1
|
Münz C, Campbell GR, Esclatine A, Faure M, Labonte P, Lussignol M, Orvedahl A, Altan-Bonnet N, Bartenschlager R, Beale R, Cirone M, Espert L, Jung J, Leib D, Reggiori F, Sanyal S, Spector SA, Thiel V, Viret C, Wei Y, Wileman T, Wodrich H. Autophagy machinery as exploited by viruses. AUTOPHAGY REPORTS 2025; 4:27694127.2025.2464986. [PMID: 40201908 PMCID: PMC11921968 DOI: 10.1080/27694127.2025.2464986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 04/10/2025]
Abstract
Viruses adapt and modulate cellular pathways to allow their replication in host cells. The catabolic pathway of macroautophagy, for simplicity referred to as autophagy, is no exception. In this review, we discuss anti-viral functions of both autophagy and select components of the autophagy machinery, and how viruses have evaded them. Some viruses use the membrane remodeling ability of the autophagy machinery to build their replication compartments in the cytosol or efficiently egress from cells in a non-lytic fashion. Some of the autophagy machinery components and their remodeled membranes can even be found in viral particles as envelopes or single membranes around virus packages that protect them during spreading and transmission. Therefore, studies on autophagy regulation by viral infections can reveal functions of the autophagy machinery beyond lysosomal degradation of cytosolic constituents. Furthermore, they can also pinpoint molecular interactions with which the autophagy machinery can most efficiently be manipulated, and this may be relevant to develop effective disease treatments based on autophagy modulation.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich Switzerland
| | - Grant R Campbell
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of SD, Vermillion, SD, USA
| | - Audrey Esclatine
- Université Paris-Saclay, CEA, CNRS, 10 Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Universite Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Patrick Labonte
- eINRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada
| | - Marion Lussignol
- Université Paris-Saclay, CEA, CNRS, 10 Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anthony Orvedahl
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division Virus-Associated Carcinogenesis, Heidelberg, Germany
- German Centre for Infection Research, Heidelberg partner site, Heidelberg, Germany
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London, UK
- Division of Medicine, University College London, London, UK
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucile Espert
- University of Montpellier, Montpellier, France
- CNRS, Institut de Recherche enInfectiologie deMontpellier (IRIM), Montpellier, France
| | - Jae Jung
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - David Leib
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH, USA
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, Aarhus C, Denmark
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, UK
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Rady Children’s Hospital, San Diego, CA, USA
| | - Volker Thiel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland, and Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Universite Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Yu Wei
- Institut Pasteur-Theravectys Joint Laboratory, Department of Virology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia
- Quadram Institute Bioscience, Norwich Research Park, Norfolk, UK
| | - Harald Wodrich
- sLaboratoire de Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
2
|
Rajan A, Karpac J. Inter-organ communication in Drosophila: Lipoproteins, adipokines, and immune-metabolic coordination. Curr Opin Cell Biol 2025; 94:102508. [PMID: 40187050 DOI: 10.1016/j.ceb.2025.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/07/2025]
Abstract
Inter-organ communication networks are essential for maintaining systemic homeostasis in multicellular organisms. In Drosophila melanogaster, studies of adipokines and lipoproteins reveal evolutionarily conserved mechanisms coordinating metabolism, immunity, and behavior. This mini-review focuses on two key pathways: the adipokine Unpaired 2 (Upd2) and lipoprotein-mediated signaling. Upd2, a leptin analog, mediates fat-brain communication to regulate insulin secretion, sleep, and feeding behavior. Recent work has uncovered an LC3/Atg8-dependent secretion mechanism for Upd2, linking nutrient sensing to systemic adaptation. Lipoproteins, particularly ApoLpp and LTP, function beyond lipid transport, orchestrating neural maintenance and immune responses. During infection, macrophage-derived signals trigger lipoprotein-mediated lipid redistribution to support host defense. Additionally, muscle tissue emerges as an unexpected mediator of immune-metabolic coordination through inter-organ signaling. These findings highlight the intricate cross-talk between organs required for organismal survival and suggest therapeutic strategies for metabolic disorders.
Collapse
Affiliation(s)
- Akhila Rajan
- Basic Sciences Division, Fred Hutch, Seattle, WA, USA.
| | - Jason Karpac
- Department of Biology, Texas A&M University, College Station, TX, USA; Department of Cell Biology and Genetics, Texas A&M University, College of Medicine, Bryan, TX, USA.
| |
Collapse
|
3
|
Kumar P, Choudhary A, Kinger S, Jagtap YA, Prajapati VK, Chitkara D, Chinnathambi S, Verma RK, Mishra A. Autophagy as a potential therapeutic target in regulating improper cellular proliferation. Front Pharmacol 2025; 16:1579183. [PMID: 40444035 PMCID: PMC12119615 DOI: 10.3389/fphar.2025.1579183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/24/2025] [Indexed: 06/02/2025] Open
Abstract
Autophagy is a degradative process that makes rapid turnover of old and impaired proteins and organelles possible. It is highly instigated by stress signals, like starvation, and contributes to the cell's homeostasis. Autophagy performs a crucial function in keeping cell genomic integrity stable. Impaired autophagic flux is implicated in neurodegenerative diseases, abnormal ageing, and cancerous diseases. In diseases like cancer, autophagy performs a dualistic function; it can have both a tumor-suppressive and supportive role. Autophagy in the initial phases of tumorigenesis maintains the integrity of the genome and, if it fails, leads to cell death, thus having a tumor-suppressive role. Meanwhile, autophagy also imparts the function of the pro-survival mechanism in the latter stages of tumorigenesis and supports the cancerous cells in surviving conditions like hypoxia and increased oxidative stress. Autophagy also helps cancerous cells develop drug resistance in some cases. Thus, modulation of the autophagic mechanism is a possible therapeutic strategy in cancer therapy as its inhibition can sensitise cancer cells to anti-cancerous drugs. The promotion of autophagy, in some cases, can also safeguard cells from toxic protein aggregation and enhanced oxidative stress. Excessive autophagy can result in autophagic cell death. Autophagy also regulates several cellular processes and cell death pathways, like apoptosis. Therefore, an in-depth knowledge of the autophagy process and its regulating molecules is critically important. Pharmaceutical small molecules or cellular target modulation can help modulate the cellular autophagy process in the context of specific disease conditions.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sumit Kinger
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | | | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| | - Subashchandrabose Chinnathambi
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Institute of National Importance, Bangalore, Karnataka, India
| | | | - Amit Mishra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
4
|
Xun J, Tan JX. Lysosomal Repair in Health and Disease. J Cell Physiol 2025; 240:e70044. [PMID: 40349217 PMCID: PMC12066097 DOI: 10.1002/jcp.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025]
Abstract
Lysosomes are essential organelles degrading a wide range of substrates, maintaining cellular homeostasis, and regulating cell growth through nutrient and metabolic signaling. A key vulnerability of lysosomes is their membrane permeabilization (LMP), a process tightly linked to diseases including aging, neurodegeneration, lysosomal storage disorders, and cardiovascular disease. Research progress in the past few years has greatly improved our understanding of lysosomal repair mechanisms. Upon LMP, cells activate multiple membrane remodeling processes to restore lysosomal integrity, such as membrane invagination, tubulation, lipid patching, and membrane stabilization. These repair pathways are critical in preserving cellular stress tolerance and preventing deleterious inflammation and cell death triggered by lysosomal damage. This review focuses on the expanding mechanistic insights of lysosomal repair, highlighting its crucial role in maintaining cellular health and the implications for disease pathogenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Jinrui Xun
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Jay Xiaojun Tan
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
5
|
Wang S, Baumert R, Séjourné G, Sivadasan Bindu D, Dimond K, Sakers K, Vazquez L, Moore JL, Tan CX, Takano T, Rodriguez MP, Brose N, Bradley L, Lessing R, Soderling SH, La Spada AR, Eroglu C. PD-linked LRRK2 G2019S mutation impairs astrocyte morphology and synapse maintenance via ERM hyperphosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.04.09.536178. [PMID: 39253496 PMCID: PMC11383028 DOI: 10.1101/2023.04.09.536178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Astrocytes are highly complex cells that mediate critical roles in synapse formation and maintenance by establishing thousands of direct contacts with synapses through their perisynaptic processes. Here, we found that the most common Parkinsonism gene mutation, LRRK2 G2019S, enhances the phosphorylation of the ERM proteins (Ezrin, Radixin, and Moesin), components of the perisynaptic astrocyte processes in a subset of cortical astrocytes. The ERM hyperphosphorylation was accompanied by decreased astrocyte morphological complexity and reduced excitatory synapse density and function. Dampening ERM phosphorylation levels in LRRK2 G2019S mouse astrocytes restored both their morphology and the excitatory synapse density in the anterior cingulate cortex. To determine how LRRK2 mutation impacts Ezrin interactome, we used an in vivo BioID proteomic approach, and we found that astrocytic Ezrin interacts with Atg7, a master regulator of autophagy. The Ezrin/Atg7 interaction is inhibited by Ezrin phosphorylation, thus diminished in LRRK2 G2019S astrocytes. Importantly, the Atg7 function is required to maintain proper astrocyte morphology. Our data provide a molecular pathway through which the LRRK2 G2019S mutation alters astrocyte morphology and synaptic density in a brain-region-specific manner.
Collapse
|
6
|
Zhang H, Meléndez A. Conserved components of the macroautophagy machinery in Caenorhabditis elegans. Genetics 2025; 229:iyaf007. [PMID: 40180610 PMCID: PMC12005284 DOI: 10.1093/genetics/iyaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/13/2024] [Indexed: 04/05/2025] Open
Abstract
Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and its subsequent delivery to lysosomes for degradation and recycling. In Caenorhabditis elegans, autophagy participates in diverse processes such as stress resistance, cell fate specification, tissue remodeling, aging, and adaptive immunity. Genetic screens in C. elegans have identified a set of metazoan-specific autophagy genes that form the basis for our molecular understanding of steps unique to the autophagy pathway in multicellular organisms. Suppressor screens have uncovered multiple mechanisms that modulate autophagy activity under physiological conditions. C. elegans also provides a model to investigate how autophagy activity is coordinately controlled at an organismal level. In this chapter, we will discuss the molecular machinery, regulation, and physiological functions of autophagy, and also methods utilized for monitoring autophagy during C. elegans development.
Collapse
Affiliation(s)
- Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Alicia Meléndez
- Department of Biology, Queens College, City University of New York, Flushing, NY 11367, USA
- Molecular, Cellular and Developmental Biology and Biochemistry Ph.D. Programs, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
7
|
Campisi D, Hawkins N, Bonjour K, Wollert T. The Role of WIPI2, ATG16L1 and ATG12-ATG5 in Selective and Nonselective Autophagy. J Mol Biol 2025:169138. [PMID: 40221132 DOI: 10.1016/j.jmb.2025.169138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/24/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Autophagy is a conserved cellular recycling pathway that delivers damaged or superfluous cytoplasmic material to lysosomes for degradation. In response to cytotoxic stress or starvation, autophagy can also sequester bulk cytoplasm and deliver it to lysosomes to regenerate building blocks. In macroautophagy, a membrane cisterna termed phagophore that encloses autophagic cargo is generated. The formation of the phagophore depends on a conserved machinery of autophagy related proteins. The phosphatidylinositol(3)-phosphate binding protein WIPI2 facilitates the transition from phagophore initiation to phagophore expansion by recruiting the ATG12-ATG5-ATG16L1 complex to phagophores. This complex functions as an E3-ligase to conjugate ubiquitin-like ATG8 proteins to phagophore membranes, which promotes tethering of cargo to phagophore membranes, phagophore expansion, maturation and the fusion of autophagosomes with lysosomes. ATG16L1 also has important functions independently of ATG12-ATG5 in autophagy and beyond. In this review, we will summarize the functions of WIPI2 and ATG16L1 in selective and nonselective autophagy.
Collapse
Affiliation(s)
- Daniele Campisi
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - N'Toia Hawkins
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Kennedy Bonjour
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Thomas Wollert
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France.
| |
Collapse
|
8
|
Chen D, Fearns A, Gutierrez MG. Mycobacterium tuberculosis phagosome Ca 2+ leakage triggers multimembrane ATG8/LC3 lipidation to restrict damage in human macrophages. SCIENCE ADVANCES 2025; 11:eadt3311. [PMID: 40138395 PMCID: PMC11939036 DOI: 10.1126/sciadv.adt3311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
The role of canonical autophagy in controlling Mycobacterium tuberculosis (Mtb), referred to as xenophagy, is understood to involve targeting Mtb to autophagosomes, which subsequently fuse with lysosomes for degradation. Here, we found that Ca2+ leakage after Mtb phagosome damage in human macrophages is the signal that triggers autophagy-related protein 8/microtubule-associated proteins 1A/1B light chain 3 (ATG8/LC3) lipidation. Unexpectedly, ATG8/LC3 lipidation did not target Mtb to lysosomes, excluding the canonical xenophagy. Upon Mtb phagosome damage, the Ca2+ leakage-dependent ATG8/LC3 lipidation occurred on multiple membranes instead of single or double membranes excluding the noncanonical autophagy pathways. Mechanistically, Ca2+ leakage from the phagosome triggered the recruitment of the V-ATPase-ATG16L1 complex independently of FIP200, ATG13, and proton gradient disruption. Furthermore, the Ca2+ leakage-dependent ATG8/LC3 lipidation limited Mtb phagosome damage and restricted Mtb replication. Together, we uncovered Ca2+ leakage as the key signal that triggers ATG8/LC3 lipidation on multiple membranes to mitigate Mtb phagosome damage.
Collapse
Affiliation(s)
- Di Chen
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Antony Fearns
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maximiliano G. Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
9
|
Freitas-Filho EG, Zaidan I, Fortes-Rocha M, Alzamora-Terrel DL, Bifano C, de Castro PA, Piraine REA, Pinzan CF, de Rezende CP, Boada-Romero E, dos Reis Almeida FB, Goldman GH, Florey O, Cunha LD. RAB5c controls the assembly of non-canonical autophagy machinery to promote phagosome maturation and microbicidal function of macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645097. [PMID: 40196584 PMCID: PMC11974809 DOI: 10.1101/2025.03.25.645097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Non-canonical conjugation of ATG8 proteins, including LC3, to single membranes implicates the autophagy machinery in cell functions unrelated to metabolic stress. One such pathway is LC3-associated phagocytosis (LAP), which aids in phagosome maturation and subsequent signaling upon cargo uptake mediated by certain innate immunity-associated receptors. Here, we show that a specific isoform of RAB5 GTPases, the molecular switches controlling early endosome traffic, is necessary for LAP. We demonstrate that RAB5c regulates phagosome recruitment and function of complexes required for phosphatidylinositol-3-phosphate [PI(3)P] and reactive oxygen species (ROS) generation by macrophages. RAB5c facilitates phagosome translocation of the V-ATPase transmembrane core, which is needed for ATG16L1 binding and consequent LC3 conjugation. RAB5c depletion impaired macrophage elimination of the fungal pathogen Aspergillus fumigatus and disruption of the V-ATPase-ATG16L1 axis increased susceptibility in vivo. Therefore, early endosome-to-phagosome traffic is differentially regulated to promote LAP and ROS contributes to resistance against A. fumigatus by effecting LAP.
Collapse
Affiliation(s)
- Edismauro Garcia Freitas-Filho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Isabella Zaidan
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Marlon Fortes-Rocha
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Daniel Leonardo Alzamora-Terrel
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Carolina Bifano
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Patrícia Alves de Castro
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Ribeirão Preto, Brazil
| | | | - Camila Figueiredo Pinzan
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Ribeirão Preto, Brazil
| | | | - Emilio Boada-Romero
- Department of Immunology, St. Jude Children′s Research Hospital, Memphis, TN, USA
| | | | - Gustavo Henrique Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Ribeirão Preto, Brazil
| | - Oliver Florey
- Signalling Programme, Babraham Institute, Cambridge, UK
| | - Larissa Dias Cunha
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
- Lead contact
| |
Collapse
|
10
|
Gambarotto L, Wosnitzka E, Nikoletopoulou V. The Life and Times of Brain Autophagic Vesicles. J Mol Biol 2025:169105. [PMID: 40154918 DOI: 10.1016/j.jmb.2025.169105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/17/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Most of the knowledge on the mechanisms and functions of autophagy originates from studies in yeast and other cellular models. How this valuable information is translated to the brain, one of the most complex and evolving organs, has been intensely investigated. Fueled by the tight dependence of the mammalian brain on autophagy, and the strong links of human brain diseases with autophagy impairment, the field has revealed adaptations of the autophagic machinery to the physiology of neurons and glia, the highly specialized cell types of the brain. Here, we first provide a detailed account of the tools available for studying brain autophagy; we then focus on the recent advancements in understanding how autophagy is regulated in brain cells, and how it contributes to their homeostasis and integrated functions. Finally, we discuss novel insights and open questions that the new knowledge has raised in the field.
Collapse
Affiliation(s)
- Lisa Gambarotto
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Erin Wosnitzka
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
11
|
Zou Y, Zhang X, Chen XY, Ma XF, Feng XY, Sun Y, Ma T, Ma QH, Zhao XD, Xu DE. Contactin -Associated protein1 Regulates Autophagy by Modulating the PI3K/AKT/mTOR Signaling Pathway and ATG4B Levels in Vitro and in Vivo. Mol Neurobiol 2025; 62:2764-2780. [PMID: 39164481 PMCID: PMC11790771 DOI: 10.1007/s12035-024-04425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024]
Abstract
Contactin-associated protein1 (Caspr1) plays an important role in the formation and stability of myelinated axons. In Caspr1 mutant mice, autophagy-related structures accumulate in neurons, causing axonal degeneration; however, the mechanism by which Caspr1 regulates autophagy remains unknown. To illustrate the mechanism of Caspr1 in autophagy process, we demonstrated that Caspr1 knockout in primary neurons from mice along with human cell lines, HEK-293 and HeLa, induced autophagy by downregulating the PI3K/AKT/mTOR signaling pathway to promote the conversion of microtubule-associated protein light chain 3 I (LC3-I) to LC3-II. In contrast, Caspr1 overexpression in cells contributed to the upregulation of this signaling pathway. We also demonstrated that Caspr1 knockout led to increased LC3-I protein expression in mice. In addition, Caspr1 could inhibit the expression of autophagy-related 4B cysteine peptidase (ATG4B) protein by directly binding to ATG4B in overexpressed Caspr1 cells. Intriguingly, we found an accumulation of ATG4B in the Golgi apparatuses of cells overexpressing Caspr1; therefore, we speculate that Caspr1 may restrict ATG4 secretion from the Golgi apparatus to the cytoplasm. Collectively, our results indicate that Caspr1 may regulate autophagy by modulating the PI3K/AKT/mTOR signaling pathway and the levels of ATG4 protein, both in vitro and in vivo. Thus, Caspr1 can be a potential therapeutic target in axonal damage and demyelinating diseases.
Collapse
Affiliation(s)
- Yan Zou
- Department of Neurosurgery, Jiangnan University Medical Center, the Wuxi No.2 People Hospital, Wuxi, 214002, Jiangsu, China
| | - Xiao Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
- Department of Neurology, Jiangnan University Medical Center, the Wuxi No.2 People Hospital, Wuxi, 214002, Jiangsu, China
| | - Xin-Yi Chen
- Department of Neurology, Jiangnan University Medical Center, the Wuxi No.2 People Hospital, Wuxi, 214002, Jiangsu, China
| | - Xiao-Fang Ma
- Hong Shan Hospital, Wuxi, 214000, Jiangsu, China
| | - Xiao-Yan Feng
- Department of Neurology, Jiangnan University Medical Center, the Wuxi No.2 People Hospital, Wuxi, 214002, Jiangsu, China
| | - Yang Sun
- Department of Neurology, Jiangnan University Medical Center, the Wuxi No.2 People Hospital, Wuxi, 214002, Jiangsu, China
| | - Tao Ma
- Department of Neurology, Jiangnan University Medical Center, the Wuxi No.2 People Hospital, Wuxi, 214002, Jiangsu, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215004, Jiangsu, China
| | - Xu-Dong Zhao
- Department of Neurosurgery, Jiangnan University Medical Center, the Wuxi No.2 People Hospital, Wuxi, 214002, Jiangsu, China.
- Wuxi Neurosurgical Institute, Wuxi, 214122, Jiangsu, China.
| | - De-En Xu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China.
- Department of Neurology, Jiangnan University Medical Center, the Wuxi No.2 People Hospital, Wuxi, 214002, Jiangsu, China.
| |
Collapse
|
12
|
Huo L, Huang X, Wang Y, Ouyang Y, Zheng X, Ouyang Y, Cao X, Chen K, Wei D, Wu Y, Zhang R, Lin Y, Kang T, Gao Y. RAB33A promotes metastasis via RhoC accumulation through non-canonical autophagy in cervical cancer. Cell Death Dis 2025; 16:130. [PMID: 40000633 PMCID: PMC11861591 DOI: 10.1038/s41419-025-07455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Cervical cancer metastasis is characterized by the systemic spread of tumor cells. However, the underlying mechanism remains incompletely understood. Herein, we demonstrate that RAB33A promoted metastasis by enhancing RhoC accumulation and that higher RAB33A expression predicted poorer prognosis in patients with cervical cancer. Mechanistically, RhoC typically degraded via canonical autophagy due to the binding of two LIR motifs (LC3 interaction region) in RhoC to LC3; however, RAB33A induced non-canonical autophagy, resulting in RhoC stabilization, which facilitated pseudopodia formation and consequently cervical cancer metastasis. The fusion of RAB33A-induced autophagosomes with lysosomes was impaired, as RAB33A inactivated RAB7 by interacting with TBC1D2A, a GTPase-activating protein that targets RAB7. Our findings reveal a pivotal role of the RAB33A-RhoC axis in cervical cancer metastasis, indicating that RhoC inhibitors may be beneficial for treating cervical cancer patients with high levels of RAB33A.
Collapse
Affiliation(s)
- Lanqing Huo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Xiaodan Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Ying Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Yi Ouyang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Xueping Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Yingyi Ouyang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Xinping Cao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Kai Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Denghui Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Yujie Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China.
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China.
| | - Ying Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China.
| |
Collapse
|
13
|
Ben WB, Pirjo AM. ATG8 in single membranes: Fresh players of endocytosis and acidic organelle quality control in cancer, neurodegeneration, and inflammation. Biochem Biophys Res Commun 2025; 749:151384. [PMID: 39864381 DOI: 10.1016/j.bbrc.2025.151384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Ubiquitin-like autophagy-related gene ATG8 proteins are typically associated with degradative quality control via canonical double-membrane macro-autophagosomes in the cell. ATG8 proteins have now stepped forward in non-canonical pathways in single membrane organelles. The growing interest in non-canonical ATG8 roles has been stimulated by recent links to human conditions, especially in the regulation of inflammation, neurodegeneration and cancers. Here, we summarize the evidence linking non-canonical ATG8s to human pathologies and the quality control of acidic V-ATPase-regulated organelles in the cell.
Collapse
Affiliation(s)
- Wang B Ben
- Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Apaja M Pirjo
- Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia; College of Public Health and Medicine, Flinders University, Bedford Park, SA, 5042, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.
| |
Collapse
|
14
|
Kondo N, Mimori-Kiyosue Y, Tokuhiro K, Pezzotti G, Kinashi T. The autophagy component LC3 regulates lymphocyte adhesion via LFA1 transport in response to outside-in signaling. Nat Commun 2025; 16:1343. [PMID: 39905041 PMCID: PMC11794545 DOI: 10.1038/s41467-025-56631-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
The leukocyte integrin LFA1 is indispensable for immune responses, orchestrating lymphocyte trafficking and adhesion. While LFA1 activation induces LFA1 clustering at the cell contact surface via outside-in signaling, the regulatory mechanisms remain unclear. Here, we uncovered a previously hidden function of the autophagosome component LC3 beyond its role in autophagy by bridging two seemingly unrelated pathways: LFA1 transport and autophagosome transport. LFA1 clusters co-trafficked with LC3, facilitating LFA1 accumulation at the contact surface. LC3b knockout decreased lymphocyte adhesiveness. LFA1 activation did not induce autophagy, whereas it increased mTOR and AMPK activity. LFA1-dependent AMPK activation enhances LFA1 and LC3 clustering and adhesion. Inhibiting Mst1 kinase-mediated LC3 phosphorylation promoted LC3-mediated LFA1 recruitment to the contact surface through direct interaction with RAPL, uncovering an unprecedented integrin recruitment route. These findings uncover a function of LC3 and expand our understanding of lymphocyte regulation via LFA1.
Collapse
Affiliation(s)
- Naoyuki Kondo
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan.
| | - Yuko Mimori-Kiyosue
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Keizo Tokuhiro
- Department of Genome Editing, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Giuseppe Pezzotti
- Biomedical Engineering Center, Kansai Medical University, Osaka, Japan
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| |
Collapse
|
15
|
Sakurai M, Kuwahara T. Canonical and noncanonical autophagy: involvement in Parkinson's disease. Front Cell Dev Biol 2025; 13:1518991. [PMID: 39949604 PMCID: PMC11821624 DOI: 10.3389/fcell.2025.1518991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Autophagy is the major degradation process in cells and is involved in a variety of physiological and pathological functions. While macroautophagy, which employs a series of molecular cascades to form ATG8-coated double membrane autophagosomes for degradation, remains the well-known type of canonical autophagy, microautophagy and chaperon-mediated autophagy have also been characterized. On the other hand, recent studies have focused on the functions of autophagy proteins beyond intracellular degradation, including noncanonical autophagy, also known as the conjugation of ATG8 to single membranes (CASM), and autophagy-related extracellular secretion. In particular, CASM is unique in that it does not require autophagy upstream mechanisms, while the ATG8 conjugation system is involved in a manner different from canonical autophagy. There have been many reports on the involvement of these autophagy-related mechanisms in neurodegenerative diseases, with Parkinson's disease (PD) receiving particular attention because of the important roles of several causative and risk genes, including LRRK2. In this review, we will summarize and discuss the contributions of canonical and noncanonical autophagy to cellular functions, with a special focus on the pathogenesis of PD.
Collapse
Affiliation(s)
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Lee SK, Park SW, Jang DJ, Lee JA. Mechanisms and roles of membrane-anchored ATG8s. Front Cell Dev Biol 2025; 13:1532050. [PMID: 39936034 PMCID: PMC11810923 DOI: 10.3389/fcell.2025.1532050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
Autophagy-related protein 8 (ATG8) family proteins, including LC3 and GABARAP subfamilies, are pivotal in canonical autophagy, driving autophagosome formation, cargo selection, and lysosomal fusion. However, recent studies have identified non-canonical roles for lipidated ATG8 in processes such as LC3-associated phagocytosis (LAP), LC3-associated endocytosis (LANDO), and lipidated ATG8-mediated secretory autophagy. These pathways expand ATG8's functional repertoire in immune regulation, membrane repair, and pathogen clearance, as ATG8 becomes conjugated to single-membrane structures (e.g., phagosomes and lysosomes). This review examines the molecular mechanisms of ATG8 lipidation, focusing on its selective conjugation to phosphatidylethanolamine (PE) in autophagy and phosphatidylserine (PS) in CASM. We highlight LIR-based probes and LC3/GABARAP-specific deconjugases as critical tools that allow precise tracking and manipulation of ATG8 in autophagic and non-autophagic contexts. These advancements hold therapeutic promise for treating autophagy-related diseases, including cancer and neurodegenerative disorders, by targeting ATG8-driven pathways that maintain cellular homeostasis.
Collapse
Affiliation(s)
- Soo-Kyeong Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Republic of Korea
| | - Sang-Won Park
- Research Institute of Invertebrate Vector, Kyungpook National University, Sangju, Republic of Korea
| | - Deok-Jin Jang
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju, Republic of Korea
| | - Jin-A. Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Republic of Korea
| |
Collapse
|
17
|
Sun Y, Li G, Kong M, Li J, Wang S, Tan Y. Angelica sinensis polysaccharide as potential protectants against recurrent spontaneous abortion: focus on autophagy regulation. Front Med (Lausanne) 2025; 12:1522503. [PMID: 39881843 PMCID: PMC11774876 DOI: 10.3389/fmed.2025.1522503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025] Open
Abstract
Introduction Recurrent spontaneous abortion (RSA) represents a significant clinical challenge, with its underlying mechanisms yet to be fully elucidated. Despite advances in understanding, the precise pathophysiology driving RSA remains unclear. Angelica sinensis, a traditional herbal remedy, is frequently used as an adjunctive treatment for miscarriage. However, it remains uncertain whether its primary active component, Angelica sinensis polysaccharide (ASP), plays a definitive role in its therapeutic effects. The specific function and mechanism of ASP in the context of RSA require further investigation. Methods In this study, we sought to evaluate autophagy levels at the maternal-fetal interface in RSA patients and in an RSA mouse model treated with ASP, complemented by a comprehensive metabolomic analysis. Autophagy flux in the decidua was compared between eight RSA patients and eight healthy pregnant women. Additionally, changes in autophagy flux were assessed in an RSA mouse model following ASP treatment, with embryos and placental tissues collected for subsequent metabolomic profiling. Results Our results revealed a significant reduction in Beclin 1 protein levels in the decidua of RSA patients compared to the normal pregnancy group. Conversely, ASP treatment in the RSA mouse model restored autophagy-related protein expression, including ATG7, ATG16L, and Beclin 1, to levels higher than those observed in the untreated RSA group. Metabolomic analyses further identified significant changes in phosphatidylethanolamine levels between ASP-treated and control groups, with differential metabolites enriched in pathways related to glycolysis/gluconeogenesis, glycerolipid metabolism, and glycine, serine, and threonine metabolism. Functional assays revealed that ASP enhances trophoblast cell proliferation, migration, and invasion. Conclusion In summary, our findings demonstrate diminished autophagy activity in RSA patients, while ASP appears to restore autophagy and regulate key metabolic pathways, including glycolysis/gluconeogenesis. These results provide new insights into the protective mechanisms of ASP in RSA, suggesting its potential as a therapeutic intervention for this condition.
Collapse
Affiliation(s)
- Yeli Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guohua Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Reproductive Immunology, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengwen Kong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junyuan Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuyun Wang
- Department of Integrated Traditional Chinese Medicine (TCM) and Western Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan Tan
- Department of Integrated Traditional Chinese Medicine (TCM) and Western Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
18
|
Chvanov M, Voronina S, Jefferson M, Mayer U, Sutton R, Criddle DN, Wileman T, Tepikin AV. Deletion of the WD40 domain of ATG16L1 exacerbates acute pancreatitis, abolishes LAP-like non-canonical autophagy and slows trypsin degradation. Autophagy 2025; 21:210-222. [PMID: 39216469 PMCID: PMC11702947 DOI: 10.1080/15548627.2024.2392478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The WD40 domain (WDD) of ATG16L1 plays a pivotal role in non-canonical autophagy. This study examined the role of recently identified LAP-like non-canonical autophagy (LNCA) in acute pancreatitis. LNCA involves rapid single-membrane LC3 conjugation to endocytic vacuoles in pancreatic acinar cells. The rationale for this study was the previously observed presence of trypsin in the organelles undergoing LNCA; aberrant trypsin formation is an important factor in pancreatitis development. Here we report that the deletion of WDD (attained in ATG16L1[E230] mice) eliminated LNCA, aggravated caerulein-induced acute pancreatitis and suppressed the fast trypsin degradation observed in both a rapid caerulein-induced disease model and in caerulein-treated isolated pancreatic acinar cells. These experiments indicate that LNCA is a WDD-dependent mechanism and suggest that it plays not an activating but a protective role in acute pancreatitis. Furthermore, palmitoleic acid, another inducer of experimental acute pancreatitis, strongly inhibited LNCA, suggesting a novel mechanism of pancreatic lipotoxicity.Abbreviation: AMY: amylase; AP: acute pancreatitis; CASM: conjugation of Atg8 to single membranes; CCK: cholecystokinin; FAEE model: fatty acid and ethanol model; IL6: interleukin 6; LA: linoleic acid; LAP: LC3-associated phagocytosis; LMPO: lung myeloperoxidase; LNCA: LAP-like non-canonical autophagy; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MPO: myeloperoxidase; PMPO: pancreatic myeloperoxidase; POA: palmitoleic acid; WDD: WD40 domain; WT: wild type.
Collapse
Affiliation(s)
- Michael Chvanov
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Svetlana Voronina
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Matthew Jefferson
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Ulrike Mayer
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Robert Sutton
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - David N. Criddle
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Alexei V. Tepikin
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
19
|
Mari L, Boada-Romero E, Li Z, Magné J, Green DR. Assessment of Non-canonical Functions of the Autophagy Proteins in LC3-Associated Phagocytosis and LC3-Associated Endocytosis. Methods Mol Biol 2025; 2879:33-49. [PMID: 39046619 DOI: 10.1007/7651_2024_561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The identification and characterization of noncanonical functions within the autophagy pathway have unveiled intricate cellular processes, including LC3-associated phagocytosis (LAP) and LC3-associated endocytosis (LANDO). These phenomena play pivotal roles in the conjugation of ATG8 with single-membrane phagosomes and endosomes, shedding light on the dynamic interplay between autophagy and cellular homeostasis. Here, we present detailed protocols for both qualitative and quantitative assessment of LAP, including immunofluorescence, flow cytometry, and Western blotting of isolated LAPosomes. Additionally, the protocol for the evaluation of LANDO through immunofluorescent detection of receptor recycling is outlined. The methodologies presented herein serve as a practical guide for researchers seeking to unravel the intricacies of LAP and LANDO. By providing step-by-step instructions, accompanied by insights into potential challenges and optimization strategies, this chapter aims to empower investigators in the exploration of these noncanonical functions of autophagy proteins.
Collapse
Affiliation(s)
- Luigi Mari
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Emilio Boada-Romero
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhenrui Li
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joelle Magné
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
20
|
Lim RM, Lu A, Chuang BM, Anaraki C, Chu B, Halbrook CJ, Edinger AL. CARMIL1-AA selectively inhibits macropinocytosis while sparing autophagy. Mol Biol Cell 2025; 36:ar4. [PMID: 39602282 PMCID: PMC11742120 DOI: 10.1091/mbc.e24-09-0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Macropinocytosis is reported to fuel tumor growth and drug resistance by allowing cancer cells to scavenge extracellular macromolecules. However, accurately defining the role of macropinocytosis in cancer depends on our ability to selectively block this process. 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) is widely used to inhibit macropinocytosis but affects multiple Na+/H+ exchangers (NHE) that regulate cytoplasmic and organellar pH. Consistent with this, we report that EIPA slows proliferation to a greater extent than can be accounted for by macropinocytosis inhibition and triggers conjugation of ATG8 to single membranes (CASM). Knocking down only NHE1 would not avoid macropinocytosis-independent effects on pH. Moreover, contrary to published reports, NHE1 loss did not block macropinocytosis in multiple cell lines. Knocking down CARMIL1 with CRISPR-Cas9 editing limited macropinocytosis, but only by 50%. In contrast, expressing the CARMIL1-AA mutant inhibits macropinocytosis induced by a wide range of macropinocytic stimuli to a similar extent as EIPA. CARMIL1-AA expression did not inhibit proliferation, highlighting the shortcomings of EIPA as a macropinocytosis inhibitor. Importantly, autophagy, another actin dependent, nutrient-producing process, was not affected by CARMIL1-AA expression. In sum, constitutive or inducible CARMIL1-AA expression reduced macropinocytosis without affecting proliferation, RAC activation, or autophagy, other processes that drive tumor initiation and progression.
Collapse
Affiliation(s)
- Rebecca M. Lim
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617
| | - Alexa Lu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA 92617
| | - Brennan M. Chuang
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617
| | - Cecily Anaraki
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA 92617
| | - Brandon Chu
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617
| | - Christopher J. Halbrook
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA 92617
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868
| | - Aimee L. Edinger
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA 92617
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868
| |
Collapse
|
21
|
Liao CC, Long Y, Tsai ML, Lin CY, Hsu KW, Lee CH. G-cleave LC3B biosensor: monitoring autophagy and assessing resveratrol's synergistic impact on doxorubicin-induced apoptosis in breast cancer cells. Breast Cancer Res 2024; 26:190. [PMID: 39736723 DOI: 10.1186/s13058-024-01951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025] Open
Abstract
Autophagy, a crucial process in cancer, is closely intertwined with both tumor progression and drug resistance development. However, existing methods used to assess autophagy activity often pose invasiveness and time-related constraints, limiting their applicability in preclinical drug investigations. In this study, we developed a non-invasive autophagy detection system (NIADS-autophagy, also called G-cleave LC3B biosensor) by integrating a split-luciferase-based biosensor with an LC3B cleavage sequence, which swiftly identified classic autophagic triggers, such as Earle's Balanced Salt Solution and serum deprivation, through protease-mediated degradation pathways. The specificity of G-cleave LC3B biosensor was confirmed via CRISPR gene editing of pivotal autophagy regulator ATG4B, yielding diminished luciferase activity in MDA-MB-231 breast cancer cells. Notably, the G-cleave LC3B biosensor exhibited strong concordance with established autophagy metrics, encompassing LC3B lipidation, SQSTM1 degradation, and puncta accumulation analysis. To underscore the usage potential of the G-cleave LC3B biosensor, we discovered that resveratrol acts as a synergistic enhancer by significantly potentiating apoptosis in MDA-MB-231 cells when combined with doxorubicin treatment. Overall, the luminescence-based G-cleave LC3B biosensor presents a rapid and dependable avenue for determining autophagy activity, thereby facilitating high-throughput assessment of promising autophagy-associated anti-cancer therapies across diverse malignancies.
Collapse
Affiliation(s)
- Chiao-Chun Liao
- Department of Tropical Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City, Taiwan
| | - Yuqing Long
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Nuffield Department of Medicine Experimental Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Ming-Lin Tsai
- Department of General Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Chun-Yu Lin
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Kai-Wen Hsu
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung City, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung City, Taiwan
| | - Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City, Taiwan.
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
22
|
Lyu J, Zhang H, Wang C, Pan M. New insight in treating autoimmune diseases by targeting autophagy. Autoimmunity 2024; 57:2351872. [PMID: 38739691 DOI: 10.1080/08916934.2024.2351872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Autophagy is a highly conserved biological process in eukaryotes, which degrades cellular misfolded proteins, damaged organelles and invasive pathogens in the lysosome-dependent manner. Autoimmune diseases caused by genetic elements, environments and aberrant immune responses severely impact patients' living quality and even threaten life. Recently, numerous studies have reported autophagy can regulate immune responses, and play an important role in autoimmune diseases. In this review, we summarised the features of autophagy and autophagy-related genes, enumerated some autophagy-related genes involved in autoimmune diseases, and further overviewed how to treat autoimmune diseases through targeting autophagy. Finally, we outlooked the prospect of relieving and curing autoimmune diseases by targeting autophagy pathway.
Collapse
Affiliation(s)
- Jiao Lyu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hongqian Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chaoyang Wang
- The Key Medical Laboratory for Chemical Poison Detection of Henan Province, The Third People's Hospital of Henan Province, Zhengzhou, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| | - Mingyu Pan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
23
|
Wei Z, Hu X, Wu Y, Zhou L, Zhao M, Lin Q. Molecular Mechanisms Underlying Initiation and Activation of Autophagy. Biomolecules 2024; 14:1517. [PMID: 39766224 PMCID: PMC11673044 DOI: 10.3390/biom14121517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Autophagy is an important catabolic process to maintain cellular homeostasis and antagonize cellular stresses. The initiation and activation are two of the most important aspects of the autophagic process. This review focuses on mechanisms underlying autophagy initiation and activation and signaling pathways regulating the activation of autophagy found in recent years. These findings include autophagy initiation by liquid-liquid phase separation (LLPS), autophagy initiation in the endoplasmic reticulum (ER) and Golgi apparatus, and the signaling pathways mediated by the ULK1 complex, the mTOR complex, the AMPK complex, and the PI3KC3 complex. Through the review, we attempt to present current research progress in autophagy regulation and forward our understanding of the regulatory mechanisms and signaling pathways of autophagy initiation and activation.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Lin
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Z.W.); (X.H.); (Y.W.); (L.Z.); (M.Z.)
| |
Collapse
|
24
|
Kang J, Li CM, Kim N, Baek J, Jung YK. Non-autophagic Golgi-LC3 lipidation facilitates TFE3 stress response against Golgi dysfunction. EMBO J 2024; 43:5085-5113. [PMID: 39284911 PMCID: PMC11535212 DOI: 10.1038/s44318-024-00233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Lipidated ATG8/LC3 proteins are recruited to single membrane compartments as well as autophagosomes, supporting their functions. Although recent studies have shown that Golgi-LC3 lipidation follows Golgi damage, its molecular mechanism and function under Golgi stress remain unknown. Here, by combining DLK1 overexpression as a new strategy for induction of Golgi-specific LC3 lipidation, and the application of Golgi-damaging reagents, we unravel the mechanism and role of Golgi-LC3 lipidation. Upon DLK1 overexpression, LC3 is lipidated on the Golgi apparatus in an ATG12-ATG5-ATG16L1 complex-dependent manner; a post-Golgi trafficking blockade is the primary cause of this lipidation. During Golgi stress, ATG16L1 is recruited through its interaction with V-ATPase for Golgi-LC3 lipidation. After post-Golgi trafficking inhibition, TFE3, a key regulator of the Golgi stress response, is translocated to the nucleus. Defects in LC3 lipidation disrupt this translocation, leading to an attenuation of the Golgi stress response. Together, our results reveal the mechanism and unexplored function of Golgi-LC3 lipidation in the Golgi stress response.
Collapse
Affiliation(s)
- Jaemin Kang
- School of biological sciences, Seoul National University, Seoul, 08826, Korea
| | - Cathena Meiling Li
- School of biological sciences, Seoul National University, Seoul, 08826, Korea
| | - Namhoon Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, 08826, Korea
| | - Jongyeon Baek
- School of biological sciences, Seoul National University, Seoul, 08826, Korea
| | - Yong-Keun Jung
- School of biological sciences, Seoul National University, Seoul, 08826, Korea.
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
25
|
Rajendran P, Renu K, Ali EM, Genena MAM, Veeraraghavan V, Sekar R, Sekar AK, Tejavat S, Barik P, Abdallah BM. Promising and challenging phytochemicals targeting LC3 mediated autophagy signaling in cancer therapy. Immun Inflamm Dis 2024; 12:e70041. [PMID: 39436197 PMCID: PMC11494898 DOI: 10.1002/iid3.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Phytochemicals possess a wide range of anti-tumor properties, including the modulation of autophagy and regulation of programmed cell death. Autophagy is a critical process in cellular homeostasis and its dysregulation is associated with several pathological conditions, such as cancer, neurodegenerative diseases, and diabetes. In cancer, autophagy plays a dual role by either promoting tumor growth or suppressing it, depending on the cellular context. During autophagy, autophagosomes engulf cytoplasmic components such as proteins and organelles. LC3-II (microtubule-associated protein 1 light chain 3-II) is an established marker of autophagosome formation, making it central to autophagy monitoring in mammals. OBJECTIVE To explore the regulatory role of phytochemicals in LC3-mediated autophagy and their potential therapeutic impact on cancer. The review emphasizes the involvement of autophagy in tumor promotion and suppression, particularly focusing on autophagy-related signaling pathways like oxidative stress through the NRF2 pathway, and its implications for genomic stability in cancer development. METHODS The review focuses on a comprehensive analysis of bioactive compounds including Curcumin, Celastrol, Resveratrol, Kaempferol, Naringenin, Carvacrol, Farnesol, and Piperine. Literature on these compounds was examined to assess their influence on autophagy, LC3 expression, and tumor-related signaling pathways. A systematic literature search was conducted across databases including PubMed, Scopus, and Web of Science from inception to 2023. Studies were selected from prominent databases, focusing on their roles in cancer diagnosis and therapeutic interventions, particularly in relation to LC3-mediated mechanisms. RESULTS Phytochemicals have been shown to modulate autophagy through the regulation of LC3-II levels and autophagic flux in cancer cells. The interaction between autophagy and other cellular pathways such as oxidative stress, inflammation, and epigenetic modulation highlights the complex role of autophagy in tumor biology. For instance, Curcumin and Resveratrol have been reported to either induce or inhibit autophagy depending on cancer type, influencing tumor progression and therapeutic responses. CONCLUSION Targeting autophagy through LC3 modulation presents a promising strategy for cancer therapy. The dual role of autophagy in tumor suppression and promotion, however, necessitates careful consideration of the context in which autophagy is induced or inhibited. Future research should aim to delineate these context-specific roles and explore how phytochemicals can be optimized for therapeutic efficacy. Novel therapeutic strategies should focus on the use of bioactive compounds to fine-tune autophagy, thereby maximizing tumor suppression and inducing programmed cell death in cancer cells.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Kaviyarasi Renu
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Enas M. Ali
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Department of Botany and Microbiology, Faculty of ScienceCairo UniversityCairoEgypt
| | - Marwa Azmy M. Genena
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Agricultural Zoology Department, Faculty of AgricultureMansoura UniversityMansouraEgypt
| | - Vishnupriya Veeraraghavan
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Ramya Sekar
- Department of Oral & Maxillofacial Pathology and Oral MicrobiologyMeenakshi Ammal Dental College & Hospital, MAHERChennaiTamil NaduIndia
| | | | - Sujatha Tejavat
- Department of Biomedical Sciences, College of MedicineKing Faisal UniversityAl‐AhsaSaudi Arabia
| | | | - Basem M. Abdallah
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
| |
Collapse
|
26
|
Jacomin AC, Dikic I. Membrane remodeling via ubiquitin-mediated pathways. Cell Chem Biol 2024; 31:1627-1635. [PMID: 39303699 DOI: 10.1016/j.chembiol.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
The dynamic process of membrane shaping and remodeling plays a vital role in cellular functions, with proteins and cellular membranes interacting intricately to adapt to various cellular needs and environmental cues. Ubiquitination-a posttranslational modification-was shown to be essential in regulating membrane structure and shape. It influences virtually all pathways relying on cellular membranes, such as endocytosis and autophagy by directing protein degradation, sorting, and oligomerization. Ubiquitin is mostly known as a protein modifier; however, it was reported that ubiquitin and ubiquitin-like proteins can associate directly with lipids, affecting membrane curvature and dynamics. In this review, we summarize some of the current knowledge on ubiquitin-mediated membrane remodeling in the context of endocytosis, autophagy, and ER-phagy.
Collapse
Affiliation(s)
- Anne-Claire Jacomin
- Goethe University Frankfurt, Medical Faculty, Institute of Biochemistry II, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
| | - Ivan Dikic
- Goethe University Frankfurt, Medical Faculty, Institute of Biochemistry II, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany; Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Strasse 15, 60438 Frankfurt Am Main, Germany.
| |
Collapse
|
27
|
Otegui MS, Steelheart C, Ma W, Ma J, Kang BH, De Medina Hernandez VS, Dagdas Y, Gao C, Goto-Yamada S, Oikawa K, Nishimura M. Vacuolar degradation of plant organelles. THE PLANT CELL 2024; 36:3036-3056. [PMID: 38657116 PMCID: PMC11371181 DOI: 10.1093/plcell/koae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Plants continuously remodel and degrade their organelles due to damage from their metabolic activities and environmental stressors, as well as an integral part of their cell differentiation programs. Whereas certain organelles use local hydrolytic enzymes for limited remodeling, most of the pathways that control the partial or complete dismantling of organelles rely on vacuolar degradation. Specifically, selective autophagic pathways play a crucial role in recognizing and sorting plant organelle cargo for vacuolar clearance, especially under cellular stress conditions induced by factors like heat, drought, and damaging light. In these short reviews, we discuss the mechanisms that control the vacuolar degradation of chloroplasts, mitochondria, endoplasmic reticulum, Golgi, and peroxisomes, with an emphasis on autophagy, recently discovered selective autophagy receptors for plant organelles, and crosstalk with other catabolic pathways.
Collapse
Affiliation(s)
- Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Charlotte Steelheart
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wenlong Ma
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Juncai Ma
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Byung-Ho Kang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | - Yasin Dagdas
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shino Goto-Yamada
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow 30-348, Poland
| | - Kazusato Oikawa
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Mikio Nishimura
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| |
Collapse
|
28
|
McMann E, Gorski SM. Last but not least: emerging roles of the autophagy-related protein ATG4D. Autophagy 2024; 20:1916-1927. [PMID: 38920354 PMCID: PMC11346562 DOI: 10.1080/15548627.2024.2369436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
The evolutionarily conserved ATG4 cysteine proteases regulate macroautophagy/autophagy through the priming and deconjugation of the Atg8-family proteins. In mammals there are four ATG4 family members (ATG4A, ATG4B, ATG4C, ATG4D) but ATG4D has been relatively understudied. Heightened interest in ATG4D has been stimulated by recent links to human disease. Notably, genetic variations in human ATG4D were implicated in a heritable neurodevelopmental disorder. Genetic analyses in dogs, along with loss-of-function zebrafish and mouse models, further support a neuroprotective role for ATG4D. Here we discuss the evidence connecting ATG4D to neurological diseases and other pathologies and summarize its roles in both autophagy-dependent and autophagy-independent cellular processes.Abbrevation: ATG: autophagy related; BafA1: bafilomycin A1; BCL2: BCL2 apoptosis regulator; BH3: BCL2 homology region 3; CASP3: caspase 3; EV: extracellular vesicle; GABA: gamma aminobutyric acid; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; GFP: green fluorescent protein; LIR: LC3-interacting region; MAP1LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; MYC: MYC proto-oncogene, bHLH transcription factor; PE: phosphatidylethanolamine; PS: phosphatidylserine; QKO: quadruple knockout; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel; SQSTM1: sequestosome 1.
Collapse
Affiliation(s)
- Emily McMann
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
29
|
Lee YM, Vucic D. The role of autophagy in RIP1 mediated cell death and intestinal inflammation. Adv Immunol 2024; 163:1-20. [PMID: 39271257 DOI: 10.1016/bs.ai.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Autophagy, a highly conserved catabolic process that targets various types of cellular cargoes to lysosomal degradation, is one of the most important biological mechanisms critical for cellular homeostasis. Components of these cellular cargoes can range from individual proteins to invading pathogens, and degrading these materials is important for maintaining organismal health and survival. The process of autophagy is carried out by complex molecular mechanisms, and a growing body of evidence indicates that these mechanisms intersect with those involved in the cell death pathways. In this review, we examine several emerging studies elucidating the role of autophagy in RIP1-mediated cell death signaling, with particular emphasis on impaired autophagy caused by ATG16L1 deficiency. We also discuss how autophagy in RIP1-mediated cell death affects intestinal homeostasis in preclinical models, and the implications of the intersection between RIP1 and autophagy for understanding the intestinal pathologies associated with inflammatory bowel disease (IBD). Finally, we highlight the potential benefits of therapeutic targeting of RIP1 and autophagy proteins, while also proposing areas of research that will likely elucidate new links between autophagy and cell death signaling.
Collapse
Affiliation(s)
| | - Domagoj Vucic
- Immunology Discovery, Genentech, South San Francisco, CA, United States.
| |
Collapse
|
30
|
Bonet-Ponce L, Kluss JH, Cookson MR. Mechanisms of lysosomal tubulation and sorting driven by LRRK2. Biochem Soc Trans 2024; 52:1909-1919. [PMID: 39083004 PMCID: PMC11668303 DOI: 10.1042/bst20240087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/29/2024]
Abstract
Lysosomes are dynamic cellular structures that adaptively remodel their membrane in response to stimuli, including membrane damage. Lysosomal dysfunction plays a central role in the pathobiology of Parkinson's disease (PD). Gain-of-function mutations in Leucine-rich repeat kinase 2 (LRRK2) cause familial PD and genetic variations in its locus increase the risk of developing the sporadic form of the disease. We previously uncovered a process we term LYTL (LYsosomal Tubulation/sorting driven by LRRK2), wherein membrane-damaged lysosomes generate tubules sorted into mobile vesicles. Subsequently, these vesicles interact with healthy lysosomes. LYTL is orchestrated by LRRK2 kinase activity, via the recruitment and phosphorylation of a subset of RAB GTPases. Here, we summarize the current understanding of LYTL and its regulation, as well as the unknown aspects of this process.
Collapse
Affiliation(s)
- Luis Bonet-Ponce
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, U.S.A
| | | | - Mark R. Cookson
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, U.S.A
| |
Collapse
|
31
|
Wu X, Yang Y, Ru Y, Hao R, Zhao D, Ren R, Lu B, Li Y, Sun S, Zheng H, Wang W. Knockout of the WD40 domain of ATG16L1 enhances foot and mouth disease virus replication. BMC Genomics 2024; 25:796. [PMID: 39179961 PMCID: PMC11342673 DOI: 10.1186/s12864-024-10703-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
The WD40 domain is one of the most abundant domains and is among the top interacting domains in eukaryotic genomes. The WD40 domain of ATG16L1 is essential for LC3 recruitment to endolysosomal membranes during non-canonical autophagy, but dispensable for canonical autophagy. Canonical autophagy was utilized by FMDV, while the relationship between FMDV and non-canonical autophagy is still elusive. In the present study, WD40 knockout (KO) PK15 cells were successfully generated via CRISPR/cas9 technology as a tool for studying the effect of non-canonical autophagy on FMDV replication. The results of growth curve analysis, morphological observation and karyotype analysis showed that the WD40 knockout cell line was stable in terms of growth and morphological characteristics. After infection with FMDV, the expression of viral protein, viral titers, and the number of copies of viral RNA in the WD40-KO cells were significantly greater than those in the wild-type PK15 cells. Moreover, RNA‒seq technology was used to sequence WD40-KO cells and wild-type cells infected or uninfected with FMDV. Differentially expressed factors such as Mx1, RSAD2, IFIT1, IRF9, IFITM3, GBP1, CXCL8, CCL5, TNFRSF17 were significantly enriched in the autophagy, NOD-like receptor signaling pathway, RIG-I-like receptor signaling pathway, Toll-like receptor signaling pathway, cytokine-cytokine receptor interaction and TNF signaling pathway, etc. The expression levels of differentially expressed genes were detected via qRT‒PCR, which was consistent with the RNA‒seq data. Here, we experimentally demonstrate for the first time that knockout of the WD40 domain of ATG16L1 enhances FMDV replication by downregulation innate immune factors. In addition, this result also indicates non-canonical autophagy inhibits FMDV replication. In total, our results play an essential role in regulating the replication level of FMDV and providing new insights into virus-host interactions and potential antiviral strategies.
Collapse
Affiliation(s)
- Xiuping Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yang Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yi Ru
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Rongzeng Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Dongmei Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Ruifang Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Bingzhou Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yajun Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Shengzhen Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
32
|
Timimi L, Wrobel AG, Chiduza GN, Maslen SL, Torres-Méndez A, Montaner B, Davis C, Minckley T, Hole KL, Serio A, Devine MJ, Skehel JM, Rubinstein JL, Schreiber A, Beale R. The V-ATPase/ATG16L1 axis is controlled by the V 1H subunit. Mol Cell 2024; 84:2966-2983.e9. [PMID: 39089251 DOI: 10.1016/j.molcel.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/15/2024] [Accepted: 07/05/2024] [Indexed: 08/03/2024]
Abstract
Defects in organellar acidification indicate compromised or infected compartments. Recruitment of the autophagy-related ATG16L1 complex to pathologically neutralized organelles targets ubiquitin-like ATG8 molecules to perturbed membranes. How this process is coupled to proton gradient disruption is unclear. Here, we reveal that the V1H subunit of the vacuolar ATPase (V-ATPase) proton pump binds directly to ATG16L1. The V1H/ATG16L1 interaction only occurs within fully assembled V-ATPases, allowing ATG16L1 recruitment to be coupled to increased V-ATPase assembly following organelle neutralization. Cells lacking V1H fail to target ATG8s during influenza infection or after activation of the immune receptor stimulator of interferon genes (STING). We identify a loop within V1H that mediates ATG16L1 binding. A neuronal V1H isoform lacks this loop and is associated with attenuated ATG8 targeting in response to ionophores in primary murine and human iPSC-derived neurons. Thus, V1H controls ATG16L1 recruitment following proton gradient dissipation, suggesting that the V-ATPase acts as a cell-intrinsic damage sensor.
Collapse
Affiliation(s)
- Lewis Timimi
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Division of Medicine, University College London, London WC1E 6JF, UK
| | - Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Structural Biology STP, The Francis Crick Institute, London NW1 1AT, UK
| | - George N Chiduza
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sarah L Maslen
- Proteomics STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Antonio Torres-Méndez
- Neural Circuits & Evolution Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Beatriz Montaner
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Colin Davis
- Cellular Degradation Systems Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Taylor Minckley
- Neural Circuit Bioengineering and Disease Modelling Laboratory, The Francis Crick Institute, London NW1 1AT, UK; UK Dementia Research Institute at King's College London, London SE5 9RX, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London SE5 9RX, UK
| | - Katriona L Hole
- Mitochondrial Neurobiology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Andrea Serio
- Neural Circuit Bioengineering and Disease Modelling Laboratory, The Francis Crick Institute, London NW1 1AT, UK; UK Dementia Research Institute at King's College London, London SE5 9RX, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London SE5 9RX, UK
| | - Michael J Devine
- Mitochondrial Neurobiology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - J Mark Skehel
- Proteomics STP, The Francis Crick Institute, London NW1 1AT, UK
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medical Biophysics, The University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Anne Schreiber
- Cellular Degradation Systems Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Division of Medicine, University College London, London WC1E 6JF, UK.
| |
Collapse
|
33
|
Pradel B, Cantaloube G, Villares M, Deffieu MS, Robert-Hebmann V, Lucansky V, Faure M, Chazal N, Gaudin R, Espert L. LC3B conjugation machinery promotes autophagy-independent HIV-1 entry in CD4 + T lymphocytes. Autophagy 2024; 20:1825-1836. [PMID: 38566318 PMCID: PMC11262235 DOI: 10.1080/15548627.2024.2338573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/16/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
HIV-1 entry into CD4+ T lymphocytes relies on the viral and cellular membranes' fusion, leading to viral capsid delivery in the target cell cytoplasm. Atg8/LC3B conjugation to lipids, process named Atg8ylation mainly studied in the context of macroautophagy/autophagy, occurs transiently in the early stages of HIV-1 replication in CD4+ T lymphocytes. Despite numerous studies investigating the HIV-1-autophagy interplays, the Atg8ylation impact in these early stages of infection remains unknown. Here we found that HIV-1 exposure leads to the rapid LC3B enrichment toward the target cell plasma membrane, in close proximity with the incoming viral particles. Furthermore, we demonstrated that Atg8ylation is a key event facilitating HIV-1 entry in target CD4+ T cells. Interestingly, this effect is independent of canonical autophagy as ATG13 silencing does not prevent HIV-1 entry. Together, our results provide an unconventional role of LC3B conjugation subverted by HIV-1 to achieve a critical step of its replication cycle.Abbreviations: BafA1: bafilomycin A1; BlaM: beta-lactamase; CD4+ TL: CD4+ T lymphocytes; PtdIns3K-BECN1 complex: BECN1-containing class III phosphatidylinositol 3-kinase complex; Env: HIV-1 envelope glycoproteins; HIV-1: type 1 human immunodeficiency virus; PM: plasma membrane; PtdIns3P: phosphatidylinositol-3-phosphate; VLP: virus-like particle.
Collapse
Affiliation(s)
- Baptiste Pradel
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Guilhem Cantaloube
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Marie Villares
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Maïka S. Deffieu
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Véronique Robert-Hebmann
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Vincent Lucansky
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
- Jessenius Faculty of Medicine in Martin (JFMED CU), Department of Pathophysiology, Comenius University in Bratislava, Martin, Slovakia
| | - Mathias Faure
- CIRI, University of Lyon, Inserm U1111, Claude Bernard University Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Nathalie Chazal
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Raphaël Gaudin
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Lucile Espert
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| |
Collapse
|
34
|
Deretic V, Duque T, Trosdal E, Paddar M, Javed R, Akepati P. Membrane atg8ylation in Canonical and Noncanonical Autophagy. J Mol Biol 2024; 436:168532. [PMID: 38479594 PMCID: PMC11260254 DOI: 10.1016/j.jmb.2024.168532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Membrane atg8ylation is a homeostatic process responding to membrane remodeling and stress signals. Membranes are atg8ylated by mammalian ATG8 ubiquitin-like proteins through a ubiquitylation-like cascade. A model has recently been put forward which posits that atg8ylation of membranes is conceptually equivalent to ubiquitylation of proteins. Like ubiquitylation, membrane atg8ylation involves E1, E2 and E3 enzymes. The E3 ligases catalyze the final step of atg8ylation of aminophospholipids in membranes. Until recently, the only known E3 ligase for membrane atg8ylation was ATG16L1 in a noncovalent complex with the ATG12-ATG5 conjugate. ATG16L1 was first identified as a factor in canonical autophagy. During canonical autophagy, the ATG16L1-based E3 ligase complex includes WIPI2, which in turn recognizes phosphatidylinositiol 3-phosphate and directs atg8ylation of autophagic phagophores. As an alternative to WIPIs, binding of ATG16L1 to the proton pump V-ATPase guides atg8ylation of endolysosomal and phagosomal membranes in response to lumenal pH changes. Recently, a new E3 complex containing TECPR1 instead of ATG16L1, has been identified that responds to sphingomyelin's presence on the cytofacial side of perturbed endolysosomal membranes. In present review, we cover the principles of membrane atg8ylation, catalog its various presentations, and provide a perspective on the growing repertoire of E3 ligase complexes directing membrane atg8ylation at diverse locations.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA.
| | - Thabata Duque
- Autophagy Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Einar Trosdal
- Autophagy Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Masroor Paddar
- Autophagy Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Ruheena Javed
- Autophagy Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Prithvi Akepati
- Gastroenterology Division, Department of Internal Medicine, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| |
Collapse
|
35
|
Barz S, Hofmann K, Reggiori F, Kraft C. Beyond the C-terminal Glycine of ATG8 Proteins - The Story of Some Neglected Amino Acids. J Mol Biol 2024; 436:168588. [PMID: 38663545 DOI: 10.1016/j.jmb.2024.168588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
ATG8 proteins form a family of small ubiquitin-like modifiers, well-known for their importance in both macroautophagy and autophagy-independent processes. A unique feature of this protein family is their conjugation to membrane lipids through the covalent attachment of a glycine residue at the C-terminus of ATG8 proteins. Notably, most ATG8 proteins are expressed with additional amino acids at their C-terminus, shielding the key glycine residue. Consequently, lipidation requires the activation of the ATG8 precursors through proteolytic cleavage, known as priming. ATG4 proteases catalyze this priming process, and under physiological conditions, unprimed forms of ATG8 are not detected. This raises the question about the purpose of the C-terminal extension of ATG8 proteins. While the roles of lipidated and free, primed ATG8 proteins have been extensively studied, the potential function of their precursor form or the priming process itself remains largely unexplored. Here, we summarize information from existing literature and our own experiments to contribute to the understanding of these neglected amino acids.
Collapse
Affiliation(s)
- Saskia Barz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
36
|
Figueras-Novoa C, Timimi L, Marcassa E, Ulferts R, Beale R. Conjugation of ATG8s to single membranes at a glance. J Cell Sci 2024; 137:jcs261031. [PMID: 39145464 PMCID: PMC11361636 DOI: 10.1242/jcs.261031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Autophagy refers to a set of degradative mechanisms whereby cytoplasmic contents are targeted to the lysosome. This is best described for macroautophagy, where a double-membrane compartment (autophagosome) is generated to engulf cytoplasmic contents. Autophagosomes are decorated with ubiquitin-like ATG8 molecules (ATG8s), which are recruited through covalent lipidation, catalysed by the E3-ligase-like ATG16L1 complex. LC3 proteins are ATG8 family members that are often used as a marker for autophagosomes. In contrast to canonical macroautophagy, conjugation of ATG8s to single membranes (CASM) describes a group of non-canonical autophagy processes in which ATG8s are targeted to pre-existing single-membrane compartments. CASM occurs in response to disrupted intracellular pH gradients, when the V-ATPase proton pump recruits ATG16L1 in a process called V-ATPase-ATG16L1-induced LC3 lipidation (VAIL). Recent work has demonstrated a parallel, alternative axis for CASM induction, triggered when the membrane recruitment factor TECPR1 recognises sphingomyelin exposed on the cytosolic face of a membrane and forms an alternative E3-ligase-like complex. This sphingomyelin-TECPR1-induced LC3 lipidation (STIL) is independent of the V-ATPase and ATG16L1. In light of these discoveries, this Cell Science at a Glance article summarises these two mechanisms of CASM to highlight how they differ from canonical macroautophagy, and from each other.
Collapse
Affiliation(s)
- Carmen Figueras-Novoa
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Lewis Timimi
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Division of Medicine, University College London, London NW1 1AT, UK
| | - Elena Marcassa
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Rachel Ulferts
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Division of Medicine, University College London, London NW1 1AT, UK
| |
Collapse
|
37
|
Wang Y, Wu L, Van Kaer L. Role of canonical and noncanonical autophagy pathways in shaping the life journey of B cells. Front Immunol 2024; 15:1426204. [PMID: 39139569 PMCID: PMC11319164 DOI: 10.3389/fimmu.2024.1426204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Autophagy is a regulated intracellular catabolic process by which invading pathogens, damaged organelles, aggregated proteins, and other macromolecules are degraded in lysosomes. It has been widely appreciated that autophagic activity plays an important role in regulating the development, fate determination, and function of cells in the immune system, including B lymphocytes. Autophagy encompasses several distinct pathways that have been linked to B cell homeostasis and function. While B cell presentation of major histocompatibility complex (MHC) class II-restricted cytosolic antigens to T cells involves both macroautophagy and chaperone-mediated autophagy (CMA), plasma cells and memory B cells mainly rely on macroautophagy for their survival. Emerging evidence indicates that core autophagy factors also participate in processes related to yet clearly distinct from classical autophagy. These autophagy-related pathways, referred to as noncanonical autophagy or conjugation of ATG8 to single membranes (CASM), contribute to B cell homeostasis and functions, including MHC class II-restricted antigen presentation to T cells, germinal center formation, plasma cell differentiation, and recall responses. Dysregulation of B cell autophagy has been identified in several autoimmune and autoinflammatory diseases such as systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease. In this review, we discuss recent advances in understanding the role of canonical and noncanonical autophagy in B cells, including B cell development and maturation, antigen processing and presentation, pathogen-specific antibody responses, cytokine secretion, and autoimmunity. Unraveling the molecular mechanisms of canonical and noncanonical autophagy in B cells will improve our understanding of B cell biology, with implications for the development of autophagy-based immunotherapies.
Collapse
Affiliation(s)
| | | | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
38
|
Ben-Hur S, Sernik S, Afar S, Kolpakova A, Politi Y, Gal L, Florentin A, Golani O, Sivan E, Dezorella N, Morgenstern D, Pietrokovski S, Schejter E, Yacobi-Sharon K, Arama E. Egg multivesicular bodies elicit an LC3-associated phagocytosis-like pathway to degrade paternal mitochondria after fertilization. Nat Commun 2024; 15:5715. [PMID: 38977659 PMCID: PMC11231261 DOI: 10.1038/s41467-024-50041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
Mitochondria are maternally inherited, but the mechanisms underlying paternal mitochondrial elimination after fertilization are far less clear. Using Drosophila, we show that special egg-derived multivesicular body vesicles promote paternal mitochondrial elimination by activating an LC3-associated phagocytosis-like pathway, a cellular defense pathway commonly employed against invading microbes. Upon fertilization, these egg-derived vesicles form extended vesicular sheaths around the sperm flagellum, promoting degradation of the sperm mitochondrial derivative and plasma membrane. LC3-associated phagocytosis cascade of events, including recruitment of a Rubicon-based class III PI(3)K complex to the flagellum vesicular sheaths, its activation, and consequent recruitment of Atg8/LC3, are all required for paternal mitochondrial elimination. Finally, lysosomes fuse with strings of large vesicles derived from the flagellum vesicular sheaths and contain degrading fragments of the paternal mitochondrial derivative. Given reports showing that in some mammals, the paternal mitochondria are also decorated with Atg8/LC3 and surrounded by multivesicular bodies upon fertilization, our findings suggest that a similar pathway also mediates paternal mitochondrial elimination in other flagellated sperm-producing organisms.
Collapse
Affiliation(s)
- Sharon Ben-Hur
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shoshana Sernik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sara Afar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Alina Kolpakova
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Politi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Liron Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Anat Florentin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Sivan
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Nili Dezorella
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - David Morgenstern
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalised Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Yacobi-Sharon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
39
|
Liu Q, Long R, Lin C, Bi X, Liang Z, Deng YZ. Phosphatidylethanolamines link ferroptosis and autophagy during appressorium formation of rice blast fungus. MOLECULAR PLANT PATHOLOGY 2024; 25:e13489. [PMID: 38956897 PMCID: PMC11219472 DOI: 10.1111/mpp.13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
A cell death pathway, ferroptosis, occurs in conidial cells and is critical for formation and function of the infection structure, the appressorium, in the rice blast fungus Magnaporthe oryzae. In this study, we identified an orthologous lysophosphatidic acid acyltransferase (Lpaat) acting at upstream of phosphatidylethanolamines (PEs) biosynthesis and which is required for such fungal ferroptosis and pathogenicity. Two PE species, DOPE and SLPE, that depend on Lpaat function for production were sufficient for induction of lipid peroxidation and the consequent ferroptosis, thus positively regulating fungal pathogenicity. On the other hand, both DOPE and SLPE positively regulated autophagy. Loss of the LPAAT gene led to a decrease in the lipidated form of the autophagy protein Atg8, which is probably responsible for the autophagy defect of the lpaatΔ mutant. GFP-Lpaat was mostly localized on the membrane of lipid droplets (LDs) that were stained by the fluorescent dye monodansylpentane (MDH), suggesting that LDs serve as a source of lipids for membrane PE biosynthesis and probably as a membrane source of autophagosome. Overall, our results reveal novel intracellular membrane-bound organelle dynamics based on Lpaat-mediated lipid metabolism, providing a temporal and spatial link of ferroptosis and autophagy.
Collapse
Affiliation(s)
- Qiao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Ruhui Long
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Chaoxiang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Xinping Bi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Zhibin Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Yi Zhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| |
Collapse
|
40
|
Kurganovs NJ, Engedal N. To eat or not to eat: a critical review on the role of autophagy in prostate carcinogenesis and prostate cancer therapeutics. Front Pharmacol 2024; 15:1419806. [PMID: 38910881 PMCID: PMC11190189 DOI: 10.3389/fphar.2024.1419806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Around 1 in 7 men will be diagnosed with prostate cancer during their lifetime. Many strides have been made in the understanding and treatment of this malignancy over the years, however, despite this; treatment resistance and disease progression remain major clinical concerns. Recent evidence indicate that autophagy can affect cancer formation, progression, and therapeutic resistance. Autophagy is an evolutionarily conserved process that can remove unnecessary or dysfunctional components of the cell as a response to metabolic or environmental stress. Due to the emerging importance of autophagy in cancer, targeting autophagy should be considered as a potential option in disease management. In this review, along with exploring the advances made on understanding the role of autophagy in prostate carcinogenesis and therapeutics, we will critically consider the conflicting evidence observed in the literature and suggest how to obtain stronger experimental evidence, as the application of current findings in clinical practice is presently not viable.
Collapse
Affiliation(s)
- Natalie Jayne Kurganovs
- Autophagy in Cancer Lab, Institute for Cancer Research, Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| | - Nikolai Engedal
- Autophagy in Cancer Lab, Institute for Cancer Research, Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
41
|
Gouveia DG, Siqueira JA, Nunes-Nesi A, Araújo WL. Memories of heat: autophagy and Golgi recovery. TRENDS IN PLANT SCIENCE 2024; 29:607-609. [PMID: 38135605 DOI: 10.1016/j.tplants.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Fluctuations in temperature severely impact crop yield and trigger various plant response mechanisms. In a recent study, Zhou et al. discovered a non-canonical role of autophagy in mediating Golgi apparatus restoration after short-term heat stress (HS). Their results further suggest a critical, yet previously unknown, mechanism of autophagy-related (ATG)-8 in Golgi reassembly after HS.
Collapse
Affiliation(s)
- Debora Gonçalves Gouveia
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | | | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
42
|
He H, He M, Wang Y, Xiong H, Xiong Y, Shan M, Liu D, Guo Z, Kou Y, Zhang Y, Yang M, Lian J, Sun L, He F. Berberine increases the killing effect of pirarubicin on HCC cells by inhibiting ATG4B-autophagy pathway. Exp Cell Res 2024; 439:114094. [PMID: 38750718 DOI: 10.1016/j.yexcr.2024.114094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/17/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
Pirarubicin (THP) is a new generation of cell cycle non-specific anthracycline-based anticancer drug. In the clinic, THP and THP combination therapies have been shown to be effective in hepatocellular carcinoma (HCC) patients with transcatheter arterial chemoembolization (TACE) without serious side effects. However, drug resistance limits its therapeutic efficacy. Berberine (BBR), an isoquinoline alkaloid, has been shown to possess antitumour properties against various malignancies. However, the synergistic effect of BBR and THP in the treatment of HCC is unknown. In the present study, we demonstrated for the first time that BBR sensitized HCC cells to THP, including enhancing THP-induced growth inhibition and apoptosis of HCC cells. Moreover, we found that BBR sensitized THP by reducing the expression of autophagy-related 4B (ATG4B). Mechanistically, the inhibition of HIF1α-mediated ATG4B transcription by BBR ultimately led to attenuation of THP-induced cytoprotective autophagy, accompanied by enhanced growth inhibition and apoptosis in THP-treated HCC cells. Tumor-bearing experiments in nude mice showed that the combination treatment with BBR and THP significantly suppressed the growth of HCC xenografts. These results reveal that BBR is able to strengthen the killing effect of THP on HCC cells by repressing the ATG4B-autophagy pathway, which may provide novel insights into the improvement of chemotherapeutic efficacy of THP, and may be conducive to the further clinical application of THP in HCC treatment.
Collapse
Affiliation(s)
- Haiyan He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China; Department of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Meng He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Yunxia Wang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Haojun Xiong
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Yu Xiong
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Meihua Shan
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Dong Liu
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Ziyuan Guo
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Yuhong Kou
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Yan Zhang
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Mingzhen Yang
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China
| | - Jiqin Lian
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China.
| | - Liangbo Sun
- Department of Clinical Biochemistry, Army Medical University, Chongqing, 400038, China.
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
43
|
Bindschedler A, Schmuckli-Maurer J, Buchser S, Fischer TD, Wacker R, Davalan T, Brunner J, Heussler VT. LC3B labeling of the parasitophorous vacuole membrane of Plasmodium berghei liver stage parasites depends on the V-ATPase and ATG16L1. Mol Microbiol 2024; 121:1095-1111. [PMID: 38574236 DOI: 10.1111/mmi.15259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
The protozoan parasite Plasmodium, the causative agent of malaria, undergoes an obligatory stage of intra-hepatic development before initiating a blood-stage infection. Productive invasion of hepatocytes involves the formation of a parasitophorous vacuole (PV) generated by the invagination of the host cell plasma membrane. Surrounded by the PV membrane (PVM), the parasite undergoes extensive replication. During intracellular development in the hepatocyte, the parasites provoke the Plasmodium-associated autophagy-related (PAAR) response. This is characterized by a long-lasting association of the autophagy marker protein, and ATG8 family member, LC3B with the PVM. LC3B localization at the PVM does not follow the canonical autophagy pathway since upstream events specific to canonical autophagy are dispensable. Here, we describe that LC3B localization at the PVM of Plasmodium parasites requires the V-ATPase and its interaction with ATG16L1. The WD40 domain of ATG16L1 is crucial for its recruitment to the PVM. Thus, we provide new mechanistic insight into the previously described PAAR response targeting Plasmodium liver stage parasites.
Collapse
Affiliation(s)
- Annina Bindschedler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Sophie Buchser
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Tara D Fischer
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Rahel Wacker
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Tim Davalan
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Jessica Brunner
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Volker T Heussler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
44
|
Jassey A, Jackson WT. Viruses and autophagy: bend, but don't break. Nat Rev Microbiol 2024; 22:309-321. [PMID: 38102460 DOI: 10.1038/s41579-023-00995-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/17/2023]
Abstract
Autophagy is a constitutive cellular process of degradation required to maintain homeostasis and turn over spent organelles and aggregated proteins. For some viruses, the process can be antiviral, degrading viral proteins or virions themselves. For many other viruses, the induction of the autophagic process provides a benefit and promotes viral replication. In this Review, we survey the roles that the autophagic pathway plays in the replication of viruses. Most viruses that benefit from autophagic induction block autophagic degradation, which is a 'bend, but don't break' strategy initiating but limiting a potentially antiviral response. In almost all cases, it is other effects of the redirected autophagic machinery that benefit these viruses. This rapid mechanism to generate small double-membraned vesicles can be usurped to shape membranes for viral genome replication and virion maturation. However, data suggest that autophagic maintenance of cellular homeostasis is crucial for the initiation of infection, as viruses have evolved to replicate in normal, healthy cells. Inhibition of autophagic degradation is important once infection has initiated. Although true degradative autophagy is probably a negative for most viruses, initiating nondegradative autophagic membranes benefits a wide variety of viruses.
Collapse
Affiliation(s)
- Alagie Jassey
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - William T Jackson
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
45
|
Tsomidis I, Voumvouraki A, Kouroumalis E. The Pathogenesis of Pancreatitis and the Role of Autophagy. GASTROENTEROLOGY INSIGHTS 2024; 15:303-341. [DOI: 10.3390/gastroent15020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The pathogenesis of acute and chronic pancreatitis has recently evolved as new findings demonstrate a complex mechanism operating through various pathways. In this review, the current evidence indicating that several mechanisms act in concert to induce and perpetuate pancreatitis were presented. As autophagy is now considered a fundamental mechanism in the pathophysiology of both acute and chronic pancreatitis, the fundamentals of the autophagy pathway were discussed to allow for a better understanding of the pathophysiological mechanisms of pancreatitis. The various aspects of pathogenesis, including trypsinogen activation, ER stress and mitochondrial dysfunction, the implications of inflammation, and macrophage involvement in innate immunity, as well as the significance of pancreatic stellate cells in the development of fibrosis, were also analyzed. Recent findings on exosomes and the miRNA regulatory role were also presented. Finally, the role of autophagy in the protection and aggravation of pancreatitis and possible therapeutic implications were reviewed.
Collapse
Affiliation(s)
- Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| | - Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| |
Collapse
|
46
|
Tang J, Fang D, Zhong J, Li M. Missing WD40 Repeats in ATG16L1 Delays Canonical Autophagy and Inhibits Noncanonical Autophagy. Int J Mol Sci 2024; 25:4493. [PMID: 38674078 PMCID: PMC11050548 DOI: 10.3390/ijms25084493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Canonical autophagy is an evolutionarily conserved process that forms double-membrane structures and mediates the degradation of long-lived proteins (LLPs). Noncanonical autophagy (NCA) is an important alternative pathway involving the formation of microtubule-associated protein 1 light chain 3 (LC3)-positive structures that are independent of partial core autophagy proteins. NCA has been defined by the conjugation of ATG8s to single membranes (CASM). During canonical autophagy and NCA/CASM, LC3 undergoes a lipidation modification, and ATG16L1 is a crucial protein in this process. Previous studies have reported that the WDR domain of ATG16L1 is not necessary for canonical autophagy. However, our study found that WDR domain deficiency significantly impaired LLP degradation in basal conditions and slowed down LC3-II accumulation in canonical autophagy. We further demonstrated that the observed effect was due to a reduced interaction between ATG16L1 and FIP200/WIPI2, without affecting lysosome function or fusion. Furthermore, we also found that the WDR domain of ATG16L1 is crucial for chemical-induced NCA/CASM. The results showed that removing the WDR domain or introducing the K490A mutation in ATG16L1 significantly inhibited the NCA/CASM, which interrupted the V-ATPase-ATG16L1 axis. In conclusion, this study highlights the significance of the WDR domain of ATG16L1 for both canonical autophagy and NCA functions, improving our understanding of its role in autophagy.
Collapse
Affiliation(s)
- Jiuge Tang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| | - Dongmei Fang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| | - Jialing Zhong
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| | - Min Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| |
Collapse
|
47
|
Kuchitsu Y, Taguchi T. STINGing organelle surface with acid. EMBO Rep 2024; 25:1708-1710. [PMID: 38503877 PMCID: PMC11015003 DOI: 10.1038/s44319-024-00120-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
This article reflects on recent findings on the ion channel function of STING in the context of "conjugation of ATG8 (LC3) to single membranes (CASM)".
Collapse
Affiliation(s)
- Yoshihiko Kuchitsu
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| | - Tomohiko Taguchi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
48
|
Migliano SM, Schultz SW, Wenzel EM, Takáts S, Liu D, Mørk S, Tan KW, Rusten TE, Raiborg C, Stenmark H. Removal of hypersignaling endosomes by simaphagy. Autophagy 2024; 20:769-791. [PMID: 37840274 PMCID: PMC11062362 DOI: 10.1080/15548627.2023.2267958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/14/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023] Open
Abstract
Activated transmembrane receptors continue to signal following endocytosis and are only silenced upon ESCRT-mediated internalization of the receptors into intralumenal vesicles (ILVs) of the endosomes. Accordingly, endosomes with dysfunctional receptor internalization into ILVs can cause sustained receptor signaling which has been implicated in cancer progression. Here, we describe a surveillance mechanism that allows cells to detect and clear physically intact endosomes with aberrant receptor accumulation and elevated signaling. Proximity biotinylation and proteomics analyses of ESCRT-0 defective endosomes revealed a strong enrichment of the ubiquitin-binding macroautophagy/autophagy receptors SQSTM1 and NBR1, a phenotype that was confirmed in cell culture and fly tissue. Live cell microscopy demonstrated that loss of the ESCRT-0 subunit HGS/HRS or the ESCRT-I subunit VPS37 led to high levels of ubiquitinated and phosphorylated receptors on endosomes. This was accompanied by dynamic recruitment of NBR1 and SQSTM1 as well as proteins involved in autophagy initiation and autophagosome biogenesis. Light microscopy and electron tomography revealed that endosomes with intact limiting membrane, but aberrant receptor downregulation were engulfed by phagophores. Inhibition of autophagy caused increased intra- and intercellular signaling and directed cell migration. We conclude that dysfunctional endosomes are surveyed and cleared by an autophagic process, simaphagy, which serves as a failsafe mechanism in signal termination.Abbreviations: AKT: AKT serine/threonine kinase; APEX2: apurinic/apyrimidinic endodoexyribonuclease 2; ctrl: control; EEA1: early endosome antigen 1; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; ESCRT: endosomal sorting complex required for transport; GFP: green fluorescent protein; HGS/HRS: hepatocyte growth factor-regulated tyrosine kinase substrate; IF: immunofluorescence; ILV: intralumenal vesicle; KO: knockout; LIR: LC3-interacting region; LLOMe: L-leucyl-L-leucine methyl ester (hydrochloride); MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK1/ERK2: mitogen-activated protein kinase 1; MAPK3/ERK1: mitogen-activated protein kinase 3; NBR1: NBR1 autophagy cargo receptor; PAG10: Protein A-conjugated 10-nm gold; RB1CC1/FIP200: RB1 inducible coiled-coil 1; siRNA: small interfering RNA; SQSTM1: sequestosome 1; TUB: Tubulin; UBA: ubiquitin-associated; ULK1: unc-51 like autophagy activating kinase 1; VCL: Vinculin; VPS37: VPS37 subunit of ESCRT-I; WB: western blot; WT: wild-type.
Collapse
Affiliation(s)
- Simona M. Migliano
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Sebastian W. Schultz
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eva M. Wenzel
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Szabolcs Takáts
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Dan Liu
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Silje Mørk
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kia Wee Tan
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Medical Cell Biology, University of Uppsala, Uppsala, Sweden
| | - Tor Erik Rusten
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Camilla Raiborg
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
49
|
Tsumagari K, Isobe Y, Imami K, Arita M. Exploring protein lipidation by mass spectrometry-based proteomics. J Biochem 2024; 175:225-233. [PMID: 38102731 PMCID: PMC10908362 DOI: 10.1093/jb/mvad109] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Protein lipidation is a common co- or post-translational modification that plays a crucial role in regulating the localization, interaction and function of cellular proteins. Dysregulation of lipid modifications can lead to various diseases, including cancer, neurodegenerative diseases and infectious diseases. Therefore, the identification of proteins undergoing lipidation and their lipidation sites should provide insights into many aspects of lipid biology, as well as providing potential targets for therapeutic strategies. Bottom-up proteomics using liquid chromatography/tandem mass spectrometry is a powerful technique for the global analysis of protein lipidation. Here, we review proteomic methods for profiling protein lipidation, focusing on the two major approaches: the use of chemical probes, such as lipid alkyne probes, and the use of enrichment techniques for endogenous lipid-modified peptides. The challenges facing these methods and the prospects for developing them further to achieve a comprehensive analysis of lipid modifications are discussed.
Collapse
Affiliation(s)
- Kazuya Tsumagari
- Proteome Homeostasis Research Unit, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yosuke Isobe
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Koshi Imami
- Proteome Homeostasis Research Unit, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
50
|
Li W, Zhu H, Chen J, Ru B, Peng Q, Miao J, Liu X. PsAF5 functions as an essential adapter for PsPHB2-mediated mitophagy under ROS stress in Phytophthora sojae. Nat Commun 2024; 15:1967. [PMID: 38438368 PMCID: PMC10912746 DOI: 10.1038/s41467-024-46290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Host-derived reactive oxygen species (ROS) are an important defense means to protect against pathogens. Although mitochondria are the main intracellular targets of ROS, how pathogens regulate mitochondrial physiology in response to oxidative stress remains elusive. Prohibitin 2 (PHB2) is an inner mitochondrial membrane (IMM) protein, recognized as a mitophagy receptor in animals and fungi. Here, we find that an ANK and FYVE domain-containing protein PsAF5, is an adapter of PsPHB2, interacting with PsATG8 under ROS stress. Unlike animal PHB2 that can recruit ATG8 directly to mitochondria, PsPHB2 in Phytophthora sojae cannot recruit PsATG8 to stressed mitochondria without PsAF5. PsAF5 deletion impairs mitophagy under ROS stress and increases the pathogen's sensitivity to H2O2, resulting in the attenuation of P. sojae virulence. This discovery of a PsPHB2-PsATG8 adapter (PsAF5) in plant-pathogenic oomycetes reveals that mitophagy induction by IMM proteins is conserved in eukaryotes, but with differences in the details of ATG8 recruitment.
Collapse
Affiliation(s)
- Wenhao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongwei Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jinzhu Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Binglu Ru
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qin Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianqiang Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing, 100193, China.
| |
Collapse
|