1
|
Jin ZY, Ling ZQ. PAQR4: From spatial regulation of cell signaling to physiological homeostasis and diseases. Biochim Biophys Acta Rev Cancer 2025; 1880:189314. [PMID: 40194713 DOI: 10.1016/j.bbcan.2025.189314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025]
Abstract
Progestin and adipoQ receptor family member 4 (PAQR4) gene is a recently discovered seven-transmembrane protein-coding gene that belongs to the PAQR family. An increasing amount of evidence suggests that PAQR4 is upregulated in multiple tumors and participates in tumor progression and chemotherapy resistance via different signaling pathways; PAQR4 regulates cellular ceramide homeostasis by influencing sphingolipid metabolism and glycerol metabolism, and plays a significant role in adipose tissue remodeling. Meanwhile, it is known that the differential expression of PAQR4 is associated with the occurrence of various diseases and is a potential biomarker and therapeutic target. This article conducts a systematic review of the subcellular localization of PAQR4, its topological structure characteristics, and its functions in cancer occurrence, metabolic diseases, and fertility, and provides clues for the future research and translational application of PAQR4.
Collapse
Affiliation(s)
- Zi-Yan Jin
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Postgraduate Training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
2
|
Katrib B, Adel A, Abadleh M, Daoud S, Taha M. Computational discovery of novel PI3KC2α inhibitors using structure-based pharmacophore modeling, machine learning and molecular dynamic simulation. J Mol Graph Model 2025; 137:109016. [PMID: 40112531 DOI: 10.1016/j.jmgm.2025.109016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
PI3KC2α is a lipid kinase associated with cancer metastasis and thrombosis. In this study, we present a novel computational workflow integrating structure-based pharmacophore modeling, machine learning (ML), and molecular dynamics (MD) simulations to discover new PI3KC2α inhibitors. Key innovations include the generation of diverse pharmacophores from both crystallographic and docking-derived complexes, coupled with data augmentation via ligand conformational sampling to enhance ML robustness. The optimal model, developed using XGBoost with genetic function algorithm (GFA) and Shapley additive explanations (SHAP), identified four critical pharmacophores and three descriptors governing bioactivity. Virtual screening of the NCI database using these pharmacophores yielded three hits, with H_1 (NCI: 725847) demonstrating MD-derived binding stability and affinity comparable to the potent inhibitor PITCOIN1 (IC50 = 95 nM). This study represents the first application of a conformation-augmented ML framework to PI3KC2α inhibition, offering a blueprint for targeting underexplored kinases with limited structural data.
Collapse
Affiliation(s)
- Bana Katrib
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Ahmed Adel
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Mohammed Abadleh
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Safa Daoud
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Mutasem Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|
3
|
Takayoshi T, Hirota Y, Sugano A, Sugawara K, Takeuchi T, Ohta M, Yoshimura K, Nishikage S, Yamamoto A, Mimura Y, Higuchi S, Mori J, Kawakita R, Yorifuji T, Takaoka Y, Ogawa W. PIK3R1 mutations in individuals with insulin resistance or growth retardation: Case series and in silico functional analysis. J Diabetes Investig 2025. [PMID: 40420664 DOI: 10.1111/jdi.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/12/2025] [Accepted: 04/22/2025] [Indexed: 05/28/2025] Open
Abstract
AIMS/INTRODUCTION Phosphatidylinositol 3-kinase (PI3K) plays a key role in insulin signaling, and mutations in PIK3R1, which encodes a regulatory subunit (p85α) of this enzyme, are responsible for SHORT syndrome, which is associated with insulin-resistant diabetes. We here describe four Japanese individuals from three families with SHORT syndrome who harbor either a common or a previously unknown mutation in PIK3R1 as well as provide an in silico functional analysis of the mutant proteins. MATERIALS AND METHODS Gene sequencing was performed to identify PIK3R1 mutations. 3D structural analysis of wild-type and mutant p85α proteins was performed by homology modeling, and structural optimization and molecular dynamics simulations confirmed stable trajectories. Docking simulations of p85α with a phosphopeptide were also conducted. RESULTS We identified two families with a common mutation (c.1945C>T, p.R649W) and one family with a previously unidentified mutation (c.1957A>T, p.K653*) of PIK3R1. In silico modeling revealed that both mutations impaired binding of p85α to phosphopeptide, with K653* resulting in the loss of amino acids that contribute to such binding. Docking simulations showed a significant loss of docking energy for the R649W mutant compared with the wild-type protein (P = 0.00329). CONCLUSIONS The four cases of SHORT syndrome were associated with early-onset diabetes and intrauterine growth retardation, with the identified mutations likely disrupting the binding of p85α to phosphopeptide and thereby impairing insulin signaling. One case uniquely manifested diabetes without insulin resistance, emphasizing the need for further study of the clinical variability of SHORT syndrome, especially with regard to its associated diabetes.
Collapse
Affiliation(s)
- Tomofumi Takayoshi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yushi Hirota
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Aki Sugano
- Laboratory of Pharma-Medical Informatics and AI, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Division of Bioinformatics, Center for Advanced Antibody Drug Development, University of Toyama, Toyama, Japan
- Department of Medical Systems, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenji Sugawara
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takehito Takeuchi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mika Ohta
- Department of Medical Systems, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Computational Drug Design and Mathematical Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kai Yoshimura
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Seiji Nishikage
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akane Yamamoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu Mimura
- Division of Pediatrics, Toyosato Hospital, Toyosato, Shiga, Japan
| | - Shinji Higuchi
- Division of Pediatric Endocrinology, Metabolism and Nephrology, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Jun Mori
- Division of Pediatric Endocrinology, Metabolism and Nephrology, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Rie Kawakita
- Division of Pediatric Endocrinology, Metabolism and Nephrology, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Tohru Yorifuji
- Division of Pediatric Endocrinology, Metabolism and Nephrology, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Yutaka Takaoka
- Division of Bioinformatics, Center for Advanced Antibody Drug Development, University of Toyama, Toyama, Japan
- Department of Medical Systems, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Computational Drug Design and Mathematical Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
4
|
Damouni A, Tóth DJ, Barsi S, Nagy DK, Kasbary A, Hunyady L, Cserző M, Várnai P. Differential activation of the inositol 5-phosphatase SHIP2 by EGF and insulin signaling pathways. J Biol Chem 2025:110275. [PMID: 40412518 DOI: 10.1016/j.jbc.2025.110275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 05/08/2025] [Accepted: 05/14/2025] [Indexed: 05/27/2025] Open
Abstract
The importance of phosphatidylinositol 3,4,5- trisphosphate (PIP3) in cell signaling has been well established. Despite phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] emerging as an actor independent of PIP3, its exact signaling role remains poorly understood and the precise dynamics of PI(3,4)P2 and PIP3 upon receptor tyrosine kinase (RTK) stimulation are still inadequately investigated. In this study, we employed bioluminescence resonance energy transfer (BRET) sensors to monitor plasma membrane phosphoinositide (PIP) dynamics in HEK293-derived and HeLa cells following stimulation with epidermal growth factor (EGF) and insulin. Our findings reveal significant differences in PIP regulation: the increase in PI(3,4)P2 compared to PIP3 was larger with EGF stimulation relative to insulin. Using siRNA-mediated knockdown, we identified SH2-domain containing inositol polyphosphate 5-phosphatase 2 (SHIP2) as the key enzyme responsible for PI(3,4)P2 production in the EGF pathway, which was further supported by a bioinformatics analysis. Moreover, we detected increased phosphorylation at two tyrosine sites in SHIP2 upon EGF stimulation which was shown to be dependent on PI3K activation and PLC-induced calcium signal. These findings help refine our understanding of receptor-specific phosphoinositide dynamics and the enzymatic machinery involved as well as their potential influence on downstream cellular responses.
Collapse
Affiliation(s)
- Amir Damouni
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Dániel J Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network and Semmelweis University, Budapest, Hungary
| | - Szilvia Barsi
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Dániel Károly Nagy
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Alexander Kasbary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Miklós Cserző
- HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network and Semmelweis University, Budapest, Hungary
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network and Semmelweis University, Budapest, Hungary.
| |
Collapse
|
5
|
Stachyra P, Grzybowska-Szatkowska L. Signaling Pathways in Gliomas. Genes (Basel) 2025; 16:600. [PMID: 40428422 PMCID: PMC12110932 DOI: 10.3390/genes16050600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/10/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Changes in cell signaling pathways, which in normal conditions determine the maintenance of cell homeostasis and the correctness of its basic processes, may cause the transformation of a normal cell into a cancer cell. Alterations in cellular metabolism leading to oncogenesis are considered to be a hallmark of cancer cells. Therefore, a thorough understanding of cellular enzymes affecting metabolism and respiration, as well as intracellular pathways connected with them, seems crucial. These changes may be both prognostic and predictive factors, especially in terms of using molecularly targeted therapies. Aberrations in the pathways responsible for cell growth and angiogenesis are considered particularly important in the process of oncogenesis. Gliomas are the most common primary malignant tumors of the brain. The most important molecular disorders determining their particularly malignant nature are aberrations in the pathways responsible for cell growth and angiogenesis, such as the PI3K/Akt or RAS/MAPK/ERK signaling pathway, as well as excessive activity of enzymes, like hexokinases, which play a key role in glycolysis, autophagy, and apoptosis. The multitude of alterations detected in glioma cells, high heterogeneity, and the immunosuppressive environment within the tumor are the main features causing failures in the attempts to implement modern therapies.
Collapse
Affiliation(s)
- Paulina Stachyra
- II Department of Oncology and Clinical Immunology with Day Chemotherapy, Oncology Centre of the Lublin Region, Jaczewskiego 7, 20-090 Lublin, Poland
- Department of Radiotherapy, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland;
| | | |
Collapse
|
6
|
Zhang J, Zhao L, He J, Wu H, Guo M, Yu Z, Ma X, Yong Y, Li Y, Ju X, Liu X. Protect Effects of Perilla Seed Extract and Its Active Ingredient Luteolin Against Inflammatory Bowel Disease Model via the PI3K/AKT Signal Pathway In Vivo and In Vitro. Int J Mol Sci 2025; 26:3564. [PMID: 40332054 PMCID: PMC12026851 DOI: 10.3390/ijms26083564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/19/2025] [Accepted: 04/06/2025] [Indexed: 05/08/2025] Open
Abstract
The purpose of this study was to investigate the anti-inflammatory effects of Perilla Seed Extract (PSE) and its active ingredient on Inflammatory Bowel Disease (IBD) in vitro and in vivo. Thirty-two C57/BL mice were randomly divided into four groups (n = 8): control group (CON), PBS group, LPS group (LPS 3.5 mg/kg given intraperitoneally [ip] on day 7 of the study only), and PSE group (100 mg/kg orally daily + LPS ip at 3.5 mg/kg on day 7). Mice were euthanized 24 h after LPS administration. MODE-K cells were divided into five groups: control group (CON), LPS group (50 μg/mL LPS for 2 h), and PSE group (low dose, 25 μg/mL PSE + LPS; middle dose, 50 μg/mL PSE + LPS; high dose, 100 μg/mL PSE + LPS). In vivo, compared with the CON group, LPS revealed a significant decrease in the villus length-to-crypt depth ratio (p < 0.01) and goblet cell density per unit area (p < 0.01). Conversely, PSE administration resulted in a significant increase in the villus length-to-crypt depth ratio (p < 0.01) and goblet cell density (p < 0.01). LPS significantly increased the ROS content (p < 0.01), the secretion of inflammatory cytokines of IL-6 (p < 0.01), TNF-α (p < 0.01), and the mRNA expressions of HO-1 (p < 0.01). LPS significantly decreased the mRNA expressions of Occludin (p < 0.01) and Claudin1 (p < 0.01). In contrast, PSE treatment led to a marked decrease in ROS levels (p < 0.01), along with a reduction in the secretion of inflammatory factors IL-6 (p < 0.01) and TNF-α(p < 0.05), as well as the mRNA expressions of HO-1 (p < 0.01). Concurrently, PSE significantly increased the mRNA expressions of Occludin (p < 0.05) and Claudin1 (p < 0.01). In vitro, PSE treatment also significantly reversed LPS-induced inflammation, oxidation and tight junction-related factors. Network pharmacology identified 97 potential targets for PSE in treating IBD, while transcriptomics analysis revealed 342 differentially expressed genes (DEGs). Network pharmacology and transcriptomics analysis indicated that significant pathways included the PI3K-Akt signaling pathway, MAPK signaling pathway, and TNF signaling pathway, of which the PI3K-AKT pathway may represent the primary mechanism. In an in vivo setting, compared with the CON group, LPS led to a significant increase in the protein expression of p-PI3K/PI3K (p < 0.01) and p-AKT1/AKT1 (p < 0.01). Conversely, PSE resulted in a significant decrease in the protein expression of p-PI3K/PI3K (p < 0.01) and p-AKT1/AKT1 (p < 0.01). In vitro, compared with the LPS group, PSE also significantly blocked the protein expression of p-PI3K/PI3K (p < 0.01) and p-AKT1/AKT1 (p < 0.01). The chemical composition of PSE was analyzed using UPLC-MS/MS, which identified six components including luteolin (content 0.41%), rosmarinic acid (content 0.27%), α-linolenic acid (content 1.2%), and oleic acid (content 0.2%). Molecular docking found that luteolin could establish stable binding with eight targets, and luteolin significantly decreased the p-AKT1/AKT1 ratio (p < 0.01) compared to the LPS group in MODE-K cells. In summary, PSE demonstrates efficacy against IBD progression by enhancing intestinal barrier function and inhibiting inflammatory responses and oxidative stress via the PI3K/AKT signaling pathway, and luteolin's inhibition of AKT1 protein phosphorylation appears to play a particularly crucial role in this therapeutic mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China; (J.Z.)
| |
Collapse
|
7
|
Hashemi M, Fard AA, Pakshad B, Asheghabadi PS, Hosseinkhani A, Hosseini AS, Moradi P, Mohammadbeygi Niye M, Najafi G, Farahzadi M, Khoushab S, Taheriazam A, Farahani N, Mohammadi M, Daneshi S, Nabavi N, Entezari M. Non-coding RNAs and regulation of the PI3K signaling pathway in lung cancer: Recent insights and potential clinical applications. Noncoding RNA Res 2025; 11:1-21. [PMID: 39720352 PMCID: PMC11665378 DOI: 10.1016/j.ncrna.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Lung cancer (LC) is one of the most common causes of cancer-related death worldwide. It has been demonstrated that the prognosis of current drug treatments is affected by a variety of factors, including late stage, tumor recurrence, inaccessibility to appropriate treatments, and, most importantly, chemotherapy resistance. Non-coding RNAs (ncRNAs) contribute to tumor development, with some acting as tumor suppressors and others as oncogenes. The phosphoinositide 3-kinase (PI3Ks)/AKT serine/threonine kinase pathway is one of the most important common targets of ncRNAs in cancer, which is widely applied to modulate the cell cycle and a variety of biological processes, including cell growth, mobility survival, metabolic activity, and protein production. Discovering the biology of ncRNA-PI3K/AKT signaling may lead to advances in cancer diagnosis and treatment. As a result, we investigated the expression and role of PI3K/AKT-related ncRNAs in clinical characteristics of lung cancer, as well as their functions as potential biomarkers in lung cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Asal Abolghasemi Fard
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bita Pakshad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pezhman Shafiei Asheghabadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amineh Hosseinkhani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atena Sadat Hosseini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parham Moradi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Mohammadbeygi Niye
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazal Najafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohadeseh Farahzadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Hedger G, Yen HY. The Influence of Phosphoinositide Lipids in the Molecular Biology of Membrane Proteins: Recent Insights from Simulations. J Mol Biol 2025; 437:168937. [PMID: 39793883 PMCID: PMC7617384 DOI: 10.1016/j.jmb.2025.168937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
The phosphoinositide family of membrane lipids play diverse and critical roles in eukaryotic molecular biology. Much of this biological activity derives from interactions of phosphoinositide lipids with integral and peripheral membrane proteins, leading to modulation of protein structure, function, and cellular distribution. Since the discovery of phosphoinositides in the 1940s, combined molecular biology, biophysical, and structural approaches have made enormous progress in untangling this vast and diverse cellular network of interactions. More recently, in silico approaches such as molecular dynamics simulations have proven to be an asset in prospectively identifying, characterising, explaining the structural basis of these interactions, and in the best cases providing atomic level testable hypotheses on how such interactions control the function of a given membrane protein. This review details a number of recent seminal discoveries in phosphoinositide biology, enabled by advanced biomolecular simulation, and its integration with molecular biology, biophysical, and structural biology approaches. The results of the simulation studies agree well with experimental work, and in a number of notable cases have arrived at the key conclusion several years in advance of the experimental structures. SUMMARY: Hedger and Yen review developments in simulations of phosphoinositides and membrane proteins.
Collapse
Affiliation(s)
- George Hedger
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK.
| | - Hsin-Yung Yen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| |
Collapse
|
9
|
Cheng C, Yang F, Chen X, Zhao S. Identifying novel heterozygous PI4KA variants in fetal abnormalities. BMC Med Genomics 2025; 18:23. [PMID: 39885450 PMCID: PMC11783698 DOI: 10.1186/s12920-025-02093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND The clinical manifestations of PI4KA-related disorders are characterized by considerable variability, predominantly featuring neurological impairments, gastrointestinal symptoms, and a combined immunodeficiency. The aim of this study was to delineate the novel spectrum of PI4KA variants detected prenatally and to assess their influence on fetal development. METHODS A thorough fetal ultrasound screening was conducted, supplemented by both antenatal and post-abortion magnetic resonance imaging (MRI) studies. Novel PI4KA variants were detected through clinical Whole exon sequencing (WES) and validated by Sanger sequencing. The functional consequences of these variants were evaluated using bioinformatics tools. The effects of the identified variants on splicing were analyzed through minigene splicing assays. Subsequently, both wild-type and mutant PI4KA protein fragments were purified, and their enzymatic activities were quantitatively assessed. RESULTS Ultrasound imaging, MRI scans revealed a dilated small intestine with an obstruction. Compound heterozygous variants (NM_058004.3: c.2802_2863-40del and c.2819 C > T, p.Ala940Val) were identified in the PI4KA of the affected fetus through clinical trio-WES. Both variants were predicted deleterious. The PI4KA variant c.2802_2863-40del resulted in the production of three distinct mRNA isoforms. The PI4KA variant c.2819 C > T (p.Ala940Val) significantly reduced the enzyme activity. CONCLUSIONS This study extended the mutational spectrum of PI4KA and may provide guidance for genetic counseling. Functional studies confirmed that the identified variant induces alterations in RNA splicing and impairs enzyme activity.
Collapse
Affiliation(s)
- Chen Cheng
- Ultrasound Diagnosis Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
| | - Fan Yang
- Ultrasound Diagnosis Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
| | - Xinlin Chen
- Ultrasound Diagnosis Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
| | - Sheng Zhao
- Ultrasound Diagnosis Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
10
|
Takeuchi K, Nagase L, Kageyama S, Kanoh H, Oshima M, Ogawa-Iio A, Ikeda Y, Fujii Y, Kondo S, Osaka N, Masuda T, Ishihara T, Nakamura Y, Hirota Y, Sasaki T, Senda T, Sasaki AT. PI5P4K inhibitors: promising opportunities and challenges. FEBS J 2025. [PMID: 39828902 DOI: 10.1111/febs.17393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/30/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
Phosphatidylinositol 5-phosphate 4-kinases (PI5P4K), also known as type II PIPKs or PIPKIIs, convert the lipid second messenger PI5P to PI(4,5)P2. The PI5P4K family consists of three isozymes in mammals-PI5P4Kα, β, and γ-which notably utilize both GTP and ATP as phosphodonors. Unlike the other two isozymes, which can utilize both ATP and GTP, PI5P4Kβ exhibits a marked preference for GTP over ATP, acting as an intracellular GTP sensor that alters its kinase activity in response to physiological changes in GTP concentration. Knockout studies have demonstrated a critical role for PI5P4Kα and β in tumorigenesis, while PI5P4Kγ has been implicated in regulating immune and neural systems. Pharmacological targeting of PI5P4K holds promise for the development of new therapeutic approaches against cancer, immune dysfunction, and neurodegenerative diseases. Although several PI5P4K inhibitors have already been developed, challenges remain in PI5P4K inhibitor development, including a discrepancy between in vitro and cellular efficacy. This discrepancy is attributable to mainly three factors. (a) Most PI5P4K inhibitors were developed at low ATP levels, where these enzymes exhibit minimal activity. (b) Non-catalytic functions of PI5P4K require careful interpretation of PI5P4K depletion studies, as their scaffolding roles suppress class I PI3K signaling. (c) The lack of pharmacodynamic markers for in vivo assessment complicates efficacy assessment. To address these issues and promote the development of effective and targeted therapeutic strategies, this review provides an analytical overview of the distinct roles of individual isozymes and recent developments in PI5P4K inhibitors, emphasizing structural insights and the importance of pharmacodynamic marker identification.
Collapse
Affiliation(s)
- Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
- Cellular and Molecular Biology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Lisa Nagase
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Shun Kageyama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Hirotaka Kanoh
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masashi Oshima
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
| | - Aki Ogawa-Iio
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Minuma-ku, Japan
| | - Yoshiki Ikeda
- Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Japan
| | - Yuki Fujii
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
| | - Sei Kondo
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Natsuki Osaka
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Takeshi Masuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Tsukasa Ishihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yoshikazu Nakamura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Yoshihisa Hirota
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Minuma-ku, Japan
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Japan
- Department of Lipid Biology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Tsukuba, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Japan
| | - Atsuo T Sasaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, OH, USA
- Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Clinical and Molecular Genetics, Hiroshima University Hospital, Japan
| |
Collapse
|
11
|
Czyzyk D, Yan W, Messing S, Gillette W, Tsuji T, Yamaguchi M, Furuzono S, Turner DM, Esposito D, Nissley DV, McCormick F, Simanshu DK. Structural insights into isoform-specific RAS-PI3Kα interactions and the role of RAS in PI3Kα activation. Nat Commun 2025; 16:525. [PMID: 39788953 PMCID: PMC11718114 DOI: 10.1038/s41467-024-55766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
Mutations in RAS and PI3Kα are major drivers of human cancer. Their interaction plays a crucial role in activating PI3Kα and amplifying the PI3K-AKT-mTOR pathway. Disrupting RAS-PI3Kα interaction enhances survival in lung and skin cancer models and reduces tumor growth and angiogenesis, although the structural details of this interaction remain unclear. Here, we present structures of KRAS, RRAS2, and MRAS bound to the catalytic subunit (p110α) of PI3Kα, elucidating the interaction interfaces and local conformational changes upon complex formation. Structural and mutational analyses highlighted key residues in RAS and PI3Kα impacting binding affinity and revealed isoform-specific differences at the interaction interface in RAS and PI3K isoforms, providing a rationale for their differential affinities. Notably, in the RAS-p110α complex structures, RAS interaction with p110α is limited to the RAS-binding domain and does not involve the kinase domain. This study underscores the pivotal role of the RAS-PI3Kα interaction in PI3Kα activation and provides a blueprint for designing PI3Kα isoform-specific inhibitors to disrupt this interaction.
Collapse
Affiliation(s)
- Daniel Czyzyk
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wupeng Yan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - William Gillette
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Takashi Tsuji
- Medicinal Chemistry Research Laboratories, Daiichi Sankyo Co, Ltd, Tokyo, Japan
| | - Mitsuhiro Yamaguchi
- Medicinal Chemistry Research Laboratories, Daiichi Sankyo Co, Ltd, Tokyo, Japan
| | - Shinji Furuzono
- Cardiovascular Metabolic Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - David M Turner
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd Street, San Francisco, CA, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
12
|
Loughran RM, Arora GK, Sun J, Llorente A, Crabtree S, Ly K, Huynh RL, Cho W, Emerling BM. Noncanonical PI(4,5)P 2 coordinates lysosome positioning through cholesterol trafficking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.02.629779. [PMID: 39803512 PMCID: PMC11722365 DOI: 10.1101/2025.01.02.629779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
In p53-deficient cancers, targeting cholesterol metabolism has emerged as a promising therapeutic approach, given that p53 loss dysregulates sterol regulatory element-binding protein 2 (SREBP-2) pathways, thereby enhancing cholesterol biosynthesis. While cholesterol synthesis inhibitors such as statins have shown initial success, their efficacy is often compromised by the development of acquired resistance. Consequently, new strategies are being explored to disrupt cholesterol homeostasis more comprehensively by inhibiting its synthesis and intracellular transport. In this study, we investigate a previously underexplored function of PI5P4Ks, which catalyzes the conversion of PI(5)P to PI(4,5)P2 at intracellular membranes. Our findings reveal that PI5P4Ks play a key role in facilitating lysosomal cholesterol transport, regulating lysosome positioning, and sustaining growth signaling via the mTOR pathway. While PI5P4Ks have previously been implicated in mTOR signaling and tumor proliferation in p53-deficient contexts, this work elucidates an upstream mechanism that unifies these earlier observations.
Collapse
Affiliation(s)
- Ryan M. Loughran
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute; La Jolla, CA, USA
| | - Gurpreet K. Arora
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute; La Jolla, CA, USA
| | - Jiachen Sun
- Department of Chemistry, University of Illinois Chicago (UIC); Chicago, IL, USA
| | - Alicia Llorente
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute; La Jolla, CA, USA
| | - Sophia Crabtree
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute; La Jolla, CA, USA
| | - Kyanh Ly
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute; La Jolla, CA, USA
| | - Ren-Li Huynh
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute; La Jolla, CA, USA
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois Chicago (UIC); Chicago, IL, USA
| | - Brooke M. Emerling
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute; La Jolla, CA, USA
| |
Collapse
|
13
|
Ashadul Sk M, K H, Matada GSP, Pal R, B V M, Mounika S, E H, M P V, D A. Current developments in PI3K-based anticancer agents: Designing strategies, biological activity, selectivity, structure-activity correlation, and docking insight. Bioorg Chem 2025; 154:108011. [PMID: 39662340 DOI: 10.1016/j.bioorg.2024.108011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
The phospatidylinositol-3 kinase (PI3K) pathway is a critical intracellular signalling mechanism that is changed or amplified in a variety of cancers, including breast, gastric, ovarian, colorectal, prostate, glioma, and endometrial. PI3K signalling is important for cancer cell survival, angiogenesis, and metastasis, making it a promising therapeutic target. The PI3K kinases in their different isoforms, namely α, β, δ, and γ, encode PIK3CA, PIK3CB, PIK3CD, and PIK3CG genes. Specific gene mutation or overexpression of the protein is responsible for the therapeutic failure of current therapeutics. There are several current and completed clinical trials using PI3K inhibitors (pan, isoform-specific, and dual PI3K/mTOR) to develop effective PI3K inhibitors capable of overcoming resistance to existing drugs. However, the bulk of these inhibitors have had their indications revoked or voluntarily withdrawn due to concerns about their harmful consequences. Several inhibitors containing medicinally privileged scaffolds like thiazole, triazine, benzimidazole, podophyllotoxin, pyridine, quinazoline, thieno-triazole, pyrimidine, triazole, benzofuran, imidazo-pyridazine, oxazole, coumarin, and azepine derivatives have been explored to target the PI3K pathway and/or a specific isoform in the current overview. This article reviews the structure, biological activities, and clinical status of PI3K inhibitors. It focuses on the development techniques, docking insight, and structure-activity connections of PI3K-based inhibitors. The findings provide useful insights and future approaches for the development of promising PI3K-based inhibitors.
Collapse
Affiliation(s)
- Md Ashadul Sk
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Hemalatha K
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India.
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India.
| | - Manjushree B V
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - S Mounika
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Haripriya E
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Viji M P
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Anjan D
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| |
Collapse
|
14
|
Gong GQ, Anandapadamanaban M, Islam MS, Hay IM, Bourguet M, Špokaitė S, Dessus AN, Ohashi Y, Perisic O, Williams RL. Making PI3K superfamily enzymes run faster. Adv Biol Regul 2025; 95:101060. [PMID: 39592347 DOI: 10.1016/j.jbior.2024.101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024]
Abstract
The phosphoinositide 3-kinase (PI3K) superfamily includes lipid kinases (PI3Ks and type III PI4Ks) and a group of PI3K-like Ser/Thr protein kinases (PIKKs: mTOR, ATM, ATR, DNA-PKcs, SMG1 and TRRAP) that have a conserved C-terminal kinase domain. A common feature of the superfamily is that they have very low basal activity that can be greatly increased by a range of regulatory factors. Activators reconfigure the active site, causing a subtle realignment of the N-lobe of the kinase domain relative to the C-lobe. This realignment brings the ATP-binding loop in the N-lobe closer to the catalytic residues in the C-lobe. In addition, a conserved C-lobe feature known as the PIKK regulatory domain (PRD) also can change conformation, and PI3K activators can alter an analogous PRD-like region. Recent structures have shown that diverse activating influences can trigger these conformational changes, and a helical region clamping onto the kinase domain transmits regulatory interactions to bring about the active site realignment for more efficient catalysis. A recent report of a small-molecule activator of PI3Kα for application in nerve regeneration suggests that flexibility of these regulatory elements might be exploited to develop specific activators of all PI3K superfamily members. These activators could have roles in wound healing, anti-stroke therapy and treating neurodegeneration. We review common structural features of the PI3K superfamily that may make them amenable to activation.
Collapse
Affiliation(s)
- Grace Q Gong
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK; University College London Cancer Institute, University College London, London, UK
| | | | - Md Saiful Islam
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Iain M Hay
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Maxime Bourguet
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Saulė Špokaitė
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Antoine N Dessus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Yohei Ohashi
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Olga Perisic
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Roger L Williams
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
15
|
Liang X, Hu Y, Li X, Xu X, Chen Z, Han Y, Han Y, Lang G. Role of PI3Kγ in the polarization, migration, and phagocytosis of microglia. Neurochem Int 2025; 182:105917. [PMID: 39675432 DOI: 10.1016/j.neuint.2024.105917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Phosphoinositide 3-kinase γ (PI3Kγ) is a signaling protein that is constitutively expressed in immune competent cells and plays a crucial role in cell proliferation, apoptosis, migration, deformation, and immunology. Several studies have shown that high expression of PI3Kγ can inhibit the occurrence of inflammation in microglia while also regulating the polarization of microglia to inhibit inflammation and enhance microglial migration and phagocytosis. It is well known that the regulation of microglial polarization, migration, and phagocytosis is key to the treatment of most neurodegenerative diseases. Therefore, in this article, we review the important regulatory role of PI3Kγ in microglia to provide a basis for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xinghua Liang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, 563000, China.
| | - Yuan Hu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, 563000, China.
| | - Xinyue Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, 563000, China.
| | - Xi Xu
- The Special Key Laboratory of Oral Diseases Research Institution of Higher Education in Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
| | - Zhonglan Chen
- The Special Key Laboratory of Oral Diseases Research Institution of Higher Education in Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
| | - Yalin Han
- The Special Key Laboratory of Oral Diseases Research Institution of Higher Education in Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
| | - Yingying Han
- The Special Key Laboratory of Oral Diseases Research Institution of Higher Education in Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
| | - Guangping Lang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
16
|
Sheng Z, Beck P, Gabby M, Habte-Mariam S, Mitkos K. Molecular Basis of Oncogenic PI3K Proteins. Cancers (Basel) 2024; 17:77. [PMID: 39796708 PMCID: PMC11720314 DOI: 10.3390/cancers17010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The dysregulation of phosphatidylinositol 3-kinase (PI3K) signaling plays a pivotal role in driving neoplastic transformation by promoting uncontrolled cell survival and proliferation. This oncogenic activity is primarily caused by mutations that are frequently found in PI3K genes and constitutively activate the PI3K signaling pathway. However, tumorigenesis can also arise from nonmutated PI3K proteins adopting unique active conformations, further complicating the understanding of PI3K-driven cancers. Recent structural studies have illuminated the functional divergence among highly homologous PI3K proteins, revealing how subtle structural alterations significantly impact their activity and contribute to tumorigenesis. In this review, we summarize current knowledge of Class I PI3K proteins and aim to unravel the complex mechanism underlying their oncogenic traits. These insights will not only enhance our understanding of PI3K-mediated oncogenesis but also pave the way for the design of novel PI3K-based therapies to combat cancers driven by this signaling pathway.
Collapse
Affiliation(s)
- Zhi Sheng
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Faculty of Health Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Patrick Beck
- Division of General Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maegan Gabby
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | | | - Katherine Mitkos
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| |
Collapse
|
17
|
Suresh S, Shaw AL, Pemberton JG, Scott MK, Harris NJ, Parson MAH, Jenkins ML, Rohilla P, Alvarez-Prats A, Balla T, Yip CK, Burke JE. Molecular basis for plasma membrane recruitment of PI4KA by EFR3. SCIENCE ADVANCES 2024; 10:eadp6660. [PMID: 39705356 DOI: 10.1126/sciadv.adp6660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024]
Abstract
The lipid kinase phosphatidylinositol 4 kinase III α (PI4KIIIα/PI4KA) is a master regulator of the lipid composition and asymmetry of the plasma membrane. PI4KA exists primarily in a heterotrimeric complex with its regulatory proteins TTC7 and FAM126. Fundamental to PI4KA activity is its targeted recruitment to the plasma membrane by the lipidated proteins EFR3A and EFR3B. Here, we report a cryogenic electron microscopy structure of the C terminus of EFR3A bound to the PI4KA-TTC7B-FAM126A complex, with extensive validation using both hydrogen deuterium exchange mass spectrometry, and mutational analysis. The EFR3A C terminus undergoes a disorder-order transition upon binding to the PI4KA complex, with an unexpected direct interaction with both TTC7B and FAM126A. Complex disrupting mutations in TTC7B, FAM126A, and EFR3 decrease PI4KA recruitment to the plasma membrane. Multiple posttranslational modifications and disease linked mutations map to this site, providing insight into how PI4KA membrane recruitment can be regulated and disrupted in human disease.
Collapse
Affiliation(s)
- Sushant Suresh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Alexandria L Shaw
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mackenzie K Scott
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Matthew A H Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Pooja Rohilla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
18
|
Jin H, Wang X, Li L, Rui C, Gan H, Wang Q, Tao F, Zhu Y. Integrated proteomic and transcriptomic landscape of human placenta in small for gestational age infants. iScience 2024; 27:111423. [PMID: 39687015 PMCID: PMC11648249 DOI: 10.1016/j.isci.2024.111423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/01/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Small for gestational age (SGA) infants affected by placental insufficiency are exposed to the risk of stillbirth and long-term complications. Based on RNA-seq and mass spectrometry, we identified dysregulated RNAs and proteins from the comparisons of SGA placental tissues and controls. We revealed two SGA-relevant co-expression modules (SRMs) that also significantly distinguished SGA from controls. Then we performed an integrated analysis of transcriptomic and proteomic profiles to trace their links to SGA as well as their significant correlations. For the core functional molecules we screened, we revealed their potential upstream regulators and validated them experimentally in an independent cohort. Overall, we pointed out insights into different molecular pathways for the pathological mechanisms of SGA and indicated potential target molecules that may be drivers of placental aberrations in the SGA infants.
Collapse
Affiliation(s)
- Heyue Jin
- Department of Maternal & Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
- Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xianyan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Lingyu Li
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chen Rui
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Hong Gan
- Department of Maternal & Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Qunan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Fangbiao Tao
- Department of Maternal & Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yumin Zhu
- Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
19
|
Nandre RM, Newman AH, Terse PS. In vitro safety evaluation of dopamine D3R antagonist, R-VK4-116, as a potential medication for the treatment of opioid use disorder. PLoS One 2024; 19:e0315569. [PMID: 39680602 DOI: 10.1371/journal.pone.0315569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
R-VK4-116 is currently being developed as a medication to treat opioid use disorder (OUD). To characterize in vitro safety properties of R-VK4-116, metabolic stability in hepatocytes or liver microsomes, metabolite identification, metabolism/transporter-mediated drug interactions, lysosomal perturbation, mitochondrial toxicity, off-target enzyme effects, cellular and nuclear receptor functional assays, electrophysiological assays, CiPA, KINOMEscanTM, plasma protein binding, phospholipidosis and steatosis assays were performed. Overall, R-VK4-116 was metabolically stable in hepatocytes and microsomes. Four major metabolites were detected: two mono-oxidation products, one di-oxidation product, and one demethylated plus di-oxidation product. CYP2D6 and CYP3A4 were major contributors in R-VK4-116 metabolism. Further, R-VK4-116 did not induce/inhibit CYP enzymes. However, R-VK4-116 inhibited BCRP/P-gp, and showed antagonist effects on α1A(h), H1(h) and agonist effect on hGABAA∞1β2γ2 at 10 μM. R-VK4-116 inhibited hERG and Kir2.1 at a high concentration of 100 μM. KINOMEscanTM provided 5 hits (CHEK2, HPK1, MARK3, SRPK2 and TNK1) with Kds of >10 μM. Further, R-VK4-116 was bound to human, rat and dog plasma proteins (~83-93%). R-VK4-116 did not induce lysosome perturbation, mitochondrial toxicity, phospholipidosis, or steatosis at ≤10 μM. These results demonstrated that R-VK4-116 possesses favorable in vitro safety properties and supports further development as a potential medication for OUD.
Collapse
Affiliation(s)
- Rahul M Nandre
- Therapeutic Development Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, Maryland, United States of America
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institute of Health, Baltimore, Maryland, United States of America
| | - Pramod S Terse
- Therapeutic Development Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, Maryland, United States of America
| |
Collapse
|
20
|
Gong GQ, Masson GR, Lee WJ, Dickson JMJ, Kendall JD, Rathinaswamy MK, Buchanan CM, Middleditch M, Owen BM, Spicer JA, Rewcastle GW, Denny WA, Burke JE, Shepherd PR, Williams RL, Flanagan JU. ATP-competitive inhibitors of PI3K enzymes demonstrate an isoform selective dual action by controlling membrane binding. Biochem J 2024; 481:1787-1802. [PMID: 39485310 PMCID: PMC7617104 DOI: 10.1042/bcj20240479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/03/2024]
Abstract
PI3Kα, consisting of the p110α isoform of the catalytic subunit of PI 3-kinase (encoded by PIK3CA) and the p85α regulatory subunit (encoded by PI3KR1) is activated by growth factor receptors. The identification of common oncogenic mutations in PIK3CA has driven the development of many inhibitors that bind to the ATP-binding site in the p110α subunit. Upon activation, PI3Kα undergoes conformational changes that promote its membrane interaction and catalytic activity, yet the effects of ATP-site directed inhibitors on the PI3Kα membrane interaction are unknown. Using FRET and biolayer interferometry assays, we show that a class of ATP-site directed inhibitors represented by GSK2126458 block the growth factor activated PI3KαWT membrane interaction, an activity dependent on the ligand forming specific ATP-site interactions. The membrane interaction for hot spot oncogenic mutations that bypass normal p85α regulatory mechanisms was insensitive to GSK2126458, while GSK2126458 could regulate mutations found outside of these hot spot regions. Our data show that the effect of GSK126458 on the membrane interaction requires the enzyme to revert from its growth factor activated state to a basal state. We find that an ATP substrate analogue can increase the wild type PI3Kα membrane interaction, uncovering a substrate based regulatory event that can be mimicked by different inhibitor chemotypes. Our findings, together with the discovery of small molecule allosteric activators of PI3Kα illustrate that PI3Kα membrane interactions can be modulated by factors related to ligand binding both within the ATP site and at allosteric sites.
Collapse
Affiliation(s)
- Grace Q Gong
- Department of Molecular Medicine, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Glenn R Masson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB20QH, U.K
| | - Woo-Jeong Lee
- Department of Molecular Medicine, The University of Auckland, Auckland, New Zealand
| | - James M J Dickson
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Jackie D Kendall
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Manoj K Rathinaswamy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2
| | - Christina M Buchanan
- Department of Molecular Medicine, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Martin Middleditch
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Brady M Owen
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Julie A Spicer
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Gordon W Rewcastle
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - William A Denny
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2
| | - Peter R Shepherd
- Department of Molecular Medicine, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Roger L Williams
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB20QH, U.K
| | - Jack U Flanagan
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Wang J, An Z, Wu Z, Zhou W, Sun P, Wu P, Dang S, Xue R, Bai X, Du Y, Chen R, Wang W, Huang P, Lam SM, Ai Y, Liu S, Shui G, Zhang Z, Liu Z, Huang J, Fang X, He K. Spatial organization of PI3K-PI(3,4,5)P 3-AKT signaling by focal adhesions. Mol Cell 2024; 84:4401-4418.e9. [PMID: 39488211 DOI: 10.1016/j.molcel.2024.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/17/2024] [Accepted: 10/08/2024] [Indexed: 11/04/2024]
Abstract
The class I phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway is a key regulator of cell survival, growth, and proliferation and is among the most frequently mutated pathways in cancer. However, where and how PI3K-AKT signaling is spatially activated and organized in mammalian cells remains poorly understood. Here, we identify focal adhesions (FAs) as subcellular signaling hubs organizing the activation of PI3K-PI(3,4,5)P3-AKT signaling in human cancer cells containing p110α mutations under basal conditions. We find that class IA PI3Ks are preferentially recruited to FAs for activation, resulting in localized production of PI(3,4,5)P3 around FAs. As the effector protein of PI(3,4,5)P3, AKT1 molecules are dynamically recruited around FAs for activation. The spatial recruitment/activation of the PI3K-PI(3,4,5)P3-AKT cascade is regulated by activated FA kinase (FAK). Furthermore, combined inhibition of p110α and FAK results in a more potent inhibitory effect on cancer cells. Thus, our results unveil a growth-factor independent, compartmentalized organization mechanism for PI3K-PI(3,4,5)P3-AKT signaling.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengyang An
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongsheng Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Pengyu Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Piyu Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Song Dang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Xue
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Xue Bai
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yongtao Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongmei Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxu Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Pei Huang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Lipidall Technologies Company Limited, Changzhou, Jiangsu 213000, China
| | - Youwei Ai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zheng Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaohong Fang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Zhou Q, Liu X, Wang MW. Visualizing the dual interaction of calcineurin with PI4KA and FAM126A. Structure 2024; 32:1852-1854. [PMID: 39515303 DOI: 10.1016/j.str.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
In this issue of Structure, Shaw et al.1 visualize the PI4KA-TTC7B-FAM126A-calcineurin complex by combining cryo-EM, HDX-MS, and AlphaFold3, and reveal a dual interaction of calcineurin with PI4KA and FAM126A. This work promotes our understanding of calcineurin-regulated PI4KA activity and paves the way for further exploration of the roles of PI4KA in the plasma membrane.
Collapse
Affiliation(s)
- Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Research Center for Deepsea Bioresources, Sanya 572025, China; Translational Research Center for Structural Biology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou 570228, China.
| |
Collapse
|
23
|
Shaw AL, Suresh S, Parson MAH, Harris NJ, Jenkins ML, Yip CK, Burke JE. Structure of calcineurin bound to PI4KA reveals dual interface in both PI4KA and FAM126A. Structure 2024; 32:1973-1983.e6. [PMID: 39216471 DOI: 10.1016/j.str.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Phosphatidylinositol 4-kinase alpha (PI4KA) maintains the phosphatidylinositol 4-phosphate (PI4P) and phosphatidylserine pools of the plasma membrane. A key regulator of PI4KA is its association into a complex with TTC7 and FAM126 proteins. This complex can be regulated by the CNAβ1 isoform of the phosphatase calcineurin. We previously identified that CNAβ1 directly binds to FAM126A. Here, we report a cryoelectron microscopic (cryo-EM) structure of a truncated PI4KA complex bound to calcineurin, revealing a unique direct interaction between PI4KA and calcineurin. Hydrogen deuterium exchange mass spectrometry (HDX-MS) and computational analysis show that calcineurin forms a complex with an evolutionarily conserved IKISVT sequence in PI4KA's horn domain. We also characterized conserved LTLT and PSISIT calcineurin binding sequences in the C terminus of FAM126A. These dual sites in PI4KA and FAM126A are both in close proximity to phosphorylation sites in the PI4KA complex, suggesting key roles of calcineurin-regulated phosphosites in PI4KA regulation. This work reveals novel insight into how calcineurin can regulate PI4KA activity.
Collapse
Affiliation(s)
- Alexandria L Shaw
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Sushant Suresh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Matthew A H Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada.
| |
Collapse
|
24
|
Gupta I, Gaykalova DA. Unveiling the role of PIK3R1 in cancer: A comprehensive review of regulatory signaling and therapeutic implications. Semin Cancer Biol 2024; 106-107:58-86. [PMID: 39197810 DOI: 10.1016/j.semcancer.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Phosphoinositide 3-kinase (PI3K) is responsible for phosphorylating phosphoinositides to generate secondary signaling molecules crucial for regulating various cellular processes, including cell growth, survival, and metabolism. The PI3K is a heterodimeric enzyme complex comprising of a catalytic subunit (p110α, p110β, or p110δ) and a regulatory subunit (p85). The binding of the regulatory subunit, p85, with the catalytic subunit, p110, forms an integral component of the PI3K enzyme. PIK3R1 (phosphoinositide-3-kinase regulatory subunit 1) belongs to class IA of the PI3K family. PIK3R1 exhibits structural complexity due to alternative splicing, giving rise to distinct isoforms, prominently p85α and p55α. While the primary p85α isoform comprises multiple domains, including Src homology 3 (SH3) domains, a Breakpoint Cluster Region Homology (BH) domain, and Src homology 2 (SH2) domains (iSH2 and nSH2), the shorter isoform, p55α, lacks certain domains present in p85α. In this review, we will highlight the intricate regulatory mechanisms governing PI3K signaling along with the impact of PIK3R1 alterations on cellular processes. We will further delve into the clinical significance of PIK3R1 mutations in various cancer types and their implications for prognosis and treatment outcomes. Additionally, we will discuss the evolving landscape of targeted therapies aimed at modulating PI3K-associated pathways. Overall, this review will provide insights into the dynamic interplay of PIK3R1 in cancer, fostering advancements in precision medicine and the development of targeted interventions.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
25
|
Li Z, Li X, Li S, Tao R, Tian X, Feng F, Jiang W, Wang H. Preclinical evaluation and phase 1 study of the PI3Kα/δ inhibitor TQ-B3525 in Chinese patients with advanced cancers. Cancer 2024; 130:3686-3698. [PMID: 38926891 DOI: 10.1002/cncr.35453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Phosphatidylinositol 3-kinase (PI3K) inhibitors transformed management of various malignancies. This study preclinically characterized TQ-B3525 (dual PI3Kα/δ inhibitor) and assessed the recommended phase 2 dose (RP2D), safety, efficacy, and pharmacokinetics in relapsed or refractory (R/R) lymphoma or advanced solid tumors (STs). METHODS Oral TQ-B3525 was given at eight dose levels on a 28-day cycle. Primary end points were dose-limiting toxicity (DLT), maximum tolerated dose (MTD), and safety. RESULTS TQ-B3525 showed high selectivity and suppressed tumor growth. Between June 12, 2018, and November 18, 2020, 80 patients were enrolled (63 in dose-escalation cohort; 17 in dose-expansion cohort). Two DLTs occurred in two (two of 63, 3.2%) DLT-evaluable patients; MTD was not identified. TQ-B3525 at 20 mg once daily was selected as RP2D. Grade 3 or worse treatment-related adverse events mainly included hyperglycemia (16.3%), neutrophil count decreased (15.0%), and diarrhea (10.0%). Two (2.5%) treatment-related deaths were reported. Sixty patients with R/R lymphoma and 11 advanced STs demonstrated objective response rates of 68.3% and 9.1%, disease control rates of 91.7% and 54.6%, median progression-free survivals of 12.1 and 1.1 months; median overall survivals were not reached. CONCLUSION TQ-B3525 exhibited rapid absorption and a nearly proportional increase in exposure. Acceptable safety and promising efficacy support further investigation of TQ-B3525 (20 mg once daily) for R/R lymphoma.
Collapse
Affiliation(s)
- Zhiming Li
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiang Li
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin, China
| | - Su Li
- Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rong Tao
- Department of Hematology, Cancer Center Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Lymphoma, Fudan University Shanghai, Shanghai, China
| | - Xin Tian
- Pharmacological Evaluation Research Center, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, Nanjing, China
| | - Fan Feng
- Clinical Medicine Department, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, Nanjing, China
| | - Wenqi Jiang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huaqing Wang
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin, China
| |
Collapse
|
26
|
Li B, Wen M, Gao F, Wang Y, Wei G, Duan Y. Regulation of HNRNP family by post-translational modifications in cancer. Cell Death Discov 2024; 10:427. [PMID: 39366930 PMCID: PMC11452504 DOI: 10.1038/s41420-024-02198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (HNRNPs) represent a large family of RNA-binding proteins consisting of more than 20 members and have attracted great attention with their distinctive roles in cancer progression by regulating RNA splicing, transcription, and translation. Nevertheless, the cancer-specific modulation of HNRNPs has not been fully elucidated. The research of LC-MS/MS technology has documented that HNRNPs were widely and significantly targeted by different post-translational modifications (PTMs), which have emerged as core regulators in shaping protein functions and are involved in multiple physiological processes. Accumulating studies have highlighted that several PTMs are involved in the mechanisms of HNRNPs regulation in cancer and may be suitable therapeutic targets. In this review, we summarize the existing evidence describing how PTMs modulate HNRNPs functions on gene regulation and the involvement of their dysregulation in cancer, which will help shed insights on their clinical impacts as well as possible therapeutic tools targeting PTMs on HNRNPs.
Collapse
Affiliation(s)
- Bohao Li
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mingxin Wen
- Department of Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fei Gao
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guangwei Wei
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Yangmiao Duan
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
27
|
Zuo WF, Pang Q, Zhu X, Yang QQ, Zhao Q, He G, Han B, Huang W. Heat shock proteins as hallmarks of cancer: insights from molecular mechanisms to therapeutic strategies. J Hematol Oncol 2024; 17:81. [PMID: 39232809 PMCID: PMC11375894 DOI: 10.1186/s13045-024-01601-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Heat shock proteins are essential molecular chaperones that play crucial roles in stabilizing protein structures, facilitating the repair or degradation of damaged proteins, and maintaining proteostasis and cellular functions. Extensive research has demonstrated that heat shock proteins are highly expressed in cancers and closely associated with tumorigenesis and progression. The "Hallmarks of Cancer" are the core features of cancer biology that collectively define a series of functional characteristics acquired by cells as they transition from a normal state to a state of tumor growth, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, enabled replicative immortality, the induction of angiogenesis, and the activation of invasion and metastasis. The pivotal roles of heat shock proteins in modulating the hallmarks of cancer through the activation or inhibition of various signaling pathways has been well documented. Therefore, this review provides an overview of the roles of heat shock proteins in vital biological processes from the perspective of the hallmarks of cancer and summarizes the small-molecule inhibitors that target heat shock proteins to regulate various cancer hallmarks. Moreover, we further discuss combination therapy strategies involving heat shock proteins and promising dual-target inhibitors to highlight the potential of targeting heat shock proteins for cancer treatment. In summary, this review highlights how targeting heat shock proteins could regulate the hallmarks of cancer, which will provide valuable information to better elucidate and understand the roles of heat shock proteins in oncology and the mechanisms of cancer occurrence and development and aid in the development of more efficacious and less toxic novel anticancer agents.
Collapse
Affiliation(s)
- Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyu Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gu He
- Department of Dermatology and Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
28
|
Duewell BR, Faris KA, Hansen SD. Molecular basis of product recognition during PIP5K-mediated production of PI(4,5)P 2 with positive feedback. J Biol Chem 2024; 300:107631. [PMID: 39098525 PMCID: PMC11405805 DOI: 10.1016/j.jbc.2024.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024] Open
Abstract
The ability for cells to localize and activate peripheral membrane-binding proteins is critical for signal transduction. Ubiquitously important in these signaling processes are phosphatidylinositol phosphate (PIP) lipids, which are dynamically phosphorylated by PIP lipid kinases on intracellular membranes. Functioning primarily at the plasma membrane, phosphatidylinositol-4-phosphate 5-kinases (PIP5K) catalyzes the phosphorylation of PI(4)P to generate most of the PI(4,5)P2 lipids found in eukaryotic plasma membranes. Recently, we determined that PIP5K displays a positive feedback loop based on membrane-mediated dimerization and cooperative binding to its product, PI(4,5)P2. Here, we examine how two motifs contribute to PI(4,5)P2 recognition to control membrane association and catalysis of PIP5K. Using a combination of single molecule TIRF microscopy and kinetic analysis of PI(4)P lipid phosphorylation, we map the sequence of steps that allow PIP5K to cooperatively engage PI(4,5)P2. We find that the specificity loop regulates the rate of PIP5K membrane association and helps orient the kinase to more effectively bind PI(4,5)P2 lipids. After correctly orienting on the membrane, PIP5K transitions to binding PI(4,5)P2 lipids near the active site through a motif previously referred to as the substrate or PIP-binding motif (PIPBM). The PIPBM has broad specificity for anionic lipids and serves a role in regulating membrane association in vitro and in vivo. Overall, our data supports a two-step membrane-binding model where the specificity loop and PIPBM act in concert to help PIP5K orient and productively engage anionic lipids to drive the positive feedback during PI(4,5)P2 production.
Collapse
Affiliation(s)
- Benjamin R Duewell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA; Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Katherine A Faris
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA; Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Scott D Hansen
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA; Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA.
| |
Collapse
|
29
|
Wu Z, Du Y, Kirchhausen T, He K. Probing and imaging phospholipid dynamics in live cells. LIFE METABOLISM 2024; 3:loae014. [PMID: 39872507 PMCID: PMC11749120 DOI: 10.1093/lifemeta/loae014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 01/30/2025]
Abstract
Distinct phospholipid species display specific distribution patterns across cellular membranes, which are important for their structural and signaling roles and for preserving the integrity and functionality of the plasma membrane and organelles. Recent advancements in lipid biosensor technology and imaging modalities now allow for direct observation of phospholipid distribution, trafficking, and dynamics in living cells. These innovations have markedly advanced our understanding of phospholipid function and regulation at both cellular and subcellular levels. Herein, we summarize the latest developments in phospholipid biosensor design and application, emphasizing the contribution of cutting-edge imaging techniques to elucidating phospholipid dynamics and distribution with unparalleled spatiotemporal precision.
Collapse
Affiliation(s)
- Zhongsheng Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongtao Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Tran CS, Kersten J, Yan J, Breinig M, Huth T, Poth T, Colasanti O, Riedl T, Faure-Dupuy S, Diehl S, Verhoye L, Li TF, Lingemann M, Schult P, Ahlén G, Frelin L, Kühnel F, Vondran FWR, Breuhahn K, Meuleman P, Heikenwälder M, Schirmacher P, Bartenschlager R, Laketa V, Roessler S, Tschaharganeh DF, Sällberg M, Lohmann V. Phosphatidylinositol 4-Kinase III Alpha Governs Cytoskeletal Organization for Invasiveness of Liver Cancer Cells. Gastroenterology 2024; 167:522-537. [PMID: 38636680 DOI: 10.1053/j.gastro.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/06/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND & AIMS High expression of phosphatidylinositol 4-kinase III alpha (PI4KIIIα) correlates with poor survival rates in patients with hepatocellular carcinoma. In addition, hepatitis C virus (HCV) infections activate PI4KIIIα and contribute to hepatocellular carcinoma progression. We aimed at mechanistically understanding the impact of PI4KIIIα on the progression of liver cancer and the potential contribution of HCV in this process. METHODS Several hepatic cell culture and mouse models were used to study the functional importance of PI4KIIIα on liver pathogenesis. Antibody arrays, gene silencing, and PI4KIIIα-specific inhibitor were applied to identify the involved signaling pathways. The contribution of HCV was examined by using HCV infection or overexpression of its nonstructural protein. RESULTS High PI4KIIIα expression and/or activity induced cytoskeletal rearrangements via increased phosphorylation of paxillin and cofilin. This led to morphologic alterations and higher migratory and invasive properties of liver cancer cells. We further identified the liver-specific lipid kinase phosphatidylinositol 3-kinase C2 domain-containing subunit gamma (PIK3C2γ) working downstream of PI4KIIIα in regulation of the cytoskeleton. PIK3C2γ generates plasma membrane phosphatidylinositol 3,4-bisphosphate-enriched, invadopodia-like structures that regulate cytoskeletal reorganization by promoting Akt2 phosphorylation. CONCLUSIONS PI4KIIIα regulates cytoskeleton organization via PIK3C2γ/Akt2/paxillin-cofilin to favor migration and invasion of liver cancer cells. These findings provide mechanistic insight into the contribution of PI4KIIIα and HCV to the progression of liver cancer and identify promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Cong Si Tran
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Center for Integrative Infectious Disease Research, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Julia Kersten
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Center for Integrative Infectious Disease Research, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Jingyi Yan
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Marco Breinig
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ) and Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thorben Huth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Tanja Poth
- Center for Model System and Comparative Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Ombretta Colasanti
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Center for Integrative Infectious Disease Research, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Tobias Riedl
- Division of Chronic Inflammation and Cancer, DKFZ, Heidelberg, Germany
| | - Suzanne Faure-Dupuy
- Division of Chronic Inflammation and Cancer, DKFZ, Heidelberg, Germany; Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Stefan Diehl
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Center for Integrative Infectious Disease Research, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Lieven Verhoye
- Laboratory of Liver Infectious Diseases, Ghent University, Ghent, Belgium
| | - Teng-Feng Li
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Center for Integrative Infectious Disease Research, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Marit Lingemann
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Center for Integrative Infectious Disease Research, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Philipp Schult
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Center for Integrative Infectious Disease Research, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Gustaf Ahlén
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology, Infectiology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian W R Vondran
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover, Hannover, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Ghent University, Ghent, Belgium
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, DKFZ, Heidelberg, Germany; The M3 Research Institute, Medical Faculty Tübingen, Tübingen, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Ralf Bartenschlager
- DZIF, Partner Site Heidelberg, Heidelberg, Germany; Division of Virus-Associated Carcinogenesis, DKFZ, Heidelberg, Germany; Department of Infectious Diseases, Molecular Virology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Vibor Laketa
- DZIF, Partner Site Heidelberg, Heidelberg, Germany; Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Darjus Felix Tschaharganeh
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ) and Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Matti Sällberg
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Clinical Microbiology, Karolinska University Hospital, Huddinge, Sweden
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Center for Integrative Infectious Disease Research, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany; DZIF, Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
31
|
Suresh S, Shaw AL, Pemberton JG, Scott MK, Harris NJ, Parson MAH, Jenkins ML, Rohilla P, Alvarez-Prats A, Balla T, Yip CK, Burke JE. Molecular basis for plasma membrane recruitment of PI4KA by EFR3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.587787. [PMID: 38746453 PMCID: PMC11092606 DOI: 10.1101/2024.04.30.587787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The lipid kinase phosphatidylinositol 4 kinase III alpha (PI4KIIIa/PI4KA) is a master regulator of the lipid composition and asymmetry of the plasma membrane. PI4KA exists primarily in a heterotrimeric complex with its regulatory proteins TTC7 and FAM126. Fundamental to PI4KA activity is its targeted recruitment to the plasma membrane by the lipidated proteins EFR3A and EFR3B. Here, we report a cryo-EM structure of the C-terminus of EFR3A bound to the PI4KA-TTC7B-FAM126A complex, with extensive validation using both hydrogen deuterium exchange mass spectrometry (HDX-MS), and mutational analysis. The EFR3A C-terminus undergoes a disorder-order transition upon binding to the PI4KA complex, with an unexpected direct interaction with both TTC7B and FAM126A. Complex disrupting mutations in TTC7B, FAM126A, and EFR3 decrease PI4KA recruitment to the plasma membrane. Multiple post-translational modifications and disease linked mutations map to this site, providing insight into how PI4KA membrane recruitment can be regulated and disrupted in human disease.
Collapse
Affiliation(s)
- Sushant Suresh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Alexandria L Shaw
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Current address: Department of Biology, Western University, London, ON, N6A 3K7 Canada
| | - Mackenzie K Scott
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Matthew AH Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Pooja Rohilla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
32
|
Song JZ, Feng YH, Sergevnina V, Zhu J, Li H, Xie Z. Assessing the Presence of Phosphoinositides on Autophagosomal Membrane in Yeast by Live Cell Imaging. Microorganisms 2024; 12:1458. [PMID: 39065227 PMCID: PMC11279164 DOI: 10.3390/microorganisms12071458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The formation of autophagosomes mediating the sequestration of cytoplasmic materials is the central step of autophagy. Several phosphoinositides, which are signaling molecules on the membrane, are involved in autophagy. However, it is not always clear whether these phosphoinositides act directly at the site of autophagosome formation, or indirectly via the regulation of other steps or pathways. To address this question, we used a set of phosphoinositide probes to systematically examine their potential presence on autophagosomal membranes in yeast (Saccharomyces cerevisiae). We verified the specificity of these probes using mutant cells deficient in the production of the corresponding phosphoinositides. We then examined starved yeast cells co-expressing a phosphoinositide probe together with an autophagosomal membrane marker, 2Katushka2S-Atg8. Our data revealed that PtdIns(4,5)P2 and PtdIns(3,5)P2 were mainly present on the plasma membrane and vacuolar membrane, respectively. We observed only occasional co-localization between the PtdIns(4)P probe and Atg8, some of which may represent the transient passage of a PtdIns(4)P-containing structure near the autophagosomal membrane. In contrast, substantial colocalization of the PtdIns(3)P probe with Atg8 was observed. Taken together, our data indicate that only PtdIns(3)P is present in a substantial amount on the autophagosomal membrane. For other phosphoinositides involved in autophagy, either their presence on the autophagosomal membrane is very transient, or they act on other cellular membranes to regulate autophagy.
Collapse
Affiliation(s)
| | | | | | | | - Hui Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
33
|
Browne IM, Okines AFC. Resistance to Targeted Inhibitors of the PI3K/AKT/mTOR Pathway in Advanced Oestrogen-Receptor-Positive Breast Cancer. Cancers (Basel) 2024; 16:2259. [PMID: 38927964 PMCID: PMC11201395 DOI: 10.3390/cancers16122259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The PI3K/AKT/mTOR signalling pathway is one of the most frequently activated pathways in breast cancer and also plays a central role in the regulation of several physiologic functions. There are major efforts ongoing to exploit precision medicine by developing inhibitors that target the three kinases (PI3K, AKT, and mTOR). Although multiple compounds have been developed, at present, there are just three inhibitors approved to target this pathway in patients with advanced ER-positive, HER2-negative breast cancer: everolimus (mTOR inhibitor), alpelisib (PIK3CA inhibitor), and capivasertib (AKT inhibitor). Like most targeted cancer drugs, resistance poses a major problem in the clinical setting and is a factor that has frequently limited the overall efficacy of these agents. Drug resistance can be categorised into intrinsic or acquired resistance depending on the timeframe it has developed within. Whereas intrinsic resistance exists prior to a specific treatment, acquired resistance is induced by a therapy. The majority of patients with ER-positive, HER2-negative advanced breast cancer will likely be offered an inhibitor of the PI3K/AKT/mTOR pathway at some point in their cancer journey, with the options available depending on the approval criteria in place and the cancer's mutation status. Within this large cohort of patients, it is likely that most will develop resistance at some point, which makes this an area of interest and an unmet need at present. Herein, we review the common mechanisms of resistance to agents that target the PI3K/AKT/mTOR signalling pathway, elaborate on current management approaches, and discuss ongoing clinical trials attempting to mitigate this significant issue. We highlight the need for additional studies into AKT1 inhibitor resistance in particular.
Collapse
|
34
|
Thapa N, Chen M, Cryns VL, Anderson R. A p85 isoform switch enhances PI3K activation on endosomes by a MAP4- and PI3P-dependent mechanism. Cell Rep 2024; 43:114119. [PMID: 38630589 PMCID: PMC11380499 DOI: 10.1016/j.celrep.2024.114119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/21/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Phosphatidylinositol 3-kinase α (PI3Kα) is a heterodimer of p110α catalytic and p85 adaptor subunits that is activated by agonist-stimulated receptor tyrosine kinases. Although p85α recruits p110α to activated receptors on membranes, p85α loss, which occurs commonly in cancer, paradoxically promotes agonist-stimulated PI3K/Akt signaling. p110α localizes to microtubules via microtubule-associated protein 4 (MAP4), facilitating its interaction with activated receptor kinases on endosomes to initiate PI3K/Akt signaling. Here, we demonstrate that in response to agonist stimulation and p85α knockdown, the residual p110α, coupled predominantly to p85β, exhibits enhanced recruitment with receptor tyrosine kinases to endosomes. Moreover, the p110α C2 domain binds PI3-phosphate, and this interaction is also required to recruit p110α to endosomes and for PI3K/Akt signaling. Stable knockdown of p85α, which mimics the reduced p85α levels observed in cancer, enhances cell growth and tumorsphere formation, and these effects are abrogated by MAP4 or p85β knockdown, underscoring their role in the tumor-promoting activity of p85α loss.
Collapse
Affiliation(s)
- Narendra Thapa
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Mo Chen
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Vincent L Cryns
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Richard Anderson
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA.
| |
Collapse
|
35
|
Duewell BR, Wilson NE, Bailey GM, Peabody SE, Hansen SD. Molecular dissection of PI3Kβ synergistic activation by receptor tyrosine kinases, GβGγ, and Rho-family GTPases. eLife 2024; 12:RP88991. [PMID: 38713746 PMCID: PMC11076043 DOI: 10.7554/elife.88991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024] Open
Abstract
Phosphoinositide 3-kinase (PI3K) beta (PI3Kβ) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and Rho-family GTPases. The mechanism by which PI3Kβ prioritizes interactions with various membrane-tethered signaling inputs, however, remains unclear. Previous experiments did not determine whether interactions with membrane-tethered proteins primarily control PI3Kβ localization versus directly modulate lipid kinase activity. To address this gap in our knowledge, we established an assay to directly visualize how three distinct protein interactions regulate PI3Kβ when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling PI3Kβ membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kβ prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GβGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kβ to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GβGγ or pY/Rac1(GTP), PI3Kβ activity is dramatically enhanced beyond what can be explained by simply increasing membrane localization. Instead, PI3Kβ is synergistically activated by pY/GβGγ and pY/Rac1 (GTP) through a mechanism consistent with allosteric regulation.
Collapse
Affiliation(s)
- Benjamin R Duewell
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Naomi E Wilson
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Gabriela M Bailey
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Sarah E Peabody
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Scott D Hansen
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of OregonEugeneUnited States
| |
Collapse
|
36
|
Yao L, Fang J, Zhao J, Yu J, Zhang X, Chen W, Han L, Peng D, Chen Y. Dendrobium huoshanense in the treatment of ulcerative colitis: Network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117729. [PMID: 38190953 DOI: 10.1016/j.jep.2024.117729] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium huoshanense C. Z. Tang et S. J. Cheng (DH) is a traditional medicinal herb with a long history of medicinal use. DH has been recorded as protecting the gastrointestinal function. Modern pharmacology research shows that DH regulates intestinal flora, intestinal mucosal immunity, gastrointestinal peristalsis and secretion of digestive juices. At the same time, some studies have shown that DH has a good therapeutic effect on ulcerative colitis, but its mechanism of action has not been fully elucidated. AIMS OF THIS STUDY To investigate the mechanism and effect of Dendrobium huoshanense C. Z. Tang et S. J. Cheng (DH) in the treatment of ulcerative colitis (UC) by combining network pharmacology and in vivo experimental validation. METHODS A network pharmacology approach was used to perform component screening, target prediction, PPI network interaction analysis, GO and KEGG enrichment analysis to initially predict the mechanism of DH treatment for UC. Then, the mechanism was validated with the UC mouse model induced by 3% DSS. RESULTS Based on the network pharmacological analysis, a comprehensive of 101 active components were identified, with 19 of them potentially serving as the crucial elements in DH's effectiveness against UC treatment. Additionally, the study revealed 314 potential core therapeutic targets along with the top 5 key targets: SRC, STAT3, AKT1, HSP90AA1, and PIK3CA. In experiments conducted on live mice with UC, DH was found to decrease the levels of IL-6 and TNF-α in the blood, while increasing the levels of IL-10 and TGF-β. This led to notable improvements in colon length, injury severity, and an up-regulation of SRC, STAT3, HSP90AA1, PIK3CA, p-AKT1 and PI3K/AKT signaling pathway expression in the colon tissue. CONCLUSIONS In this study, the active components and main targets of DH for UC treatment were initially forecasted, and the potential mechanism was investigated through network pharmacology. These findings offer an experimental foundation for the clinical utilization of DH.
Collapse
Affiliation(s)
- Liang Yao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China.
| | - Jing Fang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Junwei Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Jiao Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Xiaoqian Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China; Key Laboratory of Modern Traditional Chinese Medicines of Anhui Higher Education Institutes, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China.
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China; Key Laboratory of Modern Traditional Chinese Medicines of Anhui Higher Education Institutes, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China.
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China; Xin'an Medicine, Key Laboratory of Chinese Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China; Key Laboratory of Modern Traditional Chinese Medicines of Anhui Higher Education Institutes, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China.
| | - Yunna Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| |
Collapse
|
37
|
Al Assaad M, Michaud O, Semaan A, Sigouros M, Tranquille M, Phan A, Levine MF, Gundem G, Medina-Martínez JS, Papaemmanuil E, Manohar J, Wilkes D, Sboner A, Hoda SAF, Elemento O, Mosquera JM. Whole-Genome Sequencing Analysis of Male Breast Cancer Unveils Novel Structural Events and Potential Therapeutic Targets. Mod Pathol 2024; 37:100452. [PMID: 38369186 DOI: 10.1016/j.modpat.2024.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/17/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
The molecular characterization of male breast cancer (MaBC) has received limited attention in research, mostly because of its low incidence rate, accounting for only 0.5% to 1% of all reported cases of breast cancer each year. Managing MaBC presents significant challenges, with most treatment protocols being adapted from those developed for female breast cancer. Utilizing whole-genome sequencing (WGS) and state-of-the-art analyses, the genomic features of 10 MaBC cases (n = 10) were delineated and correlated with clinical and histopathologic characteristics. Using fluorescence in situ hybridization, an additional cohort of 18 patients was interrogated to supplement WGS findings. The genomic landscape of MaBC uncovered significant genetic alterations that could influence diagnosis and treatment. We found common somatic mutations in key driver genes, such as FAT1, GATA3, SMARCA4, and ARID2. Our study also mapped out structural variants that impact cancer-associated genes, such as ARID1A, ESR1, GATA3, NTRK1, and NF1. Using a WGS-based classifier, homologous recombination deficiency (HRD) was identified in 2 cases, both presenting with deleterious variants in BRCA2. Noteworthy was the observation of FGFR1 amplification in 21% of cases. Altogether, we identified at least 1 potential therapeutic target in 8 of the 10 cases, including high tumor mutational burden, FGFR1 amplification, and HRD. Our study is the first WGS characterization of MaBC, which uncovered potentially relevant variants, including structural events in cancer genes, HRD signatures, and germline pathogenic mutations. Our results demonstrate unique genetic markers and potential treatment targets in MaBC, thereby underlining the necessity of tailoring treatment strategies for this understudied patient population. These WGS-based findings add to the growing knowledge of MaBC genomics and highlight the need to expand research on this type of cancer.
Collapse
Affiliation(s)
- Majd Al Assaad
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
| | - Olivier Michaud
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York; Département de Pathologie, Université Laval, Quebec City, Quebec, Canada
| | - Alissa Semaan
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
| | - Michael Sigouros
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
| | - Marvel Tranquille
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
| | - Andy Phan
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | | | | | | | | | - Jyothi Manohar
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
| | - David Wilkes
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
| | - Syed A F Hoda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York; New York Genome Center, New York, New York.
| |
Collapse
|
38
|
Browne IM, André F, Chandarlapaty S, Carey LA, Turner NC. Optimal targeting of PI3K-AKT and mTOR in advanced oestrogen receptor-positive breast cancer. Lancet Oncol 2024; 25:e139-e151. [PMID: 38547898 DOI: 10.1016/s1470-2045(23)00676-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 04/02/2024]
Abstract
The growing availability of targeted therapies for patients with advanced oestrogen receptor-positive breast cancer has improved survival, but there remains much to learn about the optimal management of these patients. The PI3K-AKT and mTOR pathways are among the most commonly activated pathways in breast cancer, whose crucial role in the pathogenesis of this tumour type has spurred major efforts to target this pathway at specific kinase hubs. Approvals for oestrogen receptor-positive advanced breast cancer include the PI3K inhibitor alpelisib for PIK3CA-mutated tumours, the AKT inhibitor capivasertib for tumours with alterations in PIK3CA, AKT1, or PTEN, and the mTOR inhibitor everolimus, which is used irrespective of mutation status. The availability of different inhibitors leaves physicians with a potentially challenging decision over which of these therapies should be used for individual patients and when. In this Review, we present a comprehensive summary of our current understanding of the pathways and the three inhibitors and discuss strategies for the optimal sequencing of therapies in the clinic, particularly after progression on a CDK4/6 inhibitor.
Collapse
Affiliation(s)
- Iseult M Browne
- Breast Cancer Now Research Centre, Institute of Cancer Research, London, UK; Ralph Lauren Centre for Breast Cancer Research and Breast Unit, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Fabrice André
- Department of Medical Oncology, INSERM U981, Institut Gustave Roussy, Université Paris Saclay, Villejuif, France
| | | | - Lisa A Carey
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Nicholas C Turner
- Breast Cancer Now Research Centre, Institute of Cancer Research, London, UK; Ralph Lauren Centre for Breast Cancer Research and Breast Unit, The Royal Marsden Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
39
|
Zhao H, Kong F, Yu W, Zhao H, Zhang J, Zhou J, Meng X. Locational and functional characterization of PI4KB in the mouse embryo. J Cell Physiol 2024; 239:e31195. [PMID: 38230579 DOI: 10.1002/jcp.31195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Phosphatidylinositol 4-kinase beta (PI4KB) is a member of the PI4K family, which is mainly enriched and functions in the Golgi apparatus. The kinase domain of PI4KB catalyzes the phosphorylation of phosphatidylinositol to form phosphatidylinositol 4-phosphate, a process that regulates various sub-cellular events, such as non-vesicular cholesterol and ceramide transport, protein glycosylation, and vesicle transport, as well as cytoplasmic division. In this study, a strain of PI4KB knockout mouse, immunofluorescence, reverse transcription polymerase chain reaction and microinjection were used to characterize the cytological location and biological function of PI4KB in the mouse embryos. we found that knocking down Pi4kb in mouse embryos resulted in embryonic lethality at around embryonic day (E) 7.5. Additionally, we observed dramatic fluctuations in PI4KB expression during the development of preimplantation embryos, with high expression in the 4-cell and morula stages. PI4KB colocalized with the Golgi marker protein TGN46 in the perinuclear and cytoplasmic regions in early blastomeres. Postimplantation, PI4KB was highly expressed in the epiblast of E7.5 embryos. Treatment of embryos with PI4KB inhibitors was found to inhibit the development of the morula into a blastocyst and the normal progression of cytoplasmic division during the formation of a 4-cell embryo. These findings suggest that PI4KB plays an important role in mouse embryogenesis by regulating various intracellular vital functions of embryonic cells.
Collapse
Affiliation(s)
- Haoyu Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Centre for Cell Structure and Function, Shandong Normal University, Jinan, China
| | - Fengyun Kong
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weikai Yu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Centre for Cell Structure and Function, Shandong Normal University, Jinan, China
| | - Huijie Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Centre for Cell Structure and Function, Shandong Normal University, Jinan, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Centre for Cell Structure and Function, Shandong Normal University, Jinan, China
| | - Xiaoqian Meng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Centre for Cell Structure and Function, Shandong Normal University, Jinan, China
| |
Collapse
|
40
|
Leiphrakpam PD, Are C. PI3K/Akt/mTOR Signaling Pathway as a Target for Colorectal Cancer Treatment. Int J Mol Sci 2024; 25:3178. [PMID: 38542151 PMCID: PMC10970097 DOI: 10.3390/ijms25063178] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 11/11/2024] Open
Abstract
In the last decade, pathway-specific targeted therapy has revolutionized colorectal cancer (CRC) treatment strategies. This type of therapy targets a tumor-vulnerable spot formed primarily due to an alteration in an oncogene and/or a tumor suppressor gene. However, tumor heterogeneity in CRC frequently results in treatment resistance, underscoring the need to understand the molecular mechanisms involved in CRC for the development of novel targeted therapies. The phosphatidylinositol 3-kinase/protein kinase B/mammalian target of the rapamycin (PI3K/Akt/mTOR) signaling pathway axis is a major pathway altered in CRC. The aberrant activation of this pathway is associated with CRC initiation, progression, and metastasis and is critical for the development of drug resistance in CRC. Several drugs target PI3K/Akt/mTOR in clinical trials, alone or in combination, for the treatment of CRC. This review aims to provide an overview of the role of the PI3K/Akt/mTOR signaling pathway axis in driving CRC, existing PI3K/Akt/mTOR-targeted agents against CRC, their limitations, and future trends.
Collapse
Affiliation(s)
- Premila D. Leiphrakpam
- Graduate Medical Education, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Surgical Oncology, Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chandrakanth Are
- Graduate Medical Education, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Surgical Oncology, Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
41
|
Hu J, Fu S, Zhan Z, Zhang J. Advancements in dual-target inhibitors of PI3K for tumor therapy: Clinical progress, development strategies, prospects. Eur J Med Chem 2024; 265:116109. [PMID: 38183777 DOI: 10.1016/j.ejmech.2023.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Phosphoinositide 3-kinases (PI3Ks) modify lipids by the phosphorylation of inositol phospholipids at the 3'-OH position, thereby participating in signal transduction and exerting effects on various physiological processes such as cell growth, metabolism, and organism development. PI3K activation also drives cancer cell growth, survival, and metabolism, with genetic dysregulation of this pathway observed in diverse human cancers. Therefore, this target is considered a promising potential therapeutic target for various types of cancer. Currently, several selective PI3K inhibitors and one dual-target PI3K inhibitor have been approved and launched on the market. However, the majority of these inhibitors have faced revocation or voluntary withdrawal of indications due to concerns regarding their adverse effects. This article provides a comprehensive review of the structure and biological functions, and clinical status of PI3K inhibitors, with a specific emphasis on the development strategies and structure-activity relationships of dual-target PI3K inhibitors. The findings offer valuable insights and future directions for the development of highly promising dual-target drugs targeting PI3K.
Collapse
Affiliation(s)
- Jiarui Hu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Siyu Fu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zixuan Zhan
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
42
|
Hein KZ, Stephen B, Fu S. Therapeutic Role of Synthetic Lethality in ARID1A-Deficient Malignancies. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2024; 7:41-52. [PMID: 38327752 PMCID: PMC10846636 DOI: 10.36401/jipo-22-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/28/2023] [Accepted: 09/21/2023] [Indexed: 02/09/2024]
Abstract
AT-rich interaction domain 1A (ARID1A), a mammalian switch/sucrose nonfermenting complex subunit, modulates several cellular processes by regulating chromatin accessibility. It is encoded by ARID1A, an immunosuppressive gene frequently disrupted in a many tumors, affecting the proliferation, migration, and invasion of cancer cells. Targeting molecular pathways and epigenetic regulation associated with ARID1A loss, such as inhibiting the PI3K/AKT pathway or modulating Wnt/β-catenin signaling, may help suppress tumor growth and progression. Developing epigenetic drugs like histone deacetylase or DNA methyltransferase inhibitors could restore normal chromatin structure and function in cells with ARID1A loss. As ARID1A deficiency correlates with enhanced tumor mutability, microsatellite instability, high tumor mutation burden, increased programmed death-ligand 1 expression, and T-lymphocyte infiltration, ARID1A-deficient cells can be a potential therapeutic target for immune checkpoint inhibitors that warrants further exploration. In this review, we discuss the role of ARID1A in carcinogenesis, its crosstalk with other signaling pathways, and strategies to make ARID1A-deficient cells a potential therapeutic target for patients with cancer.
Collapse
Affiliation(s)
- Kyaw Z. Hein
- Department of Internal Medicine, HCA Florida Westside Hospital, Plantation, FL, USA
| | - Bettzy Stephen
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
43
|
Garcia J, Daniels J, Lee Y, Zhu I, Cheng K, Liu Q, Goodman D, Burnett C, Law C, Thienpont C, Alavi J, Azimi C, Montgomery G, Roybal KT, Choi J. Naturally occurring T cell mutations enhance engineered T cell therapies. Nature 2024; 626:626-634. [PMID: 38326614 PMCID: PMC11573425 DOI: 10.1038/s41586-024-07018-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Adoptive T cell therapies have produced exceptional responses in a subset of patients with cancer. However, therapeutic efficacy can be hindered by poor T cell persistence and function1. In human T cell cancers, evolution of the disease positively selects for mutations that improve fitness of T cells in challenging situations analogous to those faced by therapeutic T cells. Therefore, we reasoned that these mutations could be co-opted to improve T cell therapies. Here we systematically screened the effects of 71 mutations from T cell neoplasms on T cell signalling, cytokine production and in vivo persistence in tumours. We identify a gene fusion, CARD11-PIK3R3, found in a CD4+ cutaneous T cell lymphoma2, that augments CARD11-BCL10-MALT1 complex signalling and anti-tumour efficacy of therapeutic T cells in several immunotherapy-refractory models in an antigen-dependent manner. Underscoring its potential to be deployed safely, CARD11-PIK3R3-expressing cells were followed up to 418 days after T cell transfer in vivo without evidence of malignant transformation. Collectively, our results indicate that exploiting naturally occurring mutations represents a promising approach to explore the extremes of T cell biology and discover how solutions derived from evolution of malignant T cells can improve a broad range of T cell therapies.
Collapse
MESH Headings
- Humans
- CARD Signaling Adaptor Proteins/genetics
- CARD Signaling Adaptor Proteins/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cytokines/biosynthesis
- Cytokines/immunology
- Cytokines/metabolism
- Evolution, Molecular
- Guanylate Cyclase/genetics
- Guanylate Cyclase/metabolism
- Immunotherapy, Adoptive/methods
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/immunology
- Lymphoma, T-Cell, Cutaneous/pathology
- Lymphoma, T-Cell, Cutaneous/therapy
- Mutation
- Phosphatidylinositol 3-Kinases
- Signal Transduction/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- Julie Garcia
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Moonlight Bio, Seattle, WA, USA
| | - Jay Daniels
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Moonlight Bio, Seattle, WA, USA
| | - Yujin Lee
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Iowis Zhu
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Kathleen Cheng
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qing Liu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniel Goodman
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Cassandra Burnett
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Calvin Law
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chloë Thienpont
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Josef Alavi
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Camillia Azimi
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Garrett Montgomery
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Kole T Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anesthesia, University of California, San Francisco, San Francisco, CA, USA.
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, CA, USA.
- UCSF Cell Design Institute, San Francisco, CA, USA.
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
44
|
Li G, Wu Y, Zhang Y, Wang H, Li M, He D, Guan W, Yao H. Research progress on phosphatidylinositol 4-kinase inhibitors. Biochem Pharmacol 2024; 220:115993. [PMID: 38151075 DOI: 10.1016/j.bcp.2023.115993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Phosphatidylinositol 4-kinases (PI4Ks) could phosphorylate phosphatidylinositol (PI) to produce phosphatidylinositol 4-phosphate (PI4P) and maintain its metabolic balance and location. PI4P, the most abundant monophosphate inositol in eukaryotic cells, is a precursor of higher phosphoinositols and an essential substrate for the PLC/PKC and PI3K/Akt signaling pathways. PI4Ks regulate vesicle transport, signal transduction, cytokinesis, and cell unity, and are involved in various physiological and pathological processes, including infection and growth of parasites such as Plasmodium and Cryptosporidium, replication and survival of RNA viruses, and the development of tumors and nervous system diseases. The development of novel drugs targeting PI4Ks and PI4P has been the focus of the research and clinical application of drugs, especially in recent years. In particular, PI4K inhibitors have made great progress in the treatment of malaria and cryptosporidiosis. We describe the biological characteristics of PI4Ks; summarize the physiological functions and effector proteins of PI4P; and analyze the structural basis of selective PI4K inhibitors for the treatment of human diseases in this review. Herein, this review mainly summarizes the developments in the structure and enzyme activity of PI4K inhibitors.
Collapse
Affiliation(s)
- Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Yanting Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Huamin Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Mengjie Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Dengqin He
- School of Biotechnology and Health Science, Wuyi University, 22 Dongchengcun, Jiangmen, Guangdong, 529020, China
| | - Wen Guan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
45
|
Yang N, Zhang J, Guo J, Xiang Q, Huang Y, Wen J, Liu Q, Hu T, Chen Y, Rao C. Revealing the mechanism of Zanthoxylum armatum DC. extract-induced liver injury in mice based on lipidomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117086. [PMID: 37634752 DOI: 10.1016/j.jep.2023.117086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum armatum DC. (Z. armatum) is an herbal medicine with various active ingredients and pharmacological effects. However, modern studies found that Z. armatum is hepatotoxic. The liver is the target organ for toxic effects and an important site for lipid metabolism. The effects of Z. armatum on lipid level and metabolism in the liver are still unclear. AIM OF THE STUDY This study aimed to analyze hepatic lipid levels, lipid metabolites and metabolic pathways of action of Z. armatum based on lipidomics, to investigate the potential hepatotoxic mechanism of Z. armatum. MATERIALS AND METHODS Different doses (62, 96, and 150 mg/kg) of the methanolic extract of Z. armatum (MZADC) were administered to ICR mice by gavage. The hepatotoxicity of MZADC was assessed by the liver index, serum biochemical measurements, and histopathological examination. Lipid levels measured by the serum lipid index were evaluated in the mice. Lipidomics was used to screen for differential lipid metabolism markers and lipid metabolism pathways in the liver. Western blot analysis was performed to investigate the effects of MZADC on the liver. RESULTS Liver index values and serum alanine transaminase and aspartate transaminase levels were increased in the MZADC group. Histopathology examination revealed hepatocyte necrosis, watery degeneration of the hepatocytes, and hepatic cord rupture in the livers of mice. Serum levels of low-density lipoprotein cholesterol, cholesterol, and triglycerides were elevated, and high-density lipoprotein cholesterol levels were decreased. Lipidomics screening for markers of differential lipid metabolism in the liver, and altered profiles of differential metabolites indicated that glycerophospholipid metabolism, linoleic acid metabolism, alpha-linolenic acid metabolism, glycosylphosphatidylinositol-anchored biosynthesis, sphingolipid metabolism and arachidonic acid metabolic pathways were significantly associated with MZADC-induced liver injury. Western blots confirmed that the protein expression of LC3, Beclin-1, ATG5, ATG12 and ATG16L1 was decreased, and p62 was increased in the MZADC group. The proportion of p-PI3K/PI3K and p-AKT/AKT was increased. CONCLUSIONS The liver injury induced by MZADC involved many different lipid metabolites and lipid metabolic pathways, which may be related to autophagy. This study provides a new perspective on the hepatotoxicity study of Z. armatum and provides a reference for the safe application of Z. armatum in the medicine and food fields.
Collapse
Affiliation(s)
- Nannan Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jian Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiafu Guo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Huang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qiuyan Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
46
|
Stachyra-Strawa P, Szatkowska-Sieczek L, Cisek P, Gołębiowski P, Grzybowska-Szatkowska L. Cardiac and Nephrological Complications Related to the Use of Antiangiogenic and Anti-Programmed Cell Death Protein 1 Receptor/Programmed Cell Death Protein 1 Ligand Therapy. Genes (Basel) 2024; 15:177. [PMID: 38397167 PMCID: PMC10887630 DOI: 10.3390/genes15020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The ability to undergo neoangiogenesis is a common feature with all cancers. Signaling related to vascular endothelial growth factors (VEGF) and their receptors (VEGFR) plays a key role in the process of tumor neoangiogenesis. A close relationship has been demonstrated between excessive VEGF levels and the induction of immunosuppression in the tumor microenvironment. The use of drugs blocking the VEGF function, apart from the anticancer effect, also result in adverse effects, in particular related to the circulatory system and kidneys. Cardiac toxicity associated with the use of such therapy manifests itself mainly in the form of hypertension, thromboembolic episodes and ischemic heart disease. In the case of renal complications, the most common symptoms include renal arterial hypertension, proteinuria and microangiopathy. Although these complications are reversible in 60-80% of cases after cessation of VSP (VEGF pathway inhibitor) therapy, in some cases they can lead to irreversible changes in renal function, whereas cardiac complications may be fatal. Also, the use of PD-1/PD-L1 inhibitors may result in kidney and heart damage. In the case of cardiac complications, the most common symptoms include myocarditis, pericarditis, arrhythmia, acute coronary syndrome and vasculitis, while kidney damage most often manifests as acute kidney injury (AKI), nephrotic syndrome, pyuria or hematuria. The decision whether to resume treatment after the occurrence of cardiovascular and renal complications remains a problem.
Collapse
Affiliation(s)
- Paulina Stachyra-Strawa
- Department of Radiotherapy, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland; (P.S.-S.); (P.C.); (P.G.)
| | - Lidia Szatkowska-Sieczek
- Clinical Department of Cardiology, 4th Military Hospital, Rudolfa Weigla 5, 50-981 Wroclaw, Poland;
| | - Paweł Cisek
- Department of Radiotherapy, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland; (P.S.-S.); (P.C.); (P.G.)
| | - Paweł Gołębiowski
- Department of Radiotherapy, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland; (P.S.-S.); (P.C.); (P.G.)
| | - Ludmiła Grzybowska-Szatkowska
- Department of Radiotherapy, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland; (P.S.-S.); (P.C.); (P.G.)
| |
Collapse
|
47
|
Kharouf N, Flanagan TW, Alamodi AA, Al Hmada Y, Hassan SY, Shalaby H, Santourlidis S, Hassan SL, Haikel Y, Megahed M, Brodell RT, Hassan M. CD133-Dependent Activation of Phosphoinositide 3-Kinase /AKT/Mammalian Target of Rapamycin Signaling in Melanoma Progression and Drug Resistance. Cells 2024; 13:240. [PMID: 38334632 PMCID: PMC10854812 DOI: 10.3390/cells13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Melanoma frequently harbors genetic alterations in key molecules leading to the aberrant activation of PI3K and its downstream pathways. Although the role of PI3K/AKT/mTOR in melanoma progression and drug resistance is well documented, targeting the PI3K/AKT/mTOR pathway showed less efficiency in clinical trials than might have been expected, since the suppression of the PI3K/mTOR signaling pathway-induced feedback loops is mostly associated with the activation of compensatory pathways such as MAPK/MEK/ERK. Consequently, the development of intrinsic and acquired resistance can occur. As a solid tumor, melanoma is notorious for its heterogeneity. This can be expressed in the form of genetically divergent subpopulations including a small fraction of cancer stem-like cells (CSCs) and non-cancer stem cells (non-CSCs) that make the most of the tumor mass. Like other CSCs, melanoma stem-like cells (MSCs) are characterized by their unique cell surface proteins/stemness markers and aberrant signaling pathways. In addition to its function as a robust marker for stemness properties, CD133 is crucial for the maintenance of stemness properties and drug resistance. Herein, the role of CD133-dependent activation of PI3K/mTOR in the regulation of melanoma progression, drug resistance, and recurrence is reviewed.
Collapse
Affiliation(s)
- Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | | | - Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
48
|
Kim CW, Lee JM, Park SW. Divergent roles of the regulatory subunits of class IA PI3K. Front Endocrinol (Lausanne) 2024; 14:1152579. [PMID: 38317714 PMCID: PMC10839044 DOI: 10.3389/fendo.2023.1152579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 12/11/2023] [Indexed: 02/07/2024] Open
Abstract
The regulatory subunit of phosphatidylinositol 3-kinase (PI3K), known as p85, is a critical component in the insulin signaling pathway. Extensive research has shed light on the diverse roles played by the two isoforms of p85, namely p85α and p85β. The gene pik3r1 encodes p85α and its variants, p55α and p50α, while pik3r2 encodes p85β. These isoforms exhibit various activities depending on tissue types, nutrient availability, and cellular stoichiometry. Whole-body or liver-specific deletion of pik3r1 have shown to display increased insulin sensitivity and improved glucose homeostasis; however, skeletal muscle-specific deletion of p85α does not exhibit any significant effects on glucose homeostasis. On the other hand, whole-body deletion of pik3r2 shows improved insulin sensitivity with no significant impact on glucose tolerance. Meanwhile, liver-specific double knockout of pik3r1 and pik3r2 leads to reduced insulin sensitivity and glucose tolerance. In the context of obesity, upregulation of hepatic p85α or p85β has been shown to improve glucose homeostasis. However, hepatic overexpression of p85α in the absence of p50α and p55α results in increased insulin resistance in obese mice. p85α and p85β have distinctive roles in cancer development. p85α acts as a tumor suppressor, but p85β promotes tumor progression. In the immune system, p85α facilitates B cell development, while p85β regulates T cell differentiation and maturation. This review provides a comprehensive overview of the distinct functions attributed to p85α and p85β, highlighting their significance in various physiological processes, including insulin signaling, cancer development, and immune system regulation.
Collapse
Affiliation(s)
- Cho-Won Kim
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Junsik M. Lee
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, United States
| | - Sang Won Park
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
49
|
Deng S, Pei C, Cai K, Huang W, Xiao X, Zhang X, Liang R, Chen Y, Xie Z, Li P, Liao Q. Lactobacillus acidophilus and its metabolite ursodeoxycholic acid ameliorate ulcerative colitis by promoting Treg differentiation and inhibiting M1 macrophage polarization. Front Microbiol 2024; 15:1302998. [PMID: 38292253 PMCID: PMC10825044 DOI: 10.3389/fmicb.2024.1302998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
Lactobacillus acidophilus (LA) is a common clinical probiotic that improves ulcerative colitis (UC) by restoring intestinal immune balance. However, the interaction of LA with the gut microbiota and its metabolites in the treatment of UC remains unknown. Therefore, this study seeks to elucidate whether the gut microbiota and its metabolites act as pivotal effectors in LA's therapeutic mechanisms and how precisely they modulate intestinal immunity. In this study, we verified that LA can obviously ameliorate the disease severity, and regulate intestinal immune disorders in UC mice. Subsequently, antibiotic (ABX)-mediated depletion of the gut microflora demonstrated that the therapeutic efficiency of LA was closely associated with gut microbiota. In addition, the results of metabolomics revealed that ursodeoxycholic acid (UDCA), a metabolite of intestinal flora, may be a potential effector molecule mediating therapeutic effects of LA. Indeed, we found that UDCA can improve the macro pathological characteristics of UC mice, and through a comprehensive set of in vivo and in vitro experiments, we discovered that UDCA exerts dual effects on immune regulation. Firstly, it promotes the differentiation of Treg cells, resulting in increased secretion of anti-inflammatory cytokines. Secondly, UDCA inhibits the polarization of M1 macrophages, effectively reducing the secretion of pro-inflammatory cytokines. Moreover, we found that UDCA regulation of immune response is directly related to the RapGap/PI3K-AKT/NF-κB signaling pathway. In conclusion, LA and its metabolite, UDCA, may treat UC by activating the RapGap/PI3K-AKT/NF-κB signaling pathway and modulating Treg cells and M1 macrophages. All in all, our findings highlight the potential of microbial metabolites in enhancing probiotic for UC treatment.
Collapse
Affiliation(s)
- Song Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaoying Pei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaiwei Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenyi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyi Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rongyao Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
50
|
Al Saedi A, Yacoub AS, Awad K, Karasik D, Brotto M, Duque G. The Interplay of Lipid Signaling in Musculoskeletal Cross Talk: Implications for Health and Disease. Methods Mol Biol 2024; 2816:1-11. [PMID: 38977583 DOI: 10.1007/978-1-0716-3902-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The intricate interplay between the muscle and bone tissues is a fundamental aspect of musculoskeletal physiology. Over the past decades, emerging research has highlighted the pivotal role of lipid signaling in mediating communication between these tissues. This chapter delves into the multifaceted mechanisms through which lipids, particularly phospholipids, sphingolipids, and eicosanoids, participate in orchestrating cellular responses and metabolic pathways in both muscle and bone. Additionally, we examine the clinical implications of disrupted lipid signaling in musculoskeletal disorders, offering insights into potential therapeutic avenues. This chapter aims to shed light on the complex lipid-driven interactions between the muscle and bone tissues, paving the way for a deeper understanding of musculoskeletal health and disease.
Collapse
Affiliation(s)
- Ahmed Al Saedi
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Ahmed S Yacoub
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - Kamal Awad
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - Gustavo Duque
- Research Institute of McGill University Health Center, Department of Medicine, McGill University, Québec, Canada
| |
Collapse
|