1
|
Küng C, Lazarou M, Nguyen TN. Advances in mitophagy initiation mechanisms. Curr Opin Cell Biol 2025; 94:102493. [PMID: 40117675 DOI: 10.1016/j.ceb.2025.102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/23/2025]
Abstract
Mitophagy is an important lysosomal degradative pathway that removes damaged or unwanted mitochondria to maintain cellular and organismal homeostasis. The mechanisms behind how mitophagy is initiated to form autophagosomes around mitochondria have gained a lot of interest since they can be potentially targeted by mitophagy-inducing therapeutics. Mitophagy initiation can be driven by various autophagy receptors or adaptors that respond to different cellular and mitochondrial stimuli, ranging from mitochondrial damage to metabolic rewiring. This review will cover recent advances in our understanding of how mitophagy is initiated, and by doing so reveal the mechanistic plasticity of how autophagosome formation can begin.
Collapse
Affiliation(s)
- Catharina Küng
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD 20185, USA.
| | - Thanh Ngoc Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD 20185, USA.
| |
Collapse
|
2
|
Zhao P, Tian R, Song D, Zhu Q, Ding X, Zhang J, Cao B, Zhang M, Xu Y, Fang J, Tan J, Yi C, Xia H, Liu W, Zou W, Sun Q. Rab GTPases are evolutionarily conserved signals mediating selective autophagy. J Cell Biol 2025; 224:e202410150. [PMID: 40197538 PMCID: PMC11977514 DOI: 10.1083/jcb.202410150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/31/2024] [Accepted: 01/21/2025] [Indexed: 04/10/2025] Open
Abstract
Selective autophagy plays a crucial role in maintaining cellular homeostasis by specifically targeting unwanted cargo labeled with "autophagy cues" signals for autophagic degradation. In this study, we identify Rab GTPases as a class of such autophagy cues signals involved in selective autophagy. Through biochemical and imaging screens, we reveal that human Rab GTPases are common autophagy substrates. Importantly, we confirm the conservation of Rab GTPase autophagic degradation in different model organisms. Rab GTPases translocate to damaged mitochondria, lipid droplets, and invading Salmonella-containing vacuoles (SCVs) to serve as degradation signals. Furthermore, they facilitate mitophagy, lipophagy, and xenophagy, respectively, by recruiting receptors. This interplay between Rab GTPases and receptors may ensure the de novo synthesis of isolation membranes around Rab-GTPase-labeled cargo, thereby mediating selective autophagy. These processes are further influenced by upstream regulators such as LRRK2, GDIs, and RabGGTase. In conclusion, this study unveils a conserved mechanism involving Rab GTPases as autophagy cues signals and proposes a model for the spatiotemporal control of selective autophagy.
Collapse
Affiliation(s)
- Pengwei Zhao
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Rui Tian
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Dandan Song
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Qi Zhu
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Xianming Ding
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jianqin Zhang
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Beibei Cao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Mengyuan Zhang
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Yilu Xu
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jie Fang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Cong Yi
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongguang Xia
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Liu
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Qiming Sun
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, China
| |
Collapse
|
3
|
Arakawa M, Uriu K, Saito K, Hirose M, Katoh K, Asano K, Nakane A, Saitoh T, Yoshimori T, Morita E. HEATR3 recognizes membrane rupture and facilitates xenophagy in response to Salmonella invasion. Proc Natl Acad Sci U S A 2025; 122:e2420544122. [PMID: 40178893 PMCID: PMC12002282 DOI: 10.1073/pnas.2420544122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/12/2025] [Indexed: 04/05/2025] Open
Abstract
Bacterial invasion into the cytoplasm of epithelial cells triggers the activation of the cellular autophagic machinery as a defense mechanism, a process known as xenophagy. In this study, we identified HEATR3, an LC3-interacting region (LIR)-containing protein, as a factor involved in this defense mechanism using quantitative mass spectrometry analysis. HEATR3 localizes intracellularly invading Salmonella, and HEATR3 deficiency promotes Salmonella proliferation in the cytoplasm. HEATR3 also localizes to lysosomes damaged by chemical treatment, suggesting that Salmonella recognition is facilitated by damage to the host cell membrane. HEATR3 deficiency impairs LC3 recruitment to damaged membranes and blocks the delivery of the target to the lysosome. These phenotypes were rescued by exogenous expression of wild-type HEATR3 but not by the LIR mutant, indicating the crucial role of the HEATR3-LC3 interaction in the receptor for selective autophagy. HEATR3 is delivered to lysosomes in an autophagy-dependent manner. Although HEATR3 recruitment to the damaged membrane was unaffected by ATG5 or FIP200 deficiency, it was markedly impaired by treatment with a calcium chelator, suggesting involvement upstream of the autophagic pathway. These findings suggest that HEATR3 serves as a receptor for selective autophagy and is able to identify damaged membranes, facilitate the removal of damaged lysosomes, and target invading bacteria within cells.
Collapse
Affiliation(s)
- Masashi Arakawa
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Keiya Uriu
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Koki Saito
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Mai Hirose
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Graduate School of Medicine, Hirosaki University, Hirosaki036-8562, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Graduate School of Medicine, Hirosaki University, Hirosaki036-8562, Japan
| | - Tatsuya Saitoh
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Suita565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan
- Center for Infectious Diseases for Education and Research, Suita, Osaka565-0871, Japan
| | - Tamotsu Yoshimori
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita565-0871, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita565-0871, Japan
| | - Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| |
Collapse
|
4
|
North BJ, Ohnstad AE, Ragusa MJ, Shoemaker CJ. The LC3-interacting region of NBR1 is a protein interaction hub enabling optimal flux. J Cell Biol 2025; 224:e202407105. [PMID: 39928048 PMCID: PMC11809422 DOI: 10.1083/jcb.202407105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 02/11/2025] Open
Abstract
During autophagy, toxic cargo is encapsulated by autophagosomes and trafficked to lysosomes for degradation. NBR1, an autophagy receptor targeting ubiquitinated aggregates, serves as a model for studying the multivalent, heterotypic interactions of cargo-bound receptors. Here, we find that three critical NBR1 partners-ATG8-family proteins, FIP200, and TAX1BP1-each bind to distinct, overlapping determinants within a short linear interaction motif (SLiM). To explore whether overlapping SLiMs extend beyond NBR1, we analyzed >100 LC3-interacting regions (LIRs), revealing that FIP200 and/or TAX1BP1 binding to LIRs is a common phenomenon and suggesting LIRs as protein interaction hotspots. Phosphomimetic peptides demonstrate that phosphorylation generally enhances FIP200 and ATG8-family binding but not TAX1BP1, indicating differential regulation. In vivo, LIR-mediated interactions with TAX1BP1 promote optimal NBR1 flux by leveraging additional functionalities from TAX1BP1. These findings reveal a one-to-many binding modality in the LIR motif of NBR1, illustrating the cooperative mechanisms of autophagy receptors and the regulatory potential of multifunctional SLiMs.
Collapse
Affiliation(s)
- Brian J. North
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Amelia E. Ohnstad
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | | | - Christopher J. Shoemaker
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
5
|
de la Peña A, Retamal C, Pérez-Molina F, Díaz-Valdivia N, Veloso-Bahamondes F, Tapia D, Cancino J, Randow F, González A, Oyanadel C, Soza A. Galectin-8 drives ERK-dependent mitochondrial fragmentation, perinuclear relocation and mitophagy, with metabolic adaptations for cell proliferation. Eur J Cell Biol 2025; 104:151488. [PMID: 40209344 DOI: 10.1016/j.ejcb.2025.151488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/21/2025] [Accepted: 03/30/2025] [Indexed: 04/12/2025] Open
Abstract
Mitochondria adapt to the cell proliferative demands induced by growth factors through dynamic changes in morphology, distribution, and metabolic activity. Galectin-8 (Gal-8), a carbohydrate-binding protein that promotes cell proliferation by transactivating the EGFR-ERK signaling pathway, is overexpressed in several cancers. However, its impact on mitochondrial dynamics during cell proliferation remains unknown. Using MDCK and RPTEC kidney epithelial cells, we demonstrate that Gal-8 induces mitochondrial fragmentation and perinuclear redistribution. Additionally, mitochondria adopt donut-shaped morphologies, and live-cell imaging with two Keima-based reporters demonstrates Gal-8-induced mitophagy. ERK signaling inhibition abrogates all these Gal-8-induced mitochondrial changes and cell proliferation. Studies with established mutant versions of Gal-8 and CHO cells reveal that mitochondrial changes and proliferative response require interactions between the N-terminal carbohydrate recognition domain of Gal-8 and α-2,3-sialylated N-glycans at the cell surface. DRP1, a key regulator of mitochondrial fission, becomes phosphorylated in MDCK cells or overexpressed in RPTEC cells in an ERK-dependent manner, mediating mitochondrial fragmentation and perinuclear redistribution. Bafilomycin A abrogates Gal-8-induced cell proliferation, suggesting that mitophagy serves as an adaptation to cell proliferation demands. Functional analysis under Gal-8 stimulation shows that mitochondria maintain an active electron transport chain, partially uncoupled from ATP synthesis, and an increased membrane potential, indicative of healthy mitochondria. Meanwhile, the cells exhibit increased extracellular acidification rate and lactate production via aerobic glycolysis, a hallmark of an active proliferative state. Our findings integrate mitochondrial dynamics with metabolic adaptations during Gal-8-induced cell proliferation, with potential implications for physiology, disease, and therapeutic strategies.
Collapse
Affiliation(s)
- Adely de la Peña
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile
| | - Francisca Pérez-Molina
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Nicole Díaz-Valdivia
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Francisco Veloso-Bahamondes
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Diego Tapia
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile
| | - Jorge Cancino
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Felix Randow
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Medicine, University of Cambridge, UK
| | - Alfonso González
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Universidad San Sebastián, Santiago, Chile; Centro Científico Tecnológico de Excelencia Ciencia y Vida, Fundación Ciencia y Vida, Santiago, Chile.
| | - Claudia Oyanadel
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile.
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Centro Científico Tecnológico de Excelencia Ciencia y Vida, Fundación Ciencia y Vida, Santiago, Chile.
| |
Collapse
|
6
|
Li Y, Zhang Y, Cheng J, Chen J, Lin Z, Hu B, Li B, Yang X. TOLLIP inhibits the replication of PEDV by autophagic degradation of Nsp9. Int J Biol Macromol 2025; 304:140631. [PMID: 39909271 DOI: 10.1016/j.ijbiomac.2025.140631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Selective autophagy plays a crucial role in innate antiviral immunity by targeting essential viral components and host factors necessary for virus propagation. Among these factors, the nonstructural protein 9 (Nsp9) of Porcine Epidemic Diarrhea Virus (PEDV) is required for viral replication. However, the host factors regulating Nsp9 have remained elusive. In our study, we discovered that Nsp9 undergoes degradation through selective autophagy. Using coimmunoprecipitation combined with mass spectrometry analysis, we identified Toll-interacting protein (TOLLIP) as an autophagy cargo receptor binding to Nsp9 and facilitating its autophagic degradation. Additionally, we found that TOLLIP interacts with LC3A, LC3C, and GABARAPL1. Further investigations revealed that Nsp9 specifically enhances the binding of TOLLIP to LC3A, rather than LC3C or GABARAPL1. Importantly, TOLLIP promotes the engulfment of Nsp9 by LC3A-coated autophagosomes and mediates Nsp9 trafficking to lysosomes, ultimately leading to LC3A-dependent degradation of Nsp9. Consequently, TOLLIP suppresses PEDV replication. Overall, our findings highlight the role of TOLLIP in connecting viral proteins to LC3A-dependent autophagosome, emphasizing its significance in combating viruses through selective autophagy.
Collapse
Affiliation(s)
- Yahui Li
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou 310058, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yutao Zhang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou 310058, China
| | - Jiexi Cheng
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou 310058, China
| | - Jinyang Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Zhiwei Lin
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Boli Hu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou 310058, China.
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China.
| | - Xianghong Yang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
7
|
Kim HJ, Kim HJ, Kim SY, Roh J, Yun JH, Kim CH. TBK1 is a signaling hub in coordinating stress-adaptive mechanisms in head and neck cancer progression. Autophagy 2025:1-23. [PMID: 40114316 DOI: 10.1080/15548627.2025.2481661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025] Open
Abstract
Tumorigenesis is closely linked to the ability of cancer cells to activate stress-adaptive mechanisms in response to various cellular stressors. Stress granules (SGs) play a crucial role in promoting cancer cell survival, invasion, and treatment resistance, and influence tumor immune escape by protecting essential mRNAs involved in cell metabolism, signaling, and stress responses. TBK1 (TANK binding kinase 1) functions in antiviral innate immunity, cell survival, and proliferation in both the tumor microenvironment and tumor cells. Here, we report that MUL1 loss results in the hyperactivation of TBK1 in both HNC cells and tissues. Mechanistically, under proteotoxic stress induced by proteasomal inhibition, HSP90 inhibition, or Ub+ stress, MUL1 promotes the degradation of active TBK1 through K48-linked ubiquitination at lysine 584. Furthermore, TBK1 facilitates autophagosome-lysosome fusion and phosphorylates SQSTM1, regulating selective macroautophagic/autophagic clearance in HNC cells. TBK1 is required for SG formation and cellular protection. Moreover, we found that MAP1LC3B is partially localized within SGs. TBK1 depletion enhances the sensitivity of HNC cells to cisplatin-induced cell death. GSK8612, a novel TBK1 inhibitor, significantly inhibits HNC tumorigenesis in xenografts. In summary, our study reveals that TBK1 facilitates the rapid removal of ubiquitinated proteins within the cell through protective autophagy under stress conditions and assists SG formation through the use of the autophagy machinery. These findings highlight the potential of TBK1 as a therapeutic target in HNC treatment.Abbreviations: ALP: autophagy-lysosomal pathway; AMBRA1: autophagy and beclin 1 regulator 1; BaF: bafilomycin A1; CC: coiled-coil; CD274/PDL-1: CD274 molecule; CHX: cycloheximide; CQ: chloroquine; DNP: dinitrophenol; EGFR: epidermal growth factor receptor; ESCC: esophageal squamous cell carcinoma; G3BP1: G3BP stress granule assembly factor 1; HNC: head and neck cancer; HPV: human papillomavirus; IFN: interferon; IGFBP3: insulin like growth factor binding protein 3; IRF: interferon-regulatory factor 3; KO: knockout; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; NPC: nasopharyngeal carcinoma; PABP: poly(A) binding protein; PI: proteasome inhibitor; PQC: protein quality control; PROTAC: proteolysis-targeting chimera; PURA/PURα: purine rich element binding protein A; RIGI: RNA sensor RIG-I; SD: standard deviation; SG: stress granule; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1; UPS: ubiquitin-proteasome system; USP10: ubiquitin specific peptidase 10; VCP: valosin containing protein; VHL: von Hippel-Lindau tumor suppressor; WT: wild type.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Haeng-Jun Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sun-Yong Kim
- Department of New Business Development, Future Business Division, DaehanNupharm Co. Ltd, Seongnam, Republic of Korea
| | - Jin Roh
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ju Hyun Yun
- Department of Otolaryngology, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
8
|
Chen D, Fearns A, Gutierrez MG. Mycobacterium tuberculosis phagosome Ca 2+ leakage triggers multimembrane ATG8/LC3 lipidation to restrict damage in human macrophages. SCIENCE ADVANCES 2025; 11:eadt3311. [PMID: 40138395 PMCID: PMC11939036 DOI: 10.1126/sciadv.adt3311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
The role of canonical autophagy in controlling Mycobacterium tuberculosis (Mtb), referred to as xenophagy, is understood to involve targeting Mtb to autophagosomes, which subsequently fuse with lysosomes for degradation. Here, we found that Ca2+ leakage after Mtb phagosome damage in human macrophages is the signal that triggers autophagy-related protein 8/microtubule-associated proteins 1A/1B light chain 3 (ATG8/LC3) lipidation. Unexpectedly, ATG8/LC3 lipidation did not target Mtb to lysosomes, excluding the canonical xenophagy. Upon Mtb phagosome damage, the Ca2+ leakage-dependent ATG8/LC3 lipidation occurred on multiple membranes instead of single or double membranes excluding the noncanonical autophagy pathways. Mechanistically, Ca2+ leakage from the phagosome triggered the recruitment of the V-ATPase-ATG16L1 complex independently of FIP200, ATG13, and proton gradient disruption. Furthermore, the Ca2+ leakage-dependent ATG8/LC3 lipidation limited Mtb phagosome damage and restricted Mtb replication. Together, we uncovered Ca2+ leakage as the key signal that triggers ATG8/LC3 lipidation on multiple membranes to mitigate Mtb phagosome damage.
Collapse
Affiliation(s)
- Di Chen
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Antony Fearns
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maximiliano G. Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
9
|
Moreno TM, Nieto-Torres JL, Kumsta C. Monitoring Autophagy in Human Aging: Key Cell Models and Insights. FRONT BIOSCI-LANDMRK 2025; 30:27091. [PMID: 40152379 PMCID: PMC12042822 DOI: 10.31083/fbl27091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 03/29/2025]
Abstract
Autophagy, a key cellular degradation and recycling pathway, is critical for maintaining cellular homeostasis and responding to metabolic and environmental stress. Evidence for age-related autophagic dysfunction and its implications in chronic age-related diseases including neurodegeneration is accumulating. However, as a complex, multi-step process, autophagy can be challenging to measure, particularly in humans and human aging- and disease-relevant models. This review describes the links between macroautophagy, aging, and chronic age-related diseases. We present three novel human cell models, peripheral blood mononuclear cells (PBMCs), primary dermal fibroblasts (PDFs), and induced neurons (iNs), which serve as essential tools for studying autophagy flux and assessing its potential as a biomarker for aging. Unlike traditional models, these cell models retain age- and disease-associated molecular signatures, enhancing their relevance for human studies. The development of robust tools and methodologies for measuring autophagy flux in human cell models holds promise for advancing our understanding of autophagy's role in aging and age-related diseases, ultimately facilitating the discovery of therapies to enhance health outcomes.
Collapse
Affiliation(s)
- Tatiana M. Moreno
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jose L. Nieto-Torres
- Department of Biomedical Sciences, School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Caroline Kumsta
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Lorentzen KC, Prescott AR, Ganley IG. Artificial targeting of autophagy components to mitochondria reveals both conventional and unconventional mitophagy pathways. Autophagy 2025; 21:315-337. [PMID: 39177530 PMCID: PMC11760219 DOI: 10.1080/15548627.2024.2395149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024] Open
Abstract
Macroautophagy/autophagy enables lysosomal degradation of a diverse array of intracellular material. This process is essential for normal cellular function and its dysregulation is implicated in many diseases. Given this, there is much interest in understanding autophagic mechanisms of action in order to determine how it can be best targeted therapeutically. In mitophagy, the selective degradation of mitochondria via autophagy, mitochondria first need to be primed with signals that allow the recruitment of the core autophagy machinery to drive the local formation of an autophagosome around the target mitochondrion. To determine how the recruitment of different core autophagy components can drive mitophagy, we took advantage of the mito-QC mitophagy assay (an outer mitochondrial membrane-localized tandem mCherry-GFP tag). By tagging autophagy proteins with an anti-mCherry (or anti-GFP) nanobody, we could recruit them to mitochondria and simultaneously monitor levels of mitophagy. We found that targeting ULK1, ATG16L1 and the different Atg8-family proteins was sufficient to induce mitophagy. Mitochondrial recruitment of ULK1 and the Atg8-family proteins induced a conventional mitophagy pathway, requiring RB1CC1/FIP200, PIK3C3/VPS34 activity and ATG5. Surprisingly, the mitophagy pathway upon recruitment of ATG16L1 proceeded independently of ATG5, although it still required RB1CC1 and PIK3C3/VPS34 activity. In this latter pathway, mitochondria were alternatively delivered to lysosomes via uptake into early endosomes.Abbreviation: aGFP: anti-GFP nanobody; amCh: anti-mCherry nanobody; ATG: autophagy related; ATG16L1: autophagy related 16 like 1; AUTAC/AUTOTAC: autophagy-targeting chimera; BafA1: bafilomycin A1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CCCP: carbonyl cyanide m-chlorophenylhydrazone; COX4/COX IV: cytochrome c oxidase subunit 4; DFP: deferiprone; DMSO: dimethyl sulfoxide; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; HSPD1/HSP60: heat shock protein family D (Hsp60) member 1; HRP: horseradish peroxidase; HTRA2/OMI: HtrA serine peptidase 2; IB: immunoblotting; IF: immunofluorescence; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; NBR1: NBR1 autophagy cargo receptor; OMM: outer mitochondrial membrane; OPA1: OPA1 mitochondrial dynamin like GTPase; OPTN: optineurin; (D)PBS: (Dulbecco's) phosphate-buffered saline; PD: Parkinson disease; PFA: paraformaldehyde; POI: protein of interest; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; RAB: RAB, member RAS oncogene family; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; ULK: unc-51 like autophagy activating kinase 1; VPS: vacuolar protein sorting; WIPI: WD repeat domain, phosphoinositide interacting.
Collapse
Affiliation(s)
| | - Alan R. Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ian G. Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| |
Collapse
|
11
|
Broadbent DG, McEwan CM, Jayatunge D, Kaminsky EG, Tsang TM, Poole DM, Naylor BC, Price JC, Schmidt JC, Andersen JL. Ubiquitin-mediated recruitment of the ATG9A-ATG2 lipid transfer complex drives clearance of phosphorylated p62 aggregates. Mol Biol Cell 2025; 36:ar20. [PMID: 39718773 PMCID: PMC11809316 DOI: 10.1091/mbc.e24-03-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 11/04/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024] Open
Abstract
Autophagy is an essential cellular recycling process that maintains protein and organelle homeostasis. ATG9A vesicle recruitment is a critical early step in autophagy to initiate autophagosome biogenesis. The mechanisms of ATG9A vesicle recruitment are best understood in the context of starvation-induced nonselective autophagy, whereas less is known about the signals driving ATG9A vesicle recruitment to autophagy initiation sites in the absence of nutrient stress. Here we demonstrate that loss of ATG9A, or the lipid transfer protein ATG2, leads to the accumulation of phosphorylated p62 aggregates in nutrient replete conditions. Furthermore, we show that p62 degradation requires the lipid scramblase activity of ATG9A. Last, we present evidence that polyubiquitin is an essential signal that recruits ATG9A and mediates autophagy foci assembly in nutrient replete cells. Together, our data support a ubiquitin-driven model of ATG9A recruitment and autophagosome formation during basal autophagy.
Collapse
Affiliation(s)
- David G Broadbent
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
- Department of Physiology, College of Natural Sciences, Michigan State University, East Lansing, MI 48824
| | - Colten M McEwan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Dasun Jayatunge
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Emily G Kaminsky
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824
| | - Tsz-Min Tsang
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Daniel M Poole
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Bradley C Naylor
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - John C Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Jens C Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI 48824
| | - Josh L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
12
|
Agir N, Georgakopoulos-Soares I, Zaravinos A. A Multi-Omics Analysis of a Mitophagy-Related Signature in Pan-Cancer. Int J Mol Sci 2025; 26:448. [PMID: 39859167 PMCID: PMC11765132 DOI: 10.3390/ijms26020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Mitophagy, an essential process within cellular autophagy, has a critical role in regulating key cellular functions such as reproduction, metabolism, and apoptosis. Its involvement in tumor development is complex and influenced by the cellular environment. Here, we conduct a comprehensive analysis of a mitophagy-related gene signature, composed of PRKN, PINK1, MAP1LC3A, SRC, BNIP3L, BECN1, and OPTN, across various cancer types, revealing significant differential expression patterns associated with molecular subtypes, stages, and patient outcomes. Pathway analysis revealed a complex interplay between the expression of the signature and potential effects on the activity of various cancer-related pathways in pan-cancer. Immune infiltration analysis linked the mitophagy signature with certain immune cell types, particularly OPTN with immune infiltration in melanoma. Methylation patterns correlated with gene expression and immune infiltration. Mutation analysis also showed frequent alterations in PRKN (34%), OPTN (21%), PINK1 (28%), and SRC (15%), with implications for the tumor microenvironment. We also found various correlations between the expression of the mitophagy-related genes and sensitivity in different drugs, suggesting that targeting this signature could improve therapy efficacy. Overall, our findings underscore the importance of mitophagy in cancer biology and drug resistance, as well as its potential for informing treatment strategies.
Collapse
Affiliation(s)
- Nora Agir
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus;
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus;
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| |
Collapse
|
13
|
Paul S, Biswas SR, Milner JP, Tomsick PL, Pickrell AM. Adaptor-Mediated Trafficking of Tank Binding Kinase 1 During Diverse Cellular Processes. Traffic 2025; 26:e70000. [PMID: 40047067 PMCID: PMC11883510 DOI: 10.1111/tra.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 03/09/2025]
Abstract
The serine/threonine kinase, Tank Binding Kinase 1 (TBK1), drives distinct cellular processes like innate immune signaling, selective autophagy, and mitosis. It is suggested that the translocation and activation of TBK1 at different subcellular locations within the cell, downstream of diverse stimuli, are driven by TBK1 adaptor proteins forming a complex directly or indirectly with TBK1. Various TBK1 adaptors and associated proteins like NAP1, TANK, SINTBAD, p62, optineurin (OPTN), TAX1BP1, STING, and NDP52 have been identified in facilitating TBK1 activation and recruitment with varying overlapping redundancy. This review focuses on what is known about these proteins, their interactions with TBK1, and the functional consequences of these associations. We shed light on underexplored areas of research on these TBK1 binding partners while emphasizing how future research is required to understand the function and flexibility of TBK1 signaling and crosstalk or regulation between different biological processes.
Collapse
Affiliation(s)
- Swagatika Paul
- Graduate Program in Biomedical and Veterinary SciencesVirginia‐Maryland College of Veterinary MedicineBlacksburgVirginiaUSA
| | - Sahitya Ranjan Biswas
- Translational Biology, Medicine, and Health Graduate ProgramVirginia Polytechnic Institute and State UniversityRoanokeVirginiaUSA
| | - Julia P. Milner
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Porter L. Tomsick
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Alicia M. Pickrell
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| |
Collapse
|
14
|
Schmidt KW, Montespan C, Thompson D, Lucas MS, Ligeon LA, Wodrich H, Hahn AS, Greber UF, Münz C. Selective autophagy impedes KSHV entry after recruiting the membrane damage sensor galectin-8 to virus-containing endosomes. Cell Rep 2024; 43:115019. [PMID: 39602307 DOI: 10.1016/j.celrep.2024.115019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/15/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic γ-herpesvirus. Autophagy during KSHV entry has remained unexplored. We show that LC3 lipidation as a hallmark of autophagy is induced shortly after KSHV entry. LC3 co-localizes with KSHV in amphisomes during entry and loss of LC3 lipidation increases infection. Accordingly, NDP52, a receptor of selective autophagy, was recruited to endocytosed viral particles, and its reduction increased KSHV infection. Additionally, virus particles co-localized with the endolysosome damage sensor galectin-8 upon KSHV entry and depletion of galectin-8 promoted KSHV infection. Compared with herpes simplex virus, listeriolysin, adenovirus, and influenza virus, and in contrast to what was previously thought about enveloped viruses, KSHV binding to EphA2 by its envelope protein gH causes endolysosomal membrane damage, akin to non-enveloped viruses and bacteria. Taken together, our study identifies an important anti-viral role for galectin-8, NDP52, and the autophagy machinery at virus-damaged endosomes, restricting KSHV entry by selective autophagy.
Collapse
Affiliation(s)
- Katarina Wendy Schmidt
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Charlotte Montespan
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Danielle Thompson
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Miriam S Lucas
- ScopeM - Scientific Center for Optical and Electron Microscopy, ETH Zurich, 8093 Zurich, Switzerland
| | - Laure-Anne Ligeon
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Harald Wodrich
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 33063 Bordeaux, France
| | - Alexander S Hahn
- German Primate Center, University of Göttingen, 37077 Göttingen, Germany
| | - Urs F Greber
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
15
|
Li Y, Bel S, Benjamin JL, Ruhn KA, Hassell B, Behrendt CL, Kuang Z, Hooper LV. BCL2 regulates antibacterial autophagy in the intestinal epithelium. Proc Natl Acad Sci U S A 2024; 121:e2410205121. [PMID: 39602254 PMCID: PMC11626146 DOI: 10.1073/pnas.2410205121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Autophagy is a key innate immune defense mechanism in intestinal epithelial cells. Bacterial invasion of epithelial cells activates antibacterial autophagy through a process that requires the innate immune adaptor protein MYD88, yet how MYD88 signaling connects to the autophagy machinery is unknown. Here, we show that the mouse intestinal pathogen Salmonella enterica Serovar Typhimurium (Salmonella Typhimurium) triggers MYD88 signaling that regulates binding of the anti-autophagy factor B cell lymphoma 2 (BCL2) to the essential autophagy protein Beclin1 (BECN1) in small intestinal enterocytes, a key epithelial cell lineage. Salmonella infection activated the kinase c-Jun N-terminal protein kinase 1 (JNK1) downstream of MYD88. JNK1 induced enterocyte BCL2 phosphorylation, promoting dissociation of the inhibitory BCL2-BECN1 complex and releasing BECN1 to initiate autophagy. Mice with BCL2 phosphorylation site mutations that prevent BCL2-BECN1 dissociation showed increased Salmonella invasion of enterocytes and dissemination to extraintestinal sites. These findings reveal that BCL2 links MYD88 signaling to enterocyte autophagy initiation, providing mechanistic insight into how invading bacteria trigger autophagy in the intestinal epithelium.
Collapse
Affiliation(s)
- Yun Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Shai Bel
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jamaal L. Benjamin
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Kelly A. Ruhn
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Brian Hassell
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Cassie L. Behrendt
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Zheng Kuang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Lora V. Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
16
|
Bauer B, Idinger J, Schuschnig M, Ferrari L, Martens S. Recruitment of autophagy initiator TAX1BP1 advances aggrephagy from cargo collection to sequestration. EMBO J 2024; 43:5910-5940. [PMID: 39448883 PMCID: PMC11611905 DOI: 10.1038/s44318-024-00280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Autophagy mediates the degradation of harmful material within lysosomes. In aggrephagy, the pathway mediating the degradation of aggregated, ubiquitinated proteins, this cargo material is collected in larger condensates prior to its sequestration by autophagosomes. In this process, the autophagic cargo receptors SQSTM1/p62 and NBR1 drive cargo condensation, while TAX1BP1, which binds to NBR1, recruits the autophagy machinery to facilitate autophagosome biogenesis at the condensates. The mechanistic basis for the TAX1BP1-mediated switch from cargo collection to its sequestration is unclear. Here we show that TAX1BP1 is not a constitutive component of the condensates. Its recruitment correlates with the induction of autophagosome biogenesis. TAX1BP1 is sufficient to recruit the TBK1 kinase via the SINTBAD adapter. We define the NBR1-TAX1BP1-binding site, which is adjacent to the GABARAP/LC3 interaction site, and demonstrate that the recruitment of TAX1BP1 to cargo mimetics can be enhanced by an increased ubiquitin load. Our study suggests that autophagosome biogenesis is initiated once sufficient cargo is collected in the condensates.
Collapse
Affiliation(s)
- Bernd Bauer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical, University of Vienna, A-1030, Vienna, Austria
| | - Jonas Idinger
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Martina Schuschnig
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Luca Ferrari
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
17
|
Adriaenssens E, Nguyen TN, Sawa-Makarska J, Khuu G, Schuschnig M, Shoebridge S, Skulsuppaisarn M, Watts EM, Csalyi KD, Padman BS, Lazarou M, Martens S. Control of mitophagy initiation and progression by the TBK1 adaptors NAP1 and SINTBAD. Nat Struct Mol Biol 2024; 31:1717-1731. [PMID: 38918639 PMCID: PMC11564117 DOI: 10.1038/s41594-024-01338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Mitophagy preserves overall mitochondrial fitness by selectively targeting damaged mitochondria for degradation. The regulatory mechanisms that prevent PTEN-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase Parkin (PINK1/Parkin)-dependent mitophagy and other selective autophagy pathways from overreacting while ensuring swift progression once initiated are largely elusive. Here, we demonstrate how the TBK1 (TANK-binding kinase 1) adaptors NAP1 (NAK-associated protein 1) and SINTBAD (similar to NAP1 TBK1 adaptor) restrict the initiation of OPTN (optineurin)-driven mitophagy by competing with OPTN for TBK1. Conversely, they promote the progression of nuclear dot protein 52 (NDP52)-driven mitophagy by recruiting TBK1 to NDP52 and stabilizing its interaction with FIP200. Notably, OPTN emerges as the primary recruiter of TBK1 during mitophagy initiation, which in return boosts NDP52-mediated mitophagy. Our results thus define NAP1 and SINTBAD as cargo receptor rheostats, elevating the threshold for mitophagy initiation by OPTN while promoting the progression of the pathway once set in motion by supporting NDP52. These findings shed light on the cellular strategy to prevent pathway hyperactivity while still ensuring efficient progression.
Collapse
Affiliation(s)
- Elias Adriaenssens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Thanh Ngoc Nguyen
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Justyna Sawa-Makarska
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Grace Khuu
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Martina Schuschnig
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria
| | - Stephen Shoebridge
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Marvin Skulsuppaisarn
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Emily Maria Watts
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Kitti Dora Csalyi
- Max Perutz Labs BioOptics FACS Facility, Max Perutz Labs, University of Vienna, Vienna BioCenter Campus (VBC), Vienna, Austria
| | - Benjamin Scott Padman
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Michael Lazarou
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
18
|
Luo R, Wang T, Lan J, Lu Z, Chen S, Sun Y, Qiu HJ. The multifaceted roles of selective autophagy receptors in viral infections. J Virol 2024; 98:e0081424. [PMID: 39212450 PMCID: PMC11494948 DOI: 10.1128/jvi.00814-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Selective autophagy is a protein clearance mechanism mediated by evolutionarily conserved selective autophagy receptors (SARs), which specifically degrades misfolded, misassembled, or metabolically regulated proteins. SARs help the host to suppress viral infections by degrading viral proteins. However, viruses have evolved sophisticated mechanisms to counteract, evade, or co-opt autophagic processes, thereby facilitating viral replication. Therefore, this review aims to summarize the complex mechanisms of SARs involved in viral infections, specifically focusing on how viruses exploit strategies to regulate selective autophagy. We present an updated understanding of the various critical roles of SARs in viral pathogenesis. Furthermore, newly discovered evasion strategies employed by viruses are discussed and the ubiquitination-autophagy-innate immune regulatory axis is proposed to be a crucial pathway to control viral infections. This review highlights the remarkable flexibility and plasticity of SARs in viral infections.
Collapse
Affiliation(s)
- Rui Luo
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing Lan
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Animal Sciences, Yangtze University, Jingzhou, China
| | - Zhanhao Lu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shengmei Chen
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- School of Life Science Engineering, Foshan University, Foshan, China
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Animal Sciences, Yangtze University, Jingzhou, China
- School of Life Science Engineering, Foshan University, Foshan, China
| |
Collapse
|
19
|
Hushmandi K, Einollahi B, Aow R, Suhairi SB, Klionsky DJ, Aref AR, Reiter RJ, Makvandi P, Rabiee N, Xu Y, Nabavi N, Saadat SH, Farahani N, Kumar AP. Investigating the interplay between mitophagy and diabetic neuropathy: Uncovering the hidden secrets of the disease pathology. Pharmacol Res 2024; 208:107394. [PMID: 39233055 PMCID: PMC11934918 DOI: 10.1016/j.phrs.2024.107394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mitophagy, the cellular process of selectively eliminating damaged mitochondria, plays a crucial role in maintaining metabolic balance and preventing insulin resistance, both key factors in type 2 diabetes mellitus (T2DM) development. When mitophagy malfunctions in diabetic neuropathy, it triggers a cascade of metabolic disruptions, including reduced energy production, increased oxidative stress, and cell death, ultimately leading to various complications. Thus, targeting mitophagy to enhance the process may have emerged as a promising therapeutic strategy for T2DM and its complications. Notably, plant-derived compounds with β-cell protective and mitophagy-stimulating properties offer potential as novel therapeutic agents. This review highlights the intricate mechanisms linking mitophagy dysfunction to T2DM and its complications, particularly neuropathy, elucidating potential therapeutic interventions for this debilitating disease.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rachel Aow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suhana Binte Suhairi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Pooyan Makvandi
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India; University Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
20
|
Endo R, Kinefuchi H, Sawada M, Kikuchi R, Kojima W, Matsuda N, Yamano K. TBK1 adaptor AZI2/NAP1 regulates NDP52-driven mitochondrial autophagy. J Biol Chem 2024; 300:107775. [PMID: 39276928 PMCID: PMC11490886 DOI: 10.1016/j.jbc.2024.107775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024] Open
Abstract
Damaged mitochondria are selectively eliminated in a process called mitophagy. PINK1 and Parkin amplify ubiquitin signals on damaged mitochondria, which are then recognized by autophagy adaptors to induce local autophagosome formation. NDP52 and OPTN, two essential mitophagy adaptors, facilitate de novo synthesis of pre-autophagosomal membranes near damaged mitochondria by linking ubiquitinated mitochondria and ATG8 family proteins and by recruiting core autophagy initiation components. The multifunctional serine/threonine kinase TBK1 also plays an important role in mitophagy. OPTN directly binds TBK1 to form a positive feedback loop for isolation membrane expansion. TBK1 is also thought to indirectly interact with NDP52; however, its role in NDP52-driven mitophagy remains largely unknown. Here, we focused on two TBK1 adaptors, AZI2/NAP1 and TBKBP1/SINTBAD, that are thought to mediate the TBK1-NDP52 interaction. We found that both AZI2 and TBKBP1 are recruited to damaged mitochondria during Parkin-mediated mitophagy. Further, a series of AZI2 and TBKBP1 knockout constructs combined with an OPTN knockout showed that AZI2, but not TBKBP1, impacts NDP52-driven mitophagy. In addition, we found that AZI2 at S318 is phosphorylated during mitophagy, the impairment of which slightly inhibits mitochondrial degradation. These results suggest that AZI2, in concert with TBK1, plays an important role in NDP52-driven mitophagy.
Collapse
Affiliation(s)
- Ryu Endo
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hiroki Kinefuchi
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Momoha Sawada
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Reika Kikuchi
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Waka Kojima
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Noriyuki Matsuda
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Koji Yamano
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
21
|
Sankar DS, Kaeser-Pebernard S, Vionnet C, Favre S, de Oliveira Marchioro L, Pillet B, Zhou J, Stumpe M, Kovacs WJ, Kressler D, Antonioli M, Fimia GM, Dengjel J. The ULK1 effector BAG2 regulates autophagy initiation by modulating AMBRA1 localization. Cell Rep 2024; 43:114689. [PMID: 39207901 DOI: 10.1016/j.celrep.2024.114689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/15/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Autophagy initiation is regulated by the ULK1 kinase complex. To gain insights into functions of the holo-complex, we generated a deep interactome by combining affinity purification- and proximity labeling-mass spectrometry of all four complex members: ULK1, ATG13, ATG101, and RB1CC1/FIP200. Under starvation conditions, the ULK1 complex interacts with several protein and lipid kinases and phosphatases, implying the formation of a signalosome. Interestingly, several selective autophagy receptors also interact with ULK1, indicating the activation of selective autophagy pathways by nutrient starvation. One effector of the ULK1 complex is the HSC/HSP70 co-chaperone BAG2, which regulates the subcellular localization of the VPS34 lipid kinase complex member AMBRA1. Depending on the nutritional status, BAG2 has opposing roles. In growth conditions, the unphosphorylated form of BAG2 sequesters AMBRA1, attenuating autophagy induction. In starvation conditions, ULK1 phosphorylates BAG2 on Ser31, which supports the recruitment of AMBRA1 to the ER membrane, positively affecting autophagy.
Collapse
Affiliation(s)
| | | | - Christine Vionnet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Sebastian Favre
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Lais de Oliveira Marchioro
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", 00149 Rome, Italy; Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo CEP 05508-000, Brazil
| | - Benjamin Pillet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jianwen Zhou
- Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Werner Josef Kovacs
- Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Dieter Kressler
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Manuela Antonioli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", 00149 Rome, Italy; Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", 00149 Rome, Italy; Department of Molecular Medicine, University of Rome "Sapienza", 00185 Rome, Italy
| | - Jӧrn Dengjel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
22
|
Dergilev K, Gureenkov A, Parfyonova Y. Autophagy as a Guardian of Vascular Niche Homeostasis. Int J Mol Sci 2024; 25:10097. [PMID: 39337582 PMCID: PMC11432168 DOI: 10.3390/ijms251810097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The increasing burden of vascular dysfunction on healthcare systems worldwide results in higher morbidity and mortality rates across pathologies, including cardiovascular diseases. Vasculopathy is suggested to be caused by the dysregulation of vascular niches, a microenvironment of vascular structures comprising anatomical structures, extracellular matrix components, and various cell populations. These elements work together to ensure accurate control of the vascular network. In recent years, autophagy has been recognized as a crucial regulator of the vascular microenvironment responsible for maintaining basic cell functions such as proliferation, differentiation, replicative senescence, and apoptosis. Experimental studies indicate that autophagy activation can be enhanced or inhibited in various pathologies associated with vascular dysfunction, suggesting that autophagy plays both beneficial and detrimental roles. Here, we review and assess the principles of autophagy organization and regulation in non-tumor vascular niches. Our analysis focuses on significant figures in the vascular microenvironment, highlighting the role of autophagy and summarizing evidence that supports the systemic or multiorgan nature of the autophagy effects. Finally, we discuss the critical organizational and functional aspects of the vasculogenic niche, specifically in relation to autophagy. The resulting dysregulation of the vascular microenvironment contributes to the development of vascular dysfunction.
Collapse
Affiliation(s)
- Konstantin Dergilev
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Alexandre Gureenkov
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Yelena Parfyonova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
23
|
Zhang Y, Sun Y, Shi J, Xu P, Wang Y, Liu J, Gong X, Wang Y, Tang Y, Liu H, Zhou X, Lin Z, Baba O, Morita T, Yu B, Pan L. Decoding the molecular mechanism of selective autophagy of glycogen mediated by autophagy receptor STBD1. Proc Natl Acad Sci U S A 2024; 121:e2402817121. [PMID: 39236246 PMCID: PMC11406230 DOI: 10.1073/pnas.2402817121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Autophagy of glycogen (glycophagy) is crucial for the maintenance of cellular glucose homeostasis and physiology in mammals. STBD1 can serve as an autophagy receptor to mediate glycophagy by specifically recognizing glycogen and relevant key autophagic factors, but with poorly understood mechanisms. Here, we systematically characterize the interactions of STBD1 with glycogen and related saccharides, and determine the crystal structure of the STBD1 CBM20 domain with maltotetraose, uncovering a unique binding mode involving two different oligosaccharide-binding sites adopted by STBD1 CBM20 for recognizing glycogen. In addition, we demonstrate that the LC3-interacting region (LIR) motif of STBD1 can selectively bind to six mammalian ATG8 family members. We elucidate the detailed molecular mechanism underlying the selective interactions of STBD1 with ATG8 family proteins by solving the STBD1 LIR/GABARAPL1 complex structure. Importantly, our cell-based assays reveal that both the STBD1 LIR/GABARAPL1 interaction and the intact two oligosaccharide binding sites of STBD1 CBM20 are essential for the effective association of STBD1, GABARAPL1, and glycogen in cells. Finally, through mass spectrometry, biochemical, and structural modeling analyses, we unveil that STBD1 can directly bind to the Claw domain of RB1CC1 through its LIR, thereby recruiting the key autophagy initiation factor RB1CC1. In all, our findings provide mechanistic insights into the recognitions of glycogen, ATG8 family proteins, and RB1CC1 by STBD1 and shed light on the potential working mechanism of STBD1-mediated glycophagy.
Collapse
Affiliation(s)
- Yuchao Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yishan Sun
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jungang Shi
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Peng Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yingli Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Jianping Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xinyu Gong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yaru Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yubin Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Haobo Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xindi Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiqiao Lin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Otto Baba
- Oral and Maxillofacial Anatomy, Tokushima University Graduate School, Tokushima 770-8504, Japan
| | - Tsuyoshi Morita
- Oral and Maxillofacial Anatomy, Tokushima University Graduate School, Tokushima 770-8504, Japan
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lifeng Pan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
24
|
Deng Y, Zhang Y, Wu T, Niu K, Jiao X, Ma W, Peng C, Wu W. Complement C3 deposition restricts the proliferation of internalized Staphylococcus aureus by promoting autophagy. Front Cell Infect Microbiol 2024; 14:1400068. [PMID: 39310788 PMCID: PMC11412942 DOI: 10.3389/fcimb.2024.1400068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Complement C3 (C3) is usually deposited spontaneously on the surfaces of invading bacteria prior to internalization, but the impact of C3 coating on cellular responses is largely unknown. Staphylococcus aureus (S. aureus) is a facultative intracellular pathogen that subverts autophagy and replicates in both phagocytic and nonphagocytic cells. In the present study, we deposited C3 components on the surface of S. aureus by complement opsonization before cell infection and confirmed that C3-coatings remained on the surface of the bacteria after they have invaded the cells, suggesting S. aureus cannot escape or degrade C3 labeling. We found that the C3 deposition on S. aureus notably enhanced cellular autophagic responses, and distinguished these responses as xenophagy, in contrast to LC3-associated phagocytosis (LAP). Furthermore, this upregulation was due to the recruitment of and direct interaction with autophagy-related 16-like 1 (ATG16L1), thereby resulting in autophagy-dependent resistance to bacterial growth within cells. Interestingly, this autophagic effect occurred only after C3 activation by enzymatic cleavage because full-length C3 without cleavage of the complement cascade reaction, although capable of binding to ATG16L1, failed to promote autophagy. These findings demonstrate the biological function of intracellular C3 upon bacterial infection in enhancing autophagy against internalized S. aureus.
Collapse
Affiliation(s)
- Yining Deng
- National Key Laboratory of Veterinary Public Health, Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Yunke Zhang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tong Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kang Niu
- National Key Laboratory of Veterinary Public Health, Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoyu Jiao
- National Key Laboratory of Veterinary Public Health, Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenge Ma
- National Key Laboratory of Veterinary Public Health, Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chen Peng
- National Key Laboratory of Veterinary Public Health, Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenxue Wu
- National Key Laboratory of Veterinary Public Health, Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Adriaenssens E, Schaar S, Cook ASI, Stuke JFM, Sawa-Makarska J, Nguyen TN, Ren X, Schuschnig M, Romanov J, Khuu G, Lazarou M, Hummer G, Hurley JH, Martens S. Reconstitution of BNIP3/NIX-mediated autophagy reveals two pathways and hierarchical flexibility of the initiation machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609967. [PMID: 39253418 PMCID: PMC11383309 DOI: 10.1101/2024.08.28.609967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Selective autophagy is a lysosomal degradation pathway that is critical for maintaining cellular homeostasis by disposing of harmful cellular material. While the mechanisms by which soluble cargo receptors recruit the autophagy machinery are becoming increasingly clear, the principles governing how organelle-localized transmembrane cargo receptors initiate selective autophagy remain poorly understood. Here, we demonstrate that transmembrane cargo receptors can initiate autophagosome biogenesis not only by recruiting the upstream FIP200/ULK1 complex but also via a WIPI-ATG13 complex. This latter pathway is employed by the BNIP3/NIX receptors to trigger mitophagy. Additionally, other transmembrane mitophagy receptors, including FUNDC1 and BCL2L13, exclusively use the FIP200/ULK1 complex, while FKBP8 and the ER-phagy receptor TEX264 are capable of utilizing both pathways to initiate autophagy. Our study defines the molecular rules for initiation by transmembrane cargo receptors, revealing remarkable flexibility in the assembly and activation of the autophagy machinery, with significant implications for therapeutic interventions.
Collapse
|
26
|
Takeda E, Isoda T, Hosokawa S, Oikawa Y, Hotta-Ren S, May AI, Ohsumi Y. Receptor-mediated cargo hitchhiking on bulk autophagy. EMBO J 2024; 43:3116-3140. [PMID: 38755257 PMCID: PMC11294605 DOI: 10.1038/s44318-024-00091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 05/18/2024] Open
Abstract
While the molecular mechanism of autophagy is well studied, the cargoes delivered by autophagy remain incompletely characterized. To examine the selectivity of autophagy cargo, we conducted proteomics on isolated yeast autophagic bodies, which are intermediate structures in the autophagy process. We identify a protein, Hab1, that is highly preferentially delivered to vacuoles. The N-terminal 42 amino acid region of Hab1 contains an amphipathic helix and an Atg8-family interacting motif, both of which are necessary and sufficient for the preferential delivery of Hab1 by autophagy. We find that fusion of this region with a cytosolic protein results in preferential delivery of this protein to the vacuole. Furthermore, attachment of this region to an organelle allows for autophagic delivery in a manner independent of canonical autophagy receptor or scaffold proteins. We propose a novel mode of selective autophagy in which a receptor, in this case Hab1, binds directly to forming isolation membranes during bulk autophagy.
Collapse
Affiliation(s)
- Eigo Takeda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| | - Takahiro Isoda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
- Frontier Research Center, POLA Chemical Industries Inc., Yokohama, Japan
| | - Sachiko Hosokawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yu Oikawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Shukun Hotta-Ren
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Alexander I May
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yoshinori Ohsumi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
27
|
Pareek G, Kundu M. Physiological functions of ULK1/2. J Mol Biol 2024; 436:168472. [PMID: 38311233 PMCID: PMC11382334 DOI: 10.1016/j.jmb.2024.168472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
UNC-51-like kinases 1 and 2 (ULK1/2) are serine/threonine kinases that are best known for their evolutionarily conserved role in the autophagy pathway. Upon sensing the nutrient status of a cell, ULK1/2 integrate signals from upstream cellular energy sensors such as mTOR and AMPK and relay them to the downstream components of the autophagy machinery. ULK1/2 also play indispensable roles in the selective autophagy pathway, removing damaged mitochondria, invading pathogens, and toxic protein aggregates. Additional functions of ULK1/2 have emerged beyond autophagy, including roles in protein trafficking, RNP granule dynamics, and signaling events impacting innate immunity, axon guidance, cellular homeostasis, and cell fate. Therefore, it is no surprise that alterations in ULK1/2 expression and activity have been linked with pathophysiological processes, including cancer, neurological disorders, and cardiovascular diseases. Growing evidence suggests that ULK1/2 function as biological rheostats, tuning cellular functions to intra and extra-cellular cues. Given their broad physiological relevance, ULK1/2 are candidate targets for small molecule activators or inhibitors that may pave the way for the development of therapeutics for the treatment of diseases in humans.
Collapse
Affiliation(s)
- Gautam Pareek
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
28
|
Eickhorst C, Babic R, Rush-Kittle J, Lucya L, Imam FL, Sánchez-Martín P, Hollenstein DM, Michaelis J, Münch C, Meisinger C, Slade D, Gámez-Díaz L, Kraft C. FIP200 Phosphorylation Regulates Late Steps in Mitophagy. J Mol Biol 2024; 436:168631. [PMID: 38821350 DOI: 10.1016/j.jmb.2024.168631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Mitophagy is a specific type of autophagy responsible for the selective elimination of dysfunctional or superfluous mitochondria, ensuring the maintenance of mitochondrial quality control. The initiation of mitophagy is coordinated by the ULK1 kinase complex, which engages mitophagy receptors via its FIP200 subunit. Whether FIP200 performs additional functions in the subsequent later phases of mitophagy beyond this initial step and how its regulation occurs, remains unclear. Our findings reveal that multiple phosphorylation events on FIP200 differentially control the early and late stages of mitophagy. Furthermore, these phosphorylation events influence FIP200's interaction with ATG16L1. In summary, our results highlight the necessity for precise and dynamic regulation of FIP200, underscoring its importance in the progression of mitophagy.
Collapse
Affiliation(s)
- Christopher Eickhorst
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Riccardo Babic
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Jorrell Rush-Kittle
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany; Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Leon Lucya
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Fatimah Lami Imam
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Pablo Sánchez-Martín
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - David M Hollenstein
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Department for Biochemistry and Cell Biology, University of Vienna, Center for Molecular Biology, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria; Mass Spectrometry Facility, Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Jonas Michaelis
- Institute of Molecular Systems Medicine, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Christian Münch
- Institute of Molecular Systems Medicine, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Laura Gámez-Díaz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University Medical Center Freiburg, 79106 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
29
|
Figueras-Novoa C, Timimi L, Marcassa E, Ulferts R, Beale R. Conjugation of ATG8s to single membranes at a glance. J Cell Sci 2024; 137:jcs261031. [PMID: 39145464 PMCID: PMC11361636 DOI: 10.1242/jcs.261031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Autophagy refers to a set of degradative mechanisms whereby cytoplasmic contents are targeted to the lysosome. This is best described for macroautophagy, where a double-membrane compartment (autophagosome) is generated to engulf cytoplasmic contents. Autophagosomes are decorated with ubiquitin-like ATG8 molecules (ATG8s), which are recruited through covalent lipidation, catalysed by the E3-ligase-like ATG16L1 complex. LC3 proteins are ATG8 family members that are often used as a marker for autophagosomes. In contrast to canonical macroautophagy, conjugation of ATG8s to single membranes (CASM) describes a group of non-canonical autophagy processes in which ATG8s are targeted to pre-existing single-membrane compartments. CASM occurs in response to disrupted intracellular pH gradients, when the V-ATPase proton pump recruits ATG16L1 in a process called V-ATPase-ATG16L1-induced LC3 lipidation (VAIL). Recent work has demonstrated a parallel, alternative axis for CASM induction, triggered when the membrane recruitment factor TECPR1 recognises sphingomyelin exposed on the cytosolic face of a membrane and forms an alternative E3-ligase-like complex. This sphingomyelin-TECPR1-induced LC3 lipidation (STIL) is independent of the V-ATPase and ATG16L1. In light of these discoveries, this Cell Science at a Glance article summarises these two mechanisms of CASM to highlight how they differ from canonical macroautophagy, and from each other.
Collapse
Affiliation(s)
- Carmen Figueras-Novoa
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Lewis Timimi
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Division of Medicine, University College London, London NW1 1AT, UK
| | - Elena Marcassa
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Rachel Ulferts
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Division of Medicine, University College London, London NW1 1AT, UK
| |
Collapse
|
30
|
Tudorica DA, Basak B, Puerta Cordova AS, Khuu G, Rose K, Lazarou M, Holzbaur EL, Hurley JH. A RAB7A phosphoswitch coordinates Rubicon Homology protein regulation of Parkin-dependent mitophagy. J Cell Biol 2024; 223:e202309015. [PMID: 38728007 PMCID: PMC11090050 DOI: 10.1083/jcb.202309015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/12/2024] [Accepted: 04/05/2024] [Indexed: 05/15/2024] Open
Abstract
Activation of PINK1 and Parkin in response to mitochondrial damage initiates a response that includes phosphorylation of RAB7A at Ser72. Rubicon is a RAB7A binding negative regulator of autophagy. The structure of the Rubicon:RAB7A complex suggests that phosphorylation of RAB7A at Ser72 would block Rubicon binding. Indeed, in vitro phosphorylation of RAB7A by TBK1 abrogates Rubicon:RAB7A binding. Pacer, a positive regulator of autophagy, has an RH domain with a basic triad predicted to bind an introduced phosphate. Consistent with this, Pacer-RH binds to phosho-RAB7A but not to unphosphorylated RAB7A. In cells, mitochondrial depolarization reduces Rubicon:RAB7A colocalization whilst recruiting Pacer to phospho-RAB7A-positive puncta. Pacer knockout reduces Parkin mitophagy with little effect on bulk autophagy or Parkin-independent mitophagy. Rescue of Parkin-dependent mitophagy requires the intact pRAB7A phosphate-binding basic triad of Pacer. Together these structural and functional data support a model in which the TBK1-dependent phosphorylation of RAB7A serves as a switch, promoting mitophagy by relieving Rubicon inhibition and favoring Pacer activation.
Collapse
Affiliation(s)
- Dan A. Tudorica
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Bishal Basak
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alexia S. Puerta Cordova
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Grace Khuu
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Kevin Rose
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Michael Lazarou
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Erika L.F. Holzbaur
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - James H. Hurley
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
31
|
Saha B, Olsvik H, Williams GL, Oh S, Evjen G, Sjøttem E, Mandell MA. TBK1 is ubiquitinated by TRIM5α to assemble mitophagy machinery. Cell Rep 2024; 43:114294. [PMID: 38814780 PMCID: PMC11216866 DOI: 10.1016/j.celrep.2024.114294] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/05/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Ubiquitination of mitochondrial proteins provides a basis for the downstream recruitment of mitophagy machinery, yet whether ubiquitination of the machinery itself contributes to mitophagy is unknown. Here, we show that K63-linked polyubiquitination of the key mitophagy regulator TBK1 is essential for its mitophagy functions. This modification is catalyzed by the ubiquitin ligase TRIM5α and is required for TBK1 to interact with and activate a set of ubiquitin-binding autophagy adaptors including NDP52, p62/SQSTM1, and NBR1. Autophagy adaptors, along with TRIM27, enable TRIM5α to engage with TBK1 following mitochondrial damage. TRIM5α's ubiquitin ligase activity is required for the accumulation of active TBK1 on damaged mitochondria in Parkin-dependent and Parkin-independent mitophagy pathways. Our data support a model in which TRIM5α provides a mitochondria-localized, ubiquitin-based, self-amplifying assembly platform for TBK1 and mitophagy adaptors that is ultimately necessary for the recruitment of the core autophagy machinery.
Collapse
Affiliation(s)
- Bhaskar Saha
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Hallvard Olsvik
- Autophagy Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Geneva L Williams
- Biomedical Sciences Graduate Program, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Seeun Oh
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Gry Evjen
- Autophagy Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Eva Sjøttem
- Autophagy Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
32
|
North BJ, Ohnstad AE, Ragusa MJ, Shoemaker CJ. The LC3-interacting region of NBR1 is a protein interaction hub enabling optimal flux. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593318. [PMID: 38766171 PMCID: PMC11100792 DOI: 10.1101/2024.05.09.593318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
During autophagy, potentially toxic cargo is enveloped by a newly formed autophagosome and trafficked to the lysosome for degradation. Ubiquitinated protein aggregates, a key target for autophagy, are identified by multiple autophagy receptors. NBR1 is an archetypal autophagy receptor and an excellent model for deciphering the role of the multivalent, heterotypic interactions made by cargo-bound receptors. Using NBR1 as a model, we find that three critical binding partners - ATG8-family proteins, FIP200, and TAX1BP1 - each bind to a short linear interaction motif (SLiM) within NBR1. Mutational peptide arrays indicate that these binding events are mediated by distinct overlapping determinants, rather than a single, convergent, SLiM. AlphaFold modeling underlines the need for conformational flexibility within the NBR1 SLiM, as distinct conformations mediate each binding event. To test the extent to which overlapping SLiMs exist beyond NBR1, we performed peptide binding arrays on >100 established LC3-interacting regions (LIRs), revealing that FIP200 and/or TAX1BP1 binding to LIRs is a common phenomenon and suggesting LIRs as protein interaction hotspots. Comparative analysis of phosphomimetic peptides highlights that while FIP200 and Atg8-family binding are generally augmented by phosphorylation, TAX1BP1 binding is nonresponsive, suggesting differential regulation of these binding events. In vivo studies confirm that LIR-mediated interactions with TAX1BP1 enhance NBR1 activity, increasing autophagosomal delivery by leveraging an additional LIR from TAX1BP1. In sum, these results reveal a one-to-many binding modality in NBR1, providing key insights into the cooperative mechanisms among autophagy receptors. Furthermore, these findings underscore the pervasive role of multifunctional SLiMs in autophagy, offering substantial avenues for further exploration into their regulatory functions.
Collapse
Affiliation(s)
- Brian J North
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Amelia E Ohnstad
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | | | - Christopher J Shoemaker
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
33
|
Schmid M, Fischer P, Engl M, Widder J, Kerschbaum-Gruber S, Slade D. The interplay between autophagy and cGAS-STING signaling and its implications for cancer. Front Immunol 2024; 15:1356369. [PMID: 38660307 PMCID: PMC11039819 DOI: 10.3389/fimmu.2024.1356369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Autophagy is an intracellular process that targets various cargos for degradation, including members of the cGAS-STING signaling cascade. cGAS-STING senses cytosolic double-stranded DNA and triggers an innate immune response through type I interferons. Emerging evidence suggests that autophagy plays a crucial role in regulating and fine-tuning cGAS-STING signaling. Reciprocally, cGAS-STING pathway members can actively induce canonical as well as various non-canonical forms of autophagy, establishing a regulatory network of feedback mechanisms that alter both the cGAS-STING and the autophagic pathway. The crosstalk between autophagy and the cGAS-STING pathway impacts a wide variety of cellular processes such as protection against pathogenic infections as well as signaling in neurodegenerative disease, autoinflammatory disease and cancer. Here we provide a comprehensive overview of the mechanisms involved in autophagy and cGAS-STING signaling, with a specific focus on the interactions between the two pathways and their importance for cancer.
Collapse
Affiliation(s)
- Maximilian Schmid
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Patrick Fischer
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Magdalena Engl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Joachim Widder
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sylvia Kerschbaum-Gruber
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
34
|
Zhang M, Wang Y, Gong X, Wang Y, Zhang Y, Tang Y, Zhou X, Liu H, Huang Y, Zhang J, Pan L. Mechanistic insights into the interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins. Proc Natl Acad Sci U S A 2024; 121:e2315550121. [PMID: 38437556 PMCID: PMC10945755 DOI: 10.1073/pnas.2315550121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024] Open
Abstract
TAX1BP1, a multifunctional autophagy adaptor, plays critical roles in different autophagy processes. As an autophagy receptor, TAX1BP1 can interact with RB1CC1, NAP1, and mammalian ATG8 family proteins to drive selective autophagy for relevant substrates. However, the mechanistic bases underpinning the specific interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins remain elusive. Here, we find that there are two distinct binding sites between TAX1BP1 and RB1CC1. In addition to the previously reported TAX1BP1 SKICH (skeletal muscle and kidney enriched inositol phosphatase (SKIP) carboxyl homology)/RB1CC1 coiled-coil interaction, the first coiled-coil domain of TAX1BP1 can directly bind to the extreme C-terminal coiled-coil and Claw region of RB1CC1. We determine the crystal structure of the TAX1BP1 SKICH/RB1CC1 coiled-coil complex and unravel the detailed binding mechanism of TAX1BP1 SKICH with RB1CC1. Moreover, we demonstrate that RB1CC1 and NAP1 are competitive in binding to the TAX1BP1 SKICH domain, but the presence of NAP1's FIP200-interacting region (FIR) motif can stabilize the ternary TAX1BP1/NAP1/RB1CC1 complex formation. Finally, we elucidate the molecular mechanism governing the selective interactions of TAX1BP1 with ATG8 family members by solving the structure of GABARAP in complex with the non-canonical LIR (LC3-interacting region) motif of TAX1BP1, which unveils a unique binding mode between LIR and ATG8 family protein. Collectively, our findings provide mechanistic insights into the interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins and are valuable for further understanding the working mode and function of TAX1BP1 in autophagy.
Collapse
Affiliation(s)
- Mingfang Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Yingli Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Xinyu Gong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Yaru Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
| | - Yuchao Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Yubin Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Xindi Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Haobo Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Yichao Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
| | - Jing Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan610068, China
| | - Lifeng Pan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan610068, China
| |
Collapse
|
35
|
Yamamoto H, Matsui T. Molecular Mechanisms of Macroautophagy, Microautophagy, and Chaperone-Mediated Autophagy. J NIPPON MED SCH 2024; 91:2-9. [PMID: 37271546 DOI: 10.1272/jnms.jnms.2024_91-102] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Autophagy is a self-digestive process that is conserved in eukaryotic cells and responsible for maintaining cellular homeostasis through proteolysis. By this process, cells break down their own components in lysosomes. Autophagy can be classified into three categories: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Macroautophagy involves membrane elongation and microautophagy involves membrane internalization, and both pathways undergo selective or non-selective processes that transport cytoplasmic components into lysosomes to be degraded. CMA, however, involves selective incorporation of cytosolic materials into lysosomes without membrane deformation. All three categories of autophagy have attracted much attention due to their involvement in various biological phenomena and their relevance to human diseases, such as neurodegenerative diseases and cancer. Clarification of the molecular mechanisms behind these processes is key to understanding autophagy and recent studies have made major progress in this regard, especially for the mechanisms of initiation and membrane elongation in macroautophagy and substrate recognition in microautophagy and CMA. Furthermore, it is becoming evident that the three categories of autophagy are related to each other despite their implementation by different sets of proteins and the involvement of completely different membrane dynamics. In this review, recent progress in macroautophagy, microautophagy, and CMA are summarized.
Collapse
Affiliation(s)
- Hayashi Yamamoto
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School
| | - Takahide Matsui
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School
| |
Collapse
|
36
|
Gross AS, Ghillebert R, Schuetter M, Reinartz E, Rowland A, Bishop BC, Stumpe M, Dengjel J, Graef M. A metabolite sensor subunit of the Atg1/ULK complex regulates selective autophagy. Nat Cell Biol 2024; 26:366-377. [PMID: 38316984 PMCID: PMC10940145 DOI: 10.1038/s41556-024-01348-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/03/2024] [Indexed: 02/07/2024]
Abstract
Cells convert complex metabolic information into stress-adapted autophagy responses. Canonically, multilayered protein kinase networks converge on the conserved Atg1/ULK kinase complex (AKC) to induce non-selective and selective forms of autophagy in response to metabolic changes. Here we show that, upon phosphate starvation, the metabolite sensor Pho81 interacts with the adaptor subunit Atg11 at the AKC via an Atg11/FIP200 interaction motif to modulate pexophagy by virtue of its conserved phospho-metabolite sensing SPX domain. Notably, core AKC components Atg13 and Atg17 are dispensable for phosphate starvation-induced autophagy revealing significant compositional and functional plasticity of the AKC. Our data indicate that, instead of functioning as a selective autophagy receptor, Pho81 compensates for partially inactive Atg13 by promoting Atg11 phosphorylation by Atg1 critical for pexophagy during phosphate starvation. Our work shows Atg11/FIP200 adaptor subunits bind not only selective autophagy receptors but also modulator subunits that convey metabolic information directly to the AKC for autophagy regulation.
Collapse
Affiliation(s)
- A S Gross
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
- Gregor Mendel Institute of Molecular Plant Biology, Vienna Biocenter, Vienna, Austria
| | - R Ghillebert
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - M Schuetter
- Max Planck Research Metabolomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - E Reinartz
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - A Rowland
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - B C Bishop
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - M Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - J Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - M Graef
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
37
|
Yamano K, Sawada M, Kikuchi R, Nagataki K, Kojima W, Endo R, Kinefuchi H, Sugihara A, Fujino T, Watanabe A, Tanaka K, Hayashi G, Murakami H, Matsuda N. Optineurin provides a mitophagy contact site for TBK1 activation. EMBO J 2024; 43:754-779. [PMID: 38287189 PMCID: PMC10907724 DOI: 10.1038/s44318-024-00036-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
Tank-binding kinase 1 (TBK1) is a Ser/Thr kinase that is involved in many intracellular processes, such as innate immunity, cell cycle, and apoptosis. TBK1 is also important for phosphorylating the autophagy adaptors that mediate the selective autophagic removal of damaged mitochondria. However, the mechanism by which PINK1-Parkin-mediated mitophagy activates TBK1 remains largely unknown. Here, we show that the autophagy adaptor optineurin (OPTN) provides a unique platform for TBK1 activation. Both the OPTN-ubiquitin and the OPTN-pre-autophagosomal structure (PAS) interaction axes facilitate assembly of the OPTN-TBK1 complex at a contact sites between damaged mitochondria and the autophagosome formation sites. At this assembly point, a positive feedback loop for TBK1 activation is initiated that accelerates hetero-autophosphorylation of the protein. Expression of monobodies engineered here to bind OPTN impaired OPTN accumulation at contact sites, as well as the subsequent activation of TBK1, thereby inhibiting mitochondrial degradation. Taken together, these data show that a positive and reciprocal relationship between OPTN and TBK1 initiates autophagosome biogenesis on damaged mitochondria.
Collapse
Affiliation(s)
- Koji Yamano
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| | - Momoha Sawada
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Reika Kikuchi
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Kafu Nagataki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Waka Kojima
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Ryu Endo
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroki Kinefuchi
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Atsushi Sugihara
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Tomoshige Fujino
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Aiko Watanabe
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Keiji Tanaka
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hiroshi Murakami
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Noriyuki Matsuda
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| |
Collapse
|
38
|
Yeo SK, Haas M, Manupati K, Hao M, Yang F, Chen S, Guan JL. AZI2 mediates TBK1 activation at unresolved selective autophagy cargo receptor complexes with implications for CD8 T-cell infiltration in breast cancer. Autophagy 2024; 20:525-540. [PMID: 37733921 PMCID: PMC10936636 DOI: 10.1080/15548627.2023.2259775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Most breast cancers do not respond to immune checkpoint inhibitors and there is an urgent need to identify novel sensitization strategies. Herein, we uncovered that activation of the TBK-IFN pathway that is mediated by the TBK1 adapter protein AZI2 is a potent strategy for this purpose. Our initial observations showed that RB1CC1 depletion leads to accumulation of AZI2, in puncta along with selective macroautophagy/autophagy cargo receptors, which are both required for TBK1 activation. Specifically, disrupting the selective autophagy function of RB1CC1 was sufficient to sustain AZI2 puncta accumulation and TBK1 activation. AZI2 then mediates downstream activation of DDX3X, increasing its interaction with IRF3 for transcription of pro-inflammatory chemokines. Consequently, we performed a screen to identify inhibitors that can induce the AZI2-TBK1 pathway, and this revealed Lys05 as a pharmacological agent that induced pro-inflammatory chemokine expression and CD8+ T cell infiltration into tumors. Overall, we have identified a distinct AZI2-TBK1-IFN signaling pathway that is responsive to selective autophagy blockade and can be activated to make breast cancers more immunogenic.Abbreviations: AZI2/NAP1: 5-azacytidine induced 2; CALCOCO2: calcium binding and coiled-coil domain 2; DDX3X: DEAD-box helicase 3 X-linked; FCCP: carbonyl cyanide p-triflouromethoxyphenylhydrazone; a protonophore that depolarizes the mitochondrial inner membrane; ICI: immune checkpoint inhibitor; IFN: interferon; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1.
Collapse
Affiliation(s)
- Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael Haas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kanakaraju Manupati
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fuchun Yang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Song Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Translational Research Institute, Henan Provincial People’s Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
39
|
Settembre C, Perera RM. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat Rev Mol Cell Biol 2024; 25:223-245. [PMID: 38001393 DOI: 10.1038/s41580-023-00676-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/26/2023]
Abstract
Every cell must satisfy basic requirements for nutrient sensing, utilization and recycling through macromolecular breakdown to coordinate programmes for growth, repair and stress adaptation. The lysosome orchestrates these key functions through the synchronised interplay between hydrolytic enzymes, nutrient transporters and signalling factors, which together enable metabolic coordination with other organelles and regulation of specific gene expression programmes. In this Review, we discuss recent findings on lysosome-dependent signalling pathways, focusing on how the lysosome senses nutrient availability through its physical and functional association with mechanistic target of rapamycin complex 1 (mTORC1) and how, in response, the microphthalmia/transcription factor E (MiT/TFE) transcription factors exert feedback regulation on lysosome biogenesis. We also highlight the emerging interactions of lysosomes with other organelles, which contribute to cellular homeostasis. Lastly, we discuss how lysosome dysfunction contributes to diverse disease pathologies and how inherited mutations that compromise lysosomal hydrolysis, transport or signalling components lead to multi-organ disorders with severe metabolic and neurological impact. A deeper comprehension of lysosomal composition and function, at both the cellular and organismal level, may uncover fundamental insights into human physiology and disease.
Collapse
Affiliation(s)
- Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| | - Rushika M Perera
- Department of Anatomy, University of California at San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California at San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
40
|
Maruyama T, Hama Y, Noda NN. Mechanisms of mitochondrial reorganization. J Biochem 2024; 175:167-178. [PMID: 38016932 DOI: 10.1093/jb/mvad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023] Open
Abstract
The cytoplasm of eukaryotes is dynamically zoned by membrane-bound and membraneless organelles. Cytoplasmic zoning allows various biochemical reactions to take place at the right time and place. Mitochondrion is a membrane-bound organelle that provides a zone for intracellular energy production and metabolism of lipids and iron. A key feature of mitochondria is their high dynamics: mitochondria constantly undergo fusion and fission, and excess or damaged mitochondria are selectively eliminated by mitophagy. Therefore, mitochondria are appropriate model systems to understand dynamic cytoplasmic zoning by membrane organelles. In this review, we summarize the molecular mechanisms of mitochondrial fusion and fission as well as mitophagy unveiled through studies using yeast and mammalian models.
Collapse
Affiliation(s)
- Tatsuro Maruyama
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yutaro Hama
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
- Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-0815, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
- Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-0815, Japan
| |
Collapse
|
41
|
Sasaki T, Kushida Y, Norizuki T, Kosako H, Sato K, Sato M. ALLO-1- and IKKE-1-dependent positive feedback mechanism promotes the initiation of paternal mitochondrial autophagy. Nat Commun 2024; 15:1460. [PMID: 38368448 PMCID: PMC10874384 DOI: 10.1038/s41467-024-45863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Allophagy is responsible for the selective removal of paternally inherited organelles, including mitochondria, in Caenorhabditis elegans embryos, thereby facilitating the maternal inheritance of mitochondrial DNA. We previously identified two key factors in allophagy: an autophagy adaptor allophagy-1 (ALLO-1) and TBK1/IKKε family kinase IKKE-1. However, the precise mechanisms by which ALLO-1 and IKKE-1 regulate local autophagosome formation remain unclear. In this study, we identify two ALLO-1 isoforms with different substrate preferences during allophagy. Live imaging reveals a stepwise mechanism of ALLO-1 localization with rapid cargo recognition, followed by ALLO-1 accumulation around the cargo. In the ikke-1 mutant, the accumulation of ALLO-1, and not the recognition of cargo, is impaired, resulting in the failure of isolation membrane formation. Our results also suggest a feedback mechanism for ALLO-1 accumulation via EPG-7/ATG-11, a worm homolog of FIP200, which is a candidate for IKKE-1-dependent phosphorylation. This feedback mechanism may underlie the ALLO-1-dependent initiation and progression of autophagosome formation around paternal organelles.
Collapse
Affiliation(s)
- Taeko Sasaki
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Yasuharu Kushida
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Takuya Norizuki
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan.
| | - Miyuki Sato
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan.
| |
Collapse
|
42
|
Paul S, Sarraf SA, Nam KH, Zavar L, DeFoor N, Biswas SR, Fritsch LE, Yaron TM, Johnson JL, Huntsman EM, Cantley LC, Ordureau A, Pickrell AM. NAK-associated protein 1/NAP1 activates TBK1 to ensure accurate mitosis and cytokinesis. J Cell Biol 2024; 223:e202303082. [PMID: 38059900 PMCID: PMC10702366 DOI: 10.1083/jcb.202303082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/03/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023] Open
Abstract
Subcellular location and activation of Tank Binding Kinase 1 (TBK1) govern precise progression through mitosis. Either loss of activated TBK1 or its sequestration from the centrosomes causes errors in mitosis and growth defects. Yet, what regulates its recruitment and activation on the centrosomes is unknown. We identified that NAK-associated protein 1 (NAP1) is essential for mitosis, binding to and activating TBK1, which both localize to centrosomes. Loss of NAP1 causes several mitotic and cytokinetic defects due to inactivation of TBK1. Our quantitative phosphoproteomics identified numerous TBK1 substrates that are not only confined to the centrosomes but are also associated with microtubules. Substrate motifs analysis indicates that TBK1 acts upstream of other essential cell cycle kinases like Aurora and PAK kinases. We also identified NAP1 as a TBK1 substrate phosphorylating NAP1 at S318 to promote its degradation by the ubiquitin proteasomal system. These data uncover an important distinct function for the NAP1-TBK1 complex during cell division.
Collapse
Affiliation(s)
- Swagatika Paul
- Graduate Program in Biomedical and Veterinary Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Shireen A. Sarraf
- Biochemistry Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ki Hong Nam
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Leila Zavar
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Nicole DeFoor
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sahitya Ranjan Biswas
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Lauren E. Fritsch
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Tomer M. Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Emily M. Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Lewis C. Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alicia M. Pickrell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
43
|
Mizushima N. Ubiquitin in autophagy and non-protein ubiquitination. Nat Struct Mol Biol 2024; 31:208-209. [PMID: 38366228 DOI: 10.1038/s41594-024-01217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Affiliation(s)
- Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
44
|
Germain K, So RWL, DiGiovanni LF, Watts JC, Bandsma RHJ, Kim PK. Upregulated pexophagy limits the capacity of selective autophagy. Nat Commun 2024; 15:375. [PMID: 38195640 PMCID: PMC10776696 DOI: 10.1038/s41467-023-44005-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Abstract
Selective autophagy is an essential process to maintain cellular homeostasis through the constant recycling of damaged or superfluous components. Over a dozen selective autophagy pathways mediate the degradation of diverse cellular substrates, but whether these pathways can influence one another remains unknown. We address this question using pexophagy, the autophagic degradation of peroxisomes, as a model. We show in cells that upregulated pexophagy impairs the selective autophagy of both mitochondria and protein aggregates by exhausting the autophagy initiation factor, ULK1. We confirm this finding in cell models of the pexophagy-mediated form of Zellweger Spectrum Disorder, a disease characterized by peroxisome dysfunction. Further, we extend the generalizability of limited selective autophagy by determining that increased protein aggregate degradation reciprocally reduces pexophagy using cell models of Parkinson's Disease and Huntington's Disease. Our findings suggest that the degradative capacity of selective autophagy can become limited by an increase in one substrate.
Collapse
Affiliation(s)
- Kyla Germain
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Raphaella W L So
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, M5T 0S8, Canada
| | - Laura F DiGiovanni
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Joel C Watts
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, M5T 0S8, Canada
| | - Robert H J Bandsma
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S1A8, Canada.
| | - Peter K Kim
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
45
|
Wu MY, Li ZW, Lu JH. Molecular Modulators and Receptors of Selective Autophagy: Disease Implication and Identification Strategies. Int J Biol Sci 2024; 20:751-764. [PMID: 38169614 PMCID: PMC10758101 DOI: 10.7150/ijbs.83205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/31/2023] [Indexed: 01/05/2024] Open
Abstract
Autophagy is a highly conserved physiological process that maintains cellular homeostasis by recycling cellular contents. Selective autophagy is based on the specificity of cargo recognition and has been implicated in various human diseases, including neurodegenerative diseases and cancer. Selective autophagy receptors and modulators play key roles in this process. Identifying these receptors and modulators and their roles is critical for understanding the machinery and physiological function of selective autophagy and providing therapeutic value for diseases. Using modern researching tools and novel screening technologies, an increasing number of selective autophagy receptors and modulators have been identified. A variety of Strategies and approaches, including protein-protein interactions (PPIs)-based identification and genome-wide screening, have been used to identify selective autophagy receptors and modulators. Understanding the strengths and challenges of these approaches not only promotes the discovery of even more such receptors and modulators but also provides a useful reference for the identification of regulatory proteins or genes involved in other cellular mechanisms. In this review, we summarize the functions, disease association, and identification strategies of selective autophagy receptors and modulators.
Collapse
Affiliation(s)
| | | | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
46
|
Rogov VV, Nezis IP, Tsapras P, Zhang H, Dagdas Y, Noda NN, Nakatogawa H, Wirth M, Mouilleron S, McEwan DG, Behrends C, Deretic V, Elazar Z, Tooze SA, Dikic I, Lamark T, Johansen T. Atg8 family proteins, LIR/AIM motifs and other interaction modes. AUTOPHAGY REPORTS 2023; 2:27694127.2023.2188523. [PMID: 38214012 PMCID: PMC7615515 DOI: 10.1080/27694127.2023.2188523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The Atg8 family of ubiquitin-like proteins play pivotal roles in autophagy and other processes involving vesicle fusion and transport where the lysosome/vacuole is the end station. Nuclear roles of Atg8 proteins are also emerging. Here, we review the structural and functional features of Atg8 family proteins and their protein-protein interaction modes in model organisms such as yeast, Arabidopsis, C. elegans and Drosophila to humans. Although varying in number of homologs, from one in yeast to seven in humans, and more than ten in some plants, there is a strong evolutionary conservation of structural features and interaction modes. The most prominent interaction mode is between the LC3 interacting region (LIR), also called Atg8 interacting motif (AIM), binding to the LIR docking site (LDS) in Atg8 homologs. There are variants of these motifs like "half-LIRs" and helical LIRs. We discuss details of the binding modes and how selectivity is achieved as well as the role of multivalent LIR-LDS interactions in selective autophagy. A number of LIR-LDS interactions are known to be regulated by phosphorylation. New methods to predict LIR motifs in proteins have emerged that will aid in discovery and analyses. There are also other interaction surfaces than the LDS becoming known where we presently lack detailed structural information, like the N-terminal arm region and the UIM-docking site (UDS). More interaction modes are likely to be discovered in future studies.
Collapse
Affiliation(s)
- Vladimir V. Rogov
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University, 60438 Frankfurt, am Main, and Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Ioannis P. Nezis
- School of Life Sciences, University of Warwick, CV4 7AL Coventry, UK
| | | | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China and College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yasin Dagdas
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Nobuo N. Noda
- Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-0815, Japan
| | - Hitoshi Nakatogawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Martina Wirth
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Stephane Mouilleron
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | | | - Christian Behrends
- Munich Cluster of Systems Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM and Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Zvulun Elazar
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Sharon A. Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Ivan Dikic
- Institute of Biochemistry II, Medical Faculty, Goethe-University, Frankfurt am Main, and Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Trond Lamark
- Autophagy Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Terje Johansen
- Autophagy Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
47
|
Cui S, Xia T, Zhao J, Ren X, Wu T, Kameni M, Guo X, He L, Guo J, Duperray-Susini A, Levillayer F, Collard JM, Zhong J, Pan L, Tangy F, Vidalain PO, Zhou D, Jiu Y, Faure M, Wei Y. NDP52 mediates an antiviral response to hepatitis B virus infection through Rab9-dependent lysosomal degradation pathway. Nat Commun 2023; 14:8440. [PMID: 38114531 PMCID: PMC10730550 DOI: 10.1038/s41467-023-44201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Autophagy receptor NDP52 triggers bacterial autophagy against infection. However, the ability of NDP52 to protect against viral infection has not been established. We show that NDP52 binds to envelope proteins of hepatitis B virus (HBV) and triggers a degradation process that promotes HBV clearance. Inactivating NDP52 in hepatocytes results in decreased targeting of viral envelopes in the lysosome and increased levels of viral replication. NDP52 inhibits HBV at both viral entry and late replication stages. In contrast to NDP52-mediated bacterial autophagy, lysosomal degradation of HBV envelopes is independent of galectin 8 and ATG5. NDP52 forms complex with Rab9 and viral envelope proteins and links HBV to Rab9-dependent lysosomal degradation pathway. These findings reveal that NDP52 acts as a sensor for HBV infection, which mediates a unique antiviral response to eliminate the virus. This work also suggests direct roles for autophagy receptors in other lysosomal degradation pathways than canonical autophagy.
Collapse
Affiliation(s)
- Shuzhi Cui
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Tian Xia
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
- Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, 75015, Paris, France
| | - Jianjin Zhao
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Xiaoyu Ren
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Tingtao Wu
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Mireille Kameni
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Xiaoju Guo
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Li He
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Jingao Guo
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | | | - Florence Levillayer
- Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, 75015, Paris, France
| | - Jean-Marc Collard
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
- Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, 75015, Paris, France
| | - Jin Zhong
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Lifeng Pan
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Frédéric Tangy
- Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, 75015, Paris, France
| | - Pierre-Olivier Vidalain
- Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, 75015, Paris, France
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Yaming Jiu
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Yu Wei
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China.
- Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, 75015, Paris, France.
| |
Collapse
|
48
|
Broadbent DG, McEwan CM, Tsang TM, Poole DM, Naylor BC, Price JC, Schmidt JC, Andersen JL. The formation of ubiquitin rich condensates triggers recruitment of the ATG9A lipid transfer complex to initiate basal autophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569058. [PMID: 38077022 PMCID: PMC10705457 DOI: 10.1101/2023.11.28.569058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Autophagy is an essential cellular recycling process that maintains protein and organelle homeostasis. ATG9A vesicle recruitment is a critical early step in autophagy to initiate autophagosome biogenesis. The mechanisms of ATG9A vesicle recruitment are best understood in the context of starvation-induced non-selective autophagy, whereas less is known about the signals driving ATG9A vesicle recruitment to autophagy initiation sites in the absence of nutrient stress. Here we demonstrate that loss of ATG9A or the lipid transfer protein ATG2 leads to the accumulation of phosphorylated p62 aggregates in the context of basal autophagy. Furthermore, we show that p62 degradation requires the lipid scramblase activity of ATG9A. Lastly, we present evidence that poly-ubiquitin is an essential signal that recruits ATG9A and mediates autophagy foci assembly in nutrient replete cells. Together, our data support a ubiquitin-driven model of ATG9A recruitment and autophagosome formation during basal autophagy.
Collapse
Affiliation(s)
- D G Broadbent
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Department of Physiology, College of Natural Sciences, Michigan State University, East Lansing, MI, USA
| | - C M McEwan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - T M Tsang
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Department of Physiology, College of Natural Sciences, Michigan State University, East Lansing, MI, USA
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI, USA
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - D M Poole
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - B C Naylor
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - J C Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - J C Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI, USA
| | - J L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
49
|
Bunker EN, Le Guerroué F, Wang C, Strub M, Werner A, Tjandra N, Youle RJ. Nix interacts with WIPI2 to induce mitophagy. EMBO J 2023; 42:e113491. [PMID: 37621214 PMCID: PMC10646555 DOI: 10.15252/embj.2023113491] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 08/26/2023] Open
Abstract
Nix is a membrane-anchored outer mitochondrial protein that induces mitophagy. While Nix has an LC3-interacting (LIR) motif that binds to ATG8 proteins, it also contains a minimal essential region (MER) that induces mitophagy through an unknown mechanism. We used chemically induced dimerization (CID) to probe the mechanism of Nix-mediated mitophagy and found that both the LIR and MER are required for robust mitophagy. We find that the Nix MER interacts with the autophagy effector WIPI2 and recruits WIPI2 to mitochondria. The Nix LIR motif is also required for robust mitophagy and converts a homogeneous WIPI2 distribution on the surface of the mitochondria into puncta, even in the absence of ATG8s. Together, this work reveals unanticipated mechanisms in Nix-induced mitophagy and the elusive role of the MER, while also describing an interesting example of autophagy induction that acts downstream of the canonical initiation complexes.
Collapse
Affiliation(s)
- Eric N Bunker
- Surgical Neurology BranchNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| | - François Le Guerroué
- Surgical Neurology BranchNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| | - Chunxin Wang
- Surgical Neurology BranchNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| | - Marie‐Paule Strub
- Biochemistry and Biophysics CenterNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| | - Achim Werner
- Stem Cell Biochemistry UnitNational Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMDUSA
| | - Nico Tjandra
- Biochemistry and Biophysics CenterNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| | - Richard J Youle
- Surgical Neurology BranchNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| |
Collapse
|
50
|
Saha B, Olsvik H, Williams GL, Oh S, Evjen G, Sjøttem E, Mandell MA. TBK1 is ubiquitinated by TRIM5α to assemble mitophagy machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563195. [PMID: 37905089 PMCID: PMC10614974 DOI: 10.1101/2023.10.19.563195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Ubiquitination of mitochondrial proteins provides a basis for the downstream recruitment of mitophagy machinery, yet whether ubiquitination of the machinery itself contributes to mitophagy is unknown. Here, we show that K63-linked polyubiquitination of the key mitophagy regulator TBK1 is essential for its mitophagy functions. This modification is catalyzed by the ubiquitin ligase TRIM5α. Mitochondrial damage triggers TRIM5α's auto-ubiquitination and its interaction with ubiquitin-binding autophagy adaptors including NDP52, optineurin, and NBR1. Autophagy adaptors, along with TRIM27, enable TRIM5α to engage with TBK1. TRIM5α with intact ubiquitination function is required for the proper accumulation of active TBK1 on damaged mitochondria in Parkin-dependent and Parkin-independent mitophagy pathways. Additionally, we show that TRIM5α can directly recruit autophagy initiation machinery to damaged mitochondria. Our data support a model in which TRIM5α provides a self-amplifying, mitochondria-localized, ubiquitin-based, assembly platform for TBK1 and mitophagy adaptors that is ultimately required to recruit the core autophagy machinery.
Collapse
Affiliation(s)
- Bhaskar Saha
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| | - Hallvard Olsvik
- Autophagy Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Geneva L Williams
- Biomedical Sciences Graduate Program, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| | - Seeun Oh
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| | - Gry Evjen
- Autophagy Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Eva Sjøttem
- Autophagy Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center
| |
Collapse
|