1
|
Desai M, Gulati K, Agrawal M, Ghumra S, Sahoo PK. Stress granules: Guardians of cellular health and triggers of disease. Neural Regen Res 2026; 21:588-597. [PMID: 39995077 DOI: 10.4103/nrr.nrr-d-24-01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/15/2025] [Indexed: 02/26/2025] Open
Abstract
Stress granules are membraneless organelles that serve as a protective cellular response to external stressors by sequestering non-translating messenger RNAs (mRNAs) and regulating protein synthesis. Stress granules formation mechanism is conserved across species, from yeast to mammals, and they play a critical role in minimizing cellular damage during stress. Composed of heterogeneous ribonucleoprotein complexes, stress granules are enriched not only in mRNAs but also in noncoding RNAs and various proteins, including translation initiation factors and RNA-binding proteins. Genetic mutations affecting stress granule assembly and disassembly can lead to abnormal stress granule accumulation, contributing to the progression of several diseases. Recent research indicates that stress granule dynamics are pivotal in determining their physiological and pathological functions, with acute stress granule formation offering protection and chronic stress granule accumulation being detrimental. This review focuses on the multifaceted roles of stress granules under diverse physiological conditions, such as regulation of mRNA transport, mRNA translation, apoptosis, germ cell development, phase separation processes that govern stress granule formation, and their emerging implications in pathophysiological scenarios, such as viral infections, cancer, neurodevelopmental disorders, neurodegeneration, and neuronal trauma.
Collapse
Affiliation(s)
- Meghal Desai
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| | - Keya Gulati
- College of Science and Liberal Arts, New Jersey Institute of Technology, Newark, NJ, USA
| | - Manasi Agrawal
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| | - Shruti Ghumra
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| |
Collapse
|
2
|
Zhou C, Hardin EJ, Zimmer TS, Jackvony S, Barnett D, Khobrekar N, Giacomelli E, Studer L, Orr AL, Orr AG. Neuroimmune signaling mediates astrocytic nucleocytoplasmic disruptions and stress granule formation associated with TDP-43 pathology. Neurobiol Dis 2025; 211:106939. [PMID: 40339618 DOI: 10.1016/j.nbd.2025.106939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025] Open
Abstract
Alterations in transactivating response region DNA-binding protein 43 (TDP-43) are prevalent in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and other neurological disorders. TDP-43 influences neuronal functions and might also affect glial cells. However, specific intracellular effects of TDP-43 alterations on glial cells and underlying mechanisms are not clear. We report that TDP-43 dysregulation in mouse and human cortical astrocytes causes nucleoporin mislocalization, nuclear envelope remodeling, and changes in nucleocytoplasmic protein transport. These effects are dependent on interleukin-1 (IL-1) receptor activity and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling and are associated with the formation of cytoplasmic stress granules. Stimulation of IL-1 receptors and NF-κB signaling are necessary and sufficient to induce astrocytic stress granules and rapid nucleocytoplasmic changes, which are broadly alleviated by inhibition of the integrated stress response. These findings establish that TDP-43 alterations and neuroimmune factors can induce nucleocytoplasmic changes through NF-κB signaling, revealing mechanistic convergence of proteinopathy and neuroimmune pathways onto glial nucleocytoplasmic disruptions that may occur in diverse neurological conditions.
Collapse
Affiliation(s)
- Constance Zhou
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA; Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA
| | - Evelyn J Hardin
- Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Till S Zimmer
- Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA
| | - Stephanie Jackvony
- Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Barnett
- Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Noopur Khobrekar
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Elisa Giacomelli
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Adam L Orr
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA; Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Anna G Orr
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA; Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Biancon G, Busarello E, Cheng M, Halene S, Tebaldi T. Dissecting the stress granule RNA world: dynamics, strategies, and data. RNA (NEW YORK, N.Y.) 2025; 31:743-755. [PMID: 40086831 DOI: 10.1261/rna.080409.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Stress granules (SGs) are cytoplasmic ribonucleoprotein granules that commonly nucleate from the interaction of translationally stalled mRNAs and RNA-binding proteins. SGs are involved in the cellular adaptation to stress conditions participating in the regulation of gene expression and cell signaling. While dysregulation of SG dynamics has been increasingly implicated in human disease, a comprehensive understanding of SG composition, particularly of the RNA component, across various conditions remains elusive. Here, we review the physiological and pathological aspects of SGs, discuss current and future experimental strategies to identify SG components, and provide insights into the SG RNA world through the meta-analysis of 26 human SG transcriptome data sets.
Collapse
Affiliation(s)
- Giulia Biancon
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06511, USA
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Emma Busarello
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, 38123, Italy
| | - Matthew Cheng
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Toma Tebaldi
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06511, USA
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, 38123, Italy
| |
Collapse
|
4
|
Han P, Ye W, Ma H, Dong Y, Lv X, Liu H, Cheng L, Zhang L, Li S, Lei Y, Zhang F. DDX17 promotes DENV-2 replication via interaction with viral dsRNA and G3BP1. Int J Med Microbiol 2025; 319:151654. [PMID: 40383034 DOI: 10.1016/j.ijmm.2025.151654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/25/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025] Open
Abstract
Dengue virus (DENV) is one of the major arboviruses that pose a serious threat to global human health. However, there is currently no specific antiviral drug available for the treatment of DENV infection. DDX17, a member of the DExD/H-box helicase family, has been implicated in the replication processes of various viruses. Our research group discovered that during the early stages of dengue virus replication, DDX17 promotes viral replication and suppresses the activity of the IFN promoter. Furthermore, DDX17 binds to viral dsRNA and interacts with G3BP1, a component of stress granules (SGs), to inhibit SG formation, thereby enhancing viral replication. By elucidating the role of DDX17 in the early stages of dengue virus replication, our findings provide valuable insights into host-pathogen interactions during DENV infection, offering potential therapeutic perspectives.
Collapse
Affiliation(s)
- Peijun Han
- Department of Aerospace Hygiene, School of Aerospace Medicine, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi 710032, China
| | - Wei Ye
- Department of Microbiology & Pathogen Biology, School of Basic Medicine, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi 710032, China
| | - Hongwei Ma
- Department of Microbiology & Pathogen Biology, School of Basic Medicine, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi 710032, China
| | - Yangchao Dong
- Department of Microbiology & Pathogen Biology, School of Basic Medicine, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi 710032, China
| | - Xin Lv
- Department of Microbiology & Pathogen Biology, School of Basic Medicine, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi 710032, China
| | - He Liu
- Department of Microbiology & Pathogen Biology, School of Basic Medicine, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi 710032, China
| | - Linfeng Cheng
- Department of Microbiology & Pathogen Biology, School of Basic Medicine, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi 710032, China
| | - Liang Zhang
- Department of Microbiology & Pathogen Biology, School of Basic Medicine, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi 710032, China
| | - Sumin Li
- Department of Aerospace Hygiene, School of Aerospace Medicine, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi 710032, China
| | - Yingfeng Lei
- Department of Microbiology & Pathogen Biology, School of Basic Medicine, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi 710032, China
| | - Fanglin Zhang
- Department of Microbiology & Pathogen Biology, School of Basic Medicine, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi 710032, China.
| |
Collapse
|
5
|
Lopez-Nieto M, Sun Z, Relton E, Safakli R, Freibaum BD, Taylor JP, Ruggieri A, Smyrnias I, Locker N. Activation of the mitochondrial unfolded protein response regulates the dynamic formation of stress granules. J Cell Sci 2025; 138:jcs263548. [PMID: 39463355 DOI: 10.1242/jcs.263548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
To rapidly adapt to harmful changes to their environment, cells activate the integrated stress response (ISR). This results in an adaptive transcriptional and translational rewiring, and the formation of biomolecular condensates named stress granules (SGs), to resolve stress. In addition to this first line of defence, the mitochondrial unfolded protein response (UPRmt) activates a specific transcriptional programme to maintain mitochondrial homeostasis. We present evidence that the SG formation and UPRmt pathways are intertwined and communicate. UPRmt induction results in eIF2α phosphorylation and the initial and transient formation of SGs, which subsequently disassemble. The induction of GADD34 (also known as PPP1R15A) during late UPRmt protects cells from prolonged stress by impairing further assembly of SGs. Furthermore, mitochondrial functions and cellular survival are enhanced during UPRmt activation when SGs are absent, suggesting that UPRmt-induced SGs have an adverse effect on mitochondrial homeostasis. These findings point to a novel crosstalk between SGs and the UPRmt that might contribute to restoring mitochondrial functions under stressful conditions.
Collapse
Affiliation(s)
- Marta Lopez-Nieto
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7HX, UK
- The Pirbright Institute, Pirbright GU24 0NF, UK
| | - Zhaozhi Sun
- Heidelberg University, Medical Faculty, Centre for Integrative Infectious Disease Research (CIID), Department of Infectious Diseases, Molecular Virology, Heidelberg 69120, Germany
| | - Emily Relton
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7HX, UK
- The Pirbright Institute, Pirbright GU24 0NF, UK
| | - Rahme Safakli
- Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford GU2 7HX, UK
| | - Brian D Freibaum
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alessia Ruggieri
- Heidelberg University, Medical Faculty, Centre for Integrative Infectious Disease Research (CIID), Department of Infectious Diseases, Molecular Virology, Heidelberg 69120, Germany
| | - Ioannis Smyrnias
- Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford GU2 7HX, UK
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7HX, UK
- The Pirbright Institute, Pirbright GU24 0NF, UK
| |
Collapse
|
6
|
Chen T, Wei Y, Kang J, Zhang D, Ye J, Sun X, Hong M, Zhang W, Wu H, Ding Z, Fei G. ADAR1-HNRNPL-Mediated CircCANX Decline Promotes Autophagy in Chronic Obstructive Pulmonary Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414211. [PMID: 40091520 PMCID: PMC12079403 DOI: 10.1002/advs.202414211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is a characteristic chronic airway inflammatory disease that worsens over time, however, there are currently limited clinical therapeutics to suspend its progression. Circular RNAs (circRNAs), which have emerged as functional regulators in various diseases, including COPD, may server as new pharmacological targets in COPD. Here, it is identified a nuclear circRNA, circCANX, that is preferentially decreased in COPD. The linear splicing of CANX pre-mRNA, enhanced by the ADAR1-HNRNPL interaction, is responsible for the circCANX decline. Clinically, the higher circCANX expression is associated with a worse lung function index of FEV1/FVC among patients with COPD. CircCANX suppresses autophagy and stress granule (SG) formation to strengthen inflammation of COPD in vivo and in vitro. Mechanistically, circCANX recruits the tumor suppressor protein P53 (P53) mRNA and RNA helicase upstream frameshift 1 (UPF1) to form a ternary complex, which mediates P53 mRNA degradation through nonsense-mediated mRNA decay (NMD) process. Together, this study reveals an important circCANX-mediated regulatory mechanism in COPD, and provides new insights into the potential of circRNA-based drug and biomarker development for COPD.
Collapse
Affiliation(s)
- Ting‐Ting Chen
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| | - Yuan‐Yuan Wei
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| | - Jia‐Ying Kang
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| | - Da‐Wei Zhang
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| | - Jing‐Jing Ye
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| | - Xi‐Shi Sun
- Emergency Medicine CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdong Province524000China
| | - Mei Hong
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| | - Wen‐Ting Zhang
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| | - Hui‐Mei Wu
- Department of Geriatric Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
| | - Zhen‐Xing Ding
- Department of Emergency MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
| | - Guang‐He Fei
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230022China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui ProvinceHefeiAnhui Province230022China
| |
Collapse
|
7
|
Jiang N, Yang H, Lei Y, Qin W, Xiong H, Chen K, Mei K, Li G, Mu X, Chen R. Characterization of dsRNA binding proteins through solubility analysis identifies ZNF385A as a dsRNA homeostasis regulator. Nat Commun 2025; 16:3433. [PMID: 40210660 PMCID: PMC11985509 DOI: 10.1038/s41467-025-58704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Double-stranded RNA (dsRNA) binding proteins (dsRBPs) play crucial roles in various cellular processes, especially in the innate immune response. Comprehensive characterization of dsRBPs is essential to understand the intricate mechanisms for dsRNA sensing and response. Traditional methods have predominantly relied on affinity purification, favoring the isolation of strong dsRNA binders. Here, we adopt the proteome integral solubility alteration (PISA) workflow for characterizing dsRBPs, resulting in the observation of 18 known dsRBPs and the identification of 200 potential dsRBPs. Next, we focus on zinc finger protein 385 A (ZNF385A) and discover that its knockout activates the transcription of interferon-β in the absence of immunogenic stimuli. The knockout of ZNF385A elevates the level of endogenous dsRNAs, especially transcripts associated with retroelements, such as short interspersed nuclear element (SINE), long interspersed nuclear element (LINE), and long terminal repeat (LTR). Moreover, loss of ZNF385A enhances the bioactivity of 5-Aza-2'-deoxycytidine (5-AZA-CdR) and tumor-killing effect of NK cells. Our findings greatly expand the dsRBP reservoir and contribute to the understanding of cellular dsRNA homeostasis.
Collapse
Affiliation(s)
- Na Jiang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Hekun Yang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Yi Lei
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
- Jinnan Hospital, Tianjin University (Tianjin Jinnan Hospital), Tianjin, China
| | - Weida Qin
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Huifang Xiong
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Kuan Chen
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Kunrong Mei
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Gongyu Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China.
- Jinnan Hospital, Tianjin University (Tianjin Jinnan Hospital), Tianjin, China.
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China.
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China.
| |
Collapse
|
8
|
Drazkowska K, Cieslicka J, Kitowicz M, Pastucha A, Markiewicz L, Szymanek W, Goryca K, Kowalczyk T, Cysewski D, Bausch AR, Sikorski PJ. Effective recognition of double-stranded RNA does not require activation of cellular inflammation. SCIENCE ADVANCES 2025; 11:eads6498. [PMID: 40203104 PMCID: PMC11980852 DOI: 10.1126/sciadv.ads6498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Excess double-stranded RNA (dsRNA) is present in the cytoplasm of human cells, usually following viral infections. Recognition of dsRNAs activates innate immune pathways, leading to cellular inflammation and inhibition of cell growth. Here, we show that an effective dsRNA response may occur without the onset of inflammation. Pro-inflammatory [RLR (retinoic acid-inducible gene I-like receptor)-dependent pathway] and cell growth inhibitory mechanisms [oligoadenylate synthetase (OAS)/ribonuclease L (RNase L)- and dsRNA-activated protein kinase (PKR)-dependent pathways] can act independently. We found that the 5' ends of dsRNA direct the onset of cellular inflammation, whereas the RNA duplex activates the OAS/RNase L and PKR pathways. Unexpectedly, three of the most common human RNA epitranscriptomic marks-i.e., N6-methyladenosine, 5-methylcytosine, and pseudouridine-had almost no influence on the immunogenicity of dsRNA; however, the presence of N6-methyladenosine inhibited the OAS/RNase L pathway. Our observations demonstrate how precisely innate immunity is fine tuned in cells to take appropriate countermeasures when a specific threat arises.
Collapse
Affiliation(s)
- Karolina Drazkowska
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Julia Cieslicka
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Michal Kitowicz
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Anna Pastucha
- Center for Functional Protein Assemblies, Technical University of Munich, Munich, Germany
| | | | - Wiktoria Szymanek
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Krzysztof Goryca
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Tomasz Kowalczyk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Andreas R. Bausch
- Center for Functional Protein Assemblies, Technical University of Munich, Munich, Germany
| | - Pawel J. Sikorski
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Baluapuri A, Zhao NC, Marina RJ, Huang KL, Kuzkina A, Amodeo ME, Stein CB, Ahn LY, Farr JS, Schaffer AE, Khurana V, Wagner EJ, Adelman K. Integrator loss leads to dsRNA formation that triggers the integrated stress response. Cell 2025:S0092-8674(25)00343-5. [PMID: 40233738 DOI: 10.1016/j.cell.2025.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/16/2024] [Accepted: 03/13/2025] [Indexed: 04/17/2025]
Abstract
Integrator (INT) is a metazoan-specific complex that targets promoter-proximally paused RNA polymerase II (RNAPII) for termination, preventing immature RNAPII from entering gene bodies and functionally attenuating transcription of stress-responsive genes. Mutations in INT subunits are associated with many human diseases, including cancer, ciliopathies, and neurodevelopmental disorders, but how reduced INT activity contributes to disease is unknown. Here, we demonstrate that the loss of INT-mediated termination in human cells triggers the integrated stress response (ISR). INT depletion causes upregulation of short genes such as the ISR transcription factor activating transcription factor 3 (ATF3). Further, immature RNAPII that escapes into genes upon INT depletion is prone to premature termination, generating incomplete pre-mRNAs with retained introns. Retroelements within retained introns form double-stranded RNA (dsRNA) that is recognized by protein kinase R (PKR), which drives ATF4 activation and prolonged ISR. Critically, patient cells with INT mutations exhibit dsRNA accumulation and ISR activation, thereby implicating chronic ISR in diseases caused by INT deficiency.
Collapse
Affiliation(s)
- Apoorva Baluapuri
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA
| | - Nicole ChenCheng Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan J Marina
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Anastasia Kuzkina
- APDA Center for Advanced Research, Division of Motor Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria E Amodeo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Chad B Stein
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Lucie Y Ahn
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jordan S Farr
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Vikram Khurana
- The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA; APDA Center for Advanced Research, Division of Motor Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric J Wagner
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA; Ludwig Center at Harvard, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Honda S, Yokoyama A, Suzuki N. RNA editing of genomic neighbors controls antiviral response in fungi. Cell Host Microbe 2025; 33:545-559.e4. [PMID: 40132592 DOI: 10.1016/j.chom.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 01/29/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
Virus symptom expression involves complex interactions between viruses and their hosts, including antiviral defenses and counter-defenses, many of which are not well understood. This study utilizes Neurospora crassa as a model organism to investigate the role of RNA editing in the fungal antiviral response. We identify two adjacent genes in the genome: the A-to-I RNA-editing enzyme, OTT_1508-like deaminase (old), and its target, zinc fingers adjacent to old (zao). These genes regulate the transcriptional response to viral infection, with old modulating the expression of zao, which functions as a master transcription factor. This regulation contributes to asymptomatic infections by maintaining normal growth and development. However, in RNAi-deficient conditions, the overactivation of these genes leads to severe symptoms, akin to hypersensitive responses observed in plants. Additionally, homologs of zao-old are found as genomic neighbors in various filamentous ascomycetes, suggesting that this RNA-editing system may represent an evolutionarily conserved antiviral mechanism.
Collapse
Affiliation(s)
- Shinji Honda
- Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; Life Science Innovation Center, University of Fukui, Fukui 910-1193, Japan.
| | - Ayumi Yokoyama
- Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
11
|
Zhuang S, Li F, Wang L, Lai Z, Li D, Wu H, Wu J, Qu J, Zhang X, Zhang M, Chen R, Yuan X. Neutrophil extracellular trap-derived double-stranded RNA aggravates PANoptosis in renal ischemia reperfusion injury. Cell Commun Signal 2025; 23:140. [PMID: 40098148 PMCID: PMC11912734 DOI: 10.1186/s12964-025-02145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/08/2025] [Indexed: 03/19/2025] Open
Abstract
A dysregulated inflammatory response and inflammation-associated cell death are central features of renal ischemia-reperfusion injury (IRI). PANoptosis, is a recently recognized form of inflammatory programmed cell death characterized by key features of pyroptosis, apoptosis and necroptosis; however, the specific involvement of PANoptosis in renal IRI remains unknown. By using neutrophil extracellular trap (NETs)-depleted Pad4-/- mice, we found that NETs are essential for exacerbating tissue injury in renal IRI. Single-cell RNA sequencing (scRNA-seq) revealed that IRI promoted PANoptosis signalling in proximal tubular epithelial cells (PTs), whereas PAD4 knockout inhibited PANoptosis signalling. PTs expressed mainly RIPK1-PANoptosomes, which executed NET-induced PANoptosis in PTs in renal IRI model mice. Mechanistically, NET-derived double-stranded RNA (dsRNA) promoted PANoptosis in PTs, and PT-expressed TLR3 was responsible for the sensing the extracellular dsRNA. Treating mice with chemical inhibitors of the dsRNA/TLR3 complex suppressed PANoptosis and alleviated tissue injury in renal IRI. Together, the results of this study reveal a mechanism by which the NET-dsRNA-TLR3 axis aggravates PT cell PANoptosis in renal IRI.
Collapse
Affiliation(s)
- Shaoyong Zhuang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Fangzhou Li
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
- Department of Urology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, China
| | - Liya Wang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Zilong Lai
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Dawei Li
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Haoyu Wu
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Jiajin Wu
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Junwen Qu
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Xianyun Zhang
- Department of Urology, The Affiliated Huaian Hospital of Xuzhou Medical University, Jiangsu, 223200, China.
| | - Ming Zhang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China.
| | - Ruoyang Chen
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China.
| | - Xiaodong Yuan
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China.
| |
Collapse
|
12
|
Shi M, Jiang T, Zhang M, Li Q, Liu K, Lin N, Wang X, Jiang A, Gao Y, Wang Y, Liu S, Zhang L, Li D, Gao P. Nucleic-acid-induced ZCCHC3 condensation promotes broad innate immune responses. Mol Cell 2025; 85:962-975.e7. [PMID: 39983719 DOI: 10.1016/j.molcel.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 11/17/2024] [Accepted: 01/27/2025] [Indexed: 02/23/2025]
Abstract
Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) and cyclic GMP-AMP synthase (cGAS) recognize aberrant nucleic acids and initiate antiviral responses. Host factor zinc finger CCHC domain-containing protein 3 (ZCCHC3) positively regulates both RLRs- and cGAS-mediated signaling through unknown mechanisms. Here, we show that ZCCHC3 employs a broad and unified strategy to promote these pathways in human cell lines. Rather than developing strong protein-protein interactions, ZCCHC3 harbors multiple nucleic-acid-binding modules and undergoes robust liquid phase condensation with nucleic acids. RNA-induced ZCCHC3 condensates enrich and activate RLRs, which then facilitate the interaction of RLRs with the downstream adaptor mitochondrial antiviral-signaling (MAVS). Direct and high-resolution structure determination of liquid condensates confirms the assembly of active-form MAVS filaments. Furthermore, ZCCHC3 efficiently promotes the condensation and enrichment of DNA, cGAS, ATP, and GTP, thereby enhancing cGAS signaling. ZCCHC3 mutants defective in RNA/DNA-induced condensation lost their regulatory efficiency in both pathways. These results highlight unexpectedly broad connections between biomolecular condensation and innate immunity.
Collapse
Affiliation(s)
- Miao Shi
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Jiang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengfan Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanjin Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kexin Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ni Lin
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinlu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Amin Jiang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yina Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Songqing Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liguo Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Pu Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Barker R, Bartok E. Come together, right now! ZCCHC3 orchestrates cytosolic nucleic acid sensing through phase condensation. Mol Cell 2025; 85:859-861. [PMID: 40054441 DOI: 10.1016/j.molcel.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 05/13/2025]
Abstract
In this issue of Molecular Cell, Shi et al.1 elucidate a novel role of host factor ZCCHC3 in positively regulating RLR and cGAS signaling through the binding of nucleic acids and induction of liquid phase condensation.
Collapse
Affiliation(s)
- Rebecca Barker
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Eva Bartok
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
14
|
Firdaus MER, Dukhno E, Kapoor R, Gerlach P. Two Birds With One Stone: RNA Virus Strategies to Manipulate G3BP1 and Other Stress Granule Components. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70005. [PMID: 40170442 PMCID: PMC11962251 DOI: 10.1002/wrna.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 04/03/2025]
Abstract
Stress granules (SGs) are membrane-less organelles forming in the cytoplasm in response to various types of stress, including viral infection. SGs and SG-associated proteins can play either a proviral role, by facilitating viral replication, or an antiviral role, by limiting the translation capacity, sequestering viral RNA, or contributing to the innate immune response of the cell. Consequently, viruses frequently target stress granules while counteracting cellular translation shut-off and the antiviral response. One strategy is to sequester SG components, not only to impair their assembly but also to repurpose and incorporate them into viral replication sites. G3BP1 is a key SG protein, driving its nucleation through protein-protein and protein-RNA interactions. Many cellular proteins, including other SG components, interact with G3BP1 via their ΦxFG motifs. Notably, SARS-CoV N proteins and alphaviral nsP3 proteins contain similar motifs, allowing them to compete for G3BP1. Several SG proteins have been shown to interact with the flaviviral capsid protein, which is primarily responsible for anchoring the viral genome inside the virion. There are also numerous examples of structured elements within coronaviral and flaviviral RNAs recruiting or sponging SG proteins. Despite these insights, the structural and biochemical details of SG-virus interactions remain largely unexplored and are known only for a handful of cases. Exploring their molecular relevance for infection and discovering new examples of direct SG-virus contacts is highly important, as advances in this area will open new possibilities for the design of targeted therapies and potentially broad-spectrum antivirals.
Collapse
Affiliation(s)
- Moh Egy Rahman Firdaus
- IMol Polish Academy of SciencesWarsawPoland
- ReMedy International Research Agenda UnitIMol Polish Academy of SciencesWarsawPoland
| | - Eliana Dukhno
- IMol Polish Academy of SciencesWarsawPoland
- ReMedy International Research Agenda UnitIMol Polish Academy of SciencesWarsawPoland
| | | | - Piotr Gerlach
- IMol Polish Academy of SciencesWarsawPoland
- ReMedy International Research Agenda UnitIMol Polish Academy of SciencesWarsawPoland
| |
Collapse
|
15
|
Li J, Shen L, Wang K, Wu S, Wang Y, Pan Y, Chen S, Zhao T, Zhao Y, Niu L, Chen L, Zhang S, Zhu L, Gan M. Biogenesis of stress granules and their role in the regulation of stress-induced male reproduction disorders. Cell Commun Signal 2025; 23:84. [PMID: 39948590 PMCID: PMC11827146 DOI: 10.1186/s12964-025-02054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Stress granules (SGs) are conserved messenger ribonucleoprotein (mRNP) granules that form through rapid coalescence in the cytoplasm of eukaryotic cells under stressful environments. These dynamic membrane-free organelles can respond to a variety of both intracellular and extracellular stressors. Studies have shown that stress conditions such as heat stress, arsenite exposure, and hypoxic stress can induce SGs formation. The formation of SGs helps mitigates the effects of environmental stimuli on cells, protects them from damage, and promotes cell survival. This paper focuses on the biogenesis of SGs and summarizes the role in regulating environmental stress-induced male reproductive disorders, with the aim of exploring SGs as a potential means of mitigating male reproduction disorders. Numerous studies have demonstrated that the detrimental effects of environmental stress on germ cells can be effectively suppressed by regulating the formation and timely disassembly of SGs. Therefore, regulating the phosphorylation of eIF2α and the assembly and disassembly of SGs could offer a promising therapeutic strategy to alleviate the impacts of environmental stress on male reproduction health.
Collapse
Affiliation(s)
- Jiaxin Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuang Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuheng Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siyu Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
16
|
Kirby CS, Islam N, Wier E, Alphonse MP, Sweren E, Wang G, Liu H, Kim D, Li A, Lee SS, Overmiller AM, Xue Y, Reddy S, Archer NK, Miller LS, Yu J, Huang W, Jones JW, Kim S, Kane MA, Silverman RH, Garza LA. RNase L represses hair follicle regeneration through altered innate immune signaling. J Clin Invest 2025; 135:e172595. [PMID: 39903537 PMCID: PMC11910212 DOI: 10.1172/jci172595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Mammalian injury responses are predominantly characterized by fibrosis and scarring rather than functional regeneration. This limited regenerative capacity in mammals could reflect a loss of proregeneration programs or active suppression by genes functioning akin to tumor suppressors. To uncover programs governing regeneration in mammals, we screened transcripts in human participants following laser rejuvenation treatment and compared them with mice with enhanced wound-induced hair neogenesis (WIHN), a rare example of mammalian organogenesis. We found that Rnasel-/- mice exhibit an increased regenerative capacity, with elevated WIHN through enhanced IL-36α. Consistent with RNase L's known role to stimulate caspase-1, we found that pharmacologic inhibition of caspases promoted regeneration in an IL-36-dependent manner in multiple epithelial tissues. We identified a negative feedback loop, where RNase L-activated caspase-1 restrains the proregenerative dsRNA-TLR3 signaling cascade through the cleavage of toll-like adaptor protein TRIF. Through integrated single-cell RNA-seq and spatial transcriptomic profiling, we confirmed OAS & IL-36 genes to be highly expressed at the site of wounding and elevated in Rnasel-/- mouse wounds. This work suggests that RNase L functions as a regeneration repressor gene, in a functional trade off that tempers immune hyperactivation during viral infection at the cost of inhibiting regeneration.
Collapse
Affiliation(s)
- Charles S. Kirby
- Department of Dermatology and
- Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nasif Islam
- Department of Dermatology and
- Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | - Dongwon Kim
- Department of Dermatology and
- Department of Biochemical Engineering, College of Science and Technology, Dongseo University, Busan, South Korea
| | - Ang Li
- Department of Dermatology and
| | | | - Andrew M. Overmiller
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Sashank Reddy
- Department of Plastic Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Sooah Kim
- Department of Dermatology and
- Department of Environment Science and Biotechnology, College of Medical Science, Jeonju University, Jeonju, South Korea
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Luis A. Garza
- Department of Dermatology and
- Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Lin Y, Zhu Y, Jing L, Lei X, Xie Z. Regulation of viral replication by host restriction factors. Front Immunol 2025; 16:1484119. [PMID: 39917304 PMCID: PMC11798991 DOI: 10.3389/fimmu.2025.1484119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Viral infectious diseases, caused by numerous viruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IAV), enterovirus (EV), human immunodeficiency virus (HIV), hepatitis B virus (HBV), and human papillomavirus (HPV), pose a continuous threat to global health. As obligate parasites, viruses rely on host cells to replicate, and host cells have developed numerous defense mechanisms to counteract viral infection. Host restriction factors (HRFs) are critical components of the early antiviral response. These cellular proteins inhibit viral replication and spread by impeding essential steps in the viral life cycle, such as viral entry, genome transcription and replication, protein translation, viral particle assembly, and release. This review summarizes the current understanding of how host restriction factors inhibit viral replication, with a primary focus on their diverse antiviral mechanisms against a range of viruses, including SARS-CoV-2, influenza A virus, enteroviruses, human immunodeficiency virus, hepatitis B virus, and human papillomavirus. In addition, we highlight the crucial role of these factors in shaping the host-virus interactions and discuss their potential as targets for antiviral drug development.
Collapse
Affiliation(s)
- Ying Lin
- National Health Commission (NHC) Key Laboratory of System Biology of Pathogens and Christophe Merieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Zhu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Jing
- National Health Commission (NHC) Key Laboratory of System Biology of Pathogens and Christophe Merieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Lei
- National Health Commission (NHC) Key Laboratory of System Biology of Pathogens and Christophe Merieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Zhengde Xie
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Iimori Y, Morita T, Masuda T, Kitajima S, Kono N, Kageyama S, Galipon J, Sasaki AT, Kanai A. SLFN11-mediated tRNA regulation induces cell death by disrupting proteostasis in response to DNA-damaging agents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.632070. [PMID: 39829761 PMCID: PMC11741311 DOI: 10.1101/2025.01.08.632070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
DNA-damaging agents (DDAs) have long been used in cancer therapy. However, the precise mechanisms by which DDAs induce cell death are not fully understood and drug resistance remains a major clinical challenge. Schlafen 11 (SLFN11) was identified as the gene most strongly correlated with the sensitivity to DDAs based on mRNA expression levels. SLFN11 sensitizes cancer cells to DDAs by cleaving and downregulating tRNALeu(TAA). Elucidating the detailed mechanism by which SLFN11 induces cell death is expected to provide insights into overcoming drug resistance. Here, we show that, upon administration of DDAs, SLFN11 cleaves tRNALeu(TAA), leading to ER stress and subsequent cell death regulated by inositol-requiring enzyme 1 alpha (IRE1α). These responses were significantly alleviated by SLFN11 knockout or transfection of tRNALeu(TAA). Our proteomic analysis suggests that tRNALeu(TAA) influences proteins essential for maintaining proteostasis, especially those involved in ubiquitin-dependent proteolysis. Additionally, we identified the cleavage sites of tRNALeu(TAA) generated by SLFN11 in cells, and revealed that tRNA fragments contribute to ER stress and cell death. These findings suggest that SLFN11 plays a crucial role in proteostasis by regulating tRNAs, and thus determines cell fate under DDA treatment. Consequently, targeting SLFN11-mediated tRNA regulation could offer a novel approach to improve cancer therapy.
Collapse
Affiliation(s)
- Yuki Iimori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Teppei Morita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Takeshi Masuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Shojiro Kitajima
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Shun Kageyama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| | - Josephine Galipon
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
- Graduate School of Science and Engineering, Yamagata University, Yonezawa, 992-8510, Japan
| | - Atsuo T. Sasaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, Cincinnati, OH, 45267, USA
- Department of Clinical and Molecular Genetics, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
- Systems Biology Program Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan
| |
Collapse
|
19
|
Wang R, Dong X, Zhang X, Liao J, Cui W, Li W. Exploring viral mimicry combined with epigenetics and tumor immunity: new perspectives in cancer therapy. Int J Biol Sci 2025; 21:958-973. [PMID: 39897033 PMCID: PMC11781167 DOI: 10.7150/ijbs.103877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
Viral mimicry refers to an active antiviral response triggered by the activation of endogenous retroviruses (ERVs), usually manifested by the formation of double-stranded RNA (dsRNA) and activation of the cellular interferon response, which activates the immune system and produces anti-tumor effects. Epigenetic studies have shown that epigenetic modifications (e.g. DNA methylation, histone modifications, etc.) play a crucial role in tumorigenesis, progression, and treatment resistance. Particularly, alterations in DNA methylation may be closely associated with the suppression of ERVs expression, and treatment by demethylation may restore ERVs activity and thus strengthen the tumor immune response. Therefore, we propose that viral mimicry can induce immune responses in the tumor microenvironment by activating the expression of ERVs, and that epigenetic alterations may play a key regulatory role in this process. In this paper, we review the intersection of viral mimicry, epigenetics and tumor immunotherapy, and explore the possible interactions and synergistic effects among the three, aiming to provide a new theoretical basis and potential strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University. Tongzipo Road 138, Changsha, Hunan, People's Republic of China
| | - Xin Dong
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiongjian Zhang
- Department of Radiology, The Third Xiangya Hospital of Central South University. Tongzipo Road 138, Changsha, Hunan, People's Republic of China
| | - Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University. Tongzipo Road 138, Changsha, Hunan, People's Republic of China
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Cui
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University. Tongzipo Road 138, Changsha, Hunan, People's Republic of China
| |
Collapse
|
20
|
Wang W, Fu X, Gu B, Hu M, Liu J. Matrine relieved DHAV-1-induced hepatocyte excessive interferon and pyroptosis by activating mitophagy. Poult Sci 2025; 104:104601. [PMID: 39644722 PMCID: PMC11667707 DOI: 10.1016/j.psj.2024.104601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024] Open
Abstract
Duck hepatitis A virus type 1 (DHAV-1) is a significant pathogen affecting ducklings, capable of causing rapid mortality and adversely impacting the development of the duck industry. Matrine, the primary active ingredient in various Chinese herbal medicines, has demonstrated antiviral and anti-inflammatory properties. Nevertheless, the effects and mechanisms of action of matrine against DHAV-1 infection remain unclear. This research investigates the effects of matrine on DHAV-1 infection and elucidates the mechanisms involved. We found that matrine mitigated the excessive retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling response, pyroptosis, and mitochondrial damage induced by DHAV-1 in duckling livers and duck embryonic hepatocytes (DEHs). Additionally, by incorporating the autophagy inhibitor chloroquine, we observed that the effects of matrine on the regulation of excessive interferon (IFN) production, pyroptosis, mitochondrial damage, and oxidative stress were reversed. Overall, matrine inhibited excessive IFN production and pyroptosis by promoting mitophagy, suggesting that matrine may act as a possible therapeutic agent for addressing DHAV-1 infection and other viral hepatitis.
Collapse
Affiliation(s)
- Weiran Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiang Fu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Bolin Gu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mengxin Hu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaguo Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
21
|
Chen K, Cao X. Biomolecular condensates: phasing in regulated host-pathogen interactions. Trends Immunol 2025; 46:29-45. [PMID: 39672748 DOI: 10.1016/j.it.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024]
Abstract
Biomolecular condensates are membraneless organelles formed through liquid-liquid phase separation. Innate immunity is essential to host defense against infections, but pathogens also harbor sophisticated mechanisms to evade host defense. The formation of biomolecular condensates emerges as a key biophysical mechanism in host-pathogen interactions, playing pivotal roles in regulating immune responses and pathogen life cycles within the host. In this review we summarize recent advances in our understanding of how biomolecular condensates remodel membrane-bound organelles, influence infection-induced cell death, and are hijacked by pathogens for survival, as well as how they modulate mammalian innate immunity. We discuss the implications of dysregulated formation of biomolecular condensates during host-pathogen interactions and infectious diseases and propose future directions for developing potential treatments against such infections.
Collapse
Affiliation(s)
- Kun Chen
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200127, China; Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Xuetao Cao
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China.
| |
Collapse
|
22
|
Cheng L, Liu Z, Shen C, Xiong Y, Shin SY, Hwang Y, Yang S, Chen Z, Zhang X. A Wonderful Journey: The Diverse Roles of Adenosine Deaminase Action on RNA 1 (ADAR1) in Central Nervous System Diseases. CNS Neurosci Ther 2025; 31:e70208. [PMID: 39753993 PMCID: PMC11702419 DOI: 10.1111/cns.70208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 01/14/2025] Open
Abstract
BACKGROUND Adenosine deaminase action on RNA 1 (ADAR1) can convert the adenosine in double-stranded RNA (dsRNA) molecules into inosine in a process known as A-to-I RNA editing. ADAR1 regulates gene expression output by interacting with RNA and other proteins; plays important roles in development, including growth; and is linked to innate immunity, tumors, and central nervous system (CNS) diseases. RESULTS In recent years, the role of ADAR1 in tumors has been widely discussed, but its role in CNS diseases has not been reviewed. It is worth noting that recent studies have shown ADAR1 has great potential in the treatment of neurodegenerative diseases, but the mechanisms are still unclear. Therefore, it is necessary to elaborate on the role of ADAR1 in CNS diseases. CONCLUSIONS Here, we focus on the effects and mechanisms of ADAR1 on CNS diseases such as Aicardi-AicardiGoutières syndrome, Alzheimer's disease, Parkinson's disease, glioblastoma, epilepsy, amyotrophic lateral sclerosis, and autism. We also evaluate the impact of ADAR1-based treatment strategies on these diseases, with a particular focus on the development and treatment strategies of new technologies such as microRNAs, nanotechnology, gene editing, and stem cell therapy. We hope to provide new directions and insights for the future development of ADAR1 gene editing technology in brain science and the treatment of CNS diseases.
Collapse
Affiliation(s)
- Lin Cheng
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Ziying Liu
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of PathologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Chunxiao Shen
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of PathologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Yinyi Xiong
- Department of RehabilitationAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Sang Yol Shin
- Department of Emergency Medical TechnologyWonkwang University College of MedicineIksanJeonbuk‐doRepublic of Korea
| | - Yong Hwang
- Department of Emergency MedicineWonkwang University College of MedicineIksanJeonbuk‐doRepublic of Korea
| | - Seung‐Bum Yang
- Department of ParamedicineWonkwang Health Science UniversityIksanJeonbuk‐doRepublic of Korea
| | - Zhiying Chen
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Xiaorong Zhang
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of PathologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| |
Collapse
|
23
|
Kim J, Song CH. Stress Granules in Infectious Disease: Cellular Principles and Dynamic Roles in Immunity and Organelles. Int J Mol Sci 2024; 25:12950. [PMID: 39684660 DOI: 10.3390/ijms252312950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Stress granules (SGs) are membrane-less aggregates that form in response to various cellular stimuli through a process called liquid-liquid phase separation (LLPS). Stimuli such as heat shock, osmotic stress, oxidative stress, and infections can induce the formation of SGs, which play crucial roles in regulating gene expression to help cells adapt to stress conditions. Various mRNAs and proteins are aggregated into SGs, particularly those associated with the protein translation machinery, which are frequently found in SGs. When induced by infections, SGs modulate immune cell activity, supporting the cellular response against infection. The roles of SGs differ in viral versus microbial infections, and depending on the type of immune cell involved, SGs function differently in response to infection. In this review, we summarize our current understanding of the implication of SGs in immunity and cellular organelles in the context of infectious diseases. Importantly, we explore insights into the regulatory functions of SGs in the context of host cells under infection.
Collapse
Affiliation(s)
- Jaewhan Kim
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Chang-Hwa Song
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
24
|
Harrison AG, Yang D, Cahoon JG, Geng T, Cao Z, Karginov TA, Hu Y, Li X, Chiari CC, Qyang Y, Vella AT, Fan Z, Vanaja SK, Rathinam VA, Witczak CA, Bogan JS, Wang P. UBXN9 governs GLUT4-mediated spatial confinement of RIG-I-like receptors and signaling. Nat Immunol 2024; 25:2234-2246. [PMID: 39567760 PMCID: PMC12067455 DOI: 10.1038/s41590-024-02004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/04/2024] [Indexed: 11/22/2024]
Abstract
The cytoplasmic RIG-I-like receptors (RLRs) recognize viral RNA and initiate innate antiviral immunity. RLR signaling also triggers glycolytic reprogramming through glucose transporters (GLUTs), whose role in antiviral immunity is elusive. Here, we unveil that insulin-responsive GLUT4 inhibits RLR signaling independently of glucose uptake in adipose and muscle tissues. At steady state, GLUT4 is trapped at the Golgi matrix by ubiquitin regulatory X domain 9 (UBXN9, TUG). Following RNA virus infection, GLUT4 is released and translocated to the cell surface where it spatially segregates a significant pool of cytosolic RLRs, preventing them from activating IFN-β responses. UBXN9 deletion prompts constitutive GLUT4 translocation, sequestration of RLRs and attenuation of antiviral immunity, whereas GLUT4 deletion heightens RLR signaling. Notably, reduced GLUT4 expression is uniquely associated with human inflammatory myopathies characterized by hyperactive interferon responses. Overall, our results demonstrate a noncanonical UBXN9-GLUT4 axis that controls antiviral immunity via plasma membrane tethering of cytosolic RLRs.
Collapse
Affiliation(s)
- Andrew G Harrison
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Duomeng Yang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA.
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Jason G Cahoon
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Tingting Geng
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Ziming Cao
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Timofey A Karginov
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Youjia Hu
- Section of Endocrinology, Department of Internal Medicine, and Department of Cell Biology, and Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, CT, USA
| | - Xin Li
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Conner C Chiari
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Yibing Qyang
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Anthony T Vella
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Sivapriya Kailasan Vanaja
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Vijay A Rathinam
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Carol A Witczak
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jonathan S Bogan
- Section of Endocrinology, Department of Internal Medicine, and Department of Cell Biology, and Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, CT, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
25
|
Guo J, Huang R, Mei Y, Lu S, Gong J, Wang L, Ding L, Wu H, Pan D, Liu W. Application of stress granule core element G3BP1 in various diseases: A review. Int J Biol Macromol 2024; 282:137254. [PMID: 39515684 DOI: 10.1016/j.ijbiomac.2024.137254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/15/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Ras-GTPase-activating protein-binding protein 1 (G3BP1) is a core component and crucial regulatory switch in stress granules (SGs). When the concentration of free RNA within cells increases, it can trigger RNA-dependent liquid-liquid phase separation (LLPS) with G3BP1 as the core, thereby forming SGs that affect cell survival or death. In addition, G3BP1 interacts with various host proteins to regulate the expression of SGs. As a multifunctional binding protein, G3BP1 has diverse biological functions, influencing cell proliferation, differentiation, apoptosis, and RNA metabolism and serving as a crucial regulator in signaling pathways such as Rac1-PAK1, TSC-mTORC1, NF-κB, and STAT3. Therefore, it plays a significant role in the regulation of neurodegenerative diseases, myocardial hypertrophy, and congenital immunity, and is involved in the proliferation, invasion, and metastasis of cancer cells. G3BP1 is an important antiviral factor that interacts with viral proteins, and regulates SG assembly to exert antiviral effects. This article focuses on the recent discoveries and progress of G3BP1 in biology, including its structure and function, regulation of SG formation and dissolution, and its relationships with non-neoplastic diseases, tumors, and viruses.
Collapse
Affiliation(s)
- Jieyu Guo
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China; School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Rongyi Huang
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Yan Mei
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Siao Lu
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China; School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Jun Gong
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Long Wang
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Liqiong Ding
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Hongnian Wu
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Dan Pan
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Wu Liu
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China.
| |
Collapse
|
26
|
Huang J, Wang Y, Jia X, Zhao C, Zhang M, Bao M, Fu P, Cheng C, Shi R, Zhang X, Cui J, Wan G, Xu A. The human disease-associated gene ZNFX1 controls inflammation through inhibition of the NLRP3 inflammasome. EMBO J 2024; 43:5469-5493. [PMID: 39333773 PMCID: PMC11574294 DOI: 10.1038/s44318-024-00236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Inherited deficiency of zinc finger NFX1-type containing 1 (ZNFX1), a dsRNA virus sensor, is associated with severe familial immunodeficiency, multisystem inflammatory disease, increased susceptibility to viruses, and early mortality. However, limited treatments for patients with pathological variants of ZNFX1 exist due to an incomplete understanding of the diseases resulting from ZNFX1 mutations. Here, we demonstrate that ZNFX1 specifically inhibits the activation of the NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome in response to NLRP3 activators both in vitro and in vivo. ZNFX1 retains NLRP3 in the cytoplasm and prevents its accumulation in the TGN38 + /TGN46+ vesicles in the resting state. Upon NLRP3 inflammasome activation, ZNFX1 is cleaved by caspase-1, establishing a feed-forward loop that promotes NLRP3 accumulation in the trans-Golgi network (TGN) and amplifies the activity of the downstream cascade. Expression of wild-type ZNFX1, but not of ZNFX1 with human pathogenic mutations, rescues the impairment of NLRP3 inflammasome inhibition. Our findings reveal a dual role of ZNFX1 in virus sensing and suppression of inflammation, which may become valuable for the development of treatments for ZNFX1 mutation-related diseases.
Collapse
Affiliation(s)
- Jing Huang
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Yao Wang
- Beijing Research Institute of Chinese Medicine, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xin Jia
- Beijing Research Institute of Chinese Medicine, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Changfeng Zhao
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Meiqi Zhang
- Beijing Research Institute of Chinese Medicine, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mi Bao
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Pan Fu
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Cuiqin Cheng
- Beijing Research Institute of Chinese Medicine, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ruona Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
- Center for Cell Lineage and Atlas, BioLand Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, 510530, China
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
- Center for Cell Lineage and Atlas, BioLand Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, 510530, China
| | - Jun Cui
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Gang Wan
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.
| | - Anlong Xu
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.
- Beijing Research Institute of Chinese Medicine, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
27
|
Xavier V, Martinelli S, Corbyn R, Pennie R, Rakovic K, Powley IR, Officer-Jones L, Ruscica V, Galloway A, Carlin LM, Cowling VH, Le Quesne J, Martinou JC, MacVicar T. Mitochondrial double-stranded RNA homeostasis depends on cell-cycle progression. Life Sci Alliance 2024; 7:e202402764. [PMID: 39209534 PMCID: PMC11361371 DOI: 10.26508/lsa.202402764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Mitochondrial gene expression is a compartmentalised process essential for metabolic function. The replication and transcription of mitochondrial DNA (mtDNA) take place at nucleoids, whereas the subsequent processing and maturation of mitochondrial RNA (mtRNA) and mitoribosome assembly are localised to mitochondrial RNA granules. The bidirectional transcription of circular mtDNA can lead to the hybridisation of polycistronic transcripts and the formation of immunogenic mitochondrial double-stranded RNA (mt-dsRNA). However, the mechanisms that regulate mt-dsRNA localisation and homeostasis are largely unknown. With super-resolution microscopy, we show that mt-dsRNA overlaps with the RNA core and associated proteins of mitochondrial RNA granules but not nucleoids. Mt-dsRNA foci accumulate upon the stimulation of cell proliferation and their abundance depends on mitochondrial ribonucleotide supply by the nucleoside diphosphate kinase, NME6. Consequently, mt-dsRNA foci are profuse in cultured cancer cells and malignant cells of human tumour biopsies. Our results establish a new link between cell proliferation and mitochondrial nucleic acid homeostasis.
Collapse
Affiliation(s)
- Vanessa Xavier
- The CRUK Scotland Institute, Glasgow, UK
- Department of Molecular and Cellular Biology, University of Geneva, Genève, Switzerland
| | - Silvia Martinelli
- The CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Rachel Pennie
- The CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Kai Rakovic
- The CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ian R Powley
- The CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Leah Officer-Jones
- The CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Vincenzo Ruscica
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Leo M Carlin
- The CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Victoria H Cowling
- The CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - John Le Quesne
- The CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jean-Claude Martinou
- Department of Molecular and Cellular Biology, University of Geneva, Genève, Switzerland
| | - Thomas MacVicar
- The CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
28
|
Zhao G, Zhang HM, Chen YT, Shi K, Aghakeshmiri S, Yip F, Luo H, McManus B, Yang D. Coxsackievirus B3-Induced m 6A Modification of RNA Enhances Viral Replication via Suppression of YTHDF-Mediated Stress Granule Formation. Microorganisms 2024; 12:2152. [PMID: 39597541 PMCID: PMC11596310 DOI: 10.3390/microorganisms12112152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal RNA modification. Here, we demonstrate that coxsackievirus B3 (CVB3), a common causative agent of viral myocarditis, induces m6A modification primarily at the stop codon and 3' untranslated regions of its genome. As a positive-sense single-stranded RNA virus, CVB3 replicates exclusively in the cytoplasm through a cap-independent translation initiation mechanism. Our study shows that CVB3 modulates the expression and nucleo-cytoplasmic transport of the m6A machinery components-METTL3, ALKBH5 and YTHDFs-resulting in increased m6A modifications that enhance viral replication. Mechanistically, this enhancement is mediated through YTHDF-driven stress granule (SG) formation. We observed that YTHDF proteins co-localize with human antigen R (HuR), a protein facilitating cap-independent translation, in SGs during early infection. Later in infection, YTHDFs are cleaved, suppressing SG formation. Notably, for the first time, we identified that during early infection CVB3's RNA-dependent RNA polymerase (3D) and double-stranded RNA (dsRNA) are stored in SGs, co-localizing with HuR. This early-stage sequestration likely protects viral components for use in late-phase replication, when SGs are disrupted due to YTHDF cleavage. In summary, our findings reveal that CVB3-induced m6A modifications enhance viral replication by regulating YTHDF-mediated SG dynamics. This study provides a potential therapeutic strategy for CVB3-induced myocarditis.
Collapse
Affiliation(s)
- Guangze Zhao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (G.Z.); (H.M.Z.)
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Huifang M. Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (G.Z.); (H.M.Z.)
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Yankuan T. Chen
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Kerry Shi
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Sana Aghakeshmiri
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Fione Yip
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Honglin Luo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (G.Z.); (H.M.Z.)
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Bruce McManus
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (G.Z.); (H.M.Z.)
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Decheng Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (G.Z.); (H.M.Z.)
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
29
|
Mohan HM, Fernandez MG, Huang C, Lin R, Ryou JH, Seyfried D, Grotewold N, Whiteley AM, Barmada SJ, Basrur V, Mosalaganti S, Paulson HL, Sharkey LM. Endogenous retrovirus-like proteins recruit UBQLN2 to stress granules and alter their functional properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620053. [PMID: 39484508 PMCID: PMC11527177 DOI: 10.1101/2024.10.24.620053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The human genome is replete with sequences derived from foreign elements including endogenous retrovirus-like proteins of unknown function. Here we show that UBQLN2, a ubiquitin-proteasome shuttle factor implicated in neurodegenerative diseases, is regulated by the linked actions of two retrovirus-like proteins, RTL8 and PEG10. RTL8 confers on UBQLN2 the ability to complex with and regulate PEG10. PEG10, a core component of stress granules, drives the recruitment of UBQLN2 to stress granules under various stress conditions, but can only do so when RTL8 is present. Changes in PEG10 levels further remodel the kinetics of stress granule disassembly and overall composition by incorporating select extracellular vesicle proteins. Within stress granules, PEG10 forms virus-like particles, underscoring the structural heterogeneity of this class of biomolecular condensates. Together, these results reveal an unexpected link between pathways of cellular proteostasis and endogenous retrovirus-like proteins.
Collapse
|
30
|
Pallarés H, González López Ledesma M, Oviedo-Rouco S, Castellano L, Costa Navarro G, Fernández-Alvarez A, D’Andreiz M, Aldas-Bulos V, Alvarez D, Bazzini A, Gamarnik A. Zika virus non-coding RNAs antagonize antiviral responses by PKR-mediated translational arrest. Nucleic Acids Res 2024; 52:11128-11147. [PMID: 38917323 PMCID: PMC11472168 DOI: 10.1093/nar/gkae507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/08/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that causes severe outbreaks in human populations. ZIKV infection leads to the accumulation of small non-coding viral RNAs (known as sfRNAs) that are crucial for evasion of antiviral responses and for viral pathogenesis. However, the mechanistic understanding of how sfRNAs function remains incomplete. Here, we use recombinant ZIKVs and ribosome profiling of infected human cells to show that sfRNAs block translation of antiviral genes. Mechanistically, we demonstrate that specific RNA structures present in sfRNAs trigger PKR activation, which instead of limiting viral replication, enhances viral particle production. Although ZIKV infection induces mRNA expression of antiviral genes, translation efficiency of type I interferon and interferon stimulated genes were significantly downregulated by PKR activation. Our results reveal a novel viral adaptation mechanism mediated by sfRNAs, where ZIKV increases its fitness by repurposing the antiviral role of PKR into a proviral factor.
Collapse
Affiliation(s)
- Horacio M Pallarés
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Mora González López Ledesma
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Santiago Oviedo-Rouco
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Guadalupe S Costa Navarro
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana J Fernández-Alvarez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Josefina D’Andreiz
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Diego E Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Andrea V Gamarnik
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
31
|
Zhang Y, Zhang S. CRISPR perfect adaptation for robust control of cellular immune and apoptotic responses. Nucleic Acids Res 2024; 52:10005-10016. [PMID: 39087566 PMCID: PMC11381330 DOI: 10.1093/nar/gkae665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/26/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
A central challenge in the quest for precise gene regulation within mammalian cells is the development of regulatory networks that can achieve perfect adaptation-where outputs consistently return to a set baseline post-stimulus. Here, we present such a system that leverages the CRISPR activation (CRISPRa) and anti-CRISPR proteins as two antithetic elements to establish perfect adaptation in mammalian cells and dynamically regulate gene expression. We demonstrate that this system can maintain stable expression levels of target genes in the face of external perturbations, thus providing a robust platform for biological applications. The versatility of our system is further showcased through its integration with endogenous regulatory mechanisms in T cells, such as the NF-κB-mediated immune response, and its ability to program apoptosis responses for precise spatial and temporal control of cellular growth and death. This study not only advances our understanding of gene regulation in mammalian cells but also opens new avenues for therapeutic intervention, particularly in diseases characterized by dysregulated gene expression.
Collapse
Affiliation(s)
- Yichi Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Shuyi Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Hickson SE, Hyde JL. RNA structures within Venezuelan equine encephalitis virus E1 alter macrophage replication fitness and contribute to viral emergence. PLoS Pathog 2024; 20:e1012179. [PMID: 39331659 PMCID: PMC11463830 DOI: 10.1371/journal.ppat.1012179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/09/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne +ssRNA virus belonging to the Togaviridae. VEEV is found throughout Central and South America and is responsible for periodic epidemic/epizootic outbreaks of febrile and encephalitic disease in equines and humans. Endemic/enzootic VEEV is transmitted between Culex mosquitoes and sylvatic rodents, whereas epidemic/epizootic VEEV is transmitted between mosquitoes and equids, which serve as amplification hosts during outbreaks. Epizootic VEEV emergence has been shown to arise from mutation of enzootic VEEV strains. Specifically, epizootic VEEV has been shown to acquire amino acid mutations in the E2 viral glycoprotein that facilitate viral entry and equine amplification. However, the abundance of synonymous mutations which accumulate across the epizootic VEEV genome suggests that other viral determinants such as RNA secondary structure may also play a role in VEEV emergence. In this study we identify novel RNA structures in the E1 gene which specifically alter replication fitness of epizootic VEEV in macrophages but not other cell types. We show that SNPs are conserved within epizootic lineages and that RNA structures are conserved across different lineages. We also identified several novel RNA-binding proteins that are necessary for altered macrophage replication. These results suggest that emergence of VEEV in nature requires multiple mutations across the viral genome, some of which alter cell-type specific replication fitness in an RNA structure-dependent manner.
Collapse
Affiliation(s)
- Sarah E. Hickson
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jennifer L. Hyde
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
33
|
Zhou Y, Zhang T, Wang S, Jiao Z, Lu K, Liu X, Li H, Jiang W, Zhang X. Metal-polyphenol-network coated R612F nanoparticles reduce drug resistance in hepatocellular carcinoma by inhibiting stress granules. Cell Death Discov 2024; 10:384. [PMID: 39198406 PMCID: PMC11358291 DOI: 10.1038/s41420-024-02161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024] Open
Abstract
Stress granules (SGs) are considered to be the nonmembrane discrete assemblies present in the cytoplasm to cope with various environmental stress. SGs can promote the progression and drug resistance of hepatocellular carcinoma (HCC). Therefore, it is important to explore the mechanism of SG formation to reduce drug resistance in HCC. In this study, we demonstrate that p110α is required for SGs assembly. Mechanistically, the Arg-Gly (RG) motif of p110α is required for SG competence and regulates the recruitment of SG components. The methylation of p110α mediated by protein arginine methyltransferase 1 (PRMT1) interferes with the recruitment of p110α to SG components, thereby inhibiting the promotion of p110α to SGs. On this basis, we generated metal-polyphenol-network-coated R612F nanoparticles (MPN-R612F), which can efficiently enter HCC cells and maintain the hypermethylation state of p110α, thereby inhibiting the assembly of SGs and ultimately reducing the resistance of HCC cells to sorafenib. The combination of MPN-R612F nanoparticles and sorafenib can kill HCC cells more effectively and play a stronger anti-tumor effect. This study provides a new perspective for targeting SGs in the treatment of HCC.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030000, P. R. China
| | - Tongjia Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Shujie Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Zitao Jiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Kejia Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Xinyi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Hui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Wei Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Xiaowei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China.
| |
Collapse
|
34
|
Yao Z, Liu Y, Chen Q, Chen X, Zhu Z, Song S, Ma X, Yang P. The divergent effects of G3BP orthologs on human stress granule assembly imply a centric role for the core protein interaction network. Cell Rep 2024; 43:114617. [PMID: 39120973 DOI: 10.1016/j.celrep.2024.114617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/10/2024] [Accepted: 07/25/2024] [Indexed: 08/11/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) mediated by G3BP1/2 proteins and non-translating mRNAs mediates stress granule (SG) assembly. We investigated the phylogenetic evolution of G3BP orthologs from unicellular yeast to mammals and identified both conserved and divergent features. The modular domain organization of G3BP orthologs is generally conserved. However, invertebrate orthologs displayed reduced capacity for SG assembly in human cells compared to vertebrate orthologs. We demonstrated that the protein-interaction network facilitated by the NTF2L domain is a crucial determinant of this specificity. The evolution of the G3BP1 network coincided with its exploitation by certain viruses, as evident from the interaction between viral proteins and G3BP orthologs in insects and vertebrates. We revealed the importance and divergence of the G3BP interaction network in human SG formation. Leveraging this network, we established a 7-component in vitro SG reconstitution system for quantitative studies. These findings highlight the significance of G3BP network divergence in the evolution of biological processes.
Collapse
Affiliation(s)
- Zhiying Yao
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yi Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Qi Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaoxin Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Zhenshuo Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Sha Song
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xianjue Ma
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Peiguo Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
35
|
Van Loy B, Stevaert A, Naesens L. The coronavirus nsp15 endoribonuclease: A puzzling protein and pertinent antiviral drug target. Antiviral Res 2024; 228:105921. [PMID: 38825019 DOI: 10.1016/j.antiviral.2024.105921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
The SARS-CoV-2 pandemic has bolstered unprecedented research efforts to better understand the pathogenesis of coronavirus (CoV) infections and develop effective therapeutics. We here focus on non-structural protein nsp15, a hexameric component of the viral replication-transcription complex (RTC). Nsp15 possesses uridine-specific endoribonuclease (EndoU) activity for which some specific cleavage sites were recently identified in viral RNA. By preventing accumulation of viral dsRNA, EndoU helps the virus to evade RNA sensors of the innate immune response. The immune-evading property of nsp15 was firmly established in several CoV animal models and makes it a pertinent target for antiviral therapy. The search for nsp15 inhibitors typically proceeds via compound screenings and is aided by the rapidly evolving insight in the protein structure of nsp15. In this overview, we broadly cover this fascinating protein, starting with its structure, biochemical properties and functions in CoV immune evasion. Next, we summarize the reported studies in which compound screening or a more rational method was used to identify suitable leads for nsp15 inhibitor development. In this way, we hope to raise awareness on the relevance and druggability of this unique CoV protein.
Collapse
Affiliation(s)
- Benjamin Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Annelies Stevaert
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Lieve Naesens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium.
| |
Collapse
|
36
|
Xiao B, Zhu Y, Liu M, Chen M, Huang C, Xu D, Wang F, Sun S, Huang J, Sun N, Yang F. miR-340-3p-modified bone marrow mesenchymal stem cell-derived exosomes inhibit ferroptosis through METTL3-mediated m 6A modification of HMOX1 to promote recovery of injured rat uterus. Stem Cell Res Ther 2024; 15:224. [PMID: 39075530 PMCID: PMC11287883 DOI: 10.1186/s13287-024-03846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Ferroptosis is associated with the pathological progression of hemorrhagic injury and ischemia-reperfusion injury. According to our previous study, exosomes formed through bone marrow mesenchymal stem cells modified with miR-340-3p (MB-exos) can restore damaged endometrium. However, the involvement of ferroptosis in endometrial injury and the effect of MB-exos on ferroptosis remain elusive. METHODS The endometrial injury rat model was developed. Exosomes were obtained from the supernatants of bone marrow mesenchymal stromal cells (BMSCs) and miR-340/BMSCs through differential centrifugation. We conducted RNA-seq analysis on endometrial tissues obtained from the PBS and MB-exos groups. Ferroptosis was induced in endometrial stromal cells (ESCs) by treating them with erastin or RSL3, followed by treatment with B-exos or MB-exos. We assessed the endometrial total m6A modification level after injury and subsequent treatment with B-exos or MB-exos by methylation quantification assay. We performed meRIP-qPCR to analyze m6A modification-regulated endogenous mRNAs. RESULTS We reveal that MB-exos facilitate the injured endometrium to recover by suppressing ferroptosis in endometrial stromal cells. The injured endometrium showed significantly upregulated N6-methyladenosine (m6A) modification levels; these levels were attenuated by MB-exos through downregulation of the methylase METTL3. Intriguingly, METTL3 downregulation appears to repress ferroptosis by stabilizing HMOX1 mRNA, thereby potentially elucidating the mechanism through which MB-exos inhibit ferroptosis in ESCs. We identified YTHDF2 as a critical m6A reader protein that contributes to HMOX1 mRNA degradation. YTHDF2 facilitates HMOX1 mRNA degradation by identifying the m6A binding site in the 3'-untranslated regions of HMOX1. In a rat model, treatment with MB-exos ameliorated endometrial injury-induced fibrosis by inhibiting ferroptosis in ESCs. Moreover, METTL3 short hairpin RNA-mediated inhibition of m6A modification enhanced the inhibitory effect of MB-exos on ferroptosis in endometrial injury. CONCLUSIONS Thus, these observations provide new insights regarding the molecular mechanisms responsible for endometrial recovery promotion by MB-exos and highlight m6A modification-dependent ferroptosis inhibition as a prospective therapeutic target to attenuate endometrial injury.
Collapse
Affiliation(s)
- Bang Xiao
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Yiqing Zhu
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Meng Liu
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Meiting Chen
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Chao Huang
- Department of Anatomy, Institute of Biomedical Engineering, Naval Medical University, Shanghai, 200433, China
| | - Dabing Xu
- The Center of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Fang Wang
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Shuhan Sun
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Jinfeng Huang
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China.
| | - Ningxia Sun
- The Center of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Fu Yang
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China.
- The Center of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
37
|
Lenk R, Kleindienst W, Szabó GT, Baiersdörfer M, Boros G, Keller JM, Mahiny AJ, Vlatkovic I. Understanding the impact of in vitro transcription byproducts and contaminants. Front Mol Biosci 2024; 11:1426129. [PMID: 39050733 PMCID: PMC11266732 DOI: 10.3389/fmolb.2024.1426129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The success of messenger (m)RNA-based vaccines against SARS-CoV-2 during the COVID-19 pandemic has led to rapid growth and innovation in the field of mRNA-based therapeutics. However, mRNA production, whether in small amounts for research or large-scale GMP-grade for biopharmaceutics, is still based on the In Vitro Transcription (IVT) reaction developed in the early 1980s. The IVT reaction exploits phage RNA polymerase to catalyze the formation of an engineered mRNA that depends on a linearized DNA template, nucleotide building blocks, as well as pH, temperature, and reaction time. But depending on the IVT conditions and subsequent purification steps, diverse byproducts such as dsRNA, abortive RNAs and RNA:DNA hybrids might form. Unwanted byproducts, if not removed, could be formulated together with the full-length mRNA and cause an immune response in cells by activating host pattern recognition receptors. In this review, we summarize the potential types of IVT byproducts, their known biological activity, and how they can impact the efficacy and safety of mRNA therapeutics. In addition, we briefly overview non-nucleotide-based contaminants such as RNases, endotoxin and metal ions that, when present in the IVT reaction, can also influence the activity of mRNA-based drugs. We further discuss current approaches aimed at adjusting the IVT reaction conditions or improving mRNA purification to achieve optimal performance for medical applications.
Collapse
|
38
|
Ding M, Xu W, Pei G, Li P. Long way up: rethink diseases in light of phase separation and phase transition. Protein Cell 2024; 15:475-492. [PMID: 38069453 PMCID: PMC11214837 DOI: 10.1093/procel/pwad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/24/2023] [Indexed: 07/02/2024] Open
Abstract
Biomolecular condensation, driven by multivalency, serves as a fundamental mechanism within cells, facilitating the formation of distinct compartments, including membraneless organelles that play essential roles in various cellular processes. Perturbations in the delicate equilibrium of condensation, whether resulting in gain or loss of phase separation, have robustly been associated with cellular dysfunction and physiological disorders. As ongoing research endeavors wholeheartedly embrace this newly acknowledged principle, a transformative shift is occurring in our comprehension of disease. Consequently, significant strides have been made in unraveling the profound relevance and potential causal connections between abnormal phase separation and various diseases. This comprehensive review presents compelling recent evidence that highlight the intricate associations between aberrant phase separation and neurodegenerative diseases, cancers, and infectious diseases. Additionally, we provide a succinct summary of current efforts and propose innovative solutions for the development of potential therapeutics to combat the pathological consequences attributed to aberrant phase separation.
Collapse
Affiliation(s)
- Mingrui Ding
- State Key Laboratory of Membrane Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- NuPhase Therapeutics, Beijing 100083, China
| | - Weifan Xu
- State Key Laboratory of Membrane Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- NuPhase Therapeutics, Beijing 100083, China
| | - Gaofeng Pei
- State Key Laboratory of Membrane Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Pilong Li
- State Key Laboratory of Membrane Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
39
|
Machmouchi D, Courageot MP, El-Kalamouni C, Kohl A, Desprès P. Replication properties of a contemporary Zika virus from West Africa. PLoS Negl Trop Dis 2024; 18:e0012066. [PMID: 38968296 PMCID: PMC11253966 DOI: 10.1371/journal.pntd.0012066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/17/2024] [Accepted: 06/13/2024] [Indexed: 07/07/2024] Open
Abstract
Zika virus (ZIKV) has become a global health problem over the past decade due to the extension of the geographic distribution of the Asian/American genotype. Recent epidemics of Asian/American ZIKV have been associated with developmental disorders in humans. There is mounting evidence that African ZIKV may be associated with increased fetal pathogenicity necessitating to pay a greater attention towards currently circulating viral strains in sub-Saharan Africa. Here, we generated an infectious molecular clone GUINEA-18 of a recently transmitted human ZIKV isolate from West Africa, ZIKV-15555. The available infectious molecular clone MR766MC of historical African ZIKV strain MR766-NIID was used for a molecular clone-based comparative study. Viral clones GUINEA-18 and MR766MC were compared for their ability to replicate in VeroE6, A549 and HCM3 cell lines. There was a lower replication rate for GUINEA-18 associated with weaker cytotoxicity and reduced innate immune system activation compared with MR766MC. Analysis of chimeric viruses between viral clones stressed the importance of NS1 to NS4B proteins, with a particular focus of NS4B on GUINEA-18 replicative properties. ZIKV has developed strategies to prevent cytoplasmic stress granule formation which occurs in response to virus infection. GUINEA-18 was greatly efficient in inhibiting stress granule assembly in A549 cells subjected to a physiological stressor, with NS1 to NS4B proteins also being critical in this process. The impact of these GUINEA-18 proteins on viral replicative abilities and host-cell responses to viral infection raises the question of the role of nonstructural proteins in the pathogenicity of currently circulating ZIKV in sub-Saharan Africa.
Collapse
Affiliation(s)
- Dana Machmouchi
- Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, INSERM U1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | | | - Chaker El-Kalamouni
- Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, INSERM U1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Alain Kohl
- Centre for Neglected Tropical Diseases, Departments of Tropical Disease Biology and Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Philippe Desprès
- Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, INSERM U1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| |
Collapse
|
40
|
Watkins JM, Burke JM. A closer look at mammalian antiviral condensates. Biochem Soc Trans 2024; 52:1393-1404. [PMID: 38778761 PMCID: PMC11234502 DOI: 10.1042/bst20231296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Several biomolecular condensates assemble in mammalian cells in response to viral infection. The most studied of these are stress granules (SGs), which have been proposed to promote antiviral innate immune signaling pathways, including the RLR-MAVS, the protein kinase R (PKR), and the OAS-RNase L pathways. However, recent studies have demonstrated that SGs either negatively regulate or do not impact antiviral signaling. Instead, the SG-nucleating protein, G3BP1, may function to perturb viral RNA biology by condensing viral RNA into viral-aggregated RNA condensates, thus explaining why viruses often antagonize G3BP1 or hijack its RNA condensing function. However, a recently identified condensate, termed double-stranded RNA-induced foci, promotes the activation of the PKR and OAS-RNase L antiviral pathways. In addition, SG-like condensates known as an RNase L-induced bodies (RLBs) have been observed during many viral infections, including SARS-CoV-2 and several flaviviruses. RLBs may function in promoting decay of cellular and viral RNA, as well as promoting ribosome-associated signaling pathways. Herein, we review these recent advances in the field of antiviral biomolecular condensates, and we provide perspective on the role of canonical SGs and G3BP1 during the antiviral response.
Collapse
Affiliation(s)
- J. Monty Watkins
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, U.S.A
- Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, U.S.A
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, U.S.A
| | - James M. Burke
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, U.S.A
- Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, U.S.A
| |
Collapse
|
41
|
Wang P, Harrison A, Yang D, Cahoon J, Geng T, Cao Z, Karginov T, Chiari C, Li X, Qyang Y, Vella A, Fan Z, Vanaja SK, Rathinam V, Witczak C, Bogan J. UBXN9 governs GLUT4-mediated spatial confinement of RIG-I-like receptors and signaling. RESEARCH SQUARE 2024:rs.3.rs-3373803. [PMID: 38883790 PMCID: PMC11177981 DOI: 10.21203/rs.3.rs-3373803/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The cytoplasmic RIG-I-like receptors (RLRs) recognize viral RNA and initiate innate antiviral immunity. RLR signaling also triggers glycolytic reprogramming through glucose transporters (GLUTs), whose role in antiviral immunity is elusive. Here, we unveil that insulin-responsive GLUT4 inhibits RLR signaling independently of glucose uptake in adipose and muscle tissues. At steady state, GLUT4 is docked at the Golgi matrix by ubiquitin regulatory X domain 9 (UBXN9, TUG). Following RNA virus infection, GLUT4 is released and translocated to the cell surface where it spatially segregates a significant pool of cytosolic RLRs, preventing them from activating IFN-β responses. UBXN9 deletion prompts constitutive GLUT4 trafficking, sequestration of RLRs, and attenuation of antiviral immunity, whereas GLUT4 deletion heightens RLR signaling. Notably, reduced GLUT4 expression is uniquely associated with human inflammatory myopathies characterized by hyperactive interferon responses. Overall, our results demonstrate a noncanonical UBXN9-GLUT4 axis that controls antiviral immunity via plasma membrane tethering of cytosolic RLRs.
Collapse
|
42
|
Lee K, Ku J, Ku D, Kim Y. Inverted Alu repeats: friends or foes in the human transcriptome. Exp Mol Med 2024; 56:1250-1262. [PMID: 38871814 PMCID: PMC11263572 DOI: 10.1038/s12276-024-01177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 06/15/2024] Open
Abstract
Alu elements are highly abundant primate-specific short interspersed nuclear elements that account for ~10% of the human genome. Due to their preferential location in gene-rich regions, especially in introns and 3' UTRs, Alu elements can exert regulatory effects on the expression of both host and neighboring genes. When two Alu elements with inverse orientations are positioned in close proximity, their transcription results in the generation of distinct double-stranded RNAs (dsRNAs), known as inverted Alu repeats (IRAlus). IRAlus are key immunogenic self-dsRNAs and post-transcriptional cis-regulatory elements that play a role in circular RNA biogenesis, as well as RNA transport and stability. Recently, IRAlus dsRNAs have emerged as regulators of transcription and activators of Z-DNA-binding proteins. The formation and activity of IRAlus can be modulated through RNA editing and interactions with RNA-binding proteins, and misregulation of IRAlus has been implicated in several immune-associated disorders. In this review, we summarize the emerging functions of IRAlus dsRNAs, the regulatory mechanisms governing IRAlus activity, and their relevance in the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Keonyong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jayoung Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Doyeong Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Republic of Korea.
- KAIST Institute for BioCentury (KIB), Daejeon, 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology (KIHST), Daejeon, 34141, Republic of Korea.
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
43
|
Yoshioka D, Nakamura T, Kubota Y, Takekawa M. Formation of the NLRP3 inflammasome inhibits stress granule assembly by multiple mechanisms. J Biochem 2024; 175:629-641. [PMID: 38299728 PMCID: PMC11155693 DOI: 10.1093/jb/mvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/02/2024] Open
Abstract
Proper regulation of cellular response to environmental stress is crucial for maintaining biological homeostasis and is achieved by the balance between cell death processes, such as the formation of the pyroptosis-inducing NLRP3 inflammasome, and pro-survival processes, such as stress granule (SG) assembly. However, the functional interplay between these two stress-responsive organelles remains elusive. Here, we identified DHX33, a viral RNA sensor for the NLRP3 inflammasome, as a SG component, and the SG-nucleating protein G3BP as an NLRP3 inflammasome component. We also found that a decrease in intracellular potassium (K+) concentration, a key 'common' step in NLRP3 inflammasome activation, markedly inhibited SG assembly. Therefore, when macrophages are exposed to stress stimuli with the potential to induce both SGs and the NLRP3 inflammasome, such as cytoplasmic poly(I:C) stimulation, they preferentially form the NLRP3 inflammasome but avoid SG assembly by sequestering G3BP into the inflammasome and by inducing a reduction in intracellular K+ levels. Thus, under such conditions, DHX33 is primarily utilized as a viral RNA sensor for the inflammasome. Our data reveal the functional crosstalk between NLRP3 inflammasome-mediated pyroptosis and SG-mediated cell survival pathways and delineate a molecular mechanism that regulates cell-fate decisions and anti-viral innate immunity under stress.
Collapse
Affiliation(s)
- Daisuke Yoshioka
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8583, Japan
| | - Takanori Nakamura
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yuji Kubota
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Mutsuhiro Takekawa
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8583, Japan
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
44
|
El Bakkouri Y, Chidiac R, Delisle C, Corriveau J, Cagnone G, Gaonac'h-Lovejoy V, Chin A, Lécuyer É, Angers S, Joyal JS, Topisirovic I, Hulea L, Dubrac A, Gratton JP. ZO-1 interacts with YB-1 in endothelial cells to regulate stress granule formation during angiogenesis. Nat Commun 2024; 15:4405. [PMID: 38782923 PMCID: PMC11116412 DOI: 10.1038/s41467-024-48852-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Zonula occludens-1 (ZO-1) is involved in the regulation of cell-cell junctions between endothelial cells (ECs). Here we identify the ZO-1 protein interactome and uncover ZO-1 interactions with RNA-binding proteins that are part of stress granules (SGs). Downregulation of ZO-1 increased SG formation in response to stress and protected ECs from cellular insults. The ZO-1 interactome uncovered an association between ZO-1 and Y-box binding protein 1 (YB-1), a constituent of SGs. Arsenite treatment of ECs decreased the interaction between ZO-1 and YB-1, and drove SG assembly. YB-1 expression is essential for SG formation and for the cytoprotective effects induced by ZO-1 downregulation. In the developing retinal vascular plexus of newborn mice, ECs at the front of growing vessels express less ZO-1 but display more YB-1-positive granules than ECs located in the vascular plexus. Endothelial-specific deletion of ZO-1 in mice at post-natal day 7 markedly increased the presence of YB-1-positive granules in ECs of retinal blood vessels, altered tip EC morphology and vascular patterning, resulting in aberrant endothelial proliferation, and arrest in the expansion of the retinal vasculature. Our findings suggest that, through its interaction with YB-1, ZO-1 controls SG formation and the response of ECs to stress during angiogenesis.
Collapse
Affiliation(s)
- Yassine El Bakkouri
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Rony Chidiac
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Chantal Delisle
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jeanne Corriveau
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Gael Cagnone
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Vanda Gaonac'h-Lovejoy
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Ashley Chin
- Institut de recherches cliniques de Montréal (IRCM), Montreal, QC, Canada
| | - Éric Lécuyer
- Institut de recherches cliniques de Montréal (IRCM), Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | | | - Jean-Sébastien Joyal
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada and Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Laura Hulea
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, Quebec, Canada and Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Alexandre Dubrac
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jean-Philippe Gratton
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
- Centre d'Innovation Biomédicale (CIB), Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
45
|
Cusic R, Burke JM. Condensation of RNase L promotes its rapid activation in response to viral infection in mammalian cells. Sci Signal 2024; 17:eadi9844. [PMID: 38771918 PMCID: PMC11391522 DOI: 10.1126/scisignal.adi9844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
Oligoadenylate synthetase 3 (OAS3) and ribonuclease L (RNase L) are components of a pathway that combats viral infection in mammals. Upon detection of viral double-stranded RNA (dsRNA), OAS3 synthesizes 2'-5'-oligo(A), which activates the RNase domain of RNase L by promoting the homodimerization and oligomerization of RNase L monomers. Activated RNase L rapidly degrades all cellular mRNAs, shutting off several cellular processes. We sought to understand the molecular mechanisms underlying the rapid activation of RNase L in response to viral infection. Through superresolution microscopy and live-cell imaging, we showed that OAS3 and RNase L concentrated into higher-order cytoplasmic complexes known as dsRNA-induced foci (dRIF) in response to dsRNA or infection with dengue virus, Zika virus, or West Nile virus. The concentration of OAS3 and RNase L at dRIF corresponded with the activation of RNase L-mediated RNA decay. We showed that dimerized/oligomerized RNase L concentrated in a liquid-like shell surrounding a core OAS3-dRIF structure and dynamically exchanged with the cytosol. These data establish that the condensation of dsRNA, OAS3, and RNase L into dRIF is a molecular switch that promotes the rapid activation of RNase L upon detection of dsRNA in mammalian cells.
Collapse
Affiliation(s)
- Renee Cusic
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, United States of America
- Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, United States of America
| | - James M. Burke
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, United States of America
- Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, United States of America
| |
Collapse
|
46
|
Shang Z, Zhang S, Wang J, Zhou L, Zhang X, Billadeau DD, Yang P, Zhang L, Zhou F, Bai P, Jia D. TRIM25 predominately associates with anti-viral stress granules. Nat Commun 2024; 15:4127. [PMID: 38750080 PMCID: PMC11096359 DOI: 10.1038/s41467-024-48596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Stress granules (SGs) are induced by various environmental stressors, resulting in their compositional and functional heterogeneity. SGs play a crucial role in the antiviral process, owing to their potent translational repressive effects and ability to trigger signal transduction; however, it is poorly understood how these antiviral SGs differ from SGs induced by other environmental stressors. Here we identify that TRIM25, a known driver of the ubiquitination-dependent antiviral innate immune response, is a potent and critical marker of the antiviral SGs. TRIM25 undergoes liquid-liquid phase separation (LLPS) and co-condenses with the SG core protein G3BP1 in a dsRNA-dependent manner. The co-condensation of TRIM25 and G3BP1 results in a significant enhancement of TRIM25's ubiquitination activity towards multiple antiviral proteins, which are mainly located in SGs. This co-condensation is critical in activating the RIG-I signaling pathway, thus restraining RNA virus infection. Our studies provide a conceptual framework for better understanding the heterogeneity of stress granule components and their response to distinct environmental stressors.
Collapse
Affiliation(s)
- Zehua Shang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Sitao Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Jinrui Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Lili Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215000, China
| | - Xinyue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Daniel D Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Peiguo Yang
- School of Life Sciences, Westlake University, Hangzhou, 310024, 310030, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215000, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
47
|
Noronha N, Durette C, Cahuzac M, E Silva B, Courtois J, Humeau J, Sauvat A, Hardy MP, Vincent K, Laverdure JP, Lanoix J, Baron F, Thibault P, Perreault C, Ehx G. Autophagy degrades immunogenic endogenous retroelements induced by 5-azacytidine in acute myeloid leukemia. Leukemia 2024; 38:1019-1031. [PMID: 38627586 DOI: 10.1038/s41375-024-02250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
The hypomethylating agent 5-azacytidine (AZA) is the first-line treatment for AML patients unfit for intensive chemotherapy. The effect of AZA results in part from T-cell cytotoxic responses against MHC-I-associated peptides (MAPs) deriving from hypermethylated genomic regions such as cancer-testis antigens (CTAs), or endogenous retroelements (EREs). However, evidence supporting higher ERE MAPs presentation after AZA treatment is lacking. Therefore, using proteogenomics, we examined the impact of AZA on the repertoire of MAPs and their source transcripts. AZA-treated AML upregulated both CTA and ERE transcripts, but only CTA MAPs were presented at greater levels. Upregulated ERE transcripts triggered innate immune responses against double-stranded RNAs but were degraded by autophagy, and not processed into MAPs. Autophagy resulted from the formation of protein aggregates caused by AZA-dependent inhibition of DNMT2. Autophagy inhibition had an additive effect with AZA on AML cell proliferation and survival, increased ERE levels, increased pro-inflammatory responses, and generated immunogenic tumor-specific ERE-derived MAPs. Finally, autophagy was associated with a lower abundance of CD8+ T-cell markers in AML patients expressing high levels of EREs. This work demonstrates that AZA-induced EREs are degraded by autophagy and shows that inhibiting autophagy can improve the immune recognition of AML blasts in treated patients.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Azacitidine/pharmacology
- Autophagy/drug effects
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- DNA Methylation/drug effects
- Cell Proliferation
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
Collapse
Affiliation(s)
| | | | | | - Bianca E Silva
- GIGA Institute, Laboratory of Hematology, University of Liege, Liege, Belgium
| | - Justine Courtois
- GIGA Institute, Laboratory of Hematology, University of Liege, Liege, Belgium
| | | | - Allan Sauvat
- Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | | | | | | | - Joël Lanoix
- IRIC, Université de Montréal, Montreal, QC, Canada
| | - Frédéric Baron
- GIGA Institute, Laboratory of Hematology, University of Liege, Liege, Belgium
| | | | | | - Gregory Ehx
- IRIC, Université de Montréal, Montreal, QC, Canada.
- GIGA Institute, Laboratory of Hematology, University of Liege, Liege, Belgium.
| |
Collapse
|
48
|
Yoneyama M, Kato H, Fujita T. Physiological functions of RIG-I-like receptors. Immunity 2024; 57:731-751. [PMID: 38599168 DOI: 10.1016/j.immuni.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan; Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
49
|
Yang Z, Johnson BA, Meliopoulos VA, Ju X, Zhang P, Hughes MP, Wu J, Koreski KP, Clary JE, Chang TC, Wu G, Hixon J, Duffner J, Wong K, Lemieux R, Lokugamage KG, Alvarado RE, Crocquet-Valdes PA, Walker DH, Plante KS, Plante JA, Weaver SC, Kim HJ, Meyers R, Schultz-Cherry S, Ding Q, Menachery VD, Taylor JP. Interaction between host G3BP and viral nucleocapsid protein regulates SARS-CoV-2 replication and pathogenicity. Cell Rep 2024; 43:113965. [PMID: 38492217 PMCID: PMC11044841 DOI: 10.1016/j.celrep.2024.113965] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/29/2024] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
G3BP1/2 are paralogous proteins that promote stress granule formation in response to cellular stresses, including viral infection. The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibits stress granule assembly and interacts with G3BP1/2 via an ITFG motif, including residue F17, in the N protein. Prior studies examining the impact of the G3PB1-N interaction on SARS-CoV-2 replication have produced inconsistent findings, and the role of this interaction in pathogenesis is unknown. Here, we use structural and biochemical analyses to define the residues required for G3BP1-N interaction and structure-guided mutagenesis to selectively disrupt this interaction. We find that N-F17A mutation causes highly specific loss of interaction with G3BP1/2. SARS-CoV-2 N-F17A fails to inhibit stress granule assembly in cells, has decreased viral replication, and causes decreased pathology in vivo. Further mechanistic studies indicate that the N-F17-mediated G3BP1-N interaction promotes infection by limiting sequestration of viral genomic RNA (gRNA) into stress granules.
Collapse
Affiliation(s)
- Zemin Yang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bryan A Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Victoria A Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaohui Ju
- School of Medicine, Tsinghua University, Beijing, China
| | - Peipei Zhang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael P Hughes
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinjun Wu
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kaitlin P Koreski
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jemma E Clary
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | | | | - Kumari G Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - R Elias Alvarado
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - David H Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kenneth S Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Jessica A Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, China
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
50
|
Zou T, Zhou M, Gupta A, Zhuang P, Fishbein AR, Wei HY, Capcha-Rodriguez D, Zhang Z, Cherniack AD, Meyerson M. XRN1 deletion induces PKR-dependent cell lethality in interferon-activated cancer cells. Cell Rep 2024; 43:113600. [PMID: 38261514 PMCID: PMC10989277 DOI: 10.1016/j.celrep.2023.113600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/12/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024] Open
Abstract
Emerging data suggest that induction of viral mimicry responses through activation of double-stranded RNA (dsRNA) sensors in cancer cells is a promising therapeutic strategy. One approach to induce viral mimicry is to target molecular regulators of dsRNA sensing pathways. Here, we show that the exoribonuclease XRN1 is a negative regulator of the dsRNA sensor protein kinase R (PKR) in cancer cells with high interferon-stimulated gene expression. XRN1 deletion causes PKR pathway activation and consequent cancer cell lethality. Disruption of interferon signaling with the JAK1/2 inhibitor ruxolitinib can decrease cellular PKR levels and rescue sensitivity to XRN1 deletion. Conversely, interferon-β stimulation can increase PKR levels and induce sensitivity to XRN1 inactivation. Lastly, XRN1 deletion causes accumulation of endogenous complementary sense/anti-sense RNAs, which may represent candidate PKR ligands. Our data demonstrate how XRN1 regulates PKR and how this interaction creates a vulnerability in cancer cells with an activated interferon cell state.
Collapse
Affiliation(s)
- Tao Zou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Meng Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Akansha Gupta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Patrick Zhuang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Alyssa R Fishbein
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Hope Y Wei
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Diego Capcha-Rodriguez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Zhouwei Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Andrew D Cherniack
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|