1
|
Prakash A, Li Z, Chirasani VR, Rasquinha JA, Hewitt N, Hubbard GB, Yin G, Hawkins AT, Montore LJ, Dohlman HG, Campbell SL. Molecular and functional profiling of Gαi as an intracellular pH sensor. Nat Commun 2025; 16:3468. [PMID: 40216757 PMCID: PMC11992140 DOI: 10.1038/s41467-025-58323-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Heterotrimeric G proteins (Gα, Gβ and Gγ) act downstream of G-protein-coupled receptors (GPCRs) to mediate signaling pathways that regulate various physiological processes and human disease conditions. While human Gαi and its yeast homolog Gpa1 were previously postulated to function as intracellular pH sensors, the pH-sensing capabilities of Gαi and the underlying mechanism remain to be established. Our research shows that variations in pH significantly affect the structure and stability of Gαi-GDP. Specifically, at the lower end of the physiological pH range, the protein undergoes an order-to-disorder transition due to the loss of electrostatic interactions within the Gαi Switch regions, resulting in a reduction in agonist-mediated Gαi-Gβγ release. Further, we identified key residues within the Gαi Switch regions that form the pH-sensing network. Mutation of these residues in Gαi gives rise to 'low pH mimetics' that abolish pH-dependent thermostability changes and reduce Gαi-Gβγ release. Overall, our findings suggest that pH-sensitive structural changes in Gαi impact the agonist-mediated dissociation of Gβγ, which is essential for proper signaling.
Collapse
Affiliation(s)
- Ajit Prakash
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zijian Li
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Venkat R Chirasani
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- R. L. Juliano Structural Bioinformatics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Juhi A Rasquinha
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie Hewitt
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Garrett B Hubbard
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Aspen T Hawkins
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Luca J Montore
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Henrik G Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sharon L Campbell
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Gookin TE, Chakravorty D, Assmann SM. Influence of expression and purification protocols on Gα biochemical activity: kinetics of plant and mammalian G protein cycles. Front Mol Biosci 2025; 12:1513660. [PMID: 40260404 PMCID: PMC12009698 DOI: 10.3389/fmolb.2025.1513660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/21/2025] [Indexed: 04/23/2025] Open
Abstract
Heterotrimeric G proteins, composed of Gα, Gβ, and Gγ subunits, are a class of signal transduction complexes with broad roles in human health and agriculturally relevant plant physiological and developmental traits. In the classic paradigm, guanine nucleotide binding to the Gα subunit regulates the activation status of the complex. We sought to develop improved methods for heterologous expression and rapid purification of Gα subunits, initially targeting GPA1, the sole canonical Gα subunit of the model plant species, Arabidopsis thaliana. Compared to conventional methods, our expression methodology and rapid StrepII-tag mediated purification facilitates substantially higher yield, and isolation of protein with increased GTP binding and hydrolysis activities. Human GNAI1 purified using our approach displayed the expected binding and hydrolysis activities, indicating our protocol is applicable to mammalian Gα subunits, potentially including those for which purification of enzymatically active protein has been historically problematic. We subsequently utilized domain swaps of GPA1 and human GNAO1 to demonstrate that the inherent instability of GPA1 is a function of the interaction between the Ras and helical domains. Additionally, we found that GPA1-GNAO1 domain swaps partially uncouple the instability from the rapid nucleotide binding kinetics displayed by GPA1. In summary, our work provides insights into methods to optimally study heterotrimeric G proteins, and reveals roles of the helical domain in Gα kinetics and stability.
Collapse
|
3
|
Endzhievskaya S, Chahal K, Resnick J, Khare E, Roy S, Handel TM, Kufareva I. Essential strategies for the detection of constitutive and ligand-dependent Gi-directed activity of 7TM receptors using bioluminescence resonance energy transfer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626681. [PMID: 39713355 PMCID: PMC11661105 DOI: 10.1101/2024.12.04.626681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The constitutive (ligand-independent) signaling of G protein-coupled receptors (GPCRs) is being increasingly appreciated as an integral aspect of their function; however, it can be technically hard to detect for poorly characterized, e.g. orphan, receptors of the cAMP-inhibitory Gi-coupled (GiPCR) family. In this study, we delineate the optimal strategies for the detection of such activity across several GiPCRs in two cell lines. As our study examples, we chose two canonical GiPCRs - the constitutively active Smoothened and the ligand-activated CXCR4, - and one atypical GPCRs, the chemokine receptor ACKR3. We verified the applicability of three Bioluminescence Resonance Energy Transfer (BRET)-based assays - one measuring changes in intracellular cAMP, another in Gβγ/GRK3ct association and third in Gαi-Gβγ dissociation, - for assessing both constitutive and ligand-modulated activity of these receptors. We also revealed the possible caveats and sources of false positives, and proposed optimization strategies. All three types of assays confirmed the ligand-dependent activity of CXCR4, the controversial G protein incompetence of ACKR3, the constitutive Gi-directed activity of SMO, and its modulation by PTCH1. We also demonstrated that PTCH1 promotes SMO localization to the cell surface, thus enhancing its responsiveness not only to agonists but also to antagonists, which is a novel mechanism of regulation of a Class F GiPCR Smoothened.
Collapse
Affiliation(s)
- Sofia Endzhievskaya
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kirti Chahal
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- LigronBio Inc., San Diego, CA, USA
| | - Julie Resnick
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ekta Khare
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Suchismita Roy
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Lymperopoulos A, Stoicovy RA. RGS Proteins in Sympathetic Nervous System Regulation: Focus on Adrenal RGS4. FRONT BIOSCI-LANDMRK 2024; 29:355. [PMID: 39473413 DOI: 10.31083/j.fbl2910355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 01/11/2025]
Abstract
The sympathetic nervous system (SNS) consists largely of two different types of components: neurons that release the neurotransmitter norepinephrine (NE, noradrenaline) to modulate homeostasis of the innevrvated effector organ or tissue and adrenal chromaffin cells, which synthesize and secrete the hormone epinephrine (Epi, adrenaline) and some NE into the blood circulation to act at distant organs and tissues that are not directly innervated by the SNS. Like almost every physiological process in the human body, G protein-coupled receptors (GPCRs) tightly modulate both NE release from sympathetic neuronal terminals and catecholamine (CA) secretion from the adrenal medulla. Regulator of G protein Signaling (RGS) proteins, acting as guanosine triphosphatase (GTPase)-activating proteins (GAPs) for the Gα subunits of heterotrimeric guanine nucleotide-binding proteins (G proteins), play a central role in silencing G protein signaling from a plethora of GPCRs. Certain RGS proteins and, in particular, RGS4, have been implicated in regulation of SNS activity and of adrenal chromaffin cell CA secretion. More specifically, recent studies have implicated RGS4 in regulation of NE release from cardiac sympathetic neurons by means of terminating free fatty acid receptor (FFAR)-3 calcium signaling and in regulation of NE and Epi secretion from the adrenal medulla by means of terminating cholinergic calcium signaling in adrenal chromaffin cells. Thus, in this review, we provide an overview of the current literature on the involvement of RGS proteins, with a particular focus on RGS4, in these two processes, i.e., NE release from sympathetic nerve terminals & CA secretion from adrenal chromaffin cells. We also highlight the therapeutic potential of RGS4 pharmacological manipulation for diseases characterized by sympathetic dysfunction or SNS hyperactivity, such as heart failure and hypertension.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Davie/Fort Lauderdale, FL 33328-2018, USA
| | - Renee A Stoicovy
- Department of Pharmaceutical Sciences, Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Davie/Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
5
|
Ham H, Jing H, Lamborn IT, Kober MM, Koval A, Berchiche YA, Anderson DE, Druey KM, Mandl JN, Isidor B, Ferreira CR, Freeman AF, Ganesan S, Karsak M, Mustillo PJ, Teo J, Zolkipli-Cunningham Z, Chatron N, Lecoquierre F, Oler AJ, Schmid JP, Kuhns DB, Xu X, Hauck F, Al-Herz W, Wagner M, Terhal PA, Muurinen M, Barlogis V, Cruz P, Danielson J, Stewart H, Loid P, Rading S, Keren B, Pfundt R, Zarember KA, Vill K, Potocki L, Olivier KN, Lesca G, Faivre L, Wong M, Puel A, Chou J, Tusseau M, Moutsopoulos NM, Matthews HF, Simons C, Taft RJ, Soldatos A, Masle-Farquhar E, Pittaluga S, Brink R, Fink DL, Kong HH, Kabat J, Kim WS, Bierhals T, Meguro K, Hsu AP, Gu J, Stoddard J, Banos-Pinero B, Slack M, Trivellin G, Mazel B, Soomann M, Li S, Watts VJ, Stratakis CA, Rodriguez-Quevedo MF, Bruel AL, Lipsanen-Nyman M, Saultier P, Jain R, Lehalle D, Torres D, Sullivan KE, Barbarot S, Neu A, Duffourd Y, Similuk M, McWalter K, Blanc P, Bézieau S, Jin T, Geha RS, Casanova JL, Makitie OM, Kubisch C, Edery P, Christodoulou J, Germain RN, Goodnow CC, Sakmar TP, Billadeau DD, Küry S, Katanaev VL, Zhang Y, et alHam H, Jing H, Lamborn IT, Kober MM, Koval A, Berchiche YA, Anderson DE, Druey KM, Mandl JN, Isidor B, Ferreira CR, Freeman AF, Ganesan S, Karsak M, Mustillo PJ, Teo J, Zolkipli-Cunningham Z, Chatron N, Lecoquierre F, Oler AJ, Schmid JP, Kuhns DB, Xu X, Hauck F, Al-Herz W, Wagner M, Terhal PA, Muurinen M, Barlogis V, Cruz P, Danielson J, Stewart H, Loid P, Rading S, Keren B, Pfundt R, Zarember KA, Vill K, Potocki L, Olivier KN, Lesca G, Faivre L, Wong M, Puel A, Chou J, Tusseau M, Moutsopoulos NM, Matthews HF, Simons C, Taft RJ, Soldatos A, Masle-Farquhar E, Pittaluga S, Brink R, Fink DL, Kong HH, Kabat J, Kim WS, Bierhals T, Meguro K, Hsu AP, Gu J, Stoddard J, Banos-Pinero B, Slack M, Trivellin G, Mazel B, Soomann M, Li S, Watts VJ, Stratakis CA, Rodriguez-Quevedo MF, Bruel AL, Lipsanen-Nyman M, Saultier P, Jain R, Lehalle D, Torres D, Sullivan KE, Barbarot S, Neu A, Duffourd Y, Similuk M, McWalter K, Blanc P, Bézieau S, Jin T, Geha RS, Casanova JL, Makitie OM, Kubisch C, Edery P, Christodoulou J, Germain RN, Goodnow CC, Sakmar TP, Billadeau DD, Küry S, Katanaev VL, Zhang Y, Lenardo MJ, Su HC. Germline mutations in a G protein identify signaling cross-talk in T cells. Science 2024; 385:eadd8947. [PMID: 39298586 PMCID: PMC11811912 DOI: 10.1126/science.add8947] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/15/2023] [Accepted: 07/12/2024] [Indexed: 09/22/2024]
Abstract
Humans with monogenic inborn errors responsible for extreme disease phenotypes can reveal essential physiological pathways. We investigated germline mutations in GNAI2, which encodes Gαi2, a key component in heterotrimeric G protein signal transduction usually thought to regulate adenylyl cyclase-mediated cyclic adenosine monophosphate (cAMP) production. Patients with activating Gαi2 mutations had clinical presentations that included impaired immunity. Mutant Gαi2 impaired cell migration and augmented responses to T cell receptor (TCR) stimulation. We found that mutant Gαi2 influenced TCR signaling by sequestering the guanosine triphosphatase (GTPase)-activating protein RASA2, thereby promoting RAS activation and increasing downstream extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)-AKT S6 signaling to drive cellular growth and proliferation.
Collapse
Affiliation(s)
- Hyoungjun Ham
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic; Rochester, MN, USA
| | - Huie Jing
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Ian T. Lamborn
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Megan M. Kober
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva; 1211 Geneva, Switzerland
| | - Yamina A. Berchiche
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University; New York, NY, USA
| | - D. Eric Anderson
- Advanced Mass Spectrometry Facility, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH; Bethesda, MD 20892, USA
| | - Kirk M. Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Judith N. Mandl
- Lymphocyte Biology Section, Laboratory of Immune System Biology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale; F-44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax; F-44000 Nantes, France
| | - Carlos R. Ferreira
- Skeletal Genomics Unit, Metabolic Medicine Branch, DIR, National Human Genome Research Institute (NHGRI), NIH; Bethesda, MD, USA
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, DIR, NIAID, NIH; Bethesda, MD 20892, USA
| | - Meliha Karsak
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
| | - Peter J. Mustillo
- Nationwide Children’s Hospital; Columbus, OH, USA
- The Ohio State University College of Medicine; Columbus, OH, USA
| | - Juliana Teo
- Department of Haematology, The Children’s Hospital Westmead; Sydney, New South Wales, Australia
| | - Zarazuela Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Nicolas Chatron
- Service de Génétique, Hospices Civils de Lyon; Lyon, France
- Univ Lyon, Univ Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène; 69008 Lyon, France
| | - François Lecoquierre
- Univ Rouen Normandie, Inserm U12045 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders; FHU-G4 Génomique, F-76000, Rouen, France
| | - Andrew J. Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (OCICB), NIAID, NIH; Bethesda, MD, USA
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children’s Hospital Zurich; Zurich, Switzerland
- Pediatric Immunology, University of Zurich; Zurich, Switzerland
| | - Douglas B. Kuhns
- Neutrophil Monitoring Lab, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research; Frederick, MD, USA
| | - Xuehua Xu
- Chemotaxis Signal Section, Laboratory of Immunogenetics, DIR, NIAID, NIH; Rockville, MD, USA
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität (LMU); Munich, Germany
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University; Kuwait City, Kuwait
- Department of Pediatrics, Al-Sabah Hospital; Kuwait City, Kuwait
| | - Matias Wagner
- Institute of Human Genetics, Technical University Munich, School of Medicine and Health; Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München; Neuherberg, Germany
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich; Munich, Germany
| | - Paulien A. Terhal
- Division of Laboratories, Pharmacy and Biomedical Genetics, University Medical Centre Utrecht; 3584EA Utrecht, the Netherlands
| | - Mari Muurinen
- Folkhälsan Research Center, Genetics Research Program; Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital; Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki; Helsinki, Finland
| | - Vincent Barlogis
- APHM, La Timone Children’s Hospital, Department of Pediatric Hematology, Immunology, and Oncology; Marseille, France
- Aix Marseille University, EA 3279 Research Unit; Marseille, France
| | - Phillip Cruz
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (OCICB), NIAID, NIH; Bethesda, MD, USA
| | - Jeffrey Danielson
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Nuffield Orthopaedic Centre, Oxford University Hospitals, NHS Foundation Trust; Headington, Oxford OX3 7HE, UK
| | - Petra Loid
- Folkhälsan Research Center, Genetics Research Program; Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital; Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki; Helsinki, Finland
| | - Sebastian Rading
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
| | - Boris Keren
- Genetic Departement, Assistance Publique - Hôpitaux de Paris.Sorbonne University; Paris, France
- SeqOIA Laboratory, FMG2025, Paris; France
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center; Nijmegen, The Netherlands
| | - Kol A. Zarember
- Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Katharina Vill
- LMU University Hospital I Department of Pediatrics I Division of Pediatric Neurology I MUC iSPZ Hauner - Munich University Center for Children with Medical and Developmental Complexity I Dr. von Hauner Children’s Hospital; Munich, Germany
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine; Houston, Texas, USA
- Texas Children’s Hospital; Houston, Texas, USA
| | - Kenneth N. Olivier
- Pulmonary Branch, Division of Intramural Research, DIR, National Heart Lung and Blood Institute (NHLBI), NIH; Bethesda, MD, USA
| | - Gaetan Lesca
- Service de Génétique, Hospices Civils de Lyon; Lyon, France
- Univ Lyon, Univ Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène; 69008 Lyon, France
| | - Laurence Faivre
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté; Dijon, France
- Centre de Génétique et Centre de Référence “Anomalies du Développement et Syndromes Malformatifs de l’Inter-région Est”, FHU TRANSLAD, CHU Dijon Bourgogne; Dijon, France
| | - Melanie Wong
- Department of Allergy and Immunology, The Children’s Hospital at Westmead; Sydney, New South Wales, Australia
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University; New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale INSERM U1163; Paris, France
- University of Paris Cité, Imagine Institute; Paris, France
| | - Janet Chou
- Division of Immunology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School; Boston, MA, United States
| | - Maud Tusseau
- Genetics Department, Lyon University Hospital; Lyon, France
- The International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL; Lyon, France
| | - Niki M. Moutsopoulos
- Oral Immunity and Infection Section, DIR, National Institute of Dental and Craniofacial Research (NIDCR), NIH; Bethesda, MD, USA
| | - Helen F. Matthews
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Cas Simons
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney; Sydney, NSW, Australia
- Murdoch Children’s Research Institute; Melbourne, Victoria, Australia
| | - Ryan J. Taft
- Institute for Molecular Bioscience, University of Queensland; St. Lucia, Queensland, Australia
- Illumina, Inc, San Diego; CA, USA
| | - Ariane Soldatos
- National Institute of Neurological Disorders and Stroke (NINDS), NIH; Bethesda, MD, USA
| | - Etienne Masle-Farquhar
- Immunogenomics Laboratory, Garvan Institute of Medical Research; Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Sydney; Sydney, NSW, Australia
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH; Bethesda, MD, USA
| | - Robert Brink
- St Vincent’s Clinical School, UNSW; Sydney, NSW, Australia
- B cell Biology Laboratory, Garvan Institute of Medical Research; Sydney, New South Wales, Australia
| | - Danielle L. Fink
- Neutrophil Monitoring Lab, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research; Frederick, MD, USA
| | - Heidi H. Kong
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH; Bethesda, MD, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, DIR, NIAID, NIH; Bethesda, MD 20892, USA
| | - Woo Sung Kim
- Chemotaxis Signal Section, Laboratory of Immunogenetics, DIR, NIAID, NIH; Rockville, MD, USA
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
| | - Kazuyuki Meguro
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Amy P. Hsu
- Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Jingwen Gu
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (OCICB), NIAID, NIH; Bethesda, MD, USA
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH; Bethesda, MD, USA
| | - Benito Banos-Pinero
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust; Oxford, Oxfordshire, UK
| | - Maria Slack
- Division of Allergy and Immunology, Department of Pediatrics, University of Rochester Medical Center and Golisano Children’s Hospital; Rochester, NY, USA
| | - Giampaolo Trivellin
- Section on Endocrinology & Genetics (SEGEN), DIR, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH; Bethesda, MD, USA
| | - Benoît Mazel
- Centre de Génétique et Centre de Référence “Anomalies du Développement et Syndromes Malformatifs de l’Inter-région Est”, FHU TRANSLAD, CHU Dijon Bourgogne; Dijon, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, CHU Dijon Bourgogne; Dijon, France
| | - Maarja Soomann
- Division of Immunology, University Children’s Hospital Zurich; Zurich, Switzerland
| | - Samuel Li
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (OCICB), NIAID, NIH; Bethesda, MD, USA
| | - Val J. Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University; West Lafayette, IN, USA
| | - Constantine A. Stratakis
- Section on Endocrinology & Genetics (SEGEN), DIR, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH; Bethesda, MD, USA
| | | | - Ange-Line Bruel
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté; Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU TRANSLAD; CHU Dijon Bourgogne, Dijon, France
| | - Marita Lipsanen-Nyman
- Children’s Hospital, University of Helsinki and Helsinki University Hospital; Helsinki, Finland
| | - Paul Saultier
- APHM, La Timone Children’s Hospital, Department of Pediatric Hematology, Immunology, and Oncology; Marseille, France
- Aix Marseille University, INSERM; INRAe, C2VN, Marseille, France
| | - Rashmi Jain
- Clinical Immunology, Oxford University Hospitals NHS Foundation Trust; Oxford, OX3 9DU, UK
| | - Daphne Lehalle
- AP-HP Sorbonne Université, UF de Génétique Clinique, Centre de Référence Maladies Rares des anomalies du développement et syndromes malformatifs, Hôpital Trousseau; Paris, France
| | - Daniel Torres
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Kathleen E. Sullivan
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Sébastien Barbarot
- Nantes Université, Department of Dermatology, CHU Nantes, INRAE; UMR 1280, PhAN, F-44000 Nantes, France
| | - Axel Neu
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
| | - Yannis Duffourd
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté; Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU TRANSLAD; CHU Dijon Bourgogne, Dijon, France
| | - Morgan Similuk
- Centralized Sequencing Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | | | | | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale; F-44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax; F-44000 Nantes, France
| | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, DIR, NIAID, NIH; Rockville, MD, USA
| | - Raif S. Geha
- Division of Immunology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School; Boston, MA, United States
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University; New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale INSERM U1163; Paris, France
- University of Paris Cité, Imagine Institute; Paris, France
- Howard Hughes Medical Institute; New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children; Paris, France
| | - Outi M. Makitie
- Folkhälsan Research Center, Genetics Research Program; Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital; Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki; Helsinki, Finland
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
| | - Patrick Edery
- Service de Génétique, Hospices Civils de Lyon; Lyon, France
- Centre de Recherche en Neurosciences de Lyon, Inserm U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1; Lyon, France
| | - John Christodoulou
- Murdoch Children’s Research Institute; Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne; Melbourne, Australia
- Specialty of Child & Adolescent Health, University of Sydney; Sydney, Australia
| | - Ronald N. Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Christopher C. Goodnow
- Immunogenomics Laboratory, Garvan Institute of Medical Research; Sydney, New South Wales, Australia
- Cellular Genomics Futures Institute; Sydney, NSW, Australia
| | - Thomas P. Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University; New York, NY, USA
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics; Stockholm, Sweden
| | - Daniel D. Billadeau
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic; Rochester, MN, USA
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale; F-44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax; F-44000 Nantes, France
| | - Vladimir L. Katanaev
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva; 1211 Geneva, Switzerland
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University; 690090 Vladivostok, Russia
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Michael J. Lenardo
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Helen C. Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| |
Collapse
|
6
|
Todd TD, Vithani N, Singh S, Bowman GR, Blumer KJ, Soranno A. Stabilization of interdomain closure by a G protein inhibitor. Proc Natl Acad Sci U S A 2024; 121:e2311711121. [PMID: 39196624 PMCID: PMC11388362 DOI: 10.1073/pnas.2311711121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/29/2024] [Indexed: 08/29/2024] Open
Abstract
Inhibitors of heterotrimeric G proteins are being developed as therapeutic agents. Epitomizing this approach are YM-254890 (YM) and FR900359 (FR), which are efficacious in models of thrombosis, hypertension, obesity, asthma, uveal melanoma, and pain, and under investigation as an FR-antibody conjugate in uveal melanoma clinical trials. YM/FR inhibits the Gq/11/14 subfamily by interfering with GDP (guanosine diphosphate) release, but by an unknown biophysical mechanism. Here, we show that YM inhibits GDP release by stabilizing closure between the Ras-like and α-helical domains of a Gα subunit. Nucleotide-free Gα adopts an ensemble of open and closed configurations, as indicated by single-molecule Förster resonance energy transfer and molecular dynamics simulations, whereas GDP and GTPγS (guanosine 5'-O-[gamma-thio]triphosphate) stabilize distinct closed configurations. YM stabilizes closure in the presence or absence of GDP without requiring an intact interdomain interface. All three classes of mammalian Gα subunits that are insensitive to YM/FR possess homologous but degenerate YM/FR binding sites, yet can be inhibited upon transplantation of the YM/FR binding site of Gq. Novel YM/FR analogs tailored to each class of G protein will provide powerful new tools for therapeutic investigation.
Collapse
Affiliation(s)
- Tyson D Todd
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO 63110
| | - Neha Vithani
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, Saint Louis, MO 63110
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059
| | - Sukrit Singh
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, Saint Louis, MO 63110
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, Saint Louis, MO 63110
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059
| | - Kendall J Blumer
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO 63110
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, Saint Louis, MO 63110
- Department of Biochemistry and Biophysics, Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO 63130
| |
Collapse
|
7
|
Janicot R, Garcia-Marcos M. Get Ready to Sharpen Your Tools: A Short Guide to Heterotrimeric G Protein Activity Biosensors. Mol Pharmacol 2024; 106:129-144. [PMID: 38991745 PMCID: PMC11331509 DOI: 10.1124/molpharm.124.000949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest class of transmembrane receptors encoded in the human genome, and they initiate cellular responses triggered by a plethora of extracellular stimuli ranging from neurotransmitters and hormones to photons. Upon stimulation, GPCRs activate heterotrimeric G proteins (Gαβγ) in the cytoplasm, which then convey signals to their effectors to elicit cellular responses. Given the broad biological and biomedical relevance of GPCRs and G proteins in physiology and disease, there is great interest in developing and optimizing approaches to measure their signaling activity with high accuracy and across experimental systems pertinent to their functions in cellular communication. This review provides a historical perspective on approaches to measure GPCR-G protein signaling, from quantification of second messengers and other indirect readouts of activity to biosensors that directly detect the activity of G proteins. The latter is the focus of a more detailed overview of the evolution of design principles for various optical biosensors of G protein activity with different experimental capabilities. We will highlight advantages and limitations of biosensors that detect different G protein activation hallmarks, like dissociation of Gα and Gβγ or nucleotide exchange on Gα, as well as their suitability to detect signaling mediated by endogenous versus exogenous signaling components or in physiologically relevant systems like primary cells. Overall, this review intends to provide an assessment of the state-of-the-art for biosensors that directly measure G protein activity to allow readers to make informed decisions on the selection and implementation of currently available tools. SIGNIFICANCE STATEMENT: G protein activity biosensors have become essential and widespread tools to assess GPCR signaling and pharmacology. Yet, investigators face the challenge of choosing from a growing list of G protein activity biosensors. This review provides an overview of the features and capabilities of different optical biosensor designs for the direct detection of G protein activity in cells, with the aim of facilitating the rational selection of systems that align with the specific scientific questions and needs of investigators.
Collapse
Affiliation(s)
- Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine (R.J., M.G.-M.) and Department of Biology, College of Arts & Sciences (M.G.-M.), Boston University, Boston, Massachusetts
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine (R.J., M.G.-M.) and Department of Biology, College of Arts & Sciences (M.G.-M.), Boston University, Boston, Massachusetts
| |
Collapse
|
8
|
Knight KM, Krumm BE, Kapolka NJ, Ludlam WG, Cui M, Mani S, Prytkova I, Obarow EG, Lefevre TJ, Wei W, Ma N, Huang XP, Fay JF, Vaidehi N, Smrcka AV, Slesinger PA, Logothetis DE, Martemyanov KA, Roth BL, Dohlman HG. A neurodevelopmental disorder mutation locks G proteins in the transitory pre-activated state. Nat Commun 2024; 15:6643. [PMID: 39103320 PMCID: PMC11300612 DOI: 10.1038/s41467-024-50964-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
Many neurotransmitter receptors activate G proteins through exchange of GDP for GTP. The intermediate nucleotide-free state has eluded characterization, due largely to its inherent instability. Here we characterize a G protein variant associated with a rare neurological disorder in humans. GαoK46E has a charge reversal that clashes with the phosphate groups of GDP and GTP. As anticipated, the purified protein binds poorly to guanine nucleotides yet retains wild-type affinity for G protein βγ subunits. In cells with physiological concentrations of nucleotide, GαoK46E forms a stable complex with receptors and Gβγ, impeding effector activation. Further, we demonstrate that the mutant can be easily purified in complex with dopamine-bound D2 receptors, and use cryo-electron microscopy to determine the structure, including both domains of Gαo, without nucleotide or stabilizing nanobodies. These findings reveal the molecular basis for the first committed step of G protein activation, establish a mechanistic basis for a neurological disorder, provide a simplified strategy to determine receptor-G protein structures, and a method to detect high affinity agonist binding in cells.
Collapse
Affiliation(s)
- Kevin M Knight
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Brian E Krumm
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas J Kapolka
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - W Grant Ludlam
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Meng Cui
- Department of Pharmaceutical Sciences Northeastern University, Boston, MA, USA
| | - Sepehr Mani
- Department of Pharmaceutical Sciences Northeastern University, Boston, MA, USA
| | - Iya Prytkova
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elizabeth G Obarow
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tyler J Lefevre
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Wenyuan Wei
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan F Fay
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Alan V Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Paul A Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Kirill A Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Henrik G Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
McDuffie EL, Panettieri RA, Scott CP. G 12/13 signaling in asthma. Respir Res 2024; 25:295. [PMID: 39095798 PMCID: PMC11297630 DOI: 10.1186/s12931-024-02920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
Shortening of airway smooth muscle and bronchoconstriction are pathognomonic for asthma. Airway shortening occurs through calcium-dependent activation of myosin light chain kinase, and RhoA-dependent calcium sensitization, which inhibits myosin light chain phosphatase. The mechanism through which pro-contractile stimuli activate calcium sensitization is poorly understood. Our review of the literature suggests that pro-contractile G protein coupled receptors likely signal through G12/13 to activate RhoA and mediate calcium sensitization. This hypothesis is consistent with the effects of pro-contractile agonists on RhoA and Rho kinase activation, actin polymerization and myosin light chain phosphorylation. Recognizing the likely role of G12/13 signaling in the pathophysiology of asthma rationalizes the effects of pro-contractile stimuli on airway hyperresponsiveness, immune activation and airway remodeling, and suggests new approaches for asthma treatment.
Collapse
Affiliation(s)
- Elizabeth L McDuffie
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, NJ, USA
| | - Charles P Scott
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Anazia K, Koenekoop L, Ferré G, Petracco E, Gutiérrez-de-Terán H, Eddy MT. Interaction networks within disease-associated Gα S variants characterized by an integrative biophysical approach. J Biol Chem 2024; 300:107497. [PMID: 38925329 PMCID: PMC11325797 DOI: 10.1016/j.jbc.2024.107497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Activation of G proteins through nucleotide exchange initiates intracellular signaling cascades essential for life processes. Under normal conditions, nucleotide exchange is regulated by the formation of G protein-G protein-coupled receptor complexes. Single point mutations in the Gα subunit of G proteins bypass this interaction, leading to loss of function or constitutive gain of function, which is closely linked with the onset of multiple diseases. Despite the recognized significance of Gα mutations in disease pathology, structural information for most variants is lacking, potentially due to inherent protein dynamics that pose challenges for crystallography. To address this, we leveraged an integrative spectroscopic and computational approach to structurally characterize seven of the most frequently observed and clinically relevant mutations in the stimulatory Gα subunit, GαS. A previously proposed allosteric model of Gα activation linked structural changes in the nucleotide-binding pocket with functionally important changes in interactions between switch regions. We investigated this allosteric connection in GαS by integrating data from variable temperature CD spectroscopy, which measured changes in global protein structure and stability, and molecular dynamics simulations, which observed changes in interaction networks between GαS switch regions. Additionally, saturation-transfer difference NMR spectroscopy was applied to observe changes in nucleotide interactions with residues within the nucleotide binding site. These data have enabled testing of predictions regarding how mutations in GαS result in loss or gain of function and evaluation of proposed structural mechanisms. The integration of experimental and computational data allowed us to propose a more nuanced classification of mechanisms underlying GαS gain-of-function and loss-of-function mutations.
Collapse
Affiliation(s)
- Kara Anazia
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Lucien Koenekoop
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Guillaume Ferré
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Enzo Petracco
- Department of Chemistry, University of Florida, Gainesville, Florida, USA; URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, France
| | | | - Matthew T Eddy
- Department of Chemistry, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
11
|
Roy AJ, Leipprandt JR, Patterson JR, Stoll AC, Kemp CJ, Oula ZTD, Mola T, Batista AR, Sortwell CE, Sena-Esteves M, Neubig RR. AAV9-Mediated Intrastriatal Delivery of GNAO1 Reduces Hyperlocomotion in Gnao1 Heterozygous R209H Mutant Mice. J Pharmacol Exp Ther 2024; 390:250-259. [PMID: 38866563 DOI: 10.1124/jpet.124.002117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Mutations in the GNAO1 gene, which encodes the abundant brain G-protein Gα o, result in neurologic disorders characterized by developmental delay, epilepsy, and movement abnormalities. There are over 50 mutant alleles associated with GNAO1 disorders; the R209H mutation results in dystonia, choreoathetosis, and developmental delay without seizures. Mice heterozygous for the human mutant allele (Gnao1 +/R209H) exhibit hyperactivity in open field tests but no seizures. We developed self-complementary adeno-associated virus serotype 9 (scAAV9) vectors expressing two splice variants of human GNAO1 Gα o isoforms 1 (GoA, GNAO1.1) and 2 (GoB, GNAO1.2). Bilateral intrastriatal injections of either scAAV9-GNAO1.1 or scAAV9-GNAO1.2 significantly reversed mutation-associated hyperactivity in open field tests. GNAO1 overexpression did not increase seizure susceptibility, a potential side effect of GNAO1 vector treatment. This represents the first report of successful preclinical gene therapy for GNAO1 encephalopathy applied in vivo. Further studies are needed to uncover the molecular mechanism that results in behavior improvements after scAAV9-mediated Gα o expression and to refine the vector design. SIGNIFICANCE STATEMENT: GNAO1 mutations cause a spectrum of developmental, epilepsy, and movement disorders. Here we show that intrastriatal delivery of scAAV9-GNAO1 to express the wild-type Gα o protein reduces the hyperactivity of the Gnao1 +/R209H mouse model, which carries one of the most common movement disorder-associated mutations. This is the first report of a gene therapy for GNAO1 encephalopathy applied in vivo on a patient-allele model.
Collapse
Affiliation(s)
- Alex J Roy
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Jeffrey R Leipprandt
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Joseph R Patterson
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Anna C Stoll
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Christopher J Kemp
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Zaipo-Tcheisian D Oula
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Tyler Mola
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Ana R Batista
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Caryl E Sortwell
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Miguel Sena-Esteves
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| | - Richard R Neubig
- Department of Pharmacology and Toxicology (A.J.R., J.R.L., R.R.N.), Department of Microbiology and Molecular Genetics (A.J.R.), and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; Department of Translational Neuroscience (J.R.P., A.C.S., C.J.K., C.E.S.), Michigan State University, Grand Rapids, Michigan; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan (C.E.S.); and Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research (Z.-T.D.O., T.M., A.R.B., M.S.-E.) and Department of Neurology (Z.-T.D.O., T.M., A.R.B., M.S.-E.), UMass Chan Medical School, Worcester, Massachusetts
| |
Collapse
|
12
|
Wright SC, Avet C, Gaitonde SA, Muneta-Arrate I, Le Gouill C, Hogue M, Breton B, Koutsilieri S, Diez-Alarcia R, Héroux M, Lauschke VM, Bouvier M. Conformation- and activation-based BRET sensors differentially report on GPCR-G protein coupling. Sci Signal 2024; 17:eadi4747. [PMID: 38889226 DOI: 10.1126/scisignal.adi4747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
G protein-coupled receptors (GPCRs) regulate cellular signaling processes by coupling to diverse combinations of heterotrimeric G proteins composed of Gα, Gβ, and Gγ subunits. Biosensors based on bioluminescence resonance energy transfer (BRET) have advanced our understanding of GPCR functional selectivity. Some BRET biosensors monitor ligand-induced conformational changes in the receptor or G proteins, whereas others monitor the recruitment of downstream effectors to sites of G protein activation. Here, we compared the ability of conformation-and activation-based BRET biosensors to assess the coupling of various class A and B GPCRs to specific Gα proteins in cultured cells. These GPCRs included serotonin 5-HT2A and 5-HT7 receptors, the GLP-1 receptor (GLP-1R), and the M3 muscarinic receptor. We observed different signaling profiles between the two types of sensors, highlighting how data interpretation could be affected by the nature of the biosensor. We also found that the identity of the Gβγ subunits used in the assay could differentially influence the selectivity of a receptor toward Gα subtypes, emphasizing the importance of the receptor-Gβγ pairing in determining Gα coupling specificity. Last, the addition of epitope tags to the receptor could affect stoichiometry and coupling selectivity and yield artifactual findings. These results highlight the need for careful sensor selection and experimental design when probing GPCR-G protein coupling.
Collapse
Affiliation(s)
- Shane C Wright
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Charlotte Avet
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Supriya A Gaitonde
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Itziar Muneta-Arrate
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, 28029 Madrid, Spain
| | - Christian Le Gouill
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Mireille Hogue
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Billy Breton
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Stefania Koutsilieri
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, 28029 Madrid, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Madeleine Héroux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
13
|
Falsaperla R, Sortino V, Marino SD, Collotta AD, Gammeri C, Sipala FM, Volti GL, Ruggieri M, Ronsisvalle S. Molecular Dynamic Simulations to Determine Individualized Therapy: Tetrabenazine for the GNAO1 Encephalopathy E246K Variant. Mol Diagn Ther 2024; 28:329-337. [PMID: 38581611 DOI: 10.1007/s40291-024-00706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2024] [Indexed: 04/08/2024]
Abstract
INTRODUCTION GNAO1 encephalopathy is characterized by severe hypotonia, psychomotor retardation, epilepsy, and movement disorders. Genetic variations in GNAO1 have been linked to neurological symptoms including movement disorders like dystonia. The correlation between the E246K mutation in the Gα subunit and aberrant signal transduction of G proteins has been established but no data are reported regarding the efficacy of medical treatment with tetrabenazine. METHODS Molecular modeling studies were performed to elucidate the molecular mechanisms underlying this mutation. We developed drug efficacy models using molecular dynamic simulations that replicated the behavior of wild-type and mutated proteins in the presence or absence of ligands. RESULTS AND DISCUSSION We demonstrated that the absence of the mutation leads to normal signal transduction upon receptor activation by the endogenous ligand, but not in the presence of tetrabenazine. In contrast, the presence of the mutation resulted in abnormal signal transduction in the presence of the endogenous ligand, which was corrected by the drug tetrabenazine. Tetrabenazine was identified as a promising therapeutic option for pediatric patients suffering from encephalopathy due to an E246K mutation in the GNAO1 gene validated through molecular dynamics. This is a potential first example of the use of this technique in a rare neurological pediatric disease.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care Unit and Neonatal Accompaniment Unit, Azienda Ospedaliero-Universitaria Policlinico "Rodolico-San Marco", San Marco Hospital, University of Catania, Catania, Italy.
- Unit of Clinical Paediatrics, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco", San Marco Hospital, Catania, Italy.
- Pediatric Clinic, University of Ferrara, Ferrara, Italy.
| | - Vincenzo Sortino
- Unit of Clinical Paediatrics, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco", San Marco Hospital, Catania, Italy
| | - Simona Domenica Marino
- Unit of Clinical Paediatrics, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco", San Marco Hospital, Catania, Italy
| | - Ausilia Desiree Collotta
- Unit of Clinical Paediatrics, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco", San Marco Hospital, Catania, Italy
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Carmela Gammeri
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Federica Maria Sipala
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 87, 95125, Catania, Italy
| | - Martino Ruggieri
- Unit of Clinical Pediatrics, Unit of Rare Diseases, AOU "Policlinico", PO "G. Rodolico", University of Catania, Catania, Italy
| | - Simone Ronsisvalle
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
14
|
Lefevre TJ, Wei W, Mukhaleva E, Meda Venkata SP, Chandan NR, Abraham S, Li Y, Dessauer CW, Vaidehi N, Smrcka AV. Stabilization of interdomain interactions in G protein α subunits as a determinant of Gα i subtype signaling specificity. J Biol Chem 2024; 300:107211. [PMID: 38522511 PMCID: PMC11066577 DOI: 10.1016/j.jbc.2024.107211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
Highly homologous members of the Gαi family, Gαi1-3, have distinct tissue distributions and physiological functions, yet their biochemical and functional properties are very similar. We recently identified PDZ-RhoGEF (PRG) as a novel Gαi1 effector that is poorly activated by Gαi2. In a proteomic proximity labeling screen we observed a strong preference for Gαi1 relative to Gαi2 with respect to engagement of a broad range of potential targets. We investigated the mechanistic basis for this selectivity using PRG as a representative target. Substitution of either the helical domain (HD) from Gαi1 into Gαi2 or substitution of a single amino acid, A230 in Gαi2 with the corresponding D in Gαi1, largely rescues PRG activation and interactions with other potential Gαi targets. Molecular dynamics simulations combined with Bayesian network models revealed that in the GTP bound state, separation at the HD-Ras-like domain (RLD) interface is more pronounced in Gαi2 than Gαi1. Mutation of A230 to D in Gαi2 stabilizes HD-RLD interactions via ionic interactions with R145 in the HD which in turn modify the conformation of Switch III. These data support a model where D229 in Gαi1 interacts with R144 and stabilizes a network of interactions between HD and RLD to promote protein target recognition. The corresponding A230 in Gαi2 is unable to stabilize this network leading to an overall lower efficacy with respect to target interactions. This study reveals distinct mechanistic properties that could underly differential biological and physiological consequences of activation of Gαi1 or Gαi2 by G protein-coupled receptors.
Collapse
Affiliation(s)
- Tyler J Lefevre
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Wenyuan Wei
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Elizaveta Mukhaleva
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | | | - Naincy R Chandan
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Genentech, South San Francisco, California, USA
| | - Saji Abraham
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yong Li
- Department of Integrative Biology and Pharmacology McGovern Medical School, UTHealth, Houston, Texas, USA
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology McGovern Medical School, UTHealth, Houston, Texas, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Alan V Smrcka
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
15
|
Prakash A, Li Z, Chirasani VR, Rasquinha JA, Valentin NH, Hubbard GB, Yin G, Dohlman HG, Campbell SL. Molecular and Functional Profiling of Gαi as an Intracellular pH Sensor. RESEARCH SQUARE 2024:rs.3.rs-4203924. [PMID: 38746411 PMCID: PMC11092800 DOI: 10.21203/rs.3.rs-4203924/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Heterotrimeric G proteins (Gα, Gβ and Gγ) act downstream of G-protein-coupled receptors (GPCRs) to mediate signaling pathways that regulate various physiological processes and human disease conditions. Previously, human Gαi and its yeast homolog Gpa1 have been reported to function as intracellular pH sensors, yet the pH sensing capabilities of Gαi and the underlying mechanism remain to be established. Herein, we identify a pH sensing network within Gαi, and evaluate the consequences of pH modulation on the structure and stability of the G-protein. We find that changes over the physiological pH range significantly alter the structure and stability of Gαi-GDP, with the protein undergoing a disorder-to-order transition as the pH is raised from 6.8 to 7.5. Further, we find that modulation of intracellular pH in HEK293 cells regulates Gαi-Gβγ release. Identification of key residues in the pH-sensing network allowed the generation of low pH mimetics that attenuate Gαi-Gβγ release. Our findings, taken together, indicate that pH-dependent structural changes in Gαi alter the agonist-mediated Gβγ dissociation necessary for proper signaling.
Collapse
Affiliation(s)
- Ajit Prakash
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zijian Li
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Venkata R. Chirasani
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Juhi A. Rasquinha
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie H. Valentin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Garrett B. Hubbard
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Henrik G. Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sharon L. Campbell
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
16
|
Benedetti MC, D'andrea T, Colantoni A, Silachev D, de Turris V, Boussadia Z, Babenko VA, Volovikov EA, Belikova L, Bogomazova AN, Pepponi R, Whye D, Buttermore ED, Tartaglia GG, Lagarkova MA, Katanaev VL, Musayev I, Martinelli S, Fucile S, Rosa A. Cortical neurons obtained from patient-derived iPSCs with GNAO1 p.G203R variant show altered differentiation and functional properties. Heliyon 2024; 10:e26656. [PMID: 38434323 PMCID: PMC10907651 DOI: 10.1016/j.heliyon.2024.e26656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Pathogenic variants in the GNAO1 gene, encoding the alpha subunit of an inhibitory heterotrimeric guanine nucleotide-binding protein (Go) highly expressed in the mammalian brain, have been linked to encephalopathy characterized by different combinations of neurological symptoms, including developmental delay, hypotonia, epilepsy and hyperkinetic movement disorder with life-threatening paroxysmal exacerbations. Currently, there are only symptomatic treatments, and little is known about the pathophysiology of GNAO1-related disorders. Here, we report the characterization of a new in vitro model system based on patient-derived induced pluripotent stem cells (hiPSCs) carrying the recurrent p.G203R amino acid substitution in Gαo, and a CRISPR-Cas9-genetically corrected isogenic control line. RNA-Seq analysis highlighted aberrant cell fate commitment in neuronal progenitor cells carrying the p.G203R pathogenic variant. Upon differentiation into cortical neurons, patients' cells showed reduced expression of early neural genes and increased expression of astrocyte markers, as well as premature and defective differentiation processes leading to aberrant formation of neuronal rosettes. Of note, comparable defects in gene expression and in the morphology of neural rosettes were observed in hiPSCs from an unrelated individual harboring the same GNAO1 variant. Functional characterization showed lower basal intracellular free calcium concentration ([Ca2+]i), reduced frequency of spontaneous activity, and a smaller response to several neurotransmitters in 40- and 50-days differentiated p.G203R neurons compared to control cells. These findings suggest that the GNAO1 pathogenic variant causes a neurodevelopmental phenotype characterized by aberrant differentiation of both neuronal and glial populations leading to a significant alteration of neuronal communication and signal transduction.
Collapse
Affiliation(s)
- Maria Cristina Benedetti
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Tiziano D'andrea
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Alessio Colantoni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Denis Silachev
- School of Medicine and Life Sciences, Far Eastern Federal University, 690090, Vladivostok, Russia
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992, Moscow, Russia
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva, 1211, Geneva, Switzerland
| | - Valeria de Turris
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Zaira Boussadia
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina A. Babenko
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992, Moscow, Russia
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva, 1211, Geneva, Switzerland
| | - Egor A. Volovikov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
| | - Lilia Belikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
| | - Alexandra N. Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
| | - Rita Pepponi
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Dosh Whye
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center and F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, MA, USA
| | - Elizabeth D. Buttermore
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center and F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, MA, USA
| | - Gian Gaetano Tartaglia
- Center for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Maria A. Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
| | - Vladimir L. Katanaev
- School of Medicine and Life Sciences, Far Eastern Federal University, 690090, Vladivostok, Russia
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva, 1211, Geneva, Switzerland
| | | | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sergio Fucile
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Alessandro Rosa
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| |
Collapse
|
17
|
Janicot R, Maziarz M, Park JC, Zhao J, Luebbers A, Green E, Philibert CE, Zhang H, Layne MD, Wu JC, Garcia-Marcos M. Direct interrogation of context-dependent GPCR activity with a universal biosensor platform. Cell 2024; 187:1527-1546.e25. [PMID: 38412860 PMCID: PMC10947893 DOI: 10.1016/j.cell.2024.01.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/04/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of druggable proteins encoded in the human genome, but progress in understanding and targeting them is hindered by the lack of tools to reliably measure their nuanced behavior in physiologically relevant contexts. Here, we developed a collection of compact ONE vector G-protein Optical (ONE-GO) biosensor constructs as a scalable platform that can be conveniently deployed to measure G-protein activation by virtually any GPCR with high fidelity even when expressed endogenously in primary cells. By characterizing dozens of GPCRs across many cell types like primary cardiovascular cells or neurons, we revealed insights into the molecular basis for G-protein coupling selectivity of GPCRs, pharmacogenomic profiles of anti-psychotics on naturally occurring GPCR variants, and G-protein subtype signaling bias by endogenous GPCRs depending on cell type or upon inducing disease-like states. In summary, this open-source platform makes the direct interrogation of context-dependent GPCR activity broadly accessible.
Collapse
Affiliation(s)
- Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Marcin Maziarz
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jong-Chan Park
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jingyi Zhao
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Alex Luebbers
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Elena Green
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Clementine Eva Philibert
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Hao Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mathew D Layne
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Anazia K, Koenekoop L, Ferré G, Petracco E, Gutiérrez-de-Teran H, Eddy MT. Visualizing the impact of disease-associated mutations on G protein-nucleotide interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578006. [PMID: 38352316 PMCID: PMC10862895 DOI: 10.1101/2024.01.30.578006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Activation of G proteins stimulates ubiquitous intracellular signaling cascades essential for life processes. Under normal physiological conditions, nucleotide exchange is initiated upon the formation of complexes between a G protein and G protein-coupled receptor (GPCR), which facilitates exchange of bound GDP for GTP, subsequently dissociating the trimeric G protein into its Gα and Gβγ subunits. However, single point mutations in Gα circumvent nucleotide exchange regulated by GPCR-G protein interactions, leading to either loss-of-function or constitutive gain-of-function. Mutations in several Gα subtypes are closely linked to the development of multiple diseases, including several intractable cancers. We leveraged an integrative spectroscopic and computational approach to investigate the mechanisms by which seven of the most frequently observed clinically-relevant mutations in the α subunit of the stimulatory G protein result in functional changes. Variable temperature circular dichroism (CD) spectroscopy showed a bimodal distribution of thermal melting temperatures across all GαS variants. Modeling from molecular dynamics (MD) simulations established a correlation between observed thermal melting temperatures and structural changes caused by the mutations. Concurrently, saturation-transfer difference NMR (STD-NMR) highlighted variations in the interactions of GαS variants with bound nucleotides. MD simulations indicated that changes in local interactions within the nucleotide-binding pocket did not consistently align with global structural changes. This collective evidence suggests a multifaceted energy landscape, wherein each mutation may introduce distinct perturbations to the nucleotide-binding site and protein-protein interaction sites. Consequently, it underscores the importance of tailoring therapeutic strategies to address the unique challenges posed by individual mutations.
Collapse
Affiliation(s)
- Kara Anazia
- Department of Chemistry; University of Florida; Gainesville, FL, 32611; USA
| | - Lucien Koenekoop
- Department of Cell and Molecular Biology, Uppsala University; Uppsala, 75105; Sweden
| | - Guillaume Ferré
- Department of Chemistry; University of Florida; Gainesville, FL, 32611; USA
- Present address: Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Enzo Petracco
- Department of Chemistry; University of Florida; Gainesville, FL, 32611; USA
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, France
| | | | - Matthew T. Eddy
- Department of Chemistry; University of Florida; Gainesville, FL, 32611; USA
| |
Collapse
|
19
|
Li H, Sun X, Cui W, Xu M, Dong J, Ekundayo BE, Ni D, Rao Z, Guo L, Stahlberg H, Yuan S, Vogel H. Computational drug development for membrane protein targets. Nat Biotechnol 2024; 42:229-242. [PMID: 38361054 DOI: 10.1038/s41587-023-01987-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/13/2023] [Indexed: 02/17/2024]
Abstract
The application of computational biology in drug development for membrane protein targets has experienced a boost from recent developments in deep learning-driven structure prediction, increased speed and resolution of structure elucidation, machine learning structure-based design and the evaluation of big data. Recent protein structure predictions based on machine learning tools have delivered surprisingly reliable results for water-soluble and membrane proteins but have limitations for development of drugs that target membrane proteins. Structural transitions of membrane proteins have a central role during transmembrane signaling and are often influenced by therapeutic compounds. Resolving the structural and functional basis of dynamic transmembrane signaling networks, especially within the native membrane or cellular environment, remains a central challenge for drug development. Tackling this challenge will require an interplay between experimental and computational tools, such as super-resolution optical microscopy for quantification of the molecular interactions of cellular signaling networks and their modulation by potential drugs, cryo-electron microscopy for determination of the structural transitions of proteins in native cell membranes and entire cells, and computational tools for data analysis and prediction of the structure and function of cellular signaling networks, as well as generation of promising drug candidates.
Collapse
Affiliation(s)
- Haijian Li
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Xiaolin Sun
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Wenqiang Cui
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Marc Xu
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junlin Dong
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Babatunde Edukpe Ekundayo
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Dongchun Ni
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Zhili Rao
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Liwei Guo
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Shuguang Yuan
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China.
| | - Horst Vogel
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China.
- Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
20
|
Lao-Peregrin C, Xiang G, Kim J, Srivastava I, Fall AB, Gerhard DM, Kohtala P, Kim D, Song M, Garcia-Marcos M, Levitz J, Lee FS. Synaptic plasticity via receptor tyrosine kinase/G-protein-coupled receptor crosstalk. Cell Rep 2024; 43:113595. [PMID: 38117654 PMCID: PMC10844890 DOI: 10.1016/j.celrep.2023.113595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023] Open
Abstract
Cellular signaling involves a large repertoire of membrane receptors operating in overlapping spatiotemporal regimes and targeting many common intracellular effectors. However, both the molecular mechanisms and the physiological roles of crosstalk between receptors, especially those from different superfamilies, are poorly understood. We find that the receptor tyrosine kinase (RTK) TrkB and the G-protein-coupled receptor (GPCR) metabotropic glutamate receptor 5 (mGluR5) together mediate hippocampal synaptic plasticity in response to brain-derived neurotrophic factor (BDNF). Activated TrkB enhances constitutive mGluR5 activity to initiate a mode switch that drives BDNF-dependent sustained, oscillatory Ca2+ signaling and enhanced MAP kinase activation. This crosstalk is mediated, in part, by synergy between Gβγ, released by TrkB, and Gαq-GTP, released by mGluR5, to enable physiologically relevant RTK/GPCR crosstalk.
Collapse
Affiliation(s)
| | - Guoqing Xiang
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jihye Kim
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Ipsit Srivastava
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alexandra B Fall
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Danielle M Gerhard
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Piia Kohtala
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Daegeon Kim
- Department of Life Sciences, Yeongnam University, Gyeongsan, Gyeongbuk 38451, South Korea
| | - Minseok Song
- Department of Life Sciences, Yeongnam University, Gyeongsan, Gyeongbuk 38451, South Korea
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Joshua Levitz
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA.
| |
Collapse
|
21
|
Janicot R, Maziarz M, Park JC, Luebbers A, Green E, Zhao J, Philibert C, Zhang H, Layne MD, Wu JC, Garcia-Marcos M. Direct interrogation of context-dependent GPCR activity with a universal biosensor platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573921. [PMID: 38260348 PMCID: PMC10802303 DOI: 10.1101/2024.01.02.573921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of druggable proteins in the human genome, but progress in understanding and targeting them is hindered by the lack of tools to reliably measure their nuanced behavior in physiologically-relevant contexts. Here, we developed a collection of compact ONE vector G-protein Optical (ONE-GO) biosensor constructs as a scalable platform that can be conveniently deployed to measure G-protein activation by virtually any GPCR with high fidelity even when expressed endogenously in primary cells. By characterizing dozens of GPCRs across many cell types like primary cardiovascular cells or neurons, we revealed new insights into the molecular basis for G-protein coupling selectivity of GPCRs, pharmacogenomic profiles of anti-psychotics on naturally-occurring GPCR variants, and G-protein subtype signaling bias by endogenous GPCRs depending on cell type or upon inducing disease-like states. In summary, this open-source platform makes the direct interrogation of context-dependent GPCR activity broadly accessible.
Collapse
Affiliation(s)
- Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Marcin Maziarz
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jong-Chan Park
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Alex Luebbers
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Elena Green
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jingyi Zhao
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Clementine Philibert
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Hao Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mathew D. Layne
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
- Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA
| |
Collapse
|
22
|
Knight KM, Obarow EG, Wei W, Mani S, Esteller MI, Cui M, Ma N, Martin SA, Brinson E, Hewitt N, Soden GM, Logothetis DE, Vaidehi N, Dohlman HG. Molecular annotation of G protein variants in a neurological disorder. Cell Rep 2023; 42:113462. [PMID: 37980565 PMCID: PMC10872635 DOI: 10.1016/j.celrep.2023.113462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/04/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023] Open
Abstract
Heterotrimeric G proteins transduce extracellular chemical messages to generate appropriate intracellular responses. Point mutations in GNAO1, encoding the G protein αo subunit, have been implicated in a pathogenic condition characterized by seizures, movement disorders, intellectual disability, and developmental delay (GNAO1 disorder). However, the effects of these mutations on G protein structure and function are unclear. Here, we report the effects of 55 mutations on Gαo conformation, thermostability, nucleotide binding, and hydrolysis, as well as interaction with Gβγ subunits, receptors, and effectors. Our effort reveals four functionally distinct groups of mutants, including one group that sequesters receptors and another that sequesters Gβγ, both acting in a genetically dominant manner. These findings provide a more comprehensive understanding of disease-relevant mutations and reveal that GNAO1 disorder is likely composed of multiple mechanistically distinct disorders that will likely require multiple therapeutic strategies.
Collapse
Affiliation(s)
- Kevin M Knight
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth G Obarow
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wenyuan Wei
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Sepehr Mani
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Maria I Esteller
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Sarah A Martin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emily Brinson
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie Hewitt
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gaby M Soden
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | - Henrik G Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
23
|
Pepanian A, Binbay FA, Roy S, Nubbemeyer B, Koley A, Rhodes CA, Ammer H, Pei D, Ghosh P, Imhof D. Bicyclic Peptide Library Screening for the Identification of Gαi Protein Modulators. J Med Chem 2023; 66:12396-12406. [PMID: 37587416 PMCID: PMC11000586 DOI: 10.1021/acs.jmedchem.3c00873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Noncanonical G protein activation and inactivation, particularly for the Gαi/s protein subfamilies, have long been a focus of chemical research. Combinatorial libraries were already effectively applied to identify modulators of the guanine-nucleotide exchange, as can be exemplified with peptides such as KB-752 and GPM-1c/d, the so-called guanine-nucleotide exchange modulators. In this study, we identified novel bicyclic peptides from a combinatorial library screening that show prominent properties as molecular switch-on/off modulators of Gαi signaling. Among the series of hits, the exceptional paradigm of GPM-3, a protein and state-specific bicyclic peptide, is the first chemically identified GAP (GTPase-activating protein) modulator with a high binding affinity for Gαi protein. Computational analyses identified and assessed the structure of the bicyclic peptides, novel ligand-protein interaction sites, and their subsequent impact on the nucleotide binding site. This approach can therefore lead the way for the development of efficient chemical biological probes targeting Gαi protein modulation within a cellular context.
Collapse
Affiliation(s)
- Anna Pepanian
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| | - Furkan Ayberk Binbay
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| | - Suchismita Roy
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, United States
| | - Britta Nubbemeyer
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| | - Amritendu Koley
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, Ohio 43210, United States
| | - Curran A Rhodes
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, Ohio 43210, United States
| | - Hermann Ammer
- Institute of Pharmacology Toxicology and Pharmacy, Veterinary Faculty, Ludwig Maximilian University of Munich, Königinstr. 16, Munich 80539, Germany
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, Ohio 43210, United States
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, United States
- Department of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| |
Collapse
|
24
|
Lao-Peregrin C, Xiang G, Kim J, Srivastava I, Fall AB, Gerhard DM, Kohtala P, Kim D, Song M, Garcia-Marcos M, Levitz J, Lee FS. Synaptic plasticity via receptor tyrosine kinase/G protein-coupled receptor crosstalk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555210. [PMID: 37693535 PMCID: PMC10491144 DOI: 10.1101/2023.08.28.555210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Cellular signaling involves a large repertoire of membrane receptors operating in overlapping spatiotemporal regimes and targeting many common intracellular effectors. However, both the molecular mechanisms and physiological roles of crosstalk between receptors, especially those from different superfamilies, are poorly understood. We find that the receptor tyrosine kinase (RTK), TrkB, and the G protein-coupled receptor (GPCR), metabotropic glutamate receptor 5 (mGluR5), together mediate a novel form of hippocampal synaptic plasticity in response to brain-derived neurotrophic factor (BDNF). Activated TrkB enhances constitutive mGluR5 activity to initiate a mode-switch that drives BDNF-dependent sustained, oscillatory Ca 2+ signaling and enhanced MAP kinase activation. This crosstalk is mediated, in part, by synergy between Gβγ, released by TrkB, and Gα q -GTP, released by mGluR5, to enable a previously unidentified form of physiologically relevant RTK/GPCR crosstalk.
Collapse
|
25
|
Sáez González M, Kloosterhuis K, van de Pol L, Baas F, Mikkers H. Phenotypic Diversity in GNAO1 Patients: A Comprehensive Overview of Variants and Phenotypes. Hum Mutat 2023; 2023:6628283. [PMID: 40225165 PMCID: PMC11919132 DOI: 10.1155/2023/6628283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/30/2023] [Indexed: 04/15/2025]
Abstract
GNAO1 disorder is a rare autosomal dominant neurodevelopmental syndrome that is clinically manifested by developmental delay, (early onset) epilepsy, and movement disorders. Clinical symptoms appear very heterogeneous in nature and severity, as well as the response of GNAO1 patients to available medication varies. Pathogenic GNAO1 variants have been found mainly scattered throughout the gene although certain mutation hotspots affecting the function of the encoded Gαo proteins exist. GNAO1 variants only partially explain the diverse phenotypic spectrum observed but full stratification has been hampered by the limited number of patients. The aim of this review was to generate a comprehensive overview of the germline variants in GNAO1 and provide insight into the phenotypic diversity of the GNAO1 disorder. We compiled a list of 398 GNAO1 germline variants. In addition, we provide the GNAO1 variants and associated phenotypes of 282 GNAO1 patients reported in case reports, whole genome sequencing studies, genetic variant databases, and 8 novel GNAO1 patients that were not described before. This has resulted in a list of 107 (likely) pathogenic GNAO1 variants. Available phenotypic data was utilized to quantitatively assess the genetic and phenotypic diversity of the GNAO1 disorder and discuss the outcomes. This inventory forms the basis for a GNAO1 variant database that will be updated continuously. Moreover, it will aid genetic diagnostics, medical decision-making, prognostication, and research on the mechanisms underlying the GNAO1 disorder.
Collapse
Affiliation(s)
- Maria Sáez González
- Department of Clinical Genetics, Leiden University Medical Centrum, Leiden, Netherlands
- Department of Cell & Chemical Biology, Leiden University Medical Centrum, Leiden, Netherlands
| | - Kes Kloosterhuis
- Department of Cell & Chemical Biology, Leiden University Medical Centrum, Leiden, Netherlands
| | - Laura van de Pol
- Department of Child Neurology, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Department of Child Neurology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Centrum, Leiden, Netherlands
| | - Harald Mikkers
- Department of Cell & Chemical Biology, Leiden University Medical Centrum, Leiden, Netherlands
| |
Collapse
|
26
|
Jang W, Lu S, Xu X, Wu G, Lambert NA. The role of G protein conformation in receptor-G protein selectivity. Nat Chem Biol 2023; 19:687-694. [PMID: 36646958 PMCID: PMC10238660 DOI: 10.1038/s41589-022-01231-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/22/2022] [Indexed: 01/17/2023]
Abstract
G protein-coupled receptors (GPCRs) selectively activate at least one of the four families of heterotrimeric G proteins, but the mechanism of coupling selectivity remains unclear. Structural studies emphasize structural complementarity of GPCRs and nucleotide-free G proteins, but selectivity is likely to be determined by transient intermediate-state complexes that exist before nucleotide release. Here we study coupling to nucleotide-decoupled G protein variants that can adopt conformations similar to receptor-bound G proteins without releasing nucleotide, and are therefore able to bypass intermediate-state complexes. We find that selectivity is degraded when nucleotide release is not required for GPCR-G protein complex formation, to the extent that most GPCRs interact with most nucleotide-decoupled G proteins. These findings demonstrate the absence of absolute structural incompatibility between noncognate receptor-G protein pairs, and are consistent with the hypothesis that transient intermediate states are partly responsible for coupling selectivity.
Collapse
Affiliation(s)
- Wonjo Jang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Sumin Lu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
27
|
Novelli M, Galosi S, Zorzi G, Martinelli S, Capuano A, Nardecchia F, Granata T, Pollini L, Di Rocco M, Marras CE, Nardocci N, Leuzzi V. GNAO1-related movement disorder: An update on phenomenology, clinical course, and response to treatments. Parkinsonism Relat Disord 2023:105405. [PMID: 37142469 DOI: 10.1016/j.parkreldis.2023.105405] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023]
Abstract
AIM To evaluate clinical phenotype and molecular findings of 157 cases with GNAO1 pathogenic or likely pathogenic variants delineating the clinical spectrum, course, and response to treatments. METHOD Clinical phenotype, genetic data, and pharmacological and surgical treatment history of 11 novel cases and 146 previously published patients were analyzed. RESULTS Complex hyperkinetic movement disorder (MD) characterizes 88% of GNAO1 patients. Severe hypotonia and prominent disturbance of postural control seem to be hallmarks in the early stages preceding the hyperkinetic MD. In a subgroup of patients, paroxysmal exacerbations became so severe as to require admission to intensive care units (ICU). Almost all patients had a good response to deep brain stimulation (DBS). Milder phenotypes with late-onset focal/segmental dystonia, mild to moderate intellectual disability, and other minor neurological signs (i.e., parkinsonism and myoclonus) are emerging. MRI, previously considered noncontributory to a diagnosis, can show recurrent findings (i.e., cerebral atrophy, myelination and/or basal ganglia abnormalities). Fifty-eight GNAO1 pathogenic variants, including missense changes and a few recurrent splice site defects, have been reported. Substitutions at residues Gly203, Arg209 and Glu246, together with the intronic c.724-8G > A change, account for more than 50% of cases. INTERPRETATION Infantile or childhood-onset complex hyperkinetic MD (chorea and/or dystonia) with or without paroxysmal exacerbations, associated hypotonia, and developmental disorders should prompt research for GNAO1 mutations. DBS effectively controls and prevents severe exacerbations and should be considered early in patients with specific GNAO1 variants and refractory MD. Prospective and natural history studies are necessary to define genotype-phenotype correlations further and clarify neurological outcomes.
Collapse
Affiliation(s)
- Maria Novelli
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University of Rome, Italy.
| | - Giovanna Zorzi
- Department of Pediatric Neuroscience, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Tiziana Granata
- Department of Pediatric Neuroscience, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Luca Pollini
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| | - Martina Di Rocco
- Department of Human Neuroscience, Sapienza University of Rome, Italy; Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Nardo Nardocci
- Department of Pediatric Neuroscience, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| |
Collapse
|
28
|
Lefevre TJ, Wei W, Mukhaleva E, Venkata SPM, Chandan NR, Abraham S, Li Y, Dessauer CW, Vaidehi N, Smrcka AV. Stabilization of Interdomain Interactions in G protein α i Subunits Determines Gα i Subtype Signaling Specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532072. [PMID: 37066214 PMCID: PMC10103935 DOI: 10.1101/2023.03.10.532072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Highly homologous members of the Gαi family, Gαi1-3, have distinct tissue distributions and physiological functions, yet the functional properties of these proteins with respect to GDP/GTP binding and regulation of adenylate cyclase are very similar. We recently identified PDZ-RhoGEF (PRG) as a novel Gαi1 effector, however, it is poorly activated by Gαi2. Here, in a proteomic proximity labeling screen we observed a strong preference for Gαi1 relative to Gαi2 with respect to engagement of a broad range of potential targets. We investigated the mechanistic basis for this selectivity using PRG as a representative target. Substitution of either the helical domain (HD) from Gαi1 into Gαi2 or substitution of a single amino acid, A230 in Gαi2 to the corresponding D in Gαi1, largely rescues PRG activation and interactions with other Gαi targets. Molecular dynamics simulations combined with Bayesian network models revealed that in the GTP bound state, dynamic separation at the HD-Ras-like domain (RLD) interface is prevalent in Gαi2 relative to Gαi1 and that mutation of A230s4h3.3 to D in Gαi2 stabilizes HD-RLD interactions through formation of an ionic interaction with R145HD.11 in the HD. These interactions in turn modify the conformation of Switch III. These data support a model where D229s4h3.3 in Gαi1 interacts with R144HD.11 stabilizes a network of interactions between HD and RLD to promote protein target recognition. The corresponding A230 in Gαi2 is unable to form the "ionic lock" to stabilize this network leading to an overall lower efficacy with respect to target interactions. This study reveals distinct mechanistic properties that could underly differential biological and physiological consequences of activation of Gαi1 or Gαi2 by GPCRs.
Collapse
Affiliation(s)
- Tyler J. Lefevre
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI
| | - Wenyuan Wei
- Department of Integrative Biology and Pharmacology McGovern Medical School, UTHealth, Houston, TX
| | - Elizaveta Mukhaleva
- Department of Integrative Biology and Pharmacology McGovern Medical School, UTHealth, Houston, TX
| | | | - Naincy R. Chandan
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
- Genentech, South San Francisco, CA
| | - Saji Abraham
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Yong Li
- Department of Integrative Biology and Pharmacology McGovern Medical School, UTHealth, Houston, TX
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology McGovern Medical School, UTHealth, Houston, TX
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA
| | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
29
|
Huang SK, Picard LP, Rahmatullah RSM, Pandey A, Van Eps N, Sunahara RK, Ernst OP, Sljoka A, Prosser RS. Mapping the conformational landscape of the stimulatory heterotrimeric G protein. Nat Struct Mol Biol 2023; 30:502-511. [PMID: 36997760 DOI: 10.1038/s41594-023-00957-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 02/24/2023] [Indexed: 04/01/2023]
Abstract
Heterotrimeric G proteins serve as membrane-associated signaling hubs, in concert with their cognate G-protein-coupled receptors. Fluorine nuclear magnetic resonance spectroscopy was employed to monitor the conformational equilibria of the human stimulatory G-protein α subunit (Gsα) alone, in the intact Gsαβ1γ2 heterotrimer or in complex with membrane-embedded human adenosine A2A receptor (A2AR). The results reveal a concerted equilibrium that is strongly affected by nucleotide and interactions with the βγ subunit, the lipid bilayer and A2AR. The α1 helix of Gsα exhibits significant intermediate timescale dynamics. The α4β6 loop and α5 helix undergo membrane/receptor interactions and order-disorder transitions respectively, associated with G-protein activation. The αN helix adopts a key functional state that serves as an allosteric conduit between the βγ subunit and receptor, while a significant fraction of the ensemble remains tethered to the membrane and receptor upon activation.
Collapse
Affiliation(s)
- Shuya Kate Huang
- Department of Chemistry, University of Toronto, UTM, Mississauga, Ontario, Canada
| | | | - Rima S M Rahmatullah
- Department of Chemistry, University of Toronto, UTM, Mississauga, Ontario, Canada
| | - Aditya Pandey
- Department of Chemistry, University of Toronto, UTM, Mississauga, Ontario, Canada
| | - Ned Van Eps
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Roger K Sunahara
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Adnan Sljoka
- RIKEN Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan.
| | - R Scott Prosser
- Department of Chemistry, University of Toronto, UTM, Mississauga, Ontario, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
30
|
Borges JI, Suster MS, Lymperopoulos A. Cardiac RGS Proteins in Human Heart Failure and Atrial Fibrillation: Focus on RGS4. Int J Mol Sci 2023; 24:6136. [PMID: 37047106 PMCID: PMC10147095 DOI: 10.3390/ijms24076136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
The regulator of G protein signaling (RGS) proteins are crucial for the termination of G protein signals elicited by G protein-coupled receptors (GPCRs). This superfamily of cell membrane receptors, by far the largest and most versatile in mammals, including humans, play pivotal roles in the regulation of cardiac function and homeostasis. Perturbations in both the activation and termination of their G protein-mediated signaling underlie numerous heart pathologies, including heart failure (HF) and atrial fibrillation (AFib). Therefore, RGS proteins play important roles in the pathophysiology of these two devasting cardiac diseases, and several of them could be targeted therapeutically. Although close to 40 human RGS proteins have been identified, each RGS protein seems to interact only with a specific set of G protein subunits and GPCR types/subtypes in any given tissue or cell type. Numerous in vitro and in vivo studies in animal models, and also in diseased human heart tissue obtained from transplantations or tissue banks, have provided substantial evidence of the roles various cardiomyocyte RGS proteins play in cardiac normal homeostasis as well as pathophysiology. One RGS protein in particular, RGS4, has been reported in what are now decades-old studies to be selectively upregulated in human HF. It has also been implicated in protection against AFib via knockout mice studies. This review summarizes the current understanding of the functional roles of cardiac RGS proteins and their implications for the treatment of HF and AFib, with a specific focus on RGS4 for the aforementioned reasons but also because it can be targeted successfully with small organic molecule inhibitors.
Collapse
Affiliation(s)
| | | | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverrman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
31
|
Hewitt N, Ma N, Arang N, Martin SA, Prakash A, DiBerto JF, Knight KM, Ghosh S, Olsen RHJ, Roth BL, Gutkind JS, Vaidehi N, Campbell SL, Dohlman HG. Catalytic site mutations confer multiple states of G protein activation. Sci Signal 2023; 16:eabq7842. [PMID: 36787384 PMCID: PMC10021883 DOI: 10.1126/scisignal.abq7842] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) that function as molecular switches for cellular growth and metabolism are activated by GTP and inactivated by GTP hydrolysis. In uveal melanoma, a conserved glutamine residue critical for GTP hydrolysis in the G protein α subunit is often mutated in Gαq or Gα11 to either leucine or proline. In contrast, other glutamine mutations or mutations in other Gα subtypes are rare. To uncover the mechanism of the genetic selection and the functional role of this glutamine residue, we analyzed all possible substitutions of this residue in multiple Gα isoforms. Through cell-based measurements of activity, we showed that some mutants were further activated and inactivated by G protein-coupled receptors. Through biochemical, molecular dynamics, and nuclear magnetic resonance-based structural studies, we showed that the Gα mutants were functionally distinct and conformationally diverse, despite their shared inability to hydrolyze GTP. Thus, the catalytic glutamine residue contributes to functions beyond GTP hydrolysis, and these functions include subtype-specific, allosteric modulation of receptor-mediated subunit dissociation. We conclude that G proteins do not function as simple on-off switches. Rather, signaling emerges from an ensemble of active states, a subset of which are favored in disease and may be uniquely responsive to receptor-directed ligands.
Collapse
Affiliation(s)
- Natalie Hewitt
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Nadia Arang
- Department of Pharmacology, University of California San Diego, San Diego, CA, 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Sarah A. Martin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey F. DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin M. Knight
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Soumadwip Ghosh
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Current address: Illumina Inc, 5200 Illumina Way, San Diego, CA 92037, USA
| | - Reid H. J. Olsen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Current address: GPCR Pharmacology, Discovery Biology, Exscientia Ai, Oxford, UK OX4 4GE
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J. Silvio Gutkind
- Department of Pharmacology, University of California San Diego, San Diego, CA, 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Henrik G. Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
32
|
Del Calvo G, Baggio Lopez T, Lymperopoulos A. The therapeutic potential of targeting cardiac RGS4. Ther Adv Cardiovasc Dis 2023; 17:17539447231199350. [PMID: 37724539 PMCID: PMC10510358 DOI: 10.1177/17539447231199350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play pivotal roles in regulation of cardiac function and homeostasis. To function properly, every cell needs these receptors to be stimulated only when a specific extracellular stimulus is present, and to be silenced the moment that stimulus is removed. The regulator of G protein signaling (RGS) proteins are crucial for the latter to occur at the cell membrane, where the GPCR normally resides. Perturbations in both activation and termination of G protein signaling underlie numerous heart pathologies. Although more than 30 mammalian RGS proteins have been identified, each RGS protein seems to interact only with a specific set of G protein subunits and GPCR types/subtypes in any given tissue or cell type, and this applies to the myocardium as well. A large number of studies have provided substantial evidence for the roles various RGS proteins expressed in cardiomyocytes play in cardiac physiology and heart disease pathophysiology. This review summarizes the current understanding of the functional roles of cardiac RGS proteins and their implications for the treatment of specific heart diseases, such as heart failure and atrial fibrillation. We focus on cardiac RGS4 in particular, since this isoform appears to be selectively (among the RGS protein family) upregulated in human heart failure and is also the target of ongoing drug discovery efforts for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Giselle Del Calvo
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Teresa Baggio Lopez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, HPD (Terry) Building/Room 1350, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
33
|
Xiang B, Zhao S, Chen J, Chen Y, Zhu C, Hu S, Hu Y. Engineering the filamentous fungus Penicillium oxalicum for rapid, low-background and efficient protein expression. Enzyme Microb Technol 2023; 162:110150. [DOI: 10.1016/j.enzmictec.2022.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/09/2022] [Accepted: 10/23/2022] [Indexed: 11/24/2022]
|
34
|
Larasati YA, Savitsky M, Koval A, Solis GP, Valnohova J, Katanaev VL. Restoration of the GTPase activity and cellular interactions of Gα o mutants by Zn 2+ in GNAO1 encephalopathy models. SCIENCE ADVANCES 2022; 8:eabn9350. [PMID: 36206333 PMCID: PMC9544338 DOI: 10.1126/sciadv.abn9350] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
De novo point mutations in GNAO1, gene encoding the major neuronal G protein Gαo, have recently emerged in patients with pediatric encephalopathy having motor, developmental, and epileptic dysfunctions. Half of clinical cases affect codons Gly203, Arg209, or Glu246; we show that these mutations accelerate GTP uptake and inactivate GTP hydrolysis through displacement Gln205 critical for GTP hydrolysis, resulting in constitutive GTP binding by Gαo. However, the mutants fail to adopt the activated conformation and display aberrant interactions with signaling partners. Through high-throughput screening of approved drugs, we identify zinc pyrithione and Zn2+ as agents restoring active conformation, GTPase activity, and cellular interactions of the encephalopathy mutants, with negligible effects on wild-type Gαo. We describe a Drosophila model of GNAO1 encephalopathy where dietary zinc restores the motor function and longevity of the mutant flies. Zinc supplements are approved for diverse human neurological conditions. Our work provides insights into the molecular etiology of GNAO1 encephalopathy and defines a potential therapy for the patients.
Collapse
Affiliation(s)
- Yonika A. Larasati
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Mikhail Savitsky
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Alexey Koval
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Gonzalo P. Solis
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Jana Valnohova
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Vladimir L. Katanaev
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia
| |
Collapse
|
35
|
Galosi S, Pollini L, Novelli M, Bernardi K, Di Rocco M, Martinelli S, Leuzzi V. Motor, epileptic, and developmental phenotypes in genetic disorders affecting G protein coupled receptors-cAMP signaling. Front Neurol 2022; 13:886751. [PMID: 36003298 PMCID: PMC9393484 DOI: 10.3389/fneur.2022.886751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Over the last years, a constantly increasing number of genetic diseases associated with epilepsy and movement disorders have been recognized. An emerging group of conditions in this field is represented by genetic disorders affecting G-protein-coupled receptors (GPCRs)–cAMP signaling. This group of postsynaptic disorders includes genes encoding for proteins highly expressed in the central nervous system and involved in GPCR signal transduction and cAMP production (e.g., GNAO1, GNB1, ADCY5, GNAL, PDE2A, PDE10A, and HPCA genes). While the clinical phenotype associated with ADCY5 and GNAL is characterized by movement disorder in the absence of epilepsy, GNAO1, GNB1, PDE2A, PDE10A, and HPCA have a broader clinical phenotype, encompassing movement disorder, epilepsy, and neurodevelopmental disorders. We aimed to provide a comprehensive phenotypical characterization of genetic disorders affecting the cAMP signaling pathway, presenting with both movement disorders and epilepsy. Thus, we reviewed clinical features and genetic data of 203 patients from the literature with GNAO1, GNB1, PDE2A, PDE10A, and HPCA deficiencies. Furthermore, we delineated genotype–phenotype correlation in GNAO1 and GNB1 deficiency. This group of disorders presents with a highly recognizable clinical phenotype combining distinctive motor, epileptic, and neurodevelopmental features. A severe hyperkinetic movement disorder with potential life-threatening exacerbations and high susceptibility to a wide range of triggers is the clinical signature of the whole group of disorders. The existence of a distinctive clinical phenotype prompting diagnostic suspicion and early detection has relevant implications for clinical and therapeutic management. Studies are ongoing to clarify the pathophysiology of these rare postsynaptic disorders and start to design disease-specific treatments.
Collapse
Affiliation(s)
- Serena Galosi
- Department Human Neuroscience, Sapienza University, Rome, Italy
- *Correspondence: Serena Galosi
| | - Luca Pollini
- Department Human Neuroscience, Sapienza University, Rome, Italy
| | - Maria Novelli
- Department Human Neuroscience, Sapienza University, Rome, Italy
| | | | - Martina Di Rocco
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Vincenzo Leuzzi
- Department Human Neuroscience, Sapienza University, Rome, Italy
| |
Collapse
|
36
|
Abstract
TRUPATH is a bioluminescence resonance energy transfer-based platform for quantifying G protein-coupled receptor activity via dissociation of heterotrimeric G protein biosensors. Here, we present protocols for agonist and antagonist TRUPATH assays in the 384-well plate format, thereby providing an opportunity for higher throughput. We also provide both data analysis and quality control analyses for these assays, along with considerations for assay optimization and solutions for troubleshooting needs that may be encountered. For complete details on the use and execution of this protocol, please refer to Olsen et al. (2020).
Collapse
Affiliation(s)
- Jeffrey F. DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7365, USA
| | - Katie Smart
- GPCR Pharmacology, Department of Discovery Biology, Exscientia, Oxford OX44GE, UK
| | - Reid H.J. Olsen
- GPCR Pharmacology, Department of Discovery Biology, Exscientia, Oxford OX44GE, UK
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7365, USA
| |
Collapse
|
37
|
Zhai R, Snyder J, Montgomery S, Sato PY. Double life: How GRK2 and β-arrestin signaling participate in diseases. Cell Signal 2022; 94:110333. [PMID: 35430346 PMCID: PMC9929935 DOI: 10.1016/j.cellsig.2022.110333] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
Abstract
G-protein coupled receptor (GPCR) kinases (GRKs) and β-arrestins play key roles in GPCR and non-GPCR cellular responses. In fact, GRKs and arrestins are involved in a plethora of pathways vital for physiological maintenance of inter- and intracellular communication. Here we review decades of research literature spanning from the discovery, identification of key structural elements, and findings supporting the diverse roles of these proteins in GPCR-mediated pathways. We then describe how GRK2 and β-arrestins partake in non-GPCR signaling and briefly summarize their involvement in various pathologies. We conclude by presenting gaps in knowledge and our prospective on the promising pharmacological potential in targeting these proteins and/or downstream signaling. Future research is warranted and paramount for untangling these novel and promising roles for GRK2 and arrestins in metabolism and disease progression.
Collapse
Affiliation(s)
| | | | | | - Priscila Y. Sato
- Corresponding author at: Drexel University College of Medicine, Department of Pharmacology and Physiology, 245 N 15th Street, NCB 8152, Philadelphia, PA 19102, USA. (P.Y. Sato)
| |
Collapse
|
38
|
Hanson J. [G proteins: privileged transducers of 7-transmembrane spanning receptors]. Biol Aujourdhui 2022; 215:95-106. [PMID: 35275054 DOI: 10.1051/jbio/2021011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 06/14/2023]
Abstract
G protein-coupled receptors or GPCR are the most abundant membrane receptors in our genome with around 800 members. They play an essential role in most physiological and pathophysiological phenomena. In addition, they constitute 30% of the targets of currently marketed drugs and remain an important reservoir for new innovative therapies. Their main effectors are heterotrimeric G proteins. These are composed of 3 subunits, α, β and γ, which, upon coupling with a GPCR, dissociate into Gα and Gβγ to activate numerous signaling pathways. This article describes some of the recent advances in understanding the function and role of heterotrimeric G proteins. After a short introduction to GPCRs, the history of the discovery of G proteins is briefly described. Then, the fundamental mechanisms of activation, signaling and regulation of G proteins are reviewed. New paradigms concerning intracellular signaling, specific recognition of G proteins by GPCRs as well as biased signaling are also discussed.
Collapse
Affiliation(s)
- Julien Hanson
- Laboratoire de Pharmacologie Moléculaire, GIGA-Molecular Biology of Diseases, Université de Liège, CHU, B34, Tour GIGA (+4), Avenue de l'Hôpital 11, B-4000 Liège, Belgique
| |
Collapse
|
39
|
Sadri F, Rezaei Z, Fereidouni M. The significance of the SDF-1/CXCR4 signaling pathway in the normal development. Mol Biol Rep 2022; 49:3307-3320. [PMID: 35067815 DOI: 10.1007/s11033-021-07069-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022]
Abstract
Chemokines are chemoattractants that can regulate cell movement and adhesion. SDF-1 [stromal cell-derived factor-1 (SDF-1)] is a homeostatic CXC chemokine. SDF-1 and its receptors [CXC chemokine receptor 4 (CXCR4)] form a signaling pathway that plays critical roles in different pathological and physiological mechanisms, including embryogenesis, wound healing, angiogenesis, tumor growth, and proliferation. Therefore, the current review aimed to summarize the related studies that addressed the molecular signature of the SDF-1/CXCR4 pathway and to explain how this axis is involved in normal events.
Collapse
Affiliation(s)
- Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran.,Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Fereidouni
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran. .,Department of Medical Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
40
|
DiBerto JF, Olsen RHJ, Roth BL. TRUPATH: An Open-Source Biosensor Platform for Interrogating the GPCR Transducerome. Methods Mol Biol 2022; 2525:185-195. [PMID: 35836068 DOI: 10.1007/978-1-0716-2473-9_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
G protein-coupled receptors (GPCRs) are the most highly targeted protein family by United States Food and Drug Administration-approved drugs. Despite their historic and continued importance as drug targets, their therapeutic potential remains underexplored and underexploited. While it has been known for some time that GPCRs are able to engage multiple signaling pathways, the majority of drug research and development has followed the older dogma of a single primary pathway for each receptor. This has been due in part to historical reasons, or to a lack of appreciation of the potential to exploit specific pathways over others as a therapeutic modality. Additionally, only recently have technologies been developed to discern selective GPCR-G protein interactions. In this chapter, we introduce TRUPATH, a bioluminescence resonance energy transfer (BRET)-based platform that allows the unambiguous measurement of receptor-catalyzed dissociation or rearrangement of 14 Gα subunits from their respective Gβ and Gγ subunits. Specifically, we provide a detailed protocol for TRUPATH plasmid transfection, microplate preparation, assay implementation, and data analysis. In doing so, we create a template for using TRUPATH to answer basic biological questions, such as "To which G proteins does a given GPCR couple?", and facilitate drug discovery efforts to identify ligands with intra- and inter-G protein family pathway selectivity.
Collapse
Affiliation(s)
- Jeffrey F DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Reid H J Olsen
- Discovery Biology and GPCR Pharmacology, Exscientia PLC., Oxford, UK
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
41
|
Timsit Y, Grégoire SP. Towards the Idea of Molecular Brains. Int J Mol Sci 2021; 22:ijms222111868. [PMID: 34769300 PMCID: PMC8584932 DOI: 10.3390/ijms222111868] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
How can single cells without nervous systems perform complex behaviours such as habituation, associative learning and decision making, which are considered the hallmark of animals with a brain? Are there molecular systems that underlie cognitive properties equivalent to those of the brain? This review follows the development of the idea of molecular brains from Darwin’s “root brain hypothesis”, through bacterial chemotaxis, to the recent discovery of neuron-like r-protein networks in the ribosome. By combining a structural biology view with a Bayesian brain approach, this review explores the evolutionary labyrinth of information processing systems across scales. Ribosomal protein networks open a window into what were probably the earliest signalling systems to emerge before the radiation of the three kingdoms. While ribosomal networks are characterised by long-lasting interactions between their protein nodes, cell signalling networks are essentially based on transient interactions. As a corollary, while signals propagated in persistent networks may be ephemeral, networks whose interactions are transient constrain signals diffusing into the cytoplasm to be durable in time, such as post-translational modifications of proteins or second messenger synthesis. The duration and nature of the signals, in turn, implies different mechanisms for the integration of multiple signals and decision making. Evolution then reinvented networks with persistent interactions with the development of nervous systems in metazoans. Ribosomal protein networks and simple nervous systems display architectural and functional analogies whose comparison could suggest scale invariance in information processing. At the molecular level, the significant complexification of eukaryotic ribosomal protein networks is associated with a burst in the acquisition of new conserved aromatic amino acids. Knowing that aromatic residues play a critical role in allosteric receptors and channels, this observation suggests a general role of π systems and their interactions with charged amino acids in multiple signal integration and information processing. We think that these findings may provide the molecular basis for designing future computers with organic processors.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
- Correspondence:
| | - Sergeant-Perthuis Grégoire
- Institut de Mathématiques de Jussieu—Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS-Université Paris Diderot, 75013 Paris, France;
| |
Collapse
|
42
|
Solis GP, Kozhanova TV, Koval A, Zhilina SS, Mescheryakova TI, Abramov AA, Ishmuratov EV, Bolshakova ES, Osipova KV, Ayvazyan SO, Lebon S, Kanivets IV, Pyankov DV, Troccaz S, Silachev DN, Zavadenko NN, Prityko AG, Katanaev VL. Pediatric Encephalopathy: Clinical, Biochemical and Cellular Insights into the Role of Gln52 of GNAO1 and GNAI1 for the Dominant Disease. Cells 2021; 10:2749. [PMID: 34685729 PMCID: PMC8535069 DOI: 10.3390/cells10102749] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/19/2022] Open
Abstract
Heterotrimeric G proteins are immediate transducers of G protein-coupled receptors-the biggest receptor family in metazoans-and play innumerate functions in health and disease. A set of de novo point mutations in GNAO1 and GNAI1, the genes encoding the α-subunits (Gαo and Gαi1, respectively) of the heterotrimeric G proteins, have been described to cause pediatric encephalopathies represented by epileptic seizures, movement disorders, developmental delay, intellectual disability, and signs of neurodegeneration. Among such mutations, the Gln52Pro substitutions have been previously identified in GNAO1 and GNAI1. Here, we describe the case of an infant with another mutation in the same site, Gln52Arg. The patient manifested epileptic and movement disorders and a developmental delay, at the onset of 1.5 weeks after birth. We have analyzed biochemical and cellular properties of the three types of dominant pathogenic mutants in the Gln52 position described so far: Gαo[Gln52Pro], Gαi1[Gln52Pro], and the novel Gαo[Gln52Arg]. At the biochemical level, the three mutant proteins are deficient in binding and hydrolyzing GTP, which is the fundamental function of the healthy G proteins. At the cellular level, the mutants are defective in the interaction with partner proteins recognizing either the GDP-loaded or the GTP-loaded forms of Gαo. Further, of the two intracellular sites of Gαo localization, plasma membrane and Golgi, the former is strongly reduced for the mutant proteins. We conclude that the point mutations at Gln52 inactivate the Gαo and Gαi1 proteins leading to aberrant intracellular localization and partner protein interactions. These features likely lie at the core of the molecular etiology of pediatric encephalopathies associated with the codon 52 mutations in GNAO1/GNAI1.
Collapse
Affiliation(s)
- Gonzalo P. Solis
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (G.P.S.); (A.K.); (S.T.); (D.N.S.)
| | - Tatyana V. Kozhanova
- St. Luka’s Clinical Research Center for Children, 119620 Moscow, Russia; (T.V.K.); (S.S.Z.); (T.I.M.); (A.A.A.); (E.V.I.); (E.S.B.); (K.V.O.); (S.O.A.); (A.G.P.)
- Department of Neurology, Neurosurgery and Medical Genetics, Faculty of Pediatrics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Alexey Koval
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (G.P.S.); (A.K.); (S.T.); (D.N.S.)
| | - Svetlana S. Zhilina
- St. Luka’s Clinical Research Center for Children, 119620 Moscow, Russia; (T.V.K.); (S.S.Z.); (T.I.M.); (A.A.A.); (E.V.I.); (E.S.B.); (K.V.O.); (S.O.A.); (A.G.P.)
- Department of Neurology, Neurosurgery and Medical Genetics, Faculty of Pediatrics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Tatyana I. Mescheryakova
- St. Luka’s Clinical Research Center for Children, 119620 Moscow, Russia; (T.V.K.); (S.S.Z.); (T.I.M.); (A.A.A.); (E.V.I.); (E.S.B.); (K.V.O.); (S.O.A.); (A.G.P.)
| | - Aleksandr A. Abramov
- St. Luka’s Clinical Research Center for Children, 119620 Moscow, Russia; (T.V.K.); (S.S.Z.); (T.I.M.); (A.A.A.); (E.V.I.); (E.S.B.); (K.V.O.); (S.O.A.); (A.G.P.)
| | - Evgeny V. Ishmuratov
- St. Luka’s Clinical Research Center for Children, 119620 Moscow, Russia; (T.V.K.); (S.S.Z.); (T.I.M.); (A.A.A.); (E.V.I.); (E.S.B.); (K.V.O.); (S.O.A.); (A.G.P.)
| | - Ekaterina S. Bolshakova
- St. Luka’s Clinical Research Center for Children, 119620 Moscow, Russia; (T.V.K.); (S.S.Z.); (T.I.M.); (A.A.A.); (E.V.I.); (E.S.B.); (K.V.O.); (S.O.A.); (A.G.P.)
| | - Karina V. Osipova
- St. Luka’s Clinical Research Center for Children, 119620 Moscow, Russia; (T.V.K.); (S.S.Z.); (T.I.M.); (A.A.A.); (E.V.I.); (E.S.B.); (K.V.O.); (S.O.A.); (A.G.P.)
| | - Sergey O. Ayvazyan
- St. Luka’s Clinical Research Center for Children, 119620 Moscow, Russia; (T.V.K.); (S.S.Z.); (T.I.M.); (A.A.A.); (E.V.I.); (E.S.B.); (K.V.O.); (S.O.A.); (A.G.P.)
| | - Sébastien Lebon
- Unit of Pediatric Neurology and Neurorehabilitation, Division of Pediatrics, Woman-Mother-Child Department, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland;
| | - Ilya V. Kanivets
- Center of Medical Genetics, Genomed Ltd., 115093 Moscow, Russia; (I.V.K.); (D.V.P.)
| | - Denis V. Pyankov
- Center of Medical Genetics, Genomed Ltd., 115093 Moscow, Russia; (I.V.K.); (D.V.P.)
| | - Sabina Troccaz
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (G.P.S.); (A.K.); (S.T.); (D.N.S.)
| | - Denis N. Silachev
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (G.P.S.); (A.K.); (S.T.); (D.N.S.)
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia
| | - Nikolay N. Zavadenko
- Department of Neurology, Neurosurgery and Medical Genetics, Faculty of Pediatrics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Andrey G. Prityko
- St. Luka’s Clinical Research Center for Children, 119620 Moscow, Russia; (T.V.K.); (S.S.Z.); (T.I.M.); (A.A.A.); (E.V.I.); (E.S.B.); (K.V.O.); (S.O.A.); (A.G.P.)
- Department of Neurology, Neurosurgery and Medical Genetics, Faculty of Pediatrics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Vladimir L. Katanaev
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (G.P.S.); (A.K.); (S.T.); (D.N.S.)
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia
| |
Collapse
|
43
|
Di Rocco M, Galosi S, Lanza E, Tosato F, Caprini D, Folli V, Friedman J, Bocchinfuso G, Martire A, Di Schiavi E, Leuzzi V, Martinelli S. Caenorhabditis elegans provides an efficient drug screening platform for GNAO1-related disorders and highlights the potential role of caffeine in controlling dyskinesia. Hum Mol Genet 2021; 31:929-941. [PMID: 34622282 PMCID: PMC8947233 DOI: 10.1093/hmg/ddab296] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Dominant GNAO1 mutations cause an emerging group of childhood-onset neurological disorders characterized by developmental delay, intellectual disability, movement disorders, drug-resistant seizures and neurological deterioration. GNAO1 encodes the α-subunit of an inhibitory GTP/GDP-binding protein regulating ion channel activity and neurotransmitter release. The pathogenic mechanisms underlying GNAO1-related disorders remain largely elusive and there are no effective therapies. Here, we assessed the functional impact of two disease-causing variants associated with distinct clinical features, c.139A > G (p.S47G) and c.662C > A (p.A221D), using Caenorhabditis elegans as a model organism. The c.139A > G change was introduced into the orthologous position of the C. elegans gene via CRISPR/Cas9, whereas a knock-in strain carrying the p.A221D variant was already available. Like null mutants, homozygous knock-in animals showed increased egg laying and were hypersensitive to aldicarb, an inhibitor of acetylcholinesterase, suggesting excessive neurotransmitter release by different classes of motor neurons. Automated analysis of C. elegans locomotion indicated that goa-1 mutants move faster than control animals, with more frequent body bends and a higher reversal rate and display uncoordinated locomotion. Phenotypic profiling of heterozygous animals revealed a strong hypomorphic effect of both variants, with a partial dominant-negative activity for the p.A221D allele. Finally, caffeine was shown to rescue aberrant motor function in C. elegans harboring the goa-1 variants; this effect is mainly exerted through adenosine receptor antagonism. Overall, our findings establish a suitable platform for drug discovery, which may assist in accelerating the development of new therapies for this devastating condition, and highlight the potential role of caffeine in controlling GNAO1-related dyskinesia.
Collapse
Affiliation(s)
- Martina Di Rocco
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy.,Department of Human Neuroscience, "Sapienza" University of Rome, Rome 00185, Italy
| | - Serena Galosi
- Department of Human Neuroscience, "Sapienza" University of Rome, Rome 00185, Italy
| | - Enrico Lanza
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome 00161, Italy
| | - Federica Tosato
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Davide Caprini
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome 00161, Italy
| | - Viola Folli
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome 00161, Italy
| | - Jennifer Friedman
- UCSD Department of Neuroscience and Pediatrics, Rady Children's Hospital Division of Neurology; Rady Children's Institute for Genomic Medicine, San Diego, USA
| | - Gianfranco Bocchinfuso
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Alberto Martire
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council, Naples 80131, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, "Sapienza" University of Rome, Rome 00185, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| |
Collapse
|
44
|
Martemyanov KA. Mechanisms of Gβγ Release upon GPCR Activation. Trends Biochem Sci 2021; 46:703-704. [PMID: 34034924 DOI: 10.1016/j.tibs.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022]
Abstract
Gβγ release is a key event in the transduction of GPCR signals. However, the molecular mechanisms of this process have been unclear. A recent report by Knight et al. provides important clues into the sequence of events that lead to the liberation of Gβγ upon G protein activation by GPCRs.
Collapse
Affiliation(s)
- Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, USA.
| |
Collapse
|