1
|
Hu R, Jiang X, Zhu L, Meng R, Yang R, Sun W, Zhao Z, Lyu Y, Huang R, Xue F, Shi M, Zhou Z, Shen J, Xie C. Overcoming radiation-induced PD-L1 and COX-2 upregulation by nitric oxide gas nanogenerator to sensitize radiotherapy of lung cancer. Biomaterials 2025; 321:123335. [PMID: 40222258 DOI: 10.1016/j.biomaterials.2025.123335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/20/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Currently, certain lung cancer patients exhibit resistance to radiotherapy due to reduced DNA damage under hypoxic conditions and the cytoprotective and immune-resistance effect caused by increased programmed death ligand-1 (PD-L1) and Cyclooxygenase 2 (COX-2) expression after radiotherapy. At present, existing nanoparticles or drugs could hardly effectively, and easily address these obstacles faced by highly effective radiotherapy simultaneously, especially the simultaneous depression of PD-L1 and COX-2. In this study, it is newly proved that some typical nitric oxide (NO) gas donors could co-inhibit PD-L1 and COX-2 expression, revealing the possible not fully proven role of NO in reversing tumor immunotherapy resistance. Then, to realize selective NO generation in tumors, a simple tumor glutathione (GSH) responsive NO gas nanogenerator named SAB-NO nanoparticles was designed and prepared, which was composed of the NO donor Isoamyl Nitrite conjugated with serum albumin (SAB). By doing this, SAB-NO nanoparticles more effectively sensitized radiotherapy through breaking the cytoprotective effects faced by radiotherapy in vitro by generating more DNA damage through reversing tumor hypoxia and impairing the DNA damage repair process through decreasing PD-L1 expression. Then, the combination therapy of SAB-NO nanoparticles and radiotherapy effectively transformed cold tumors into hot ones through avoiding some potential immune-resistance effects induced by radiotherapy treatment alone through PD-L1 and COX-2 co-inhibition. In conclusion, the combined treatment of radiotherapy and SAB-NO nanoparticles finally almost completely suppressed the growth of lung tumors, revealing the novel role of NO donors in sensitizing tumor immunotherapy by avoiding the potential cytoprotective and immune-resistance effects.
Collapse
Affiliation(s)
- Rui Hu
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xin Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Lijie Zhu
- The Pharmaceutical Department of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325030, Zhejiang, China
| | - Rui Meng
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Rongbo Yang
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhenzhou Zhao
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yuehua Lyu
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Ruoyuan Huang
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Fei Xue
- Department of Radiotherapy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Mengke Shi
- Department of Radiotherapy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China.
| | - Congying Xie
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
2
|
Xu Q, Zhou Y, Wu M, Wu S, Yu J, Xu Y, Wei Z, Jin L. MTHFD2: A metabolic checkpoint altering trophoblast invasion and migration by remodeling folate-nucleotide metabolism in recurrent spontaneous abortion. Cell Signal 2025; 132:111808. [PMID: 40250694 DOI: 10.1016/j.cellsig.2025.111808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/30/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Recurrent spontaneous abortion (RSA) affects female reproduction worldwide, yet its pathological mechanisms are still unclear. It has been reported that cellular metabolism reprogramming is a critical step for trophoblasts during embryo implantation. Herein, MTHFD2 was recognized as a key metabolic checkpoint attributed to RSA occurrence. This work figured out that the expression level of MTHFD2 was significantly inhibited in villus tissues from RSA patients, suggesting the potential role of MTHFD2 in RSA occurrence. Moreover, MTHFD2 knockdown impaired cellular folate-nucleotide metabolism, induced the accumulation of AICAR, and thereby impairing the EMT process to inhibit the invasion and migration of trophoblasts Besides, the AICAR accumulation further activated the downstream AMPK which deactivated the JAK/STAT/Slug pathway and ultimately deactivated the EMT process. Using a mouse model, MTHFD2 inhibition was observed to induce embryo implantation failure in vivo. Our results highlighted MTHFD2 as a metabolic checkpoint that remodeled folate-nucleotide metabolism to regulate the EMT process and ultimately altered the migration and invasion of trophoblasts in RSA occurrence. Our findings suggested that MTHFD2 was a promising therapeutic target in recurrent spontaneous abortion treatment.
Collapse
Affiliation(s)
- Qingxin Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yicheng Zhou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Meijuan Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shengnan Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Yu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yao Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Zhiyun Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China.
| | - Liping Jin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China.
| |
Collapse
|
3
|
Ma J, Wang S, Zhang P, Zheng S, Li X, Li J, Pei H. Emerging roles for fatty acid oxidation in cancer. Genes Dis 2025; 12:101491. [PMID: 40290117 PMCID: PMC12022645 DOI: 10.1016/j.gendis.2024.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/09/2024] [Indexed: 04/30/2025] Open
Abstract
Fatty acid oxidation (FAO) denotes the mitochondrial aerobic process responsible for breaking down fatty acids (FAs) into acetyl-CoA units. This process holds a central position in the cancer metabolic landscape, with certain tumor cells relying primarily on FAO for energy production. Over the past decade, mounting evidence has underscored the critical role of FAO in various cellular processes such as cell growth, epigenetic modifications, tissue-immune homeostasis, cell signal transduction, and more. FAO is tightly regulated by multiple evolutionarily conserved mechanisms, and any dysregulation can predispose to cancer development. In this view, we summarize recent findings to provide an updated understanding of the multifaceted roles of FAO in tumor development, metastasis, and the response to cancer therapy. Additionally, we explore the regulatory mechanisms of FAO, laying the groundwork for potential therapeutic interventions targeting FAO in cancers within the metabolic landscape.
Collapse
Affiliation(s)
- Jialin Ma
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shuxian Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xiangpan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
4
|
Zhang C, Zhu JX, Abou El-Ela AS, Wang N, Ali SA, Shi ZY, Zhou Y, Khan MM, Zhou WW, Zhu ZR. Role of AMP-activated protein kinase in regulating hatching of Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2025; 81:3186-3195. [PMID: 39902473 DOI: 10.1002/ps.8689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/16/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND RNA interference (RNAi) has been proposed as a promising strategy for sustainable and eco-friendly pest management. Nutrient and energy signals are vital for embryonic development and hatching in insects. A key player in cellular energy sensing is adenosine monophosphate (AMP)-activated protein kinase (AMPK), which functions in embryonic development and hatching, and remains poorly understood. RESULTS In this study, we identified the three subunits of the NlAMPK gene, NlAMPKα, NlAMPKβ, and NlAMPKγ, in the brown planthopper (BPH), Nilaparvata lugens. Quantitative real-time PCR analysis showed that all these three subunits were highly expressed in eggs and ovaries. RNAi of NlAMPKα, NlAMPKβ, and NlAMPKγ in newly emerged BPH females resulted in hatching failure of the eggs they laid. Transcriptomic analysis identified a significant down-regulation of a chitinase (NlChit) gene's transcription on the NlAMPK subunits' knockdown. Notably, NlChit knockdown led to up-regulation of the three NlAMPK subunits, and reduced hatchability and thicker serosal cuticle. CONCLUSION Our findings demonstrate that NlAMPK could serve as a potential RNAi target for BPH control, and its mechanism is probably by down-regulating the expression of NlChit. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Zhejiang University, Hainan Institute, Sanya, China
| | - Jin-Xian Zhu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Zhejiang University, Hainan Institute, Sanya, China
| | - Amr S Abou El-Ela
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Plant Protection Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Ni Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Zhejiang University, Hainan Institute, Sanya, China
| | - Soomro Abid Ali
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Zhejiang University, Hainan Institute, Sanya, China
| | - Zhe-Yi Shi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Zhejiang University, Hainan Institute, Sanya, China
| | - Ying Zhou
- Zhejiang University, Hainan Institute, Sanya, China
| | | | - Wen-Wu Zhou
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Zhejiang University, Hainan Institute, Sanya, China
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang Yuhang Rice Science and Technology Institute, Zhejiang University, Hangzhou, China
- Zhejiang University, Hainan Institute, Sanya, China
| |
Collapse
|
5
|
Boshnakovska A, Pronto JR, Gall T, Aich A, Prochazka J, Nichtova Z, Sedlacek R, Sobitov I, Ainatzi S, Lenz C, Katschinski DM, Urlaub H, Voigt N, Rehling P, Kremer LS. SMIM20 promotes complex IV biogenesis and Ca 2+ signaling in mice heart. Cell Rep 2025; 44:115723. [PMID: 40402744 DOI: 10.1016/j.celrep.2025.115723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/18/2025] [Accepted: 04/29/2025] [Indexed: 05/24/2025] Open
Abstract
Mitochondria are key to cellular energetics, metabolism, and signaling. Their dysfunction is linked to devastating diseases, including mitochondrial disorders, diabetes, neurodegenerative diseases, cardiac disorders, and cancer. Here, we present a knockout mouse model lacking the complex IV assembly factor SMIM20/MITRAC7. SMIM20-/- mice display cardiac pathology with reduced heart weight and cardiac output. Heart mitochondria present with reduced levels of complex IV associated with increased complex I activity, have altered fatty acid oxidation, and display elevated levels of ROS production. Interestingly, mutant mouse ventricular myocytes show unphysiological Ca2+ handling, which can be attributed to the increase in mitochondrial ROS production. Our study presents an example of a tissue-specific phenotype in the context of OXPHOS dysfunction. Moreover, our data suggest a link between complex IV dysfunction and Ca2+ handling at the endoplasmic reticulum through ROS signaling.
Collapse
Affiliation(s)
- Angela Boshnakovska
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany; German Center for Child and Adolescent Health (DZKJ), 37075 Göttingen, Germany
| | - Julius Ryan Pronto
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University Göttingen, 37075 Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Tanja Gall
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, 142 20 Prague, Czech Republic
| | - Zuzana Nichtova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, 142 20 Prague, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, 142 20 Prague, Czech Republic
| | - Izzatullo Sobitov
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University Göttingen, 37075 Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Sofia Ainatzi
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Dörthe M Katschinski
- Department of Cardiovascular Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University Göttingen, 37075 Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany; German Center for Child and Adolescent Health (DZKJ), 37075 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany; Max Planck Institute for Multidisciplinary Science, 37077 Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, Translational Neuroinflammation and Automated Microscopy, 37075 Göttingen, Germany.
| | - Laura S Kremer
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
6
|
Hong R, Min S, Huang J, Zou M, Zhou D, Liang Y. High-dose vitamin C promotes mitochondrial biogenesis in HCT116 colorectal cancer cells by regulating the AMPK/PGC-1α signaling pathway. J Cancer Res Clin Oncol 2025; 151:167. [PMID: 40372538 PMCID: PMC12081527 DOI: 10.1007/s00432-025-06211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/23/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Mitochondrial dysfunction is closely associated with cancer development. Colorectal cancer (CRC) cells often exhibit altered energy metabolism, characterized by increased glycolysis and reduced oxidative phosphorylation. Enhancing mitochondrial biogenesis and function may represent a promising therapeutic approach. High-dose vitamin C has demonstrated anti-tumor properties and the ability to reverse the Warburg effect, but its role in regulating mitochondrial biogenesis and function remains unclear. METHODS We evaluated the altered mitochondrial functional status of HCT116 colorectal cancer cells compared to FHC colorectal epithelial cells, assessed the effects of high-dose vitamin C on mitochondrial biogenesis and function in HCT116 cells, and explored the underlying regulatory mechanisms. RESULTS HCT116 cells exhibited mitochondrial dysfunction compared to FHC cells, including decreased expression of electron transport chain complexes III and IV, reduced TFAM levels, and lower mtDNA content. Vitamin C treatment significantly enhanced mitochondrial biogenesis and function, as reflected by increased AMPK phosphorylation, upregulation of PGC-1α, SOD2, NRF2, TFAM, MT-CYB, and MTCO1, elevated mtDNA content, restored membrane potential, enhanced oxidative phosphorylation, and reduced glycolytic activity. Furthermore, vitamin C markedly suppressed HCT116 cell viability and clonogenic capacity, while these effects were substantially diminished by cotreatment with Compound C. CONCLUSION This study demonstrates that high-dose vitamin C ameliorates mitochondrial dysfunction and promotes mitochondrial biogenesis and function in colorectal cancer cells through activation of the AMPK-PGC-1α signaling pathway, thereby suppressing tumor cell proliferation. These findings suggest that vitamin C may serve as a promising therapeutic agent for targeting mitochondrial metabolism in colorectal cancer.
Collapse
Affiliation(s)
- RuiYang Hong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Su Min
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jia Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mou Zou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - DongYu Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Liang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Zhao Q, Wang Y, Ding L, Li Z, Wang M, Huang Y, Cao Q, Sun Y, Guo X. Capsaicin induces ferroptosis via suppression of SLC7A11 activity and upregulation of ACSL4 mediated by AMPK in tongue squamous cell carcinoma. Front Oncol 2025; 15:1532555. [PMID: 40438695 PMCID: PMC12116642 DOI: 10.3389/fonc.2025.1532555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/21/2025] [Indexed: 06/01/2025] Open
Abstract
Introduction The global incidence of tongue squamous cell carcinoma (TSCC) has been steadily increasing. Our previous studies have demonstrated that capsaicin (CAP) promotes apoptosis and inhibits cell migration, thereby exerting anti-TSCC effects. In this study, we aimed to validate whether CAP induces ferroptosis in TSCC and to elucidate the underlying mechanisms. Methods Cell viability in HN6 and CAL27 cells was assessed using CCK-8 assays. Mitochondrial structural changes were observed via transmission electron microscopy (TEM). The levels of malondialdehyde (MDA), Fe2+, reactive oxygen species (ROS), and glutathione (GSH) were measured by the corresponding assay kits. Ferrostatin-1 (Fer-1) was utilized to confirm the involvement of ferroptosis. Western blotting was employed to evaluate the phosphorylation of AMP-activated protein kinase (AMPK), acyl-CoA synthetase long-chain family member 4 (ACSL4), and glutathione peroxidase 4 (GPX4). Additionally, Glutamic acid release was determined using an assay kit. The interaction between BECN1 and solute carrier family 7 member 11 (SLC7A11) was analyzed by co-immunoprecipitation (Co-IP). To elucidate the underlying mechanisms, lentiviral-mediated shRNA knockdown of AMPK was performed, with subsequent in vivo validation. Results CAP significantly suppressed the viability of HN6 and CAL27 cells. TEM analysis revealed mitochondrial damage following CAP treatment. Furthermore, CAP increased levels of MDA, Fe²⁺, and ROS while decreasing GSH; these alterations were reversed by Fer-1 treatment. Western blot analyses indicated that CAP upregulated phosphorylated AMPK and ACSL4 but downregulated GPX4 expression. Moreover, CAP inhibited glutamate release while enhancing BECN1-SLC7A11 binding, suggesting a reduction in SLC7A11 activity through the AMPK/BECN1 pathway. Notably, AMPK inhibition mitigated CAP-induced changes in p-BECN1, ACSL4, MDA, Fe²⁺, GSH, and ROS levels. In vivo experiments corroborated these findings. Discussion Our study demonstrates that CAP activate the AMPK signaling, inhibits the activity of SLC7A11 and increases ACSL4 expression, thereby inducing ferroptosis in TSCC. These findings, supported by in vivo data, highlight CAP's role in triggering ferroptosis as an anti-TSCC mechanism.
Collapse
Affiliation(s)
- Qiwei Zhao
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Yu Wang
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Long Ding
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Zhuang Li
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Mengyang Wang
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yueqing Huang
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Qiushi Cao
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Yaqin Sun
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Xiaohong Guo
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| |
Collapse
|
8
|
Jiang S, Liang Z, Hua J, Li Y, Fan X, Qiao Z, Wang Z, Shen Y, Fan L, Wang J. Network pharmacology and transcriptomics reveal Complanatoside A regulates lipid metabolism in hyperlipidemia and non-alcoholic fatty liver disease via the AMPK pathway. J Nutr Biochem 2025:109960. [PMID: 40354830 DOI: 10.1016/j.jnutbio.2025.109960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/28/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and hyperlipidemia belong to the metabolic disorder syndromes of metabolic syndrome. They share a common pathological basis and are often complicated. Complanatoside A (CA), a flavonoid abundant in Astragali complanati semen, helps to prevent NAFLD and hyperlipidemia. However, the exact molecular mechanism is uncertain. Therefore, this study aims to explore the core mechanism. Network pharmacology was used to analyze the preventive mechanism of CA against NAFLD and hyperlipidemia. The efficacy of CA was proven in a high-fat diet-fed mouse model and a steatogenic hepatocyte model. Transcriptomic analysis, Western blot validation, and molecular docking methods were used to explore the common mechanism of CA in preventing NAFLD and hyperlipidemia. Network pharmacology revealed that the AMP-activated protein kinase (AMPK) pathway is a common mechanism leading to NAFLD and hyperlipidemia. It is also a potential pathway by which CA exerts its protective effect, which was confirmed in transcriptomics in vivo. Both in vitro and in vivo experiments showed that CA could inhibit lipid synthesis and promote fatty acid oxidation by activating the AMPK, alleviating lipid accumulation, and lipotoxic liver injury. This was demonstrated by the use of an AMPK inhibitor in vitro. Furthermore, molecular docking results showed that CA could directly interact with AMPK to regulate downstream lipid-related proteins. In conclusion, the AMPK pathway is key in developing NAFLD and hyperlipidemia. CA plays a dual preventive role in NAFLD and hyperlipidemia by activating AMPK to regulate lipid metabolism.
Collapse
Affiliation(s)
- Sijia Jiang
- Beijing University of Chinese Medicine, 102488, Beijing, China
| | | | - Jian Hua
- Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Yajin Li
- Xinjiang Medical University, 830011, Urumqi, China
| | - Xiaoxu Fan
- Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Zhiyuan Qiao
- Xinjiang Medical University, 830011, Urumqi, China
| | - Zhen Wang
- Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Yiwei Shen
- Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Le Fan
- Department of Endocrinology, Xiyuan Hosipital of China Academy of Chinese Medical Sciences.
| | - Jingxia Wang
- Beijing University of Chinese Medicine, 102488, Beijing, China.
| |
Collapse
|
9
|
Li Y, Zheng L, Chen M, Li R, Yu Y, Qiao L, Liu J, Zhang X, Zhang Y, Zhang Y, Zheng W. Nootkatone Alleviates Type 2 Diabetes in db/db Mice Through AMPK Activation and ERK Inhibition: An Integrated In Vitro and In Vivo Study. Molecules 2025; 30:2111. [PMID: 40430283 PMCID: PMC12114572 DOI: 10.3390/molecules30102111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a common chronic metabolic disorder that imposes a substantial healthcare burden globally. Recent advances highlight the potential of natural products in ameliorating T2DM. In this study, we investigated the therapeutic efficacy of nootkatone (Nok), a natural sesquiterpene ketone, in T2DM and elucidated its underlying mechanisms. In vivo experiments demonstrated that Nok administration markedly improved dysregulated glucose metabolism and ameliorated serum biochemical abnormalities in db/db mice. Leveraging a network pharmacology-based approach, we identified putative molecular targets of Nok. Subsequent in vitro analyses revealed that Nok significantly enhanced glucose consumption in cultured cells. Mechanistically, Nok robustly activated AMP-activated protein kinase (AMPK) while suppressing mitogen-activated protein kinase (MAPK) signaling. Western blot validation further indicated that Nok downregulated the phosphorylation of MAPK1/3 (ERK2/1), attenuating MAPK pathway activation and thereby alleviating metabolic dysfunction-associated fatty liver disease (MAFLD) progression in the diabetic model. Collectively, our findings suggest that Nok exerts anti-diabetic effects via dual modulation of AMPK activation and MAPK inhibition, effectively restoring metabolic homeostasis and mitigating inflammation in T2DM. This study positions Nok as a promising natural compound for therapeutic intervention in T2DM and associated metabolic disorders.
Collapse
Affiliation(s)
- Yingjie Li
- School of Pharmacy, Harbin University of Commerce, Harbin 150028, China;
| | - Linlin Zheng
- Department of Pharmacology, College of Basic Medicine and Life Sciences, Hainan Medical College, Haikou 571199, China
| | - Mimi Chen
- Hainan Academy of Medical Sciences, Haikou 571199, China
| | - Ruodi Li
- Department of Pharmacology, College of Basic Medicine and Life Sciences, Hainan Medical College, Haikou 571199, China
| | - Yansu Yu
- Department of Pharmacology, College of Basic Medicine and Life Sciences, Hainan Medical College, Haikou 571199, China
| | - Lu Qiao
- Department of Pharmacology, College of Basic Medicine and Life Sciences, Hainan Medical College, Haikou 571199, China
| | - Jialu Liu
- School of Pharmacy, Hainan Medical College, Haikou 571199, China
| | - Xiaopo Zhang
- School of Pharmacy, Hainan Medical College, Haikou 571199, China
| | - Yong Zhang
- Department of Pharmacology, College of Basic Medicine and Life Sciences, Hainan Medical College, Haikou 571199, China
- Hainan Academy of Medical Sciences, Haikou 571199, China
| | - Yuxin Zhang
- Hainan Academy of Medical Sciences, Haikou 571199, China
| | - Wei Zheng
- School of Pharmacy, Harbin University of Commerce, Harbin 150028, China;
| |
Collapse
|
10
|
Wu J, Luo J, He Q, Zhang F, Shi C, Zhao J, Li C, Deng W. CD36 molecule and AMP-activated protein kinase signaling drive docosahexaenoic acid-induced lipid remodeling in goat mammary epithelial cells. Int J Biol Macromol 2025; 311:144076. [PMID: 40348225 DOI: 10.1016/j.ijbiomac.2025.144076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/28/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Goat milk is a vital component of China's dairy industry, renowned for its richness in lipids essential to human health. Polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (C22:6n-3, DHA), are particularly valuable for their integration into phospholipids and triacylglycerols. While mammary cells can uptake and channel PUFAs into lipids for milk fat secretion, the broader functional effects of DHA within these cells remain unclear. This study demonstrated that DHA supplementation markedly altered levels of lipid subclasses in goat mammary epithelial cells (GMECs), as revealed by lipidomic analysis. DHA treatment significantly increased the levels of free DHA, alongside DHA-enriched triacylglycerols, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine, thereby driving lipid remodeling in GMECs. Additionally, DHA modulated transcription of key fatty acid metabolism genes, such as SREBP1, FASD2, and FASN. Mechanistically, DHA supplementation activated the AMPK signaling pathway inhibiting fatty acid metabolism, and upregulated the expression of fatty acid transport gene-CD36 in GMECs. Knockdown or mutation of the fatty acid binding domain of CD36 diminished DHA-induced AMPK activation and transcriptional regulation of fatty acid metabolism genes in GMECs. In summary, DHA supplementation induces lipid remodeling in GMECs via the CD36-AMPK signaling axis, highlighting its potential to facilitate the development of DHA-enriched functional goat milk.
Collapse
Affiliation(s)
- Jiao Wu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, People's Republic of China; College of Animal Science and Technology, Northwest A & F University, Yangling 712100, People's Republic of China
| | - Jun Luo
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, People's Republic of China.
| | - Qiuya He
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, People's Republic of China
| | - Fuhong Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, People's Republic of China
| | - Chenbo Shi
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, People's Republic of China
| | - Jianqing Zhao
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, People's Republic of China
| | - Cong Li
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, People's Republic of China
| | - Weidong Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, People's Republic of China
| |
Collapse
|
11
|
Okamoto K, Mihara Y, Ogasawara S, Murakami T, Ohmori S, Mori T, Umata T, Kawasaki Y, Hirano K, Yano H, Tsuneoka M. Interaction Between PHF8 and a Segment of KDM2A, Which Is Controlled by the Phosphorylation Status at a Specific Serine in an Intrinsically Disordered Region of KDM2A, Regulates rRNA Transcription and Cell Proliferation in a Breast Cancer Cell Line. Biomolecules 2025; 15:661. [PMID: 40427554 PMCID: PMC12109296 DOI: 10.3390/biom15050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
Mild starvation due to low concentrations of an inhibitor of glycolysis, 2-deoxy-D-glucose, activates AMP-activated protein kinase (AMPK) and lysine-specific demethylase 2A (KDM2A) to reduce rRNA transcription and cell proliferation in breast cancer cells. However, the mechanisms of how AMPK regulates KDM2A are unknown. Here, we found that PHD finger protein 8 (PHF8) interacted with KDM2A and contributed to the reduction in rRNA transcription and cell proliferation by 2-deoxy-D-glucose in a breast cancer cell line, MCF-7. We analyzed how KDM2A bound PHF8 in detail and found that PHF8 interacted with KDM2A via two regions of KDM2A. One of the regions contained an intrinsically disordered region (IDR). IDRs can show rapidly switchable protein-protein interactions. Deletion of the PHF8-binding region activated KDM2A to reduce rRNA transcription, and 2-deoxy-D-glucose reduced the interaction between PHF8 and the KDM2A fragment containing the PHF8-binding region. A 2-deoxy-D-glucose or AMPK activator dephosphorylated KDM2A at Ser731, which is located on the N-terminal side of the PHF8-binding region. Replacement of Ser731 by Ala decreased binding of PHF8 to the KDM2A fragment that contains the PHF8-binding region and Ser731 and reduced rRNA transcription and cell proliferation. These results suggest that the mode of interaction between KDM2A and PHF8 is regulated via dephosphorylation of KDM2A through AMPK to control rRNA transcription, and control of the phosphorylation state of Ser731 would be a novel target for breast cancer therapy.
Collapse
Affiliation(s)
- Kengo Okamoto
- Faculty of Agriculture, Department of Applied Biological Science, Takasaki University of Health and Welfare, Takasaki 370-0033, Gunma, Japan;
| | - Yutaro Mihara
- Department of Pathology, School of Medicine, Kurume University, Kurume 830-0011, Fukuoka, Japan; (Y.M.); (S.O.); (H.Y.)
| | - Sachiko Ogasawara
- Department of Pathology, School of Medicine, Kurume University, Kurume 830-0011, Fukuoka, Japan; (Y.M.); (S.O.); (H.Y.)
| | - Takashi Murakami
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Iruma 350-1241, Saitama, Japan;
| | - Sinya Ohmori
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Gunma, Japan; (S.O.); (T.M.); (Y.K.); (K.H.)
| | - Tetsuya Mori
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Gunma, Japan; (S.O.); (T.M.); (Y.K.); (K.H.)
| | - Toshiyuki Umata
- Radioisotope Research Center, Facility for Education and Research Support, University of Occupational and Environmental Health, Kitakyushu 807-8555, Fukuoka, Japan;
| | - Yuki Kawasaki
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Gunma, Japan; (S.O.); (T.M.); (Y.K.); (K.H.)
| | - Kazuya Hirano
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Gunma, Japan; (S.O.); (T.M.); (Y.K.); (K.H.)
| | - Hirohisa Yano
- Department of Pathology, School of Medicine, Kurume University, Kurume 830-0011, Fukuoka, Japan; (Y.M.); (S.O.); (H.Y.)
| | - Makoto Tsuneoka
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Gunma, Japan; (S.O.); (T.M.); (Y.K.); (K.H.)
| |
Collapse
|
12
|
Zhai X, Gao Y, Lou H, Meng L, Zhou J, Lin H, Xu F. Protective Role of H 2S in High Glucose-Induced Cardiomyocyte and Endothelial Cell Dysfunction: A Mechanistic Review. Diabetes Metab Syndr Obes 2025; 18:1373-1388. [PMID: 40330316 PMCID: PMC12053776 DOI: 10.2147/dmso.s505138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/22/2025] [Indexed: 05/08/2025] Open
Abstract
Hydrogen sulfide (H2S), recognized as a significant gasotransmitter, has been shown to effectively reduce damage to cardiomyocytes and endothelial cells caused by diabetes. Its protective effects primarily stem from several mechanisms, including S-sulfhydration of proteins, reduction of cell death, alleviation of mitochondrial damage, improvement of ion channel dysfunction, interaction with nitric oxide, and modulation of angiogenesis. H2S is synthesized by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST), whose expression is significantly reduced under diabetic conditions, including experimental high-glucose treatment in cells and diabetes mellitus animal models. This review summarizes the protective role of H2S and its donors in these pathological processes, highlights existing research gaps-including challenges in the targeted delivery of H2S donors, limited clinical translation, and incomplete mechanistic understanding-and discusses future directions for developing targeted H2S-based therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoya Zhai
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing, People’s Republic of China
| | - Yefei Gao
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing, People’s Republic of China
| | - Haifei Lou
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing, People’s Republic of China
| | - Liping Meng
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing, People’s Republic of China
| | - Jiedong Zhou
- Cardiovascular Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315211, People’s Republic of China
| | - Hui Lin
- Department of Cardiology, The Affiliated Lihuili Hospital of Ningbo University Health Science Center, Ningbo, Zhejiang, 315211, People’s Republic of China
| | - Fukang Xu
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing, People’s Republic of China
| |
Collapse
|
13
|
Ren T, Fan X, Wu Q, Wu Y, Sun X, Tong H. Structural insights and therapeutic potential of plant-based pectin as novel therapeutic for type 2 diabetes mellitus: A review. Int J Biol Macromol 2025; 307:141876. [PMID: 40064270 DOI: 10.1016/j.ijbiomac.2025.141876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is a global health challenge with limited efficacy of current treatments, necessitating alternative therapies. Plant-derived pectin, composed of galacturonic acid and structural domains such as homogalacturonan, has shown promise as an anti-diabetic agent. Pectin exerts its therapeutic effects through multiple mechanisms, including enhancing β-cell function, regulating glucose metabolism, improving insulin sensitivity, inhibiting digestive enzymes, and restoring gut microbiota balance. Its bioactivity is influenced by physicochemical properties like molecular weight, degree of methylation, and structural complexity. This review explores the anti-diabetic potential of pectin, its structure-activity relationships, and mechanisms of action, providing insights for its development as a novel therapeutic agent in T2DM management.
Collapse
Affiliation(s)
- Ting Ren
- School of Pharmaceutical Sciences, Jilin Medical University, Jilin 132013, China
| | - Xinrong Fan
- Department of Durg Preparation, Lishui Hospital of Traditional Chinese Medicine, Lishui 323000, China
| | - Qifang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xin Sun
- School of Pharmaceutical Sciences, Jilin Medical University, Jilin 132013, China.
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.
| |
Collapse
|
14
|
Lee DI, Kim S, Kang DO. Exploring the complex interplay between alcohol consumption and cardiovascular health: Mechanisms, evidence, and future directions. Trends Cardiovasc Med 2025; 35:243-253. [PMID: 39756716 DOI: 10.1016/j.tcm.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
This review article explores the intricate relationship between alcohol consumption and cardiovascular health, underscoring on both clinical outcomes and underlying pathophysiological mechanisms. It examines the complex dose-response relationships for various cardiovascular disease (CVD) subtypes, including coronary heart disease, stroke, and atrial fibrillation, while categorizing pathophysiological mechanisms into three conceptual areas: primary initiating factors, secondary transmission pathways, and end-organ effects. Although mild-to-moderate alcohol consumption may confer some benefits for cardiovascular health and certain CVD subtypes, growing evidence highlights the importance of lifestyle modifications to reduce alcohol intake, particularly among heavy drinkers. This review provides a comprehensive overview of current knowledge, emphasizes the need for future research with robust methodologies, and advocates for incorporating updated scientific evidence into personalized approaches within international cardiovascular and national guidelines.
Collapse
Affiliation(s)
- Dae-In Lee
- Cardiovascular Center, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sunwon Kim
- Cardiovascular Center, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dong Oh Kang
- Cardiovascular Center, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Carvalho G, Nguyen TVH, Repolês B, Forslund JME, Wijethunga WMRR, Ranjbarian F, Mendes IC, Gorospe CM, Chaudhari N, Falabella M, Doimo M, Wanrooij S, Pitceathly RDS, Hofer A, Wanrooij PH. Activating AMPK improves pathological phenotypes due to mtDNA depletion. FEBS J 2025; 292:2359-2380. [PMID: 39918244 PMCID: PMC12062783 DOI: 10.1111/febs.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 05/11/2025]
Abstract
AMP-activated protein kinase (AMPK) is a master regulator of cellular energy homeostasis that also plays a role in preserving mitochondrial function and integrity. Upon a disturbance in the cellular energy state that increases AMP levels, AMPK activity promotes a switch from anabolic to catabolic metabolism to restore energy homeostasis. However, the level of severity of mitochondrial dysfunction required to trigger AMPK activation is currently unclear, as is whether stimulation of AMPK using specific agonists can improve the cellular phenotype following mitochondrial dysfunction. Using a cellular model of mitochondrial disease characterized by progressive mitochondrial DNA (mtDNA) depletion and deteriorating mitochondrial metabolism, we show that mitochondria-associated AMPK becomes activated early in the course of the advancing mitochondrial dysfunction, before any quantifiable decrease in the ATP/(AMP + ADP) ratio or respiratory chain activity. Moreover, stimulation of AMPK activity using the specific small-molecule agonist A-769662 alleviated the mitochondrial phenotypes caused by the mtDNA depletion and restored normal mitochondrial membrane potential. Notably, the agonist treatment was able to partially restore mtDNA levels in cells with severe mtDNA depletion, while it had no impact on mtDNA levels of control cells. The beneficial impact of the agonist on mitochondrial membrane potential was also observed in cells from patients suffering from mtDNA depletion. These findings improve our understanding of the effects of specific small-molecule activators of AMPK on mitochondrial and cellular function and suggest a potential application for these compounds in disease states involving mtDNA depletion.
Collapse
Affiliation(s)
- Gustavo Carvalho
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
| | - Tran V. H. Nguyen
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
| | - Bruno Repolês
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
| | | | | | | | - Isabela C. Mendes
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
| | | | - Namrata Chaudhari
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
| | - Micol Falabella
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
| | - Mara Doimo
- Clinical Genetics Unit, Department of Women and Children's HealthPadua UniversityPaduaItaly
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
| | - Robert D. S. Pitceathly
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular DiseasesThe National Hospital for Neurology and NeurosurgeryLondonUK
| | - Anders Hofer
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
| | | |
Collapse
|
16
|
Zhang Z, Zhang Y, Zou X, Li J, Chi Y, Bai H, Wei B, Yun H, Zhang Q, Cao W, Liu H, Duan H. Irisin attenuates cardiac injury and improves prognosis in rats with hemorrhagic shock by maintaining mitochondrial homeostasis via the AMPK/Drp1 pathway. Front Pharmacol 2025; 16:1560608. [PMID: 40356981 PMCID: PMC12066318 DOI: 10.3389/fphar.2025.1560608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/04/2025] [Indexed: 05/15/2025] Open
Abstract
Objective Hemorrhagic shock (HS) is a critical clinical condition in which cardiac dysfunction and failure are leading causes of mortality. Mitochondrial dysfunction is central to the pathogenesis of cardiac dysfunction in HS. Irisin has been shown to improve mitochondrial function and protect against ischemia-reperfusion injury (IRI), but its specific effects on myocardial injury in HS are unknown. This study investigates irisin's therapeutic potential in a rat model of HS. Methods For in vivo studies, a rat HS model was established via controlled blood withdrawal and Animals were allocated to four groups: Sham, HS, HS + Vehicle (HS + Veh), and HS + Irisin. Physiological responses were evaluated through temporal sampling at 1, 3, and 6 h post-HS. For in vitro studies, H9c2 cardiomyocytes were exposed to oxygen-glucose deprivation to establish a hypoxic model. Cells were categorized into six groups: normoxia (N), normoxia + AMPK inhibitor compound C (N + Cc), hypoxia (H), hypoxia + Cc (H + Cc), hypoxia + irisin (H + Irisin), and hypoxia + Cc + irisin (H + Cc + Irisin). Cellular functional outcomes were analyzed following 3-h hypoxia exposure. Results HS significantly reduced serum irisin levels. Exogenous irisin administration enhanced survival rates, stabilized mean arterial pressure (MAP), lowered lactate (LAC) levels, improved cardiac structure and function, and reduced myocardial injury biomarkers in HS rats. Mechanistically, irisin activated AMP-activated protein kinase (AMPK) and Sirtuin 1(SIRT1), to suppress the expression of dynamin-related protein 1 (Drp1) and fission protein 1 (Fis1), while upregulating mitofusin 1 (Mfn1). This modulation of mitochondrial dynamics preserved cardiomyocyte mitochondrial membrane potential (MMP), ATP production, and structural integrity. Hypoxic H9c2 cardiomyocytes exhibited consistent results. To confirm AMPK/Drp1-dependent mechanisms, Cc was administered to inhibit irisin-induced AMPK activation. Cc abolished irisin's suppression of Drp1/Fis1 and its Mfn1 upregulation. Furthermore, Cc eliminated irisin-mediated protection in both H9c2 cardiomyocytes and mitochondria. Conclusion Our study demonstrates that irisin ameliorates cardiac function and enhances early prognosis in HS. These cardioprotective effects are achieved through attenuation of myocardial damage and SIRT1/AMPK/Drp1 pathway-dependent restoration of mitochondrial homeostasis.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Diagnosis and Treatment for Cadre, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
- Graduate School, Hebei North University, Zhangjiakou, China
- Department of Burns and Plastic Surgery, Peoples Liberation Army Air Force General Hospital, Beijing, China
| | - Yufang Zhang
- Department of Diagnosis and Treatment for Cadre, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
- Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Xiaofang Zou
- Department of Burns and Plastic Surgery, Peoples Liberation Army Air Force General Hospital, Beijing, China
| | - Jiake Li
- Graduate School, Hebei North University, Zhangjiakou, China
| | - Yunfei Chi
- Department of Diagnosis and Treatment for Cadre, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hailiang Bai
- Department of Diagnosis and Treatment for Cadre, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bin Wei
- Department of Diagnosis and Treatment for Cadre, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Huiting Yun
- Department of Diagnosis and Treatment for Cadre, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
- Graduate School, Hebei North University, Zhangjiakou, China
| | - Quanxi Zhang
- Department of Diagnosis and Treatment for Cadre, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
- Graduate School, Hebei North University, Zhangjiakou, China
| | - Weihua Cao
- Department of Diagnosis and Treatment for Cadre, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Haiyan Liu
- Department of Diagnosis and Treatment for Cadre, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongjie Duan
- Department of Diagnosis and Treatment for Cadre, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Yang Y, Zhao L, Gao F, Wu G, Luo Y, An M. Modulation of renal fibrosis-related signaling pathways by traditional Chinese medicine: molecular mechanisms and experimental evidence. Int Urol Nephrol 2025:10.1007/s11255-025-04532-z. [PMID: 40293615 DOI: 10.1007/s11255-025-04532-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Renal fibrosis (RF), characterized by excessive deposition of extracellular matrix leading to tissue damage and scar formation, represents a refractory disease and a pivotal pathological basis for the progression to end-stage renal disease. The pathogenesis of RF is intricate, prominently implicating multiple key signaling pathways, including adenosine monophosphate-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), transforming growth factor-β1/small mother against decapentaplegic (TGF-β1/Smad), toll-like receptor 4/nuclear factor kappa B (TLR4/NF-κB), wingless integrated/β-catenin (Wnt/β-catenin), hypoxia-inducible factor-1α (HIF-1α), Hedgehog, and mitogen-activated protein kinase (MAPK). The current Western medical practices primarily rely on supportive and replacement therapies, which are often costly and suboptimal in efficacy. In contrast, traditional Chinese medicine (TCM), with its inherent advantages of multi-target, multi-pathway, and multi-effect modulation, emerges as a promising new strategy for RF treatment. However, a systematic, comprehensive, and detailed summary of these advancements remains absent. Therefore, this review consolidates the recent research progress on TCM modulation of RF-related signaling pathways, aiming to provide a theoretical foundation for further investigations into RF and the development of TCM interventions.
Collapse
Affiliation(s)
- Yufei Yang
- Department of Pharmacy, Baotou Medical College, 31 Jianshe Road, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - Longshan Zhao
- Department of Pharmacy, Baotou Medical College, 31 Jianshe Road, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
- Department of Pharmacy, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Fengli Gao
- Department of Pharmacy, Second Affiliated Hospital of Baotou Medical College, Baotou, 014030, China
| | - Guodong Wu
- Department of Pharmacy, Baotou Medical College, 31 Jianshe Road, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - Yiduo Luo
- Department of Pharmacy, Baotou Medical College, 31 Jianshe Road, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - Ming An
- Department of Pharmacy, Baotou Medical College, 31 Jianshe Road, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
18
|
Baroni C, Bozdag M, Renzi G, De Luca V, Capasso C, Bazzicalupi C, Selleri S, Ferraroni M, Carta F, Supuran CT. X-ray crystallographic and kinetic studies of biguanide containing aryl sulfonamides as carbonic anhydrase inhibitors. RSC Med Chem 2025; 16:1633-1640. [PMID: 39935522 PMCID: PMC11809658 DOI: 10.1039/d4md01018c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
Here, we report a small series of dual-targeting compounds that combine the prototypical carbonic anhydrase (CA) zinc-binding sulfonamide moiety with the biguanide group of metformin, an emerging anticancer drug. The compounds reported similar in vitro inhibition profiles on a panel of physiologically relevant human (h)CAs, with marked selectivity for the cancer related IX and XII isoforms. The binding modes of representative inhibitors 5b and 5c within the active site of the hCA isoforms II and XII-mimic were assessed by X-ray crystallography, thus allowing us to clarify molecular features that may be useful for the design of more specific and potent inhibitors. For instance, we identified a mutation in the hCA XII-mimic which was found responsible for the selectivity of the ligands toward the tumor associated isoform. Interestingly, in the hCA II/5c complex, a second inhibitor molecule was bound to the catalytic cleft, probably affecting the inhibition properties of the canonical zinc-bound inhibitor.
Collapse
Affiliation(s)
- Chiara Baroni
- Department of Chemistry "Ugo Schiff", University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino FI Italy
| | - Murat Bozdag
- NEUROFARBA Department, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Gioele Renzi
- NEUROFARBA Department, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Viviana De Luca
- Department of Biology, Institute of Bioscience and Bioresources (IBBR)-CNR Via P. Castellino 111 80131 Napoli NA Italy
| | - Clemente Capasso
- Department of Biology, Institute of Bioscience and Bioresources (IBBR)-CNR Via P. Castellino 111 80131 Napoli NA Italy
| | - Carla Bazzicalupi
- Department of Chemistry "Ugo Schiff", University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino FI Italy
| | - Silvia Selleri
- NEUROFARBA Department, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Marta Ferraroni
- Department of Chemistry "Ugo Schiff", University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino FI Italy
| | - Fabrizio Carta
- NEUROFARBA Department, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| |
Collapse
|
19
|
Huang H, Duan M, Wei J, Liu Y, Xu S, Huang M, Tu Y, Xie J, Du W. Fibroblast growth factor 8 (FGF8) induces mitochondrial remodeling in chondrocytes via ERK/AMPK signaling pathway. FASEB J 2025; 39:e70501. [PMID: 40162651 DOI: 10.1096/fj.202500186r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Osteoarthritis (OA) is a disease characterized by articular cartilage degeneration, and its pathogenic mechanisms are associated with mitochondrial homeostasis disorders. Fibroblast growth factor 8 (FGF8) is a multipotent protein ligand which is upregulated in OA cartilage. However, the molecular mechanisms by which FGF8 regulates mitochondria in chondrocytes are not yet fully understood. Here, we treated chondrocytes with FGF8 and detected the effects of FGF8 on mitochondrial morphology in the cytoplasm using transmission electron and confocal laser scanning microscopy. ATP levels were measured to determine the cellular energy status. Western blotting and immunofluorescence staining experiments were employed to detect the fusion-fission proteins mitofusin 1 (MFN1), mitofusin 2 (MFN2), optic atrophy 1 (OPA1), dynamin-related protein 1 (DRP1), mitochondrial fission 1 protein (FIS1), and related signaling pathways. The FGF receptor (FGFR) inhibitor, AZD4547, and the ERK inhibitor, U0126, were used to verify the specific effects of the FGFR and ERK pathways. We found that FGF8 regulated mitochondrial morphology and dynamics in chondrocytes by inducing mitochondrial elongation. While it upregulated fusion proteins MFN1, MFN2, and OPA1, FGF8 downregulated fission proteins DRP1 and FIS1. ERK and AMPK pathways were activated in chondrocytes after FGF8 treatment. In contrast, both AZD4547 and U0126 inhibitors abolished mitochondrial elongation as well as the alteration of fusion-fission proteins induced by FGF8, and U0126 also inhibited the FGF8-triggered activation of AMPK. This study is the first to reveal that FGF8 remodels mitochondria through ERK/AMPK signaling in chondrocytes, offering novel insights into the potential role of FGF8 in OA.
Collapse
Affiliation(s)
- Hongcan Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jieya Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Siqun Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Minglei Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ying Tu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wei Du
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Srivastava SP, Kopasz-Gemmen O, Kunamneni A, Thurnman A, Ozukan E, Swaroop V, Yoshida S, Hong S, Inoki K. AMPK is dispensable for physiological podocyte and glomerular functions but prevents glomerular fibrosis in experimental diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647592. [PMID: 40291739 PMCID: PMC12026990 DOI: 10.1101/2025.04.07.647592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
AMP-activated protein kinase (AMPK) has been postulated to be crucial in regulating various renal physiology and pathophysiology processes, including energy metabolism, ion and water transport, inflammation, and hypertrophy. However, the specific roles of AMPK in the podocyte, a cell critical for maintaining glomerular filtration, have not been fully explored using genetic model animals. In this study, we generated mice lacking both AMPK α1 and α2 catalytic subunits in glomerular podocytes (pmut). Our findings revealed that, surprisingly, AMPK is dispensable for normal podocyte function. These knockout mice could live as long as their wild-type littermates without showing any pathological alterations in their glomeruli or glomerular function at two years of age. However, under type 1 diabetic conditions, the diabetic pmut mice exhibited increased lipid and collagen accumulation and an elevated expression of mesenchymal proteins in their glomeruli. They also showed more significant albuminuria compared to control diabetic mice. Under high glucose culture conditions, glomeruli isolated from pmut mice demonstrated a reduced expression of mitochondrial genes (e.g., Ndufv2) and increased leakage of mitochondrial components. Additionally, there was heightened expression of genes associated with nucleotide sensing and pro-inflammatory pathways (including mb21d2, IL-1 beta, and NF-kB). These observations suggest that while AMPK is not necessary for podocyte function in healthy kidneys, it is crucial for preventing glomerular fibrosis resulting from lipotoxicity and inflammation under diabetic conditions.
Collapse
|
21
|
Cui J, Li H, Zhang T, Lin F, Chen M, Zhang G, Feng Z. Research progress on the mechanism of curcumin anti-oxidative stress based on signaling pathway. Front Pharmacol 2025; 16:1548073. [PMID: 40260389 PMCID: PMC12009910 DOI: 10.3389/fphar.2025.1548073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/24/2025] [Indexed: 04/23/2025] Open
Abstract
Oxidative stress refers to an imbalance between oxidative capacity and antioxidant capacity, leading to oxidative damage to proteins, lipids, and DNA, which can result in cell senescence or death. It is closely associated with the occurrence and development of various diseases, including cardiovascular diseases, nephropathy, malignant tumors, neurodegenerative diseases, hypertension, diabetes, and inflammatory diseases. Curcumin is a natural polyphenol compound of β-diketone, which has a wide range of pharmacological activities such as anti-inflammatory, antibacterial, anti-oxidative stress, anti-tumor, anti-fibrosis, and hypolipidemic, demonstrating broad research and development value. It has a wide range of biological targets and can bind to various endogenous biomolecules. Additionally, it maintains the redox balance primarily by scavenging ROS, enhancing the activity of antioxidant enzymes, inhibiting lipid peroxidation, and chelating metal ions. This paper systematically describes the antioxidative stress mechanisms of curcumin from the perspective of signaling pathways, focusing on the Keap1-Nrf2/ARE, NF-κB, NOX, MAPK and other pathways. The study also discusses potential pathway targets and the complex crosstalk among these pathways, aiming to provide insights for further research on curcumin's antioxidant mechanisms and its clinical applications.
Collapse
Affiliation(s)
- Jie Cui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haonan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianyi Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fengli Lin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meiyun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Guimin Zhang
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Zhong Feng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| |
Collapse
|
22
|
Zhang Y, Li T, Ding X, Liu L, Ma R, Qin W, Yan C, Wang C, Zhang J, Keerman M, Niu Q. F-53B disrupts energy metabolism by inhibiting the V-ATPase-AMPK axis in neuronal cells. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137111. [PMID: 39793390 DOI: 10.1016/j.jhazmat.2025.137111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
6:2 chloro-polyfluorooctane ether sulfonate (F-53B) is considered neurotoxic, but its mechanisms remain unclear. This study aimed to investigate the toxic effects of F-53B on neuronal cells, focusing on the role of the V-ATPase-AMPK axis in the mechanism of abnormal energy metabolism. Mouse astrocytes (C8-D1A) and human neuroblastoma cells (SH-SY5Y) exposed to F-53B were used as in vitro models. Our findings demonstrated that F-53B inhibited the expression of V-ATPase B2 and reduced V-ATPase activity, leading to an increase in lysosomal pH, decreased expression of TRPML1, and lysosomal Ca2 + accumulation. In turn, led to reduced the expression of CaMKK2 and phosphorylated AMPK (p-AMPK). Ultimately, mitochondria were damaged, evidenced by increased mitochondrial reactive oxygen species, mitochondrial membrane potential, and impaired mitochondrial oxidative phosphorylation, as shown by reduced NDUFS1 expression and diminished respiratory chain complex I activity. F-53B reduced the expression of the key glycolytic protein PFKFB3. Notably, V-ATPase B2 overexpression indirectly activates AMPK. Furthermore, resveratrol, an AMPK agonist, alleviates mitochondrial dysfunction and increases ATP production by promoting the recovery of mitochondria and glycolytic pathways. These findings elucidate a novel mechanism by which F-53B induces neurotoxicity through the V-ATPase-AMPK axis, and indicate V-ATPase and AMPK as potential therapeutic targets.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, PR China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, PR China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), PR China
| | - Tingting Li
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, PR China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, PR China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), PR China
| | - Xueman Ding
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, PR China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, PR China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), PR China
| | - Li Liu
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, PR China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, PR China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), PR China
| | - Runjiang Ma
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, PR China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, PR China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), PR China
| | - Wenqi Qin
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, PR China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, PR China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), PR China
| | - Chulin Yan
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, PR China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, PR China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), PR China
| | - Chun Wang
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, PR China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, PR China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), PR China
| | - Jingjing Zhang
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, PR China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, PR China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), PR China
| | - Mulatibieke Keerman
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, PR China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, PR China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), PR China.
| | - Qiang Niu
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, PR China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, PR China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), PR China.
| |
Collapse
|
23
|
Xu G, Zhang Q, Cheng R, Qu J, Li W. Survival strategies of cancer cells: the role of macropinocytosis in nutrient acquisition, metabolic reprogramming, and therapeutic targeting. Autophagy 2025; 21:693-718. [PMID: 39817564 PMCID: PMC11925119 DOI: 10.1080/15548627.2025.2452149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
Macropinocytosis is a nonselective form of endocytosis that allows cancer cells to largely take up the extracellular fluid and its contents, including nutrients, growth factors, etc. We first elaborate meticulously on the process of macropinocytosis. Only by thoroughly understanding this entire process can we devise targeted strategies against it. We then focus on the central role of the MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) in regulating macropinocytosis, highlighting its significance as a key signaling hub where various pathways converge to control nutrient uptake and metabolic processes. The article covers a comprehensive analysis of the literature on the molecular mechanisms governing macropinocytosis, including the initiation, maturation, and recycling of macropinosomes, with an emphasis on how these processes are hijacked by cancer cells to sustain their growth. Key discussions include the potential therapeutic strategies targeting macropinocytosis, such as enhancing drug delivery via this pathway, inhibiting macropinocytosis to starve cancer cells, blocking the degradation and recycling of macropinosomes, and inducing methuosis - a form of cell death triggered by excessive macropinocytosis. Targeting macropinocytosis represents a novel and innovative approach that could significantly advance the treatment of cancers that rely on this pathway for survival. Through continuous research and innovation, we look forward to developing more effective and safer anti-cancer therapies that will bring new hope to patients.Abbreviation: AMPK: AMP-activated protein kinase; ASOs: antisense oligonucleotides; CAD: carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase; DC: dendritic cell; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; ERBB2: erb-b2 receptor tyrosine kinase 2; ESCRT: endosomal sorting complex required for transport; GAP: GTPase-activating protein; GEF: guanine nucleotide exchange factor; GRB2: growth factor receptor bound protein 2; LPP: lipopolyplex; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; MTORC2: mechanistic target of rapamycin kinase complex 2; NSCLC: non-small cell lung cancer; PADC: pancreatic ductal adenocarcinoma; PDPK1: 3-phosphoinositide dependent protein kinase 1; PI3K: phosphoinositide 3-kinase; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns(3,4,5)P3: phosphatidylinositol-(3,4,5)-trisphosphate; PtdIns(4,5)P2: phosphatidylinositol-(4,5)-bisphosphate; PTT: photothermal therapies; RAC1: Rac family small GTPase 1; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase B1; RTKs: receptor tyrosine kinases; SREBF: sterol regulatory element binding transcription factor; TFEB: transcription factor EB; TNBC: triple-negative breast cancer; TSC2: TSC complex subunit 2; ULK1: unc-51 like autophagy activating kinase 1; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Guoshuai Xu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Qinghong Zhang
- Emergency Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Renjia Cheng
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People’s Liberation Army of China, Shenyang, Liaoning, China
| | - Jun Qu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Wenqiang Li
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
24
|
Fu Y, Zhu D, Chen X, Qu L, Guo M, Zhang S, Xu G, Chen Z, Li M, Chen Y. Integrative Multi-Omics Approaches Reveal Selectivity Profiles and Molecular Mechanisms of FIIN-2, a Covalent FGFR Inhibitor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412578. [PMID: 39976135 PMCID: PMC11984845 DOI: 10.1002/advs.202412578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/02/2025] [Indexed: 02/21/2025]
Abstract
Fibroblast growth factor receptor (FGFR) inhibitors are emerged as an important class of targeted therapies in oncology, targeting key pathways associated with tumor growth, angiogenesis, and resistance to conventional treatments. FIIN-2, the first irreversible covalent pan-FGFR inhibitor, has shown promise in overcoming resistance due to gatekeeper mutations; however, its selectivity and molecular mechanisms in tumors remain poorly understood. In this study, an FIIN-2 chemical probe is designed and synthesized to identify both established and novel targets in hepatocellular carcinoma (HCC) via chemoproteomic profiling. An integrative multi-omics approach, including chemoproteomic, phosphoproteomic, transcriptomic, and proteomic analyses, is utilized to elucidate the full spectrum of target proteins, signaling pathways, and downstream effectors regulated by FIIN-2 in HCC. Notably, adenosine monophosphate-activated protein kinase α1 (AMPKα1) is identified as a novel target of FIIN-2, with Cys185 identified as its covalent binding site. These findings reveal that FIIN-2 can induce autophagy by directly binding to and activating AMPKα1, influencing its anti-tumor activity in HCC cells. Overall, this study greatly advances the understanding of FIIN-2's on- and off-target effects, offering a comprehensive view of its molecular mechanisms in cancer cells. The integrative multi-omics approach provides a valuable framework for the development and optimization of covalent kinase inhibitors.
Collapse
Affiliation(s)
- Ying Fu
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Dandan Zhu
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Xiaojuan Chen
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Lingzhi Qu
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Ming Guo
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Shuhong Zhang
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Guangyu Xu
- Key Laboratory of Chemical Biology and Traditional Chinese MedicineMinistry of Educational of ChinaKey Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan ProvinceCollege of Chemistry and Chemical EngineeringHunan Normal UniversityChangshaHunan410081China
| | - Zhuchu Chen
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Maoyu Li
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yongheng Chen
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| |
Collapse
|
25
|
Hong X, Liu H, Sun H, Zhuang Y, Xiao M, Li S, Li Y, Jing M. Yunnan medicine Jiangzhi ointment alleviates hyperlipid-induced hepatocyte ferroptosis by activating AMPK and promoting autophagy. Cytotechnology 2025; 77:73. [PMID: 40062225 PMCID: PMC11883071 DOI: 10.1007/s10616-025-00737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/27/2025] [Indexed: 03/21/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a serious public health problem worldwide. The purpose of this study was to investigate whether Yunnan medicine Jiangzhi ointment (YMJO) can relieve the progression of NAFLD and to elucidate the specific mechanism involved. A NAFLD model was established in high-fat diet (HFD)-induced SD rats and free fatty acid (FFA)-induced BRL 3A cells. The expression of autophagy-related proteins and ferroptosis-related proteins was detected using Western blotting. The histopathological features of the livers of NAFLD rats were evaluated using hematoxylin and eosin (HE) and Oil Red O staining. The results revealed that in a successfully established HFD-induced NAFLD rat model, YMJO alleviated the progression of NAFLD, promoted autophagy, and inhibited ferroptosis. This regulatory mechanism is related to the activation of the AMPK pathway. Further study of the molecular mechanism via cell experiments revealed that YMJO activated FFA-induced liver cell autophagy through the AMPK signaling pathway and inhibited ferroptosis, thus alleviating the development of NAFLD. This study revealed that YMJO promotes phosphorylation by activating the AMPK pathway, enhances autophagy, ameliorates ferroptosis induced by high fat, and alleviates the occurrence and development of NAFLD.
Collapse
Affiliation(s)
- Xin Hong
- Department of Preventive Medicine, Yuxi Municipal Hospital of TCM, Yuxi, 653100 China
| | - Haijing Liu
- Department of Acupuncture and Massage, Yunnan University of Chinese Medicine, Kunming, 650500 China
| | - Hongli Sun
- Department of Preventive Medicine, Yuxi Municipal Hospital of TCM, Yuxi, 653100 China
| | - Yan Zhuang
- Department of Pharmaceutical Preparation, Yuxi Municipal Hospital of TCM, Yuxi, 653100 China
| | - Meizhen Xiao
- Department of Preventive Medicine, Yuxi Municipal Hospital of TCM, Yuxi, 653100 China
| | - Shaoping Li
- Department of Preventive Medicine, Yuxi Municipal Hospital of TCM, Yuxi, 653100 China
| | - Yandong Li
- Department of Preventive Medicine, Yuxi Municipal Hospital of TCM, Yuxi, 653100 China
| | - Ming Jing
- Department of Acupuncture and Massage, Yuxi Municipal Hospital of TCM, Yuxi, 653100 China
| |
Collapse
|
26
|
Lan Q, Chen J, Yang Y. Chromofungin mitigates free fatty acids-induced endothelial inflammation via inhibition of NOD-like receptor thermal protein domain-associated protein 3 mediated by adenosine 5'-monophosphate-activated protein kinase. Biotechnol Appl Biochem 2025; 72:460-468. [PMID: 39358914 DOI: 10.1002/bab.2676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Free fatty acids (FFAs) have emerged as significant risk factors for atherosclerosis (AS). Prolonged exposure to FFAs induces vascular endothelial injury, including inflammatory responses and oxidative stress, which are central events in AS. Chromofungin (CHR), a peptide derived from chromogranin A (CGA), has been implicated in various biological functions. However, its physiological roles in endothelial biology and its involvement in the pathological development of AS have not been previously reported. In the present study, we investigated the underlying mechanisms through which CHR exerts its beneficial effects on FFA-challenged human aortic endothelial cells (HAECs). We found that treatment with CHR ameliorated the FFA-induced reduction in cell viability and increase in lactate dehydrogenase (LDH) release. Additionally, CHR mitigated oxidative stress by reducing mitochondrial reactive oxygen species (ROS) levels and increasing superoxide dismutase (SOD) activity. Furthermore, exposure to FFAs increased NADPH oxidase (NOX) 4 expression at both the mRNA and protein levels, which were attenuated by CHR in a dose-dependent manner. Notably, CHR reduced the levels of nucleotide-binding domain and leucine-rich repeat-containing (NLR) family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), and cleaved caspase-1 (p10), key components of the NLRP3 inflammasome complex, as well as interleukin 1β (IL-1β) and interleukin-18 (IL-18) expression. Mechanistically, it was demonstrated that FFAs reduced the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), which were rescued by CHR in a dose-dependent manner. Conversely, inhibition of AMPK with its specific inhibitor compound C abolished the protective effects of CHR against FFA-induced activation of the NLRP3 inflammasome in HAECs. Based on these findings, we conclude that CHR may serve as a promising agent for maintaining normal endothelial cell function and treating AS.
Collapse
Affiliation(s)
- Qing Lan
- Department of Cardiology, Deyang People's Hospital, Deyang, Sichuan, China
| | - Jian Chen
- Department of Cardiology, Deyang People's Hospital, Deyang, Sichuan, China
| | - Yongqiang Yang
- Department of Cardiology, Deyang People's Hospital, Deyang, Sichuan, China
| |
Collapse
|
27
|
Wen Y, Li J, Mukama O, Huang R, Deng S, Li Z. New insights on mesenchymal stem cells therapy from the perspective of the pathogenesis of nonalcoholic fatty liver disease. Dig Liver Dis 2025:S1590-8658(25)00286-5. [PMID: 40158892 DOI: 10.1016/j.dld.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) manifests as chronic hepatic steatosis, occurring variably across people due to racial and genetic diversity. It represents a stage in the development of chronic liver disease, marked by fat accumulation, inflammatory responses, oxidative stress in the endoplasmic reticulum, and fibrosis as primary concerns. Understanding its underlying mechanisms remains a challenging and pivotal area of study. In the past, acute liver injury-related diseases were commonly treated with methods such as liver transplantation. However, the emergence of artificial liver has shifted focus to stem cell therapies. Unlike conventional drugs, stem cell therapies are continuously evolving. Despite being classified as drugs, stem cells demonstrated significant efficacy after multiple injections. Mesenchymal stem cells, unlike other types of stem cells, do not have the risk of tumor formation and low immunogenicity, reducing the hypersensitivity reactions associated with liver transplantation. Increasingly, studies suggest that mesenchymal stem cells hold promise in the treatment of chronic liver injury diseases. This review focuses on investigating the role of mesenchymal stem cells in chronic metabolic liver diseases, such as non-alcoholic fatty liver disease, and delves into their specific functions.
Collapse
Affiliation(s)
- Yanxuan Wen
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Jiaxing Li
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Omar Mukama
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510663, China
| | - Rongqi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510663, China
| | - Sihao Deng
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| | - Zhiyuan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510663, China.
| |
Collapse
|
28
|
Xu A, Yuan K, Xue S, Lu W, Wu X, Liu W, Xue Q, Liu L, Hu J, Guo L, Zhang Y, Hu X, Chun Wong GT, Lu L, Huang C. Laminin-dystroglycan mediated ferroptosis in hemorrhagic shock and reperfusion induced-cognitive impairment through AMPK/Nrf2. Free Radic Biol Med 2025; 230:1-16. [PMID: 39864758 DOI: 10.1016/j.freeradbiomed.2025.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/01/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Hemorrhagic shock and reperfusion (HSR) is the main cause of death following trauma. Cognitive impairment may persist after successful resuscitation from hemorrhagic shock, but the mechanisms remain elusive. This study demonstrated the presence of ferroptosis in an in vitro model of oxygen-glucose deprivation and reoxygenation (OGD/R) in HT22 neurons, and also in a murine model of HSR using 3-month-old C57BL/6 mice. The ferroptosis induced by OGD/R was characterized by transmission electron microscopy, the localization of FTH1 and TFR1 in HT22 cells. However, neuronal ferroptosis was prevented by suppressing AMPK through siRNA transfection or AMPK inhibitor pretreatment (compound C) in vitro. There was a consistent increase in Nrf2 with ROS accumulation, iron deposition, and lipid peroxidation in the hippocampal neurons and tissues. Nrf2 knockdown or overexpression significantly modulated OGD/R induced-ferroptosis. Activating ferroptosis by erastin (a ferroptosis inducer) or inhibiting it by ferrostatin-1 (a ferroptosis inhibitor) respectively enhanced or mitigated cognitive deficits as well as the ferroptosis-related changes induced by HSR. In addition to the improved cognition, single-nucleus transcriptome analysis of ipsilateral hippocampi from Nrf2-/- mice demonstrated the broad decrease of ferroptosis in neuronal cell clusters. LAMA2 and DAG1 were dominantly elevated and co-localized in the hippocampal CA3 region of Nrf2-/- mice by fluorescence in situ hybridization. The activation of astrocytes was significantly attenuated after Nrf2 knockout, associated with the increases of laminin-dystroglycan during astrocyte-neuron crosstalk. Thus, data from this study proposes a novel explanation, namely laminin-dystroglycan interactions during astrocytes-neurons crosstalk stimulating AMPK and Nrf2 induced neuronal ferroptosis, for the development of cognitive impairment after HSR.
Collapse
Affiliation(s)
- Aoxue Xu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Song Xue
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Wenping Lu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Xiaoli Wu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Wei Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Qi Xue
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Lulu Liu
- Department of Anesthesiology, Tongzhou Maternal and Child Health Hospital of Beijing, Beijing, China
| | - Jia Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Liyuan Guo
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Xianwen Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China
| | - Gordon Tin Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.
| | - Chunxia Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
29
|
Chen H, Shi J, Tang Y, Chen X, Wang Z, Liu Q, Wu K, Yao X. Exploring the effect of chlorogenic acid on oxidative stress and autophagy in dry eye mice via the AMPK/ULK1 pathway. Eur J Pharmacol 2025; 991:177311. [PMID: 39892448 DOI: 10.1016/j.ejphar.2025.177311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Dry eye disease (DED) is closely associated with oxidative stress (OS); its high prevalence and the limitations of current treatments highlight the need for highly effective antioxidants. Chlorogenic acid (CGA) can upregulate the activity of antioxidant enzymes, hinder the process of lipid peroxidation, and exert potent antioxidant effects. In this study, we established an OS-induced DED mouse model to investigate the protective effect and mechanism of CGA against OS-induced DED. Three aspects were examined: oxidative damage, apoptosis, and autophagy. The results demonstrated that CGA improved ocular surface signs in DED mice, decreased inflammatory responses in the meibomian gland (MG), downregulated levels of reactive oxygen species (ROS) and malondialdehyde (MDA), inhibited apoptosis and autophagy, and regulated proteins related to the AMPK (AMP-activated protein kinase)/ULK1 (UNC-51-like Kinase 1) signaling pathway in the MG of DED mice. These findings suggest that CGA can attenuate oxidative damage and inhibit related apoptosis and autophagy in the MG of DED mice by affecting the expression of proteins related to the AMPK/ULK1 signaling pathway.
Collapse
Affiliation(s)
- Huimei Chen
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Jian Shi
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yu Tang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xiong Chen
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Ziyan Wang
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Yong Zhou Hospital of Traditional Chinese Medicine, Yongzhou, 425000, Hunan, China
| | - Qianhong Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Kai Wu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xiaolei Yao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
30
|
Liu J, Huang G, Lin H, Yang R, Zhan W, Luo C, Wu Y, Chen L, Mao X, Chen J, Huang B. MTHFD2 Enhances cMYC O-GlcNAcylation to Promote Sunitinib Resistance in Renal Cell Carcinoma. Cancer Res 2025; 85:1113-1129. [PMID: 39804969 DOI: 10.1158/0008-5472.can-24-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/04/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Sunitinib is a first-line targeted therapy for patients with renal cell carcinoma (RCC), but resistance represents a significant obstacle to the treatment of advanced and metastatic RCC. Metabolic reprogramming is a characteristic of RCC, and changes in metabolic processes might contribute to resistance to sunitinib. In this study, we identified methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), a mitochondrial enzyme involved in one-carbon metabolism, as a critical mediator of sunitinib resistance in RCC. MTHFD2 was elevated in sunitinib-resistant RCC cells, and loss of MTHDF2 conferred sensitivity to sunitinib. In patients, MTHFD2 was highly expressed in RCC and was associated with poor outcomes. Mechanistically, MTHFD2 stimulated UDP-N-acetylglucosamine (UDP-GlcNAc) biosynthesis and promoted cMYC O-GlcNAcylation by driving the folate cycle. O-GlcNAcylation enhanced cMYC stability and promoted MTHFD2 and cyclin D1 transcription. Targeting MTHFD2 or cyclin D1 sensitized tumor cells to sunitinib in vitro and in vivo. Consistently, development of a peptide drug capable of efficiently degrading MTHFD2 enabled reversal of sunitinib resistance in RCC. These findings identify a noncanonical metabolic function of MTHFD2 in cell signaling and response to therapy and reveal the interplay between one-carbon metabolism and sunitinib resistance in RCC. Targeting MTHFD2 could be an effective approach to overcome sunitinib resistance. Significance: MTHFD2 regulates cMYC O-GlcNAcylation to promote sunitinib resistance in renal cell carcinoma, highlighting the important role of one-carbon metabolism in sunitinib resistance and proposing therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Jinwen Liu
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gaowei Huang
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Hao Lin
- Department of Urology, The Second Affiliated Hospital of Shantou University, Medical College, Shantou, China
| | - Rui Yang
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenhao Zhan
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cheng Luo
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yukun Wu
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lingwu Chen
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaopeng Mao
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junxing Chen
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Huang
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Ran Q, Li A, Yao B, Xiang C, Qu C, Zhang Y, He X, Chen H. Action and therapeutic targets of folliculin interacting protein 1: a novel signaling mechanism in redox regulation. Front Cell Dev Biol 2025; 13:1523489. [PMID: 40143966 PMCID: PMC11936992 DOI: 10.3389/fcell.2025.1523489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Rapid activation of adenosine monophosphate-activated protein kinase (AMPK) induces phosphorylation of mitochondrial-associated proteins, a process by which phosphate groups are added to regulate mitochondrial function, thereby modulating mitochondrial energy metabolism, triggering an acute metabolic response, and sustaining metabolic adaptation through transcriptional regulation. AMPK directly phosphorylates folliculin interacting protein 1 (FNIP1), leading to the nuclear translocation of transcription factor EB (TFEB) in response to mitochondrial functions. While mitochondrial function is tightly linked to finely-tuned energy-sensing mobility, FNIP1 plays critical roles in glucose transport and sensing, mitochondrial autophagy, cellular stress response, and muscle fiber contraction. Consequently, FNIP1 emerges as a promising novel target for addressing aberrant mitochondrial energy metabolism. Recent evidence indicates that FNIP1 is implicated in mitochondrial biology through various pathways, including AMPK, mTOR, and ubiquitination, which regulate mitochondrial autophagy, oxidative stress responses, and skeletal muscle contraction. Nonetheless, there is a dearth of literature discussing the physiological mechanism of action of FNIP1 as a novel therapeutic target. This review outlines how FNIP1 regulates metabolic-related signaling pathways and enzyme activities, such as modulating mitochondrial energy metabolism, catalytic activity of metabolic enzymes, and the homeostasis of metabolic products, thereby controlling cellular function and fate in different contexts. Our focus will be on elucidating how these metabolite-mediated signaling pathways regulate physiological processes and inflammatory diseases.
Collapse
Affiliation(s)
- Qingzhi Ran
- Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Aoshuang Li
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Bo Yao
- Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Chunrong Xiang
- Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Chunyi Qu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yongkang Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Diagnosis and Treatment Center of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuanhui He
- Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Hengwen Chen
- Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
32
|
Zhang C, Xiong Y, Luo Y, Liu K, Tong Q, Song Y, Qiu Z. Morroniside Ameliorates High-Fat and High-Fructose-Driven Chronic Kidney Disease by Motivating AMPK-TFEB Signal Activation to Accelerate Lipophagy and Inhibiting Inflammatory Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6158-6172. [PMID: 40011073 DOI: 10.1021/acs.jafc.4c07684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Studies have substantiated that dietary-fat- and fructose-overconsumption-caused lipid metabolism disorders can trigger renal lipotoxicity to drive the progression of chronic kidney disease (CKD). This study was conducted to evaluate the efficacy of morroniside, a natural active substance extracted from the fruit of Cornus officinalis, in inhibiting the progression of CKD in high-fat and high-fructose-fed mice. Our results showed histological changes such as fatty degeneration of renal tubular cells, tubular dilatation, glomerular fibrosis, and abnormal renal function in the kidneys of high-fat- and high-fructose-fed mice, which was significantly improved after morroniside treatment. Mechanistically, morroniside maintained renal lipid metabolism homeostasis and inhibited NLRP3 inflammatory vesicle activation by activating AMPKα to promote TFEB nuclear translocation-mediated lipophagy. Consistent results were observed in palmitic acid-induced HK-2 cells. Notably, silencing AMPKα or TFEB both reversed the effects of morroniside in promoting lipophagy and inhibiting the activation of inflammatory responses in vivo and in vitro. Therefore, our study provides compelling evidence that morroniside delays CKD progression by promoting AMPK/TFEB-mediated lipophagy and inhibiting NLRP3 inflammasome activation, suggesting that dietary supplementation with morroniside and morroniside-rich foods (such as Cornus officinalis) might be an effective strategy for the prevention of CKD.
Collapse
MESH Headings
- Animals
- Mice
- AMP-Activated Protein Kinases/genetics
- AMP-Activated Protein Kinases/metabolism
- AMP-Activated Protein Kinases/immunology
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/immunology
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/physiopathology
- Renal Insufficiency, Chronic/etiology
- Male
- Mice, Inbred C57BL
- Cornus/chemistry
- Fructose/adverse effects
- Fructose/metabolism
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/immunology
- Humans
- Diet, High-Fat/adverse effects
- Signal Transduction/drug effects
- Autophagy/drug effects
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/immunology
- Lipid Metabolism/drug effects
- Kidney/drug effects
- Kidney/metabolism
- Kidney/immunology
- Plant Extracts/administration & dosage
- Glycosides
Collapse
Affiliation(s)
- Cong Zhang
- College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Yangkun Xiong
- College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yingxi Luo
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Kexin Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Qiao Tong
- Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310023, China
| | - Yingying Song
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhenpeng Qiu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Hubei Shizhen Laboratory, Wuhan 430061, China
| |
Collapse
|
33
|
Yang Z, Zhou Y, Liu X, Ren L, Liu X, Yun R, Jia L, Ren X, Wang Y, Sun Y, Li J, Gao D, Tian Z. Mitochondrial-uncoupling nanomedicine for self-heating and immunometabolism regulation in cancer cells. Biomaterials 2025; 314:122883. [PMID: 39405827 DOI: 10.1016/j.biomaterials.2024.122883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/10/2024]
Abstract
Developing endogenous hyperthermia offers a promising strategy to address challenges with current exogenous hyperthermia techniques in clinics. Herein, a CD44-targeted and thermal-responsive nanocarrier was developed for the simultaneous delivery of 2,4-dinitrophenol and syrosingopine. The objective was to induce endogenous hyperthermia and regulate immunometabolism, ultimately augmenting anti-tumour immune responses. Dinitrophenol as mitochondrial uncoupler can convert electrochemical potential energy of inner mitochondrial membrane into heat, facilitating endogenous hyperthermia. Meanwhile, syrosingopine not only inhibits excessive lactate efflux caused by dinitrophenol but also downregulates tumour cell glycolysis, thus alleviating immunosuppression and heat shock protein (HSP)-dependent thermo-resistance through immunometabolism regulation. The synergistic effects of endogenous hyperthermia and immunometabolism regulation by this nanomedicine have potential to enhance tumor immunogenicity, reshape the tumour immune microenvironment, and effectively suppress the growth of subcutaneous tumours and patient-derived organoids in triple-negative breast cancer. Therefore, the endogenous hyperthermia strategy developed in this study would revolutionize hyperthermia for cancer treatment.
Collapse
Affiliation(s)
- Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Ying Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaozhen Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; General Surgery, Department of Breast Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Liujiao Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinyang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Rong Yun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Liangliang Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xuechun Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yan Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jia Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Di Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
34
|
Ahmadzadeh AM, Aliabadi MM, Mirheidari SB, Hamedi-Asil M, Garousi S, Mottahedi M, Sahebkar A. Beneficial effects of resveratrol on diabetes mellitus and its complications: focus on mechanisms of action. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2407-2442. [PMID: 39446148 DOI: 10.1007/s00210-024-03527-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Diabetes mellitus (DM) is a significant global health issue, associated with various microvascular and macrovascular complications that significantly impair patients' quality of life as well as healthspan and lifespan. Despite the availability of several anti-diabetic medications with different mechanisms of action, there remains no definite curative treatment. Hence, discovering new efficient complementary therapies is essential. Natural products have received significant attention due to their advantages in various pathological conditions. Resveratrol is a natural polyphenol that possesses antioxidant and anti-inflammatory properties, and its efficacy has been previously investigated in several diseases, including DM. Herein, we aimed to provide a holistic view of the signaling pathways and mechanisms of action through which resveratrol exerts its effects against DM and its complications.
Collapse
Affiliation(s)
- Amir Mahmoud Ahmadzadeh
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Mahdie Hamedi-Asil
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Department of Surgical and Interventional Sciences, McGill University, Montreal, Quebec, Canada
| | - Mehran Mottahedi
- Department of Surgical and Interventional Sciences, McGill University, Montreal, Quebec, Canada
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
35
|
Gollowitzer A, Pein H, Rao Z, Waltl L, Bereuter L, Loeser K, Meyer T, Jafari V, Witt F, Winkler R, Su F, Große S, Thürmer M, Grander J, Hotze M, Harder S, Espada L, Magnutzki A, Gstir R, Weinigel C, Rummler S, Bonn G, Pachmayr J, Ermolaeva M, Harayama T, Schlüter H, Kosan C, Heller R, Thedieck K, Schmitt M, Shimizu T, Popp J, Shindou H, Kwiatkowski M, Koeberle A. Attenuated growth factor signaling during cell death initiation sensitizes membranes towards peroxidation. Nat Commun 2025; 16:1774. [PMID: 40000627 PMCID: PMC11861335 DOI: 10.1038/s41467-025-56711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Cell death programs such as apoptosis and ferroptosis are associated with aberrant redox homeostasis linked to lipid metabolism and membrane function. Evidence for cross-talk between these programs is emerging. Here, we show that cytotoxic stress channels polyunsaturated fatty acids via lysophospholipid acyltransferase 12 into phospholipids that become susceptible to peroxidation under additional redox stress. This reprogramming is associated with altered acyl-CoA synthetase isoenzyme expression and caused by a decrease in growth factor receptor tyrosine kinase (RTK)-phosphatidylinositol-3-kinase signaling, resulting in suppressed fatty acid biosynthesis, for specific stressors via impaired Akt-SREBP1 activation. The reduced availability of de novo synthesized fatty acids favors the channeling of polyunsaturated fatty acids into phospholipids. Growth factor withdrawal by serum starvation mimics this phenotype, whereas RTK ligands counteract it. We conclude that attenuated RTK signaling during cell death initiation increases cells' susceptibility to oxidative membrane damage at the interface of apoptosis and alternative cell death programs.
Collapse
Affiliation(s)
- André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Helmut Pein
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Zhigang Rao
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Lorenz Waltl
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Leonhard Bereuter
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
- Institute of Pharmaceutical Sciences and Excellence Field BioHealth, University of Graz, Graz, Austria
| | - Konstantin Loeser
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Tobias Meyer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena e.V., Member of Leibniz Health Technology, 07745, Jena, Germany
| | - Vajiheh Jafari
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Finja Witt
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - René Winkler
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University Jena, 07745, Jena, Germany
- Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916, Badalona, Spain
| | - Fengting Su
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
- Institute of Pharmaceutical Sciences and Excellence Field BioHealth, University of Graz, Graz, Austria
| | - Silke Große
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745, Jena, Germany
| | - Maria Thürmer
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Julia Grander
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Madlen Hotze
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020, Innsbruck, Austria
| | - Sönke Harder
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Lilia Espada
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Alexander Magnutzki
- ADSI-Austrian Drug Screening Institute, University of Innsbruck, 6020, Innsbruck, Austria
| | - Ronald Gstir
- ADSI-Austrian Drug Screening Institute, University of Innsbruck, 6020, Innsbruck, Austria
| | - Christina Weinigel
- Institute of Transfusion Medicine, University Hospital Jena, 07747, Jena, Germany
| | - Silke Rummler
- Institute of Transfusion Medicine, University Hospital Jena, 07747, Jena, Germany
| | - Günther Bonn
- ADSI-Austrian Drug Screening Institute, University of Innsbruck, 6020, Innsbruck, Austria
| | - Johanna Pachmayr
- Institute of Pharmacy, Paracelsus Medical University, 5020, Salzburg, Austria
| | - Maria Ermolaeva
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Takeshi Harayama
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur - CNRS UMR7275 - Inserm U1323, 06560, Valbonne, France
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University Jena, 07745, Jena, Germany
| | - Regine Heller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745, Jena, Germany
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020, Innsbruck, Austria
- Department Metabolism, Senescence and Autophagy, Research Center One Health Ruhr, University Alliance Ruhr & University Hospital Essen, University Duisburg-Essen, 45141, Essen, Germany
- Freiburg Materials Research Center FMF, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
- German Cancer Consortium (DKTK), partner site Essen/Duesseldorf, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147, Essen, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
- Institute of Microbial Chemistry, Tokyo 141-0021, Japan
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena e.V., Member of Leibniz Health Technology, 07745, Jena, Germany
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Marcel Kwiatkowski
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany.
- Institute of Pharmaceutical Sciences and Excellence Field BioHealth, University of Graz, Graz, Austria.
| |
Collapse
|
36
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
37
|
Beltran-Velasco AI. Brain Glycogen-Its Metabolic Role in Neuronal Health and Neurological Disorders-An Extensive Narrative Review. Metabolites 2025; 15:128. [PMID: 39997753 PMCID: PMC11857135 DOI: 10.3390/metabo15020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/29/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Brain glycogen is imperative for neuronal health, as it supports energy demands and metabolic processes. This review examines the pathways involved in glycogen storage and utilization in the central nervous system, emphasizing their role in both physiology and pathology. It explores how alterations in glycogen metabolism contribute to neurological disorders, including neurodegenerative diseases, epilepsy, and metabolic conditions while highlighting the bidirectional interaction between neurons and glia in maintaining brain homeostasis. Methods: A comprehensive search of articles published between 2015 and 2025 was conducted using the following databases: ScienceDirect, Scopus, Wiley, Web of Science, Medline, and PubMed. The selection of relevant studies was based on their focus on brain glycogen metabolism and its role in neurological conditions, with studies that did not meet the inclusion criteria being excluded. Results: The metabolic processes of brain glycogen are subject to rigorous regulation by astrocyte-neuron interactions, thereby ensuring metabolic homeostasis and energy availability. The dysregulation of glycogen storage and mobilization has been implicated in the development of synaptic dysfunction, excitotoxicity, and neurodegeneration in a variety of disorders. For instance, aberrant glycogen accumulation in diseases such as Lafora disease has been associated with severe neurodegeneration, while impaired glycogen mobilization has been shown to exacerbate energy deficits in Alzheimer's and epilepsy. Conclusions: Targeting brain glycogen metabolism represents a promising approach for therapeutic intervention in neurological disorders. However, the translation of these strategies to human models remains challenging, particularly with regard to the long-term safety and specificity of glycogen-targeted therapies.
Collapse
|
38
|
Wang K, Wang L, Wu C, Chen H, Cai D, Lu L, Liu X, Jiao Z. Lycopene Ameliorates Polycystic Ovary Syndrome in Rats by Inhibiting Ovarian Ferroptosis Through Activation of the AMPK/Nrf2 Pathway. J Biochem Mol Toxicol 2025; 39:e70158. [PMID: 39871526 DOI: 10.1002/jbt.70158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025]
Abstract
Lycopene (LYC) is an extremely powerful antioxidant with the potential to treat a range of diseases and to inhibit ferroptosis. This research aims to elucidate how LYC impacts polycystic ovarian syndrome (PCOS) and the action mechanisms. A PCOS rat model was constructed by injecting DHEA. Different doses of LYC were injected intraperitoneally in PCOS rats, the estrous cycle was recorded. The histopathological damage of ovary in PCOS rats was observed by HE staining, testosterone (T), estradiol (E2), luteinizing hormone (LH) and follicle stimulating hormone (FSH) levels were examined by ELISA kits. Transmission electron microscopy, prussian blue staining, biochemical kits to determine ferroptosis. Immunohistochemistry and Western blot to assess the levels of ferroptosis-related and AMPK/Nrf2 pathway-related proteins to explore whether LYC affects ferroptosis in PCOS through this pathway. PCOS rats had significantly higher body weights, ovarian weights and ovarian indices, and disorganized estrous cycles, which were dose-dependently ameliorated by LYC. In addition, LYC significantly ameliorated the histopathological damage of ovary in PCOS rats and restored the normal secretion of T, E2, LH, and FSH. LYC attenuates iron deposition in PCOS ovarian tissues, reduces iron and ROS levels, and inhibits ferroptosis. Notably, LYC activated the AMPK/Nrf2 pathway, and AMPK inhibitor intervention attenuated the therapeutic effect of LYC in PCOS rats, suggesting that LYC acts through the AMPK/Nrf2 pathway. LYC attenuates estrous cycle disruption, ameliorates pathological impairments, and inhibits ferroptosis in PCOS rats by modulating the AMPK/Nrf2 pathway.
Collapse
Affiliation(s)
- Kexin Wang
- Department of Gynecology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Lin Wang
- Department of Gynecology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chengyong Wu
- Department of Gynecology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Hongxiang Chen
- Department of Gynecology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Donghui Cai
- Department of Gynecology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Linglan Lu
- Department of Gynecology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuli Liu
- Department of Gynecology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhen Jiao
- Department of Gynecology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
39
|
Cui Y, Tao H, Hu S, Zhang Y, Li H, Wang J, Wu M, Guo J. Effect of Multidimensional Integrated Lung Protection Measures in Elderly Patients With Fragile Lungs or Combined Lung Dysfunction by Regulating AMPK/SIRT1 Pathway. J Cell Mol Med 2025; 29:e70408. [PMID: 39988974 PMCID: PMC11847988 DOI: 10.1111/jcmm.70408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/15/2024] [Accepted: 01/24/2025] [Indexed: 02/25/2025] Open
Abstract
Fragile lungs or lung dysfunction can significantly impact a patient's quality of life. Currently, no specific treatment exists to prevent lung dysfunction in elderly patients. The detailed mechanism of fragile lungs or lung dysfunction in elderly patients remains elusive, and this study aimed to clarify it. General data and blood specimens were obtained from patients with fragile lungs or lung dysfunction. The mice were exposed to cigarette smoke using a smoking apparatus to induce fragile lungs or lung dysfunction mice model. Blood samples and lung tissues were collected from all groups for further testing. haematoxylin-eosin (HE) staining, immunofluorescence, Western blot, flow cytometry and quantitative reverse transcriptase PCR (qRT-PCR) were used to elucidate the molecular mechanisms of multidimensional integrated lung protection measures (MILPM) in fragile lungs or lung dysfunction mice by targeting the AMP-activated protein kinase (AMPK)/Sirtuin 1 (SIRT1) pathway. The results indicated that upregulation of the AMPK/SIRT1 signalling pathway accelerates the fragile lungs or lung dysfunction process, whereas downregulation of the AMPK/SIRT1 signalling pathway can prevent it. Similarly, the change of forced vital capacity (FVC), total lung capacity (TLC) levels is associated with the fragile lungs or lung dysfunction process, whereas reducing their levels can serve as a preventative method against fragile lungs or lung dysfunction development. Upregulation of the AMPK/SIRT1 pathway can accelerate the process of fragile lungs or lung dysfunction.
Collapse
Affiliation(s)
- Yinghui Cui
- Department of AnesthesiologyGongli Hospital of Shanghai Pudong New AreaShanghaiChina
| | - Haiyong Tao
- Department of AnesthesiologyGongli Hospital of Shanghai Pudong New AreaShanghaiChina
| | - Shejun Hu
- Department of AnesthesiologyGongli Hospital of Shanghai Pudong New AreaShanghaiChina
| | - Yan Zhang
- Department of AnesthesiologyGongli Hospital of Shanghai Pudong New AreaShanghaiChina
| | - Hao Li
- Department of AnesthesiologyGongli Hospital of Shanghai Pudong New AreaShanghaiChina
| | - Jinhuo Wang
- Department of AnesthesiologyGongli Hospital of Shanghai Pudong New AreaShanghaiChina
| | - Mandi Wu
- Department of AnesthesiologyGongli Hospital of Shanghai Pudong New AreaShanghaiChina
| | - Jianrong Guo
- Department of AnesthesiologyGongli Hospital of Shanghai Pudong New AreaShanghaiChina
| |
Collapse
|
40
|
Zhang W, Zeng H, Xie S, Yu C, Zhang M, Chen Q, Dong H, Zhang H, Lin H, Zheng N, Zhu L, Lu J. Activation of autophagy with PF-06409577 alleviates heatstroke-induced organ injury. ENVIRONMENT INTERNATIONAL 2025; 196:109285. [PMID: 39855028 DOI: 10.1016/j.envint.2025.109285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Heat waves are a significant environmental issue threatening global human health. Extreme temperatures can lead to various heat-related illnesses, with heatstroke being among the most severe. Currently, there are no effective treatments to mitigate the multi-organ damage caused by heatstroke. We found that heat stress activated autophagy. Knockdown of the autophagy-related gene 7 (ATG7) or knockout of the autophagy initiation regulatory genes UNC-51-like autophagy activating kinase 1/2 (ULK1/ULK2) increased cell death. PF-06409577, an allosteric activator of AMP-activated protein kinase β (AMPKβ), reduced heat stress-induced cell death by promoting autophagy. Inhibition of ATG7 or ULK1 weakened PF-06409577's protective effect on cells. Treatment of heatstroke mouse models with PF-06409577 suppressed high temperature-induced damage to multiple organs, including the liver, kidneys, lungs, and small intestine. PF-06409577 protected liver and kidney functions, lowered the expression of kidney injury markers neutrophil gelatinase associated lipocalin (Ngal), secreted phosphoprotein 1 (Spp1), and clusterin (Clu), and reduced levels of the inflammatory factor IL-6. Additionally, it decreased heat stress-induced macrophage infiltration and IL-6 production in the liver. The results indicate that activation of autophagy serves a protective function during heat stress, and the AMPK activator PF-06409577 exhibits potential in mitigating heatstroke-induced multi-organ damage through its ability to promote autophagy.
Collapse
Affiliation(s)
- Wei Zhang
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Teaching Hospital (900th Hospital of Joint Logistic Support Force), Fujian University of Traditional Chinese Medicine, Fuzhou 350025, China
| | - Huajing Zeng
- Laboratory of Basic Medicine, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China
| | - Siyu Xie
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Teaching Hospital (900th Hospital of Joint Logistic Support Force), Fujian University of Traditional Chinese Medicine, Fuzhou 350025, China; Laboratory of Basic Medicine, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China; Dongfang Hospital, Xiamen University, Fuzhou 350025, China
| | - Cheng Yu
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Teaching Hospital (900th Hospital of Joint Logistic Support Force), Fujian University of Traditional Chinese Medicine, Fuzhou 350025, China; Laboratory of Basic Medicine, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China; Dongfang Hospital, Xiamen University, Fuzhou 350025, China
| | - Meina Zhang
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Teaching Hospital (900th Hospital of Joint Logistic Support Force), Fujian University of Traditional Chinese Medicine, Fuzhou 350025, China; Laboratory of Basic Medicine, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China; Dongfang Hospital, Xiamen University, Fuzhou 350025, China
| | - Qiuyan Chen
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Teaching Hospital (900th Hospital of Joint Logistic Support Force), Fujian University of Traditional Chinese Medicine, Fuzhou 350025, China; Laboratory of Basic Medicine, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China; Dongfang Hospital, Xiamen University, Fuzhou 350025, China
| | - Huiyue Dong
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Teaching Hospital (900th Hospital of Joint Logistic Support Force), Fujian University of Traditional Chinese Medicine, Fuzhou 350025, China; Laboratory of Basic Medicine, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China; Dongfang Hospital, Xiamen University, Fuzhou 350025, China
| | - Hui Zhang
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Teaching Hospital (900th Hospital of Joint Logistic Support Force), Fujian University of Traditional Chinese Medicine, Fuzhou 350025, China; Laboratory of Basic Medicine, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China; Dongfang Hospital, Xiamen University, Fuzhou 350025, China
| | - Hao Lin
- Laboratory of Basic Medicine, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China
| | - Nengjing Zheng
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Teaching Hospital (900th Hospital of Joint Logistic Support Force), Fujian University of Traditional Chinese Medicine, Fuzhou 350025, China
| | - Lin Zhu
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Teaching Hospital (900th Hospital of Joint Logistic Support Force), Fujian University of Traditional Chinese Medicine, Fuzhou 350025, China; Laboratory of Basic Medicine, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China; Dongfang Hospital, Xiamen University, Fuzhou 350025, China
| | - Jun Lu
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Teaching Hospital (900th Hospital of Joint Logistic Support Force), Fujian University of Traditional Chinese Medicine, Fuzhou 350025, China; Laboratory of Basic Medicine, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China; Dongfang Hospital, Xiamen University, Fuzhou 350025, China; Organ Transplant Institute, 900th Hospital of Joint Logistic Support Force, Fuzhou 350025, China.
| |
Collapse
|
41
|
Shi Q, Ran S, Song L, Yang H, Wang W, Liu H, Liu Q. NLRP6 overexpression improves nonalcoholic fatty liver disease by promoting lipid oxidation and decomposition in hepatocytes through the AMPK/CPT1A/PGC1A pathway. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2025; 45:118-125. [PMID: 39819720 PMCID: PMC11744278 DOI: 10.12122/j.issn.1673-4254.2025.01.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVES To investigate the regulatory role of nucleotide-bound oligomerized domain-like receptor containing pyrin-domain protein 6 (NLRP6) in liver lipid metabolism and non-alcoholic fatty liver disease (NAFLD). METHODS Mouse models with high-fat diet (HFD) feeding for 16 weeks (n=6) or with methionine choline-deficient diet (MCD) feeding for 8 weeks (n=6) were examined for the development of NAFLD using HE and oil red O staining, and hepatic expressions of NLRP6 were detected with RT-qPCR, Western blotting, and immunohistochemical staining. Cultured human hepatocytes (LO2 cells) with adenovirus-mediated NLRP6 overexpression or knock-down were treated with palmitic acid (PA) in the presence or absence of compound C (an AMPK inhibitor), and the changes in cellular lipid metabolism were examined by measuring triglyceride, ATP and β-hydroxybutyrate levels and using oil red staining, RT-qPCR, and Western blotting. RESULTS HFD and MCD feeding both resulted in the development of NAFLD in mice, which showed significantly decreased NLRP6 expression in the liver. In PA-treated LO2 cells, NLRP6 overexpression significantly decreased cellular TG content and lipid deposition, while NLRP6 knockdown caused the opposite effects. NLRP6 overexpression in PA-treated LO2 cells also increased mRNA and protein expressions of PGC1A and CPT1A, levels of ATP and β-hydroxybutyrate, and the phosphorylation level of AMPK pathway; the oxidative decomposition of lipids induced by Ad-NLRP6 was inhibited by the use of AMPK inhibitors. CONCLUSIONS NLRP6 overexpression promotes lipid oxidation and decomposition through AMPK/CPT1A/PGC1A to alleviate lipid deposition in hepatocytes.
Collapse
Affiliation(s)
- Qing Shi
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Suye Ran
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Lingyu Song
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Hong Yang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Wenjuan Wang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Hanlin Liu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Qi Liu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| |
Collapse
|
42
|
Li C, Wang F, Mao Y, Ma Y, Guo Y. Multi-omics reveals the mechanism of Trimethylamine N-oxide derived from gut microbiota inducing liver fatty of dairy cows. BMC Genomics 2025; 26:10. [PMID: 39762777 PMCID: PMC11702196 DOI: 10.1186/s12864-024-11067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is a metabolite produced by gut microbiota, and its potential impact on lipid metabolism in mammals has garnered widespread attention in the scientific community. Bovine fatty liver disease, a metabolic disorder that severely affects the health and productivity of dairy cows, poses a significant economic burden on the global dairy industry. However, the specific role and pathogenesis of TMAO in bovine fatty liver disease remain unclear, limiting our understanding and treatment of the condition. This study aims to construct a bovine fatty liver cell model using an integrated approach that combines transcriptomic, proteomic, and metabolomic data. The objective is to investigate the impact of TMAO on lipid metabolism at the molecular level and explore its potential regulatory mechanisms. RESULTS We established an in vitro bovine fatty liver cell model and conducted a comprehensive analysis of cells treated with TMAO using high-throughput omics sequencing technologies. Bioinformatics methods were employed to delve into the regulatory effects on lipid metabolism, and several key genes were validated through RT-qPCR. Treatment with TMAO significantly affected 4790 genes, 397 proteins, and 137 metabolites. KEGG enrichment analysis revealed that the significantly altered molecules were primarily involved in pathways related to the pathology of fatty liver disease, such as metabolic pathways, insulin resistance, hepatitis B, and the AMPK signaling pathway. Moreover, through joint analysis, we further uncovered that the interaction between TMAO-mediated AMPK signaling and oxidative phosphorylation pathways might be a key mechanism promoting lipid accumulation in the liver. CONCLUSIONS Our study provides new insights into the role of TMAO in the pathogenesis of bovine fatty liver disease and offers a scientific basis for developing more effective treatment strategies.
Collapse
Affiliation(s)
- Chenlei Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Feifei Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yongxia Mao
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yanfen Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yansheng Guo
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
43
|
Yip JMX, Chiang GSH, Lee ICJ, Lehming-Teo R, Dai K, Dongol L, Wang LYT, Teo D, Seah GT, Lehming N. Mitochondria and the Repurposing of Diabetes Drugs for Off-Label Health Benefits. Int J Mol Sci 2025; 26:364. [PMID: 39796218 PMCID: PMC11719901 DOI: 10.3390/ijms26010364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
This review describes our current understanding of the role of the mitochondria in the repurposing of the anti-diabetes drugs metformin, gliclazide, GLP-1 receptor agonists, and SGLT2 inhibitors for additional clinical benefits regarding unhealthy aging, long COVID, mental neurogenerative disorders, and obesity. Metformin, the most prominent of these diabetes drugs, has been called the "Drug of Miracles and Wonders," as clinical trials have found it to be beneficial for human patients suffering from these maladies. To promote viral replication in all infected human cells, SARS-CoV-2 stimulates the infected liver cells to produce glucose and to export it into the blood stream, which can cause diabetes in long COVID patients, and metformin, which reduces the levels of glucose in the blood, was shown to cut the incidence rate of long COVID in half for all patients recovering from SARS-CoV-2. Metformin leads to the phosphorylation of the AMP-activated protein kinase AMPK, which accelerates the import of glucose into cells via the glucose transporter GLUT4 and switches the cells to the starvation mode, counteracting the virus. Diabetes drugs also stimulate the unfolded protein response and thus mitophagy, which is beneficial for healthy aging and mental health. Diabetes drugs were also found to mimic exercise and help to reduce body weight.
Collapse
Affiliation(s)
- Joyce Mei Xin Yip
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Grace Shu Hui Chiang
- Well Programme, Alexandra Hospital, National University Health System, Singapore 159964, Singapore; (G.S.H.C.)
| | - Ian Chong Jin Lee
- NUS High School of Mathematics and Science, Singapore 129957, Singapore
| | - Rachel Lehming-Teo
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Kexin Dai
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Lokeysh Dongol
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Laureen Yi-Ting Wang
- Well Programme, Alexandra Hospital, National University Health System, Singapore 159964, Singapore; (G.S.H.C.)
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore 119074, Singapore
- Division of Cardiology, Department of Medicine, Alexandra Hospital, National University Health System, Singapore 159964, Singapore
| | - Denise Teo
- Chi Longevity, Camden Medical Centre #10-04, 1 Orchard Blvd, Singapore 248649, Singapore
| | - Geok Teng Seah
- Clifford Dispensary, 77 Robinson Rd #06-02, Singapore 068896, Singapore
| | - Norbert Lehming
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| |
Collapse
|
44
|
Liu J, Zhang Y, Xu X, Dong X, Pan Y, Sun X, Luo Y. Ginsenoside Ro prevents endothelial injury via promoting Epac1/AMPK- mediated mitochondria protection in early diabetic retinopathy. Pharmacol Res 2025; 211:107562. [PMID: 39732351 DOI: 10.1016/j.phrs.2024.107562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Diabetic retinopathy (DR) is a blinding complication of microangiopathy. First-line therapeutic drugs are all focused on late-stage DR and have several side effects, which could not meet clinical needs. The plant-derived ginsenoside Ro (Ro) has a variety of effective anti-inflammatory, immune-regulating, and cardiovascular protective effects, but its microvascular protective effects are rarely studied. This study aimed to explore the protective effect and mechanism of Ro on retinal microvascular endothelial cells in early stage of DR. We demonstrated that Ro exerted endothelial cell protection by regulating mitochondrial oxidative stress and autophagy in AGEs-injured endothelial cells. Moreover, Ro alleviated DR progress through improving retinal thickness and pathological changes in STZ-induced diabetic mice. Mechanically, Ro promotes the activation of Epac1-mediated AMPK signaling. On the contrary, the protective effects of Ro were abolished by Epac1 inhibitor in vitro or Epac1 knock down in vivo. Our results revealed the important role of Ro on the treatment of DR and suggested that targeting Epac1 may be a promising approach to prevent and treat DR.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China; Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; Department of Pharmacy, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 201619, China
| | - Yunqi Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China
| | - Xiaoyu Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Yunfeng Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China; Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Yun Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China.
| |
Collapse
|
45
|
Abi Nahed R, Pelosse M, Aulicino F, Cottaz F, Berger I, Schlattner U. FRET-Based Sensor for Measuring Adenine Nucleotide Binding to AMPK. Methods Mol Biol 2025; 2882:15-45. [PMID: 39992503 DOI: 10.1007/978-1-0716-4284-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
AMP-activated protein kinase (AMPK) has evolved to detect a critical increase in cellular AMP/ATP and ADP/ATP concentration ratios as a signal for limiting energy supply. Such energy stress then leads to AMPK activation and downstream events that maintain cellular energy homeostasis. AMPK activation by AMP, ADP, or pharmacological activators involves a conformational switch within the AMPK heterotrimeric complex. We have engineered an AMPK-based sensor, AMPfret, which translates the activating conformational switch into a fluorescence signal, based on increased fluorescence resonance energy transfer (FRET) between donor and acceptor fluorophores. Here we describe how this sensor can be used to analyze direct AMPK activation by small molecules in vitro using a fluorimeter, or to estimate changes in the energy state of cells using standard fluorescence or confocal microscopy.
Collapse
Affiliation(s)
- Roland Abi Nahed
- Univ. Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 2280 Rue de la Piscine, Domaine Universitaire Gières, Grenoble, France
| | - Martin Pelosse
- Univ. Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 2280 Rue de la Piscine, Domaine Universitaire Gières, Grenoble, France
| | - Francesco Aulicino
- Bristol Synthetic Biology Centre BrisSynBio, Biomedical Sciences, School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BSH 1TD, United Kingdom, Bristol, UK
| | - Florine Cottaz
- Univ. Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 2280 Rue de la Piscine, Domaine Universitaire Gières, Grenoble, France
| | - Imre Berger
- Bristol Synthetic Biology Centre BrisSynBio, Biomedical Sciences, School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BSH 1TD, United Kingdom, Bristol, UK
| | - Uwe Schlattner
- Univ. Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 2280 Rue de la Piscine, Domaine Universitaire Gières, Grenoble, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
46
|
Zheng Y, Wang K, Wu C, Qin Y, Sun Y, Lu X, Xu Y, Li G. COTI-2 suppresses the malignancy of bladder cancer by inducing apoptosis via the AMPK-mTOR signaling pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:240-246. [PMID: 39906622 PMCID: PMC11790198 DOI: 10.22038/ijbms.2024.80284.17378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/16/2024] [Indexed: 02/06/2025]
Abstract
Objectives COTI-2, an innovative oral homocysteine, has shown promising antitumor results on multiple types of cancer. However, its effects in treating bladder cancer (BCa) and the underlying molecular mechanisms have not been elucidated. The present study aimed to explore the antitumor effects of COTI-2 on BCa and the potential mechanisms. Materials and Methods BCa cell lines, including the 5637 and T24 cell lines, were treated with COTI-2 at concentrations of 0.5 and 1 μM, respectively. Cell Counting Kit (CCK)-8 assay, colony formation assay, apoptosis assay, and transwell migration and invasion assay were conducted to evaluate the antitumor effects of COTI-2 on BCa cells. Western blotting, H&E, immunohistochemical staining, and immunofluorescence analysis were performed to investigate the underlying mechanisms. Moreover, a xenograft model in nude mice using T24 cells was generated to determine the antitumor activities of COTI-2 in vivo. Results COTI-2 highly inhibited the proliferation of BCa cell lines, including 5637 and T24 cells, and induced their apoptosis. Moreover, it efficiently suppressed the migration and invasion of BCa cells. Additionally, the subcutaneous xenograft model in nude mice showed that COTI-2 treatment inhibited the tumor growth of BCa by inducing its apoptosis in vivo. We also found that COTI-2 promoted apoptosis in BCa cells, presumably through activating the AMPK/mTOR pathway. Conclusion Our data suggest that COTI-2 effectively reduces the malignancy of BCa, probably by inducing apoptosis via the AMPK/mTOR signaling pathway. These data highlight the potential of COTI-2 as a therapeutic agent for the treatment of BCa.
Collapse
Affiliation(s)
- Yuancai Zheng
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- These authors contributed equally to this work
| | - Keqi Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- These authors contributed equally to this work
| | - Chenyu Wu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yuying Qin
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yihan Sun
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xinyu Lu
- The First Clinical Medical College of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yupeng Xu
- The First Clinical Medical College of Wenzhou Medical University, Wenzhou, 325000, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| |
Collapse
|
47
|
Ng SY, Mikhail AI, Mattina SR, Mohammed SA, Khan SK, Desjardins EM, Lim C, Phillips SM, Steinberg GR, Ljubicic V. AMPK regulates the maintenance and remodelling of the neuromuscular junction. Mol Metab 2025; 91:102066. [PMID: 39571900 PMCID: PMC11646796 DOI: 10.1016/j.molmet.2024.102066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024] Open
Abstract
OBJECTIVE The molecular mechanisms underlying the maintenance and adaptability of the neuromuscular junction (NMJ) remain poorly understood. This study aimed to investigate the role of AMP-activated protein kinase (AMPK) as a key regulator of NMJ stability and plasticity. METHOD A comprehensive, multifaceted approach was employed, integrating genetic, physiological, and pharmacological methodologies to elucidate the role of skeletal muscle AMPK in modulating the neuromuscular synapse. RESULTS Our findings reveal an increased abundance of AMPK transcripts within the NMJ and an age-associated decline in AMPK activity and synapse-specific mitochondrial gene expression. Young mice null for skeletal muscle AMPK displayed a neuromuscular phenotype akin to aged animals. Pharmacological AMPK stimulation facilitated its localization in subsynaptic myonuclei, preceded the induction of several NMJ-related transcripts, and enhanced myotube acetylcholine receptor clustering. Exercise-induced AMPK activation in mouse muscle elicited a broad NMJ-related gene response, consistent with human exercise data. CONCLUSIONS These findings highlight a critical role for AMPK in the maintenance and remodeling of the NMJ, highlighting its potential as a therapeutic target for age-related and neuromuscular disorders.
Collapse
Affiliation(s)
- Sean Y Ng
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Andrew I Mikhail
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Stephanie R Mattina
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Salah A Mohammed
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Shahzeb K Khan
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Eric M Desjardins
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main St. W., Hamilton, ON, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main St. W., Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Changhyun Lim
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main St. W., Hamilton, ON, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main St. W., Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada.
| |
Collapse
|
48
|
Desjardins EM, Day EA, Scott JW, Steinberg GR. Sensing of Long-Chain Fatty Acyl-CoA Esters by AMPK. Methods Mol Biol 2025; 2882:121-137. [PMID: 39992507 DOI: 10.1007/978-1-0716-4284-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Fatty acids are utilized to maintain cellular energy/adenine nucleotide balance under times of energetic stress such as during endurance exercise or fasting. It has long been recognized that fatty acids stimulate their own oxidation through a mechanism involving allosteric inhibition of acetyl-CoA carboxylase (ACC) and reductions in malonyl-CoA. We have recently described a parallel pathway by which long-chain fatty acid-CoAs bind to and activate the AMP-activated protein kinase (AMPK) at the allosteric drug and metabolic (ADaM) binding site. Increases in AMPK activity lead to the phosphorylation and inhibition of ACC which is essential for fatty acids to stimulate fatty acid oxidation. Here, we describe the methods to detect fatty acyl-CoA-induced activation of AMPK in cell-free assays, primary mouse hepatocytes, and in the liver of mice. These methodologies will be useful to allow further investigations into the importance of this fatty acid sensing axis in regulating metabolism and provide a framework for future studies investigating whether there may be other natural ligands targeting the ADaM binding site of AMPK.
Collapse
Affiliation(s)
- Eric M Desjardins
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Emily A Day
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - John W Scott
- Protein Chemistry & Metabolism, St Vincent's Institute of Medical Research, School of Medicine, University of Melbourne, Fitzroy, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceuticals Sciences, Parkville, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada.
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada.
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
49
|
Bernasconi R, Soodla K, Sirp A, Zovo K, Kuhtinskaja M, Lukk T, Vendelin M, Birkedal R. Higher AMPK activation in mouse oxidative compared with glycolytic muscle does not correlate with LKB1 or CaMKKβ expression. Am J Physiol Endocrinol Metab 2025; 328:E21-E33. [PMID: 39607028 DOI: 10.1152/ajpendo.00261.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
AMP-activated protein kinase (AMPK) is an energy-sensing serine/threonine kinase involved in metabolic regulation. It is phosphorylated by the upstream liver kinase B1 (LKB1) or calcium/calmodulin-dependent kinase kinase 2 (CaMKKβ). In cultured cells, AMPK activation correlates with LKB1 activity. The phosphorylation activates AMPK, shifting metabolism toward catabolism and promoting mitogenesis. In muscles, inactivity reduces AMPK activation, shifting the phenotype of oxidative muscles toward a more glycolytic profile. Here, we compared the basal level of AMPK activation in glycolytic and oxidative muscles and analyzed whether this relates to LKB1 or CaMKKβ. Using Western blotting, we assessed AMPK expression and phosphorylation in soleus, gastrocnemius (GAST), extensor digitorum longus (EDL), and heart from C57BL6J mice. We also assessed LKB1 and CaMKKβ expression, and CaMKKβ activity in tissue homogenates. AMPK activation was higher in oxidative (soleus and heart) than in glycolytic muscles (gastrocnemius and EDL). This correlated with AMPK α1-isoform expression, but not LKB1 and CaMKKβ. LKB1 expression was sex dependent and lower in male than female muscles. CaMKKβ expression was very low in skeletal muscles and did not phosphorylate AMPK in muscle lysates. The higher AMPK activation in oxidative muscles is in line with the fact that activated AMPK maintains an oxidative phenotype. However, this could not be explained by LKB1 and CaMKKβ. These results suggest that the regulation of AMPK activation is more complex in muscle than in cultured cells. As AMPK has been proposed as a therapeutic target for several diseases, future research should consider AMPK isoform expression and localization, and energetic compartmentalization.NEW & NOTEWORTHY It is important to understand how AMP-activated kinase, AMPK, is regulated, as it is a potential therapeutic target for several diseases. AMPK is activated by liver kinase B1, LKB1, and calcium/calmodulin-dependent kinase kinase 2, CaMKKβ. In cultured cells, AMPK activation correlates with LKB1 expression. In contrast, we show that AMPK-activation was higher in oxidative than glycolytic muscle, without correlating with LKB1 or CaMKKβ expression. Thus, AMPK regulation is more complex in highly compartmentalized muscle cells.
Collapse
Affiliation(s)
- Romain Bernasconi
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Kärol Soodla
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Alex Sirp
- Laboratory of Molecular Neurobiology, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kairit Zovo
- Laboratory of Wood Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Maria Kuhtinskaja
- Laboratory of Analytical Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Tiit Lukk
- Laboratory of Wood Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
50
|
Wang YR, Zhang XX, Chen XX, Yin XH, Yang M, Jiang K, Liu SC. Enhancement of Bone Repair in Diabetic Rats with Metformin-Modified Silicified Collagen Scaffolds. Adv Healthc Mater 2025; 14:e2401430. [PMID: 39177124 DOI: 10.1002/adhm.202401430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/14/2024] [Indexed: 08/24/2024]
Abstract
Regenerating bone defects in diabetic rats presents a significant challenge due to the detrimental effects of reactive oxygen species and impaired autophagy on bone healing. To address these issues, a metformin-modified biomimetic silicified collagen scaffold is developed utilizing the principles of biomimetic silicification. In vitro and in vivo experiments demonstrated that the scaffold enhanced bone tissue regeneration within the diabetic microenvironment through the release of dual bio-factors. Further analysis reveals a potential therapeutic mechanism whereby these dual bio-factors synergistically promoted osteogenesis in areas of diabetic bone defects by improving mitochondrial autophagy and maintaining redox balance. The present study provides critical insights into the advancement of tissue engineering strategies aimed at bone regeneration in diabetic patients. The study also sheds light on the underlying biological mechanisms.
Collapse
Affiliation(s)
- Yi-Rong Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Xiao-Xia Zhang
- Xi'an International University, Xi'an, Shaanxi, 710032, P. R. China
| | - Xu-Xu Chen
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| | - Xin-Hua Yin
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| | - Ming Yang
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| | - Kuo Jiang
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| | - Shi-Chang Liu
- The Department of Orthopedics, Hong-Hui Hospital Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710032, P. R. China
| |
Collapse
|