1
|
Zhou ZY, Sun N, Duan LH, Chan OK, Li YP, Yan L, Yang HY, Ke HY, Ouyang DY, Shi ZJ, Zha QB, He XH. Theaflavin suppresses necroptosis by attenuating RIPK1-RIPK3-MLKL signaling and mitigates cisplatin-induced kidney injury in mice. Int Immunopharmacol 2025; 157:114761. [PMID: 40318271 DOI: 10.1016/j.intimp.2025.114761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/16/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
Necroptosis is a lytic form of regulated cell death (RCD) that is dependent on receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain like pseudokinase (MLKL). This form of RCD has been implicated in various inflammatory diseases and organ injuries including cisplatin-induced acute kidney injury (AKI), thus representing a therapeutic target for such diseases. Theaflavin is an ingredient of black tea that exhibits beneficial effects on human health and has been shown to regulate pyroptosis, but its effects on necroptosis and cisplatin-induced AKI remain unclear. In this study, we found that theaflavin suppressed necroptosis in murine macrophages, MPC-5 podocytes and human HT-29 cells treated with TNF-α, Smac mimetic and IDN-6556 or LPS plus IDN-6556. The RIPK1/RIPK3/MLKL signaling axis in these cells treated with necroptosis inducers was effectively inhibited by theaflavin. The inhibition of necroptotic signaling was associated with attenuated mitochondrial dysfunction (as evidenced by decreased mitochondrial membrane potential and increased mitochondrial ROS production), reduced ubiquitination of RIPK1 and RIPK3, and blockade of necrosome. Furthermore, oral administration of theaflavin mitigated renal and hepatic injury in a mouse model of cisplatin-induced AKI. In agreement with in vitro cellular data, theaflavin decreased the levels of phosphorylated MLKL, an in vivo biomarker for necroptosis, in macrophages and other cells in the kidney and the liver of mice with cisplatin-induced AKI. Collectively, these results indicate that theaflavin can suppress necroptosis by attenuating RIPK1/RIPK3/MLKL signaling and thereby conferring protection against cisplatin-induced AKI, uncovering a previously unappreciated action of black tea components against necroptosis-related disorders.
Collapse
Affiliation(s)
- Zhi-Ya Zhou
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Nuo Sun
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ling-Han Duan
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - On-Kei Chan
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ya-Ping Li
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Liang Yan
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Hai-Yan Yang
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hua-Yu Ke
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dong-Yun Ouyang
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zi-Jian Shi
- Department of Fetal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Qing-Bing Zha
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Xian-Hui He
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Koskenniemi AR, Huusko T, Routila J, Jalkanen S, Hollmén M, Vainio P, Ventelä S. Histological tumor necrosis predicts decreased survival after neoadjuvant chemotherapy in head and neck squamous cell carcinoma. Oral Oncol 2025; 165:107287. [PMID: 40245786 DOI: 10.1016/j.oraloncology.2025.107287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/19/2025]
Abstract
OBJECTIVE Despite growing interest in neoadjuvant therapies, there are no methods to predict radio- (RT) or chemoradiotherapy (CRT) response in head and neck squamous cell carcinoma (HNSCC). The aim of this research was to study the effect of neoadjuvant RT or CRT on the tumor immune landscape and patient survival in HNSCC. METHODS All HNSCC patients treated with neoadjuvant RT or CRT (n = 53) were identified from a retrospective cohort of 1033 patients. Pre- and post-neoadjuvant cancer samples from the same patient were analyzed with biomarkers related to cancer immunology: tumor-infiltrating lymphocytes (CD8), tumor-associated macrophages (CD68, CD206, Clever-1), immune response regulator (PD-L1) and histologic tumor necrosis. Outcomes of interest were individual immune landscape profiling and its impact on 5-year overall survival (OS) in HNSCC patients treated with neoadjuvant RT/CRT. RESULTS Results from 588 whole-section stainings revealed multiple statistically significant alterations in immune landscape in response to RT/CRT. Pretreatment tumor necrosis was the most useful biomarker in predicting poor outcome, as the OS was 14.3% with necrosis and 48.5% without necrosis (HR 2.87; 95% CI: 1.23 to 6.66, p=0.014). In addition, an artificial intelligence-based (AI) deep learning method for identifying tumor necrosis from histopathological specimens was successfully developed. The predictive role of histological necrosis in neoadjuvant RT/CRT was validated in additional samples from 171 HNSCC patients untreated with neoadjuvant therapy. CONCLUSIONS Detection of tumor necrosis and AI-driven deep learning effectively predict neoadjuvant RT/CRT responses in HNSCC.
Collapse
Affiliation(s)
- A R Koskenniemi
- Department of Pathology, Laboratory Division, Turku University Hospital and University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland.
| | - T Huusko
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, 20521 Turku, Finland
| | - J Routila
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, 20521 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - S Jalkanen
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - M Hollmén
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - P Vainio
- Department of Pathology, Laboratory Division, Turku University Hospital and University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - S Ventelä
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, 20521 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; FICAN West Cancer Centre, Turku, Finland
| |
Collapse
|
3
|
Carrasco-Díaz LM, Gallardo A, Voltà-Durán E, Virgili AC, Páez D, Villaverde A, Vazquez E, Álamo P, Unzueta U, Casanova I, Mangues R, Alba-Castellon L. A Targeted Nanotoxin Inhibits Colorectal Cancer Growth Through Local Tumor Pyroptosis and Eosinophil Infiltration and Degranulation. Int J Nanomedicine 2025; 20:2445-2460. [PMID: 40034221 PMCID: PMC11873025 DOI: 10.2147/ijn.s499192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/14/2025] [Indexed: 03/05/2025] Open
Abstract
Background Colorectal cancer (CRC) has traditionally been treated with genotoxic chemotherapy to activate pro-apoptotic proteins to induce anticancer effects. However, cancer cells develop resistance to apoptosis, which leads to recurrence and poor prognosis. Moreover, this kind of therapy has been shown to be highly toxic to healthy tissues and, therefore, to patients. To overcome this issue, we developed a self-assembly tumor-targeted nanoparticle, T22-DITOX-H6, that incorporates the T22 peptide (a CXCR4 ligand) to selectively target cells overexpressing CXCR4, fused to the catalytic domain of diphtheria toxin, that exhibits a potent cytotoxic effect on these CXCR4+ cancer cells that exhibits potent cytotoxic effects on CXCR4-overexpressing cancer cells through the activation of pyroptosis, an immunogenic type of cell death. Methods Colorectal CXCR4-expressing tumor cells (CT26-CXCR4+) were implanted subcutaneously into immunocompetent mice to study the effects of T22-DITOX-H6 treatment on tumor growth, cell death and innate immune cell recruitment to the tumor. Results Here, we demonstrated that the T22-DITOX-H6 nanoparticle selectively activated pyroptosis, an immunogenic cell death that differs from apoptosis, leading to cell death in CXCR4-expressing cells, without affecting the viability of CXCR4-lacking cells. In addition, the nanoparticle administered to tumor-bearing mice induced a local antitumor effect due to the selective activation of pyroptosis in CXCR4+ targeted cancer cells. Biochemical analysis of plasma and histological analysis of non-tumor tissues revealed no differences between the groups. Remarkably, pyroptosis activation stimulates eosinophil infiltration into the tumor microenvironment, an effect recently reported to have an anti-tumorigenic function. Conclusion These results highlight the dual role of CXCR4-targeted cytotoxic nanoparticle in eliminating cancer cells and boosting the self-immune response without compromising healthy organs.
Collapse
Affiliation(s)
- Luis Miguel Carrasco-Díaz
- Onco-Hematological Diseases Department, Institut de Recerca SANT Pau (IR Sant Pau), Barcelona, Spain
- Myeloid Neoplasms Program, Josep Carreras Leukaemia Research Institute (IJC Sant Pau), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Alberto Gallardo
- Department of Pathology, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Eric Voltà-Durán
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Anna C Virgili
- Onco-Hematological Diseases Department, Institut de Recerca SANT Pau (IR Sant Pau), Barcelona, Spain
- Department of Medical Oncology, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - David Páez
- Department of Medical Oncology, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Esther Vazquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Patricia Álamo
- Onco-Hematological Diseases Department, Institut de Recerca SANT Pau (IR Sant Pau), Barcelona, Spain
- Myeloid Neoplasms Program, Josep Carreras Leukaemia Research Institute (IJC Sant Pau), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Ugutz Unzueta
- Onco-Hematological Diseases Department, Institut de Recerca SANT Pau (IR Sant Pau), Barcelona, Spain
- Myeloid Neoplasms Program, Josep Carreras Leukaemia Research Institute (IJC Sant Pau), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Isolda Casanova
- Onco-Hematological Diseases Department, Institut de Recerca SANT Pau (IR Sant Pau), Barcelona, Spain
- Myeloid Neoplasms Program, Josep Carreras Leukaemia Research Institute (IJC Sant Pau), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Ramon Mangues
- Onco-Hematological Diseases Department, Institut de Recerca SANT Pau (IR Sant Pau), Barcelona, Spain
- Myeloid Neoplasms Program, Josep Carreras Leukaemia Research Institute (IJC Sant Pau), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Lorena Alba-Castellon
- Onco-Hematological Diseases Department, Institut de Recerca SANT Pau (IR Sant Pau), Barcelona, Spain
- Myeloid Neoplasms Program, Josep Carreras Leukaemia Research Institute (IJC Sant Pau), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
4
|
Gollowitzer A, Pein H, Rao Z, Waltl L, Bereuter L, Loeser K, Meyer T, Jafari V, Witt F, Winkler R, Su F, Große S, Thürmer M, Grander J, Hotze M, Harder S, Espada L, Magnutzki A, Gstir R, Weinigel C, Rummler S, Bonn G, Pachmayr J, Ermolaeva M, Harayama T, Schlüter H, Kosan C, Heller R, Thedieck K, Schmitt M, Shimizu T, Popp J, Shindou H, Kwiatkowski M, Koeberle A. Attenuated growth factor signaling during cell death initiation sensitizes membranes towards peroxidation. Nat Commun 2025; 16:1774. [PMID: 40000627 PMCID: PMC11861335 DOI: 10.1038/s41467-025-56711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Cell death programs such as apoptosis and ferroptosis are associated with aberrant redox homeostasis linked to lipid metabolism and membrane function. Evidence for cross-talk between these programs is emerging. Here, we show that cytotoxic stress channels polyunsaturated fatty acids via lysophospholipid acyltransferase 12 into phospholipids that become susceptible to peroxidation under additional redox stress. This reprogramming is associated with altered acyl-CoA synthetase isoenzyme expression and caused by a decrease in growth factor receptor tyrosine kinase (RTK)-phosphatidylinositol-3-kinase signaling, resulting in suppressed fatty acid biosynthesis, for specific stressors via impaired Akt-SREBP1 activation. The reduced availability of de novo synthesized fatty acids favors the channeling of polyunsaturated fatty acids into phospholipids. Growth factor withdrawal by serum starvation mimics this phenotype, whereas RTK ligands counteract it. We conclude that attenuated RTK signaling during cell death initiation increases cells' susceptibility to oxidative membrane damage at the interface of apoptosis and alternative cell death programs.
Collapse
Affiliation(s)
- André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Helmut Pein
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Zhigang Rao
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Lorenz Waltl
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Leonhard Bereuter
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
- Institute of Pharmaceutical Sciences and Excellence Field BioHealth, University of Graz, Graz, Austria
| | - Konstantin Loeser
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Tobias Meyer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena e.V., Member of Leibniz Health Technology, 07745, Jena, Germany
| | - Vajiheh Jafari
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Finja Witt
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - René Winkler
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University Jena, 07745, Jena, Germany
- Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916, Badalona, Spain
| | - Fengting Su
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
- Institute of Pharmaceutical Sciences and Excellence Field BioHealth, University of Graz, Graz, Austria
| | - Silke Große
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745, Jena, Germany
| | - Maria Thürmer
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Julia Grander
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Madlen Hotze
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020, Innsbruck, Austria
| | - Sönke Harder
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Lilia Espada
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Alexander Magnutzki
- ADSI-Austrian Drug Screening Institute, University of Innsbruck, 6020, Innsbruck, Austria
| | - Ronald Gstir
- ADSI-Austrian Drug Screening Institute, University of Innsbruck, 6020, Innsbruck, Austria
| | - Christina Weinigel
- Institute of Transfusion Medicine, University Hospital Jena, 07747, Jena, Germany
| | - Silke Rummler
- Institute of Transfusion Medicine, University Hospital Jena, 07747, Jena, Germany
| | - Günther Bonn
- ADSI-Austrian Drug Screening Institute, University of Innsbruck, 6020, Innsbruck, Austria
| | - Johanna Pachmayr
- Institute of Pharmacy, Paracelsus Medical University, 5020, Salzburg, Austria
| | - Maria Ermolaeva
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Takeshi Harayama
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur - CNRS UMR7275 - Inserm U1323, 06560, Valbonne, France
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University Jena, 07745, Jena, Germany
| | - Regine Heller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745, Jena, Germany
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020, Innsbruck, Austria
- Department Metabolism, Senescence and Autophagy, Research Center One Health Ruhr, University Alliance Ruhr & University Hospital Essen, University Duisburg-Essen, 45141, Essen, Germany
- Freiburg Materials Research Center FMF, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
- German Cancer Consortium (DKTK), partner site Essen/Duesseldorf, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147, Essen, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
- Institute of Microbial Chemistry, Tokyo 141-0021, Japan
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena e.V., Member of Leibniz Health Technology, 07745, Jena, Germany
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Marcel Kwiatkowski
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany.
- Institute of Pharmaceutical Sciences and Excellence Field BioHealth, University of Graz, Graz, Austria.
| |
Collapse
|
5
|
You YP, Yan L, Ke HY, Li YP, Shi ZJ, Zhou ZY, Yang HY, Yuan T, Gan YQ, Lu N, Xu LH, Hu B, Ou-Yang DY, Zha QB, He XH. Baicalin inhibits PANoptosis by blocking mitochondrial Z-DNA formation and ZBP1-PANoptosome assembly in macrophages. Acta Pharmacol Sin 2025; 46:430-447. [PMID: 39223367 PMCID: PMC11747177 DOI: 10.1038/s41401-024-01376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
PANoptosis is an emerging form of regulated cell death (RCD) characterized by simultaneous activation of pyroptotic, apoptotic, and necroptotic signaling that not only participates in pathologies of inflammatory diseases but also has a critical role against pathogenic infections. Targeting PANoptosis represents a promising therapeutic strategy for related inflammatory diseases, but identification of inhibitors for PANoptosis remains an unmet demand. Baicalin () is an active flavonoid isolated from Scutellaria baicalensis Georgi (Huangqin), a traditional Chinese medicinal herb used for heat-clearing and detoxifying. Numerous studies suggest that baicalin possesses inhibitory activities on various forms of RCD including apoptosis/secondary necrosis, pyroptosis, and necroptosis, thereby mitigating inflammatory responses. In this study we investigated the effects of baicalin on PANoptosis in macrophage cellular models. Primary macrophages (BMDMs) or J774A.1 macrophage cells were treated with 5Z-7-oxozeaenol (OXO, an inhibitor for TAK1) in combination with TNF-α or LPS. We showed that OXO plus TNF-α or LPS induced robust lytic cell death, which was dose-dependently inhibited by baicalin (50-200 μM). We demonstrated that PANoptosis induction was accompanied by overt mitochondrial injury, mitochondrial DNA (mtDNA) release and Z-DNA formation. Z-DNA was formed from cytosolic oxidized mtDNA. Both oxidized mtDNA and mitochondrial Z-DNA puncta were co-localized with the PANoptosome (including ZBP1, RIPK3, ASC, and caspase-8), a platform for mediating PANoptosis. Intriguingly, baicalin not only prevented mitochondrial injury but also blocked mtDNA release, Z-DNA formation and PANoptosome assembly. Knockdown of ZBP1 markedly decreased PANoptotic cell death. In a mouse model of hemophagocytic lymphohistiocytosis (HLH), administration of baicalin (200 mg/kg, i.g., for 4 times) significantly mitigated lung and liver injury and reduced levels of serum TNF-α and IFN-γ, concomitant with decreased levels of PANoptosis hallmarks in these organs. Baicalin also abrogated the hallmarks of PANoptosis in liver-resident macrophages (Kupffer cells) in HLH mice. Collectively, our results demonstrate that baicalin inhibits PANoptosis in macrophages by blocking mitochondrial Z-DNA formation and ZBP1-PANoptosome assembly, thus conferring protection against inflammatory diseases. PANoptosis is a form of regulated cell death displaying simultaneous activation of pyroptotic, apoptotic, and necroptotic signaling. This study shows that induction of PANoptosis is linked to mitochondrial dysfunction and mitochondrial Z-DNA formation. Baicalin inhibits PANoptosis in macrophages in vitro via blocking mitochondrial dysfunction and the mitochondrial Z-DNA formation and thereby impeding the assembly of ZBP1-associated PANoptosome. In a mouse model of hemophagocytic lymphohistiocytosis (HLH), baicalin inhibits the activation of PANoptotic signaling in liver-resident macrophages (Kupffer cells) in vivo, thus mitigating systemic inflammation and multiple organ injury in mice.
Collapse
Affiliation(s)
- Yi-Ping You
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Clinical Laboratory, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Liang Yan
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Hua-Yu Ke
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Ya-Ping Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zi-Jian Shi
- Department of Fetal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zhi-Ya Zhou
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hai-Yan Yang
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Tao Yuan
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Ying-Qing Gan
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Na Lu
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Li-Hui Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Bo Hu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Dong-Yun Ou-Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Qing-Bing Zha
- Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
- Department of Clinical Laboratory, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
| | - Xian-Hui He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
- Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
- Department of Clinical Laboratory, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
| |
Collapse
|
6
|
He Y, Liu F, Li Q, Jiang Z. Identification of cuproptosis and ferroptosis-related subtypes and development of a prognostic signature in colon cancer. PLoS One 2025; 20:e0307013. [PMID: 39883700 PMCID: PMC11781745 DOI: 10.1371/journal.pone.0307013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/25/2024] [Indexed: 02/01/2025] Open
Abstract
Colon cancer, as a highly prevalent malignant tumor globally, poses a significant threat to human health. In recent years, ferroptosis and cuproptosis, as two novel forms of cell death, have attracted widespread attention for their potential roles in the development and treatment of colon cancer. However, the investigation into the subtypes and their impact on the survival of colon cancer patients remains understudied. In this study, utilizing data from TCGA and GEO databases, we examined the expression differences of ferroptosis and cuproptosis-related genes in colon cancer and identified two subtypes. Through functional analysis and bioinformatics methods, we elucidated pathway differences and biological characteristics between these two subtypes. By leveraging differential genes between the two subtypes, we constructed a prognostic model using univariate Cox regression and multivariate Cox regression analysis as well as LASSO regression analysis. Further survival analysis and receiver operating characteristic curve analysis demonstrated the model's high accuracy. To enhance its clinical utility, we evaluated the clinical significance of the model and constructed a nomogram, significantly improving the predictive ability of the model and providing a new tool for prognostic assessment of colon cancer patients. Subsequently, through immune-related analysis, we revealed differences in immune cell infiltration and immune function between high- and low-risk groups. Further analysis of the relationship between the model and immune cells and functions revealed potential therapeutic targets. Drug sensitivity analysis revealed associations between the expression of model-related genes and drug sensitivity, suggesting their involvement in tumor resistance through certain mechanisms. AZD8055_1059, Bortezomib_1191, Dihydrorotenone_1827, and MG-132_1862 were more sensitive in the high-risk group. Finally, we analyzed differential expression of model-related genes between tumor tissues and normal tissues, validated through real-time quantitative PCR and immunohistochemistry. In summary, our study provides a relatively accurate prognostic tool for colon cancer patients, offering guidance for treatment selection and indicating the potential of immunotherapy in colon cancer.
Collapse
Affiliation(s)
- Yinghao He
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fuqiang Liu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Gastroenterology, The People’s Hospital of Jianyang City, Jianyang, Sichuan Province, China
| | - Qingshu Li
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Queen H, Cho CS. How could histotripsy change cancer immunotherapy? Immunotherapy 2025; 17:1-3. [PMID: 39690949 PMCID: PMC11834414 DOI: 10.1080/1750743x.2024.2442899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024] Open
Affiliation(s)
- Heineken Queen
- Graduate Student, University of Michigan, Ann Arbor, MI, USA
| | - Clifford S. Cho
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, USA
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Orehek S, Ramuta TŽ, Lainšček D, Malenšek Š, Šala M, Benčina M, Jerala R, Hafner-Bratkovič I. Cytokine-armed pyroptosis induces antitumor immunity against diverse types of tumors. Nat Commun 2024; 15:10801. [PMID: 39737979 PMCID: PMC11686184 DOI: 10.1038/s41467-024-55083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Inflammasomes are defense complexes that utilize cytokines and immunogenic cell death (ICD) to stimulate the immune system against pathogens. Inspired by their dual action, we present cytokine-armed pyroptosis as a strategy for boosting immune response against diverse types of tumors. To induce pyroptosis, we utilize designed tightly regulated gasdermin D variants comprising different pore-forming capabilities and diverse modes of activation, representing a toolbox of ICD inducers. We demonstrate that the electrogenic transfer of ICD effector-encoding plasmids into mouse melanoma tumors when combined with intratumoral expression of cytokines IL-1β, IL-12, or IL-18, enhanced anti-tumor immune responses. Careful selection of immunostimulatory molecules is, however, imperative as a combination of IL-1β and IL-18 antagonized the protective effect of pyroptosis by IFNγ-mediated upregulation of several immunosuppressive pathways. Additionally, we show that the intratumoral introduction of armed pyroptosis provides protection against distant tumors and proves effective across various tumor types without inducing systemic inflammation. Deconstructed inflammasomes thus serve as a powerful, tunable, and tumor-agnostic strategy to enhance antitumor response, even against the most resilient types of tumors.
Collapse
Affiliation(s)
- Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary Doctoral Study of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
- Centre for the Technologies of Gene and Cell Therapy, National Institute of Chemistry, Ljubljana, Slovenia
| | - Špela Malenšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary Doctoral Study of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Martin Šala
- Department of Analytical Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Centre for the Technologies of Gene and Cell Therapy, National Institute of Chemistry, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
- Centre for the Technologies of Gene and Cell Therapy, National Institute of Chemistry, Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
- EN-FIST Centre of Excellence, Ljubljana, Slovenia.
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Ganguly K, Metkari SM, Biswas B, Subedi R, Madan T. Intra-tumoral delivery of 5'ppp-dsRNA induces a robust antitumor response via RIG-I activation and Bcl-2 gene downregulation in a murine model of prostate cancer. Int Immunol 2024; 37:109-129. [PMID: 39387130 DOI: 10.1093/intimm/dxae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
Onco-immunotherapy via blocking checkpoint inhibitors has revolutionized the treatment-landscape of several malignancies, though not in the metastatic castration-resistant prostate cancer (PCa) owing to an immunosuppressive and poorly immunogenic "cold" tumor microenvironment (TME). Turning up the heat of such a cold TME via triggering innate immunity is now of increasing interest to restore immune-surveillance. Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) are cytosolic innate-sensors that can detect exogenous RNAs and induce type-I interferons and other pro-inflammatory signaling. RIG-I activation is suggested to be a valuable addition to the treatment approaches for several cancers. However, the knowledge about RIG-I signaling in PCa remains elusive. The present study evaluated the expression of two important RLRs, RIG-I and melanoma differentiation-associated protein 5 (MDA5), along with their downstream partners, mitochondrial antiviral-signaling protein (MAVS) and ERA G-protein-like 1 (ERAL1), during PCa progression in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. The early stage of PCa revealed a significant increment in the expression of RLRs but not MAVS. However, the advanced stage showed downregulated RLR signaling. Further, the therapeutic implication of 5'ppp-dsRNA, a synthetic RIG-I agonist and Bcl2 gene silencer, has been investigated in vitro and in vivo. Intra-tumoral delivery of 5'ppp-dsRNA regressed tumor growth via triggering tumor cell apoptosis, immunomodulation, and inducing phagocytic "eat me" signals. These findings highlight that, for the first time, RIG-I activation and Bcl-2 silencing with 5'ppp-dsRNA can serve as a potent tumor-suppressor strategy in PCa and has a significant clinical implication in transforming a "cold" TME into an immunogenic "hot" TME of PCa.
Collapse
Affiliation(s)
- Kasturi Ganguly
- Department of Innate Immunity, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Siddhanath M Metkari
- Experimental Animal Facility, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Barnali Biswas
- Department of Innate Immunity, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Rambhadur Subedi
- Department of Innate Immunity, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Taruna Madan
- Department of Innate Immunity, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
- Division of Development Research, Indian Council of Medical Research (ICMR), New Delhi, India
| |
Collapse
|
10
|
Mei T, Ye T, Huang D, Xie Y, Xue Y, Zhou D, Wang W, Chen J. Triggering immunogenic death of cancer cells by nanoparticles overcomes immunotherapy resistance. Cell Oncol (Dordr) 2024; 47:2049-2071. [PMID: 39565509 DOI: 10.1007/s13402-024-01009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/21/2024] Open
Abstract
Immunotherapy resistance poses a significant challenge in oncology, necessitating novel strategies to enhance the therapeutic efficacy. Immunogenic cell death (ICD), including necroptosis, pyroptosis and ferroptosis, triggers the release of tumor-associated antigens and numerous bioactive molecules. This release can potentiate a host immune response, thereby overcoming resistance to immunotherapy. Nanoparticles (NPs) with their biocompatible and immunomodulatory properties, are emerging as promising vehicles for the delivery of ICD-inducing agents and immune-stimulatory adjuvants to enhance immune cells tumoral infiltration and augment immunotherapy efficacy. This review explores the mechanisms underlying immunotherapy resistance, and offers an in-depth examination of ICD, including its principles and diverse modalities of cell death that contribute to it. We also provide a thorough overview of how NPs are being utilized to trigger ICD and bolster antitumor immunity. Lastly, we highlight the potential of NPs in combination with immunotherapy to revolutionize cancer treatment.
Collapse
Affiliation(s)
- Ting Mei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ting Ye
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dingkun Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Yuxiu Xie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Ying Xue
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dongfang Zhou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Weimin Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, 430022, China.
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
11
|
Song D, Cen Y, Qian Z, Wu XS, Rivera K, Wee TL, Demerdash OE, Chang K, Pappin D, Vakoc CR, Tonks NK. PTPN23-dependent ESCRT machinery functions as a cell death checkpoint. Nat Commun 2024; 15:10364. [PMID: 39609437 PMCID: PMC11604704 DOI: 10.1038/s41467-024-54749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Cell death plasticity is crucial for modulating tissue homeostasis and immune responses, but our understanding of the molecular components that regulate cell death pathways to determine cell fate remains limited. Here, a CRISPR screen of acute myeloid leukemia cells identifies protein tyrosine phosphatase non-receptor type 23 (PTPN23) as essential for survival. Loss of PTPN23 activates nuclear factor-kappa B, apoptotic, necroptotic, and pyroptotic pathways by causing the accumulation of death receptors and toll-like receptors (TLRs) in endosomes. These effects are recapitulated by depletion of PTPN23 co-dependent genes in the endosomal sorting complex required for transport (ESCRT) pathway. Through proximity-dependent biotin labeling, we show that NAK-associated protein 1 interacts with PTPN23 to facilitate endosomal sorting of tumor necrosis factor receptor 1 (TNFR1), sensitizing cells to TNF-α-induced cytotoxicity. Our findings reveal PTPN23-dependent ESCRT machinery as a cell death checkpoint that regulates the spatiotemporal distribution of death receptors and TLRs to restrain multiple cell death pathways.
Collapse
MESH Headings
- Humans
- Endosomal Sorting Complexes Required for Transport/metabolism
- Endosomal Sorting Complexes Required for Transport/genetics
- Endosomes/metabolism
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Apoptosis
- NF-kappa B/metabolism
- Cell Death
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Toll-Like Receptors/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Signal Transduction
- Cell Line, Tumor
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- HEK293 Cells
- Receptors, Death Domain/metabolism
Collapse
Affiliation(s)
- Dongyan Song
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Yuxin Cen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Zhe Qian
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Xiaoli S Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, USA
| | - Keith Rivera
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Tse-Luen Wee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Osama E Demerdash
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Darryl Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | | | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA.
| |
Collapse
|
12
|
Liu GH, Yao ZQ, Chen GQ, Li YL, Liang B. Potential Benefits of Green Tea in Prostate Cancer Prevention and Treatment: A Comprehensive Review. Chin J Integr Med 2024; 30:1045-1055. [PMID: 38561489 DOI: 10.1007/s11655-024-4100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 04/04/2024]
Abstract
Prostate cancer is a prevalent and debilitating disease that necessitates effective prevention and treatment strategies. Green tea, a well-known beverage derived from the Camellia sinensis plant, contains bioactive compounds with potential health benefits, including catechins and polyphenols. This comprehensive review aims to explore the potential benefits of green tea in prostate cancer prevention and treatment by examining existing literature. Green tea possesses antioxidant, anti-inflammatory, and anti-carcinogenic properties attributed to its catechins, particularly epigallocatechin gallate. Epidemiological studies have reported an inverse association between green tea consumption and prostate cancer risk, with potential protection against aggressive forms of the disease. Laboratory studies demonstrate that green tea components inhibit tumor growth, induce apoptosis, and modulate signaling pathways critical to prostate cancer development and progression. Clinical trials and human studies further support the potential benefits of green tea. Green tea consumption has been found to be associated with a reduction in prostate-specific antigen levels, tumor markers, and played a potential role in slowing disease progression. However, challenges remain, including optimal dosage determination, formulation standardization, and conducting large-scale, long-term clinical trials. The review suggests future research should focus on combinatorial approaches with conventional therapies and personalized medicine strategies to identify patient subgroups most likely to benefit from green tea interventions.
Collapse
Affiliation(s)
- Gui-Hong Liu
- Department of Urology, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya City, Hainan Province, 572000, China
| | - Ze-Qin Yao
- Department of Urology, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya City, Hainan Province, 572000, China
| | - Guo-Qiang Chen
- Department of Urology, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya City, Hainan Province, 572000, China
| | - Ya-Lang Li
- Department of Urology, Yuzhou People's Hospital, Xuchang City, Henan Province, 461670, China
| | - Bing Liang
- Department of Urology, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya City, Hainan Province, 572000, China.
| |
Collapse
|
13
|
Midtbø HMD, Borchel A, Morton HC, Paley R, Monaghan S, Haugland GT, Øvergård AC. Cell death induced by Lepeophtheirus salmonis labial gland protein 3 in salmonid fish leukocytes: A mechanism for disabling host immune responses. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109992. [PMID: 39481500 DOI: 10.1016/j.fsi.2024.109992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
The salmon louse (Lepeophtheirus salmonis) is an ectoparasite feeding on mucus, skin, and blood of salmonids. On parasitised fish erosions and, at later lice stages, ulcerations appear at the louse feeding site. In susceptible species like Atlantic salmon (Salmo salar) with a limited rejection of lice, only a mild inflammatory response with minor influx of immune cells is seen at these lesions, as the salmon louse secrete proteins that can dampen immune responses. In a previous study, Lepeophtheirus salmonis labial gland protein 3 (LsLGP3) was suggested to dampen cellular responses, and the present study aimed at increasing our understanding of its mode of action. LsLGP3 was found to be secreted on to the host skin, and both in vivo and in vitro experiments were performed to elucidate its function. Histological analysis of the louse attachment site revealed an epidermal and dermal influx of mainly macrophages and granulocytes after 5 days post infestation. The immune cell influx was deeper in the dermis throughout the louse infestation, and LsLGP3 may be involved in dampening this response. Enriched populations of Atlantic salmon B-cells, T-cells, granulocytes, and monocytes were exposed to recombinant LsLGP3 (recLGP3) in vitro, resulting in a significant decrease in cell viability compared to non-exposed controls. An apoptotic cell morphology with "beads-on-a-string" like protrusions was seen in all leukocyte cell fractions after recLGP3 exposure, but not in erythrocytes or keratocytes. A decreased viability was also detected in pink salmon leucocytes, which was not in leucocytes from non-salmonid species. These functional insights suggest that LsLGP3 specifically induces apoptosis of salmonid leukocytes and is likely a key protein secreted by the lice that disables the Atlantic salmon ability to mount an adequate immune response towards the salmon louse. In vivo LsLGP3 knock down studies indicated that the effect is localised primarily at the lice feeding site, without affecting immune cells that are not situated adjacent to the lice-inflicted lesion. The findings from this study could significantly aid in the development of new immune based anti-salmon louse prophylactic measures and treatments.
Collapse
Affiliation(s)
| | - Andreas Borchel
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, NO-5020, Bergen, Norway
| | - H Craig Morton
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway
| | - Richard Paley
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, DT4 8UB, United Kingdom
| | - Sean Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Gyri Teien Haugland
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, NO-5020, Bergen, Norway
| | - Aina-Cathrine Øvergård
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, NO-5020, Bergen, Norway
| |
Collapse
|
14
|
Yuan SM, Chen X, Qu YQ, Zhang MY. C6 and KLRG2 are pyroptosis subtype-related prognostic biomarkers and correlated with tumor-infiltrating lymphocytes in lung adenocarcinoma. Sci Rep 2024; 14:24861. [PMID: 39438534 PMCID: PMC11496652 DOI: 10.1038/s41598-024-75650-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Pyroptosis plays an important role in lung adenocarcinoma (LUAD). In this study, we aimed to explore the pyroptosis-related gene (PRG) expression pattern and to identify promising pyroptosis-related biomarkers to improve the prognosis of LUAD. The gene expression profiles and clinical information of LUAD patients were downloaded from the Cancer Genome Atlas (TCGA), and validation cohort information was extracted from the Gene Expression Omnibus database. Gene expression data were analyzed using the limma package and visualized using the ggplot2 package as well as the pheatmap package in R software. Functional enrichment analysis was also performed for the 44 differentially expressed PRGs (DEPRGs). Then, consensus clustering revealed pyroptosis-related tumor subtypes, and differentially expressed genes (DEGs) were screened according to the subtypes. Next, univariate Cox and multivariate Cox regression analyses were used to identify independent prognostic PRGs. After overlapping DEGs and the Lasso regression analysis-based prognostic genes, the predictive risk model was established and validated. Correlation analysis between PRGs and clinicopathological variables was also explored. Finally, the TIMER and TISIDB databases were used to further explore the correlation analysis between immune cell infiltration levels, the risk score, and clinicopathological variables in the predictive risk model. A total of 52 genes from the PubMed were identified as PRGs, and 44 of the 52 genes were pooled as DEPRGs. The most significant GO term was "collagen trimer" (P = 2.46E-13), and KEGG analysis results indicated that 44 DEPRGs were significantly enriched in Salmonella infection (P < 0.001). Then, consensus clustering analysis divided LUAD patients into two clusters, and a total of 79 DEGs were identified according to these cluster subtypes. Subsequently, univariate and multivariate Cox regression analyses were used to identify 12 genes that could serve as independent prognostic indicators and we also performed Lasso regression analysis and screened 23 DEGs. After overlapping 23 DEGs and 12 genes, only 4 (KLRG2, MAPK4, C6 and SFRP5) of 12 genes were selected for the further exploration of the prognostic pattern. Survival analysis results indicated that this risk model effectively predicted the prognosis (P < 0.001). Combined with the correlation analysis results between the 4 genes and clinicopathological variables, C6 and KLRG2 were screened as prognostic genes. In this study, we constructed a predictive risk model and identified two pyroptosis subtype-related gene expression patterns to improve the prognosis of LUAD. Understanding the subtypes of LUAD is helpful for accurately characterizing the LUAD and developing personalized treatment.
Collapse
Affiliation(s)
- Shu-Min Yuan
- Department of Medical Oncology, Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao Chen
- Department of Respiratory Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
15
|
Zhang J, Chen J, Lin K. Immunogenic cell death-based oncolytic virus therapy: A sharp sword of tumor immunotherapy. Eur J Pharmacol 2024; 981:176913. [PMID: 39154830 DOI: 10.1016/j.ejphar.2024.176913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Tumor immunotherapy, especially immune checkpoint inhibitors (ICIs), has been applied in clinical practice, but low response to immune therapies remains a thorny issue. Oncolytic viruses (OVs) are considered promising for cancer treatment because they can selectively target and destroy tumor cells followed by spreading to nearby tumor tissues for a new round of infection. Immunogenic cell death (ICD), which is the major mechanism of OVs' anticancer effects, is induced by endoplasmic reticulum stress and reactive oxygen species overload after virus infection. Subsequent release of specific damage-associated molecular patterns (DAMPs) from different types of tumor cells can transform the tumor microenvironment from "cold" to "hot". In this paper, we broadly define ICD as those types of cell death that is immunogenic, and describe their signaling pathways respectively. Focusing on ICD, we also elucidate the advantages and disadvantages of recent combination therapies and their future prospects.
Collapse
Affiliation(s)
- Jingyu Zhang
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahe Chen
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kezhi Lin
- Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiential Center of Basic Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
16
|
Yan X, Chen C, Ren Y, Su T, Chen H, Yu D, Huang Y, Chao M, Wu G, Jiang G, Gao F. A dual-pathway pyroptosis inducer based on Au-Cu 2-xSe@ZIF-8 enhances tumor immunotherapy by disrupting the zinc ion homeostasis. Acta Biomater 2024; 188:329-343. [PMID: 39278301 DOI: 10.1016/j.actbio.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
The regulation of intracellular ionic homeostasis to trigger antigen-specific immune responses has attracted extensive interest in tumor therapy. In this study, we developed a dual-pathway nanoreactor, Au-Cu2-xSe@ZIF-8@P18 NPs (ACS-Z-P NPs), which targets danger-associated molecular patterns (DAMPs) and releases Zn2+ and reactive oxygen species (ROS) within the tumor microenvironment (TME). Zn2+ released from the metal-organic frameworks (MOFs) was deposited in the cytoplasm, leading to aberrant transcription levels of intracellular zinc-regulated proteins and DNA damage, thereby inducing pyroptosis and immunogenic cell death (ICD) dependent on caspase1/gasdermin D (GSDMD) pathway. Furthermore, upon laser irradiation, ACS-Z-P NPs could break through the limitations of inherent defects of immunosuppression in TME, enhance ROS generation through a Fenton-like reaction cascade, which subsequently triggered the activation of inflammatory vesicles and the release of damage-associated molecular patterns (DAMPs). This cascade effect led to the amplification of pyroptosis and immunogenic cell death (ICD), thereby remodeling the immunosuppressed TME. Consequently, this process improved dendritic cell (DC) antigen presentation and augmented anti-tumor T-cell responses, effectively initiating antigen-specific immune responses and further enhancing pyroptosis and ICD. This study explores the therapeutic properties of these mechanisms in detail. STATEMENT OF SIGNIFICANCE: The synthesized Au-Cu2-xSe@ZIF-8@P18 nanoparticles (ACS-Z-Ps) can effectively enhance the body's immune response by regulating zinc ion levels within cells. This regulation leads to abnormal levels of zinc-regulated protein transcription and DNA damage, which induces cellular pyroptosis. As a result, antigen presentation to dendritic cells (DCs) is improved, and anti-tumor T-cell responses are enhanced. The ACS-Z-P NPs overcome the limitations of ROS deficiency and immunosuppression in the tumor microenvironment by using H2O2 in the tumor microenvironment through a Fenton-like reaction. This leads to an increased production of ROS and O2, remodeling of the immunosuppressed tumor microenvironment, and enhanced induction of cell pyroptosis and immunogenic cell death. ACS-Z-P NPs targeted B16 cells using the photosensitizer P18 in combination with PDT treatment. This approach significantly inhibited the proliferation of B16 cells and effectively inhibited tumor growth.
Collapse
Affiliation(s)
- Xiang Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Dermatology and Venereology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Department of Dermatology, Shangqiu People's Hospital, Shangqiu, Henan 221004, China
| | - Cheng Chen
- Department of Dermatology, The Affiliated Huaian No 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu 223300, China
| | - Yiping Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Dermatology and Venereology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Tianyu Su
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Han Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dehong Yu
- The Affiliated Pizhou Hospital of Xuzhou Medical University, Pizhou, Jiangsu 221399, China
| | - Yuqi Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Minghao Chao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Guoquan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Guan Jiang
- Department of Dermatology and Venereology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
17
|
Yam AO, Jakovija A, Gatt C, Chtanova T. Neutrophils under the microscope: neutrophil dynamics in infection, inflammation, and cancer revealed using intravital imaging. Front Immunol 2024; 15:1458035. [PMID: 39439807 PMCID: PMC11493610 DOI: 10.3389/fimmu.2024.1458035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Neutrophils rapidly respond to inflammation resulting from infection, injury, and cancer. Intravital microscopy (IVM) has significantly advanced our understanding of neutrophil behavior, enabling real-time visualization of their migration, interactions with pathogens, and coordination of immune responses. This review delves into the insights provided by IVM studies on neutrophil dynamics in various inflammatory contexts. We also examine the dual role of neutrophils in tumor microenvironments, where they can either facilitate or hinder cancer progression. Finally, we highlight how computational modeling techniques, especially agent-based modeling, complement experimental data by elucidating neutrophil kinetics at the level of individual cells as well as their collective behavior. Understanding the role of neutrophils in health and disease is essential for developing new strategies for combating infection, inflammation and cancer.
Collapse
Affiliation(s)
- Andrew O. Yam
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- Immune Biotherapeutics Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- The Kinghorn Cancer Centre, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Arnolda Jakovija
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Catherine Gatt
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Tatyana Chtanova
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
18
|
Wang Z, Cheng L, Huang J, Shen Y. Integrative machine learning and neural networks for identifying PANoptosis-related lncRNA molecular subtypes and constructing a predictive model for head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 2024; 281:5481-5495. [PMID: 38914821 DOI: 10.1007/s00405-024-08765-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE PANoptosis is considered a novel type of cell death that plays important roles in tumor progression. In this study, we applied machine learning algorithms to explore the relationships between PANoptosis-related lncRNAs (PRLs) and head and neck squamous cell carcinoma (HNSCC) and established a neural network model for prognostic prediction. METHODS Information about the HNSCC cohort was downloaded from the TCGA database, and the differentially expressed prognostic PRLs between tumor and normal samples were assessed in patients with different tumor subtypes via nonnegative matrix factorization (NMF) analysis. Subsequently, five kinds of machine-learning algorithms were used to select the core PRLs across the subtypes, and the interactive features were pooled into a neural network model to establish a PRL-related risk score (PLRS) system. Survival differences were compared via Kaplan‒Meier analysis, and the predictive effects were assessed with the areas under the ROCs. Moreover, functional enrichment analysis, immune infiltration, tumor mutation burden (TMB) and clinical therapeutic response were also conducted to further evaluate the novel predictive model. RESULTS A total of 347 PRLs were identified, 225 of which were differentially expressed between tumor and normal samples. Patients were divided into two clusters via NMF analysis, in which cluster 1 had a better prognosis and more immune cells and functional infiltrates. With the application of five machine learning algorithms, we selected 13 interactive PRLs to construct the predictive model. The AUCs for the ROCs in the entire set were 0.735, 0.740 and 0.723, respectively. Patients in the low-PLRS group exhibited a better prognosis, greater immune cell enrichment, greater immune function activation, lower TMB and greater sensitivity to immunotherapy. CONCLUSION In this study, we established a novel neural network prognostic model to predict survival and identify tumor subtypes in HNSCC patients. This novel assessment system is useful for prediction, providing ideas for clinical treatment.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Lixin Cheng
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Juntao Huang
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.
| | - Yi Shen
- Centre for Medical Research, Ningbo No.2 Hospital, Ningbo, China.
- School of Medicine, Ningbo University, Ningbo, China.
| |
Collapse
|
19
|
Li X, Li Y, Tuerxun H, Zhao Y, Liu X, Zhao Y. Firing up "cold" tumors: Ferroptosis causes immune activation by improving T cell infiltration. Biomed Pharmacother 2024; 179:117298. [PMID: 39151313 DOI: 10.1016/j.biopha.2024.117298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
Immune checkpoint blocking (ICB), a tumor treatment based on the mechanism of T-cell activation, has shown high efficacy in clinical trials, but not all patients benefit from it. Immune checkpoint inhibitors (ICIs) do not respond to cold tumors that lack effective T-cell infiltration but respond well to hot tumors with sufficient T-cell infiltration. How to convert an unresponsive cold tumor into a responsive hot tumor is an important topic in cancer immunotherapy. Ferroptosis, a newly discovered immunogenic cell death (ICD) form, has great potential in cancer therapy. In the process of deeply understanding the mechanism of cold tumor formation, it was found that ferroptosis showed a powerful immune-activating effect by improving T-cell infiltration, and the combination of ICB therapy significantly enhanced the anti-tumor efficacy. This paper reviews the complex relationship between T cells and ferroptosis, as well as summarizes the various mechanisms by which ferroptosis enhances T cell infiltration: reactivation of T cells and reversal of immunosuppressive tumor microenvironment (TME), as well as recent advances of ICI in combination with targeted ferroptosis therapies, which provides guidance for better improving the ICB efficacy of cold tumors.
Collapse
Affiliation(s)
- Xinru Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yawen Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Halahati Tuerxun
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yixin Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xingyu Liu
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
20
|
Ouyang A, Chen T, Feng Y, Zou J, Tu S, Jiang M, Sun H, Zhou H. The Hemagglutinin of Influenza A Virus Induces Ferroptosis to Facilitate Viral Replication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404365. [PMID: 39159143 PMCID: PMC11497066 DOI: 10.1002/advs.202404365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/27/2024] [Indexed: 08/21/2024]
Abstract
Ferroptosis is a novel form of cell death caused by the accumulation of lipid peroxides in an iron-dependent manner. However, the precise mechanism underlying the exploitation of ferroptosis by influenza A viruses (IAV) remains unclear. The results demonstrate that IAV promotes its own replication through ferritinophagy by sensitizing cells to ferroptosis, with hemagglutinin identified as a key trigger in this process. Hemagglutinin interacts with autophagic receptors nuclear receptor coactivator 4 (NCOA4) and tax1-binding protein 1 (TAX1BP1), facilitating the formation of ferritin-NCOA4 condensates and inducing ferritinophagy. Further investigation shows that hemagglutinin-induced ferritinophagy causes cellular lipid peroxidation, inhibits aggregation of mitochondrial antiviral signaling protein (MAVS), and suppresses the type I interferon response, thereby contributing to viral replication. Collectively, a novel mechanism by which IAV hemagglutinin induces ferritinophagy resulting in cellular lipid peroxidation, consequently impairing MAVS-mediated antiviral immunity, is revealed.
Collapse
Affiliation(s)
- Aotian Ouyang
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
| | - Tong Chen
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
| | - Yi Feng
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
| | - Jiahui Zou
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
| | - Shaoyu Tu
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
| | - Meijun Jiang
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
| | - Huimin Sun
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
| | - Hongbo Zhou
- National Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei430070China
- Frontiers Science Center for Animal Breeding and Sustainable ProductionWuhanHubei430070China
- Hubei Hongshan LaboratoryWuhanHubei430070China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Provincethe Cooperative Innovation Center for Sustainable Pig ProductionWuhanHubei430070China
| |
Collapse
|
21
|
Hejazi MS, Jafari S, Montazersaheb S, Molavi O, Hosseini V, Talebi M, Nikanfar M. Annexin A1, calreticulin and high mobility group box 1 are elevated in secondary progressive multiple sclerosis: Does immunogenic cell death occur in multiple sclerosis? BIOIMPACTS : BI 2024; 15:30264. [PMID: 40161934 PMCID: PMC11954741 DOI: 10.34172/bi.30264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 04/02/2025]
Abstract
Introduction Multiple sclerosis (MS) is a chronic neuroinflammatory diseases characterized by demyelination of the nerve fibers. Immunogenic cell death (ICD) is a process, during which damaged and stressed cells release danger-associated molecular patterns (DAMPs) activating immune responses. This study aimed to elucidate the induction of ICD in MS diseases. Methods To achieve this goal, the level of DAMPs including Annexin A1 (ANXA1), calreticulin and HMGB1 was measured in the cerebrospinal fluid (CSF) of a secondary progressive multiple sclerosis (SPMS) patient in comparison to control group. Results Results showed significant upregulation (more than two-fold) of ANXA1, calreticulin (CRT) and HMGB1 in the CSF of the patient. Conclusion Although further studies are suggested in this regard, this data could imply induction of ICD in MS. The proposed ICD might trigger immune response against neural cells resulting in neuroinflammation and demyelination in CNS in MS. Our observation could suggest inclusion of ICD interfering treatments in routine MS therapy.
Collapse
Affiliation(s)
- Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Hosseini
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Talebi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Nikanfar
- Razi Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Antonelli A, Battaglia AM, Sacco A, Petriaggi L, Giorgio E, Barone S, Biamonte F, Giudice A. Ferroptosis and oral squamous cell carcinoma: connecting the dots to move forward. FRONTIERS IN ORAL HEALTH 2024; 5:1461022. [PMID: 39296524 PMCID: PMC11408306 DOI: 10.3389/froh.2024.1461022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an aggressive disease whose incomplete biological comprehension contributes to the inappropriate clinical management and poor prognosis. Thus, the identification of new promising molecular targets to treat OSCC is of paramount importance. Ferroptosis is a regulated cell death caused by the iron-dependent accumulation of reactive oxygen species and the consequent oxidative damage of lipid membranes. Over the last five years, a growing number of studies has reported that OSCC is sensitive to ferroptosis induction and that ferroptosis inducers exert a remarkable antitumor effect in OSCC, even in those displaying low response to common approaches, such as chemotherapy and radiotherapy. In addition, as ferroptosis is considered an immunogenic cell death, it may modulate the immune response against OSCC. In this review, we summarize the so far identified ferroptosis regulatory mechanisms and prognostic models based on ferroptosis-related genes in OSCC. In addition, we discuss the perspective of inducing ferroptosis as a novel strategy to directly treat OSCC or, alternatively, to improve sensitivity to other approaches. Finally, we integrate data emerging from the research studies, reviewed here, through in silico analysis and we provide a novel personal perspective on the potential interconnection between ferroptosis and autophagy in OSCC.
Collapse
Affiliation(s)
- Alessandro Antonelli
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Anna Martina Battaglia
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Alessandro Sacco
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Lavinia Petriaggi
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Emanuele Giorgio
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Selene Barone
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Flavia Biamonte
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Amerigo Giudice
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
23
|
Yuan T, Yang HY, Li YP, Shi ZJ, Zhou ZY, You YP, Ke HY, Yan L, Xu LH, Ouyang DY, He XH, Zha QB. Scutellarin inhibits inflammatory PANoptosis by diminishing mitochondrial ROS generation and blocking PANoptosome formation. Int Immunopharmacol 2024; 139:112710. [PMID: 39029229 DOI: 10.1016/j.intimp.2024.112710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
PANoptosis is manifested with simultaneous activation of biomarkers for both pyroptotic, apoptotic and necroptotic signaling via the molecular platform PANoptosome and it is involved in pathologies of various inflammatory diseases including hemophagocytic lymphohistiocytosis (HLH). Scutellarin is a flavonoid isolated from herbal Erigeron breviscapus (Vant.) Hand.-Mazz. and has been shown to possess multiple pharmacological effects, but it is unknown whether scutellarin has any effects on PANoptosis and related inflammatory diseases. In this study, we found that scutellarin inhibited cell death in bone marrow-derived macrophages (BMDMs) and J774A.1 cells treated with TGF-β-activated kinase 1 (TAK1) inhibitor 5Z-7-oxozeaenol (OXO) plus lipopolysaccharide (LPS), which has been commonly used to induce PANoptosis. Western blotting showed that scutellarin dose-dependently inhibited the activation biomarkers for pyroptotic (Caspase-1p10 and GSDMD-NT), apoptotic (cleaved Casp3/8/9 and GSDME-NT), and necroptotic (phosphorylated MLKL) signaling. The inhibitory effect of scutellarin was unaffected by NLRP3 or Caspase-1 deletion. Interestingly, scutellarin blocked the assembly of PANoptosome that encompasses ASC, RIPK3, Caspase-8 and ZBP1, suggesting its action on upstream signaling. Consistent with this, scutellarin inhibited mitochondrial damage and mitochondrial reactive oxygen species (mtROS) generation in cells treated with OXO+LPS. Further, mito-TEMPO that can scavenge mtROS significantly inhibited OXO+LPS-induced PANoptotic cell death. In line with the in vitro results, scutellarin markedly alleviated systemic inflammation, multiple organ injury, and activation of PANoptotic biomarkers in mice with HLH. Collectively, our data suggest that scutellarin can inhibit PANoptosis by suppressing mitochondrial damage and mtROS generation and thereby mitigating multiple organ injury in mice with inflammatory disorders.
Collapse
Affiliation(s)
- Tao Yuan
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Center of Reproductive Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Clinical Laboratory, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
| | - Hai-Yan Yang
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ya-Ping Li
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zi-Jian Shi
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zhi-Ya Zhou
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Ping You
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hua-Yu Ke
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Liang Yan
- Center of Reproductive Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Clinical Laboratory, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
| | - Li-Hui Xu
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dong-Yun Ouyang
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Center of Reproductive Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Xian-Hui He
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Center of Reproductive Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Clinical Laboratory, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China.
| | - Qing-Bing Zha
- Center of Reproductive Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Clinical Laboratory, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China.
| |
Collapse
|
24
|
Mannion J, Gifford V, Bellenie B, Fernando W, Ramos Garcia L, Wilson R, John SW, Udainiya S, Patin EC, Tiu C, Smith A, Goicoechea M, Craxton A, Moraes de Vasconcelos N, Guppy N, Cheung KMJ, Cundy NJ, Pierrat O, Brennan A, Roumeliotis TI, Benstead-Hume G, Alexander J, Muirhead G, Layzell S, Lyu W, Roulstone V, Allen M, Baldock H, Legrand A, Gabel F, Serrano-Aparicio N, Starling C, Guo H, Upton J, Gyrd-Hansen M, MacFarlane M, Seddon B, Raynaud F, Roxanis I, Harrington K, Haider S, Choudhary JS, Hoelder S, Tenev T, Meier P. A RIPK1-specific PROTAC degrader achieves potent antitumor activity by enhancing immunogenic cell death. Immunity 2024; 57:1514-1532.e15. [PMID: 38788712 PMCID: PMC11236506 DOI: 10.1016/j.immuni.2024.04.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/14/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions as a critical stress sentinel that coordinates cell survival, inflammation, and immunogenic cell death (ICD). Although the catalytic function of RIPK1 is required to trigger cell death, its non-catalytic scaffold function mediates strong pro-survival signaling. Accordingly, cancer cells can hijack RIPK1 to block necroptosis and evade immune detection. We generated a small-molecule proteolysis-targeting chimera (PROTAC) that selectively degraded human and murine RIPK1. PROTAC-mediated depletion of RIPK1 deregulated TNFR1 and TLR3/4 signaling hubs, accentuating the output of NF-κB, MAPK, and IFN signaling. Additionally, RIPK1 degradation simultaneously promoted RIPK3 activation and necroptosis induction. We further demonstrated that RIPK1 degradation enhanced the immunostimulatory effects of radio- and immunotherapy by sensitizing cancer cells to treatment-induced TNF and interferons. This promoted ICD, antitumor immunity, and durable treatment responses. Consequently, targeting RIPK1 by PROTACs emerges as a promising approach to overcome radio- or immunotherapy resistance and enhance anticancer therapies.
Collapse
Affiliation(s)
- Jonathan Mannion
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Valentina Gifford
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Benjamin Bellenie
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Winnie Fernando
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Laura Ramos Garcia
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Rebecca Wilson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Sidonie Wicky John
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Savita Udainiya
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Emmanuel C Patin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Crescens Tiu
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Angel Smith
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Maria Goicoechea
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Andrew Craxton
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Cambridge CB2 1QR, UK
| | | | - Naomi Guppy
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Kwai-Ming J Cheung
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Nicholas J Cundy
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Olivier Pierrat
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Alfie Brennan
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | | | - Graeme Benstead-Hume
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | - John Alexander
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Gareth Muirhead
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Scott Layzell
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, UK
| | - Wenxin Lyu
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Victoria Roulstone
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Mark Allen
- Biological Services Unit, The Institute of Cancer Research, London SW3 6JB, UK
| | - Holly Baldock
- Biological Services Unit, The Institute of Cancer Research, London SW3 6JB, UK
| | - Arnaud Legrand
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Florian Gabel
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | | | - Chris Starling
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Hongyan Guo
- Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA
| | - Jason Upton
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Mads Gyrd-Hansen
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Marion MacFarlane
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Cambridge CB2 1QR, UK
| | - Benedict Seddon
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, UK
| | - Florence Raynaud
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Ioannis Roxanis
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Kevin Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Jyoti S Choudhary
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | - Swen Hoelder
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Tencho Tenev
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
25
|
Gulla A, Morelli E, Johnstone M, Turi M, Samur MK, Botta C, Cifric S, Folino P, Vinaixa D, Barello F, Clericuzio C, Favasuli VK, Maisano D, Talluri S, Prabhala R, Bianchi G, Fulciniti M, Wen K, Kurata K, Liu J, Penailillo J, Bragoni A, Sapino A, Richardson PG, Chauhan D, Carrasco RD, Hideshima T, Munshi NC, Anderson KC. Loss of GABARAP mediates resistance to immunogenic chemotherapy in multiple myeloma. Blood 2024; 143:2612-2626. [PMID: 38551812 PMCID: PMC11830986 DOI: 10.1182/blood.2023022777] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/16/2024] [Indexed: 06/21/2024] Open
Abstract
ABSTRACT Immunogenic cell death (ICD) is a form of cell death by which cancer treatments can induce a clinically relevant antitumor immune response in a broad range of cancers. In multiple myeloma (MM), the proteasome inhibitor bortezomib is an ICD inducer and creates durable therapeutic responses in patients. However, eventual relapse and resistance to bortezomib appear inevitable. Here, by integrating patient transcriptomic data with an analysis of calreticulin (CRT) protein interactors, we found that GABA type A receptor-associated protein (GABARAP) is a key player whose loss prevented tumor cell death from being perceived as immunogenic after bortezomib treatment. GABARAP is located on chromosome 17p, which is commonly deleted in patients with high risk MM. GABARAP deletion impaired the exposure of the eat-me signal CRT on the surface of dying MM cells in vitro and in vivo, thus reducing tumor cell phagocytosis by dendritic cells and the subsequent antitumor T-cell response. Low GABARAP was independently associated with shorter survival in patients with MM and reduced tumor immune infiltration. Mechanistically, we found that GABARAP deletion blocked ICD signaling by decreasing autophagy and altering Golgi apparatus morphology, with consequent defects in the downstream vesicular transport of CRT. Conversely, upregulating autophagy using rapamycin restored Golgi morphology, CRT exposure, and ICD signaling in GABARAPKO cells undergoing bortezomib treatment. Therefore, coupling an ICD inducer, such as bortezomib, with an autophagy inducer, such as rapamycin, may improve patient outcomes in MM, in which low GABARAP in the form of del(17p) is common and leads to worse outcomes.
Collapse
Affiliation(s)
- Annamaria Gulla
- Department of Medical Oncology, Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-IRCCS, Candiolo, Italy
| | - Eugenio Morelli
- Department of Medical Oncology, Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-IRCCS, Candiolo, Italy
| | - Megan Johnstone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Marcello Turi
- Department of Medical Oncology, Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-IRCCS, Candiolo, Italy
| | - Mehmet K. Samur
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Cirino Botta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Selma Cifric
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Pietro Folino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Delaney Vinaixa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Northeastern University, Boston, MA
| | - Francesca Barello
- Department of Medical Oncology, Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-IRCCS, Candiolo, Italy
| | - Cole Clericuzio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Northeastern University, Boston, MA
| | - Vanessa Katia Favasuli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Domenico Maisano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Srikanth Talluri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Rao Prabhala
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Giada Bianchi
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Mariateresa Fulciniti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Kenneth Wen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Keiji Kurata
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jiye Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Johany Penailillo
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Alberto Bragoni
- Department of Medical Oncology, Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Anna Sapino
- Department of Medical Oncology, Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paul G. Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Dharminder Chauhan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Ruben D. Carrasco
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Teru Hideshima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Nikhil C. Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Kenneth C. Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
26
|
Ward GA, Zhang Z, Jueliger S, Potapov IS, Davis MP, Boxall AR, Taylor J, Keer H, Biondo A, Lyons JF, Sims M, Smyth T. Epigenetic Priming by Hypomethylation Enhances the Immunogenic Potential of Tolinapant in T-cell Lymphoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:1441-1453. [PMID: 38727208 PMCID: PMC11155518 DOI: 10.1158/2767-9764.crc-23-0415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/02/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Programmed cell death mechanisms are important for the regulation of tumor development and progression. Evasion of and resistance to apoptosis are significant factors in tumorigenesis and drug resistance. Bypassing apoptotic pathways and eliciting another form of regulated cell death, namely necroptosis, an immunogenic cell death (ICD), may override apoptotic resistance. Here, we present the mechanistic rationale for combining tolinapant, an antagonist of the inhibitor of apoptosis proteins (IAP), with decitabine, a hypomethylating agent (HMA), in T-cell lymphoma (TCL). Tolinapant treatment alone of TCL cells in vitro and in syngeneic in vivo models demonstrated that ICD markers can be upregulated, and we have shown that epigenetic priming with decitabine further enhances this effect. The clinical relevance of ICD markers was confirmed by the direct measurement of plasma proteins from patients with peripheral TCL treated with tolinapant. We showed increased levels of necroptosis in TCL lines, along with the expression of cancer-specific antigens (such as cancer testis antigens) and increases in genes involved in IFN signaling induced by HMA treatment, together deliver a strong adaptive immune response to the tumor. These results highlight the potential of a decitabine and tolinapant combination for TCL and could lead to clinical evaluation. SIGNIFICANCE The IAP antagonist tolinapant can induce necroptosis, a key immune-activating event, in TCL. Combination with DNA hypomethylation enhances tolinapant sensitivity and primes resistant cells by re-expressing necrosome proteins. In addition, this combination leads to increases in genes involved in IFN signaling and neoantigen expression, providing further molecular rationale for this novel therapeutic option.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jason Taylor
- Astex Pharmaceuticals, Inc., Pleasanton, California
| | - Harold Keer
- Astex Pharmaceuticals, Inc., Pleasanton, California
| | | | | | - Martin Sims
- Astex Pharmaceuticals, Cambridge, United Kingdom
| | - Tomoko Smyth
- Astex Pharmaceuticals, Cambridge, United Kingdom
| |
Collapse
|
27
|
Bhattacharya A, Dasgupta AK. Multifaceted perspectives of detecting and targeting solid tumors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:1-66. [PMID: 39396844 DOI: 10.1016/bs.ircmb.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Solid tumors are the most prevalent form of cancer. Considerable technological and medical advancements had been achieved for the diagnosis of the disease. However, detection of the disease in an early stage is of utmost importance, still far from reality. On the contrary, the treatment and therapeutic area to combat solid tumors are still in its infancy. Conventional treatments like chemotherapy and radiation therapy pose challenges due to their indiscriminate impact on healthy and cancerous cells. Contextually, efficient drug targeting is a pivotal approach in solid tumor treatment. This involves the precise delivery of drugs to cancer cells while minimizing harm to healthy cells. Targeted drugs exhibit superior efficacy in eradicating cancer cells while impeding tumor growth and mitigate side effects by optimizing absorption which further diminishes the risk of resistance. Furthermore, tailoring targeted therapies to a patient's tumor-specific molecular profile augments treatment efficacy and reduces the likelihood of relapse. This chapter discuss about the distinctive characteristics of solid tumors, the possibility of early detection of the disease and potential therapeutic angle beyond the conventional approaches. Additionally, the chapter delves into a hitherto unknown attribute of magnetic field effect to target cancer cells which exploit the relatively less susceptibility of normal cells compared to cancer cells to magnetic fields, suggesting a future potential of magnetic nanoparticles for selective cancer cell destruction. Lastly, bioinformatics tools and other unconventional methodologies such as AI-assisted codon bias analysis have a crucial role in comprehending tumor biology, aiding in the identification of futuristic targeted therapies.
Collapse
Affiliation(s)
- Abhishek Bhattacharya
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Anjan Kr Dasgupta
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
28
|
Meier P, Legrand AJ, Adam D, Silke J. Immunogenic cell death in cancer: targeting necroptosis to induce antitumour immunity. Nat Rev Cancer 2024; 24:299-315. [PMID: 38454135 DOI: 10.1038/s41568-024-00674-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
Most metastatic cancers remain incurable due to the emergence of apoptosis-resistant clones, fuelled by intratumour heterogeneity and tumour evolution. To improve treatment, therapies should not only kill cancer cells but also activate the immune system against the tumour to eliminate any residual cancer cells that survive treatment. While current cancer therapies rely heavily on apoptosis - a largely immunologically silent form of cell death - there is growing interest in harnessing immunogenic forms of cell death such as necroptosis. Unlike apoptosis, necroptosis generates second messengers that act on immune cells in the tumour microenvironment, alerting them of danger. This lytic form of cell death optimizes the provision of antigens and adjuvanticity for immune cells, potentially boosting anticancer treatment approaches by combining cellular suicide and immune response approaches. In this Review, we discuss the mechanisms of necroptosis and how it activates antigen-presenting cells, drives cross-priming of CD8+ T cells and induces antitumour immune responses. We also examine the opportunities and potential drawbacks of such strategies for exposing cancer cells to immunological attacks.
Collapse
Affiliation(s)
- Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK.
| | - Arnaud J Legrand
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - John Silke
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| |
Collapse
|
29
|
Kenison JE, Stevens NA, Quintana FJ. Therapeutic induction of antigen-specific immune tolerance. Nat Rev Immunol 2024; 24:338-357. [PMID: 38086932 PMCID: PMC11145724 DOI: 10.1038/s41577-023-00970-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 05/04/2024]
Abstract
The development of therapeutic approaches for the induction of robust, long-lasting and antigen-specific immune tolerance remains an important unmet clinical need for the management of autoimmunity, allergy, organ transplantation and gene therapy. Recent breakthroughs in our understanding of immune tolerance mechanisms have opened new research avenues and therapeutic opportunities in this area. Here, we review mechanisms of immune tolerance and novel methods for its therapeutic induction.
Collapse
Affiliation(s)
- Jessica E Kenison
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikolas A Stevens
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
30
|
Zhao D, Wu T, Tan Z, Xu J, Lu Z. Role of non-coding RNAs mediated pyroptosis on cancer therapy: a review. Expert Rev Anticancer Ther 2024; 24:239-251. [PMID: 38594965 DOI: 10.1080/14737140.2024.2341737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Non-coding RNAs (ncRNAs), which are incapable of encoding proteins, are involved in the progression of numerous tumors by altering transcriptional and post-transcriptional processing. Recent studies have revealed prominent features of ncRNAs in pyroptosis, a type of non-apoptotic programmed cellular destruction linked to an inflammatory reaction. Drug resistance has arisen gradually as a result of anti-apoptotic proteins, therefore strategies based on pyroptotic cell death have attracted increasing attention. We have observed that ncRNAs may exert significant influence on cancer therapy, chemotherapy, radio- therapy, targeted therapy and immunotherapy, by regulating pyroptosis. AREAS COVERED Literatures were searched (December 2023) for studies on cancer therapy for ncRNAs-mediated pyroptotic cell death. EXPERT OPINION The most universal mechanical strategy for ncRNAs to regulate target genes is competitive endogenous RNAs (ceRNA). Besides, certain ncRNAs could directly interact with proteins and modulate downstream genes to induce pyroptosis, resulting in tumor growth or inhibition. In this review, we aim to display that ncRNAs, predominantly long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs), could function as potential biomarkers for diagnosis and prognosis and produce new insights into anti-cancer strategies modulated by pyroptosis for clinical applications.
Collapse
Affiliation(s)
- Dan Zhao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangwei Wu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheqiong Tan
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Xu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongxin Lu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Wang Z, Zhou P, Li Y, Zhang D, Chu F, Yuan F, Pan B, Gao F. A Bimetallic Polymerization Network for Effective Increase in Labile Iron Pool and Robust Activation of cGAS/STING Induces Ferroptosis-Based Tumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308397. [PMID: 38072786 DOI: 10.1002/smll.202308397] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/13/2023] [Indexed: 12/20/2023]
Abstract
Due to the inherent low immunogenicity and immunosuppressive tumor microenvironment (TME) of malignant cancers, the clinical efficacy and application of tumor immunotherapy have been limited. Herein, a bimetallic drug-gene co-loading network (Cu/ZIF-8@U-104@siNFS1-HA) is developed that increased the intracellular labile iron pool (LIP) and enhanced the weakly acidic TME by co-suppressing the dual enzymatic activities of carbonic anhydrase IX (CA IX) and cysteine desulfurylase (NFS1), inducing a safe and efficient initial tumor immunogenic ferroptosis. During this process, Cu2+ is responsively released to deplete glutathione (GSH) and reduce the enzyme activity of glutathione peroxidase 4 (GPX4), achieving the co-inhibition of the three enzymes and further inducing lipid peroxidation (LPO). Additionally, the reactive oxygen species (ROS) storm in target cells promoted the generation of large numbers of double-stranded DNA breaks. The presence of Zn2+ substantially increased the expression of cGAS/STING, which cooperated with ferroptosis to strengthen the immunogenic cell death (ICD) response and remodel the immunosuppressive TME. In brief, Cu/ZIF-8@U-104@siNFS1-HA linked ferroptosis with immunotherapy through multiple pathways, including the increase in LIP, regulation of pH, depletion of GSH/GPX4, and activation of STING, effectively inhibiting cancer growth and metastasis.
Collapse
Affiliation(s)
- Zhenxin Wang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Peng Zhou
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Jiangsu, 223002, P. R. China
| | - Yuting Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Dazhen Zhang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Fuchao Chu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Feng Yuan
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Bin Pan
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Fenglei Gao
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| |
Collapse
|
32
|
Shkarina K, Broz P. Selective induction of programmed cell death using synthetic biology tools. Semin Cell Dev Biol 2024; 156:74-92. [PMID: 37598045 DOI: 10.1016/j.semcdb.2023.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/21/2023]
Abstract
Regulated cell death (RCD) controls the removal of dispensable, infected or malignant cells, and is thus essential for development, homeostasis and immunity of multicellular organisms. Over the last years different forms of RCD have been described (among them apoptosis, necroptosis, pyroptosis and ferroptosis), and the cellular signaling pathways that control their induction and execution have been characterized at the molecular level. It has also become apparent that different forms of RCD differ in their capacity to elicit inflammation or an immune response, and that RCD pathways show a remarkable plasticity. Biochemical and genetic studies revealed that inhibition of a given pathway often results in the activation of back-up cell death mechanisms, highlighting close interconnectivity based on shared signaling components and the assembly of multivalent signaling platforms that can initiate different forms of RCD. Due to this interconnectivity and the pleiotropic effects of 'classical' cell death inducers, it is challenging to study RCD pathways in isolation. This has led to the development of tools based on synthetic biology that allow the targeted induction of RCD using chemogenetic or optogenetic methods. Here we discuss recent advances in the development of such toolset, highlighting their advantages and limitations, and their application for the study of RCD in cells and animals.
Collapse
Affiliation(s)
- Kateryna Shkarina
- Institute of Innate Immunity, University Hospital Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Switzerland.
| |
Collapse
|
33
|
Ding L. Ferroptosis in viral infection: a potential therapeutic target. Future Microbiol 2024; 19:519-524. [PMID: 38411103 PMCID: PMC11216501 DOI: 10.2217/fmb-2023-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/16/2023] [Indexed: 02/28/2024] Open
Abstract
Ferroptosis, known as a type of programmed cell death that is iron dependent, is characterized by intracellular iron accumulation, glutathione depletion, glutathione peroxidase inactivation and lipid peroxidation. More and more research in recent years has demonstrated the tight connection between viral infections and ferroptosis. This article reviews the potential role and mechanism of ferroptosis in viral infection, and these findings will help in the prevention and treatment of the virus.
Collapse
Affiliation(s)
- Liqiong Ding
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science & Technology, Xianning, China
| |
Collapse
|
34
|
Anand S, Shen A, Cheng CE, Chen J, Powers J, Rayman P, Diaz M, Hasan T, Maytin EV. Combination of vitamin D and photodynamic therapy enhances immune responses in murine models of squamous cell skin cancer. Photodiagnosis Photodyn Ther 2024; 45:103983. [PMID: 38281610 PMCID: PMC11197882 DOI: 10.1016/j.pdpdt.2024.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Improved treatment outcomes for non-melanoma skin cancers can be achieved if Vitamin D (Vit D) is used as a neoadjuvant prior to photodynamic therapy (PDT). However, the mechanisms for this effect are unclear. Vit D elevates protoporphyrin (PpIX) levels within tumor cells, but also exerts immune-modulatory effects. Here, two murine models, UVB-induced actinic keratoses (AK) and human squamous cell carcinoma (A431) xenografts, were used to analyze the time course of local and systemic immune responses after PDT ± Vit D. Fluorescence immunohistochemistry of tissues and flow analysis (FACS) of blood were employed. In tissue, damage-associated molecular patterns (DAMPs) were increased, and infiltration of neutrophils (Ly6G+), macrophages (F4/80+), and dendritic cells (CD11c+) were observed. In most cases, Vit D alone or PDT alone increased cell recruitment, but Vit D + PDT showed even greater recruitment effects. Similarly for T cells, increased infiltration of total (CD3+), cytotoxic (CD8+) and regulatory (FoxP3+) T-cells was observed after Vit D or PDT, but the increase was even greater with the combination. FACS analysis revealed a variety of interesting changes in circulating immune cell levels. In particular, neutrophils decreased in the blood after Vit D, consistent with migration of neutrophils into AK lesions. Levels of cells expressing the PD-1+ checkpoint receptor were reduced in AKs following Vit D, potentially counteracting PD-1+ elevations seen after PDT alone. In summary, Vit D and ALA-PDT, two treatments with individual immunogenic effects, may be advantageous in combination to improve treatment efficacy and management of AK in the dermatology clinic.
Collapse
Affiliation(s)
- Sanjay Anand
- Department of Biomedical Engineering, Cleveland Clinic, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Dermatology and Plastic Surgery Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Alan Shen
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Cheng-En Cheng
- Department of Biomedical Engineering, Cleveland Clinic, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jacky Chen
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jennifer Powers
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Pat Rayman
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Marcela Diaz
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Edward V Maytin
- Department of Biomedical Engineering, Cleveland Clinic, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Dermatology and Plastic Surgery Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114.
| |
Collapse
|
35
|
Zhao X, Li X, Xu Y. Ferroptosis: a dual-edged sword in tumour growth. Front Pharmacol 2024; 14:1330910. [PMID: 38273826 PMCID: PMC10808349 DOI: 10.3389/fphar.2023.1330910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Ferroptosis, a recently identified form of non-apoptotic cell death, is distinguished by its dependence on iron-triggered lipid peroxidation and accumulation of iron. It has been linked to various disorders, including the development of tumours. Interestingly, ferroptosis appears to exhibit a dual role in the context of tumour growth. This article provides a thorough exploration of the inherent ambivalence within ferroptosis, encompassing both its facilitation and inhibition of tumorous proliferation. It examines potential therapeutic targets associated with ferroptosis, the susceptibility of cancerous cells to ferroptosis, strategies to enhance the efficacy of existing cancer treatments, the interaction between ferroptosis and the immune response to tumours, and the fundamental mechanisms governing ferroptosis-induced tumour progression. A comprehensive understanding of how ferroptosis contributes to tumour biology and the strategic management of its dual nature are crucial for maximizing its therapeutic potential.
Collapse
Affiliation(s)
| | | | - Yinghui Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
36
|
van Eijck CWF, Mustafa DAM, Vadgama D, de Miranda NFCC, Groot Koerkamp B, van Tienhoven G, van der Burg SH, Malats N, van Eijck CHJ. Enhanced antitumour immunity following neoadjuvant chemoradiotherapy mediates a favourable prognosis in women with resected pancreatic cancer. Gut 2024; 73:311-324. [PMID: 37709493 PMCID: PMC10850691 DOI: 10.1136/gutjnl-2023-330480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND This study investigates sex disparities in clinical outcomes and tumour immune profiles in patients with pancreatic ductal adenocarcinoma (PDAC) who underwent upfront resection or resection preceded by gemcitabine-based neoadjuvant chemoradiotherapy (nCRT). METHODS Patients originated from the PREOPANC randomised controlled trial. Upfront surgery was performed in 82 patients, and 66 received nCRT before resection. The impact of sex on overall survival (OS) was investigated using Cox proportional hazards models. The immunological landscape within the tumour microenvironment (TME) was mapped using transcriptomic and spatial proteomic profiling. RESULTS The 5-year OS rate differed between the sexes following resection preceded by nCRT, with 43% for women compared with 22% for men. In multivariate analysis, the female sex was a favourable independent prognostic factor for OS only in the nCRT group (HR 0.19; 95% CI 0.07 to 0.52). Multivariate heterogeneous treatment effects analysis revealed a significant interaction between sex and treatment, implying increased nCRT efficacy among women with resected PDAC. The TME of women contained fewer protumoural CD163+MRC1+M2 macrophages than that of men after nCRT, as indicated by transcriptomic and validated using spatial proteomic profiling. CONCLUSION PDAC tumours of women are more sensitive to gemcitabine-based nCRT, resulting in longer OS after resection compared with men. This may be due to enhanced immunity impeding the infiltration of protumoral M2 macrophages into the TME. Our findings highlight the importance of considering sex disparities and mitigating immunosuppressive macrophage polarisation for personalised PDAC treatment.
Collapse
Affiliation(s)
- Casper W F van Eijck
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre, and CIBERONC, Madrid, Spain
| | - Dana A M Mustafa
- Department of Pathology, Tumour-Immuno Pathology Laboratory, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Disha Vadgama
- Department of Pathology, Tumour-Immuno Pathology Laboratory, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Bas Groot Koerkamp
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre, and CIBERONC, Madrid, Spain
| | - Casper H J van Eijck
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre, and CIBERONC, Madrid, Spain
| |
Collapse
|
37
|
Injarabian L, Willenborg S, Welcker D, Sanin DE, Pasparakis M, Kashkar H, Eming SA. FADD- and RIPK3-Mediated Cell Death Ensures Clearance of Ly6C high Wound Macrophages from Damaged Tissue. J Invest Dermatol 2024; 144:152-164.e7. [PMID: 37516311 DOI: 10.1016/j.jid.2023.06.203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/31/2023]
Abstract
Cells of the monocyte/macrophage lineage are an integral component of the body's innate ability to restore tissue function after injury. In parallel to mounting an inflammatory response, clearance of monocytes/macrophages from the wound site is critical to re-establish tissue functionality and integrity during the course of healing. The role of regulated cell death in macrophage clearance from damaged tissue and its implications for the outcome of the healing response is little understood. In this study, we explored the role of macrophage-specific FADD-mediated cell death on Ripk3-/- background in a mechanical skin injury model in mice. We found that combined inhibition of RIPK3-mediated necroptosis and FADD-caspase-8-mediated apoptosis in macrophages profoundly delayed wound healing. Importantly, RIPK3 deficiency alone did not considerably alter the wound healing process and macrophage population dynamics, arguing that inhibition of FADD-caspase-8-dependent death of macrophages is primarily responsible for delayed wound closure. Notably, TNF blockade reversed the accumulation of Ly6Chigh macrophages induced by combined deficiency of FADD and RIPK3, indicating a critical dual role of TNF-mediated prosurvival and cell death signaling, particularly in this highly proinflammatory macrophage subset. Our findings reveal a previously uncharacterized cross-talk of inflammatory and cell death signaling in macrophages in regulating repair processes in the skin.
Collapse
Affiliation(s)
| | | | - Daniela Welcker
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - David E Sanin
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Quantitative Sciences Division and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Manolis Pasparakis
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Institute for Molecular Immunology, University of Cologne, Cologne, Germany
| | - Sabine A Eming
- Department of Dermatology, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Developmental Biology Unit, Institute of Zoology, University of Cologne, Cologne, Germany.
| |
Collapse
|
38
|
Hu Q, Wang S, Cheng R, Liu Y, Chang Z, Huang Y, Chen Y, Luo X, Zhou L, Wang B, Gao Y, Chen H, Liu R, Zhang L. Tannins in Phyllanthus emblica L. improves cisplatin efficacy in lung cancer cells by boosting endoplasmic reticulum stress to trigger immunogenic cell death. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155219. [PMID: 38056150 DOI: 10.1016/j.phymed.2023.155219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Lung cancer is one of the deadliest cancers world-wide and immunotherapy has been considered as a promising therapeutic strategy. Previously, our study found that tannins in Phyllanthus emblica L. (PTF) could inhibit the growth of tumor by activating the immune response in liver cancer, and also exhibited a cytotoxicity on human lung cancer cells A549, H460, H1703 in vitro. OBJECTIVE To explore whether PTF inhibited the growth of lung cancer through its immune-regulating function and to clarify underlying mechanisms. METHODS The induction of immunogenic cell death (ICD) were characterized by calreticulin exposure, extracellular ATP secretion, and High Mobility Group Box 1(HMGB1) release both in vivo using LLC-derived xenograft tumor model and in vitro using both mouse LLC and human A549 cancer cells. RESULTS PTF inhibited lung cancer cells growth and tumorigenesis in vivo/vitro and promoted anti-tumor immune responses. We further found that PTF could induce ICD, which then activated Type I interferon responses and CXCL9/10-mediated chemotaxis. Mechanistically, PTF induced the formation of intracellular protein aggregates and following activation of PERK/ATF4/CHOP-dependent endoplasmic reticulum stress-related ICD. Moreover, PTF improved the antitumor efficacy of cisplatin by inducing ICD both in vitro and in vivo. Finally, we screened out 5 components from PTF, including gallocatechin, gallic acid, methyl gallate, ethyl gallate and ellagic acid, which could induce ICD in vitro and might be considered as the potential antitumor pharmacodynamic substances. CONCLUSION In conclusion, PTF inhibits the growth of lung cancer by triggering ICD and remodeling the tumor microenvironment, suggesting that PTF may have promising prospects as an adjacent immunotherapy for cancers.
Collapse
Affiliation(s)
- Qian Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China
| | - Shukai Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China
| | - Ruiyang Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Yuqi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China
| | - Zihao Chang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China
| | - Ya Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China
| | - Yinxin Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China
| | - Xiaowei Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China
| | - Lipeng Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China
| | - Baojin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China
| | - Ye Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China
| | - Hongjiao Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China.
| | - Lanzhen Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China.
| |
Collapse
|
39
|
Singh T, Bhattacharya M, Mavi AK, Gulati A, Rakesh, Sharma NK, Gaur S, Kumar U. Immunogenicity of cancer cells: An overview. Cell Signal 2024; 113:110952. [PMID: 38084844 DOI: 10.1016/j.cellsig.2023.110952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
The immune system assumes a pivotal role in the organism's capacity to discern and obliterate malignant cells. The immunogenicity of a cancer cell pertains to its proficiency in inciting an immunological response. The prowess of immunogenicity stands as a pivotal determinant in the triumph of formulating immunotherapeutic methodologies. Immunotherapeutic strategies include immune checkpoint inhibitors, chimeric antigen receptor (CAR) T-cell therapy, and on vaccines. Immunogenic cell death (ICD) epitomizes a form of cellular demise that incites an immune response against dying cells. ICD is characterized by the liberation of distinct specific molecules that activate the immune system, thereby leading to the identification and elimination of dying cells by immunocytes. One of the salient characteristics inherent to the ICD phenomenon resides in the vigorous liberation of adenosine triphosphate (ATP) by cellular entities dedicated to embarking upon the process of programmed cell death, yet refraining from complete apoptotic demise. ICD is initiated by a sequence of molecular events that occur during cell death. These occurrences encompass the unveiling or discharge of molecules such as calreticulin, high-mobility group box 1 (HMGB1), and adenosine triphosphate (ATP) from dying cells. These molecules act as "eat me" signals, which are recognized by immune cells, thereby prompting the engulfment and deterioration of expiring cells by phagocytes including various pathways such as Necroptosis, Apoptosis, and pyroptosis. Here, we review our current understanding of the pathophysiological importance of the immune responses against dying cells and the mechanisms underlying their activation. Overall, the ICD represents an important mechanism by which the immune system recognizes and eliminates dying cells, including cancer cells. Understanding the molecular events that underlie ICD bears the potential to engender innovative cancer therapeutics that harness the power of the immune system to combat cancer.
Collapse
Affiliation(s)
- Tanya Singh
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Delhi 110021, India
| | - Madhuri Bhattacharya
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Delhi 110021, India
| | - Anil Kumar Mavi
- Department of Botany, Sri Aurobindo College, University of Delhi, Delhi 110017, India.
| | - Anita Gulati
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | - Rakesh
- Janki Devi Memorial College, University of Delhi, Delhi 110060, India
| | - Naresh Kumar Sharma
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sonal Gaur
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Umesh Kumar
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH9, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh 201015, India.
| |
Collapse
|
40
|
Janssens S, Rennen S, Agostinis P. Decoding immunogenic cell death from a dendritic cell perspective. Immunol Rev 2024; 321:350-370. [PMID: 38093416 DOI: 10.1111/imr.13301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Dendritic cells (DCs) are myeloid cells bridging the innate and adaptive immune system. By cross-presenting tumor-associated antigens (TAAs) liberated upon spontaneous or therapy-induced tumor cell death to T cells, DCs occupy a pivotal position in the cancer immunity cycle. Over the last decades, the mechanisms linking cancer cell death to DC maturation, have been the focus of intense research. Growing evidence supports the concept that the mere transfer of TAAs during the process of cell death is insufficient to drive immunogenic DC maturation unless this process is coupled with the release of immunomodulatory signals by dying cancer cells. Malignant cells succumbing to a regulated cell death variant called immunogenic cell death (ICD), foster a proficient interface with DCs, enabling their immunogenic maturation and engagement of adaptive immunity against cancer. This property relies on the ability of ICD to exhibit pathogen-mimicry hallmarks and orchestrate the emission of a spectrum of constitutively present or de novo-induced danger signals, collectively known as damage-associated molecular patterns (DAMPs). In this review, we discuss how DCs perceive and decode danger signals emanating from malignant cells undergoing ICD and provide an outlook of the major signaling and functional consequences of this interaction for DCs and antitumor immunity.
Collapse
Affiliation(s)
- Sophie Janssens
- Laboratory for ER Stress and Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sofie Rennen
- Laboratory for ER Stress and Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Patrizia Agostinis
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Kulkarni M, Hardwick JM. Programmed Cell Death in Unicellular Versus Multicellular Organisms. Annu Rev Genet 2023; 57:435-459. [PMID: 37722687 PMCID: PMC11491101 DOI: 10.1146/annurev-genet-033123-095833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Programmed cell death (self-induced) is intrinsic to all cellular life forms, including unicellular organisms. However, cell death research has focused on animal models to understand cancer, degenerative disorders, and developmental processes. Recently delineated suicidal death mechanisms in bacteria and fungi have revealed ancient origins of animal cell death that are intertwined with immune mechanisms, allaying earlier doubts that self-inflicted cell death pathways exist in microorganisms. Approximately 20 mammalian death pathways have been partially characterized over the last 35 years. By contrast, more than 100 death mechanisms have been identified in bacteria and a few fungi in recent years. However, cell death is nearly unstudied in most human pathogenic microbes that cause major public health burdens. Here, we consider how the current understanding of programmed cell death arose through animal studies and how recently uncovered microbial cell death mechanisms in fungi and bacteria resemble and differ from mechanisms of mammalian cell death.
Collapse
Affiliation(s)
- Madhura Kulkarni
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA; ,
| | - J Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA; ,
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
42
|
Clucas J, Meier P. Roles of RIPK1 as a stress sentinel coordinating cell survival and immunogenic cell death. Nat Rev Mol Cell Biol 2023; 24:835-852. [PMID: 37568036 DOI: 10.1038/s41580-023-00623-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 08/13/2023]
Abstract
Cell death and inflammation are closely linked arms of the innate immune response to combat infection and tissue malfunction. Recent advancements in our understanding of the intricate signals originating from dying cells have revealed that cell death serves as more than just an end point. It facilitates the exchange of information between the dying cell and cells of the tissue microenvironment, particularly immune cells, alerting and recruiting them to the site of disturbance. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is emerging as a critical stress sentinel that functions as a molecular switch, governing cellular survival, inflammatory responses and immunogenic cell death signalling. Its tight regulation involves multiple layers of post-translational modifications. In this Review, we discuss the molecular mechanisms that regulate RIPK1 to maintain homeostasis and cellular survival in healthy cells, yet drive cell death in a context-dependent manner. We address how RIPK1 mutations or aberrant regulation is associated with inflammatory and autoimmune disorders and cancer. Moreover, we tease apart what is known about catalytic and non-catalytic roles of RIPK1 and discuss the successes and pitfalls of current strategies that aim to target RIPK1 in the clinic.
Collapse
Affiliation(s)
- Jarama Clucas
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK.
| |
Collapse
|
43
|
Zheng Q, Daskalov A. Microbial gasdermins: More than a billion years of pyroptotic-like cell death. Semin Immunol 2023; 69:101813. [PMID: 37480832 DOI: 10.1016/j.smim.2023.101813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
In the recent past, the concept of immunity has been extended to eukaryotic and prokaryotic microorganisms, like fungi and bacteria. The latest findings have drawn remarkable evolutionary parallels between metazoan and microbial defense-related genes, unveiling a growing number of shared transkingdom components of immune systems. One such component is the gasdermin family of pore-forming proteins - executioners of a highly inflammatory immune cell death program in mammals, termed pyroptosis. Pyroptotic cell death limits the spread of intracellular pathogens by eliminating infected cells and coordinates the broader inflammatory response to infection. The microbial gasdermins have similarly been implicated in defense-related cell death reactions in fungi, bacteria and archaea. Moreover, the discovery of the molecular regulators of gasdermin cytotoxicity in fungi and bacteria, has established additional evolutionary links to mammalian pyroptotic pathways. Here, we focus on the gasdermin proteins in microorganisms and their role in organismal defense and provide perspective on this remarkable case study in comparative immunology.
Collapse
Affiliation(s)
- Qi Zheng
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Asen Daskalov
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China; ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
44
|
Freund L, Oehrl S, Schwingen J, Haeberle S, Döbel T, Lee PDH, Meisel S, Mihalceanu S, Rußwurm M, Luft T, Schäkel K. IFNγ Causes Keratinocyte Necroptosis in Acute Graft-Versus-Host Disease. J Invest Dermatol 2023; 143:1746-1756.e9. [PMID: 36889661 DOI: 10.1016/j.jid.2023.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 03/08/2023]
Abstract
Epidermal keratinocytes form the first-line cellular barrier of the skin for protection against external injuries and maintenance of local tissue homeostasis. Expression of ZBP1 was shown to cause necroptotic keratinocyte cell death and skin inflammation in mice. We sought to characterize the relevance of ZBP1 and necroptosis in human keratinocytes and type 1-driven cutaneous acute graft-versus-host disease. in this study, we identify ZBP1 expression, necroptosis, and interface dermatitis as being the hallmarks of acute graft-versus-host disease. ZBP1 expression was dependent on leukocyte-derived IFNγ, and interference with IFNγ signaling by Jak inhibition prevented cell death. In predominantly IL-17-driven psoriasis, both ZBP1 expression and necroptosis could not be detected. Of note, in contrast to the signaling in mice, ZBP1 signaling in human keratinocytes was not affected by RIPK1's presence. These findings show that ZBP1 drives inflammation in IFNγ-dominant type 1 immune responses in human skin and may further point to a general role of ZBP1-mediated necroptosis.
Collapse
Affiliation(s)
- Lukas Freund
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie Oehrl
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Julius Schwingen
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefanie Haeberle
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Döbel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Paul D H Lee
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Meisel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Silvia Mihalceanu
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Rußwurm
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Luft
- Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Knut Schäkel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
45
|
Abstract
Investigation of fungal biology has been frequently motivated by the fact that many fungal species are important plant and animal pathogens. Such efforts have contributed significantly toward our understanding of fungal pathogenic lifestyles (virulence factors and strategies) and the interplay with host immune systems. In parallel, work on fungal allorecognition systems leading to the characterization of fungal regulated cell death determinants and pathways, has been instrumental for the emergent concept of fungal immunity. The uncovered evolutionary trans-kingdom parallels between fungal regulated cell death pathways and innate immune systems incite us to reflect further on the concept of a fungal immune system. Here, I briefly review key findings that have shaped the fungal immunity paradigm, providing a perspective on what I consider its most glaring knowledge gaps. Undertaking to fill such gaps would establish firmly the fungal immune system inside the broader field of comparative immunology.
Collapse
Affiliation(s)
- Asen Daskalov
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| |
Collapse
|
46
|
Martínez-Torró C, Alba-Castellón L, Carrasco-Díaz LM, Serna N, Imedio L, Gallardo A, Casanova I, Unzueta U, Vázquez E, Mangues R, Villaverde A. Lymphocyte infiltration and antitumoral effect promoted by cytotoxic inflammatory proteins formulated as self-assembling, protein-only nanoparticles. Biomed Pharmacother 2023; 164:114976. [PMID: 37276641 DOI: 10.1016/j.biopha.2023.114976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023] Open
Abstract
Two human proteins involved in the inflammatory cell death, namely Gasdermin D (GSDMD) and the Mixed Lineage Kinase Domain-Like (MLKL) protein have been engineered to accommodate an efficient ligand of the tumoral cell marker CXCR4, and a set of additional peptide agents that allow their spontaneous self-assembling. Upon production in bacterial cells and further purification, both proteins organized as stable nanoparticles of 46 and 54 nm respectively, that show, in this form, a moderate but dose-dependent cytotoxicity in cell culture. In vivo, and when administered in mouse models of colorectal cancer through repeated doses, the nanoscale forms of tumor-targeted GSDMD and, at a lesser extent, of MLKL promoted CD8+ and CD20+ lymphocyte infiltration in the tumor and an important reduction of tumor size, in absence of systemic toxicity. The potential of these novel pharmacological agents as anticancer drugs is discussed in the context of synergistic approaches to more effective cancer treatments.
Collapse
Affiliation(s)
- Carlos Martínez-Torró
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lorena Alba-Castellón
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Luis Miguel Carrasco-Díaz
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Laura Imedio
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Alberto Gallardo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Isolda Casanova
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
47
|
Liu L, Du J, Yang S, Zheng B, Shen J, Huang J, Cao L, Huang S, Liu X, Guo L, Li C, Ke C, Peng X, Guo D, Peng H. SARS-CoV-2 ORF3a sensitizes cells to ferroptosis via Keap1-NRF2 axis. Redox Biol 2023; 63:102752. [PMID: 37245288 DOI: 10.1016/j.redox.2023.102752] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023] Open
Abstract
Viral infection-induced cell death has long been considered as a double-edged sword in the inhibition or exacerbation of viral infections. Patients with severe Coronavirus Disease 2019 (COVID-19) are characterized by multiple organ dysfunction syndrome and cytokine storm, which may result from SARS-CoV-2-induced cell death. Previous studies have observed enhanced ROS level and signs of ferroptosis in SARS-CoV-2 infected cells or specimens of patients with COVID-19, but the exact mechanism is not clear yet. Here, we find SARS-CoV-2 ORF3a sensitizes cells to ferroptosis via Keap1-NRF2 axis. SARS-CoV-2 ORF3a promotes the degradation of NRF2 through recruiting Keap1, thereby attenuating cellular resistance to oxidative stress and facilitated cells to ferroptotic cell death. Our study uncovers that SARS-CoV-2 ORF3a functions as a positive regulator of ferroptosis, which might explain SARS-CoV-2-induced damage in multiple organs in COVID-19 patients and imply the potential of ferroptosis inhibition in COVID-19 treatment.
Collapse
Affiliation(s)
- Lihong Liu
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China; Guangzhou Laboratory, Bio-island, Guangzhou, Guangdong, PR China
| | - Jie Du
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Sidi Yang
- Guangzhou Laboratory, Bio-island, Guangzhou, Guangdong, PR China
| | - Birong Zheng
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China; Guangzhou Laboratory, Bio-island, Guangzhou, Guangdong, PR China
| | - Jian Shen
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, PR China
| | - Jiacheng Huang
- Guangzhou Laboratory, Bio-island, Guangzhou, Guangdong, PR China
| | - Liu Cao
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Siyao Huang
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Xue Liu
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Liping Guo
- Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Chunmei Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, PR China
| | - Xiaofang Peng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, PR China
| | - Deyin Guo
- Guangzhou Laboratory, Bio-island, Guangzhou, Guangdong, PR China.
| | - Hong Peng
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China; Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
48
|
Choi M, Shin J, Lee CE, Chung JY, Kim M, Yan X, Yang WH, Cha JH. Immunogenic cell death in cancer immunotherapy. BMB Rep 2023; 56:275-286. [PMID: 37081756 PMCID: PMC10230015 DOI: 10.5483/bmbrep.2023-0024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer immunotherapy has been acknowledged as a new paradigm for cancer treatment, with notable therapeutic effects on certain cancer types. Despite their significant potential, clinical studies over the past decade have revealed that cancer immunotherapy has low response rates in the majority of solid tumors. One of the key causes for poor responses is known to be the relatively low immunogenicity of solid tumors. Because most solid tumors are immune desert 'cold tumors' with antitumor immunity blocked from the onset of innate immunity, combination therapies that combine validated T-based therapies with approaches that can increase tumor-immunogenicity are being considered as relevant therapeutic options. This review paper focuses on immunogenic cell death (ICD) as a way of enhancing immunogenicity in tumor tissues. We will thoroughly review how ICDs such as necroptosis, pyroptosis, and ferroptosis can improve anti-tumor immunity and outline clinical trials targeting ICD. Finally, we will discuss the potential of ICD inducers. as an adjuvant for cancer immunotherapy.[BMB Reports 2023; 56(5): 275-286].
Collapse
Affiliation(s)
- Minji Choi
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
| | - Jisoo Shin
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
| | - Chae-Eun Lee
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
| | - Joo-Yoon Chung
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
| | - Minji Kim
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
| | - Xiuwen Yan
- Affiliated Cancer Institute & Hospital and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 910095, China, Taichung 40402, Taiwan
| | - Wen-Hao Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Jong-Ho Cha
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea, Taichung 40402, Taiwan
| |
Collapse
|
49
|
Choi M, Shin J, Lee CE, Chung JY, Kim M, Yan X, Yang WH, Cha JH. Immunogenic cell death in cancer immunotherapy. BMB Rep 2023; 56:275-286. [PMID: 37081756 PMCID: PMC10230015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 04/22/2023] Open
Abstract
Cancer immunotherapy has been acknowledged as a new paradigm for cancer treatment, with notable therapeutic effects on certain cancer types. Despite their significant potential, clinical studies over the past decade have revealed that cancer immunotherapy has low response rates in the majority of solid tumors. One of the key causes for poor responses is known to be the relatively low immunogenicity of solid tumors. Because most solid tumors are immune desert 'cold tumors' with antitumor immunity blocked from the onset of innate immunity, combination therapies that combine validated T-based therapies with approaches that can increase tumor-immunogenicity are being considered as relevant therapeutic options. This review paper focuses on immunogenic cell death (ICD) as a way of enhancing immunogenicity in tumor tissues. We will thoroughly review how ICDs such as necroptosis, pyroptosis, and ferroptosis can improve anti-tumor immunity and outline clinical trials targeting ICD. Finally, we will discuss the potential of ICD inducers. as an adjuvant for cancer immunotherapy.[BMB Reports 2023; 56(5): 275-286].
Collapse
Affiliation(s)
- Minji Choi
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
| | - Jisoo Shin
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
| | - Chae-Eun Lee
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
| | - Joo-Yoon Chung
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
| | - Minji Kim
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
| | - Xiuwen Yan
- Affiliated Cancer Institute & Hospital and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 910095, China, Taichung 40402, Taiwan
| | - Wen-Hao Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Jong-Ho Cha
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Taiwan
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea, Taichung 40402, Taiwan
| |
Collapse
|
50
|
Zhao YY, Lian JX, Lan Z, Zou KL, Wang WM, Yu GT. Ferroptosis promotes anti-tumor immune response by inducing immunogenic exposure in HNSCC. Oral Dis 2023; 29:933-941. [PMID: 34773344 DOI: 10.1111/odi.14077] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 01/04/2023]
Abstract
Accumulated evidence indicates that immune cell populations play pivotal roles in the process of tumor initiation, progression, recurrence, metastasis, and immune escape. Ferroptosis is a form of regulating cell death in the nexus between metabolism, redox biology, and human health. Ferroptosis is considered as a vital important event in HNSCC, but the underling mechanism of regulating immune cell populations remains poorly understood. Our tissue microarray study showed that patients with high expression of GPX4 were related to poor survival. Moreover, the expression of GPX4 has been negatively associated with immunogenic cell death-related protein calreticulin in HNSCC tissue cohort. Further, RSL3 was used to induce ferroptosis in HNSCC xenograft of C3H/He mouse. We found that the occurrence of ferroptosis had significantly reduced the number of myeloid-derived suppressor cells (MDSCs) and tumor-associated M2-like macrophages (M2 TAMs) in tumor microenvironment. Meanwhile, the tumor-infiltrating CD4+ and CD8+ T cells were increased. And the calreticulin and HMGB1 may be potential candidate proteins improving the immunosuppressive tumor microenvironment. Taken together, our project suggests that ferroptosis can promote anti-tumor immune response by reversing immunosuppressive microenvironment, indicating that ferroptosis inducer is a promising therapeutic strategy in HNSCC.
Collapse
Affiliation(s)
- Yu-Yue Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jun-Xiang Lian
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhou Lan
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Long Zou
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Wei-Ming Wang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Guang-Tao Yu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|