activates intestinal autophagy/lipophagy in a manner dependent on both the orphan nuclear receptor, small heterodimer partner (SHP/NR0B2), and the gut hormone, fibroblast growth factor‐15/19 (FGF15/19). Furthermore, postprandial intestinal triglycerides (TGs) and apolipoprotein‐B48 (ApoB48), the TG‐rich chylomicron marker, were elevated in SHP‐knockout and FGF15‐knockout mice. Genomic analyses of the mouse intestine indicated that SHP partners with the key lysosomal activator, transcription factor‐EB (TFEB) to upregulate the transcription of autophagy/lipolysis network genes after feeding. FGF19 treatment activated lipophagy, reducing TG and ApoB48 levels in HT29 intestinal cells, which was dependent on TFEB. Mechanistically, feeding‐induced FGF15/19 signaling increased the nuclear localization of TFEB and SHP via PKC beta/zeta‐mediated phosphorylation, leading to increased transcription of the TFEB/SHP target lipophagy genes, Ulk1 and Atgl. Collectively, these results demonstrate that paradoxically after feeding, FGF15/19‐activated SHP and TFEB activate gut lipophagy, limiting postprandial TGs. As excess postprandial lipids cause dyslipidemia and obesity, the FGF15/19‐SHP‐TFEB axis that reduces intestinal TGs via lipophagic activation provides promising therapeutic targets for obesity‐associated metabolic disease.
Collapse
Affiliation(s)
- Sunmi Seok
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Young-Chae Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Bo Kong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Grace Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Byron Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
36
|
Lingling D, Miaomiao Q, Yili L, Hongyun H, Yihao D. Attenuation of histone H4 lysine 16 acetylation (H4K16ac) elicits a neuroprotection against ischemic stroke by alleviating the autophagic/lysosomal dysfunction in neurons at the penumbra. Brain Res Bull 2022; 184:24-33. [DOI: 10.1016/j.brainresbull.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/06/2022] [Accepted: 03/24/2022] [Indexed: 11/02/2022]
|
37
|
Liang S, Wu YS, Li DY, Tang JX, Liu HF. Autophagy and Renal Fibrosis. Aging Dis 2022; 13:712-731. [PMID: 35656109 PMCID: PMC9116923 DOI: 10.14336/ad.2021.1027] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
Renal fibrosis is a common process of almost all the chronic kidney diseases progressing to end-stage kidney disease. As a highly conserved lysosomal protein degradation pathway, autophagy is responsible for degrading protein aggregates, damaged organelles, or invading pathogens to maintain intracellular homeostasis. Growing evidence reveals that autophagy is involved in the progression of renal fibrosis, both in the tubulointerstitial compartment and in the glomeruli. Nevertheless, the specific role of autophagy in renal fibrosis has still not been fully understood. Therefore, in this review we will describe the characteristics of autophagy and summarize the recent advances in understanding the functions of autophagy in renal fibrosis. Moreover, the problem existing in this field and the possibility of autophagy as the potential therapeutic target for renal fibrosis have also been discussed.
Collapse
Affiliation(s)
- Shan Liang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Yun-Shan Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Dong-Yi Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Ji-Xin Tang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
- Shunde Women and Children's Hospital, Guangdong Medical University (Foshan Shunde Maternal and Child Healthcare Hospital), Foshan, Guangdong, China.
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
38
|
Yang YP, Lai WY, Lin TW, Lin YY, Chien Y, Tsai YC, Tai HY, Wang CL, Liu YY, Huang PI, Chen YW, Lo WL, Wang CY. Autophagy reprogramming stem cell pluripotency and multiple-lineage differentiation. J Chin Med Assoc 2022; 85:667-671. [PMID: 35385421 DOI: 10.1097/jcma.0000000000000728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The cellular process responsible for the degradation of cytosolic proteins and subcellular organelles in lysosomes was termed "autophagy." This process occurs at a basal level in most tissues as part of tissue homeostasis that redounds to the regular turnover of components inside cytoplasm. The breakthrough in the autophagy field is the identification of key players in the autophagy pathway, compounded under the name "autophagy-related genes" (ATG) encoding for autophagy effector proteins. Generally, the function of autophagy can be classified into two divisions: intracellular clearance of defective macromolecules and organelles and generation of degradation products. Therapeutic strategies using stem cell-based approach come as a promising therapy and develop rapidly recently as stem cells have high self-renewability and differentiation capability as known as mesenchymal stem cells (MSCs). They are defined as adherent fibroblast-like population with the abilities to self-renew and multi-lineage differentiate into osteogenic, adipogenic, and chondrogenic lineage cells. To date, they are the most extensively applied adult stem cells in clinical trials. The properties of MSCs, such as immunomodulation, neuroprotection, and tissue repair pertaining to cell differentiation, processes to replace lost, or damaged cells, for aiding cell repair and revival. Autophagy has been viewed as a remarkable mechanism for maintaining homeostasis, ensuring the adequate function and survival of long-lived stem cells. In addition, authophagy also plays a remarkable role in protecting stem cells against cellular stress when the stem cell regenerative capacity is harmed in aging and cellular degeneration. Understanding the under-explored mechanisms of MSC actions and expanding the spectrum of their clinical applications may improve the utility of the MSC-based therapeutic approach in the future.
Collapse
Affiliation(s)
- Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Tzu-Wei Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yi-Ching Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Hsiao-Yun Tai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chia-Lin Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yung-Yang Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Pin-I Huang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Wei Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wen-Liang Lo
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Oral and Maxillofacial Surgery, Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chien-Ying Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Division of Trauma, Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Physical Education and Health, University of Taipei, Taipei, Taiwan, ROC
| |
Collapse
|
39
|
Benjamin DN, O'Donovan TR, Laursen KB, Orfali N, Cahill MR, Mongan NP, Gudas LJ, McKenna SL. All- Trans-Retinoic Acid Combined With Valproic Acid Can Promote Differentiation in Myeloid Leukemia Cells by an Autophagy Dependent Mechanism. Front Oncol 2022; 12:848517. [PMID: 35280824 PMCID: PMC8907478 DOI: 10.3389/fonc.2022.848517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer with an overall survival of 30%. One form of AML, acute promyelocytic leukemia (APL) has become more than 90% curable with differentiation therapy, consisting of all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO). Application of differentiation therapy to other AML subtypes would be a major treatment advance. Recent studies have indicated that autophagy plays a key role in the differentiation of ATRA-responsive APL cells. In this study, we have investigated whether differentiation could be enhanced in ATRA resistant cells by promoting autophagy induction with valproic acid (VPA). ATRA sensitive (NB4) and resistant leukemia cells (NB4R and THP-1) were co-treated with ATRA and valproic acid, followed by assessment of autophagy and differentiation. The combination of VPA and ATRA induced autophagic flux and promoted differentiation in ATRA-sensitive and -resistant cell lines. shRNA knockdown of ATG7 and TFEB autophagy regulators impaired both autophagy and differentiation, demonstrating the importance of autophagy in the combination treatment. These data suggest that ATRA combined with valproic acid can promote differentiation in myeloid leukemia cells by mechanism involving autophagy.
Collapse
Affiliation(s)
- Dalyia N Benjamin
- Cancer Research, University College Cork, Cork, Ireland.,Department of Haematology, Tallaght University Hospital, Dublin, Ireland.,Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, United States
| | | | - Kristian B Laursen
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, United States
| | - Nina Orfali
- Department of Haematology, St James's Hospital, Dublin, Ireland
| | - Mary R Cahill
- Department of Haematology, Cork University Hospital, Cork, Ireland
| | - Nigel P Mongan
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, United States.,Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, United States
| | | |
Collapse
|
40
|
Yang S, Zhang J, Chen D, Cao J, Zheng Y, Han Y, Jin Y, Wang S, Wang T, Ma L, Luo T, Wang Y, Qin W, Dong L. CARM1 promotes gastric cancer progression by regulating TFE3 mediated autophagy enhancement through the cytoplasmic AMPK-mTOR and nuclear AMPK-CARM1-TFE3 signaling pathways. Cancer Cell Int 2022; 22:102. [PMID: 35246137 PMCID: PMC8895580 DOI: 10.1186/s12935-022-02522-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The role of CARM1 in tumors is inconsistent. It acts as an oncogene in most cancers but it inhibits the progression of liver and pancreatic cancers. CARM1 has recently been reported to regulate autophagy, but this function is also context-dependent. However, the effect of CARM1 on gastric cancer (GC) has not been studied. We aimed to explore whether CARM1 was involved in the progression of GC by regulating autophagy. METHODS The clinical values of CARM1 and autophagy in GC were evaluated by immunohistochemistry and qRT-PCR. Transmission electron microscopy, immunofluorescence and western blotting were employed to identify autophagy. The role of CARM1 in GC was investigated by CCK-8, colony formation and flow cytometry assays in vitro and a xenograft model in vivo. Immunoprecipitation assays were performed to determine the interaction of CARM1 and TFE3. RESULTS CARM1 was upregulated in clinical GC tissues and cell lines, and higher CARM1 expression predicted worse prognosis. CARM1 enhanced GC cell proliferation, facilitated G1-S transition and inhibited ER stress-induced apoptosis by regulating autophagy. Importantly, treatment with a CARM1 inhibitor rescued the tumor-promoting effects of CARM1 both in vitro and in vivo. Furthermore, we demonstrated that CARM1 promoted TFE3 nuclear translocation to induce autophagy through the cytoplasmic AMPK-mTOR and nuclear AMPK-CARM1-TFE3 signaling pathways. CONCLUSION CARM1 promoted GC cell proliferation, accelerated G1-S transition and reduced ER stress-induced apoptosis by regulating autophagy. Mechanistically, CARM1 triggered autophagy by facilitating TFE3 nuclear translocation through the AMPK-mTOR and AMPK-CARM1-TFE3 signaling pathways.
Collapse
Affiliation(s)
- Suzhen Yang
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.,State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jing Zhang
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Di Chen
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jiayi Cao
- Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi Province, People's Republic of China
| | - Ying Zheng
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yuying Han
- Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi Province, People's Republic of China
| | - Yirong Jin
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, People's Republic of China
| | - Shuhui Wang
- Department of Infectious Diseases, Shenzhen Shekou People's Hospital, Shenzhen, 518067, People's Republic of China
| | - Ting Wang
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Lin Ma
- Shaanxi Provincial People's Hospital, Xi'an, 710043, Shaanxi, People's Republic of China
| | - Tingting Luo
- Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi Province, People's Republic of China
| | - Yan Wang
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| | - Wen Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Lei Dong
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
41
|
Li T, Lu D, Yao C, Li T, Dong H, Li Z, Xu G, Chen J, Zhang H, Yi X, Zhu H, Liu G, Wen K, Zhao H, Gao J, Zhang Y, Han Q, Li T, Zhang W, Zhao J, Li T, Bai Z, Song M, He X, Zhou T, Xia Q, Li A, Pan X. Kansl1 haploinsufficiency impairs autophagosome-lysosome fusion and links autophagic dysfunction with Koolen-de Vries syndrome in mice. Nat Commun 2022; 13:931. [PMID: 35177641 PMCID: PMC8854428 DOI: 10.1038/s41467-022-28613-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/15/2022] [Indexed: 12/11/2022] Open
Abstract
Koolen-de Vries syndrome (KdVS) is a rare disorder caused by haploinsufficiency of KAT8 regulatory NSL complex subunit 1 (KANSL1), which is characterized by intellectual disability, heart failure, hypotonia, and congenital malformations. To date, no effective treatment has been found for KdVS, largely due to its unknown pathogenesis. Using siRNA screening, we identified KANSL1 as an essential gene for autophagy. Mechanistic study shows that KANSL1 modulates autophagosome-lysosome fusion for cargo degradation via transcriptional regulation of autophagosomal gene, STX17. Kansl1+/− mice exhibit impairment in the autophagic clearance of damaged mitochondria and accumulation of reactive oxygen species, thereby resulting in defective neuronal and cardiac functions. Moreover, we discovered that the FDA-approved drug 13-cis retinoic acid can reverse these mitophagic defects and neurobehavioral abnormalities in Kansl1+/− mice by promoting autophagosome-lysosome fusion. Hence, these findings demonstrate a critical role for KANSL1 in autophagy and indicate a potentially viable therapeutic strategy for KdVS. Here the authors show that the Koolen-de Vries syndrome associated gene KANSL1 modulates autophagosome-lysosome fusion via transcriptional regulation of autophagosomal gene Syntaxin17, and that 13-cis retinoic acid can reverses mitophagic defects and neurobehavioural abnormalities of mice lacking Kansl1.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,Nanhu Laboratory, Jiaxing, Zhejiang Province, China
| | - Dingyi Lu
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Chengcheng Yao
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Tingting Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,Nanhu Laboratory, Jiaxing, Zhejiang Province, China
| | - Hua Dong
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Zhan Li
- Nanhu Laboratory, Jiaxing, Zhejiang Province, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Guang Xu
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,Military Institute of Chinese Materia, the Fifth Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Jiayi Chen
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,Nanhu Laboratory, Jiaxing, Zhejiang Province, China
| | - Hao Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Yi
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,Nanhu Laboratory, Jiaxing, Zhejiang Province, China
| | - Haizhen Zhu
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Guangqin Liu
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kaiqing Wen
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Haixin Zhao
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,State Key Laboratory of Experimental Haematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Gao
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Yakun Zhang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Qiuying Han
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,Nanhu Laboratory, Jiaxing, Zhejiang Province, China
| | - Teng Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Weina Zhang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Jie Zhao
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Tao Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,Nanhu Laboratory, Jiaxing, Zhejiang Province, China
| | - Zhaofang Bai
- Military Institute of Chinese Materia, the Fifth Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xinhua He
- Nanhu Laboratory, Jiaxing, Zhejiang Province, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Tao Zhou
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,Nanhu Laboratory, Jiaxing, Zhejiang Province, China
| | - Qing Xia
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China. .,Nanhu Laboratory, Jiaxing, Zhejiang Province, China.
| | - Ailing Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China. .,Nanhu Laboratory, Jiaxing, Zhejiang Province, China. .,School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Xin Pan
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China. .,Nanhu Laboratory, Jiaxing, Zhejiang Province, China. .,School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
42
|
Transcriptional Regulation of Hepatic Autophagy by Nuclear Receptors. Cells 2022; 11:cells11040620. [PMID: 35203271 PMCID: PMC8869834 DOI: 10.3390/cells11040620] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Autophagy is an adaptive self-eating process involved in degradation of various cellular components such as carbohydrates, lipids, proteins, and organelles. Its activity plays an essential role in tissue homeostasis and systemic metabolism in response to diverse challenges, including nutrient depletion, pathogen invasion, and accumulations of toxic materials. Therefore, autophagy dysfunctions are intimately associated with many human diseases such as cancer, neurodegeneration, obesity, diabetes, infection, and aging. Although its acute post-translational regulation is well described, recent studies have also shown that autophagy can be controlled at the transcriptional and post-transcriptional levels. Nuclear receptors (NRs) are in general ligand-dependent transcription factors consisting of 48 members in humans. These receptors extensively control transcription of a variety of genes involved in development, metabolism, and inflammation. In this review, we discuss the roles and mechanisms of NRs in an aspect of transcriptional regulation of hepatic autophagy, and how the NR-driven autophagy pathway can be harnessed to treat various liver diseases.
Collapse
|
43
|
Lei Y, Huang Y, Wen X, Yin Z, Zhang Z, Klionsky DJ. How Cells Deal with the Fluctuating Environment: Autophagy Regulation under Stress in Yeast and Mammalian Systems. Antioxidants (Basel) 2022; 11:antiox11020304. [PMID: 35204187 PMCID: PMC8868404 DOI: 10.3390/antiox11020304] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
Eukaryotic cells frequently experience fluctuations of the external and internal environments, such as changes in nutrient, energy and oxygen sources, and protein folding status, which, after reaching a particular threshold, become a type of stress. Cells develop several ways to deal with these various types of stress to maintain homeostasis and survival. Among the cellular survival mechanisms, autophagy is one of the most critical ways to mediate metabolic adaptation and clearance of damaged organelles. Autophagy is maintained at a basal level under normal growing conditions and gets stimulated by stress through different but connected mechanisms. In this review, we summarize the advances in understanding the autophagy regulation mechanisms under multiple types of stress including nutrient, energy, oxidative, and ER stress in both yeast and mammalian systems.
Collapse
Affiliation(s)
- Yuchen Lei
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuxiang Huang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xin Wen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhangyuan Yin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhihai Zhang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence:
| |
Collapse
|
44
|
Myszor IT, Sigurdsson S, Viktorsdottir AR, Agerberth B, Eskelinen EL, Ogmundsdottir MH, Gudmundsson GH. The Novel Inducer of Innate Immunity HO53 Stimulates Autophagy in Human Airway Epithelial Cells. J Innate Immun 2022; 14:477-492. [PMID: 35078192 PMCID: PMC9485994 DOI: 10.1159/000521602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
Aroylated phenylenediamines (APDs) are novel modulators of innate immunity with respect to enhancing the expression of antimicrobial peptides and maintaining epithelial barrier integrity. Here, we present a new study on induction of autophagy in human lung epithelial cells by the APD HO53. Interestingly, HO53 affected autophagy in a dose-dependent manner, demonstrated by increased microtubule-associated proteins 1A/1B light-chain 3B (LC3B) processing in mature polarized bronchial epithelial cells. The quantification of LC3B puncta showed increased autophagy flux and formation of autophagosomes visualized by transmission electron microscopy. The phenotypic changes indicated that autophagy induction was associated with activation of 5′ adenosine monophosphate-activated protein kinase (AMPK), nuclear translocation of transcription factor EB (TFEB), and changes in expression of autophagy-related genes. The kinetics of the explored signaling pathways indicated on activation of AMPK followed by the nuclear translocation of TFEB. Moreover, our data suggest that HO53 modulates epigenetic changes related to induction of autophagy manifested by transcriptional regulation of histone-modifying enzymes. These changes were reflected by decreased ubiquitination of histone 2B at the lysine 120 residue that is associated with autophagy induction. Taken together, HO53 modulates autophagy, a part of the host defense system, through a complex mechanism involving several pathways and epigenetic events.
Collapse
Affiliation(s)
- Iwona T. Myszor
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Snaevar Sigurdsson
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Alexia Ros Viktorsdottir
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Birgitta Agerberth
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, Huddinge, Sweden
| | | | | | - Gudmundur H. Gudmundsson
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, Huddinge, Sweden
- *Gudmundur H. Gudmundsson,
| |
Collapse
|
45
|
Abstract
Autophagy is an intracellular catabolic degradative process in which damaged cellular organelles, unwanted proteins and different cytoplasmic components get recycled to maintain cellular homeostasis or metabolic balance. During autophagy, a double membrane vesicle is formed to engulf these cytosolic materials and fuse to lysosomes wherein the entire cargo degrades to be used again. Because of this unique recycling ability of cells, autophagy is a universal stress response mechanism. Dysregulation of autophagy leads to several diseases, including cancer, neurodegeneration and microbial infection. Thus, autophagy machineries have become targets for therapeutics. This chapter provides an overview of the paradoxical role of autophagy in tumorigenesis in the perspective of metabolism.
Collapse
Affiliation(s)
- Sweta Sikder
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
46
|
HDAC6 Inhibition Extinguishes Autophagy in Cancer: Recent Insights. Cancers (Basel) 2021; 13:cancers13246280. [PMID: 34944907 PMCID: PMC8699196 DOI: 10.3390/cancers13246280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Autophagy is an essential process in cell recycling, and its involvement in cancer has been increasingly recognized in the last few decades. This mechanism acts as a double-edged sword in tumor progression and is known to either block or promote tumorigenesis in a context-specific manner. Its role in determining chemotherapeutic resistance makes it a potential target in cancer treatment. The two autophagic inhibitors hydroxychloroquine and chloroquine are currently used in the clinic but cause several side effects in tumor patients. Since recent studies also show that epigenetic enzymes such as histone deacetylase (HDAC) proteins are able to modulate autophagy, this review focuses on the ability of HDAC6 to actively regulate the autophagic process. We also explore the possibility of using HDAC6 inhibitors as therapeutic agents in adjuvant treatment or in combination with autophagic modulators to trigger this mechanism, thus avoiding the occurrence and effects of chemoresistance. Abstract Autophagy is an essential intracellular catabolic mechanism involved in the degradation and recycling of damaged organelles regulating cellular homeostasis and energy metabolism. Its activation enhances cellular tolerance to various stresses and is known to be involved in drug resistance. In cancer, autophagy has a dual role in either promoting or blocking tumorigenesis, and recent studies indicate that epigenetic regulation is involved in its mechanism of action in this context. Specifically, the ubiquitin-binding histone deacetylase (HDAC) enzyme HDAC6 is known to be an important player in modulating autophagy. Epigenetic modulators, such as HDAC inhibitors, mediate this process in different ways and are already undergoing clinical trials. In this review, we describe current knowledge on the role of epigenetic modifications, particularly HDAC-mediated modifications, in controlling autophagy in cancer. We focus on the controversy surrounding their ability to promote or block tumor progression and explore the impact of HDAC6 inhibitors on autophagy modulation in cancer. In light of the fact that targeted drug therapy for cancer patients is attracting ever increasing interest within the research community and in society at large, we discuss the possibility of using HDAC6 inhibitors as adjuvants and/or in combination with conventional treatments to overcome autophagy-related mechanisms of resistance.
Collapse
|
47
|
Carosi JM, Fourrier C, Bensalem J, Sargeant TJ. The mTOR-lysosome axis at the centre of ageing. FEBS Open Bio 2021; 12:739-757. [PMID: 34878722 PMCID: PMC8972043 DOI: 10.1002/2211-5463.13347] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023] Open
Abstract
Age‐related diseases represent some of the largest unmet clinical needs of our time. While treatment of specific disease‐related signs has had some success (for example, the effect of statin drugs on slowing progression of atherosclerosis), slowing biological ageing itself represents a target that could significantly increase health span and reduce the prevalence of multiple age‐related diseases. Mechanistic target of rapamycin complex 1 (mTORC1) is known to control fundamental processes in ageing: inhibiting this signalling complex slows biological ageing, reduces age‐related disease pathology and increases lifespan in model organisms. How mTORC1 inhibition achieves this is still subject to ongoing research. However, one mechanism by which mTORC1 inhibition is thought to slow ageing is by activating the autophagy–lysosome pathway. In this review, we examine the special bidirectional relationship between mTORC1 and the lysosome. In cells, mTORC1 is located on lysosomes. From this advantageous position, it directly controls the autophagy–lysosome pathway. However, the lysosome also controls mTORC1 activity in numerous ways, creating a special two‐way relationship. We then explore specific examples of how inhibition of mTORC1 and activation of the autophagy–lysosome pathway slow the molecular hallmarks of ageing. This body of literature demonstrates that the autophagy–lysosome pathway represents an excellent target for treatments that seek to slow biological ageing and increase health span in humans.
Collapse
Affiliation(s)
- Julian M Carosi
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, Australia
| | - Célia Fourrier
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, Australia
| | - Julien Bensalem
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, Australia
| | - Timothy J Sargeant
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, SAHMRI, Adelaide, Australia
| |
Collapse
|
48
|
Ma LL, Kong FJ, Ma YJ, Guo JJ, Wang SJ, Dong Z, Sun AJ, Zou YZ, Ge JB. Hypertrophic preconditioning attenuates post-myocardial infarction injury through deacetylation of isocitrate dehydrogenase 2. Acta Pharmacol Sin 2021; 42:2004-2015. [PMID: 34163022 PMCID: PMC8633015 DOI: 10.1038/s41401-021-00699-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/15/2021] [Indexed: 12/20/2022]
Abstract
Ischemic preconditioning induced by brief periods of coronary occlusion and reperfusion protects the heart from a subsequent prolonged ischemic insult. In this study we investigated whether a short-term nonischemic stimulation of hypertrophy renders the heart resistant to subsequent ischemic injury. Male mice were subjected to transient transverse aortic constriction (TAC) for 3 days followed aortic debanding on D4 (T3D4), as well as ligation of the left coronary artery to induce myocardial infarction (MI). The TAC preconditioning mice showed markedly improved contractile function and significantly reduced myocardial fibrotic area and apoptosis following MI. We revealed that TAC preconditioning significantly reduced MI-induced oxidative stress, evidenced by increased NADPH/NADP ratio and GSH/GSSG ratio, as well as decreased mitochondrial ROS production. Furthermore, TAC preconditioning significantly increased the expression and activity of SIRT3 protein following MI. Cardiac-specific overexpression of SIRT3 gene through in vivo AAV-SIRT3 transfection partially mimicked the protective effects of TAC preconditioning, whereas genetic ablation of SIRT3 in mice blocked the protective effects of TAC preconditioning. Moreover, expression of an IDH2 mutant mimicking deacetylation (IDH2 K413R) in cardiomyocytes promoted myocardial IDH2 activation, quenched mitochondrial reactive oxygen species (ROS), and alleviated post-MI injury, whereas expression of an acetylation mimic (IDH2 K413Q) in cardiomyocytes inactivated IDH2, exacerbated mitochondrial ROS overload, and aggravated post-MI injury. In conclusion, this study identifies TAC preconditioning as a novel strategy for induction of an endogenous self-defensive and cardioprotective mechanism against cardiac injury. Therapeutic strategies targeting IDH2 are promising treatment approaches for cardiac ischemic injury.
Collapse
Affiliation(s)
- Lei-Lei Ma
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Fei-Juan Kong
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200071, China
| | - Yuan-Ji Ma
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Jun-Jie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266101, China
- Qingdao Municipal Key Laboratory of Hypertension (Key Laboratory of Cardiovascular Medicine), Qingdao, 266101, China
| | - Shi-Jun Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
| | - Zheng Dong
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Ai-Jun Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
| | - Yun-Zeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
| | - Jun-Bo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- NHC Key Laboratory of Viral Heart Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
| |
Collapse
|
49
|
Agarwal D, Kumari R, Ilyas A, Tyagi S, Kumar R, Poddar NK. Crosstalk between epigenetics and mTOR as a gateway to new insights in pathophysiology and treatment of Alzheimer's disease. Int J Biol Macromol 2021; 192:895-903. [PMID: 34662652 DOI: 10.1016/j.ijbiomac.2021.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/19/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
Epigenetics in the current times has become a gateway to acquire answers to questions that were left unanswered by classical and modern genetics, be it resolving the complex mystery behind neurodegenerative disorders or understanding the complexity behind life-threatening cancers. It has presented to the world an entirely new dimension and has added a dynamic angle to an otherwise static field of genetics. Alzheimer's disease is one of the most prevalent neurodegenerative disorders is largely found to be a result of alterations in epigenetic pathways. These changes majorly comprise an imbalance in DNA methylation levels and altered acetylation and methylation of histones. They are often seen to cross-link with metabolic regulatory pathways such as that of mTOR, contributing significantly to the pathophysiology of AD. This review focusses on the study of the interplay of the mTOR regulatory pathway with that of epigenetic machinery that may elevate the rate of early diagnosis and prove to be a gateway to the development of an efficient and novel therapeutic strategy for the treatment of Alzheimer's disease at an early stage.
Collapse
Affiliation(s)
- Disha Agarwal
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Ruchika Kumari
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Ashal Ilyas
- Department of Biotechnology, Invertis University, Bareilly 243 123, India
| | - Shweta Tyagi
- HNo-88, Ranjit Avenue, Bela Chowk, Kota Nihang, Punjab 140001, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh. India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India.
| |
Collapse
|
50
|
Zhou J, Singh BK, Ho JP, Lim A, Bruinstroop E, Ohba K, Sinha RA, Yen PM. MED1 mediator subunit is a key regulator of hepatic autophagy and lipid metabolism. Autophagy 2021; 17:4043-4061. [PMID: 33734012 PMCID: PMC8726716 DOI: 10.1080/15548627.2021.1899691] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatic macroautophagy/autophagy and fatty acid metabolism are transcriptionally regulated by nuclear receptors (NRs); however, it is not known whether their transcriptional co-activators are involved in autophagy. We thus examined MED1 (mediator complex subunit 1), a key component of the Mediator Complex that directly interacts with NRs, on these processes. We found that MED1 knockdown (KD) in cultured hepatic cells decreased autophagy and mitochondrial activity that was accompanied by decreased transcription of genes involved in these processes. Lipophagy and fatty acid β-oxidation also were impaired. These effects also occurred after thyroid hormone stimulation, nutrient-replete or -deplete conditions, and in liver-specific Med1 KD (Med1 LKD) mice under fed and fasting conditions. Together, these findings showed that Med1 played a key role in hepatic autophagy, mitochondria function, and lipid metabolism under these conditions. Additionally, we identified downregulated hepatic genes in Med1 LKD mice, and subjected them to ChIP Enrichment Analysis. Our findings showed that the transcriptional activity of several NRs and transcription factors (TFs), including PPARA and FOXO1, likely were affected by Med1 LKD. Finally, Med1 expression and autophagy also were decreased in two mouse models of nonalcoholic fatty liver disease (NAFLD) suggesting that decreased Med1 may contribute to hepatosteatosis. In summary, MED1 plays an essential role in regulating hepatic autophagy and lipid oxidation during different hormonal and nutrient conditions. Thus, MED1 may serve as an integrator of multiple transcriptional pathways involved in these metabolic processes.Abbreviations: BAF: bafilomycin A1; db/db mice; Leprdb/db mice; ECAR: extracellular acidification rate; KD: knockdown; MED1: mediator complex subunit 1; NAFLD: nonalcoholic fatty liver disease; OCR: oxygen consumption rate; PPARA/PPARα: peroxisomal proliferator activated receptor alpha; TF: transcription factor; TFEB: transcription factor EB; tf-LC3: tandem fluorescence RFP-GFP-LC3; TG: triglyceride; TH: Thyroid hormone; TR: thyroid hormone receptors; V-ATPase: vacuolar-type H+-ATPase; WDF: Western diet with 15% fructose in drinking water.
Collapse
Affiliation(s)
- Jin Zhou
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
| | - Brijesh K. Singh
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
| | - Jia Pei Ho
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
| | - Andrea Lim
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
| | - Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Amsterdam UMC, Amsterdam, The Netherlands
| | - Kenji Ohba
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
| | - Rohit A. Sinha
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, LucknowIndia
| | - Paul M. Yen
- Program of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
- Duke Molecular Physiology Institute and Department of Medicine, Duke University Medical Center, Durham, NCUSA
| |
Collapse
|