1
|
Li Y, Liu Y, Gou M. Peptide with Dual Roles in Immune and Metabolic Regulation: Liver-Expressed Antimicrobial Peptide-2 (LEAP-2). Molecules 2025; 30:429. [PMID: 39860298 PMCID: PMC11767564 DOI: 10.3390/molecules30020429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP-2) was originally discovered as an antimicrobial peptide that plays a vital role in the host innate immune system of various vertebrates. Recent research discovered LEAP-2 as an endogenous antagonist and inverse agonist of the GHSR1a receptor. By acting as a competitive antagonist to ghrelin, LEAP-2 influences energy balance and metabolic processes via the ghrelin-GHSR1a signaling pathway. LEAP-2 alone or the LEAP-2/ghrelin molar ratio showed potential as therapeutic targets for obesity, diabetes, and metabolic disorders. This review explores the recent advances of LEAP-2 in immune modulation and energy regulation, highlighting its potential in treating the above diseases.
Collapse
Affiliation(s)
- Yitong Li
- College of Life Science, Liaoning Normal University, Dalian 116081, China;
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Ying Liu
- Haixia Institute of Science and Technology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China;
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian 116081, China;
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
2
|
Vijayanand M, Guru A, Shaik MR, Hussain SA, Issac PK. Assessing the therapeutic potential of KK14 peptide derived from Cyprinus Carpio in reducing intercellular ROS levels in oxidative Stress-Induced In vivo zebrafish larvae model: An integrated bioinformatics, antioxidant, and neuroprotective analysis. J Biochem Mol Toxicol 2024; 38:e70027. [PMID: 39467211 DOI: 10.1002/jbt.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
H2O2 is a significant reactive oxygen species (ROS) that hinders redox-mediated processes and contributes to oxidative stress and neurodegenerative disorders. Oxidative stress causes impairment of cell macromolecules, which results in cell dysfunction and neurodegeneration. Alzheimer's disease and other neurodegenerative diseases are serious conditions linked to oxidative stress. Antioxidant treatment approaches are a novel and successful strategy for decreasing neurodegeneration and reducing oxidative stress. This study explored the antioxidant and neuroprotective characteristics of KK14 peptide synthesized from LEAP 2B (liver-expressed antimicrobial peptide-2B) derived from Cyprinus carpio L. Molecular docking studies were used to assess the antioxidant properties of KK14. The peptide at concentrations 5-45 μM was examined by using in vitro and in vivo assessment. Analysis was done on the developmental and neuroprotective potential of KK14 peptide treatment in H2O2-exposed zebrafish larvae which showed Nonlethal deformities. KK14 improves antioxidant enzyme activity like catalase and superoxide dismutase. Furthermore, it reduces neuronal damage by lowering lipid peroxidation and nitric oxide generation while increasing acetylcholinesterase activity. It improved the changes in swimming behavior and the cognitive damage produced by exposure to H2O2. To further substantiate the neuroprotective potential of KK14, intracellular ROS levels in zebrafish larvae were assessed. This led to a reduction in ROS levels and diminished lipid peroxidation. The KK14 has upregulated the antioxidant genes against oxidative stress. Overall, this study proved the strong antioxidant activity of KK14, suggesting its potential as a strong therapeutic option for neurological disorders caused by oxidative stress.
Collapse
Affiliation(s)
- Madhumitha Vijayanand
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Praveen Kumar Issac
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Vijayanand M, Issac PK, Velayutham M, Shaik MR, Hussain SA, Guru A. Exploring the neuroprotective potential of KC14 peptide from Cyprinus carpio against oxidative stress-induced neurodegeneration by regulating antioxidant mechanism. Mol Biol Rep 2024; 51:990. [PMID: 39287730 DOI: 10.1007/s11033-024-09905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Oxidative stress, a condition characterized by excessive production of reactive oxygen species (ROS), can cause significant damage to cellular macromolecules, leading to neurodegeneration. This underscores the need for effective antioxidant therapies that can mitigate oxidative stress and its associated neurodegenerative effects. KC14 peptide derived from liver-expressed antimicrobial peptide-2 A (LEAP 2 A) from Cyprinus carpio L. has been identified as a potential therapeutic agent. This study focuses on the antioxidant and neuroprotective properties of the KC14 peptide is to evaluate its effectiveness against oxidative stress and neurodegeneration. METHODS The antioxidant capabilities of KC14 were initially assessed through in silico docking studies, which predicted its potential to interact with oxidative stress-related targets. Subsequently, the peptide was tested at concentrations ranging from 5 to 45 µM in both in vitro and in vivo experiments. In vivo studies involved treating H2O2-induced zebrafish larvae with KC14 peptide to analyze its effects on oxidative stress and neuroprotection. RESULTS KC14 peptide showed a protective effect against the developmental malformations caused by H2O2 stress, restored antioxidant enzyme activity, reduced neuronal damage, and lowered lipid peroxidation and nitric oxide levels in H2O2-induced larvae. It enhanced acetylcholinesterase activity and significantly reduced intracellular ROS levels (p < 0.05) dose-dependently. Gene expression studies showed up-regulation of antioxidant genes with KC14 treatment under H2O2 stress. CONCLUSIONS This study highlights the potent antioxidant activity of KC14 and its ability to confer neuroprotection against oxidative stress can provide a novel therapeutic agent for combating neurodegenerative diseases induced by oxidative stress.
Collapse
Affiliation(s)
- Madhumitha Vijayanand
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India.
| | - Manikandan Velayutham
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| |
Collapse
|
4
|
Yu CG, Ma L, Zhang DN, Ma Y, Wang CY, Chen J. Structure-activity relationships of the intramolecular disulphide bonds in LEAP2, an antimicrobial peptide from Acrossocheilus fasciatus. BMC Vet Res 2024; 20:243. [PMID: 38835040 PMCID: PMC11149183 DOI: 10.1186/s12917-024-04106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The liver-expressed antimicrobial peptide 2 (LEAP2) plays a pivotal role in the host's immune response against pathogenic microorganisms. Numerous such antimicrobial peptides have recently been shown to mitigate infection risk in fish, and studying those harboured by the economically important fish Acrossocheilus fasciatus is imperative for enhancing its immune responses against pathogenic microorganisms. In this study, we cloned and sequenced LEAP2 cDNA from A. fasciatus to examine its expression in immune tissues and investigate the structure-activity relationships of its intramolecular disulphide bonds. RESULTS The predicted amino acid sequence of A. fasciatus LEAP2 was found to include a signal peptide, pro-domain, and mature peptide. Sequence analysis indicated that A. fasciatus LEAP2 is a member of the fish LEAP2A cluster and is closely related to Cyprinus carpio LEAP2A. A. fasciatus LEAP2 transcripts were expressed in various tissues, with the head kidney exhibiting the highest mRNA levels. Upon exposure to Aeromonas hydrophila infection, LEAP2 expression was significantly upregulated in the liver, head kidney, and spleen. A mature peptide of A. fasciatus LEAP2, consisting of two disulphide bonds (Af-LEAP2-cys), and a linear form of the LEAP2 mature peptide (Af-LEAP2) were chemically synthesised. The circular dichroism spectroscopy result shows differences between the secondary structures of Af-LEAP2 and Af-LEAP2-cys, with a lower proportion of alpha helix and a higher proportion of random coil in Af-LEAP2. Af-LEAP2 exhibited potent antimicrobial activity against most tested bacteria, including Acinetobacter guillouiae, Pseudomonas aeruginosa, Staphylococcus saprophyticus, and Staphylococcus warneri. In contrast, Af-LEAP2-cys demonstrated weak or no antibacterial activity against the tested bacteria. Af-LEAP2 had a disruptive effect on bacterial cell membrane integrity, whereas Af-LEAP2-cys did not exhibit this effect. Additionally, neither Af-LEAP2 nor Af-LEAP2-cys displayed any observable ability to hydrolyse the genomic DNA of P. aeruginosa. CONCLUSIONS Our study provides clear evidence that linear LEAP2 exhibits better antibacterial activity than oxidised LEAP2, thereby confirming, for the first time, this phenomenon in fish.
Collapse
Affiliation(s)
- Ci-Gang Yu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
- State Environmental Protection Key Laboratory on Biodiversity and Biosafety, Nanjing, 210042, China
| | - Li Ma
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Di-Ni Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
- State Environmental Protection Key Laboratory on Biodiversity and Biosafety, Nanjing, 210042, China
| | - Yue Ma
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
- State Environmental Protection Key Laboratory on Biodiversity and Biosafety, Nanjing, 210042, China
| | - Chang-Yong Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
- State Environmental Protection Key Laboratory on Biodiversity and Biosafety, Nanjing, 210042, China.
| | - Jie Chen
- College of Ecology, Lishui University, Lishui, 323000, China.
- Lishui Institute for Ecological Economy Research, Lishui, 323000, China.
| |
Collapse
|
5
|
Zhang M, Yan X, Wang CB, Liu WQ, Wang Y, Jing H, Wang B, Yang K, Chen ZY, Luan YY, Wang GH. Molecular characterization, antibacterial and immunoregulatory activities of liver-expressed antimicrobial peptide 2 in black rockfish, Sebastes schlegelii. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109467. [PMID: 38423489 DOI: 10.1016/j.fsi.2024.109467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
LEAP2 (liver expression antimicrobial peptide 2), is an antimicrobial peptide widely found in vertebrates and mainly expressed in liver. LEAP2 plays a vital role in host innate immunity. In teleosts, a number of LEAP2 homologs have been reported, but their in vivo effects on host defense are still limited. In this study, a LEAP2 homolog (SsLEAP2) was identified from black rockfish, Sebastes schlegelii, and its structure, expression as well as biological functions were analyzed. The results showed that the open reading frame of SsLEAP2 is 300 bp, with a 5'- untranslated region (UTR) of 375 bp and a 3' - UTR of 238 bp. The deduced amino acid sequence of SsLEAP2 shares the highest overall identity (96.97%) with LEAP2 of Sebastes umbrosus. SsLEAP2 possesses conserved LEAP2 features, including a signal peptide sequence, a prodomain and a mature peptide, in which four well-conserved cysteines formed two intrachain disulphide domain. The expression of SsLEAP2 was highest in liver and could be induced by experimental infection with Listonella anguillarum, Edwardsiealla piscicida and Rock bream iridovirus C1 (RBIV-C1). Recombinant SsLEAP2 (rSsLEAP2) purified from Escherichia coli was able to bind with various Gram-positive and Gram-negative bacteria. Further analysis showed that rSsLEAP2 could enhance the respiratory burst activity, and induce the expression of immune genes including interleukin 1-β (IL-1β) and serum amyloid A (SAA) in macrophages; additionally, rSsLEAP2 could also promote the proliferation and chemotactic of peripheral blood lymphocytes (PBLs). In vivo experiments indicated that overexpression of SsLEAP2 could inhibit bacterial infection, and increase the expression level of immune genes including IL-1β, tumor necrosis factor ligand superfamily member 13B (TNF13B) and haptoglobin (HP); conversely, knock down of SsLEAP2 promoted bacterial infection and decreased the expression level of above genes. Taken together, these results suggest that SsLEAP2 is a novel LEAP2 homolog that possesses apparent antibacterial activity and immunoregulatory property, thus plays a critical role in host defense against pathogens invasion.
Collapse
Affiliation(s)
- Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266109, China
| | - Xue Yan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Chang-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Wen-Qing Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yue Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Hao Jing
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Bing Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Kai Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Zi-Yue Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yu-Yu Luan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Guang-Hua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
6
|
Campos-Sánchez JC, Serna-Duque JA, Alburquerque C, Guardiola FA, Esteban MÁ. Participation of Hepcidins in the Inflammatory Response Triggered by λ-Carrageenin in Gilthead Seabream (Sparus aurata). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:261-275. [PMID: 38353762 PMCID: PMC11043163 DOI: 10.1007/s10126-024-10293-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/26/2024] [Indexed: 04/25/2024]
Abstract
The role of hepcidins, antimicrobial peptides involved in iron metabolism, immunity, and inflammation, is studied. First, gilthead seabream (Sparus aurata L.) head-kidney leucocytes (HKLs) were incubated with λ-carrageenin to study the expression of hepcidin and iron metabolism-related genes. While the expression of most of the genes studied was upregulated, the expression of ferroportin gene (slc40a) was downregulated. In the second part of the study, seabream specimens were injected intramuscularly with λ-carrageenin or buffer (control). The expression of the same genes was evaluated in the head kidney, liver, and skin at different time points after injection. The expression of Hamp1m, ferritin b, and ferroportin genes (hamp1, fthb, and slc40a) was upregulated in the head kidney of fish from the λ-carrageenin-injected group, while the expression of Hamp2C and Hamp2E genes (hamp2.3 and hamp2.7) was downregulated. In the liver, the expression of hamp1, ferritin a (ftha), slc40a, Hamp2J, and Hamp2D (hamp2.5/6) genes was downregulated in the λ-carrageenin-injected group. In the skin, the expression of hamp1 and (Hamp2A Hamp2C) hamp2.1/3/4 genes was upregulated in the λ-carrageenin-injected group. A bioinformatic analysis was performed to predict the presence of transcription factor binding sites in the promoter region of hepcidins. The primary sequence of hepcidin was conserved among the different mature peptides, although changes in specific amino acid residues were identified. These changes affected the charge, hydrophobicity, and probability of hepcidins being antimicrobial peptides. This study sheds light on the poorly understood roles of hepcidins in fish. The results provide insight into the regulatory mechanisms of inflammation in fish and could contribute to the development of new strategies for treat inflammation in farm animals.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Jhon A Serna-Duque
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Carmen Alburquerque
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
7
|
Wang Y, Wang Z, Gao Z, Luan Y, Li Q, Pang Y, Gou M. Identification of antibacterial activity of liver-expressed antimicrobial peptide 2 (LEAP2) from primitive vertebrate lamprey. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109413. [PMID: 38311092 DOI: 10.1016/j.fsi.2024.109413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP2) is a member of the antimicrobial peptides family and plays a key role in the innate immune system of organisms. LEAP2 orthologs have been identified from a variety of fish species, however, its function in primitive vertebrates has not been clarified. In this study, we cloned and identified Lc-LEAP2 from the primitive jawless vertebrate lamprey (Lethenteron camtschaticum) which includes a 25 amino acids signal peptide and a mature peptide of 47 amino acids. Although sequence similarity was low compared to other species, the mature Lc-LEAP2 possesses four conserved cysteine residues, forming a core structure with two disulfide bonds between the cysteine residues in the relative 1-3 (Cys 58 and Cys 69) and 2-4 (Cys 64 and Cys 74) positions. Lc-LEAP2 was most abundantly expressed in the muscle, supraneural body and buccal gland of lamprey, and was significantly upregulated during LPS and Poly I:C stimulations. The mature peptide was synthesized and characterized for its antibacterial activity against different bacteria. Lc-LEAP2 possessed inhibition of a wide range of bacteria with a dose-dependence, disrupting the integrity of bacterial cell membranes and binding to bacterial genomic DNA, although its inhibitory function is weak compared to that of higher vertebrates. These data suggest that Lc-LEAP2 plays an important role in the innate immunity of lamprey and is of great value in improving resistance to pathogens. In addition, the antimicrobial mechanism of LEAP2 has been highly conserved since its emergence in primitive vertebrates.
Collapse
Affiliation(s)
- Yaocen Wang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Zhuoying Wang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Zhanfeng Gao
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Department of Urology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, 116044, China
| | - Yimu Luan
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
8
|
Fei Y, Wang Q, Lu J, Ouyang L, Hu Q, Chen L. New insights into the antimicrobial mechanism of LEAP2 mutant zebrafish under Aeromonas hydrophila infection using transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109225. [PMID: 37977545 DOI: 10.1016/j.fsi.2023.109225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP2) is a blood-derived antimicrobial peptide expressed predominantly in the liver. Although LEAP2 has been reported to exert antimicrobial effects in various fish species, its antimicrobial mechanism is not entirely understood. Zebrafish is an intensively developing animal model for studying bacterial diseases. In this study, we used zebrafish to identify the role of LEAP2 in bacterial infection. We found that knockout of LEAP2 in zebrafish led to a higher bacterial burden and mortality. To further investigate the effect of LEAP2 mutation on the immune system, we conducted a comparative transcriptome analysis of zebrafish with a mutant of LEAP2. Based on gene ontologies (GO) enrichment, LEAP2 mutant zebrafish revealed that, compared to wild-type zebrafish, robust responses to bacteria, inflammatory factors, and disrupt immune homeostasis and induct hyperinflammation. Furthermore, based on Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, six immune pathways were identified: Phagosome, NOD-like receptor, ferroptosis, Cytokine-cytokine receptor, Toll-like receptor, and FOXO signalling pathways. Interestingly, besides the liver, muscle, intestine, and eggs are also significantly enriched to the ferroptosis pathway, as revealed using quantitative polymerase chain reaction (qPCR), further confirmed that the effect of LEAP2 mutations on inflammatory factors and ferroptosis-related genes. Most importantly, this is the first report of the zebrafish LEAP2 mutant transcriptome obtained using high-throughput sequencing. Our study employed comparative transcriptome analysis to reveal the inflammatory response and ferroptosis-signalling pathway as a novel potential mechanism of LEAP2 antibacterial activity, laying the foundation for future studies of LEAP2 immune functions.
Collapse
Affiliation(s)
- Yueyue Fei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Qin Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jigang Lu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Linyue Ouyang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Quiqin Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
9
|
Fei Y, Wang Q, Lu J, Ouyang L, Li W, Hu R, Chen L. Identification of antibacterial activity of LEAP2 from Antarctic icefish Chionodraco hamatus. JOURNAL OF FISH DISEASES 2023; 46:905-916. [PMID: 37245215 DOI: 10.1111/jfd.13797] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/30/2023]
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP2) is a small peptide, which is consisted of signal peptide, pro-peptide and the bioactive mature peptide. Mature LEAP2 is an antibacterial peptide with four highly conserved cysteines forming two intramolecular disulfide bonds. Chionodraco hamatus, an Antarctic notothenioid fish that lives in the coldest water, has white blood unlike most fish of the world. In this study, the LEAP2 coding sequence was cloned from C. hamatus, including a 29 amino acids signal peptide and mature peptide of 46 amino acids. High levels of LEAP2 mRNA were detected in the skin and liver. Mature peptide was obtained by chemical synthesis in vitro, displayed selective antimicrobial activities against Escherichia coli, Aeromonas hydrophila, Staphylococcus aureus and Streptococcus agalactiae. Liver-expressed antimicrobial peptide 2 showed bactericidal activity by destroying the cell membrane integrity and robustly combined with bacterial genomic DNA. In addition, overexpression of the Tol-LEAP2-EGFP in zebrafish larva showed stronger antimicrobial activity in C. hamatus than in zebrafish, accompanied by lower bacterial load and expression of pro-inflammatory factors. This is the first demonstration of the antimicrobial activity of LEAP2 from C. hamatus, which is of useful value in improving resistance to pathogens.
Collapse
Affiliation(s)
- Yueyue Fei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Qin Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jigang Lu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Linyue Ouyang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wei Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ruiqin Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
10
|
Liu X, Hu YZ, Pan YR, Liu J, Jiang YB, Zhang YA, Zhang XJ. Comparative study on antibacterial characteristics of the multiple liver expressed antimicrobial peptides (LEAPs) in teleost fish. Front Immunol 2023; 14:1128138. [PMID: 36891317 PMCID: PMC9986249 DOI: 10.3389/fimmu.2023.1128138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
Antimicrobial peptides are important components of the host innate immune system, forming the first line of defense against infectious microorganisms. Among them, liver-expressed antimicrobial peptides (LEAPs) are a family of antimicrobial peptides that widely exist in vertebrates. LEAPs include two types, named LEAP-1 and LEAP-2, and many teleost fish have two or more LEAP-2s. In this study, LEAP-2C from rainbow trout and grass carp were discovered, both of which are composed of 3 exons and 2 introns. The antibacterial functions of the multiple LEAPs were systematically compared in rainbow trout and grass carp. The gene expression pattern revealed that rainbow trout and grass carp LEAP-1, LEAP-2A, LEAP-2B and/or LEAP-2C were differentially expressed in various tissues/organs, mainly in liver. After bacterial infection, the expression levels of LEAP-1, LEAP-2A, LEAP-2B and/or LEAP-2C in the liver and gut of rainbow trout and grass carp increased to varying degrees. Moreover, the antibacterial assay and bacterial membrane permeability assay showed that rainbow trout and grass carp LEAP-1, LEAP-2A, LEAP-2B and LEAP-2C all have antibacterial activities against a variety of Gram-positive and Gram-negative bacteria with varying levels through membrane rupture. Furthermore, cell transfection assay showed that only rainbow trout LEAP-1, but not LEAP-2, can lead to the internalization of ferroportin, the only iron exporter on cell surface, indicating that only LEAP-1 possess iron metabolism regulation activity in teleost fish. Taken together, this study systematically compared the antibacterial function of LEAPs in teleost fish and the results suggest that multiple LEAPs can enhance the immunity of teleost fish through different expression patterns and different antibacterial activities to various bacteria.
Collapse
Affiliation(s)
- Xun Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ya-Zhen Hu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yi-Ru Pan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jia Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - You-Bo Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Chen Y, Wu J, Cheng H, Dai Y, Wang Y, Yang H, Xiong F, Xu W, Wei L. Anti-infective Effects of a Fish-Derived Antimicrobial Peptide Against Drug-Resistant Bacteria and Its Synergistic Effects With Antibiotic. Front Microbiol 2020; 11:602412. [PMID: 33329494 PMCID: PMC7719739 DOI: 10.3389/fmicb.2020.602412] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) play pivotal roles in protecting against microbial infection in fish. However, AMPs from topmouth culter (Erythroculter ilishaeformis) are rarely known. In our study, we isolated an AMP from the head kidney of topmouth culter, which belonged to liver-expressed antimicrobial peptide 2 (LEAP-2) family. Topmouth culter LEAP-2 showed inhibitory effects on aquatic bacterial growth, including antibiotic-resistant bacteria, with minimal inhibitory concentration values ranging from 18.75 to 150 μg/ml. It was lethal for Aeromonas hydrophila (resistant to ampicillin), and took less than 60 min to kill A. hydrophila at a concentration of 5 × MIC. Scanning electron microscope (SEM) and SYTOX Green uptake assay indicated that it impaired the integrity of bacterial membrane by eliciting pore formation, thereby increasing the permeabilization of bacterial membrane. In addition, it showed none inducible drug resistance to aquatic bacteria. Interestingly, it efficiently delayed ampicillin-induced drug resistance in Vibrio parahaemolyticus (sensitive to ampicillin) and sensitized ampicillin-resistant bacteria to ampicillin. The chequerboard assay indicated that topmouth culter LEAP-2 generated synergistic effects with ampicillin, indicating the combinational usage potential of topmouth culter LEAP-2 with antibiotics. As expected, topmouth culter LEAP-2 significantly alleviated ampicillin-resistant A. hydrophila infection in vivo, and enhanced the therapeutic efficacy of ampicillin against A. hydrophila in vivo. Our findings provide a fish innate immune system-derived peptide candidate for the substitute of antibiotics and highlight its potential for application in antibiotic-resistant bacterial infection in aquaculture industry.
Collapse
Affiliation(s)
- Yue Chen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Honglan Cheng
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yue Dai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yipeng Wang
- Department of Biopharmaceuticals, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Hailong Yang
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei Xiong
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Xu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Lin Wei
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
12
|
Oh HY, Go HJ, Park NG. Identification and characterization of SaRpAMP, a 60S ribosomal protein L27-derived antimicrobial peptide from amur catfish, Silurus asotus. FISH & SHELLFISH IMMUNOLOGY 2020; 106:480-490. [PMID: 32711152 DOI: 10.1016/j.fsi.2020.06.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Aquatic freshwater fish like catfish, Silurus asotus, lives in microbe-rich environments, which enable this fish to develop necessary defense mechanisms. Antimicrobial peptides, along with other innate immune factors, are regarded as an important group in this defense. An antimicrobial peptide, which was isolated from the skin of S. asotus, was identified as a C-terminal fragment of 60S ribosomal protein L27 from S. asotus. The peptide was, then, designated Silurus asotus 60S ribosomal protein L27-derived antimicrobial peptide, SaRpAMP. Primary structure analyses and cDNA cloning revealed that SaRpAMP was 4185.36 Da and composed of 33 amino acids (AAs). Its precursor had a total of 136 AAs containing a pro-sequence of 103 AAs encoded by the nucleotide sequence of 512 bp that comprises a 5' untranslated region (UTR) of 32 bp, an open reading frame (ORF) of 411 bp, and a 3' UTR of 69 bp. Secondary structure analyses showed that SaRpAMP had two α-helices with turns and coils and an amphiphilic structure, a finding consistent with the 3D model of the peptide. SaRpAMP exhibited potent antibacterial activity comparable to piscidin 1, a powerful positive control. Its antimicrobial activity against fungus C. albicans was relatively weak. The antimicrobial activity of SaRpAMP was not diminished by heat treatment and changes in pH but was abolished by proteolytic enzyme digestion. Membrane permeability assays suggested that SaRpAMP interacts with both the outer and inner bacterial membranes. This was consistent with the results of lipid titration and quenching of Trp fluorescence that demonstrated SaRpAMP's interaction with acidic liposomes. Collectively, these findings suggest that the identified peptide, SaRpAMP, was the first antimicrobial peptide reported to be derived from the C-terminal region of 60S ribosomal protein L27. The findings also suggest that the action mechanism of SaRpAMP involved the interaction of the peptide with the bacterial membranes.
Collapse
Affiliation(s)
- Hye Young Oh
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, South Korea
| | - Hye-Jin Go
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, South Korea
| | - Nam Gyu Park
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, South Korea.
| |
Collapse
|
13
|
Mahrous KF, Aboelenin MM, Abd El-Kader HAM, Mabrouk DM, Gaafar AY, Younes AM, Mahmoud MA, Khalil WKB, Hassanane MS. Piscidin 4: Genetic expression and comparative immunolocalization in Nile tilapia (Oreochromis niloticus) following challenge using different local bacterial strains. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 112:103777. [PMID: 32634526 DOI: 10.1016/j.dci.2020.103777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
The antimicrobial activity of tilapia piscidin 4 (TP4) was determined in vitro against four bacterial strains, Aeromonas hydrophilla, Pseudomonas fluorescens, Streptococcus iniae and Vibrio anguillarum. Nile tilapia were infected with low and high doses of the tested pathogens; after 3, 6, 24 h and 7 days of the specific TP4 gene expression, tissue immunolocalization was also performed. Histopathological examination revealed septicaemia and necrosis of hemopoietic tissue for all of the tested bacteria. Immunolocalization showed abundance in S. iniae-infected fish tissues. Quantitative RT-PCR analysis revealed that high doses raised mRNA expression levels compared to low doses and expression levels increased in the infected fish, particularly after 24 h, indicating that TP4 exerts potent bactericidal activity against some fish pathogens and plays an essential role in fish immunity.
Collapse
Affiliation(s)
- Karima F Mahrous
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| | - Mohamad M Aboelenin
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| | - Heba A M Abd El-Kader
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| | - Dalia M Mabrouk
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| | - Alkhateib Y Gaafar
- Hydrobiology Department, Veterinary Research Division, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| | - Abdelgayed M Younes
- Hydrobiology Department, Veterinary Research Division, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| | - Mahmoud A Mahmoud
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| | - Wagdy K B Khalil
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| | - Mohamed S Hassanane
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| |
Collapse
|
14
|
Lei Y, Qiu R, Shen Y, Zhou Y, Cao Z, Sun Y. Molecular characterization and antibacterial immunity functional analysis of liver-expressed antimicrobial peptide 2 (LEAP-2) gene in golden pompano (Trachinotus ovatus). FISH & SHELLFISH IMMUNOLOGY 2020; 106:833-843. [PMID: 32891790 DOI: 10.1016/j.fsi.2020.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Liver-expressed antimicrobial peptide-2 (LEAP-2) is a member of the antimicrobial peptides family. Research has demonstrated that LEAP-2 contains a number of cations and plays a key role in the innate immune system of organism. In this study, we cloned and identified TroLEAP-2, from the golden pompano (Trachinotus ovatus), and analyzed its functions in vivo and in vitro. Results showed that TroLEAP-2 contains a 321 bp open reading frame (ORF) that encodes 106 putative amino acids with a molecular weight of 11.65 kDa. The mature TroLEAP-2 peptide possesses four conserved cysteine residues, which can form a core structure with two disulfide bonds between the cysteine residues in the relative 1-3 (Cys 77 and Cys 88) and 2-4 (Cys 83 and Cys 93) positions. It has a high amino acid sequence similarity (38.68%-83.02%) with the liver-expressed antimicrobial peptide -2 of other teleosts. Phylogenetic analysis showed that TroLEAP-2 clustered with the LEAP-2 of Paralichthys olivaceus and Miichthy milluy. TroLEAP-2 was most abundantly expressed in the liver, spleen, and kidney, and was significantly upregulated during Edwardsiella tarda and Streptococcus agalactiae infection. Purified recombinant TroLEAP-2 (rTroLEAP-2) could significantly inhibit the in vitro growth of E. tarda and S. agalactiae. Overexpression of TroLEAP-2 in vivo was shown to significantly reduce E. tarda and S. agalactiae colonization of tissues, whereas its knockdown resulted in an increase of bacteria in fish tissues. We also saw that TroLEAP-2 overexpression significantly improved macrophage activation in vivo. Moreover, TroLEAP-2 can induce the expression of nonspecific immune-related genes. These results showed that it might play a significant role in the innate immune system of golden pompano. In conclusion, our results indicate that TroLEAP-2 plays an important role in antibacterial immunity and provides a new avenue for protection against pathogenic infections in golden pompano.
Collapse
Affiliation(s)
- Yang Lei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Reng Qiu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Yang Shen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan, 570228, PR China
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan, 570228, PR China
| | - Zhenjie Cao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan, 570228, PR China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan, 570228, PR China.
| |
Collapse
|
15
|
Liu B, Liu GD, Guo HY, Zhu KC, Guo L, Zhang N, Liu BS, Jiang SG, Zhang DC. Characterization and functional analysis of liver-expressed antimicrobial peptide-2 (LEAP-2) from golden pompano Trachinotus ovatus (Linnaeus 1758). FISH & SHELLFISH IMMUNOLOGY 2020; 104:419-430. [PMID: 32562868 DOI: 10.1016/j.fsi.2020.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The liver-expressed antimicrobial peptide-2 (LEAP-2) is an important component of the innate immune defense system and plays an important role in resisting the invasion of pathogenic microorganisms. In this study, LEAP-2 from golden pompano (Trachinotus ovatus) was characterized and its expression in response to Photobacterium damselae was investigated. The full-length LEAP-2 cDNA was 1758 bp, which comprised a 5'-UTR of 250 bp, an ORF of 321 bp, and a 3'-UTR of 1187 bp, encoding 106 amino acids. LEAP-2 consisted of a conserved saposin B domain and four conserved cysteines that formed two pairs of disulphide bonds. The genomic organization of LEAP-2 was also determined and shown to consisted of three introns and two exons. The predicted promoter region of ToLEAP-2 contained several putative transcription factor binding sites. Quantitative real-time (qRT-PCR) analysis indicated that LEAP-2 was ubiquitously expressed in all examined tissues, with higher mRNA levels observed in the muscle, liver, spleen, and kidney. After P. damselae stimulation, the expression level of LEAP-2 mRNA was significantly upregulated in various tissues of golden pompano. In addition, SDS-PAGE showed that the molecular mass of recombinant LEAP-2 expressed in pET-32a was approximately 23 kDa. The purified recombinant protein showed antibacterial activity against Gram-positive and Gram-negative bacteria. Luciferase reporters were constructed for five deletion fragments of different lengths from the promoter region (-1575 bp to +251 bp), and the results showed that L3 (-659 bp to +251 bp) presented the highest activity, and it was therefore defined as the core region of the LEAP-2 promoter. The seven predicted transcription factor binding sites were deleted by using PCR technology, and the results showed that the mutation of the USF transcription factor binding site caused the activity to significantly decrease. The results indicate that golden pompano LEAP-2 potentially exhibits antimicrobial effects in fish innate immunity.
Collapse
Affiliation(s)
- Bo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Guang-Dong Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China.
| |
Collapse
|
16
|
Dou X, Wang YQ, Wu YY, Hu X, Yang SL, Li CS, Cen JW. Analysis and evaluation of nutritional components in liver of large yellow croaker ( Pseudosciaena crocea). CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1800824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Xin Dou
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
- Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Guangzhou, Guangdong Province, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yue Qi Wang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
| | - Yan Yan Wu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
| | - Xiao Hu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
| | - Shao Ling Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
| | - Chun Sheng Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
| | - Jian Wei Cen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
| |
Collapse
|
17
|
Nakharuthai C, Srisapoome P. Molecular Identification and Dual Functions of Two Different CXC Chemokines in Nile Tilapia (Oreochromis niloticus) against Streptococcus agalactiae and Flavobacterium columnare. Microorganisms 2020; 8:microorganisms8071058. [PMID: 32708611 PMCID: PMC7409096 DOI: 10.3390/microorganisms8071058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 11/29/2022] Open
Abstract
Two CXC chemokines in Nile tilapia (On-CXC1 and On-CXC2) were identified at both the genomic and proteomic levels. A southern blot analysis and comparison searching in Ensembl confirmed the typical structure of the CXC chemokine genes and provided evidence for unusual mechanisms used to generate the two different CXC chemokine transcripts that have not been reported in other vertebrate species so far. The expression levels of On-CXC1 and On-CXC2 were analyzed by quantitative real-time PCR. These two mRNAs were detected in various tissues of normal Nile tilapia, especially in the spleen, heart, and head kidney, indicating a homeostatic function in immunosurveillance. A time-course experiment clearly demonstrated that these two transcripts were effectively enhanced in the head kidney, spleen and trunk kidney of Nile tilapia 6, 12 and 24 h after injection with Streptococcus agalactiae but were down-regulated in all tested tissues at 48 h, reflecting the fact that they have short half-lives during the crucial response to pathogens that is characteristic of CXC chemokine genes in other vertebrates. Functional analyses obviously exhibited that these two CXC chemokines at concentrations of 1–10 μg strongly inactivated S. agalactiae and Flavobacterium columnare and effectively induced phagocytosis of leukocytes in vitro.
Collapse
Affiliation(s)
- Chatsirin Nakharuthai
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand;
- Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok 10900, Thailand
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand;
- Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok 10900, Thailand
- Correspondence:
| |
Collapse
|
18
|
Stefi Raju V, Sarkar P, Pachaiappan R, Paray BA, Al-Sadoon MK, Arockiaraj J. Defense involvement of piscidin from striped murrel Channa striatus and its peptides CsRG12 and CsLC11 involvement in an antimicrobial and antibiofilm activity. FISH & SHELLFISH IMMUNOLOGY 2020; 99:368-378. [PMID: 32081807 DOI: 10.1016/j.fsi.2020.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
In this study, we have evaluated bioinformatics characterization and antimicrobial role of two piscidin (Pi) peptide identified from the established transcriptome of striped murrel Channa striatus (Cs). The identified CsPi cDNA contains 256 nucleotides encode a protein with 70 amino acids in length which has two antimicrobial peptides and named CsRG12 and CsLC11. The gene expression analysis with various immune stimulants indicated an induced expression pattern of CsPi. Antibiogram showed that CsRG12 and CsLC11 was active against Staphylococcus aureus ATCC 33592, a major multi-drug resistant (MDR) bacterial pathogen and Bacillus cereus ATCC 2106. The minimum inhibitory concentration (MIC) and antibiofilm assays were conducted to observe the activity of pathogenic bacteria with these derived antimicrobial peptides. Flow cytometry analysis noticed that the CsRG12 and CsLC11 disrupt the membrane formation of S. aureus and B. cereus, which was further assured by scanning electron microscopic (SEM) images that bleb formation leads to disruption around the bacterial membrane. Overall, it is reported that CsPi is involved in innate immunity as the gene expression plays a remarkable role in up and down regulation during infection. In addition, the involvement of peptides in antibiofilm formation and bacterial membrane disruption support its immune character. This study leads to a possibility for the development of therapeutics in aquaculture biotechnology.
Collapse
Affiliation(s)
- V Stefi Raju
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Purabi Sarkar
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - R Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad K Al-Sadoon
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
19
|
Amparyup P, Charoensapsri W, Samaluka N, Chumtong P, Yocawibun P, Imjongjirak C. Transcriptome analysis identifies immune-related genes and antimicrobial peptides in Siamese fighting fish (Betta splendens). FISH & SHELLFISH IMMUNOLOGY 2020; 99:403-413. [PMID: 32081810 DOI: 10.1016/j.fsi.2020.02.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Siamese fighting fish (Betta splendens) is one of the most widely cultivated ornamental fish in global trade. However, transcriptomic data, which can reveal valuable genetic data for disease control and prevention, are extremely limited for this species. In this study, whole-body transcriptome sequencing of juvenile betta fish generated 4.457 GB of clean data and a total of 71,775 unigenes using the Illumina HiSeq4000 platform. These unigenes were functionally classified using 7 functional databases, yielding 45,316 NR (63.14%), 47,287 NT (65.88%), 39,105 Swiss-Prot (54.48%), 16,492 COG (22.98%), 37,694 KEGG (52.52%), 4,506 GO (6.28%), and 35,374 Interpro (49.28%) annotated unigenes. Furthermore, we also detected 13,834 SSRs distributed on 10,636 unigenes and 49,589 predicted CDSs. Based on KEGG analysis, five innate immune pathways (997 unigenes) were reported, including the NOD-like receptor signaling pathway, complement and coagulation cascades, toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway and cytosolic DNA-sensing pathway. Moreover, four antimicrobial peptide (AMP) families (hepcidin, piscidin, LEAP-2, and defensins) from the betta fish transcriptome were also identified. Additionally, cDNA and genomic DNA of two β-defensins was successfully isolated from four betta fish species. RT-PCR analysis showed that BsBD1 transcripts were most abundant in the muscle and kidney and BsBD2 transcripts were most abundant in the gill. The genomic organization showed that the BD1 and BD2 genes consisted of three exons and two introns according to the GT-AG rule. Most importantly, this is the first report of the betta fish whole-body transcriptome obtained by high-throughput sequencing. Our transcriptomic data and the discovery of betta fish AMPs should promote a better understanding of molecular immunology for disease prevention for further ornamental fish aquaculture.
Collapse
Affiliation(s)
- Piti Amparyup
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Walaiporn Charoensapsri
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nusree Samaluka
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Parichat Chumtong
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Patchari Yocawibun
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chanprapa Imjongjirak
- Department of Food Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| |
Collapse
|
20
|
Luo SW, Luo KK, Liu SJ. A novel LEAP-2 in diploid hybrid fish (Carassius auratus cuvieri ♀ × Carassius auratus red var. ♂) confers protection against bacteria-stimulated inflammatory response. Comp Biochem Physiol C Toxicol Pharmacol 2020; 228:108665. [PMID: 31707088 DOI: 10.1016/j.cbpc.2019.108665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022]
Abstract
LEAP-2, a multifunctional peptide, not only exhibits a regulatory role in pathogenic infection, but also participates in the regulation of teleostean immunity. In this study, ORF sequence of WR-LEAP-2 was 240 bp and encoded 79 amino acid residues. Tissue-specific analysis revealed that the highest expression of WR-LEAP-2 was observed in liver. Aeromonas hydrophila challenge can sharply increase WR-LEAP-2 mRNA expression in liver, kidney and spleen. The purified WR-LEAP-2 peptide can directly bind to A. hydrophila and S. agalactiae, reduce the relative bacterial activity and limit bacterial growth in vitro. In addition, the treatment of WR-LEAP-2 can restrict bacterial dissemination in vivo and reduce production of pro-inflammatory cytokines. These results indicated that WR-LEAP-2 can confer protection against A. hydrophila- or S. agalactiae-stimulated MyD88-dependent pro-inflammatory cytokines activation.
Collapse
Affiliation(s)
- Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Kai-Kun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|
21
|
Yu L, Zhang Y, Li M, Wang C, Lin X, Li L, Shi X, Guo C, Lin S. Comparative metatranscriptomic profiling and microRNA sequencing to reveal active metabolic pathways associated with a dinoflagellate bloom. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134323. [PMID: 31522044 DOI: 10.1016/j.scitotenv.2019.134323] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Harmful algal blooms (HABs) have increased as a result of global climate and environmental changes, exerting increasing impacts on the aquatic ecosystem, coastal economy, and human health. Despite great research efforts, our understanding on the drivers of HABs is still limited in part because HAB species' physiology is difficult to probe in situ. Here, we used molecular ecological analyses to characterize a dinoflagellate bloom at Xiamen Harbor, China. Prorocentrum donghaiense was identified as the culprit, which nutrient bioassays showed were not nutrient-limited. Metatranscriptome profiling revealed that P. donghaiense highly expressed genes related to N- and P-nutrient uptake, phagotrophy, energy metabolism (photosynthesis, oxidative phophorylation, and rhodopsin) and carbohydrate metabolism (glycolysis/gluconeogenesis, TCA cycle and pentose phosphate) during the bloom. Many genes in P. donghaiense were up-regulated at night, including phagotrophy and environmental communication genes, and showed active expression in mitosis. Eight microbial defense genes were up-regulated in the bloom compared with previously analyzed laboratory cultures. Furthermore, 76 P. donghaiense microRNA were identified from the bloom, and their target genes exhibited marked differences in amino acid metabolism between the bloom and cultures and the potential of up-regulated antibiotic and cell communication capabilities. These findings, consistent with and complementary to recent reports, reveal major metabolic processes in P. donghaiense potentially important for bloom formation and provide a gene repertoire for developing bloom markers in future research.
Collapse
Affiliation(s)
- Liying Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yaqun Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Meizhen Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xinguo Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; College of Biological Science and Engineering, Fuzhou University, Fujian 350116, China
| | - Chentao Guo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| |
Collapse
|
22
|
Pradhan PK, Paria A, Pande V, Verma DK, Arya P, Rathore G, Sood N. Expression of immune genes in Indian major carp, Catla catla challenged with Flavobacterium columnare. FISH & SHELLFISH IMMUNOLOGY 2019; 94:599-606. [PMID: 31542493 DOI: 10.1016/j.fsi.2019.09.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Columnaris disease, caused by Flavobacterium columnare, is one of the important bacterial diseases responsible for large-scale mortalities in numerous freshwater fishes globally. This disease can cause up to 100% mortality within 24 h of infection and is considered to be a cause of concern for aquaculture industry. Despite being a serious disease, scarce information is available regarding host-pathogen interaction, particularly the modulation of different immune genes in response to F. columnare infection. Therefore, in the present study, an attempt has been made to study expression of important immune regulatory genes, namely IL-1β, iNOS, INF-γ, IL-10, TGF-β, C3, MHC-I and MHC-II in gills and kidney of Catla catla following experimental infection with F. columnare. The expression analysis of immune genes revealed that transcript levels of IL-1β, iNOS, IL-10, TGF-β, C3 and MHC-I were significantly up-regulated (p < 0.05) in both the organs of the infected catla. IFN-γ and MHC-II were up-regulated in gills of infected catla whereas, both the genes showed down-regulation in kidney. The results indicate that important immune genes of C. catla are modulated following infection with F. columnare. The knowledge thus generated will strengthen the understanding of molecular pathogenesis of F. columnare in Indian major carp C. catla.
Collapse
Affiliation(s)
- P K Pradhan
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India.
| | - Anutosh Paria
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, 263136, Uttarakhand, India
| | - Dev K Verma
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - P Arya
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - G Rathore
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - N Sood
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India.
| |
Collapse
|
23
|
Kim CH, Kim EJ, Nam YK. Subfunctionalization and evolution of liver-expressed antimicrobial peptide 2 (LEAP2) isoform genes in Siberian sturgeon (Acipenser baerii), a primitive chondrostean fish species. FISH & SHELLFISH IMMUNOLOGY 2019; 93:161-173. [PMID: 31319209 DOI: 10.1016/j.fsi.2019.07.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 07/08/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
Two liver-expressed antimicrobial peptide 2 (LEAP2) isoforms were characterized in a primitive chondrostean sturgeon species, Acipenser baerii (Acipenseriformes). A. baerii LEAP2 isoforms represented essentially common structures shared by their vertebrate orthologs at both genomic (i.e., tripartite organization) and peptide (two conserved disulfide bonds) levels. A. baerii LEAP2 isoforms (designed LEAP2AB and LEAP2C, respectively) phylogenetically occupy the most basal position in the actinopterygian lineage and represent an intermediate character between teleostean and tetrapodian LEAP2s in the sequence alignment. Molecular phylogenetic analysis including LEAP2s from extant primitive fish species indicated that the evolutionary origin of ancestral LEAP2 in vertebrate groups should date back to earlier than the actinopterygian-sarcopterygian split. Gene expression assays under both basal and stimulated conditions suggested that A. baerii LEAP2 isoforms have undergone substantial subfunctionalization in tissue distribution pattern, developmental/ontogenetic expression, and immune responses. LEAP2AB showed a predominant liver expression, while LEAP2C exhibited the highest level of expression in the intestine. LEAP2C was a more dominantly expressed isoform during embryonic development and prelarval ontogeny. The LEAP2AB isoform is more closely associated with innate immune response to microbial invasion, compared with LEAP2C, as evidenced by results from LPS, poly(I:C) and Aeromonas hydrophila challenges. Synthetic mature peptides of LEAP2AB displayed a more potent antimicrobial activity than did LEAP2C. Data from this study could be useful not only to provide deeper insights into the evolutionary mechanism of LEAP2 in the actinopterygian lineage but also to better understand the innate immunity of this commercially important chondrostean species.
Collapse
Affiliation(s)
- Chan-Hee Kim
- Department of Marine Bio-Materials & Aquaculture, Pukyong National University, Busan, 48513, South Korea
| | - Eun Jeong Kim
- Department of Marine Bio-Materials & Aquaculture, Pukyong National University, Busan, 48513, South Korea
| | - Yoon Kwon Nam
- Department of Marine Bio-Materials & Aquaculture, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
24
|
Bo J, Yang Y, Zheng R, Fang C, Jiang Y, Liu J, Chen M, Hong F, Bailey C, Segner H, Wang K. Antimicrobial activity and mechanisms of multiple antimicrobial peptides isolated from rockfish Sebastiscus marmoratus. FISH & SHELLFISH IMMUNOLOGY 2019; 93:1007-1017. [PMID: 31449978 DOI: 10.1016/j.fsi.2019.08.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Pathogenic disease is a major factor affecting the aquaculture of the rockfish Sebastiscus marmoratus, an important commercial species inhabiting the nearshore waters of the Western Pacific Ocean. Antimicrobial peptides (AMPs), as critical components of innate immunity, have been considered as promising antibiotic substitutes. The aims of this study were 1) to identify major AMPs in the rockfish, 2) to assess their antimicrobial activity and 3) to evaluate their potential therapeutic application. Six AMPs were identified, Hepcidin 1, liver-expressed antimicrobial peptide 2 (LEAP-2), Piscidin, Moronecidin, NK-lysin and β-defensin through analysis of the liver transcriptome of S. marmoratus. The transcriptional expression profiles of these AMPs were investigated by real-time quantitative PCR (RT-qPCR). These AMPs showed tissue-specific distribution patterns, and S. marmoratus displays a time-, dose- and tissue-dependent expression of AMPs in response to lipopolysaccharide (LPS) challenge. While the synthetic peptides of LEAP-2 and Moronecidin exerted broad-spectrum antimicrobial activity against important aquatic pathogens in vitro by directly disrupting microbial membrane, and no cytotoxicity against murine hepatic cells was observed at the effective concentrations from 5 μM to 40 μM. The existence of multiple AMPs and their distinct tissue distribution patterns and inducible expression patterns suggests a sophisticated, highly redundant, and multilevel network of antimicrobial defensive mechanisms of S. marmoratus. Therefore, S. marmoratus-derived AMPs appear to be potential therapeutic applications against pathogen infections in aquaculture.
Collapse
Affiliation(s)
- Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Ying Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, China
| | - Ronghui Zheng
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Chao Fang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yulu Jiang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Jie Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, China
| | - Mengyun Chen
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Fukun Hong
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Christyn Bailey
- Fish Immunology and Pathology Laboratory, Animal Health Research Center (CISA-INIA), Madrid, Spain
| | - Helmut Segner
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| | - Kejian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, China.
| |
Collapse
|
25
|
Gao L, Yuan Z, Zhou T, Yang Y, Gao D, Dunham R, Liu Z. FOXO genes in channel catfish and their response after bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 97:38-44. [PMID: 30905685 DOI: 10.1016/j.dci.2019.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
FOXO proteins are a subgroup of the forkhead family of transcription factors that play crucial roles in lifespan regulation. In addition, FOXO proteins are also involved in immune responses. After a systematic study of FOXO genes in channel catfish, Ictalurus punctatus, seven FOXO genes were identified and characterized, including FOXO1a, FOXO1b, FOXO3a, FOXO3b, FOXO4, FOXO6a and FOXO6b. Through phylogenetic and syntenic analyses, it was found that FOXO1, FOXO3 and FOXO6 were duplicated in the catfish genome, as in the zebrafish genome. Analysis of the relative rates of nonsynonymous (dN) and synonymous (dS) substitutions revealed that the FOXO genes were globally strongly constrained by negative selection. Differential expression patterns were observed in the majority of FOXO genes after Edwardsiella ictaluri and Flavobacterium columnare infections. After E. ictaluri infection, four FOXO genes with orthologs in mammal species were significantly upregulated, where FOXO6b was the most dramatically upregulated. However, after F. columnare infection, the expression levels of almost all FOXO genes were not significantly affected. These results suggested that either a pathogenesis-specific pattern or tissue-specific pattern existed in catfish after these two bacterial infections. Taken together, these findings indicated that FOXO genes may play important roles in immune responses to bacterial infections in catfish.
Collapse
Affiliation(s)
- Lei Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA; Key Laboratory of Marine Fishery Molecular Biology of Liaoning Province, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
26
|
Chen J, Lv YP, Dai QM, Hu ZH, Liu ZM, Li JH. Host defense peptide LEAP-2 contributes to monocyte/macrophage polarization in barbel steed (Hemibarbus labeo). FISH & SHELLFISH IMMUNOLOGY 2019; 87:184-192. [PMID: 30641185 DOI: 10.1016/j.fsi.2019.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/06/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
The liver-expressed antimicrobial peptide 2 (LEAP-2) plays a vital role in host immunity against pathogenic organisms. In the present study, cDNA of the LEAP-2 gene was cloned and sequenced from the barbel steed (Hemibarbus labeo). The predicted amino acid sequence of the barbel steed LEAP-2 comprises a signal peptide and a prodomain, which is followed by the mature peptide. Sequence analysis revealed that barbel steed LEAP-2 belongs to the fish LEAP-2A cluster and that it is closely related to zebrafish LEAP-2A. We found that barbel steed LEAP-2 transcripts were expressed in a wide range of tissues, with the highest mRNA levels detected in the liver. In response to lipopolysaccharide (LPS) treatment, LEAP-2 was significantly upregulated in the liver, head kidney, spleen, gill, and mid intestine. A chemically synthesized LEAP-2 mature peptide exhibited selective antimicrobial activity against several bacteria in vitro. Moreover, LEAP-2, alone or in combination with LPS or phorbol 12-myristate 13-acetate, strongly induced a pro-inflammatory reaction in barbel steed monocytes/macrophages (MO/MФ), involving the induction of iNOS activity, respiratory burst, and the pro-inflammatory cytokines IFN-γ, TNF-α, and IL-1β. Collectively, the results of this study indicate the importance of fish LEAP-2 in the M1-type polarization of MO/MΦ.
Collapse
Affiliation(s)
- Jie Chen
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Yao-Ping Lv
- College of Ecology, Lishui University, Lishui, 323000, China.
| | - Qing-Min Dai
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Ze-Hui Hu
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, 316021, China
| | - Zi-Ming Liu
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Ji-Heng Li
- College of Ecology, Lishui University, Lishui, 323000, China
| |
Collapse
|
27
|
Zhang S, Xu Q, Du H, Qi Z, Li Y, Huang J, Di J, Wei Q. Evolution, expression, and characterisation of liver-expressed antimicrobial peptide genes in ancient chondrostean sturgeons. FISH & SHELLFISH IMMUNOLOGY 2018; 79:363-369. [PMID: 29772374 DOI: 10.1016/j.fsi.2018.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
Liver-expressed antimicrobial peptide 2 (leap-2) is an evolutionarily ancient molecule that acts as the key component in vertebrate innate immunity against invading pathogens. Leap-2 has been identified and characterised in several teleosts, but not yet in chondrosteans. Herein, the complete coding sequences of leap-2b and leap-2c were identified from expressed sequence tags (ESTs) isolated from Dabry's sturgeon (Acipenser dabryanus) and Chinese sturgeon (A. sinensis), designated as adleap-2b, adleap-2c, asleap-2b, and asleap-2c, respectively. Adleap-2b and adleap-2c sequences share 98% and 100% sequence identity with asleap-2b, and asleap-2c, respectively. Sequence alignment revealed that all four genes contain four cysteine residues, conserved in all fish leap-2 homologs, that form two disulfide bonds. Comparative analysis of the exon-intron structure revealed a three exon/two intron structure for that leap-2 genes in animals, but intron 1 is much longer in sturgeons than in other species. The adleap-2c gene was expressed mainly in the liver of Dabry's sturgeon, and transcription of adleap-2c was significantly up-regulated (p < 0.05) in the liver and midkidney in response to Aeromonas hydrophila challenge. These results suggest adleap-2c may contribute to the defence against pathogenic bacterial invasion. The findings further our understanding of the function of adleap-2c and the molecular mechanism of innate immunity in chondrosteans.
Collapse
Affiliation(s)
- Shuhuan Zhang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Qiaoqing Xu
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Zhitao Qi
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Youshen Li
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Jun Huang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Jun Di
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; School of Animal Science, Yangtze University, Jingzhou, 434020, China.
| |
Collapse
|
28
|
Zheng LB, Mao Y, Wang J, Chen RN, Su YQ, Hong YQ, Hong YJ, Hong YC. Excavating differentially expressed antimicrobial peptides from transcriptome of Larimichthys crocea liver in response to Cryptocaryon irritans. FISH & SHELLFISH IMMUNOLOGY 2018; 75:109-114. [PMID: 29408708 DOI: 10.1016/j.fsi.2018.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
Larimichthys crocea, the special marine economy fish, owns the largest annual yield for a single species in China. One of the most significant factors affecting large yellow croaker culture is the diseases, especially the threat of marine white spot disease which caused by a protozoan Cryptocaryon irritans. Antimicrobial peptides (AMPs) have been demonstrated to be active against bacterium, fungi and parasites, showing their potential usefulness in aquaculture as substitutes for antibiotics. Many researches have been carried out about the AMPs concentrating on the activity resist on C. irritans, and piscidin-like of L. crocea owning widely antibacterial spectrum and strong activity against C. irritans was screened in our team. In the paper, taking advantage of the large yellow croaker hepatic comparison transcriptome in response to C. irritans at 3d post infection, seven kinds of AMPs have been excavated from the differently expressed genes, including LEAP2 like, LEAP-2A, hepcidin, hepcidin-like, piscidin-5-like, piscidin-5-like type 4 and bactericidal permeability increasing protein (BPI). Hepcidin, hepcidin-like, piscidin-5-like, piscidin-5-like type4 and BPI were up-regulated to protect large yellow croaker from being damaged by C. irritans infection; while LEAP2 like and LEAP-2A were down-regulated, they might be as a negative-feedback regulation factor or some other regulatory mechanisms to adjust the immune response in the process of C. irritans infection. The differential expression changes were verified with quantitative real-time PCR (qRT-PCR) to illustrate the reliability of the sequenced data. Hearteningly, piscidin-5-like type 4 was a novel type which was high similar to other piscidin-5-like types. Interestingly, the infection may well cause alternative splicing of LEAP-2A mRNA, which was a surprised phenomenon and finding after C. irritans infection, but more further study was needed to be conducted. Therefore, the data showed that these AMPs were involved in the immune response to the C. irritans infection. In all, these results implied that the immune response of AMPs to C. irritans infection was a complex and sophisticated regulatory process.
Collapse
Affiliation(s)
- Li-Bing Zheng
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China; Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Jun Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China; Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China
| | - Ruan-Ni Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Yong-Quan Su
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China; Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China.
| | - Yue-Qun Hong
- Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China
| | - Yu-Jian Hong
- Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China
| | - Yu-Cong Hong
- Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China
| |
Collapse
|
29
|
Antimicrobial Peptides Are Expressed during Early Development of Zebrafish (Danio rerio) and Are Inducible by Immune Challenge. FISHES 2017. [DOI: 10.3390/fishes2040020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Patel S, Akhtar N. Antimicrobial peptides (AMPs): The quintessential 'offense and defense' molecules are more than antimicrobials. Biomed Pharmacother 2017; 95:1276-1283. [PMID: 28938518 DOI: 10.1016/j.biopha.2017.09.042] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) are cationic amphiphilic molecules with α-helix or β-sheet linear motifs and linear or cyclic configurations. For their role in 'defense and offense', they are present in all living organisms. AMPs are named so, as they inhibit a wide array of microbes by membrane pore formation and subsequent perturbation of mitochondrial membrane ionic balance. However, their functional repertoire is expanding with validated roles in cytotoxicity, wound healing, angiogenesis, apoptosis, and chemotaxis [1]. A number of endogenous AMPs have been characterized in human body such as defensins, cathelicidins, histatins etc. They mediate critical functions, but when homeostasis is broken, they turn hostile and initiate inflammatory diseases. This review discusses the sources of therapeutic AMPs; auto-immunity risks of endogenous AMPs, and their dermatological applications; normally overlooked risks of the peptides; and scopes ahead. This holistic work is expected to be a valuable reference for further research in this field.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego 92182, USA.
| | - Nadeem Akhtar
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
31
|
Nsrelden RM, Horiuchi H, Furusawa S. Expression of ayu antimicrobial peptide genes after LPS stimulation. J Vet Med Sci 2017; 79:1072-1080. [PMID: 28484129 PMCID: PMC5487786 DOI: 10.1292/jvms.16-0609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plecoglossus altivelis (ayu) is one of the most important fish species
in the Japanese islands and in internal fish hatcheries. Living in open aquatic
environments exposes fish to many pathogens. Therefore, they require rapid and strong
immune defenses. We investigated in vivo the direct association between
the ayu innate immune response, represented by the relative transcription of genes
encoding the cathelicidin and hepcidin antimicrobial peptides, and lipopolysaccharide
(LPS), a conventional pathogen-associated molecular patterns (PAMPs) of Gram-negative
bacteria. Different concentrations of LPS (1, 10 and 100 µg/fish) were
injected intraperitoneally into young (sexually immature) and adult (fully sexually
mature) ayu. The relative expression of the antimicrobial peptide genes was measured 6 hr,
24 hr and 1 week after stimulation with LPS. We found a direct association between the
expression of the antimicrobial peptide genes investigated and LPS stimulation. This
relationship was time-, dose- and age-dependent. Further research is required to determine
the cell-specific transcriptional regulation and posttranscriptional regulation of these
antimicrobial peptides.
Collapse
Affiliation(s)
- Rehab Marray Nsrelden
- Laboratory of Immunobiology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Hiroyuki Horiuchi
- Laboratory of Immunobiology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Shuichi Furusawa
- Laboratory of Immunobiology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| |
Collapse
|
32
|
Kong X, Wu X, Pei C, Zhang J, Zhao X, Li L, Nie G, Li X. H2A and Ca-L-hipposin gene: Characteristic analysis and expression responses to Aeromonas hydrophila infection in Carassius aurutus. FISH & SHELLFISH IMMUNOLOGY 2017; 63:344-352. [PMID: 28223110 DOI: 10.1016/j.fsi.2017.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
Antimicrobial peptide is an important component of the host innate immune system and thus serves a crucial function in host defense against microbial invasion. In this study, H2A and derived antimicrobial peptide Ca-L-hipposin were cloned and characterized in Carassius aurutus. The gene H2A full-length cDNA is 908 bp and includes a 5'-terminal untranslated region (UTR) of 55 bp and a 3'-terminal UTR of 466 bp with a canonical polyadenylation signal sequence AATAA, as well as an open reading frame (ORF) of 387 bp encoding a polypeptide of 128 amino acids, with a molecular weight of 13.7 kDa, an isoelectric point of 10.7, and 94% homology with Danio rerio H2A. The secondary structure of H2A includes the α-spiral with 51 amino acids with a composition ratio of 39.8%, as well as a β-corner with 15 amino acids in a composition ratio of 11.7%. The online software ExPaSy predicted that a peptide sequence with 51 amino acids from the 2nd to 52nd amino acids in histone H2A can be produced through hydrolization by protease chymotrypsin, which indicates a difference of only three amino acids, compared with the antimicrobial peptide hipposin in Hippoglossus hippoglossus with a homology of 94%. Ca-L-hipposin includes 51 amino acids with a molecular weight of 5.4 kDa and an isoelectric point of 12.0, the secondary structure of which contains an α-helix of 17 amino acids accounting for 33.3% and a β-corner of 8 amino acids accounting for 15.7%. H2A was extensively expressed in the mRNA levels of various tissues, with higher expression levels in kidney and spleen. After C. aurutus was challenged with Aeromonas hydrophila, the mRNA expression levels of H2A were upregulated in the kidney, spleen, and liver. H2A serves an important function in the defense against the invasion of A. hydrophila. In addition, sequence characteristics reveal that Ca-L-hipposin could be a potential antimicrobial peptide for use in killing pathogenic bacteria in aquaculture.
Collapse
Affiliation(s)
- Xianghui Kong
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xiangmin Wu
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Chao Pei
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Jie Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xianliang Zhao
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Li Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
33
|
Fu Q, Zeng Q, Li Y, Yang Y, Li C, Liu S, Zhou T, Li N, Yao J, Jiang C, Li D, Liu Z. The chemokinome superfamily in channel catfish: I. CXC subfamily and their involvement in disease defense and hypoxia responses. FISH & SHELLFISH IMMUNOLOGY 2017; 60:380-390. [PMID: 27919758 DOI: 10.1016/j.fsi.2016.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
Chemokines are a superfamily of structurally related chemotactic cytokines exerting significant roles in regulating cell migration and activation. They are defined by the presence of four conserved cysteine residues and are divided into four subfamilies depending on the arrangement of the first two conserved cysteines residues: CXC, CC, C and CX3C. In this study, a complete set of 17 CXC chemokine ligand (CXCL) genes was systematically identified and characterized from channel catfish genome through data mining of existing genomic resources. Phylogenetic analysis allowed annotation of the 17 CXC chemokines. Extensive comparative genomic analyses supported their annotations and orthologies, revealing the existence of fish-specific CXC chemokines and the expansion of CXC chemokines in the teleost genomes. The analysis of gene expression after bacterial infection indicated the CXC chemokines were expressed in a gene-specific manner. CXCL11.3 and CXCL20.3 were expressed significantly higher in resistant fish than in susceptible fish after ESC infection, while CXCL20.2 were expressed significantly higher in resistant fish than in susceptible fish after columnaris infection. The expression of those CXC chemokines, therefore can be a useful indicator of disease resistance. A similar pattern of expression was observed between resistant and susceptible fish with biotic and abiotic stresses, ESC, columnaris and hypoxia, suggesting that high levels of expression of the majority of CXC chemokines, with exception of CXC11 and CXC20, are detrimental to the host.
Collapse
Affiliation(s)
- Qiang Fu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Qifan Zeng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ning Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chen Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
34
|
Liu QN, Xin ZZ, Zhang DZ, Jiang SH, Chai XY, Wang ZF, Li CF, Zhou CL, Tang BP. cDNA cloning and expression analysis of a hepcidin gene from yellow catfish Pelteobagrus fulvidraco (Siluriformes: Bagridae). FISH & SHELLFISH IMMUNOLOGY 2017; 60:247-254. [PMID: 27815205 DOI: 10.1016/j.fsi.2016.10.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/15/2016] [Accepted: 10/30/2016] [Indexed: 06/06/2023]
Abstract
Hepcidin is a small, cysteine-rich antimicrobial peptide with a highly conserved β-sheet structure that plays a vital role in innate host immunity against pathogenic organisms. In this study, a hepcidin gene was identified in Pelteobagrus fulvidraco, an economically important freshwater fish in China. The gene is named PfHep. The complete PfHep cDNA was 723 bp, including a 5'-untranslated region (UTR) of 102 bp, a 3'-UTR of 339 bp and an open reading frame of 282 bp encoding a polypeptide of 93 amino acids, which includes a predicted signal peptide and the Hepcidin domain. The predicted mature, cationic PfHep protein has a typical hepcidin RX (K/R)R motif and eight conserved cysteine residues. The deduced PfHep protein sequence has 70%, 54% and 39% percent identity with hepcidins from Ictalurus punctatus, Danio rerio, and Homo sapiens, respectively. The predicted tertiary structure of PfHep is very similar to that of hepcidin in other animals. Phylogenetic analysis revealed that PfHep is closely related to the hepcidins of I. punctatus and I. furcatus. Real-time quantitative reverse transcription-PCR showed that the PfHep gene was expressed most in liver of healthy P. fulvidraco, and expressed to some extent in all the tissues tested. After challenge with lipopolysaccharide and polyriboinosinic:polyribocytidylic acid (poly I:C), respectively, the expression levels of PfHep were markedly upregulated in liver, spleen, head kidney and blood at different time points. Together these results imply that PfHep may be an important component of the innate immune system and be involved in immune defense against invading pathogens.
Collapse
Affiliation(s)
- Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Xin-Yue Chai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Zheng-Fei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Chao-Feng Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, Jiangsu Province, People's Republic of China.
| |
Collapse
|
35
|
Chen J, Chen Q, Lu XJ, Chen J. The protection effect of LEAP-2 on the mudskipper (Boleophthalmus pectinirostris) against Edwardsiella tarda infection is associated with its immunomodulatory activity on monocytes/macrophages. FISH & SHELLFISH IMMUNOLOGY 2016; 59:66-76. [PMID: 27765699 DOI: 10.1016/j.fsi.2016.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/12/2016] [Accepted: 10/15/2016] [Indexed: 06/06/2023]
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP-2) is a cationic peptide that plays an important role in the host's innate immune system. However, the mechanism by which LEAP-2 modulates/regulates the host defense against pathogens remains largely unknown. In this study, we identified a cDNA sequence encoding LEAP-2 homolog (BpLEAP-2) in the mudskipper, Boleophthalmus pectinirostris. Sequence analysis revealed that BpLEAP-2 belonged to the fish LEAP-2A cluster and that it was closely related to ayu LEAP-2. BpLEAP-2 mRNA was detected in a wide range of tissues, with the highest level of transcripts found in the liver. Upon infection with Edwardsiella tarda, BpLEAP-2 mRNA expression was significantly increased in the liver, kidney, spleen, and gill, but decreased in the intestine. Chemically synthesized BpLEAP-2 mature peptide did not exhibit antibacterial activity against E. tarda in vitro. Intraperitoneal injection of BpLEAP-2 (1.0 or 10.0 μg/g) resulted in significantly improved survival rate and reduced tissue bacterial load in E. tarda-infected mudskippers. In E. tarda-infected fish, BpLEAP-2 (0.1, 1.0, or 10.0 μg/g) eliminated E. tarda-induced tissue mRNA expression of BpTNF-α and BpIL-1β. In monocytes/macrophages (MO/MФ), BpLEAP-2 (1.0 or 10.0 μg/ml) induced chemotaxis, enhanced respiratory burst, and inhibited E. tarda-induced mRNA expression of BpTNF-α and BpIL-1β. At a concentration of 10.0 μg/ml, BpLEAP-2 also significantly enhanced the bacterial killing efficiency of MO/MФ. No significant effect was seen in the phagocytic activity of MO/MФ upon treatment with BpLEAP-2. Our study provides evidence, for the first time, that LEAP-2 exhibited immunomodulatory effects on immune cells, and protected the host from pathogenic infections independent of direct bacterial killing function.
Collapse
Affiliation(s)
- Jie Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Qiang Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
36
|
Thiébaud P, Garbay B, Auguste P, Sénéchal CL, Maciejewska Z, Fédou S, Gauthereau X, Costaglioli P, Thézé N. Overexpression of Leap2 impairs Xenopus embryonic development and modulates FGF and activin signals. Peptides 2016; 83:21-8. [PMID: 27335344 DOI: 10.1016/j.peptides.2016.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022]
Abstract
Besides its widely described function in the innate immune response, no other clear physiological function has been attributed so far to the Liver-Expressed-Antimicrobial-Peptide 2 (LEAP2). We used the Xenopus embryo model to investigate potentially new functions for this peptide. We identified the amphibian leap2 gene which is highly related to its mammalian orthologues at both structural and sequence levels. The gene is expressed in the embryo mostly in the endoderm-derived tissues. Accordingly it is induced in pluripotent animal cap cells by FGF, activin or a combination of vegT/β-catenin. Modulating leap2 expression level by gain-of-function strategy impaired normal embryonic development. When overexpressed in pluripotent embryonic cells derived from blastula animal cap explant, leap2 stimulated FGF while it reduced the activin response. Finally, we demonstrate that LEAP2 blocks FGF-induced migration of HUman Vascular Endothelial Cells (HUVEC). Altogether these findings suggest a model in which LEAP2 could act at the extracellular level as a modulator of FGF and activin signals, thus opening new avenues to explore it in relation with cellular processes such as cell differentiation and migration.
Collapse
Affiliation(s)
- Pierre Thiébaud
- Univ. Bordeaux, F-33076 Bordeaux, France; INSERM U1035, F-33076 Bordeaux, France
| | | | - Patrick Auguste
- Univ. Bordeaux, F-33076 Bordeaux, France; INSERM U1035, F-33076 Bordeaux, France
| | | | - Zuzanna Maciejewska
- Univ. Bordeaux, F-33076 Bordeaux, France; INSERM U1035, F-33076 Bordeaux, France
| | - Sandrine Fédou
- Univ. Bordeaux, F-33076 Bordeaux, France; INSERM U1035, F-33076 Bordeaux, France
| | - Xavier Gauthereau
- Univ. Bordeaux, F-33076 Bordeaux, France; CNRS UMS 3427, F-33076 Bordeaux, France
| | | | - Nadine Thézé
- Univ. Bordeaux, F-33076 Bordeaux, France; INSERM U1035, F-33076 Bordeaux, France.
| |
Collapse
|
37
|
Fu Q, Li Y, Yang Y, Li C, Yao J, Zeng Q, Qin Z, Liu S, Li D, Liu Z. Septin genes in channel catfish (Ictalurus punctatus) and their involvement in disease defense responses. FISH & SHELLFISH IMMUNOLOGY 2016; 49:110-121. [PMID: 26700173 DOI: 10.1016/j.fsi.2015.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/09/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Septins are an evolutionarily conserved family of GTP-binding proteins. They are involved in diverse processes including cytokinesis, apoptosis, infection, neurodegeneration and neoplasia. In this study, through thorough data mining of existed channel catfish genomic resources, we identified a complete set of 15 septin genes. Septins were classified into four subgroups according to phylogenetic analysis. Extensive comparative genomic analysis, including domain and syntenic analysis, supported their annotation and orthologies. The expression patterns of septins in channel catfish were examined in healthy tissues and after infection with two major bacterial pathogens, Edwardsiella ictaluri and Flavobacterium columnare. In healthy channel catfish, most septin genes were ubiquitously expressed and presented diversity patterns in various tissues, especially mucosal tissues, proposing the significant roles septin genes may play in maintaining homeostasis and host immune response activities. After bacterial infections, most septin genes were regulated, but opposite direction in expression profiles were found with the two bacterial pathogens: the differentially expressed septin genes were down-regulated in the intestine after E. ictaluri infection while generally up-regulated in the gill after F. columnare infection, suggesting a pathogen-specific and tissue-specific pattern of regulation. Taken together, these results suggested that septin genes may play complex and important roles in the host immune responses to bacterial pathogens in channel catfish.
Collapse
Affiliation(s)
- Qiang Fu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China; The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qifan Zeng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhenkui Qin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
38
|
Jiang C, Zhang J, Yao J, Liu S, Li Y, Song L, Li C, Wang X, Liu Z. Complement regulatory protein genes in channel catfish and their involvement in disease defense response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:33-41. [PMID: 26111998 DOI: 10.1016/j.dci.2015.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 06/04/2023]
Abstract
Complement system is one of the most important defense systems of innate immunity, which plays a crucial role in disease defense responses in channel catfish. However, inappropriate and excessive complement activation could lead to potential damage to the host cells. Therefore the complement system is controlled by a set of complement regulatory proteins to allow normal defensive functions, but prevent hazardous complement activation to host tissues. In this study, we identified nine complement regulatory protein genes from the channel catfish genome. Phylogenetic and syntenic analyses were conducted to determine their orthology relationships, supporting their correct annotation and potential functional inferences. The expression profiles of the complement regulatory protein genes were determined in channel catfish healthy tissues and after infection with the two main bacterial pathogens, Edwardsiella ictaluri and Flavobacterium columnare. The vast majority of complement regulatory protein genes were significantly regulated after bacterial infections, but interestingly were generally up-regulated after E. ictaluri infection while mostly down-regulated after F. columnare infection, suggesting a pathogen-specific pattern of regulation. Collectively, these findings suggested that complement regulatory protein genes may play complex roles in the host immune responses to bacterial pathogens in channel catfish.
Collapse
Affiliation(s)
- Chen Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jiaren Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Lin Song
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chao Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
39
|
Edmunds RC, Su B, Balhoff JP, Eames BF, Dahdul WM, Lapp H, Lundberg JG, Vision TJ, Dunham RA, Mabee PM, Westerfield M. Phenoscape: Identifying Candidate Genes for Evolutionary Phenotypes. Mol Biol Evol 2015; 33:13-24. [PMID: 26500251 PMCID: PMC4693980 DOI: 10.1093/molbev/msv223] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Phenotypes resulting from mutations in genetic model organisms can help reveal candidate genes for evolutionarily important phenotypic changes in related taxa. Although testing candidate gene hypotheses experimentally in nonmodel organisms is typically difficult, ontology-driven information systems can help generate testable hypotheses about developmental processes in experimentally tractable organisms. Here, we tested candidate gene hypotheses suggested by expert use of the Phenoscape Knowledgebase, specifically looking for genes that are candidates responsible for evolutionarily interesting phenotypes in the ostariophysan fishes that bear resemblance to mutant phenotypes in zebrafish. For this, we searched ZFIN for genetic perturbations that result in either loss of basihyal element or loss of scales phenotypes, because these are the ancestral phenotypes observed in catfishes (Siluriformes). We tested the identified candidate genes by examining their endogenous expression patterns in the channel catfish, Ictalurus punctatus. The experimental results were consistent with the hypotheses that these features evolved through disruption in developmental pathways at, or upstream of, brpf1 and eda/edar for the ancestral losses of basihyal element and scales, respectively. These results demonstrate that ontological annotations of the phenotypic effects of genetic alterations in model organisms, when aggregated within a knowledgebase, can be used effectively to generate testable, and useful, hypotheses about evolutionary changes in morphology.
Collapse
Affiliation(s)
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University
| | | | - B Frank Eames
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Wasila M Dahdul
- National Evolutionary Synthesis Center, Durham, NC Department of Biology, University of South Dakota
| | - Hilmar Lapp
- National Evolutionary Synthesis Center, Durham, NC
| | - John G Lundberg
- Department of Ichthyology, The Academy of Natural Sciences, Philadelphia, Philadelphia, PA
| | - Todd J Vision
- National Evolutionary Synthesis Center, Durham, NC Department of Biology, University of North Carolina, Chapel Hill
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University
| | | | | |
Collapse
|
40
|
Katzenback BA. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts. BIOLOGY 2015; 4:607-39. [PMID: 26426065 PMCID: PMC4690011 DOI: 10.3390/biology4040607] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 12/16/2022]
Abstract
Antimicrobial peptides (AMPs) have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18–46 amino acids), usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent—the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection.
Collapse
Affiliation(s)
- Barbara A Katzenback
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
41
|
Molecular characterization of the liver-expressed antimicrobial peptide 2 (LEAP-2) in a teleost fish, Plecoglossus altivelis: Antimicrobial activity and molecular mechanism. Mol Immunol 2015; 65:406-15. [DOI: 10.1016/j.molimm.2015.02.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 02/01/2023]
|
42
|
Monette MM, Evans DL, Krunkosky T, Camus A, Jaso-Friedmann L. Nonspecific cytotoxic cell antimicrobial protein (NCAMP-1): a novel alarmin ligand identified in zebrafish. PLoS One 2015; 10:e0116576. [PMID: 25689842 PMCID: PMC4331361 DOI: 10.1371/journal.pone.0116576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 12/10/2014] [Indexed: 01/13/2023] Open
Abstract
Cells from the coelomic cavity of adult zebrafish (zf) were used to study the alarmin-like activities of nonspecific cytotoxic cell antimicrobial protein-1 (NCAMP-1). Immunohistochemistry studies using polyclonal anti-NCAMP-1 identified constitutive NCAMP-1 in epithelial cells of the zf anterior kidney, in liver parenchyma and in the lamina propria of the intestine. NCAMP-1 was also located in the cytosol of mononuclear cells in these tissues. Cytosolic NCAMP-1 was detected in a diverse population of coelomic cells (CC) using confocal microscopy and polyclonal anti-NCAMP-1 staining. Large mononuclear and heterophil-like CC had intracellular NCAMP-1. These studies indicated that NCAMP-1 is constitutively found in epithelial cells and in ZFCC. To establish a relationship between NCAMP-1 and the alarmin functions of ATP, a stimulation-secretion model was initiated using zf coelomic cells (ZFCC). ZFCCs treated with the alarmin ATP secreted NCAMP-1 into culture supernatants. Treatment of ZFCC with either ATP or NCAMP-1 activated purinergic receptor induced pore formation detected by the ZFCC uptake of the dye YO-PRO-1. ATP induced YO-PRO-1 uptake was inhibited by antagonists oxidized-ATP, KN62, or CBB. These antagonists did not compete with NCAMP-1 induced YO-PRO-1 uptake. Binding of ZFCC by both ATP and NCAMP-1 produced an influx of Ca2+. Combined treatment of ZFCC with ATP and NCAMP-1 increased target cell cytotoxicity. Individually NCAMP-1 or ATP treatment did not produce target cell damage. Similar to ATP, NCAMP-1 activates cellular pore formation, calcium influx and cytotoxicity.
Collapse
Affiliation(s)
- Margaret Mariscal Monette
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Donald Lee Evans
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Thomas Krunkosky
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Alvin Camus
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Liliana Jaso-Friedmann
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
43
|
Li J, Li T, Jiang Y. Chemical aspects of the preservation and safety control of sea foods. RSC Adv 2015. [DOI: 10.1039/c5ra03054d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The interest in biopreservation of food has prompted the quest for new natural antimicrobial compounds from different origins.
Collapse
Affiliation(s)
- Jianrong Li
- Research Institute of Food Science
- Bohai University
- Food Safety Key Lab of Liaoning Province
- National & Local Joint Engineering Research Center of Storage
- Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products
| | - Tingting Li
- College of Life Science
- Dalian Nationalities University
- Dalian 116029
- China
- College of Food Science
| | - Yang Jiang
- Research Institute of Food Science
- Bohai University
- Food Safety Key Lab of Liaoning Province
- National & Local Joint Engineering Research Center of Storage
- Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products
| |
Collapse
|
44
|
Liu T, Gao Y, Wang R, Xu T. Characterization, evolution and functional analysis of the liver-expressed antimicrobial peptide 2 (LEAP-2) gene in miiuy croaker. FISH & SHELLFISH IMMUNOLOGY 2014; 41:191-199. [PMID: 25180825 DOI: 10.1016/j.fsi.2014.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 07/29/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
As an evolutionarily older defense strategy, the innate immune is the dominant immune system and provides a first line of antimicrobial host defense in teleost. Liver-expressed antimicrobial peptide-2 (LEAP-2) is a critical molecule of the innate immune system and plays a very important role in resistance against bacterial infections. We reported comprehensive analysis and characterization of LEAP-2 gene from miiuy croaker (Miichthys miiuy) in here. The complete cDNA of miiuy croaker LEAP-2 consists 2360 bp, including a 5' terminal untranslated region (UTR) of 170 bp, an open reading frame (ORF) of 312 bp, and a 3'-UTR of 1878 bp. Interestingly, two polyadenylation signals (AATTAAA) which may involve the stability, translation efficiency, or localization of an mRNA in a tissue were found in 3'-UTR. Genomic DNA of miiuy croaker LEAP-2 includes three exons and two introns, which is similar to LEAP-2 genes in other mammals and fish. The deduced 103 amino acids consist of signal peptide, prodomain and mature peptide. Four highly conserved cysteine residues involved two disulfide bridges in mature peptide. Real-time PCR results showed that LEAP-2 was ubiquitously expressed in all tissues and the expression level was highest in liver. Significantly, the expression levels were increased after infection with Vibrio anguillarum in liver and spleen. The antimicrobial activity analysis result of LEAP-2 in vitro indicated that LEAP-2 of miiuy croaker was effective in controlling Aeromonas hydrophila. In addition, we performed evolutionary analysis in order to estimate the selective constraints on the LEAP-2 gene. The result indicated that no positive selection exists in LEAP-2 gene sequences, which may be on account of irreplaceable function constrains. Meanwhile, we compared the structure of LEAP-2 with that of another Liver-expressed antimicrobial peptide (LEAP-1, also named HAMP), and found the LEAP-2 from miiuy croaker comprises of α-helix, β-sheet, and β-turn while the LEAP-1 of miiuy croaker only contains β-sheet.
Collapse
Affiliation(s)
- Tianxing Liu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yunhang Gao
- College of Animal Science and Veterinary Medicine, Jilin Agriculture University, Changchun 130118, China
| | - Rixin Wang
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
45
|
Sun L, Liu S, Wang R, Li C, Zhang J, Liu Z. Pathogen recognition receptors in channel catfish: IV. Identification, phylogeny and expression analysis of peptidoglycan recognition proteins. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:291-299. [PMID: 24814805 DOI: 10.1016/j.dci.2014.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 06/03/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) can recognize bacterial cell wall (peptidoglycan) and activate innate immune system. In addition to its function as pathogen recognition receptors (PRRs), PGRPs are also involved in directly killing bacteria, and regulating multiple signaling pathways. Recently, we have reported catfish PRRs including nucleotide-binding domain, leucine-rich repeat containing receptors (NLRs), retinoic acid inducible gene I (RIG-I) like receptors (RLRs), and Toll-like receptors (TLRs). In this study, we identified and characterized the PGRP gene family in channel catfish which included two members, PGLYRP-5 and PGLYRP-6. Phylogenetic analysis, syntenic analysis and protein structural analysis were conducted to determine their identities and evolutionary relationships. In order to gain insight into the roles of PGRPs in catfish innate immune responses, quantitative real-time PCR was used to investigate the expression profiles in catfish healthy tissues and after bacterial infection. Both PGLYRP-5 and PGLYRP-6 were ubiquitously expressed in all 12 healthy tissues, and most highly expressed in gill and spleen, respectively. Distinct expression patterns were observed for PGRPs after infection with Edwardsiella ictaluri and Flavobacterium columnare, both Gram-negative bacteria. After infection with E. ictaluri, both PGLYRP-5 and PGLYRP-6 were significantly down-regulated at a certain time-point, while both genes were generally up-regulated in the gill after infection with F. columnare. Collectively, these findings suggested that PGRPs may play complex roles in the host immune response to bacterial pathogens in catfish.
Collapse
Affiliation(s)
- Luyang Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | - Ruijia Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | - Chao Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | - Jiaren Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA.
| |
Collapse
|
46
|
Chaturvedi P, Dhanik M, Pande A. Characterization and structural analysis of hepcidin like antimicrobial peptide from Schizothorax richardsonii (Gray). Protein J 2014; 33:1-10. [PMID: 24293182 DOI: 10.1007/s10930-013-9530-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Innate immune system is a primary line of defense in fish that protects it from the invading pathogens. Antimicrobial peptides (AMPs) are widely distributed in nature and are essential components of innate immunity. These molecules enable the host's innate immune system to fight against a variety of infectious agents. One such AMP, hepcidin, is a cysteine rich amphipathic peptide. We have amplified, cloned and characterized hepcidin like AMP from Schizothorax richardsonii that inhabits one of the most difficult aquatic ecosystems in the Indian Himalayas. The cDNA encoding hepcidin like peptide was amplified as a 371 bp fragment with an open reading frame (ORF) of 279 nucleotides flanked by 5' and 3' UTRs of 70 and 22 bases respectively. This ORF encodes a peptide of 93 amino acids with a signal peptide of 24 amino acids and a mature peptide of 25 amino acids. The mature hepcidin like peptide of S. richardsonii has eight cystine residues that participate in the formation of four disulfide bonds, a unique feature of hepcidin like AMPs. A 3D model of hepcidin like mature peptide was generated using Modeller 9.10 which was validated using PROCHECK and ERRAT. Phylogenetic analysis of hepcidin like AMP from S. richardsonii revealed that it was closely related to hepcidin from olive barb (Puntius sarana).
Collapse
Affiliation(s)
- Preeti Chaturvedi
- Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, 263136, Uttarakhand, India
| | | | | |
Collapse
|
47
|
Yao J, Li C, Zhang J, Liu S, Feng J, Wang R, Li Y, Jiang C, Song L, Chen A, Liu Z. Expression of nitric oxide synthase (NOS) genes in channel catfish is highly regulated and time dependent after bacterial challenges. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:74-86. [PMID: 24560653 DOI: 10.1016/j.dci.2014.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/08/2014] [Accepted: 02/11/2014] [Indexed: 06/03/2023]
Abstract
Nitric oxide is well known for its roles in immune responses. As such, its synthesizing enzymes have been extensively studied from various species including some teleost fish species. However, the NOS genes have not been characterized in channel catfish (Ictalurus punctatus). In this study, we identified and characterized three NOS genes including one NOS1 and two NOS2 genes in channel catfish. Comparing with the NOS genes from other fish species, the catfish NOS genes are highly conserved in their structural features. Phylogenetic and syntenic analyses allowed determination of NOS1 and NOS2 genes of channel catfish and their orthology relationships. Syntenic analysis, as well as the phylogenetic analysis, indicated that the two NOS2 genes of catfish were lineage-specific duplication. The NOS genes were broadly expressed in most tested tissues, with NOS1 being expressed at the highest levels in the brain, NOS2b1 highly expressed in the skin and gill, and NOS2b2 lowly expressed in most of the tested tissues. The most striking findings of this study was that the expression of the NOS genes are highly regulated after bacterial infection, with time-dependent expression patterns that parallel the migration of macrophages. After Edwardsiella ictaluri challenge, dramatically different responses among the three NOS genes were observed. NOS1 was only significantly in the skin early after infection, while NOS2b1 was rapidly upregulated in gill, but more up-regulated in trunk kidney with the progression of the disease, suggesting such differences in gene expression may be reflective of the migration of macrophages among various tissues of the infected fish. In contrast to NOS1 and NOS2b1, NOS2b2 was normally expressed at very low levels, but it is induced in the brain and liver while significantly down-regulated in most other tissues.
Collapse
Affiliation(s)
- Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chao Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jiaren Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jianbin Feng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ruijia Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chen Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Lin Song
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ailu Chen
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
48
|
Li HX, Lu XJ, Li CH, Chen J. Molecular characterization and functional analysis of two distinct liver-expressed antimicrobial peptide 2 (LEAP-2) genes in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2014; 38:330-339. [PMID: 24727197 DOI: 10.1016/j.fsi.2014.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/19/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP-2) plays a vital role in the host innate immune system. In the present study, two LEAP-2 genes (LcLEAP-2A and LcLEAP-2C) from large yellow croaker (Larimichthys crocea) were cloned, both of which consist of 3 exons and 2 introns. The LcLEAP-2A transcripts were expressed in a wide range of tissues, with the highest mRNA levels found in the liver and intestine, while LcLEAP-2C transcripts showed obvious lower mRNA levels in all tested tissues compared to LcLEAP-2A. Upon infection by Vibrio alginolyticus, LcLEAP-2A transcripts were significantly up-regulated in liver, trunk kidney, spleen, head kidney, and gill, but down-regulated in intestine. In addition, significant up-regulation of LcLEAP-2C transcripts were also detected in all tissues tested, including intestine. The LcLEAP-2A and LcLEAP-2C mature peptides were chemically synthesized and found to exhibit selective antimicrobial activity in vitro against various species of bacteria. LcLEAP-2C, but not LcLEAP-2A, had antimicrobial activity against V. alginolyticus. Moreover, LcLEAP-2C treatment at low concentrations was evaluated and found to improve survival rate in V. alginolyticus-infected large yellow croaker, resulting in a decrease in bacterial load and expression of inflammatory cytokines. These results suggest that LcLEAP-2 isoforms play an important role in innate immunity by killing bacteria and inhibiting early inflammatory response in large yellow croaker.
Collapse
Affiliation(s)
- He-Xiang Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chang-Hong Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
49
|
Zhang J, Yu LP, Li MF, Sun L. Turbot (Scophthalmus maximus) hepcidin-1 and hepcidin-2 possess antimicrobial activity and promote resistance against bacterial and viral infection. FISH & SHELLFISH IMMUNOLOGY 2014; 38:127-34. [PMID: 24647314 DOI: 10.1016/j.fsi.2014.03.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/26/2014] [Accepted: 03/07/2014] [Indexed: 05/06/2023]
Abstract
Hepcidin is an antimicrobial peptide and a regulator of iron homeostasis. In turbot (Scophthalmus maximus), two types of hepcidins have been identified, which share approximately 50% sequence identity. In this study, we examined the antimicrobial potentials of the two hepcidins in the form of synthesized peptides, SmHep1P and SmHep2P. We found that SmHep1P and SmHep2P exhibited apparent bactericidal activities against both Gram-positive and Gram-negative bacteria in a dose-dependent manner. The bactericidal effect of SmHep1P was stronger against Gram-positive bacteria, while the bactericidal effect of SmHep2P was stronger against Gram-negative bacteria. Fluorescence and electron microscopy showed that both peptides were able to bind to the target bacterial cells and alter the surface structure of the cells. In vitro studies showed that SmHep1P and SmHep2P reduced bacterial invasion into cultured fish cells. In vivo studies showed that turbot administered with SmHep1P and SmHep2P exhibited significantly enhanced resistance against bacterial and viral infection. In both in vivo and in vitro studies, the antimicrobial activities of SmHep2P were in most cases significantly stronger than those of SmHep1P. Together these results indicate that the two hepcidins of turbot most likely possess antimicrobial properties and play a role in the innate immune defense against bacterial and viral pathogens.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lan-Ping Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mo-Fei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
50
|
Yang G, Guo H, Li H, Shan S, Zhang X, Rombout JHWM, An L. Molecular characterization of LEAP-2 cDNA in common carp (Cyprinus carpio L.) and the differential expression upon a Vibrio anguillarum stimulus; indications for a significant immune role in skin. FISH & SHELLFISH IMMUNOLOGY 2014; 37:22-29. [PMID: 24418455 DOI: 10.1016/j.fsi.2014.01.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 10/28/2013] [Accepted: 01/02/2014] [Indexed: 06/03/2023]
Abstract
LEAP-2 is a cysteine-rich cationic antimicrobial peptide (AMP) playing an important role in host innate immune system. LEAP-2 genes have been identified from higher vertebrates and several fish species. Here we report the cloning and identification of two LEAP-2 cDNA sequences from the liver of common carp (Cyprinus carpio L.). The LEAP-2A cDNA was 1325 bp long and contained an ORF of 279 bp encoding a protein of 92 amino acids. The LEAP-2B cDNA was 608 bp long and contained an ORF of 276 bp encoding a protein of 91 amino acids. Both LEAP-2 proteins consisted of 41 amino acid residues and shared four cysteines at the conserved positions in the predicted mature peptides, highly similar to LEAP-2 of other species. Sequence alignment showed that LEAP-2 amino acid sequences were well conserved in different species, and the phylogenetic relation of LEAP-2 was coincident with evolution of biological species. Expression analysis data revealed that LEAP-2A and LEAP-2B mRNAs were expressed in a wide range of common carp tissues including liver, spleen, head kidney, skin, gills, hindgut and foregut. When injected intraperitoneally with Vibrio anguillarum, the expression level of common carp LEAP-2A was quickly up-regulated in liver, spleen, head kidney, skin, gills, foregut and hindgut, however, the expression level of LEAP-2B was similarly up-regulated in spleen, skin, gills and hindgut but not in liver, head kidney and foregut. Our results showed that the LEAP-2A had a markedly high constitutive expression in skin, and the LEAP-2A and the LEAP-2B had a significantly high up-regulated expression after stimulus in skin. This differential expression of LEAP-2 in common carp suggests that it may play a key role in immune responses against invading pathogens and both LEAP-2 molecules may be involved in mucosal immunity.
Collapse
Affiliation(s)
- Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88, East Wenhua Road, Jinan 250014, PR China; Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Hongyan Guo
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88, East Wenhua Road, Jinan 250014, PR China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88, East Wenhua Road, Jinan 250014, PR China
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88, East Wenhua Road, Jinan 250014, PR China
| | - Xueqing Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88, East Wenhua Road, Jinan 250014, PR China
| | - Jan H W M Rombout
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.
| | - Liguo An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88, East Wenhua Road, Jinan 250014, PR China.
| |
Collapse
|