1
|
Brouwer MAE, Karami Z, Keating ST, Vrijmoeth H, Lemmers HLM, Dijkstra H, van de Veerdonk FL, Lupse M, Ter Hofstede HJM, Netea MG, Joosten LAB. Borrelia burgdorferi sensu lato inhibits CIITA transcription through pSTAT3 activation and enhanced SOCS1 and SOCS3 expression leading to limited IFN-γ production. Ticks Tick Borne Dis 2025; 16:102442. [PMID: 39879745 DOI: 10.1016/j.ttbdis.2025.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Interferons (IFNs) are important signaling molecules in the human immune response against micro-organisms. Throughout initial Borrelia burgdorferi sensu lato (B. burgdorferi s.l.) infection in vitro, inadequate IFN-γ production results in the absence of a strong T-helper 1 cell response, potentially hampering the development of an effective antibody responses in Lyme borreliosis (LB) patients. The aim of this study is to help understand the immunomodulatory mechanisms why IFN-γ production is absent in the early onset of LB. Therefore, cytokine production and STAT activation signature, following exposure of human immune cells to B. burgdorferi s.l., was investigated in vivo and in vitro. While STAT3 phosphorylation was highly induced in T cells, B cells and NK-(T) cells, STAT1 expression and IL-12p70 production were not or only slightly increased upon B. burgdorferi s.l. exposure. In response to B. burgdorferi s.l., STAT2 phosphorylation and IFNα production remained stable. STAT2 activation only increased in NK-(T) cells. In contrast, STAT4 signaling was reduced in all B. burgdorferi s.l. exposed immune cells. Moreover, B. burgdorferi s.l. significantly increased suppressor of cytokine signaling (SOCS)1 and SOCS3 gene expression in LB patients. Absence of IFN-γ production and STAT4 activation, in combination with STAT3 phosphorylation and upregulated SOCS1 and SOCS3 gene expression, suggests the formation of a more tolerant and anti-inflammatory response to B. burgdorferi s.l., specifically in T- and B-cells. In primary human PBMCs and monocyte populations, B. burgdorferi s.l. also specifically interfered with CIITA isoforms normally expressed in antigen presenting dendritic cells. In contrast, it enhanced CIITA isoforms typically present in adaptive immune cell subsets. Restoring antigen presentation capacity of innate immune cells and early production of IFN-γ in LB patients may help re-establish immune functions during initial LB. These new insights will help to understand the immunomodulatory mechanisms of B. burgdorferi s.l. during the onset of LB.
Collapse
Affiliation(s)
- Michelle A E Brouwer
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Zara Karami
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Samuel T Keating
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Biology, University of Copenhagen, Copenhagen DK 2200, Denmark
| | - Hedwig Vrijmoeth
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heidi L M Lemmers
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Helga Dijkstra
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihaela Lupse
- Department of Infectious Diseases, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca 400349, Romania
| | - Hadewych J M Ter Hofstede
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
2
|
Bhanpattanakul S, Tharasanit T, Buranapraditkun S, Sailasuta A, Nakagawa T, Kaewamatawong T. Modulation of MHC expression by interferon-gamma and its influence on PBMC-mediated cytotoxicity in canine mast cell tumour cells. Sci Rep 2024; 14:17837. [PMID: 39090190 PMCID: PMC11294481 DOI: 10.1038/s41598-024-68789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Immunotherapy is a promising alternative treatment for canine mast cell tumour (MCT). However, evasion of immune recognition by downregulating major histocompatibility complex (MHC) molecules might decline treatment efficiency. Enhancing MHC expression through interferon-gamma (IFN-γ) is crucial for effective immunotherapy. In-house and reference canine MCT cell lines derived from different tissue origins were used. The impacts of IFN-γ treatment on cell viability, expression levels of MHC molecules, as well as cell apoptosis were evaluated through the MTT assay, RT-qPCR and flow cytometry. The results revealed that IFN-γ treatment significantly influenced the viability of canine MCT cell lines, with varying responses observed among different cell lines. Notably, IFN-γ treatment increased the expression of MHC I and MHC II, potentially enhancing immune recognition and MCT cell clearance. Flow cytometry analysis in PBMCs-mediated cytotoxicity assays showed no significant differences in overall apoptosis between IFN-γ treated and untreated canine MCT cell lines across various target-to-effector ratios. However, a trend towards higher percentages of late and total apoptotic cells was observed in the IFN-γ treated C18 and CMMC cell lines, but not in the VIMC and CoMS cell lines. These results indicate a variable response to IFN-γ treatment among different canine MCT cell lines. In summary, our study suggests IFN-γ's potential therapeutic role in enhancing immune recognition and clearance of MCT cells by upregulating MHC expression and possibly promoting apoptosis, despite variable responses across different cell lines. Further investigations are necessary to elucidate the underlying mechanisms and evaluate IFN-γ's efficacy in in vivo models.
Collapse
Affiliation(s)
- Sudchaya Bhanpattanakul
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Clinical Stem Cells and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Supranee Buranapraditkun
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Thai Red Cross Society, Bangkok, 10330, Thailand
- Center of Excellence in Thai Pediatric Gastroenterology, Hepatology and Immunology (TPGHAI), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Achariya Sailasuta
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Theerayuth Kaewamatawong
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence for Companion Animal Cancer (CE-CAC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
3
|
Wen F, Zhao F, Huang W, Liang Y, Sun R, Lin Y, Zhang W. A novel ferroptosis-related gene signature for overall survival prediction in patients with gastric cancer. Sci Rep 2024; 14:4422. [PMID: 38388534 PMCID: PMC10883968 DOI: 10.1038/s41598-024-53515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
The global diagnosis rate and mortality of gastric cancer (GC) are among the highest. Ferroptosis and iron-metabolism have a profound impact on tumor development and are closely linked to cancer treatment and patient's prognosis. In this study, we identified six PRDEGs (prognostic ferroptosis- and iron metabolism-related differentially expressed genes) using LASSO-penalized Cox regression analysis. The TCGA cohort was used to establish a prognostic risk model, which allowed us to categorize GC patients into the high- and the low-risk groups based on the median value of the risk scores. Our study demonstrated that patients in the low-risk group had a higher probability of survival compared to those in the high-risk group. Furthermore, the low-risk group exhibited a higher tumor mutation burden (TMB) and a longer 5-year survival period when compared to the high-risk group. In summary, the prognostic risk model, based on the six genes associated with ferroptosis and iron-metabolism, performs well in predicting the prognosis of GC patients.
Collapse
Affiliation(s)
- Fang Wen
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Fan Zhao
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Wenjie Huang
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Yan Liang
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Ruolan Sun
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yize Lin
- Clinical Laboratory Department, Hospital of the Office of the People's Government of the Tibet Autonomous Region in Chengdu, Chengdu, 850015, Sichuan, China
| | - Weihua Zhang
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
4
|
Char R, Liu Z, Jacqueline C, Davieau M, Delgado MG, Soufflet C, Fallet M, Chasson L, Chapuy R, Camosseto V, Strock E, Rua R, Almeida CR, Su B, Lennon-Duménil AM, Nal B, Roquilly A, Liang Y, Méresse S, Gatti E, Pierre P. RUFY3 regulates endolysosomes perinuclear positioning, antigen presentation and migration in activated phagocytes. Nat Commun 2023; 14:4290. [PMID: 37463962 PMCID: PMC10354229 DOI: 10.1038/s41467-023-40062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Endo-lysosomes transport along microtubules and clustering in the perinuclear area are two necessary steps for microbes to activate specialized phagocyte functions. We report that RUN and FYVE domain-containing protein 3 (RUFY3) exists as two alternative isoforms distinguishable by the presence of a C-terminal FYVE domain and by their affinity for phosphatidylinositol 3-phosphate on endosomal membranes. The FYVE domain-bearing isoform (iRUFY3) is preferentially expressed in primary immune cells and up-regulated upon activation by microbes and Interferons. iRUFY3 is necessary for ARL8b + /LAMP1+ endo-lysosomes positioning in the pericentriolar organelles cloud of LPS-activated macrophages. We show that iRUFY3 controls macrophages migration, MHC II presentation and responses to Interferon-γ, while being important for intracellular Salmonella replication. Specific inactivation of rufy3 in phagocytes leads to aggravated pathologies in mouse upon LPS injection or bacterial pneumonia. This study highlights the role of iRUFY3 in controlling endo-lysosomal dynamics, which contributes to phagocyte activation and immune response regulation.
Collapse
Affiliation(s)
- Rémy Char
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Zhuangzhuang Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, PR China
| | - Cédric Jacqueline
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR1064, F-44000, Nantes, France
| | - Marion Davieau
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR1064, F-44000, Nantes, France
| | - Maria-Graciela Delgado
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France
| | - Clara Soufflet
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Mathieu Fallet
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Lionel Chasson
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Raphael Chapuy
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Voahirana Camosseto
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Eva Strock
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Rejane Rua
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Catarina R Almeida
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Bing Su
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | | | - Beatrice Nal
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Antoine Roquilly
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR1064, F-44000, Nantes, France
| | - Yinming Liang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, PR China
| | - Stéphane Méresse
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Evelina Gatti
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France.
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Philippe Pierre
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France.
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| |
Collapse
|
5
|
Kropivsek K, Kachel P, Goetze S, Wegmann R, Festl Y, Severin Y, Hale BD, Mena J, van Drogen A, Dietliker N, Tchinda J, Wollscheid B, Manz MG, Snijder B. Ex vivo drug response heterogeneity reveals personalized therapeutic strategies for patients with multiple myeloma. NATURE CANCER 2023; 4:734-753. [PMID: 37081258 DOI: 10.1038/s43018-023-00544-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 03/17/2023] [Indexed: 04/22/2023]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy defined by complex genetics and extensive patient heterogeneity. Despite a growing arsenal of approved therapies, MM remains incurable and in need of guidelines to identify effective personalized treatments. Here, we survey the ex vivo drug and immunotherapy sensitivities across 101 bone marrow samples from 70 patients with MM using multiplexed immunofluorescence, automated microscopy and deep-learning-based single-cell phenotyping. Combined with sample-matched genetics, proteotyping and cytokine profiling, we map the molecular regulatory network of drug sensitivity, implicating the DNA repair pathway and EYA3 expression in proteasome inhibitor sensitivity and major histocompatibility complex class II expression in the response to elotuzumab. Globally, ex vivo drug sensitivity associated with bone marrow microenvironmental signatures reflecting treatment stage, clonality and inflammation. Furthermore, ex vivo drug sensitivity significantly stratified clinical treatment responses, including to immunotherapy. Taken together, our study provides molecular and actionable insights into diverse treatment strategies for patients with MM.
Collapse
Affiliation(s)
- Klara Kropivsek
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Paul Kachel
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Sandra Goetze
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Multi-Omics Center, PHRT-CPAC, ETH Zurich, Zurich, Switzerland
| | - Rebekka Wegmann
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Yasmin Festl
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Yannik Severin
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Benjamin D Hale
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Julien Mena
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Audrey van Drogen
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Multi-Omics Center, PHRT-CPAC, ETH Zurich, Zurich, Switzerland
| | - Nadja Dietliker
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Joëlle Tchinda
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Bernd Wollscheid
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Multi-Omics Center, PHRT-CPAC, ETH Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland.
| |
Collapse
|
6
|
Liu HJ, Du H, Khabibullin D, Zarei M, Wei K, Freeman GJ, Kwiatkowski DJ, Henske EP. mTORC1 upregulates B7-H3/CD276 to inhibit antitumor T cells and drive tumor immune evasion. Nat Commun 2023; 14:1214. [PMID: 36869048 PMCID: PMC9984496 DOI: 10.1038/s41467-023-36881-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Identifying the mechanisms underlying the regulation of immune checkpoint molecules and the therapeutic impact of targeting them in cancer is critical. Here we show that high expression of the immune checkpoint B7-H3 (CD276) and high mTORC1 activity correlate with immunosuppressive phenotypes and worse clinical outcomes in 11,060 TCGA human tumors. We find that mTORC1 upregulates B7-H3 expression via direct phosphorylation of the transcription factor YY2 by p70 S6 kinase. Inhibition of B7-H3 suppresses mTORC1-hyperactive tumor growth via an immune-mediated mechanism involving increased T-cell activity and IFN-γ responses coupled with increased tumor cell expression of MHC-II. CITE-seq reveals strikingly increased cytotoxic CD38+CD39+CD4+ T cells in B7-H3-deficient tumors. In pan-human cancers, a high cytotoxic CD38+CD39+CD4+ T-cell gene signature correlates with better clinical prognosis. These results show that mTORC1-hyperactivity, present in many human tumors including tuberous sclerosis complex (TSC) and lymphangioleiomyomatosis (LAM), drives B7-H3 expression leading to suppression of cytotoxic CD4+ T cells.
Collapse
Affiliation(s)
- Heng-Jia Liu
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA.
| | - Heng Du
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Damir Khabibullin
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Mahsa Zarei
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, 77843, TX, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, MA, USA
| | - David J Kwiatkowski
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA.
| |
Collapse
|
7
|
Fu Q, Liu X, Xia H, Li Y, Yu Z, Liu B, Xiong X, Chen G. Interferon-γ induces immunosuppression in salivary adenoid cystic carcinoma by regulating programmed death ligand 1 secretion. Int J Oral Sci 2022; 14:47. [PMID: 36167732 PMCID: PMC9515071 DOI: 10.1038/s41368-022-00197-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/23/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022] Open
Abstract
Interferon-γ (IFN-γ), a key effector molecule in anti-tumor immune response, has been well documented to correlate with the intratumoral infiltration of immune cells. Of interest, however, a high level of IFN-γ has been reported in salivary adenoid cystic carcinoma (SACC), which is actually a type of immunologically cold cancer with few infiltrated immune cells. Investigating the functional significance of IFN-γ in SACC would help to explain such a paradoxical phenomenon. In the present study, we revealed that, compared to oral squamous cell carcinoma cells (a type of immunologically hot cancer), SACC cells were less sensitive to the growth-inhibition effect of IFN-γ. Moreover, the migration and invasion abilities of SACC cells were obviously enhanced upon IFN-γ treatment. In addition, our results revealed that exposure to IFN-γ significantly up-regulated the level of programmed death ligand 1 (PD-L1) on SACC cell-derived small extracellular vesicles (sEVs), which subsequently induced the apoptosis of CD8+ T cells through antagonizing PD-1. Importantly, it was also found that SACC patients with higher levels of plasma IFN-γ also had higher levels of circulating sEVs that carried PD-L1 on their surface. Our study unveils a mechanism that IFN-γ induces immunosuppression in SACC via sEV PD-L1, which would account for the scarce immune cell infiltration and insensitivity to immunotherapy.
Collapse
Affiliation(s)
- Qiuyun Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xingchi Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Houfu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yicun Li
- Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Zili Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xuepeng Xiong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China. .,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China. .,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China. .,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Shen H, Huang F, Zhang X, Ojo OA, Li Y, Trummell HQ, Anderson JC, Fiveash J, Bredel M, Yang ES, Willey CD, Chong Z, Bonner JA, Shi LZ. Selective suppression of melanoma lacking IFN-γ pathway by JAK inhibition depends on T cells and host TNF signaling. Nat Commun 2022; 13:5013. [PMID: 36008408 PMCID: PMC9411168 DOI: 10.1038/s41467-022-32754-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
Therapeutic resistance to immune checkpoint blockers (ICBs) in melanoma patients is a pressing issue, of which tumor loss of IFN-γ signaling genes is a major underlying mechanism. However, strategies of overcoming this resistance mechanism have been largely elusive. Moreover, given the indispensable role of tumor-infiltrating T cells (TILs) in ICBs, little is known about how tumor-intrinsic loss of IFN-γ signaling (IFNγR1KO) impacts TILs. Here, we report that IFNγR1KO melanomas have reduced infiltration and function of TILs. IFNγR1KO melanomas harbor a network of constitutively active protein tyrosine kinases centered on activated JAK1/2. Mechanistically, JAK1/2 activation is mediated by augmented mTOR. Importantly, JAK1/2 inhibition with Ruxolitinib selectively suppresses the growth of IFNγR1KO but not scrambled control melanomas, depending on T cells and host TNF. Together, our results reveal an important role of tumor-intrinsic IFN-γ signaling in shaping TILs and manifest a targeted therapy to bypass ICB resistance of melanomas defective of IFN-γ signaling.
Collapse
Affiliation(s)
- Hongxing Shen
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, 35233, USA
| | - Fengyuan Huang
- Department of Genetics and Informatics Institute, UAB-SOM, Birmingham, AL, USA
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Oluwagbemiga A Ojo
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, 35233, USA
| | - Yuebin Li
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, 35233, USA
| | - Hoa Quang Trummell
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, 35233, USA
| | - Joshua C Anderson
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, 35233, USA
| | - John Fiveash
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, 35233, USA
- O'Neal Comprehensive Cancer Center, UAB-SOM, Birmingham, AL, USA
| | - Markus Bredel
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, 35233, USA
- O'Neal Comprehensive Cancer Center, UAB-SOM, Birmingham, AL, USA
| | - Eddy S Yang
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, 35233, USA
- O'Neal Comprehensive Cancer Center, UAB-SOM, Birmingham, AL, USA
| | - Christopher D Willey
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, 35233, USA
- O'Neal Comprehensive Cancer Center, UAB-SOM, Birmingham, AL, USA
| | - Zechen Chong
- Department of Genetics and Informatics Institute, UAB-SOM, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, UAB-SOM, Birmingham, AL, USA.
| | - James A Bonner
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, 35233, USA.
- O'Neal Comprehensive Cancer Center, UAB-SOM, Birmingham, AL, USA.
| | - Lewis Zhichang Shi
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB-SOM), Birmingham, AL, 35233, USA.
- O'Neal Comprehensive Cancer Center, UAB-SOM, Birmingham, AL, USA.
- Department of Microbiology, UAB-SOM, Birmingham, AL, USA.
- Department of Pharmacology and Toxicology, UAB-SOM, Birmingham, AL, USA.
- Programs in Immunology, UAB-SOM, Birmingham, AL, USA.
| |
Collapse
|
9
|
Wang J, Hu Y, Hamidi H, Dos Santos C, Zhang J, Punnoose E, Li W. Immune microenvironment characteristics in multiple myeloma progression from transcriptome profiling. Front Oncol 2022; 12:948548. [PMID: 36033464 PMCID: PMC9413314 DOI: 10.3389/fonc.2022.948548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Abstract
Multiple myeloma (MM) is characterized by clonal expansion of malignant plasma cells in the bone marrow (BM). Despite the significant advances in treatment, relapsed and refractory MM has not yet been completely cured due to the immune dysfunction in the tumor microenvironment (TME). In this study, we analyzed the transcriptome data from patients with newly diagnosed (ND) and relapsed/refractory (R/R) MM to characterize differences in the TME and further decipher the mechanism of tumor progression in MM. We observed highly expressed cancer testis antigens and immune suppressive cell infiltration, such as Th2 and M2 cells, are associated with MM progression. Furthermore, the TGF-β signature contributes to the worse outcome of patients with R/R MM. Moreover, patients with ND MM could be classified into immune-low and immune-high phenotypes. Immune-high patients with higher IFN-g signatures are associated with MHC-II–mediated CD4+ T-cell response through CIITA stimulation. The baseline TME status could potentially inform new therapeutic choices for the ND MM who are ineligible for autologous stem cell transplantation and may help predict the response to CAR-T for patients with R/R MM. Our study demonstrates how integrating tumor transcriptome and clinical information to characterize MM immune microenvironment and elucidate potential mechanisms of tumor progression and immune evasion, which will provide insights into MM treatment selection.
Collapse
Affiliation(s)
- Jin Wang
- Oncology Biomarker Development, Roche (China) Holding Ltd., Shanghai, China
| | - Yi Hu
- Oncology Biomarker Development, Roche (China) Holding Ltd., Shanghai, China
| | - Habib Hamidi
- Oncology Biomarker Development, Genentech, Ltd., South San Francisco, CA, United States
| | - Cedric Dos Santos
- Oncology Biomarker Development, Genentech, Ltd., South San Francisco, CA, United States
| | - Jingyu Zhang
- Oncology Biomarker Development, Roche (China) Holding Ltd., Shanghai, China
| | - Elizabeth Punnoose
- Oncology Biomarker Development, Genentech, Ltd., South San Francisco, CA, United States
| | - Wenjin Li
- Oncology Biomarker Development, Roche (China) Holding Ltd., Shanghai, China
- *Correspondence: Wenjin Li,
| |
Collapse
|
10
|
Comprehensive Analysis Identifies PI3K/Akt Pathway Alternations as an Immune-Related Prognostic Biomarker in Colon Adenocarcinoma Patients Receiving Immune Checkpoint Inhibitor Treatment. J Immunol Res 2022; 2022:8179799. [PMID: 35707003 PMCID: PMC9192307 DOI: 10.1155/2022/8179799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction In recent years, immune checkpoint inhibitors (ICIs) have attracted widespread attention and made breakthroughs in progress towards the treatment of various cancers. However, ICI therapy is selective, and its effects on many patients are not ideal. It is therefore critical to identify prognostic biomarkers of response to ICI therapy. The PI3K/Akt pathway plays important roles in tumor formation and metastasis. However, there are no published reports clarifying the relationship between PI3K/Akt pathway mutations and prognosis for colon adenocarcinoma (COAD) patients receiving immunotherapy. Methods We collected data from a COAD cohort from The Cancer Genome Atlas (TCGA) database, including whole-exome sequencing (WES) data, RNA-seq data, and clinical data. We also collected data, including clinical prognosis and targeted sequencing data, from a cohort of COAD patients receiving immunotherapy. We collected 50 COAD patients (Local-COAD) from the Zhujiang Hospital of Southern Medical University and performed targeted sequencing. We analyzed the effects of PI3K/Akt pathway mutations on the patients' clinical prognosis, immunogenicity, and immune microenvironments. Gene set enrichment analysis (GSEA) was used to analyze the significantly upregulated and downregulated signaling pathways. We used these results to hypothesize potential mechanisms by which PI3K/Akt mutations could affect the prognosis of COAD patients. Results Univariate and multivariate Cox analyses and Kaplan-Meier (KM) survival curves showed that patients with PI3K-Akt mutations had better overall survival (OS) than those without PI3K-Akt mutations. Genes with significant mutation rates in the two cohorts were screened by panoramic view. CIBERSORT was used to analyze changes in 22 types of immune cells to identify immune activated cells. Similarly, patients in the PI3K/Akt-mutated type (PI3K/Akt-MT) group had significantly increased immunogenicity, including increases in tumor mutation burden (TMB), neoantigen load (NAL), and MANTIS score. Using GSEA, we identified upregulated pathways related to immune response. Conclusion PI3K/Akt pathway mutation status can be used as an independent predictor of response to ICI treatment in COAD patients. PI3K/Akt mutations are correlated with improved OS, higher immunogenicity, greater immune response scores, and increases in activated immune cells.
Collapse
|
11
|
Goncalves G, Mullan KA, Duscharla D, Ayala R, Croft NP, Faridi P, Purcell AW. IFNγ Modulates the Immunopeptidome of Triple Negative Breast Cancer Cells by Enhancing and Diversifying Antigen Processing and Presentation. Front Immunol 2021; 12:645770. [PMID: 33968037 PMCID: PMC8100505 DOI: 10.3389/fimmu.2021.645770] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Peptide vaccination remains a viable approach to induce T-cell mediated killing of tumors. To identify potential T-cell targets for Triple-Negative Breast Cancer (TNBC) vaccination, we examined the effect of the pro-inflammatory cytokine interferon-γ (IFNγ) on the transcriptome, proteome, and immunopeptidome of the TNBC cell line MDA-MB-231. Using high resolution mass spectrometry, we identified a total of 84,131 peptides from 9,647 source proteins presented by human leukocyte antigen (HLA)-I and HLA-II alleles. Treatment with IFNγ resulted in a remarkable remolding of the immunopeptidome, with only a 34% overlap between untreated and treated cells across the HLA-I immunopeptidome, and expression of HLA-II only detected on treated cells. IFNγ increased the overall number, diversity, and abundance of peptides contained within the immunopeptidome, as well increasing the coverage of individual source antigens. The suite of peptides displayed under conditions of IFNγ treatment included many known tumor associated antigens, with the HLA-II repertoire sampling 17 breast cancer associated antigens absent from those sampled by HLA-I molecules. Quantitative analysis of the transcriptome (10,248 transcripts) and proteome (6,783 proteins) of these cells revealed 229 common proteins and transcripts that were differentially expressed. Most of these represented downstream targets of IFNγ signaling including components of the antigen processing machinery such as tapasin and HLA molecules. However, these changes in protein expression did not explain the dramatic modulation of the immunopeptidome following IFNγ treatment. These results demonstrate the high degree of plasticity in the immunopeptidome of TNBC cells following cytokine stimulation and provide evidence that under pro-inflammatory conditions a greater variety of potential HLA-I and HLA-II vaccine targets are unveiled to the immune system. This has important implications for the development of personalized cancer vaccination strategies.
Collapse
Affiliation(s)
- Gabriel Goncalves
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kerry A Mullan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Divya Duscharla
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Rochelle Ayala
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Pouya Faridi
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
12
|
Immunological Prognostic Factors in Multiple Myeloma. Int J Mol Sci 2021; 22:ijms22073587. [PMID: 33808304 PMCID: PMC8036885 DOI: 10.3390/ijms22073587] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell neoplasm characterized by an abnormal proliferation of clonal, terminally differentiated B lymphocytes. Current approaches for the treatment of MM focus on developing new diagnostic techniques; however, the search for prognostic markers is also crucial. This enables the classification of patients into risk groups and, thus, the selection of the most optimal treatment method. Particular attention should be paid to the possible use of immune factors, as the immune system plays a key role in the formation and course of MM. In this review, we focus on characterizing the components of the immune system that are of prognostic value in MM patients, in order to facilitate the development of new diagnostic and therapeutic directions.
Collapse
|
13
|
Thibodeau J, Bourgeois-Daigneault MC, Lapointe R. Targeting the MHC Class II antigen presentation pathway in cancer immunotherapy. Oncoimmunology 2021; 1:908-916. [PMID: 23162758 PMCID: PMC3489746 DOI: 10.4161/onci.21205] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The success of immunotherapy relies on the participation of all arms of the immune system and the role of CD4+ T lymphocytes in preventing tumor growth is now well established. Understanding how tumors evade immune responses holds the key to the development of cancer immunotherapies. In this review, we discuss how MHC Class II expression varies in cancer cells and how this influences antitumor immune responses. We also discuss the means that are currently available for harnessing the MHC Class II antigen presentation pathway for the development of efficient vaccines to activate the immune system against cancer.
Collapse
Affiliation(s)
- Jacques Thibodeau
- Laboratoire d'Immunologie Moléculaire; Département de Microbiologie et Immunologie; Université de Montréal; Montréal, QC Canada
| | | | | |
Collapse
|
14
|
Mesangial Cells Exhibit Features of Antigen-Presenting Cells and Activate CD4+ T Cell Responses. J Immunol Res 2019; 2019:2121849. [PMID: 31317046 PMCID: PMC6604415 DOI: 10.1155/2019/2121849] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/01/2019] [Accepted: 05/14/2019] [Indexed: 01/18/2023] Open
Abstract
Background Mesangial cells play a prominent role in the development of inflammatory diseases and autoimmune disorders of the kidney. Mesangial cells perform the essential functions of helping to ensure that the glomerular structure is stable and regulating capillary flow, and activated mesangial cells acquire proinflammatory activities. We investigated whether activated mesangial cells display immune properties and control the development of T cell immunity. Methods Flow cytometry analysis was used to study the expression of antigen-presenting cell surface markers and costimulatory molecules in mesangial cells. CD4+ T cell activation induced by mesangial cells was detected in terms of T cell proliferation and cytokine production. Results IFN-γ-treated mesangial cells express membrane proteins involved in antigen presentation and T cell activation, including MHC-II, ICAM-1, CD40, and CD80. This finding suggests that activated mesangial cells can take up and present antigenic peptides to initiate CD4+ T cell responses and thus act as nonprofessional antigen-presenting cells. Polarization of naïve CD4+ T cells (Th0 cells) towards the Th1 phenotype was induced by coculture with activated mesangial cells, and the resulting Th1 cells showed increased mRNA and protein expression of inflammation-associated genes. Conclusion Mesangial cells can present antigen and modulate CD4+ T lymphocyte proliferation and differentiation. Interactions between mesangial cells and T cells are essential for sustaining the inflammatory response in a variety of glomerulonephritides. Therefore, mesangial cells might participate in immune function in the kidney.
Collapse
|
15
|
PD-L1 upregulation in myeloma cells by panobinostat in combination with interferon-γ. Oncotarget 2019; 10:1903-1917. [PMID: 30956773 PMCID: PMC6443002 DOI: 10.18632/oncotarget.26726] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/15/2019] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy is revolutionizing the treatment paradigm for multiple myeloma (MM). Interferon (IFN)-γ is essential for immune responses, whereas immune checkpoint molecules, such as programmed cell death-1 ligand-1 (PD-L1), mitigate the beneficial anti-tumor immune responses. As HDAC inhibitors alter the immunogenicity and anti-tumor immune responses, we here explored the regulation of PD-L1 expression in MM cells by the clinically available HDAC inhibitor panobinostat in the presence of IFN-γ. IFN-γ activated the STAT1-IRF1 pathway to upregulate PD-L1 expression in MM cells, and panobinostat was able to upregulate their PD-L1 expression without activating the STAT1-IRF1 pathway. Of note, panobinostat enhanced IFN-γR1 expression, which substantially increased the total and phosphorylated levels of STAT1 protein but reduced IRF1 protein levels through proteasomal degradation in the presence of IFN-γ. Panobinostat further enhanced the IFN-γ-mediated durable STAT1 activation in MM cells; STAT1 gene silencing abolished the PD-L1 upregulation by panobinostat and IFN-γ in combination, indicating a critical role for STAT1. These results suggest that panobinostat enhances PD-L1 expression by facilitating the IFN-γ-STAT1 pathway in a ligand-dependent manner in MM cells with ambient IFN-γ. PD-L1 upregulation should be taken into account when combining immunotherapies with panobinostat.
Collapse
|
16
|
Ma KY, Schonnesen AA, Brock A, Van Den Berg C, Eckhardt SG, Liu Z, Jiang N. Single-cell RNA sequencing of lung adenocarcinoma reveals heterogeneity of immune response-related genes. JCI Insight 2019; 4:121387. [PMID: 30821712 PMCID: PMC6478414 DOI: 10.1172/jci.insight.121387] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy has emerged as a promising approach to treat cancer. However, partial responses across multiple clinical trials support the significance of characterizing intertumor and intratumor heterogeneity to achieve better clinical results and as potential tools in selecting patients for different types of cancer immunotherapies. Yet, the type of heterogeneity that informs clinical outcome and patient selection has not been fully explored. In particular, the lack of characterization of immune response-related genes in cancer cells hinders the further development of metrics to select and optimize immunotherapy. Therefore, we analyzed single-cell RNA-Seq data from lung adenocarcinoma patients and cell lines to characterize the intratumor heterogeneity of immune response-related genes and demonstrated their potential impact on the efficacy of immunotherapy. We discovered that IFN-γ signaling pathway genes are heterogeneously expressed and coregulated with other genes in single cancer cells, including MHC class II (MHCII) genes. The downregulation of genes in IFN-γ signaling pathways in cell lines corresponds to an acquired resistance phenotype. Moreover, analysis of 2 groups of tumor-restricted antigens, namely neoantigens and cancer testis antigens, revealed heterogeneity in their expression in single cells. These analyses provide a rationale for applying multiantigen combinatorial therapies to prevent tumor escape and establish a basis for future development of prognostic metrics based on intratumor heterogeneity.
Collapse
Affiliation(s)
- Ke-Yue Ma
- Institute for Cellular and Molecular Biology, College of Natural Sciences
| | | | - Amy Brock
- Institute for Cellular and Molecular Biology, College of Natural Sciences
- Department of Biomedical Engineering, Cockrell School of Engineering, and
| | - Carla Van Den Berg
- Institute for Cellular and Molecular Biology, College of Natural Sciences
- Department of Oncology, LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
- Division of Pharmacology/Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - S. Gail Eckhardt
- Department of Oncology, LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Zhihua Liu
- Department of AnoRectal Surgery and
- Department of Center Laboratory, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ning Jiang
- Institute for Cellular and Molecular Biology, College of Natural Sciences
- Department of Biomedical Engineering, Cockrell School of Engineering, and
- Department of Oncology, LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
17
|
Williams GP, Schonhoff AM, Jurkuvenaite A, Thome AD, Standaert DG, Harms AS. Targeting of the class II transactivator attenuates inflammation and neurodegeneration in an alpha-synuclein model of Parkinson's disease. J Neuroinflammation 2018; 15:244. [PMID: 30165873 PMCID: PMC6117927 DOI: 10.1186/s12974-018-1286-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/20/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by intracellular alpha-synuclein (α-syn) inclusions, progressive death of dopaminergic neurons in the substantia nigra pars compacta (SNpc), and activation of the innate and adaptive immune systems. Disruption of immune signaling between the central nervous system (CNS) and periphery, such as through targeting the chemokine receptor type 2 (CCR2) or the major histocompatibility complex II (MHCII), is neuroprotective in rodent models of PD, suggesting a key role for innate and adaptive immunity in disease progression. The purpose of this study was to investigate whether genetic knockout or RNA silencing of the class II transactivator (CIITA), a transcriptional co-activator required for MHCII induction, is effective in reducing the neuroinflammation and neurodegeneration observed in an α-syn mouse model of PD. METHODS In vitro, we utilized microglia cultures from WT or CIITA -/- mice treated with α-syn fibrils to investigate inflammatory iNOS expression and antigen processing via immunocytochemistry (ICC). In vivo, an adeno-associated virus (AAV) was used to overexpress α-syn in WT and CIITA -/- mice as a model for PD. Concurrently with AAV-mediated overexpression of α-syn, WT mice received CIITA-targeted shRNAs packaged in lentiviral constructs. Immunohistochemistry and flow cytometry were used to assess inflammation and peripheral cell infiltration at 4 weeks post transduction, and unbiased stereology was used 6 months post transduction to assess neurodegeneration. RESULTS Using ICC and DQ-ovalbumin, we show that CIITA -/- microglial cultures failed to upregulate iNOS and MHCII expression, and had decreased antigen processing in response to α-syn fibrils when compared to WT microglia. In vivo, global knock-out of CIITA as well as local knockdown using lentiviral shRNAs targeting CIITA attenuated MHCII expression, peripheral immune cell infiltration, and α-syn-induced neurodegeneration. CONCLUSION Our data provide evidence that CIITA is required for α-syn-induced MHCII induction and subsequent infiltration of peripheral immune cells in an α-syn mouse model of PD. Additionally, we demonstrate that CIITA in the CNS drives neuroinflammation and neurodegeneration. These data provide further support that the disruption or modulation of antigen processing and presentation via CIITA is a promising target for therapeutic development in preclinical animal models of PD.
Collapse
Affiliation(s)
- Gregory P Williams
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham (UAB), 1719 6th Ave. South, CIRC 525, Birmingham, AL, 35294-0021, USA
| | - Aubrey M Schonhoff
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham (UAB), 1719 6th Ave. South, CIRC 525, Birmingham, AL, 35294-0021, USA
| | - Asta Jurkuvenaite
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham (UAB), 1719 6th Ave. South, CIRC 525, Birmingham, AL, 35294-0021, USA
| | - Aaron D Thome
- Department of Neurology, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - David G Standaert
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham (UAB), 1719 6th Ave. South, CIRC 525, Birmingham, AL, 35294-0021, USA
| | - Ashley S Harms
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham (UAB), 1719 6th Ave. South, CIRC 525, Birmingham, AL, 35294-0021, USA.
| |
Collapse
|
18
|
Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ. Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Front Immunol 2018; 9:847. [PMID: 29780381 PMCID: PMC5945880 DOI: 10.3389/fimmu.2018.00847] [Citation(s) in RCA: 848] [Impact Index Per Article: 121.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
Interferon-gamma (IFN-γ) is a pleiotropic molecule with associated antiproliferative, pro-apoptotic and antitumor mechanisms. This effector cytokine, often considered as a major effector of immunity, has been used in the treatment of several diseases, despite its adverse effects. Although broad evidence implicating IFN-γ in tumor immune surveillance, IFN-γ-based therapies undergoing clinical trials have been of limited success. In fact, recent reports suggested that it may also play a protumorigenic role, namely, through IFN-γ signaling insensitivity, downregulation of major histocompatibility complexes, and upregulation of indoleamine 2,3-dioxygenase and of checkpoint inhibitors, as programmed cell-death ligand 1. However, the IFN-γ-mediated responses are still positively associated with patient's survival in several cancers. Consequently, major research efforts are required to understand the immune contexture in which IFN-γ induces its intricate and highly regulated effects in the tumor microenvironment. This review discusses the current knowledge on the pro- and antitumorigenic effects of IFN-γ as part of the complex immune response to cancer, highlighting the relevance to identify IFN-γ responsive patients for the improvement of therapies that exploit associated signaling pathways.
Collapse
Affiliation(s)
- Flávia Castro
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Patrícia Cardoso
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Raquel Madeira Gonçalves
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Karine Serre
- IMM – Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria José Oliveira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Departamento de Patologia e Oncologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
19
|
Fang T, Duarte JN, Ling J, Li Z, Guzman JS, Ploegh HL. Structurally Defined αMHC-II Nanobody-Drug Conjugates: A Therapeutic and Imaging System for B-Cell Lymphoma. Angew Chem Int Ed Engl 2016; 55:2416-20. [PMID: 26840214 PMCID: PMC4820396 DOI: 10.1002/anie.201509432] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/06/2015] [Indexed: 01/19/2023]
Abstract
Antibody-drug conjugates (ADCs) of defined structure hold great promise for cancer therapies, but further advances are constrained by the complex structures of full-sized antibodies. Camelid-derived single-domain antibody fragments (VHHs or nanobodies) offer a possible solution to this challenge by providing expedited target screening and validation through switching between imaging and therapeutic activities. We used a nanobody (VHH7) specific for murine MHC-II and rendered "sortase-ready" for the introduction of oligoglycine-modified cytotoxic payloads or NIR fluorophores. The VHH7 conjugates outcompeted commercial monoclonal antibodies (mAbs) for internalization and exhibited high specificity and cytotoxicity against A20 murine B-cell lymphoma. Non-invasive NIR imaging with a VHH7-fluorophore conjugate showed rapid tumor targeting on both localized and metastatic lymphoma models. Subsequent treatment with the nanobody-drug conjugate efficiently controlled tumor growth and metastasis without obvious systemic toxicity.
Collapse
Affiliation(s)
- Tao Fang
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA
| | - Joao N Duarte
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA
| | - Jingjing Ling
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zeyang Li
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jonathan S Guzman
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
20
|
Fang T, Duarte JN, Ling J, Li Z, Guzman JS, Ploegh HL. Structurally Defined αMHC-II Nanobody-Drug Conjugates: A Therapeutic and Imaging System for B-Cell Lymphoma. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Tao Fang
- Whitehead Institute for Biomedical Research; 9 Cambridge Center Cambridge MA 02142 USA
| | - Joao N. Duarte
- Whitehead Institute for Biomedical Research; 9 Cambridge Center Cambridge MA 02142 USA
| | - Jingjing Ling
- Whitehead Institute for Biomedical Research; 9 Cambridge Center Cambridge MA 02142 USA
- Department of Chemistry; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Zeyang Li
- Whitehead Institute for Biomedical Research; 9 Cambridge Center Cambridge MA 02142 USA
- Department of Chemistry; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Jonathan S. Guzman
- Whitehead Institute for Biomedical Research; 9 Cambridge Center Cambridge MA 02142 USA
- Department of Biology; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research; 9 Cambridge Center Cambridge MA 02142 USA
- Department of Biology; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| |
Collapse
|
21
|
Haabeth OA, Tveita A, Fauskanger M, Hennig K, Hofgaard PO, Bogen B. Idiotype-specific CD4(+) T cells eradicate disseminated myeloma. Leukemia 2015; 30:1216-20. [PMID: 26449664 DOI: 10.1038/leu.2015.278] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- O A Haabeth
- Centre for Immune Regulation, Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - A Tveita
- Centre for Immune Regulation, Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - M Fauskanger
- Centre for Immune Regulation, Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - K Hennig
- Centre for Immune Regulation, Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - P O Hofgaard
- KG Jebsen Centre for Influenza Vaccine Research, Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - B Bogen
- Centre for Immune Regulation, Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway.,KG Jebsen Centre for Influenza Vaccine Research, Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
22
|
Yang H, Qiu Q, Gao B, Kong S, Lin Z, Fang D. Hrd1-mediated BLIMP-1 ubiquitination promotes dendritic cell MHCII expression for CD4 T cell priming during inflammation. ACTA ACUST UNITED AC 2014; 211:2467-79. [PMID: 25366967 PMCID: PMC4235642 DOI: 10.1084/jem.20140283] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The ubiquitin pathway plays critical roles in antigen presentation. However, the ubiquitin ligases that regulate MHC gene transcription remain unidentified. We showed that the ubiquitin ligase Hrd1, expression of which is induced by Toll-like receptor (TLR) stimulation, is required for MHC-II but not MHC-I transcription in dendritic cells (DCs). Targeted Hrd1 gene deletion in DCs diminished MHC-II expression. As a consequence, Hrd1-null DCs failed to prime CD4(+) T cells without affecting the activation of CD8(+) T cells. Hrd1 catalyzed ubiquitination and degradation of the transcriptional suppressor B lymphocyte-induced maturation protein 1 (BLIMP1) to promote MHC-II expression. Genetic suppression of Hrd1 function in DCs protected mice from myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). We identified Hrd1-mediated BLIMP1 ubiquitination as a previously unknown mechanism in programming DC for CD4(+) T cell activation during inflammation.
Collapse
Affiliation(s)
- Heeyoung Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Quan Qiu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Sinyi Kong
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Zhenghong Lin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
23
|
Haabeth OAW, Tveita AA, Fauskanger M, Schjesvold F, Lorvik KB, Hofgaard PO, Omholt H, Munthe LA, Dembic Z, Corthay A, Bogen B. How Do CD4(+) T Cells Detect and Eliminate Tumor Cells That Either Lack or Express MHC Class II Molecules? Front Immunol 2014; 5:174. [PMID: 24782871 PMCID: PMC3995058 DOI: 10.3389/fimmu.2014.00174] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/02/2014] [Indexed: 11/21/2022] Open
Abstract
CD4+ T cells contribute to tumor eradication, even in the absence of CD8+ T cells. Cytotoxic CD4+ T cells can directly kill MHC class II positive tumor cells. More surprisingly, CD4+ T cells can indirectly eliminate tumor cells that lack MHC class II expression. Here, we review the mechanisms of direct and indirect CD4+ T cell-mediated elimination of tumor cells. An emphasis is put on T cell receptor (TCR) transgenic models, where anti-tumor responses of naïve CD4+ T cells of defined specificity can be tracked. Some generalizations can tentatively be made. For both MHCIIPOS and MHCIINEG tumors, presentation of tumor-specific antigen by host antigen-presenting cells (APCs) appears to be required for CD4+ T cell priming. This has been extensively studied in a myeloma model (MOPC315), where host APCs in tumor-draining lymph nodes are primed with secreted tumor antigen. Upon antigen recognition, naïve CD4+ T cells differentiate into Th1 cells and migrate to the tumor. At the tumor site, the mechanisms for elimination of MHCIIPOS and MHCIINEG tumor cells differ. In a TCR-transgenic B16 melanoma model, MHCIIPOS melanoma cells are directly killed by cytotoxic CD4+ T cells in a perforin/granzyme B-dependent manner. By contrast, MHCIINEG myeloma cells are killed by IFN-γ stimulated M1-like macrophages. In summary, while the priming phase of CD4+ T cells appears similar for MHCIIPOS and MHCIINEG tumors, the killing mechanisms are different. Unresolved issues and directions for future research are addressed.
Collapse
Affiliation(s)
- Ole Audun Werner Haabeth
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Anders Aune Tveita
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Marte Fauskanger
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Fredrik Schjesvold
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Kristina Berg Lorvik
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Peter O Hofgaard
- KG Jebsen Centre for Research on Influenza Vaccines, Institute of Immunology, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Hilde Omholt
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Ludvig A Munthe
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Zlatko Dembic
- Faculty of Dentistry, Molecular Genetics Laboratory, Department of Oral Biology, University of Oslo , Oslo , Norway
| | - Alexandre Corthay
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital, University of Oslo , Oslo , Norway ; Department of Biosciences, University of Oslo , Oslo , Norway ; Tumor Immunology Group, Department of Pathology, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Bjarne Bogen
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital, University of Oslo , Oslo , Norway ; KG Jebsen Centre for Research on Influenza Vaccines, Institute of Immunology, Oslo University Hospital, University of Oslo , Oslo , Norway
| |
Collapse
|
24
|
Cycon KA, Mulvaney K, Rimsza LM, Persky D, Murphy SP. Histone deacetylase inhibitors activate CIITA and MHC class II antigen expression in diffuse large B-cell lymphoma. Immunology 2013; 140:259-72. [PMID: 23789844 DOI: 10.1111/imm.12136] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 12/29/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common form of non-Hodgkin's lymphoma (NHL) diagnosed in the USA, consists of at least two distinct subtypes: germinal centre B (GCB) and activated B-cell (ABC). Decreased MHC class II (MHCII) expression on the tumours in both DLBCL subtypes directly correlates with significant decreases in patient survival. One common mechanism accounting for MHCII down-regulation in DLBCL is reduced expression of the MHC class II transactivator (CIITA), the master regulator of MHCII transcription. Furthermore, reduced CIITA expression in ABC DLBCL correlates with the presence of the transcriptional repressor positive regulatory domain-I-binding factor-1 (PRDI-BF1). However, the mechanisms underlying down-regulation of CIITA in GCB DLBCL are currently unclear. In this study, we demonstrate that neither PRDI-BF1 nor CpG hypermethylation at the CIITA promoters are responsible for decreased CIITA in GCB DLBCL. In contrast, histone modifications associated with an open chromatin conformation and active transcription were significantly lower at the CIITA promoters in CIITA(-) GCB cells compared with CIITA(+) B cells, which suggests that epigenetic mechanisms contribute to repression of CIITA transcription. Treatment of CIITA(-) or CIITA(low) GCB cells with several different histone deacetylase inhibitors (HDACi) activated modest CIITA and MHCII expression. However, CIITA and MHCII levels were significantly higher in these cells after exposure to the HDAC-1-specific inhibitor MS-275. These results suggest that CIITA transcription is repressed in GCB DLBCL cells through epigenetic mechanisms involving HDACs, and that HDACi treatment can alleviate repression. These observations may have important implications for patient therapy.
Collapse
|
25
|
Cai Q, Banerjee S, Cervini A, Lu J, Hislop AD, Dzeng R, Robertson ES. IRF-4-mediated CIITA transcription is blocked by KSHV encoded LANA to inhibit MHC II presentation. PLoS Pathog 2013; 9:e1003751. [PMID: 24204280 PMCID: PMC3814934 DOI: 10.1371/journal.ppat.1003751] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/23/2013] [Indexed: 01/18/2023] Open
Abstract
Peptides presentation to T cells by MHC class II molecules is of importance in initiation of immune response to a pathogen. The level of MHC II expression directly influences T lymphocyte activation and is often targeted by various viruses. Kaposi's sarcoma-associated herpesvirus (KSHV) encoded LANA is known to evade MHC class I peptide processing, however, the effect of LANA on MHC class II remains unclear. Here, we report that LANA down-regulates MHC II expression and presentation by inhibiting the transcription of MHC II transactivator (CIITA) promoter pIII and pIV in a dose-dependent manner. Strikingly, although LANA knockdown efficiently disrupts the inhibition of CIITA transcripts from its pIII and pIV promoter region, the expression of HLA-DQβ but no other MHC II molecules was significantly restored. Moreover, we revealed that the presentation of HLA-DQβ enhanced by LANA knockdown did not help LANA-specific CD4+ T cell recognition of PEL cells, and the inhibition of CIITA by LANA is independent of IL-4 or IFN-γ signaling but dependent on the direct interaction of LANA with IRF-4 (an activator of both the pIII and pIV CIITA promoters). This interaction dramatically blocked the DNA-binding ability of IRF-4 on both pIII and pIV promoters. Thus, our data implies that LANA can evade MHC II presentation and suppress CIITA transcription to provide a unique strategy of KSHV escape from immune surveillance by cytotoxic T cells.
Collapse
Affiliation(s)
- Qiliang Cai
- MOE&MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Shuvomoy Banerjee
- Department of Microbiology and the Tumor Virology Program of Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America
| | - Amanda Cervini
- Department of Microbiology and the Tumor Virology Program of Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America
| | - Jie Lu
- Department of Microbiology and the Tumor Virology Program of Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America
| | - Andrew D. Hislop
- School of Cancer Sciences and Medical Research Council Centre for Immune Regulation, The University of Birmingham, Birmingham, United Kingdom
| | - Richard Dzeng
- Department of Microbiology and the Tumor Virology Program of Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America
| | - Erle S. Robertson
- Department of Microbiology and the Tumor Virology Program of Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
26
|
Cai YJ, Wang WS, Yang Y, Sun LH, Teitelbaum DH, Yang H. Up-regulation of intestinal epithelial cell derived IL-7 expression by keratinocyte growth factor through STAT1/IRF-1, IRF-2 pathway. PLoS One 2013; 8:e58647. [PMID: 23554911 PMCID: PMC3595257 DOI: 10.1371/journal.pone.0058647] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/05/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Epithelial cells(EC)-derived interleukin-7 (IL-7) plays a crucial role in control of development and homeostasis of neighboring intraepithelial lymphocytes (IEL), and keratinocyte growth factor (KGF) exerts protective effects on intestinal epithelial cells and up-regulates EC-derived IL-7 expression through KGFR pathway. This study was to further investigate the molecular mechanism involved in the regulation of IL-7 expression by KGF in the intestine. METHODS Intestinal epithelial cells (LoVo cells) and adult C57BL/6J mice were treated with KGF. Epithelial cell proliferation was studied by flow cytometry for BrdU-incorporation and by immunohistochemistry for PCNA staining. Western blot was used to detect the changes of expression of P-Tyr-STAT1, STAT1, and IL-7 by inhibiting STAT1. Alterations of nuclear extracts and total proteins of IRF-1, IRF-2 and IL-7 following IRF-1 and IRF-2 RNA interference with KGF treatment were also measured with western blot. Moreover, IL-7 mRNA expressions were also detected by Real-time PCR and IL-7 protein level in culture supernatants was measured by enzyme linked immunosorbent assay(ELISA). RESULTS KGF administration significantly increased LoVo cell proliferation and also increased intestinal wet weight, villus height, crypt depth and crypt cell proliferation in mice. KGF treatment led to increased levels of P-Tyr-STAT1, RAPA and AG490 both blocked P-Tyr-STAT1 and IL-7 expression in LoVo cells. IRF-1 and IRF-2 expression in vivo and in vitro were also up-regulated by KGF, and IL-7 expression was decreased after IRF-1 and IRF-2 expression was silenced by interfering RNA, respectively. CONCLUSION KGF could up-regulate IL-7 expression through the STAT1/IRF-1, IRF-2 signaling pathway, which is a new insight in potential effects of KGF on the intestinal mucosal immune system.
Collapse
Affiliation(s)
- Yu-Jiao Cai
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wen-Sheng Wang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yang Yang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Li-Hua Sun
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Daniel H. Teitelbaum
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
27
|
Minamino K, Takahara K, Adachi T, Nagaoka K, Iyoda T, Taki S, Inaba K. IRF-2 regulates B-cell proliferation and antibody production through distinct mechanisms. Int Immunol 2012; 24:573-81. [PMID: 22773153 DOI: 10.1093/intimm/dxs060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Interferon regulatory factor (IRF)-2 is a transcription factor involved in type I (IFN- α/β) signaling. It has been reported that IRF-2 deficiency results in various immune dysfunctions. However, the role of IRF-2 in B-cell functions needs to be elucidated. Unlike wild-type (WT) B cells, IRF-2(-/-) B2 cells were refractory to anti-IgM, but not LPS. Such a defect in proliferation was dependent on IFN- α/β receptor (IFNAR). Marginal zone B cells increased in the proportion relative to B2 cells in IRF-2(-/-) mice produced IgM normally to LPS stimulation. However, IRF-2(-/-) B2 cells were defective in IgM production in an IFNAR-independent manner, although both B-cell subsets differentiated phenotypically to plasma cells at elevated efficiencies. Class switch recombination of IRF-2(-/-) B2 cells by LPS plus IL-4 was also impaired. Their reduced IgM production was conceivably due to an inefficient up-regulation of Blimp-1. Consistent with these in vitro observations, specific antibody production in vivo to a T-dependent antigen by B2 cells was severely impaired in IRF-2(-/- )mice. However, a low, but significant, level of IgG was detected at a late time point, and this IgG exhibited comparable binding affinity to that in WT mice. Follicular helper T-cell development and germinal center formation were normal. A similar tendency was observed when µ chain(-/-) mice were reconstituted with IRF-2(-/- )B cells. These results revealed a multi-faceted role of IRF-2 in the function of B cells, particularly B2 cells, through regulating proliferation in an IFNAR-dependent manner and antibody production via up-regulation of Blimp-1.
Collapse
Affiliation(s)
- Kento Minamino
- Laboratory of Immunology, Department of Animal Development and Physiology, Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Erie AJ, Samsel L, Takaku T, Desierto MJ, Keyvanfar K, McCoy JP, Young NS, Chen J. MHC class II upregulation and colocalization with Fas in experimental models of immune-mediated bone marrow failure. Exp Hematol 2011; 39:837-49. [PMID: 21635935 DOI: 10.1016/j.exphem.2011.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/06/2011] [Accepted: 05/02/2011] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To test the hypothesis that γ-interferon (IFN-γ) promotes major histocompatibility complex (MHC) class II expression on bone marrow (BM) cell targets that facilitate T-cell-mediated BM destruction in immune-mediated BM failure. MATERIALS AND METHODS Allogeneic lymph node (LN) cells were infused into MHC- or minor histocompatibility antigen-mismatched hosts to induce BM failure. MHC class II and Fas expression and cell apoptosis were analyzed by flow cytometry. MHC class II-Fas colocalization was detected by ImageStream Imaging Flow Cytometry and other cell-to-cell associations were visualized by confocal microscopy. T-cell-mediated BM cell apoptosis and effects of IFN-γ on MHC class II-Fas colocalization on normal BM cells were studied using cell culture in vitro followed by conventional and imaging flow cytometry. RESULTS BM failure animals had significantly upregulated MHC class II expression on CD4(-)CD8(-)CD11b(-)CD45R(-) residual BM cells and significantly increased MHC class II-Fas colocalization on BM CD150(+) and CD34(+) hematopoietic cells. MHC class II(+)Fas(+) BM cells were closely associated with CD4(+) T cells in the BM of affected animals, and they were significantly more responsive to T-cell-mediated cell apoptosis relative to MHC class II(-)Fas(-) BM cells. Infusion of IFN-γ-deficient LN cells into minor histocompatibility antigen-mismatched recipients resulted in no MHC class II-Fas upregulation and no clinically overt BM failure. Treatment with recombinant IFN-γ significantly increased both MHC class II-Fas coexpression and colocalization on normal BM cells. CONCLUSIONS Elevation of the inflammatory cytokine IFN-γ-stimulated MHC class II expression and MHC class II-Fas colocalization, which may facilitate T-cell-mediated cell destruction.
Collapse
Affiliation(s)
- Andrew J Erie
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Chuang TF, Lee SC, Liao KW, Hsiao YW, Lo CH, Chiang BL, Lin XZ, Tao MH, Chu RM. Electroporation-mediated IL-12 gene therapy in a transplantable canine cancer model. Int J Cancer 2009; 125:698-707. [PMID: 19431145 DOI: 10.1002/ijc.24418] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interleukin-12 (IL-12) is effective in treating many types of rodent tumors, but has been unsuccessful in most human clinical trials, suggesting that animal models of more clinical relevance are required for evaluating human cancer immunotherapy. Herein, we report on the effectiveness of gene therapy with plasmid encoding human IL-12 (pIL-12) through in vivo electroporation in the treatment of beagles with a canine tumor, the canine transmissible venereal tumor (CTVT). The optimal electroporation conditions for gene transfer into CTVTs were tested by luciferase activity and determined to be a voltage of 200 V and duration of 50 msec, with the number of shocks set at 10 pulses, and the use of an electrode with 2 needles. Under these conditions, intratumoral administration of as little as 0.1 mg pIL-12 followed by electroporation significantly inhibited the growth of well-established tumors and eventually led to complete tumor regression. Furthermore, local pIL-12 treatment also induced a strong systemic effect that prevented new tumor growth and cured established tumors at distant locations. Intratumoral administration of pIL-12 greatly elevated the IL-12 level in the tumor masses, but produced only a trace amount in the serum. A high level of IFN-gamma mRNA was also detected in the treated tumor masses. pIL-12 gene therapy attracted significantly more lymphocytes infiltrating the tumors, including CD4(+) and CD8(+) T cells, and the surface expression of MHC I and MHC II molecules on CTVT cells was greatly increased after pIL-12 therapy. This treatment also induced apoptosis of the tumor cells as detected by Annexin V. More importantly, delivery of pIL-12 with intratumoral electroporation did not result in any detectable toxicity in the dogs. We conclude that intratumoral electroporation of the pIL-12 gene could cause profound immunologic host responses and efficiently treat CTVT in beagle dogs. The results also indicate that CTVT is an excellent large animal cancer model for testing immunogene therapies mediated by electroporation.
Collapse
Affiliation(s)
- Tien-Fu Chuang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, The Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Li D, Qian L, Chen C, Shi M, Yu M, Hu M, Song L, Shen B, Guo N. Down-regulation of MHC class II expression through inhibition of CIITA transcription by lytic transactivator Zta during Epstein-Barr virus reactivation. THE JOURNAL OF IMMUNOLOGY 2009; 182:1799-809. [PMID: 19201831 DOI: 10.4049/jimmunol.0802686] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The presentation of peptides to T cells by MHC class II molecules is of critical importance in specific recognition to a pathogen by the immune system. The level of MHC class II directly influences T lymphocyte activation. The aim of this study was to identify the possible mechanisms of the down-regulation of MHC class II expression by Zta during EBV lytic cycle. The data in the present study demonstrated that ectopic expression of Zta can strongly inhibit the constitutive expression of MHC class II and CIITA in Raji cells. The negative effect of Zta on the CIITA promoter activity was also observed. Scrutiny of the DNA sequence of CIITA promoter III revealed the presence of two Zta-response element (ZRE) motifs that have complete homology to ZREs in the DR and left-hand side duplicated sequence promoters of EBV. By chromatin immunoprecipitation assays, the binding of Zta to the ZRE(221) in the CIITA promoter was verified. Site-directed mutagenesis of three conserved nucleotides of the ZRE(221) substantially disrupted Zta-mediated inhibition of the CIITA promoter activity. Oligonucleotide pull-down assay showed that mutation of the ZRE(221) dramatically abolished Zta binding. Analysis of the Zta mutant lacking DNA binding domain revealed that the DNA-binding activity of Zta is required for the trans repression of CIITA. The expression of HLA-DRalpha and CIITA was restored by Zta gene silencing. The data indicate that Zta may act as an inhibitor of the MHC class II pathway, suppressing CIITA transcription and thus interfering with the expression of MHC class II molecules.
Collapse
Affiliation(s)
- Dan Li
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Voong LN, Slater AR, Kratovac S, Cressman DE. Mitogen-activated protein kinase ERK1/2 regulates the class II transactivator. J Biol Chem 2008; 283:9031-9. [PMID: 18245089 PMCID: PMC2431044 DOI: 10.1074/jbc.m706487200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 01/31/2008] [Indexed: 01/12/2023] Open
Abstract
The expression of major histocompatibility class II genes is necessary for proper antigen presentation and induction of an immune response. This expression is initiated by the class II transactivator, CIITA. The establishment of the active form of CIITA is controlled by a series of post-translational events, including GTP binding, ubiquitination, and dimerization. However, the role of phosphorylation is less clearly defined as are the consequences of phosphorylation on CIITA activity and the identity of the kinases involved. In this study we show that the extracellular signal-regulated kinases 1 and 2 (ERK1/2) interact directly with CIITA, targeting serine residues in the amino terminus of the protein, including serine 288. Inhibition of this phosphorylation by dominant-negative forms of ERK or by treatment of cells with the ERK inhibitor PD98059 resulted in the increase in CIITA-mediated gene expression from a class II promoter, enhanced the nuclear concentration of CIITA, and impaired its ability to bind to the nuclear export factor, CRM1. In contrast, inhibition of ERK1/2 activity had little effect on serine-to-alanine mutant forms of CIITA. These data suggest a model whereby ERK1/2-mediated phosphorylation of CIITA down-regulates CIITA activity by priming it for nuclear export, thus providing a means for cells to tightly regulate the extent of antigen presentation.
Collapse
Affiliation(s)
- Lilien N Voong
- Department of Biology, Sarah Lawrence College, 1 Mead Way, Bronxville, NY 10708, USA
| | | | | | | |
Collapse
|