1
|
Li J, Wu J, Chen Q, Yu H, Liu M, Wang Y, Zhang Y, Wang T. 7'-Hydroxyl substituted xanthones from Gentianella acuta revert hepatic steatosis in obese diabetic mice through preserving mitochondrial homeostasis. Biochem Pharmacol 2025; 236:116878. [PMID: 40118286 DOI: 10.1016/j.bcp.2025.116878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Mitochondrial dysfunction is a key contributor to the development and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). Xanthones, bioactive flavonoids derived from various herbal medicines, are renowned for their anti-inflammatory, antioxidant, and anti-tumor properties. This study aimed to investigate the effects of xanthones isolated from Gentianella acuta on hepatic steatosis and the underlying mechanisms regulating mitochondrial function. We report that a xanthone fraction (400 mg/kg/day) effectively prevented obesity and hepatic steatosis in obese diabetic db/db mice in vivo. In vitro, xanthones inhibited lipid accumulation and mitochondrial dysfunction induced by high glucose (20 mM) and high palmitic acid (200 µM) in HepG2 cells. Mechanistically, norathyriol (NTR), a major in vivo metabolite of Gentianella acuta, inhibited the activity of dynamin-related protein 1 (Drp1), a protein associated with mitochondrial fission, and prevented its translocation from the cytoplasm to the mitochondria by inhibiting the orphan nuclear receptor (Nur77). Additionally, NTR increased the expression of the mitochondrial outer membrane protein FUN14 domain containing 1 (FUNDC1), which stimulated mitophagy to clear damaged or dysfunctional mitochondria under overnutrition conditions. We also discovered that reactive oxygen species (ROS) targeted FUNDC1, leading to mitochondrial damage, but this effect could be reversed by 7'-hydroxyl substituted xanthones. Collectively, 7'-hydroxyl substituted xanthones inhibited mitochondrial fission while promoting mitophagy, ultimately improving mitochondrial and liver function in diabetic hepatic steatosis. The modulation of mitochondrial function by 7'-hydroxyl substituted xanthones presents a novel approach for treating hepatic steatosis, particularly in diabetic conditions.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| | - Jiaqi Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Qian Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Mengyang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Yadong Wang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China.
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China.
| |
Collapse
|
2
|
Wang L, Gao Z, Tian M, Liu L, Xie J, Chen M, Huang Z, Dong B, Li W, Shi L, Tong Y, Xu H, Shen B, Cen D, Yu H, Yu X. A Nanosystem Alleviates Severe Acute Pancreatitis via Reactive Oxygen Species Scavenging and Enhancing Mitochondrial Autophagy. NANO LETTERS 2025; 25:8644-8654. [PMID: 40369909 PMCID: PMC12123669 DOI: 10.1021/acs.nanolett.5c01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/09/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
Severe acute pancreatitis (SAP) is a life-threatening condition characterized by excessive reactive oxygen species (ROS) production and impaired mitochondrial function, resulting from disrupted autophagic flux. Current clinical treatment for SAP fails to address the condition comprehensively, with the treatment targeting only a single pathogenesis. Herein, we report an innovative acid-responsive biomimetic nanozyme. This system features a hollow Prussian blue (PB) core, serving as an ROS scavenger encapsulated within a porous ZIF-8 shell, enabling the efficient delivery of celastrol that activates autophagic flux. Encased in a macrophage membrane, this system selectively targets inflamed pancreatic tissues and is readily internalized by pancreatic acinar cells. This dual-scavenging mechanism effectively attenuates inflammatory cytokine levels and restores mitochondrial homeostasis in three distinct SAP mouse models. Overall, this study presents a promising synergistic strategy for the dual scavenging of damaged mitochondria and ROS, offering a novel therapeutic approach to the treatment of SAP.
Collapse
Affiliation(s)
- Liying Wang
- Department
of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic
of China
- Zhejiang
Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection,
Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic of China
| | - Zerui Gao
- Department
of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic
of China
- Zhejiang
Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection,
Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic of China
| | - Mengxiang Tian
- Department
of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic
of China
- Zhejiang
Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection,
Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic of China
| | - Li Liu
- Department
of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic
of China
- Zhejiang
Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection,
Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic of China
| | - Jinyan Xie
- Department
of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic
of China
- Zhejiang
Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection,
Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic of China
| | - Muxiong Chen
- Department
of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic
of China
- Zhejiang
Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection,
Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic of China
| | - Zihao Huang
- Department
of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic
of China
- Zhejiang
Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection,
Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic of China
| | - Bingzhi Dong
- Department
of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic
of China
- Zhejiang
Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection,
Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic of China
| | - Weiqi Li
- Department
of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic
of China
- Zhejiang
Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection,
Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic of China
| | - Liang Shi
- Department
of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic
of China
| | - Yifan Tong
- Department
of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic
of China
- Zhejiang
Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection,
Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic of China
| | - Hongxia Xu
- Department
of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic
of China
| | - Bo Shen
- Department
of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic
of China
- Zhejiang
Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection,
Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic of China
| | - Dong Cen
- Department
of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic
of China
| | - Hong Yu
- Department
of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic
of China
- Zhejiang
Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection,
Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic of China
| | - Xin Yu
- Department
of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic
of China
- Zhejiang
Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection,
Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic of China
- Department
of Anesthesia, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang310016, People’s Republic of China
| |
Collapse
|
3
|
Chen Q, An S, Wang C, Zhou Y, Liu X, Ren W. Phase separation in mitochondrial fate and mitochondrial diseases. Proc Natl Acad Sci U S A 2025; 122:e2422255122. [PMID: 40344006 DOI: 10.1073/pnas.2422255122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025] Open
Abstract
Mitochondria are central metabolic organelles that control cell fate and the development of mitochondrial diseases. Traditionally, phase separation directly regulates cell functions by driving RNA, proteins, or other molecules to concentrate into lipid droplets. Recent studies show that phase separation regulates cell functions and diseases through the regulation of subcellular organelles, particularly mitochondria. In fact, phase separation is involved in various mitochondrial activities including nucleoid assembly, autophagy, and mitochondria-related inflammation. Here, we outline the key mechanisms through which phase separation influences mitochondrial activities and the development of mitochondrial diseases. Insights into how phase separation regulates mitochondrial activities and diseases will help us develop interventions for related diseases.
Collapse
Affiliation(s)
- Qingyi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning 530021, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Sanqi An
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chuanlong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yanshuang Zhou
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- Institute of Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- The Sixth School of Clinical Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangzhou 511436, China
| | - Xingguo Liu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- Institute of Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- The Sixth School of Clinical Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangzhou 511436, China
| | - Wenkai Ren
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning 530021, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Zhang A, Luo S, Li P, Meng L, Huang L, Cheng H, Zhao C, Tu H, Gong X. Urolithin A alleviates radiation pneumonitis by activating PINK1/PRKN-mediated Mitophagy. Int Immunopharmacol 2025; 156:114671. [PMID: 40253768 DOI: 10.1016/j.intimp.2025.114671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/05/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Radiation pneumonitis (RP) is a common and severe complication of radiotherapy, whose pathogenesis involves complex inflammatory responses and cellular damage. Despite its clinical significance, effective treatments remain limited. This study investigates the role of radiation-induced PINK1/PRKN-mediated mitophagy and type I interferon responses in RP and evaluates the therapeutic potential of Urolithin A (UA) in regulating inflammation through mitophagy activation. METHODS We established RP mouse models (20 Gy thoracic irradiation) and radiation-induced BEAS-2B cell models (6 Gy). We systematically investigated mitochondrial damage, mtRNA release, RIG-I/MDA5-MAVS pathway activation, and PINK1/PRKN-mediated mitophagy changes. Moreover, the effects of UA and the mitophagy inhibitor Mdivi-1 on inflammation and lung injury were analyzed. RESULTS Radiation significantly caused mitochondrial damage in lung tissues, inducing mtRNA release and RIG-I/MDA5-MAVS-mediated type I interferon response. PINK1/PRKN-mediated mitophagy was significantly enhanced, clearing damaged mitochondria and reducing cytosolic mtRNA release, thereby suppressing inflammation. Pharmacological activation of mitophagy with UA markedly improved lung pathology, reduced inflammatory cytokine levels, and inhibited excessive activation of the RIG-I/MDA5-MAVS pathway. Conversely, the knockdown of PINK1 or PRKN weakened the protective effects of UA. Both in vitro and in vivo, UA reduced radiation-induced inflammation and improved lung tissue structure and function through mitophagy. CONCLUSIONS Radiation-induced mtRNA release activates the RIG-I/MDA5-MAVS-mediated type I interferon response, driving inflammation in RP. PINK1/PRKN-mediated mitophagy significantly alleviates inflammation by reducing cytosolic mtRNA release. As a mitophagy inducer, UA demonstrates therapeutic potential for RP, providing a new direction for the development of anti-inflammatory strategies.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shilan Luo
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Li
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Meng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Litang Huang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongxia Cheng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenhui Zhao
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongbin Tu
- Department of Integrated TCM & Western Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaomei Gong
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Aanniz T, Bakrim S, Amanullah M, Bouyahya A. Nuclear receptors in cancer: Unveiling theranostic potentials and innovative therapeutic strategies. Pathol Res Pract 2025; 272:156044. [PMID: 40449148 DOI: 10.1016/j.prp.2025.156044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/25/2025] [Accepted: 05/25/2025] [Indexed: 06/02/2025]
Abstract
Nuclear receptors (NRs) include a family of 48 transcription factors (TFs) that regulate gene expression implicated in biological processes such as cell proliferation, differentiation, metabolism, and immune response. Cancer development has been widely linked to the dysregulation of NRs and their signaling pathways, providing promising targets for therapeutic applications. Recent progress in OMIC approaches and high-throughput drug screening has facilitated the emergence of biomolecules, especially phytochemicals, as potential substitutes for synthetic anti-cancer drugs. This review aims to highlight the anticancer potency of diverse classes of biocompounds that target NRs, including phytocompounds, dietary components, venom constituents, microbial metabolites, as well as many small molecules generated from computer-aided drug design (CADD) approaches in the design of innovative and safe treatments. We examine critically the preclinical and clinical trials investigating these candidates for preventing and treating cancer, focusing on their modes of action, their proven efficacy, and their limitations. In addition, we underline significant molecular processes modulated by these natural compounds, highlighting their ability to surmount drug resistance and minimize the toxic effects of standard treatments. Overall, we believe this work has the potential to pave the way for new paradigms in identifying innovative therapeutic options for NR-mediated management of specific types of cancer.
Collapse
Affiliation(s)
- Tarik Aanniz
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical and Pharmacy School, Mohammed V University, Rabat, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco.
| | - Mohammed Amanullah
- Department of clinical Biochemistry, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| |
Collapse
|
6
|
Chen L, Han B, Yang S, Guo L, Zhao L, Liu P, Hong X, Zhao Y, Peng Y, Qi S, Hu L, Chen Y. Toxicological effects and mechanisms of renal injury induced by inhalation exposure to airborne nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137393. [PMID: 39892132 DOI: 10.1016/j.jhazmat.2025.137393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Micro-nanoplastics (MNPs) are ubiquitously present in various natural habitats, and the kidney plays a critical role in eliminating metabolic waste from the body. Therefore, nephrotoxicity studies of MNPs are necessary. Consequently, we conducted a study utilizing a mouse model that underwent autonomous inhalation of polystyrene nanoplastics (PS-NPs) to investigate the impact of airborne nanoplastics (NPs) on kidney. The results demonstrated that airborne NPs could accumulate within the kidney subsequent to pulmonary entry. Transcriptome analysis showed that exposure to airborne NPs persistently interfered with important signaling pathways including oxidative stress, inflammation, and coagulation, which activated the NR4A1/CASP3 and TF/F12 signaling pathways. In vitro studies have shown that NPs were internalized by human kidney proximal tubular epithelial (HK-2) cells, leading to a range of pathological responses, and ultimately affecting cell fate. Furthermore, we pioneered the exposure of NPs to human kidney organoids. Our findings revealed a heightened sensitivity in kidney organoids towards NPs as compared to immortalized cell lines. This suggested that exposure to NPs could potentially inflict a more substantial toxic effect on the development of embryonic kidneys. In conclusion, this study has revealed the deleterious effects of exposure to airborne NPs on the mouse kidney.
Collapse
Affiliation(s)
- Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Bin Han
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China; Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Shushuai Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China; Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Lei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Ping Liu
- Tianjin Bioscience Diagnostic Technology Co.Ltd, Tianjin, China
| | - Xiaoming Hong
- Tianjin Mid-Link Biomedical Technology Group, Tianjin, China
| | - Yan Zhao
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China; Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Yahang Peng
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China; Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Shiyong Qi
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China.
| | - Lidan Hu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Yue Chen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China.
| |
Collapse
|
7
|
Hao Z, Zhou Y, Zhang Y, Wang D, Wei Y, Ji X, Sun WR, Wang P, Li Y, Lopez IB, Pedraz JL, Ramalingam M, Xie S, Wang R. Celastrol loaded nanocomplex for painless tumor therapy via YAP inhibition. Sci Rep 2025; 15:13133. [PMID: 40240779 PMCID: PMC12003811 DOI: 10.1038/s41598-025-97055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer-related pain is prevalent and severely impairs patients' quality of life. However, conventional cancer therapies primarily target tumor cell destruction, often overlooking the management of cancer pain. Thus, there is an immediate necessity to develop therapeutic agents that can both suppress tumor growth and alleviate cancer pain. In this study, we report a celastrol (CEL)-based nanocomposites (PDA-BSA-MnO2-CEL) for pain-less cancer immunotherapy. Results from in vitro and in vivo experiments demonstrate the efficacy and mechanism of the nanocomposites in pain-less immunotherapy. MnO2 and CEL induce immunogenic cell death (ICD), mediating immunotherapy. Additionally, CEL significantly reduces the secretion of the immunosuppressive factor Yes-associated protein (YAP) within the tumor microenvironment, thereby enhancing the efficacy of immunotherapy. The downregulation of YAP leads to reduced expression of vascular endothelial growth factor (VEGF), inhibiting tumor growth and decreasing activation of the pain-associated VEGF receptor 1 (VEGFR1), thus providing an analgesic effect. Moreover, CEL reduces inflammatory pain by lowering levels of inflammatory factors in tumors. The design of this nanocomposites system integrates immunotherapy with cancer pain inhibition, offering a novel approach to patient-centered tumor therapy.
Collapse
Affiliation(s)
- Zhaokun Hao
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, 264000, People's Republic of China
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Yuming Zhou
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, People's Republic of China
| | - Yuqiang Zhang
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, People's Republic of China
| | - Danyang Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Yiying Wei
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Xiaopu Ji
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Wan Ru Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Pingyu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - YouJie Li
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Irene Bautista Lopez
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006, Vitoria-Gasteiz, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006, Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, Centro de investigació n Lascaray Ikergunea, A Joined Venture of TECNALIA, Basque Research & Technology Alliance (BRTA), Avenida Miguel de Unamuno, 01006, Vitoria-Gasteiz, Spain
| | - Murugan Ramalingam
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006, Vitoria-Gasteiz, Spain.
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009, Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain.
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, Centro de investigació n Lascaray Ikergunea, A Joined Venture of TECNALIA, Basque Research & Technology Alliance (BRTA), Avenida Miguel de Unamuno, 01006, Vitoria-Gasteiz, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China.
| | - Shuyang Xie
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, 264000, People's Republic of China.
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, People's Republic of China.
| | - Ranran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China.
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, 264000, People's Republic of China.
| |
Collapse
|
8
|
Wang F, Lou J, Lou X, Wu F, Gao X, Yao X, Wan J, Duan X, Deng W, Ma L, Zhang L, He G, Wang M, Ni C, Lei N, Qin Z. A Spleen-Targeted Tolerogenic mRNA-LNPs Vaccine for the Treatment of Experimental Asthma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412543. [PMID: 39921498 PMCID: PMC11967843 DOI: 10.1002/advs.202412543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/27/2024] [Indexed: 02/10/2025]
Abstract
Lipid nanoparticles (LNPs)-based mRNA vaccines have witnessed their great advantages in the fight against infectious diseases. However, the pro-inflammatory properties of mRNA-LNPs vaccines may hinder the induction of antigen-specific tolerogenic immune responses. Here, it is demonstrated that stearic acid-doped LNPs co-loaded with nucleoside-modified mRNA and celastrol selectively target spleen, convert their adjuvanticity and promote a tolerogenic rather than immunogenic DCs phenotype. Furthermore, the tolerogenic mRNA vaccine also invokes the generation of antigen-specific regulatory T cells (Tregs) in the spleen and migration of the induced Tregs to the lung. In a mouse model of allergic asthma, immunization with the tolerogenic mRNA vaccine significantly alleviated symptom induction, reducing eosinophilic granulocyte accumulation and mucus secretion. In conclusion, this spleen-targeted mRNA-LNPs vaccine platform induces tolerogenic immune responses, offering promise for the development of therapeutics against allergic asthma and other conditions requiring immune tolerance modulation.
Collapse
Affiliation(s)
- Fazhan Wang
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
| | - Jia Lou
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
- Department of Pain and RehabilitationSecond Affiliated HospitalArmy Medical UniversityChongqing400038China
| | - Xiaohan Lou
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
| | - Fang Wu
- Department of Microbiology and ImmunologySchool of Basic Medical SciencesZhengzhou UniversityZhengzhouHenan450001China
| | - Xiaoke Gao
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
| | - Xiaohan Yao
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
| | - Jiajia Wan
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
| | - Xixi Duan
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
| | - Wenjing Deng
- Department of Neuro‐Intensive Care UnitThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Lixia Ma
- Department of Neuro‐Intensive Care UnitThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Lijing Zhang
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
| | - Guangjie He
- Xinxiang Key Laboratory of Forensic Science EvidenceSchool of Forensic MedicineXinxiang Medical UniversityXinxiangHenan453003China
| | - Ming Wang
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
| | - Chen Ni
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
| | - Ningjing Lei
- Department of Microbiology and ImmunologySchool of Basic Medical SciencesZhengzhou UniversityZhengzhouHenan450001China
| | - Zhihai Qin
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
| |
Collapse
|
9
|
Duan Y, Yao RQ, Ling H, Zheng LY, Fan Q, Li Q, Wang L, Zhou QY, Wu LM, Dai XG, Yao YM. Organellophagy regulates cell death:A potential therapeutic target for inflammatory diseases. J Adv Res 2025; 70:371-391. [PMID: 38740259 PMCID: PMC11976430 DOI: 10.1016/j.jare.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Dysregulated alterations in organelle structure and function have a significant connection with cell death, as well as the occurrence and development of inflammatory diseases. Maintaining cell viability and inhibiting the release of inflammatory cytokines are essential measures to treat inflammatory diseases. Recently, many studies have showed that autophagy selectively targets dysfunctional organelles, thereby sustaining the functional stability of organelles, alleviating the release of multiple cytokines, and maintaining organismal homeostasis. Organellophagy dysfunction is critically engaged in different kinds of cell death and inflammatory diseases. AIM OF REVIEW We summarized the current knowledge of organellophagy (e.g., mitophagy, reticulophagy, golgiphagy, lysophagy, pexophagy, nucleophagy, and ribophagy) and the underlying mechanisms by which organellophagy regulates cell death. KEY SCIENTIFIC CONCEPTS OF REVIEW We outlined the potential role of organellophagy in the modulation of cell fate during the inflammatory response to develop an intervention strategy for the organelle quality control in inflammatory diseases.
Collapse
Affiliation(s)
- Yu Duan
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China; Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; Department of General Surgery, the First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| | - Hua Ling
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi Fan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qiong Li
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Lu Wang
- Department of Critical Care Medicine, the First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi-Yuan Zhou
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Le-Min Wu
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Xin-Gui Dai
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
10
|
Jiang C, Zhu Y, Zhang J, Chen H, Li W, Xie R, Kong L, Chen L, Chen X, Huang H, Xu S. NR4A1 suppresses breast cancer growth by repressing c-Fos-mediated lipid and redox dyshomeostasis. Exp Mol Med 2025; 57:804-819. [PMID: 40164686 PMCID: PMC12045962 DOI: 10.1038/s12276-025-01430-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 04/02/2025] Open
Abstract
The specific function of NR4A1 as a transcriptional regulator in cancer remains unclear. Here we report the biological effect of NR4A1 in suppressing breast cancer (BC) growth. We found that NR4A1 deficiency was correlated with BC progression in the clinic. Genetic deletion of NR4A1 in BC cells significantly promoted cellular proliferation and tumor growth. Moreover, global metabolome screening indicated that the deletion of NR4A1 resulted in tumor lipid remodeling and phospholipid accumulation, which was accompanied by increases in fatty acid and lipid uptake. In addition, NR4A1 knockout induced oxidative stress that aggravated redox balance disruption. Mechanistically, transcriptomic and epigenomic analyses revealed that NR4A1 restrained BC cell proliferation by directly interacting with c-Fos and competitively inhibiting c-Fos binding to the promoter of the target gene PRDX6, which is involved in lipid and redox homeostasis. Notably, we confirmed that the treatment of BC cells with the selective NR4A1 agonist cytosporone B significantly activated the expression of NR4A1, followed by increased interaction between NR4A1 and c-Fos, thereby interfering with c-Fos-mediated transcriptional regulation of BC cell growth. Thus, NR4A1 plays a vital role in reducing the c-Fos-induced activation of downstream signaling cascades in BC, suggesting that agents that activate NR4A1 may be potential therapeutic strategies.
Collapse
Affiliation(s)
- Cen Jiang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Youzhi Zhu
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Thyroid and Breast Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Junsi Zhang
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huaying Chen
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Weiwei Li
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ruiwang Xie
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Lingjun Kong
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Thyroid and Breast Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ling Chen
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Thyroid and Breast Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Thyroid and Breast Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huifang Huang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Sunwang Xu
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Thyroid and Breast Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, Fuzhou, China.
| |
Collapse
|
11
|
Li J, Bao J, Liu Y, Chen M, Chen Y, Tuolihong L, Jiang F, Xie S, Lyu F, Sun Y, Cao Y, Chen H, Chen Z, Zeng Z. Lentinan enhances microbiota-derived isoursodeoxycholic acid levels to alleviate hepatic ischemia-reperfusion injury in mice. Int J Biol Macromol 2025; 304:140717. [PMID: 39920949 DOI: 10.1016/j.ijbiomac.2025.140717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is an essential clinical concern caused by liver transplantation, resection, trauma, and shock that must be addressed immediately. Although the mechanisms underlying HIRI are well-documented, effective prevention and treatment strategies are still lacking. Inflammation is a central mechanism of HIRI, with macrophages playing a crucial role in initiating and amplifying the inflammatory response. Numerous plant polysaccharides exhibit substantial anti-inflammatory and hepatoprotective properties. However, the function of Lentinan (LNT) in HIRI has not been fully explored. Thus, this study aims to investigate the preventive potential of LNT in HIRI. Here, we reveal that oral administration of LNT considerably reduces hepatic inflammation and improves liver pathology in mice with HIRI by modulating gut microbiota. Specifically, LNT considerably increased microbiota-derived isoursodeoxycholic acid (IsoUDCA). Further experiments showed that IsoUDCA alleviates hepatic injury by suppressing macrophage inflammation. Mechanistically, IsoUDCA directly binds to and activates the neuron-derived clone 77 (Nur77) transcription factor, inhibiting the NF-κB signaling pathway in macrophages. Our findings shed light on the significant role of the LNT-microbiota-IsoUDCA-Nur77 axis in attenuating macrophage inflammation during HIRI, offering novel insights into potential therapeutic targets and avenues for preventing HIRI.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jingna Bao
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yihong Liu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meiling Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuqi Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lina Tuolihong
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fuhui Jiang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shihao Xie
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengyuan Lyu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ye Sun
- Department of Critical Care Medicine, Yuebei People's Hospital, Shaoguan 512000, Guangdong, China
| | - Yan Cao
- Department of Critical Care Medicine, Yuebei People's Hospital, Shaoguan 512000, Guangdong, China
| | - Huarong Chen
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong.
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Wang Y, Li N, Guan W, Wang D. Controversy and multiple roles of the solitary nucleus receptor Nur77 in disease and physiology. FASEB J 2025; 39:e70468. [PMID: 40079203 PMCID: PMC11904867 DOI: 10.1096/fj.202402775rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Neuron-derived clone 77 (Nur77), a member of the orphan nuclear receptor family, is expressed and activated rapidly in response to diverse physiological and pathological stimuli. It exerts complex biological functions, including roles in the nervous system, genome integrity, cell differentiation, homeostasis, oxidative stress, autophagy, aging, and infection. Recent studies suggest that Nur77 agonists alleviate symptoms of neurodegenerative diseases, highlighting its potential as a therapeutic target in such conditions. In cancer, Nur77 demonstrates dual roles, acting as both a tumor suppressor and promoter, depending on the cancer type and stage, making it a controversial yet promising anticancer target. This review provides a structured analysis of the functions of Nur77, focusing on its physiological and pathological roles, therapeutic potential, and existing controversies. Emphasis is placed on its emerging applications in neurodegenerative diseases and cancer, offering key insights for future research and clinical translation.
Collapse
Affiliation(s)
- Yanteng Wang
- Department of Gerontology and GeriatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Na Li
- Department of Gerontology and GeriatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Wenwei Guan
- Department of Gerontology and GeriatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Difei Wang
- Department of Gerontology and GeriatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
13
|
Wang X, Abu Bakar MH, Liqun S, Kassim MA, Shariff KA, Karunakaran T. Targeting metabolic diseases with celastrol: A comprehensive review of anti-inflammatory mechanisms and therapeutic potential. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119560. [PMID: 40015541 DOI: 10.1016/j.jep.2025.119560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/15/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium wilfordii is a traditional Chinese medicine used to treat rheumatic diseases, with properties such as clearing heat, detoxifying, dispelling wind, and relieving pain. In recent years, its active compound, celastrol, garnered significant attention for its potential therapeutic effects on metabolic diseases. Celastrol exhibits bioactivities such as regulating metabolic functions and anti-inflammatory effects, positioning it as a promising candidate for the treatment of obesity, diabetes, atherosclerosis (AS), and non-alcoholic fatty liver disease (NAFLD). AIM OF THE REVIEW This review aims to explore the pharmacological mechanisms of celastrol in metabolic diseases, focusing on its anti-inflammatory mechanisms and metabolic regulation effects, providing theoretical support for further investigation of its therapeutic potential in metabolic diseases. METHODS Literature was retrieved from PubMed, Web of Science, Scopus, Cochrane, and Google Scholar. This review primarily focuses on anti-inflammatory mechanisms of celastrol, its metabolic regulation, and toxicity studies, by systematically analyzing its effects in obesity, diabetes, AS, and NAFLD, providing scientific evidence for its potential clinical applications. RESULTS Celastrol regulates multiple signaling pathways, particularly inhibiting NF-κB and activating AMPK, reducing the production of pro-inflammatory cytokines and improving insulin sensitivity, enhancing its therapeutic potential in metabolic diseases. Additionally, celastrol regulates adipogenesis and energy metabolism by influencing key transcription factors such as PPARγ and SREBP-1c. Numerous studies highlight its role in alleviating oxidative stress and improving mitochondrial function, further enhancing its metabolic benefits. CONCLUSION In summary, celastrol holds great promise as a multi-target therapeutic agent for metabolic diseases, offering anti-inflammatory, metabolic regulatory, and antioxidative benefits. Despite these, challenges remain for the clinical application of celastrol due to its poor bioavailability and potential toxicity. Advanced formulation strategies and targeted delivery systems are urgently needed to overcome challenges related to bioavailability and clinical translation.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia; Department of Pharmacy, Taishan Vocational College of Nursing, 271099, Tai'an, Shandong, China
| | - Mohamad Hafizi Abu Bakar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| | - Song Liqun
- Department of Pharmacy, Taishan Vocational College of Nursing, 271099, Tai'an, Shandong, China
| | - Mohd Asyraf Kassim
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia
| | - Khairul Anuar Shariff
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300, Penang, Malaysia
| | | |
Collapse
|
14
|
Chiu HW, Chu CW, Huang CC, Chia ZC, Wang YL, Lee YH. Polystyrene microplastics induce hepatic lipid metabolism and energy disorder by upregulating the NR4A1-AMPK signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125850. [PMID: 39956511 DOI: 10.1016/j.envpol.2025.125850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Microplastics (MPs) are widespread throughout global ecosystems, and their impact on living organisms has garnered increasing attention in recent years. Research has demonstrated that exposure to different sizes (0.08-100 μm) polystyrene microplastics (PS-MPs) can disrupt hepatic lipid and energy metabolism while promoting oxidative stress. Despite these findings, the precise molecular mechanisms underlying PS-MP-induced toxicity are not fully understood. NR4A1 is known to regulate apoptosis and lipid metabolism, but few studies have explored its role in modulating hepatic lipid metabolism following PS-MP exposure. In this study, animal experiments showed that PS-MPs reduced triglyceride levels and significantly increased reactive oxygen species (ROS) in liver tissue. Transcriptional profiles of mouse liver tissues were processed and analyzed using Ingenuity Pathway Analysis (IPA) software and Gene Set Enrichment Analysis (GSEA) to identify relevant pathways and molecular signatures. The results revealed a significant upregulation in NR4A1 gene expression after exposure to PS-MPs. PS-MP accumulation in the liver activated NR4A1 and the AMPK-autophagy pathway, reducing lipid biosynthesis. In vitro study, NR4A1 knockdown in hepatocytes exposed to PS-MPs reduced the expression of AMPK and lipid metabolism-related proteins. In summary, this study indicated that PS-MPs disrupt lipid metabolism in the liver by affecting the NR4A1, leading to liver damage. Prolonged exposure to these microplastics could raise concerns about long-term liver health and the regulation of overall metabolic functions.
Collapse
Affiliation(s)
- Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chun-Wei Chu
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan; Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Chia Huang
- Department of Photonics, Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Zi-Chun Chia
- Department of Photonics, Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan.
| |
Collapse
|
15
|
Peng W, Wan G, Cheng S, Li G, Liu L, Chen J, Liu P, Guo X, Gao X, Cai G, Zheng Z, Liu P. Potential role of TRAF2 in pulmonary hypertension in broiler chickens and preparation and specificity analysis of its polyclonal antibody. Int J Biol Macromol 2025; 295:139741. [PMID: 39798767 DOI: 10.1016/j.ijbiomac.2025.139741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Due to the lack of specific antibody anti-chicken tumor necrosis factor receptor-associated factor 2 (TRAF2), it is difficult to further explore the role of TRAF2 in pulmonary artery remodeling in pulmonary hypertension(PH) in broilers. In this experiment, we prepared a polyclonal antibody to TRAF2 by constructing a TRAF2 recombinant protein prokaryotic expression vector and analyzed the expression of TRAF2 in in vivo and in vitro models of pulmonary hypertension in broiler chickens and the effect of TRAF2 on the activity and apoptosis of PASMCs. The results showed that after immunization with TRAF2 recombinant protein we obtained high titers of polyclonal antibodies, and astragalus polysaccharide as an immune adjuvant could enhance the effect of immunization. Antibody specificity showed that the TRAF2 polyclonal antibody specifically bound to TRAF2 protein in chickens and ducks but weakly to TRAF2 protein in rabbits, mice and goats.TRAF2 was significantly upregulated in an in vivo and in vitro model of PH in broilers. Knockdown of TRAF2 inhibited the activity of PASMCs and induced apoptosis in PASMCs. Our study lays the foundation for further research on the pathomechanism of PH in broiler chickens and provides new targets for its prevention and drug development.
Collapse
Affiliation(s)
- Wen Peng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Gen Wan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Sufang Cheng
- Jiangxi Biotech Vocational College, Nanchang, 330200, PR China
| | - Guyue Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Liling Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Juan Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Pei Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Xiaoquan Guo
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Xiaona Gao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Gaofeng Cai
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Zhanhong Zheng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Ping Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| |
Collapse
|
16
|
Chen L, Shi Y, Xiao D, Huang Y, Jiang Y, Liang M, Liang F, Xue J, Chen H, Liu Z, Wang X, Zhuang F, Zhou G, Huo H, Cai Z, Shao Q, He B. NR4A1 deficiency promotes carotid plaque vulnerability by activating integrated stress response via targeting Bcat1. Cell Mol Life Sci 2025; 82:91. [PMID: 39985585 PMCID: PMC11846829 DOI: 10.1007/s00018-025-05602-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/24/2025]
Abstract
Rupture of vulnerable carotid atherosclerotic plaque is one of the leading causes of ischemic stroke. However, the mechanisms driving the transition from stable to vulnerable plaques have not yet been elucidated. NR4A1 is an orphan nuclear receptor that functions in various inflammatory diseases. To explore the role of NR4A1 in vulnerable plaque formation, we generated a vulnerable plaque mouse model by combining partial ligation of the left common carotid artery and left renal artery in ApoE-/- and ApoE-/-;NR4A1-/- mice. Our research revealed that NR4A1 deficiency significantly worsened the pathology of vulnerable plaque, increasing intraplaque hemorrhage, rupture with thrombus, and the occurrence of multilayer with discontinuity. Moreover, NR4A1 deficiency exacerbated macrophage infiltration, inflammation, and oxidative stress. Mechanistically, we identified Bcat1 as the target of NR4A1. NR4A1 modulated the integrated stress response (ISR) in macrophages by transcriptionally inhibiting Bcat1, thus influencing the progression of vulnerable plaque. ISR inhibitor GSK2606414 or Bcat1 inhibitor ERG240 significantly ameliorated atherosclerotic plaque formation and increased plaque stability. Notably, supplementation with Celastrol, an herbal extract, stabilized atherosclerotic plaques in mice. These findings suggest that NR4A1 deficiency exacerbates vulnerable plaque by activating ISR via targeting Bcat1. The NR4A1/Bcat1/ISR axis is therefore an important therapeutic target for stabilizing atherosclerotic plaque.
Collapse
MESH Headings
- Animals
- Nuclear Receptor Subfamily 4, Group A, Member 1/deficiency
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/genetics
- Mice
- Mice, Inbred C57BL
- Macrophages/metabolism
- Disease Models, Animal
- Mice, Knockout
- Oxidative Stress
- Male
- Humans
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Inflammation/pathology
Collapse
Affiliation(s)
- Long Chen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yiping Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Danrui Xiao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yijie Huang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yangjing Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Min Liang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Feng Liang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jieyuan Xue
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Haiping Chen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhitong Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Fei Zhuang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Guo Zhou
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Huanhuan Huo
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Qin Shao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
17
|
Xian J, Huang Y, Bai J, Liao Q, Chen Q, Cheng W, Su Z, Li S, Wu Y, Li J, Zhang J. Recent Advances in the Anti-Obesity Benefits of Phytoconstituents: From Phytochemistry to Targeting Novel-Systems. Phytother Res 2025; 39:630-660. [PMID: 39629748 DOI: 10.1002/ptr.8400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 02/19/2025]
Abstract
Obesity is a metabolic disorder that has become a global health concern. The existing pharmaceutical drugs for treating obesity have some side effects. Compounds from natural sources are prospective substitutes for treating chronic diseases such as obesity, with the added advantages of being safe and cost-effective. However, due to factors such as poor solubility, low bioavailability, and instability in the physiological environment, the therapeutic efficacy of phytoconstituents is limited. Nowadays, developing nanoscaled systems has emerged as a vital strategy for enhancing the delivery and therapeutic effect of phytoconstituents. The present study discusses and categorizes phytoconstituents with anti-obesity effects and concludes the main mechanisms underlying their effects. Importantly, strategies used to develop phytoconstituent-based nano-drug delivery systems (NDDS) for obesity treatment that show improved efficacy relative to traditional administration routes are reviewed. Finally, the progress of research on phytoconstituent-based NDDS for obesity treatment is summarized to provide a reference for the development of safe and effective treatment strategies for obesity.
Collapse
Affiliation(s)
- Jing Xian
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrong Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Qiyan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Weijian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziye Su
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Shaikh K, Bowman M, McCormick SM, Gao L, Zhang J, White J, Tawil J, Kapoor A, Arav-Boger R, Norbury CC, Harhaj EW. ZFAND6 promotes TRAF2-dependent mitophagy to restrain cGAS-STING signaling. iScience 2025; 28:111544. [PMID: 39811672 PMCID: PMC11731517 DOI: 10.1016/j.isci.2024.111544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
ZFAND6 is a zinc finger protein that interacts with TNF receptor-associated factor 2 (TRAF2) and polyubiquitin chains and has been linked to tumor necrosis factor (TNF) signaling. Here, we report a previously undescribed function of ZFAND6 in maintaining mitochondrial homeostasis by promoting mitophagy. Deletion of ZFAND6 in bone marrow-derived macrophages (BMDMs) upregulates reactive oxygen species (ROS) and the accumulation of damaged mitochondria due to impaired mitophagy. Consequently, mitochondrial DNA (mtDNA) is released into the cytoplasm, triggering the spontaneous expression of interferon-stimulated genes (ISGs) in a stimulator of interferon genes (STING) dependent manner, which leads to enhanced viral resistance. Mechanistically, ZFAND6 bridges a TRAF2-cIAP1 interaction and mediates the recruitment of TRAF2 to damaged mitochondria, which is required for the initiation of ubiquitin-dependent mitophagy. Our results suggest that ZFAND6 promotes the interactions of TRAF2 and cIAP1 and the clearance of damaged mitochondria by mitophagy to maintain mitochondrial homeostasis.
Collapse
Affiliation(s)
- Kashif Shaikh
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Melissa Bowman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Sarah M. McCormick
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Linlin Gao
- Department of Microbiology and Immunology, The University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Jiawen Zhang
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Jesse White
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - John Tawil
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Arun Kapoor
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Ravit Arav-Boger
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Christopher C. Norbury
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Edward W. Harhaj
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
19
|
Ding Q, Chen H, Zhang Y, Yang J, Li M, He Q, Mei L. Innovative integration of nanomedicines and phototherapy to modulate autophagy for enhanced tumor eradication. J Control Release 2025; 377:855-879. [PMID: 39631701 DOI: 10.1016/j.jconrel.2024.11.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Nanomedicines, by significantly enhancing the solubility, stability, and targeted delivery of therapeutic agents, have emerged as transformative tools in light-induced therapies, particularly in the context of oncology. These advancements are attributed to their ability to mediate autophagy through light activation, thereby revolutionizing cancer treatment paradigms. This review provides a comprehensive analysis of the state-of-the-art integration of nanomedicines with phototherapy techniques, emphasizing their role in modulating autophagy within cancer cells. It delineates the potential of light-responsive nanomaterials to induce selective tumor cell death by precisely regulating over-activated autophagy pathways. Additionally, it discusses innovative strategies for combining nanomedicines with phototherapy and other clinical modalities for tumor treatment, as well as integrating autophagy with various forms of programmed cell death to address challenges related to drug resistance and therapeutic efficacy. By synthesizing recent advancements and delineating future research directions, this review offers a thorough perspective on the optimization of light-induced autophagy through nanomedicines, highlighting novel strategies for enhancing cancer treatment efficacy.
Collapse
Affiliation(s)
- Qihang Ding
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Haiyan Chen
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yifan Zhang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Junbin Yang
- Hainan Academy of Inspection and Testing, Hainan 570203, PR China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| | - Ling Mei
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
20
|
Orekhov AN, Zhuravlev AD, Vinokurov AY, Nikiforov NG, Omelchenko AV, Sukhorukov VN, Sinyov VV, Sobenin IA. Defective Mitophagy Impairs Response to Inflammatory Activation of Macrophage-Like Cells. Curr Med Chem 2025; 32:111-122. [PMID: 38441018 PMCID: PMC11826902 DOI: 10.2174/0109298673294643240228105957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND AND AIMS The role of mitophagy in atherosclerosis has been extensively studied during the last few years. It was shown that mitophagy is involved in the regulation of macrophages, which are important players as immune cells in atherosclerosis development. In this study, we investigated the relationship between mitophagy and response to inflammatory stimulation of macrophage-like cells. Six cybrid cell lines with normal mitophagy, that is, increasing in response to stimulation, and 7 lines with defective mitophagy not responding to stimulation were obtained. The objective of the study was to compare the nature of the inflammatory response in normal and defective mitophagy in order to elucidate the role of mitophagy defects in inflammation. METHODS We used cytoplasmic hybrids (cybrids) as cellular models, created using mitochondrial DNA from different atherosclerosis patients. Mitophagy was stimulated by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and assessed as the degree of colocalization of mitochondria with lysosomes using confocal microscopy. Western blotting methods were used for the determination of proteins involved in the exact mechanism of mitophagy. Experiments with stimulation of mitophagy show a high correlation between these two approaches (microscopy and blotting). The pro-inflammatory response of cybrids was stimulated with bacterial lipopolysaccharide (LPS). The extent of the inflammatory response was assessed by the secretion of cytokines CCL2, IL8, IL6, IL1β, and TNF measured by ELISA. RESULTS Basal level of secretion of cytokines CCL2, IL8 and TNF was 1.5-2 times higher in cultures of cybrids with defective mitophagy compared to cells with normal mitophagy. This suggests a persistently elevated inflammatory response in cells with defective mitophagy, even in the absence of an inflammatory stimulus. Such cells in the tissue will constantly recruit other immune cells, which is characteristic of macrophages derived from monocytes circulating in the blood of patients with atherosclerosis. We observed significant differences in the degree and type of response to inflammatory activation in cybrids with defective mitophagy. These differences were not so much quantitative as they were dramatically qualitative. Compared with cells with normal mitophagy, in cells with defective mitophagy, the relative (to basal) secretion of IL8, IL6 and IL1b increased after the second LPS activation. This indicates a possible lack of tolerance to inflammatory activation in cells with defective mitophagy, since typically, re-activation reveals a smaller pro-inflammatory cytokine response, allowing the inflammatory process to resolve. In cells with normal mitophagy, exactly this normal (tolerant) inflammatory reaction was observed. CONCLUSION Data on the involvement of mitophagy, including defective mitophagy, in disturbances of the inflammatory response in sepsis, viral infections, autoimmune diseases and other pathologies have previously been reported. In this work, we studied the role of defective mitophagy in non-infectious chronic inflammatory diseases using the example of atherosclerosis. We showed a dramatic disruption of the inflammatory response associated with defective mitophagy. Compared with cybrids with normal mitophagy, in cybrids with defective mitophagy, the secretion of all studied cytokines changed significantly both quantitatively and qualitatively. In particular, the secretion of 3 of 5 cytokines demonstrated an intolerant inflammatory response manifested by increased secretion after repeated inflammatory stimulation. Such an intolerant reaction likely indicates a significant disruption of the pro-inflammatory response of macrophages, which can contribute to the chronification of inflammation. Elucidating the mechanisms of chronification of inflammation is extremely important for the search for fundamentally new pharmacological targets and the development of drugs for the prevention and treatment of chronic inflammatory diseases, including atherosclerosis and diseases characteristic of inflammation. Such diseases account for up to 80% of morbidity and mortality.
Collapse
Affiliation(s)
- Alexander Nikolaevich Orekhov
- Laboratory of Angiopatalogy, Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315, Moscow, Russia
| | - Alexander Dmitrievich Zhuravlev
- Laboratory of Angiopatalogy, Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315, Moscow, Russia
| | - Andrey Yurievich Vinokurov
- Cell Physiology & Pathology Laboratory of R&D Center of Biomedical Photonics, Orel State University, 95 Komsomolskaya Street, 30026, Orel, Russia
| | - Nikita Gennadievich Nikiforov
- Laboratory of Angiopatalogy, Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315, Moscow, Russia
| | - Andrey Vladimirovich Omelchenko
- Laboratory of Angiopatalogy, Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315, Moscow, Russia
| | - Vasily Nikolaevich Sukhorukov
- Laboratory of Angiopatalogy, Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315, Moscow, Russia
| | - Vasily Vladimirovich Sinyov
- Laboratory of Angiopatalogy, Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315, Moscow, Russia
| | - Igor Alexandrovich Sobenin
- Laboratory of Angiopatalogy, Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315, Moscow, Russia
| |
Collapse
|
21
|
Yao Q, Wei T, Qiu H, Cai Y, Yuan L, Liu X, Li X. Epigenetic Effects of Natural Products in Inflammatory Diseases: Recent Findings. Phytother Res 2025; 39:90-137. [PMID: 39513382 DOI: 10.1002/ptr.8364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 11/15/2024]
Abstract
Inflammation is an essential step for the etiology of multiple diseases. Clinically, due to the limitations of current drugs for the treatment of inflammatory diseases, such as serious side effects and expensive costs, it is urgent to explore novel mechanisms and medicines. Natural products have received extensive attention recently because of their multi-component and multi-target characteristics. Epigenetic modifications are crucial pathophysiological targets for developing innovative therapies for pharmacological interventions. Investigations examining how natural products improving inflammation through epigenetic modifications are emerging. This review state that natural products relieve inflammation via regulating the gene transcription levels through chromosome structure regulated by histone acetylation levels and the addition or deletion of methyl groups on DNA duplex. They could also exert anti-inflammatory effects by modulating the proteins in typical inflammatory signaling pathways by ubiquitin-related degradation and the effect of glycolysis derived free glycosyls. Studies on epigenetic modifications have the potential to facilitate the development of natural products as therapeutic agents. Future research directed at better understanding of how natural products modulate inflammatory processes through less studied epigenetic modifications including neddylation, SUMOylation, palmitoylation and lactylation, may provide new implications. Meanwhile, higher quality preclinical studies and more powerful clinical evidence are still needed to firmly establish the clinical efficacy of the natural products. Trial Registration: ClinicalTrials.gov Identifier: NCT01764204; ClinicalTrials.gov Identifier: NCT05845931; ClinicalTrials.gov Identifier: NCT04657926; ClinicalTrials.gov Identifier: NCT02330276.
Collapse
Affiliation(s)
- Qianyi Yao
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Tanjun Wei
- Department of Pharmacy, Dazhou Integrated TCM & Western Medical Hospital, Sichuan, China
| | - Hongmei Qiu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| |
Collapse
|
22
|
Chen J, Zhao T, Hong W, Li H, Ao M, Zhong Y, Chen X, Qiu Y, Wang X, Wu Z, Lin T, Li B, Chen X, Fang M. Discovery of a novel exceptionally potent and orally active Nur77 ligand NB1 with a distinct binding mode for cancer therapy. Acta Pharm Sin B 2024; 14:5493-5504. [PMID: 39807329 PMCID: PMC11725030 DOI: 10.1016/j.apsb.2024.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 07/04/2024] [Indexed: 01/16/2025] Open
Abstract
The orphan nuclear receptor Nur77 is emerging as an attractive target for cancer therapy, and activating Nur77's non-genotypic anticancer function has demonstrated strong therapeutic potential. However, few Nur77 site B ligands have been identified as excellent anticancer compounds. There are no co-crystal structures of effective anticancer agents at Nur77 site B, which greatly limits the development of novel Nur77 site B ligands. Moreover, the lack of pharmaceutical ligands restricts Nur77's therapeutic proof of concept. Herein, we developed a first-in-class Nur77 site B ligand (NB1) that significantly inhibited cancer cells by mediating the Nur77/Bcl-2-related apoptotic effect at mitochondria. The X-ray crystallography suggests that NB1 is bound to the Nur77 site B with a distinct binding mode. Importantly, NB1 showed favorable pharmacokinetic profiles and safety, as evidenced by its good oral bioavailability in rats and lack of mortality, bodyweight loss, and pathological damage at the 512.0 mg/kg dose in mice. Furthermore, oral administration of NB1 demonstrated remarkable in vivo anticancer efficacy in an MDA-MB-231 xenograft model. Together, our work discovers NB1 as a new generation Nur77 ligand that activates the Nur77/Bcl-2 apoptotic pathway with a safe and effective cancer therapeutic potency.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China
| | - Taige Zhao
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China
| | - Wenbin Hong
- Xiamen Key Laboratory of Clinical Efficacy and Evidence Studies of Traditional Chinese Medicine, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Hongsheng Li
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China
| | - Mingtao Ao
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China
| | - Yijing Zhong
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China
| | - Xiaoya Chen
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China
| | - Yingkun Qiu
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China
| | - Xiumin Wang
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China
| | - Zhen Wu
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China
| | - Tianwei Lin
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Baicun Li
- Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, State Key Laboratory of Respiratory Health and Multimorbidity, Beijing 100029, China
| | - Xueqin Chen
- Xiamen Key Laboratory of Clinical Efficacy and Evidence Studies of Traditional Chinese Medicine, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Meijuan Fang
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China
| |
Collapse
|
23
|
Zheng S, Yang H, Zheng J, Wang Y, Jia B, Li W. Unveiling the Anti-Obesity Potential of Thunder God Vine: Network Pharmacology and Computational Insights into Celastrol-like Molecules. Int J Mol Sci 2024; 25:12501. [PMID: 39684213 DOI: 10.3390/ijms252312501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity, characterized by abnormal or excessive fat accumulation, has become a chronic degenerative health condition that poses significant threats to overall well-being. Pharmacological intervention stands at the forefront of strategies to combat this issue. Recent studies, notably by Umut Ozcan's team, have uncovered the remarkable potential of Celastrol, a small-molecule compound derived from the traditional Chinese herb thunder god vine (Tripterygium wilfordii) as an anti-obesity agent. In this research, computational chemical analysis was employed, incorporating the "TriDimensional Hierarchical Fingerprint Clustering with Tanimoto Representative Selection (3DHFC-TRS)" algorithm to systematically explore 139 active small molecules from thunder god vine. These compounds were classified into six categories, with a particular focus on Category 1 molecules for their exceptional binding affinity to obesity-related targets, offering new avenues for therapeutic development. Using advanced molecular docking techniques and Cytoscape prediction models, six representative Celastrol-like molecules were identified, namely 3-Epikatonic Acid, Hederagenin, Triptonide, Triptotriterpenic Acid B, Triptotriterpenic Acid C, and Ursolic Acid. These compounds demonstrated superior binding affinity and specificity toward two key obesity targets, PPARG and PTGS2, suggesting their potential to regulate fat metabolism and mitigate inflammatory responses. To further substantiate these findings, molecular dynamics simulations and MM-PBSA free-energy calculations were applied to analyze the dynamic interactions between these small molecules and the enzymatic active sites of their targets. The results provide robust theoretical evidence that support the feasibility of these molecules as promising candidates for anti-obesity therapies. This study underscores the power of the 3DHFC-TRS algorithm in uncovering bioactive compounds from natural sources, such as thunder god vine, and highlights the therapeutic promise of PPARG and PTGS2 as novel obesity-related targets. Furthermore, it emphasizes the essential role of computational science in expediting drug discovery, paving the way for personalized and precision-based treatments for obesity and heralding a future of more effective healthcare solutions.
Collapse
Affiliation(s)
- Siyun Zheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hengzheng Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jingxian Zheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yidan Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Bo Jia
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Wannan Li
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
24
|
Yu Z, Yong Y, Liu X, Ma X, Abd El-Aty AM, Li L, Zhong Z, Ye X, Ju X. Insights and implications for transcriptomic analysis of heat stress-induced intestinal inflammation in pigs. BMC Genomics 2024; 25:1110. [PMID: 39563245 PMCID: PMC11577645 DOI: 10.1186/s12864-024-10928-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Heat stress (HS) can affect the physiology and metabolism of animals. HS-induced intestinal inflammation in pigs is a common disease, causing severe diarrhea, that can result in substantial economic losses to the pig industry, but the molecular mechanisms and pathogenicity of this disease are not fully understood. The objective of this study was to identify the differentially expressed genes (DEGs) and long noncoding RNAs (DELs) related to inflammation in the colon tissues of pigs under constant (1, 7, and 14 days) HS. RESULTS LncRNA and targeted gene interaction networks were constructed. GO annotation and KEGG pathway analyses were subsequently performed to determine the functions of the DEGs and DELs. The results revealed 57, 212, and 54 DEGs and 87, 79, and 55 DELs in the CON/H01, CON/H07, and CON/H14 groups, respectively. KRT85, CLDN1, S100A12, TM7SF2, CCN1, NR4A1, and several lncRNAs may be involved in regulating the development of intestinal inflammation. GO analysis indicated that the DEGs and DELs were enriched in a series of biological processes involved in the innate immune response, RAGE receptor binding, and positive regulation of the ERK1 and ERK2 cascades. KEGG pathways related to inflammation, such as the tight junction (TJ) and MAPK signaling pathways, were enriched in DEGs and DELs. CONCLUSIONS This study have expanded the knowledge about colon inflammation-related genes and lncRNA biology in pigs under HS; analyzed the the lncRNA‒mRNA interaction for HS-induced intestinal inflammation. These results may provide some references for our understanding of the molecular mechanism of the intestinal response to HS in pig.
Collapse
Affiliation(s)
- Zhichao Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yanhong Yong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaoxi Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xingbin Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey
| | - Leling Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ziyuan Zhong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xingyi Ye
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xianghong Ju
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
25
|
Wang H, Tang J, Yan S, Li C, Li Z, Xiong Z, Li Z, Tu C. Liquid-liquid Phase Separation in Aging: Novel Insights in the Pathogenesis and Therapeutics. Ageing Res Rev 2024; 102:102583. [PMID: 39566743 DOI: 10.1016/j.arr.2024.102583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
The intricate organization of distinct cellular compartments is paramount for the maintenance of normal biological functions and the orchestration of complex biochemical reactions. These compartments, whether membrane-bound organelles or membraneless structures like Cajal bodies and RNA transport granules, play crucial roles in cellular function. Liquid-liquid phase separation (LLPS) serves as a reversible process that elucidates the genesis of membranelles structures through the self-assembly of biomolecules. LLPS has been implicated in a myriad of physiological and pathological processes, encompassing immune response and tumor genesis. But the association between LLPS and aging has not been clearly clarified. A recent advancement in the realm of aging research involves the introduction of a new edition outlining the twelve hallmarks of aging, categorized into three distinct groups. By delving into the role and mechanism of LLPS in the formation of membraneless structures at a molecular level, this review encapsulates an exploration of the interaction between LLPS and these aging hallmarks, aiming to offer novel perspectives of the intricate mechanisms underlying the aging process and deeper insights into aging therapeutics.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Shuxiang Yan
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zhaoqi Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zijian Xiong
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Engineering Research Center of Artificial Intelligence-Driven Medical Device, The Second Xiangya Hospital of Central South University Changsha 410011, China, Changsha 410011, China; Shenzhen Research Institute of Central South University, Shenzhen 518063, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China; Changsha Medical University, Changsha 410219, China
| |
Collapse
|
26
|
Xu Z, Zhao G, Zhang L, Qiao C, Wang H, Wei H, Liu R, Liu P, Zhang Y, Zhu W, You W. Tong-Xie-Yao-Fang induces mitophagy in colonic epithelial cells to inhibit colitis-associated colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118541. [PMID: 38992403 DOI: 10.1016/j.jep.2024.118541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/10/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Based on the core pathogenesis of hepatosplenic disorder and qi transformation disorder in ulcerative colitis, Tong-Xie-Yao-Fang (TXYF) is a classical traditional Chinese medicine commonly used to treat ulcerative colitis. Our study revealed that it has the potential to prevent colitis-associated colorectal cancer, which embodies the academic concept in traditional Chinese medicine of treating the disease before it develops. AIM OF THE STUDY This study was aimed at evaluating the therapeutic role of TXYF in treating colitis-associated colorectal cancer and exploring its possible underlying mechanisms. MATERIALS AND METHODS A colitis-associated colorectal cancer model was established in mice using azoxymethane and dextran sulfate sodium salt to examine the therapeutic effect of TXYF. The mouse body weights were observed. Hematoxylin-eosin staining was used to evaluate mouse colon histopathology. Colon cancer cells and colon epithelial cells were used to explore the potential molecular mechanisms. The proliferation and apoptosis of cells were detected by CCK8 and cell colony assays, flow cytometry and western blotting. The epithelial-mesenchymal transition (EMT) and mitophagy markers were examined by immunohistochemistry, western blotting, quantitative real-time PCR and immunofluorescence staining. RESULTS TXYF inhibited the tumorigenesis of mice with colitis-associated colorectal cancer and the growth of inflammatory colon cells. TXYF induced mitophagy in colon cancer cells through the PTEN-induced putative kinase 1 (PINK1)/Parkin pathway to reverse EMT, which was consistent with the results in mice with colitis-associated colorectal cancer. CONCLUSIONS The results of the present study demonstrated that TXYF effectively inhibited the progression of colitis-associated colorectal cancer through the PINK1/Parkin pathway, which provides new evidence for prevention strategies for this disease.
Collapse
Affiliation(s)
- Zitong Xu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Gang Zhao
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Lize Zhang
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Cuixia Qiao
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Hao Wang
- Department of President's Office, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Hongyun Wei
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Ruiqing Liu
- Department of Gastroenterological Surgery, The Affiliated Hospital of Qingdao University, Shandong, 266000, China.
| | - Penglin Liu
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Yuejuan Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Shandong, 266000, China.
| | - Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Shandong, 266000, China.
| | - Wenli You
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| |
Collapse
|
27
|
Sun Y, Wang H, Wang H, Cai J, Yuan G, Zhang H, Zhao J, Xue Q, Jiang X, Ying H, Zhang Y, Yang Y, Jin J, Zhang W, Lu J, Ai J, Wang S. Aging brought additional immune response alterations after breakthrough infections with the Omicron BA.5/BF.7 variants: Protein immune mechanism. Int J Biol Macromol 2024; 281:136183. [PMID: 39357723 DOI: 10.1016/j.ijbiomac.2024.136183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
The global spread of the Omicron variant strain BA.5/BF.7 has led to an increase in breakthrough infections. The elderly population shows different immune responses after infection due to the aging of the immune system, which has not been fully studied. The aim of this study was to investigate the effect of aging on immune response after breakthrough infection of Omicron BA.5/BF.7 variant, especially the changes of protein immune mechanism. The study analyzed the concentration of antibodies in serum and their ability to neutralize the mutant strain by comparing the immune response of the elderly population and the young population after infection. Proteomics techniques were used to assess differences in the expression of key proteins in immune cells of different age groups. The study found that older subjects produced lower levels of antibodies after infection than younger subjects and showed a significantly reduced ability to neutralize against BA.5/BF.7. In addition, proteomic analysis showed that the expression of proteins related to inflammation and apoptosis significantly increased in the immune cells of the elderly, while the proteins related to antiviral response and cell repair significantly decreased. These findings provide new ideas for immune intervention strategies in the elderly population, and emphasize the targeted research of anti-virus vaccines.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Hongyu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Hua Wang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, China
| | - Jianpeng Cai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Guanmin Yuan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Haocheng Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 20052, China
| | - Jingjing Zhao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Quanlin Xue
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Xiaochun Jiang
- Community Health Service Center of Xianghuaqiao Street, Qingpu District, Shanghai, China
| | - Huang Ying
- Community Health Service Center of Baihe Street, Qingpu District, Shanghai, China
| | - Yeting Zhang
- Community Health Service Center of Chonggu Town, Qingpu District, Shanghai, China
| | - Yongfeng Yang
- Community Health Service Center of Huaxin Town, Qingpu District, Shanghai, China
| | - Jialin Jin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 20052, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 20052, China; Institute of Infection and Health, Fudan University, Shanghai 200040, China
| | - Jiahuan Lu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, China.
| | - Jingwen Ai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 20052, China.
| | - Sen Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 20052, China.
| |
Collapse
|
28
|
Zhao J, Liu H, Chen Q, Xia M, Wan L, Yu W, Liu C, Hao X, Tang C, Chen G, Liu Y, Yuan F, Liu H. Mechanistic study of celastrol-mediated inhibition of proinflammatory activation of macrophages in IgA nephropathy via down-regulating ECM1. Int J Biol Sci 2024; 20:5731-5746. [PMID: 39494325 PMCID: PMC11528456 DOI: 10.7150/ijbs.99738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Increasing evidence suggests that the mononuclear/macrophage system is vital in amplifying the inflammatory cascade in IgA Nephropathy (IgAN). However, the pathogenic mechanism of macrophages in IgAN and targeted treatment strategies still need to be explored. This study found that botanical triterpene celastrol (CLT) effectively alleviated renal lesions, M1-like macrophage infiltration, inflammatory factors production, and improved renal function in IgAN mice. We found that the renal macrophages of IgAN patients had high expression of ECM1, a crucial molecule involved in macrophage inflammatory polarization, positively correlated with the IgAN clinical severity. In murine macrophage Raw 264.7 cells, CLT inhibited macrophage M1-like polarization and the output of TNF-α and IL-6 by downregulating the ECM1/STAT5 pathway. Mechanistically, molecular docking, CESTA, and immunoprecipitation verified that CLT directly bound to ECM1 and increased the ubiquitination of ECM1. Collectively, these results illustrated that CLT inhibited proinflammatory macrophage in IgAN by directly targeting ECM1 to promote ubiquitination degradation of ECM1. Therefore, this study may provide a theoretical basis for exploring the pathogenesis of IgAN and identifying new perspectives for targeted therapy of IgAN.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Fang Yuan
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong Liu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Zhu Y, Meng Y, Zhang J, Liu R, Shen S, Gu L, Wong YK, Ma A, Chai X, Zhang Y, Liu Y, Wang J. Recent Trends in anti-tumor mechanisms and molecular targets of celastrol. Int J Biol Sci 2024; 20:5510-5530. [PMID: 39494324 PMCID: PMC11528459 DOI: 10.7150/ijbs.99592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024] Open
Abstract
Celastrol, a compound derived from traditional Chinese medicine, has therapeutic effects and has been used to treat inflammation-related diseases, cancer, cardiovascular diseases, and neurodegenerative diseases. However, current reviews lack a comprehensive and systematic summary of the anti-tumor mechanisms and molecular targets of celastrol. For this reason, this paper reviews the anticancer properties of celastrol and the molecular mechanisms underlying its anticancer effects. This paper primarily focuses on the mechanism of action of celastrol in terms of inhibition of cell proliferation and regulation of the cell cycle, regulation of apoptosis and autophagy, inhibition of cell invasion and metastasis, anti-inflammation, regulation of immunotherapy, and angiogenesis. More importantly, the target proteins of celastrol identified by chemical proteomics or other methods are highlighted, providing detailed targets with novel therapeutic potential for anti-tumor treatment. In addition, we describe the side effects and strategies to improve the bioavailability of celastrol. In summary, this paper analyzes celastrol, a natural compound with therapeutic effects and clear targets, aiming to draw more attention from the scientific and pharmacological communities and accelerating its clinical application for the benefit of cancer patients.
Collapse
Affiliation(s)
- Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rui Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Shengnan Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liwei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yin-kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Ang Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xin Chai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ying Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanqing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
30
|
Zhou Q, Guo X, Chen T, Liu Y, Ji H, Sun Y, Yang X, Ouyang C, Liu X, Lei M. The neuroprotective role of celastrol on hippocampus in diabetic rats by inflammation restraint, insulin signaling adjustment, Aβ reduction and synaptic plasticity alternation. Biomed Pharmacother 2024; 179:117397. [PMID: 39232386 DOI: 10.1016/j.biopha.2024.117397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Celastrol, the primary constituent of Tripterygium wilfordii, has demonstrated neuroprotective properties in rats with dementia by reducing inflammation. A high-fat diet and streptozotocin injection were utilized to establish a diabetic rat model, which was then employed to investigate the possible protective effect of celastrol against the development of diabetes-induced learning and memory deficits. Afterwards, the experimental animals received a dose of celastrol by gavage (4 mg/kg/d). An animal study showed that celastrol enhanced insulin sensitivity and glucose tolerance in diabetic rats. In the Morris water maze test, rats with diabetes performed poorly in terms of spatial learning and memory; treatment with celastrol improved these outcomes. Additionally, administration of celastrol downregulated the expression of inflammatory-related proteins (NF-κB, IKKα, TNF-α, IL-1β, and IL-6) and greatly reduced the generation of Aβ in the diabetic hippocampus tissue. Moreover, the insulin signaling pathway-related proteins PI3K, AKT, and GSK-3β were significantly upregulated in diabetic rats after celastrol was administered. Also, celastrol prevented damage to the brain structures and increased the synthesis of synaptic proteins like PSD-95 and SYT1. In conclusion, celastrol exerts a neuroprotective effect by modulating the insulin signaling system and reducing inflammatory responses, which helps to ameliorate the cognitive impairment associated with diabetes.
Collapse
Affiliation(s)
- Qiaofeng Zhou
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiying Guo
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Tu Chen
- Xianning Public Inspection and Testing Center, Xianning 437100, China
| | - Yumin Liu
- Wuhan Huake Reproductive Specialist Hospital, Wuhan 430000, China
| | - Huimin Ji
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Yixuan Sun
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Changhan Ouyang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| | - Min Lei
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
31
|
Xia Y, Chen H, Qin J, Zhang W, Gao H, Long X, He H, Zhang L, Zhang C, Cao C, Yu L, Chen X, Chen Q. The phthalide compound tokinolide B from Angelica sinensis exerts anti-inflammatory effects through Nur77 binding. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155925. [PMID: 39173278 DOI: 10.1016/j.phymed.2024.155925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Nur77, an orphan member of the nuclear receptor superfamily, regulates inflammatory diseases and is a therapeutic target for treating inflammation. Phthalides in Angelica sinensis exhibit anti-inflammatory activity. PURPOSE This study aimed to screen compounds from A. sinensis phthalide extract that could exert anti-inflammatory activity by targeting Nur77. To provide new theoretical support for better elucidation of Chinese medicine targeting mitochondria to achieve multiple clinical efficacies. METHODS The anti-inflammatory capacity of phthalides was assessed in tumor necrosis factor-alpha (TNF-α)-stimulated HepG2 cells using western blotting. The interaction between phthalides and Nur77 was verified by molecular docking, surface plasmon resonance, and cellular thermal shift assay. Co-immunoprecipitation, western blotting, and immunostaining were performed to determine the molecular mechanisms. The in vivo anti-inflammatory activity of the phthalides was evaluated in a lipopolysaccharide (LPS)/d-galactosamine (d-GalN)-induced acute hepatitis and liver injury mouse model of acute hepatitis and liver injury. Finally, the toxicity of phthalide toxicity was assessed in zebrafish experiments. RESULTS Among the 27 phthalide compounds isolated from A. sinensis, tokinolide B (TB) showed the best Nur77 binding capacity and, the best anti-inflammatory activity, which was induced without apoptosis. In vivo and in vitro experiments showed that TB promoted Nur77 translocation from the nucleus to the mitochondria and interacted with tumor necrosis factor receptor-associated factor 2 (TRAF2) and sequestosome 1 (p62) to induce mitophagy for anti-inflammatory functions. TB substantially inhibited LPS/d-GalN-induced acute hepatitis and liver injury in mice. TB also exhibited significantly lower toxicity than celastrol in zebrafish experiments. CONCLUSION These findings suggested that TB inhibits inflammation by promoting Nur77 interaction with TRAF2 and p62, thereby inducing mitophagy. These findings offer promising directions for developing novel anti-inflammatory agents, enhance the understanding of phthalide compounds, and highlight the therapeutic potential of traditional Chinese herbs.
Collapse
Affiliation(s)
- Yongzhen Xia
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China
| | - Hongli Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China
| | - Jingbo Qin
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR China
| | - Weiyun Zhang
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China
| | - Huachun Gao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China
| | - Xu Long
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China
| | - Hongying He
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China
| | - Lingyi Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China
| | - Chunxia Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China
| | - Chaoqun Cao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China
| | - Lixue Yu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China
| | - Xiaohui Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China; Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, PR China.
| | - Quancheng Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China.
| |
Collapse
|
32
|
Zhao Y, Miettinen K, Kampranis SC. Celastrol: A century-long journey from the isolation to the biotechnological production and the development of an antiobesity drug. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102615. [PMID: 39128271 DOI: 10.1016/j.pbi.2024.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Celastrol, a triterpenoid found in the root of the traditional medicinal plant Tripterygium wilfordii, is a potent anti-inflammatory and antiobesity agent. However, pharmacological exploitation of celastrol has been hindered by the limited accessibility of plant material, the co-existence of other toxic compounds in the same plant tissue, and the lack of an efficient chemical synthesis method. In this review, we highlight recent progress in elucidating celastrol biosynthesis and discuss how this knowledge can facilitate its scalable bioproduction using cell factories and its further development as an antiobesity and anti-inflammatory drug.
Collapse
Affiliation(s)
- Yong Zhao
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Karel Miettinen
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Sotirios C Kampranis
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
33
|
Rajendran P, Renu K, Ali EM, Genena MAM, Veeraraghavan V, Sekar R, Sekar AK, Tejavat S, Barik P, Abdallah BM. Promising and challenging phytochemicals targeting LC3 mediated autophagy signaling in cancer therapy. Immun Inflamm Dis 2024; 12:e70041. [PMID: 39436197 PMCID: PMC11494898 DOI: 10.1002/iid3.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Phytochemicals possess a wide range of anti-tumor properties, including the modulation of autophagy and regulation of programmed cell death. Autophagy is a critical process in cellular homeostasis and its dysregulation is associated with several pathological conditions, such as cancer, neurodegenerative diseases, and diabetes. In cancer, autophagy plays a dual role by either promoting tumor growth or suppressing it, depending on the cellular context. During autophagy, autophagosomes engulf cytoplasmic components such as proteins and organelles. LC3-II (microtubule-associated protein 1 light chain 3-II) is an established marker of autophagosome formation, making it central to autophagy monitoring in mammals. OBJECTIVE To explore the regulatory role of phytochemicals in LC3-mediated autophagy and their potential therapeutic impact on cancer. The review emphasizes the involvement of autophagy in tumor promotion and suppression, particularly focusing on autophagy-related signaling pathways like oxidative stress through the NRF2 pathway, and its implications for genomic stability in cancer development. METHODS The review focuses on a comprehensive analysis of bioactive compounds including Curcumin, Celastrol, Resveratrol, Kaempferol, Naringenin, Carvacrol, Farnesol, and Piperine. Literature on these compounds was examined to assess their influence on autophagy, LC3 expression, and tumor-related signaling pathways. A systematic literature search was conducted across databases including PubMed, Scopus, and Web of Science from inception to 2023. Studies were selected from prominent databases, focusing on their roles in cancer diagnosis and therapeutic interventions, particularly in relation to LC3-mediated mechanisms. RESULTS Phytochemicals have been shown to modulate autophagy through the regulation of LC3-II levels and autophagic flux in cancer cells. The interaction between autophagy and other cellular pathways such as oxidative stress, inflammation, and epigenetic modulation highlights the complex role of autophagy in tumor biology. For instance, Curcumin and Resveratrol have been reported to either induce or inhibit autophagy depending on cancer type, influencing tumor progression and therapeutic responses. CONCLUSION Targeting autophagy through LC3 modulation presents a promising strategy for cancer therapy. The dual role of autophagy in tumor suppression and promotion, however, necessitates careful consideration of the context in which autophagy is induced or inhibited. Future research should aim to delineate these context-specific roles and explore how phytochemicals can be optimized for therapeutic efficacy. Novel therapeutic strategies should focus on the use of bioactive compounds to fine-tune autophagy, thereby maximizing tumor suppression and inducing programmed cell death in cancer cells.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Kaviyarasi Renu
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Enas M. Ali
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Department of Botany and Microbiology, Faculty of ScienceCairo UniversityCairoEgypt
| | - Marwa Azmy M. Genena
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Agricultural Zoology Department, Faculty of AgricultureMansoura UniversityMansouraEgypt
| | - Vishnupriya Veeraraghavan
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Ramya Sekar
- Department of Oral & Maxillofacial Pathology and Oral MicrobiologyMeenakshi Ammal Dental College & Hospital, MAHERChennaiTamil NaduIndia
| | | | - Sujatha Tejavat
- Department of Biomedical Sciences, College of MedicineKing Faisal UniversityAl‐AhsaSaudi Arabia
| | | | - Basem M. Abdallah
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
| |
Collapse
|
34
|
Woodfin S, Hall S, Ramerth A, Chapple B, Fausnacht D, Moore W, Alkhalidy H, Liu D. Potential Application of Plant-Derived Compounds in Multiple Sclerosis Management. Nutrients 2024; 16:2996. [PMID: 39275311 PMCID: PMC11397714 DOI: 10.3390/nu16172996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by inflammation, demyelination, and neurodegeneration, resulting in significant disability and reduced quality of life. Current therapeutic strategies primarily target immune dysregulation, but limitations in efficacy and tolerability highlight the need for alternative treatments. Plant-derived compounds, including alkaloids, phenylpropanoids, and terpenoids, have demonstrated anti-inflammatory effects in both preclinical and clinical studies. By modulating immune responses and promoting neuroregeneration, these compounds offer potential as novel adjunctive therapies for MS. This review provides insights into the molecular and cellular basis of MS pathogenesis, emphasizing the role of inflammation in disease progression. It critically evaluates emerging evidence supporting the use of plant-derived compounds to attenuate inflammation and MS symptomology. In addition, we provide a comprehensive source of information detailing the known mechanisms of action and assessing the clinical potential of plant-derived compounds in the context of MS pathogenesis, with a focus on their anti-inflammatory and neuroprotective properties.
Collapse
Affiliation(s)
- Seth Woodfin
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Sierra Hall
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Alexis Ramerth
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Brooke Chapple
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Dane Fausnacht
- Department of Biology, School of Sciences and Agriculture, Ferrum College, Ferrum, VA 24088, USA
| | - William Moore
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Hana Alkhalidy
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
35
|
Gao L, Bai Y, Liang C, Han T, Liu Y, Zhou J, Guo J, Wu J, Hu D. Celastrol-Ligustrazine compound proven to be a novel drug candidate for idiopathic pulmonary fibrosis by intervening in the TGF-β1 mediated pathways-an experimental in vitro and vivo study. Mol Divers 2024:10.1007/s11030-024-10970-1. [PMID: 39207663 DOI: 10.1007/s11030-024-10970-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a disease characterized by pulmonary interstitial fibrosis and collagen proliferation, currently lacking effective therapeutic options. The combined use of Celastrol and Ligustrazine has been proved to synergistically improve the pathological processes of inflammation and fibrosis. In earlier studies, we designed and synthesized a Celastrol-Ligustrazine compound CL-001, though its role in IPF remains unclear. Here, the effects and mechanisms of CL-001 in bleomycin (BLM)-induced IPF were investigated. In vivo, CL-001 significantly improved lung function, reduced pulmonary inflammation, and decreased collagen deposition, thereby preventing the progression of IPF. In vitro, CL-001 concurrently inhibited both Smad-dependent and Smad-independent pathways, thereby suppressing TGF-β1-induced epithelial-mesenchymal transition (EMT) and epithelial cell migration. This inhibitory effect was superior to that of Celastrol or Ligustrazine administered alone. Additionally, CL-001 significantly increased the level of apoptosis and promoted the expression of apoptosis-related proteins (Caspase-8 and PARP), ultimately leading to widespread apoptosis in activated lung epithelial cells. In summary, CL-001 exhibits excellent anti-IPF effects both in vitro and in vivo, suggesting its potential as a novel candidate drug for IPF, warranting further development.
Collapse
Affiliation(s)
- Lu Gao
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China.
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China.
| | - Chao Liang
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Tao Han
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China.
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China.
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, Anhui, China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China.
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China.
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, Anhui, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
36
|
Zhang C, Wang X, Cai G, Wang H, Liu Q, Ma S, Sun H, An Y, Miao M, Yin S, Liu P, Wang X, Wang J. Targeting KPNB1 with genkwadaphnin suppresses gastric cancer progression through the Nur77-mediated signaling pathway. Eur J Pharmacol 2024; 977:176697. [PMID: 38823760 DOI: 10.1016/j.ejphar.2024.176697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Gastric cancer (GC) remains a global challenge due to the lack of early detection and precision therapies. Genkwadaphnin (DD1), a natural diterpene isolated from the bud of Flos GenkWa (Thymelaeaceae), serves as a Karyopherin β1 (KPNB1) inhibitor. In this study, we investigated the anti-tumor effect of DD1 in both cell culture and animal models. Our findings reveal that KPNB1, a protein involved in nuclear import, was highly expressed in GC tissues and associated with a poor prognosis in patients. We demonstrated that DD1, alongside the established KPNB1 inhibitor importazole (IPZ), inhibited GC cell proliferation and tumor growth by enhancing both genomic and non-genomic activity of Nur77. DD1 and IPZ reduced the interaction between KPNB1 and Nur77, resulting in Nur77 cytoplasmic accumulation and triggering mitochondrial apoptosis. The inhibitors also increased the expression of the Nur77 target apoptotic genes ATF3, RB1CC1 and PMAIP1, inducing apoptosis in GC cell. More importantly, loss of Nur77 effectively rescued the inhibitory effect of DD1 and IPZ on GC cells in both in vitro and in vivo experiments. In this study, we for the first time explored the relationship between KPNB1 and Nur77, and found KPNB1 inhibition could significantly increase the expression of Nur77. Moreover, we investigated the function of KPNB1 in GC for the first time, and the results suggested that KPNB1 could be a potential target for cancer therapy, and DD1 might be a prospective therapeutic candidate.
Collapse
Affiliation(s)
- Chenxi Zhang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong, 510006, China
| | - Xiaojuan Wang
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education), School of Clinical Medicine, Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, 102218, China
| | - Guodi Cai
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong, 510006, China
| | - Hong Wang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong, 510006, China
| | - Qianqian Liu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong, 510006, China
| | - Shuai Ma
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Huizi Sun
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong, 510006, China
| | - Yana An
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong, 510006, China
| | - Miaomiao Miao
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong, 510006, China
| | - Sheng Yin
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong, 510006, China
| | - Peiqing Liu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong, 510006, China
| | - Xiaolu Wang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong, 510006, China.
| | - Junjian Wang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong, 510006, China; National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
37
|
Liu H, Wang Q, Lan W, Liu D, Huang J, Yao J. Radiosensitization effect of quinoline-indole-schiff base derivative 10E on non-small cell lung cancer cells in vitro and in tumor xenografts. Invest New Drugs 2024; 42:405-417. [PMID: 38880855 DOI: 10.1007/s10637-024-01451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024]
Abstract
Radioresistance is an inevitable obstacle in the clinical treatment of inoperable patients with non-small cell lung cancer (NSCLC). Combining treatment with radiosensitizers may improve the efficacy of radiotherapy. Previously, the quinoline derivative 10E as new exporter of Nur77 has shown superior antitumor activity in hepatocellular carcinoma. Here, we aimed to investigate the radiosensitizing activity and acting mechanisms of 10E. In vitro, A549 and H460 cells were treated with control, ionizing radiation (IR), 10E, and 10E + IR. Cell viability, apoptosis, and cycle were examined using CCK-8 and flow cytometry assays. Protein expression and localization were examined using western blotting and immunofluorescence. Tumor xenograft models were established to evaluate the radiosensitizing effect of 10E in vivo. 10E significantly inhibited cell proliferation and increased their radiosensitivity while reducing level of p-BCRA1, p-DNA-PKs, and 53BP1 involved in the DNA damage repair pathway, indicating that its radiosensitizing activity is closely associated with repressing DNA damage repair. A549 cells showed low level of Nur77 and a low response to IR but 10E-treated A549 cells showed high level of Nur77 indicating that Nur77 is a core radiosensitivity factor and 10E restores the expression of Nur77. Nur77 and Ku80 extranuclear co-localization in the 10E-treated A549 cells suggested that 10E-modulated Nur77 nuclear exportation inhibits DNA damage repair pathways and increases IR-triggered apoptosis. The combination of 10E and IR significantly inhibits tumor growth in a tumor xenograft model. Our findings suggest that 10E acts as a radiosensitizer and that combining 10E with radiotherapy may be a potential strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Hongwei Liu
- Centre for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Qianqian Wang
- West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Wanying Lan
- Guixi Community Health Center of the Chengdu Hi-Tech Zone, Chengdu, 610000, China
| | - Duanya Liu
- Centre for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Jiangang Huang
- Xingzhi College, Zhejiang Normal University, Jinhua, 321004, China
| | - Jie Yao
- Centre for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610000, China.
| |
Collapse
|
38
|
Pan YF, Zhong L, Wang M, Jiang TY, Lin YK, Chen YB, Li X, Hu HP, Zhou HB, Yan HZ, Dong LW. PTEN status determines therapeutic vulnerability to celastrol in cholangiocarcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155790. [PMID: 38851099 DOI: 10.1016/j.phymed.2024.155790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND A balanced protein homeostasis network helps cholangiocarcinoma (CCA) maintain their oncogenic growth, and disrupting proteostasis therapeutically will induce proteotoxic stress. Phosphatase and tensin homolog (PTEN) have been reported to be involved in proteostasis, and PTEN-associated pathways are commonly altered in CCA. Celastrol, a triterpene from plants, exhibits cytotoxic effects in various types of cancer. However, the underlying mechanisms remain unclear. PURPOSE We investigated the therapeutic effect of celastrol in CCA and identified the molecular characteristics of tumors that were sensitive to celastrol. The target of celastrol was explored. We then evaluated the candidate combination therapeutic strategy to increase the effectiveness of celastrol in celastrol-insensitive CCA tumors. METHODS Various CCA cells were categorized as either celastrol-sensitive or celastrol-insensitive based on their response to celastrol. The molecular characteristics of cells from different groups were determined by RNA-seq. PTEN status and its role in proteasome activity in CCA cells were investigated. The CMAP analysis, molecular docking, and functional assay were performed to explore the effect of celastrol on proteasome activities. The correlation between PTEN status and clinical outcomes, as well as proteasomal activity, were measured in CCA patients. The synergistic therapeutic effect of autophagy inhibitors on celastrol-insensitive CCA cells were measured. RESULTS Diverse responses to celastrol were observed in CCA cells. PTEN expression varied among different CCA cells, and its status could impact cell sensitivity to celastrol: PTENhigh tumor cells were resistant to celastrol, while PTENlow cells were more sensitive. Celastrol induced proteasomal dysregulation in CCA cells by directly targeting PSMB5. Cells with low PTEN status transcriptionally promoted proteasome subunit expression in an AKT-dependent manner, making these cells more reliant on proteasomal activities to maintain proteostasis. This caused the PTENlow CCA cells sensitive to celastrol. A negative correlation was found between PTEN levels and the proteasome signature in CCA patients. Moreover, celastrol treatment could induce autophagy in PTENhigh CCA cells. Disrupting the autophagic pathway in PTENhigh CCA cells enhanced the cytotoxic effect of celastrol. CONCLUSION PTEN status in CCA cells determines their sensitivity to celastrol, and autophagy inhibitors could enhance the anti-tumor effect in PTENhigh CCA.
Collapse
Affiliation(s)
- Yu-Fei Pan
- National Center for Liver Cancer, Naval Medical University, 366 Qianju Road, Shanghai, 201805, China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education. 225 Changhai Road, Shanghai 200438, China
| | - Lin Zhong
- Department of Pathology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine (TCM), 358 Datong Road, Shanghai, 200137, China
| | - Min Wang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 700 Moyu Road, Shanghai, 201805, China
| | - Tian-Yi Jiang
- National Center for Liver Cancer, Naval Medical University, 366 Qianju Road, Shanghai, 201805, China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education. 225 Changhai Road, Shanghai 200438, China
| | - Yun-Kai Lin
- National Center for Liver Cancer, Naval Medical University, 366 Qianju Road, Shanghai, 201805, China
| | - Yi-Bin Chen
- National Center for Liver Cancer, Naval Medical University, 366 Qianju Road, Shanghai, 201805, China
| | - Xin Li
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education. 225 Changhai Road, Shanghai 200438, China
| | - He-Ping Hu
- Department of Hepatobiliary Medicine, Eastern Hepatobiliary Surgery Hospital, 700 Moyu Road, Shanghai, 201805, China
| | - Hua-Bang Zhou
- Department of Hepatobiliary Medicine, Eastern Hepatobiliary Surgery Hospital, 700 Moyu Road, Shanghai, 201805, China.
| | - Hong-Zhu Yan
- Department of Pathology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine (TCM), 358 Datong Road, Shanghai, 200137, China.
| | - Li-Wei Dong
- National Center for Liver Cancer, Naval Medical University, 366 Qianju Road, Shanghai, 201805, China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education. 225 Changhai Road, Shanghai 200438, China.
| |
Collapse
|
39
|
Lu S, Li Y, Yu Y. Glutathione-Scavenging Celastrol-Cu Nanoparticles Induce Self-Amplified Cuproptosis for Augmented Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404971. [PMID: 38935977 DOI: 10.1002/adma.202404971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/26/2024] [Indexed: 06/29/2024]
Abstract
Cuproptosis is a novel copper-dependent programmed cell death. The efficacy of cuproptosis is highly dependent on intracellular copper accumulation and counteracted by a high level of glutathione (GSH) in tumor cells. Here, this work develops a self-amplified cuproptosis nanoparticles (Cel-Cu NP) using celastrol (Cel), a natural product isolated from medical plant. In Cel-Cu NP, Cel serves as a versatile copper ionophore, exhibiting an ideal coordination capacity toward copper ions without compromising the cuproptosis induction. Notably, Cel can simultaneously scavenge GSH content to amplify cuproptosis. Moreover, this self-amplified cuproptosis further activates immunogenic cell death (ICD) to elicit robust immune response. Combining with immune checkpoint blockade, Cel-Cu NP effectively eradicates metastatic tumors in a mouse lung metastasis model. This study provides an efficient nanomedicine by inducing self-amplified cuproptosis for robust immunotherapy.
Collapse
Affiliation(s)
- Sheng Lu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yifan Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
40
|
Zhu F, Jiang J, Chen X, Fu L, Liu H, Zhang H. Amentoflavone regulates the miR-124-3p/CAPN2 axis to promote mitochondrial autophagy in HCC cells. Toxicol Res (Camb) 2024; 13:tfae110. [PMID: 39050595 PMCID: PMC11263925 DOI: 10.1093/toxres/tfae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a disease with poor prognosis and high mortality. Amentoflavone (AF) possesses the characteristics of marginal toxicity, stable curative effect, and good anti-HCC activity. This study aimed to evaluate the molecular mechanism of AF inhibiting HCC and provide a new idea for HCC treatment. METHODS Clinical tissue of HCC was collected. AF was given with HCC cells, and transfected with corresponding vectors. MiR-124-3p expression in HCC clinical samples and cells was ascertained by qRT-PCR assay. HCC cells viability was identified by CCK-8 assay. LC3 protein expression was ascertained by immunofluorescence assay. The expressions of CAPN2, β-catenin and mitochondrial autophagy-related proteins were detected by western blot. Dual-luciferase reporter gene assay confirmed the targeting relationship of miR-124-3p and CAPN2. RESULTS MiR-124-3p expression was inhibited and CAPN2 expression was increased in HCC tissues and cells. AF decreased HCC cell viability, up-regulated miR-124-3p expression, and inhibited CAPN2 expression and β-catenin nuclear transcription. Moreover, AF could activate the mitochondrial autophagy of HCC cells. MiR-124-3p specifically regulated CAPN2 expression. This study found that CAPN2 could promote β-catenin nuclear translocation, thus activating wnt/β-catenin pathway to inhibit mitochondrial autophagy in HCC cells. MiR-124-3p mimics enhanced AF function in promoting mitochondrial autophagy in HCC cells. However, CAPN2 overexpression, miR-124-3p inhibitor and SKL2001 attenuated the effectiveness of AF. CONCLUSION This study confirmed that AF regulated miR-124-3p/CAPN2 axis to restraint β-catenin nuclear translocation and then inhibit the wnt/β-catenin pathway, thereby promoting mitochondrial autophagy in HCC.
Collapse
Affiliation(s)
- Fengting Zhu
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine Hainan Hospital, No. 13, Shunda Road, Meilan District, Haikou 570203, Hainan Province, P.R. China
| | - Jingwen Jiang
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine Hainan Hospital, No. 13, Shunda Road, Meilan District, Haikou 570203, Hainan Province, P.R. China
| | - Xuewu Chen
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine Hainan Hospital, No. 13, Shunda Road, Meilan District, Haikou 570203, Hainan Province, P.R. China
| | - Lei Fu
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine Hainan Hospital, No. 13, Shunda Road, Meilan District, Haikou 570203, Hainan Province, P.R. China
| | - Hui Liu
- Departments of Interventional Radiology, Central South University, Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, people’s Blvd., Haikou 570208, Hainan Province, P.R. China
| | - Hui Zhang
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine Hainan Hospital, No. 13, Shunda Road, Meilan District, Haikou 570203, Hainan Province, P.R. China
| |
Collapse
|
41
|
Shen X, Yang H, Yang Y, Zhu X, Sun Q. The cellular and molecular targets of natural products against metabolic disorders: a translational approach to reach the bedside. MedComm (Beijing) 2024; 5:e664. [PMID: 39049964 PMCID: PMC11266934 DOI: 10.1002/mco2.664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Metabolic disorders, including obesity, dyslipidemia, diabetes, nonalcoholic fatty liver disease, and metabolic syndrome, are characterized by insulin resistance, abnormalities in circulating cholesterol and lipid profiles, and hypertension. The most common pathophysiologies of metabolic disorders are glucose/lipid metabolism dysregulation, insulin resistance, inflammatory response, and oxidative stress. Although several agents have been approved for the treatment of metabolic disorders, there is still a strong demand for more efficacious drugs with less side effects. Natural products have been critical sources of drug research and discovery for decades. However, the usefulness of bioactive natural products is often limited by incomplete understanding of their direct cellular targets. In this review, we highlight the current understanding of the established and emerging molecular mechanisms of metabolic disorders. We further summarize the therapeutic effects and underlying mechanisms of natural products on metabolic disorders, with highlights on their direct cellular targets, which are mainly implicated in the regulation of glucose/lipid metabolism, insulin resistance, metabolic inflammation, and oxidative stress. Finally, this review also covers the clinical studies of natural products in metabolic disorders. These progresses are expected to facilitate the application of these natural products and their derivatives in the development of novel drugs against metabolic disorders.
Collapse
Affiliation(s)
- Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan ProvinceHospital of Chengdu University of Traditional Chinese MedicineChengdu University of Traditional Chinese MedicineChengduChina
| | - Hongling Yang
- Department of Nephrology and Institute of NephrologySichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney DiseasesChengduChina
| | - Yang Yang
- Department of Respiratory and Critical Care MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and TechnologyChengduChina
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical GeneticsSichuan Provincial People's HospitalUniversity of Electronic Science and TechnologyChengduChina
| | - Qingxiang Sun
- Department of Respiratory and Critical Care MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and TechnologyChengduChina
| |
Collapse
|
42
|
Rajendran R, Suman S, Divakaran SJ, Swatikrishna S, Tripathi P, Jain R, Sagar K, Rajakumari S. Sesaminol alters phospholipid metabolism and alleviates obesity-induced NAFLD. FASEB J 2024; 38:e23835. [PMID: 39037555 DOI: 10.1096/fj.202400412rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
The prevalence of obesity-induced non-alcoholic fatty liver disease (NAFLD) and insulin resistance is increasing worldwide. We previously demonstrated that sesaminol increases thermogenesis in adipocytes, improves insulin sensitivity, and mitigates obesity in mice. In this study, we demonstrated that sesaminol increased mitochondrial activity and reduced ROS production in hepatocytes. Therefore, we delve into the metabolic action of sesaminol in obesity-induced NAFLD or metabolic dysfunction-associated liver disease (MAFLD). Here, we report that sesaminol induces OXPHOS proteins and mitochondrial function in vivo. Further, our data suggest that sesaminol administration reduces hepatic triacylglycerol accumulation and LDL-C levels. Prominently, the lipidomics analyses revealed that sesaminol administration decreased the major phospholipids such as PC, PE, PI, CL, and PS to maintain membrane lipid homeostasis in the liver upon HFD challenge. Besides, SML reduced ePC and SM molecular species and increased PA levels in the HFD-fed mice. Also, sesaminol renders anti-inflammatory properties and dampens fibrosis markers in the liver. Remarkably, SML lowers the hepatic levels of ALT and AST enzymes and alleviates NAFLD in diet-induced obese mice. The molecular docking analysis identifies peroxisome proliferator-activated receptors as potential endogenous receptors for sesaminol. Together, our study demonstrates plant lignan sesaminol as a potential small molecule that alters the molecular species of major phospholipids, including sphingomyelin and ether-linked PCs in the liver tissue, improves metabolic parameters, and alleviates obesity-induced fatty liver disease in mice.
Collapse
Affiliation(s)
- Rajprabu Rajendran
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sanskriti Suman
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Soumya Jaya Divakaran
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sahu Swatikrishna
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Purnima Tripathi
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Rashi Jain
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Karan Sagar
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sona Rajakumari
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
43
|
Kim J, Lee Y, Kim I, Chang J, Hong S, Lee NK, Shum D, Baek S, Kim W, Jang S, Lee W. Reducing Peptidoglycan Crosslinking by Chemical Modulator Reverts β-lactam Resistance in Methicillin-Resistant Staphylococcus aureus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400858. [PMID: 38747156 PMCID: PMC11267302 DOI: 10.1002/advs.202400858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/11/2024] [Indexed: 07/25/2024]
Abstract
Small molecule can be utilized to restore the effectiveness of existing major classes of antibiotics against antibiotic-resistant bacteria. In this study, it is demonstrated that celastrol, a natural compound, can modify the bacterial cell wall and subsequently render bacteria more suceptible to β-lactam antibiotics. It is shown that celastrol leads to incomplete cell wall crosslinking by modulating levels of c-di-AMP, a secondary messenger, in methicillin-resistant Staphylococcus aureus (MRSA). This mechanism enables celastrol to act as a potentiator, effectively rendering MRSA susceptible to a range of penicillins and cephalosporins. Restoration of in vivo susceptibility of MRSA to methicillin is also demonstrated using a sepsis animal model by co-administering methicillin along with celastrol at a much lower amount than that of methicillin. The results suggest a novel approach for developing potentiators for major classes of antibiotics by exploring molecules that re-program metabolic pathways to reverse β-lactam-resistant strains to susceptible strains.
Collapse
Affiliation(s)
- Ji‐Hoon Kim
- School of PharmacySungkyunkwan UniversitySuwon16419Republic of Korea
| | - Yunmi Lee
- Antibacterial Resistance LaboratoryInstitut Pasteur KoreaSeongnam13488Republic of Korea
| | - Inseo Kim
- School of PharmacySungkyunkwan UniversitySuwon16419Republic of Korea
| | - JuOae Chang
- School of PharmacySungkyunkwan UniversitySuwon16419Republic of Korea
| | - Subin Hong
- School of PharmacySungkyunkwan UniversitySuwon16419Republic of Korea
| | - Na Kyung Lee
- Screening Discovery PlatformInstitut Pasteur KoreaSeongnam13488Republic of Korea
| | - David Shum
- Screening Discovery PlatformInstitut Pasteur KoreaSeongnam13488Republic of Korea
| | - Seongeun Baek
- College of PharmacyGraduate School of Pharmaceutical SciencesEwha Womans UniversitySeoul03760Republic of Korea
| | - Wooseong Kim
- College of PharmacyGraduate School of Pharmaceutical SciencesEwha Womans UniversitySeoul03760Republic of Korea
| | - Soojin Jang
- Antibacterial Resistance LaboratoryInstitut Pasteur KoreaSeongnam13488Republic of Korea
| | - Wonsik Lee
- School of PharmacySungkyunkwan UniversitySuwon16419Republic of Korea
| |
Collapse
|
44
|
Ni Z, Shi Y, Liu Q, Wang L, Sun X, Rao Y. Degradation-Based Protein Profiling: A Case Study of Celastrol. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308186. [PMID: 38664976 PMCID: PMC11220716 DOI: 10.1002/advs.202308186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/28/2024] [Indexed: 07/04/2024]
Abstract
Natural products, while valuable for drug discovery, encounter limitations like uncertainty in targets and toxicity. As an important active ingredient in traditional Chinese medicine, celastrol exhibits a wide range of biological activities, yet its mechanism remains unclear. In this study, they introduced an innovative "Degradation-based protein profiling (DBPP)" strategy, which combined PROteolysis TArgeting Chimeras (PROTAC) technology with quantitative proteomics and Immunoprecipitation-Mass Spectrometry (IP-MS) techniques, to identify multiple targets of natural products using a toolbox of degraders. Taking celastrol as an example, they successfully identified its known targets, including inhibitor of nuclear factor kappa B kinase subunit beta (IKKβ), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PI3Kα), and cellular inhibitor of PP2A (CIP2A), as well as potential new targets such as checkpoint kinase 1 (CHK1), O-GlcNAcase (OGA), and DNA excision repair protein ERCC-6-like (ERCC6L). Furthermore, the first glycosidase degrader is developed in this work. Finally, by employing a mixed PROTAC toolbox in quantitative proteomics, they also achieved multi-target identification of celastrol, significantly reducing costs while improving efficiency. Taken together, they believe that the DBPP strategy can complement existing target identification strategies, thereby facilitating the rapid advancement of the pharmaceutical field.
Collapse
Affiliation(s)
- Zhihao Ni
- MOE Key Laboratory of Protein SciencesSchool of Pharmaceutical SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijing100084China
| | - Yi Shi
- MOE Key Laboratory of Protein SciencesSchool of Pharmaceutical SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijing100084China
| | - Qianlong Liu
- MOE Key Laboratory of Protein SciencesSchool of Pharmaceutical SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijing100084China
| | - Liguo Wang
- MOE Key Laboratory of Protein SciencesSchool of Pharmaceutical SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijing100084China
| | | | - Yu Rao
- MOE Key Laboratory of Protein SciencesSchool of Pharmaceutical SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijing100084China
- Changping LaboratoryBeijing102206China
| |
Collapse
|
45
|
Gu M, Li C, Deng Q, Chen X, Lei R. Celastrol enhances the viability of random-pattern skin flaps by regulating autophagy through the AMPK-mTOR-TFEB axis. Phytother Res 2024; 38:3020-3036. [PMID: 38600729 DOI: 10.1002/ptr.8198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/06/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
In reconstructive and plastic surgery, random-pattern skin flaps (RPSF) are often used to correct defects. However, their clinical usefulness is limited due to their susceptibility to necrosis, especially on the distal side of the RPSF. This study validates the protective effect of celastrol (CEL) on flap viability and explores in terms of underlying mechanisms of action. The viability of different groups of RPSF was evaluated by survival zone analysis, laser doppler blood flow, and histological analysis. The effects of CEL on flap angiogenesis, apoptosis, oxidative stress, and autophagy were evaluated by Western blot, immunohistochemistry, and immunofluorescence assays. Finally, its mechanistic aspects were explored by autophagy inhibitor and Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) inhibitor. On the seventh day after surgery, the survival area size, blood supply, and microvessel count of RPSF were augmented following the administration of CEL. Additionally, CEL stimulated angiogenesis, suppressed apoptosis, and lowered oxidative stress levels immediately after elevated autophagy in ischemic regions; These effects can be reversed using the autophagy inhibitor chloroquine (CQ). Specifically, CQ has been observed to counteract the protective impact of CEL on the RPSF. Moreover, it has also been discovered that CEL triggers the AMPK-mTOR-TFEB axis activation in the area affected by ischemia. In CEL-treated skin flaps, AMPK inhibitors were demonstrated to suppress the AMPK-mTOR-TFEB axis and reduce autophagy levels. This investigation suggests that CEL benefits the survival of RPSF by augmenting angiogenesis and impeding oxidative stress and apoptosis. The results are credited to increased autophagy, made possible by the AMPK-mTOR-TFEB axis activation.
Collapse
Affiliation(s)
- Mingbao Gu
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenchao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qingyu Deng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ximiao Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Rui Lei
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Cui DX, Niu ZC, Tang X, Cai CZ, Xu DQ, Fu RJ, Liu WJ, Wang YW, Tang YP. Celastrol induced the autophagy of spermatogonia cells contributed to tripterygium glycosides-related testicular injury. Reprod Toxicol 2024; 126:108604. [PMID: 38703919 DOI: 10.1016/j.reprotox.2024.108604] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Tripterygium glycosides (TG) is extracted from the roots of Chinese herbal medicine named Tripterygium wilfordii Hook F (TwHF). TG tablets are the representative TwHF-based agents with anti-inflammatory and immunomodulatory activities for treating rheumatoid arthritis. Although the curative effect of TG is remarkable, the clinical application is limited by a variety of organ toxicity. One of the most serious side-effects induced by TG is damage of the male reproductive system and the toxic mechanism is still not fully elucidated. TG-induced testicular injury was observed in male mice by treated with different concentrations of TG. The results showed that TG induced a significant decrease in testicular index. Pathological observation showed that spermatogenic cells were obviously shed, arranged loosely, and the spermatogenic epithelium was thin compared with control mice. In addition, the toxic effect of TG on mouse spermatogonia GC-1 cells was investigated. The results displayed that TG induced significant cytotoxicity in mouse GC-1 cells. To explore the potential toxic components that triggered testicular injury, the effects of 8 main components of TG on the viability of GC-1 cells were detected. The results showed that celastrol was the most toxic component of TG to GC-1 cells. Western blot analysis showed that LC3-II and the ratio of LC3-II/LC3-I were significantly increased and the expression level of p62 were decreased in both TG and celastrol treated cells, which indicated the significant activation of autophagy in spermatogonia cells. Therefore, autophagy plays an important role in the testicular injury induced by TG, and inhibition of autophagy is expected to reduce the testicular toxicity of TG.
Collapse
Affiliation(s)
- Dong-Xiao Cui
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Ze-Chen Niu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xi Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Chun-Zhou Cai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Wen-Juan Liu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yu-Wei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| |
Collapse
|
47
|
An N, Wang R, Li L, Wang B, Wang H, Peng G, Zhou H, Chen G. Celastrol alleviates diabetic vascular injury via Keap1/Nrf2-mediated anti-inflammation. Front Pharmacol 2024; 15:1360177. [PMID: 38881873 PMCID: PMC11176472 DOI: 10.3389/fphar.2024.1360177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/10/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction: Celastrol (Cel) is a widely used main component of Chinese herbal medicine with strong anti-inflammatory, antiviral and antitumor activities. In the present study, we aimed to elucidate the cellular molecular protective mechanism of Cel against diabetes-induced inflammation and endothelial dysfunction. Methods: Type 2 diabetes (T2DM) was induced by db/db mice, and osmotic pumps containing Cel (100 μg/kg/day) were implanted intraperitoneally and were calibrated to release the drug for 28 days. In addition, human umbilical vein endothelial cells (HUVECs) were cultured in normal or high glucose and palmitic acid-containing (HG + PA) media in the presence or absence of Cel for 48 h. Results: Cel significantly ameliorated the hyperglycemia-induced abnormalities in nuclear factor (erythroid-derived 2)-like protein 2 (Nrf2) pathway activity and alleviated HG + PA-induced oxidative damage. However, the protective effect of Cel was almost completely abolished in HUVECs transfected with short hairpin (sh)RNA targeting Nrf2, but not by nonsense shRNA. Furthermore, HG + PA reduced the phosphorylation of AMP-activated protein kinase (AMPK), the autophagic degradation of p62/Kelch-like ECH-associated protein 1 (Keap1), and the nuclear localization of Nrf2. However, these catabolic pathways were inhibited by Cel treatment in HUVECs. In addition, compound C (AMPK inhibitors) and AAV9-sh-Nrf2 reduced Cel-induced Nrf2 activation and angiogenesis in db/db mice. Discussion: Taking these findings together, the endothelial protective effect of Cel in the presence of HG + PA may be at least in part attributed to its effects to reduce reactive oxygen species (ROS) and inflammation through p62/Keap1-mediated Nrf2 activation.
Collapse
Affiliation(s)
- Ning An
- The Affiliated Li Huili Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, China
| | - Rixiang Wang
- The Affiliated Li Huili Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, China
| | - Lin Li
- The Affiliated Li Huili Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, China
| | - Bingyu Wang
- The Affiliated Li Huili Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, China
| | - Huiting Wang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, China
| | - Ganyu Peng
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, China
| | - Hua Zhou
- The Affiliated Li Huili Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, China
| | - Gen Chen
- The Affiliated Li Huili Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, China
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
48
|
Li X, Liu W, Jiang G, Lian J, Zhong Y, Zhou J, Li H, Xu X, Liu Y, Cao C, Tao J, Cheng J, Zhang JH, Chen G. Celastrol Ameliorates Neuronal Mitochondrial Dysfunction Induced by Intracerebral Hemorrhage via Targeting cAMP-Activated Exchange Protein-1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307556. [PMID: 38482725 PMCID: PMC11109624 DOI: 10.1002/advs.202307556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/08/2024] [Indexed: 05/23/2024]
Abstract
Mitochondrial dysfunction contributes to the development of secondary brain injury (SBI) following intracerebral hemorrhage (ICH) and represents a promising therapeutic target. Celastrol, the primary active component of Tripterygium wilfordii, is a natural product that exhibits mitochondrial and neuronal protection in various cell types. This study aims to investigate the neuroprotective effects of celastrol against ICH-induced SBI and explore its underlying mechanisms. Celastrol improves neurobehavioral and cognitive abilities in mice with autologous blood-induced ICH, reduces neuronal death in vivo and in vitro, and promotes mitochondrial function recovery in neurons. Single-cell nuclear sequencing reveals that the cyclic adenosine monophosphate (cAMP)/cAMP-activated exchange protein-1 (EPAC-1) signaling pathways are impacted by celastrol. Celastrol binds to cNMP (a domain of EPAC-1) to inhibit its interaction with voltage-dependent anion-selective channel protein 1 (VDAC1) and blocks the opening of mitochondrial permeability transition pores. After neuron-specific knockout of EPAC1, the neuroprotective effects of celastrol are diminished. In summary, this study demonstrates that celastrol, through its interaction with EPAC-1, ameliorates mitochondrial dysfunction in neurons, thus potentially improving SBI induced by ICH. These findings suggest that targeting EPAC-1 with celastrol can be a promising therapeutic approach for treating ICH-induced SBI.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University168 Xianlin AvenueNanjing210023China
| | - Guannan Jiang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Jinrong Lian
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Yi Zhong
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Jialei Zhou
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Xingshun Xu
- Department of NeurologyThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Cong Cao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Jin Tao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
- Department of Physiology and NeurobiologyMedical College of Soochow UniversitySuzhou215123China
| | - Jian Cheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - John H Zhang
- Department of Physiology and PharmacologySchool of MedicineLoma Linda UniversityLoma LindaCA92350USA
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| |
Collapse
|
49
|
Safe S. Natural products and synthetic analogs as selective orphan nuclear receptor 4A (NR4A) modulators. Histol Histopathol 2024; 39:543-556. [PMID: 38116863 PMCID: PMC11267491 DOI: 10.14670/hh-18-689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Although endogenous ligands for the orphan nuclear receptor 4A1 (NR4A1, Nur77), NR4A2 (Nurr1), and NR4A3 (Nor-1) have not been identified, several natural products and synthetic analogs bind NR4A members. These studies are becoming increasingly important since members of the NR4A subfamily of 3 receptors are potential drug targets for treating cancer and non-cancer endpoints and particularly those conditions associated with inflammatory diseases. Ligands that bind NR4A1, NR4A2, and NR4A3 including Cytosporone B, celastrol, bis-indole derived (CDIM) compounds, tryptophan/indolic, metabolites, prostaglandins, resveratrol, piperlongumine, fatty acids, flavonoids, alkaloids, peptides, and drug families including statins and antimalarial drugs. The structural diversity of NR4A ligands and their overlapping and unique effects on NR4A1, NR4A2, and NR4A3 suggest that NR4A ligands are selective NR4A modulators (SNR4AMs) that exhibit tissue-, structure-, and response-specific activities. The SNR4AM activities of NR4A ligands are exemplified among the Cytosporone B analogs where n-pentyl-2-[3,5-dihydroxy-2-(nonanoyl)]phenyl acetate (PDNPA) binds NR4A1, NR4A2 and NR4A3 but activates only NR4A1 and exhibits significant functional differences with other Cytosporone B analogs. The number of potential clinical applications of agents targeting NR4A is increasing and this should spur future development of SNR4AMs as therapeutics that act through NR4A1, NR4A2 and NR4A3.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
50
|
Yin S, Shen M, Zhang Y, Wu J, Song R, Lai X, Tian Z, Wang T, Jin W, Yan J. Nur77 increases mitophagy and decreases aggregation of α-synuclein by modulating the p-c-Abl/p-PHB2 Y121 in α-synuclein PFF SH-SY5Y cells and mice. Eur J Med Chem 2024; 268:116251. [PMID: 38422699 DOI: 10.1016/j.ejmech.2024.116251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Parkinson's disease (PD) is characterized by the progressive death of dopamine (DA) neurons and the pathological accumulation of α-synuclein (α-syn) fibrils. In our previous study, simulated PHB2 phosphorylation was utilized to clarify the regulatory role of c-Abl in PHB2-mediated mitophagy in PD models. In this investigation, we employed an independently patented PHB2Y121 phosphorylated antibody in the PD model to further verify that the c-Abl inhibitor STI571 can impede PHB2Y121 phosphorylation, decrease the formation of α-Syn polymers, and improve autophagic levels. The specific involvement of Nur77 in PD pathology has remained elusive. We also investigate the contribution of Nur77, a nuclear transcription factor, to α-syn and mitophagy in PD. Our findings demonstrate that under α-syn, Nur77 translocates from the cytoplasm to the mitochondria, improving PHB-mediated mitophagy by regulating c-Abl phosphorylation. Moreover, Nur77 overexpression alleviates the expression level of pS129-α-syn and the loss of DA neurons in α-syn PFF mice, potentially associated with the p-c-Abl/p-PHB2 Y121 axis. This study provides initial in vivo and in vitro evidence that Nur77 protects PD DA neurons by modulating the p-c-Abl/p-PHB2 Y121 axis, and STI571 holds promise as a treatment for PD.
Collapse
Affiliation(s)
- Shiyi Yin
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Mengmeng Shen
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yongjiang Zhang
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jiannan Wu
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Run Song
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xiaoyi Lai
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Zhenzhen Tian
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Tingting Wang
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Weina Jin
- China National Clinical Research Center for Neurological Diseases, Jing-Jin Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100000, China
| | - Junqiang Yan
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China; Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|