1
|
Perez L, Ambroise J, Bearzatto B, Froidure A, Pilette C, Yakoub Y, Palmai-Pallag M, Bouzin C, Ryelandt L, Pavan C, Huaux F, Lison D. Unique transcriptomic responses of rat and human alveolar macrophages in an in vitro model of overload with TiO 2 and carbon black. Part Fibre Toxicol 2025; 22:8. [PMID: 40281615 PMCID: PMC12023592 DOI: 10.1186/s12989-025-00624-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Chronic inhalation of titanium dioxide or carbon black can lead, at high exposure, to lung overload, and can induce chronic inflammation and lung cancer in rats. Whether this rat adverse response is predictive for humans has been questioned for more than 40 years. Currently, these particles are conservatively considered as possible human carcinogens. OBJECTIVE To clarify the mechanisms of the adverse rat response to lung overload and its human relevance. METHODS Primary rat and human alveolar macrophages were exposed in vitro to control, non-overload or overload doses of titanium dioxide (P25) or carbon black (Printex 90) particles, and their activation profile was examined by untargeted transcriptomics. RESULTS Rat macrophages were largely the most responsive to particle overload. In particular, eighteen genes were identified as robust markers of P25 and Printex 90 overload in rat cells. The known functions of these genes can be related to the potential mechanisms of the adverse outcomes recorded in rats in vivo. Most of these 18 genes were similarly modulated in human macrophages, but with a markedly lower magnitude. In addition, a 16 gene signature was observed upon overload in human macrophages, but not in rat macrophages. CONCLUSIONS These findings provide insights into the mechanisms of lung overload and inflammation in rats, and highlight similarities and differences in transcriptomic responses of rat and human alveolar macrophages.
Collapse
Affiliation(s)
- Laeticia Perez
- Louvain Centre for Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium.
| | - Jérôme Ambroise
- Centre de Technologies Moléculaires Appliquées , Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Bertrand Bearzatto
- Centre de Technologies Moléculaires Appliquées , Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Antoine Froidure
- Pôle Pneumologie, ORL (Airways) et dermatologie (Skin), Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Charles Pilette
- Pôle Pneumologie, ORL (Airways) et dermatologie (Skin), Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Yousof Yakoub
- Louvain Centre for Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Mihaly Palmai-Pallag
- Secteur des Sciences de la santé , Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform (2IP; RRID:SCR_023378), Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Laurence Ryelandt
- Institute of Mechanics, Materials and Civil Engineering, Université Catholique de Louvain, Louvain-la- Neuve, Belgium
| | - Cristina Pavan
- Department of Chemistry, University of Turin, Turin, Italy
| | - François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Dominique Lison
- Louvain Centre for Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
2
|
Clark ND, Pham C, Kurniyati K, Sze CW, Coleman L, Fu Q, Zhang S, Malkowski MG, Li C. Functional and structural analyses reveal that a dual domain sialidase protects bacteria from complement killing through desialylation of complement factors. PLoS Pathog 2023; 19:e1011674. [PMID: 37747935 PMCID: PMC10553830 DOI: 10.1371/journal.ppat.1011674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/05/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
The complement system is the first line of innate immune defense against microbial infections. To survive in humans and cause infections, bacterial pathogens have developed sophisticated mechanisms to subvert the complement-mediated bactericidal activity. There are reports that sialidases, also known as neuraminidases, are implicated in bacterial complement resistance; however, its underlying molecular mechanism remains elusive. Several complement proteins (e.g., C1q, C4, and C5) and regulators (e.g., factor H and C4bp) are modified by various sialoglycans (glycans with terminal sialic acids), which are essential for their functions. This report provides both functional and structural evidence that bacterial sialidases can disarm the complement system via desialylating key complement proteins and regulators. The oral bacterium Porphyromonas gingivalis, a "keystone" pathogen of periodontitis, produces a dual domain sialidase (PG0352). Biochemical analyses reveal that PG0352 can desialylate human serum and complement factors and thus protect bacteria from serum killing. Structural analyses show that PG0352 contains a N-terminal carbohydrate-binding module (CBM) and a C-terminal sialidase domain that exhibits a canonical six-bladed β-propeller sialidase fold with each blade composed of 3-4 antiparallel β-strands. Follow-up functional studies show that PG0352 forms monomers and is active in a broad range of pH. While PG0352 can remove both N-acetylneuraminic acid (Neu5Ac) and N-glycolyl-neuraminic acid (Neu5Gc), it has a higher affinity to Neu5Ac, the most abundant sialic acid in humans. Structural and functional analyses further demonstrate that the CBM binds to carbohydrates and serum glycoproteins. The results shown in this report provide new insights into understanding the role of sialidases in bacterial virulence and open a new avenue to investigate the molecular mechanisms of bacterial complement resistance.
Collapse
Affiliation(s)
- Nicholas D. Clark
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, the State University of New York, Buffalo, New York, United States of America
| | - Christopher Pham
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kurni Kurniyati
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ching Wooen Sze
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Laurynn Coleman
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Qin Fu
- Proteomics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
| | - Sheng Zhang
- Proteomics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
| | - Michael G. Malkowski
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, the State University of New York, Buffalo, New York, United States of America
| | - Chunhao Li
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
3
|
Gretenkort L, Thiesler H, Hildebrandt H. Neuroimmunomodulatory properties of polysialic acid. Glycoconj J 2023; 40:277-294. [PMID: 37171513 DOI: 10.1007/s10719-023-10120-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/16/2022] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Polymeric sialic acid (polysialic acid, polySia) is a remarkable posttranslational modification of only few select proteins. The major, and most prominent polySia protein carrier is the neural cell adhesion molecule NCAM. Here, the key functions of polySia are to regulate interactions of NCAM and to balance cellular interactions in brain development and plasticity. During recent years, however, increasing evidence points towards a role of polySia in the modulation of immune responses. These immunomodulatory functions can be mediated by polySia on proteins other than NCAM, presented either on the cell surface or released into the extracellular space. This perspective review summarizes our current knowledge and addresses major open questions on polySia and polySia receptors in modulating innate immune responses in the brain.
Collapse
Affiliation(s)
- Lina Gretenkort
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Hauke Thiesler
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Herbert Hildebrandt
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
4
|
Smith CJ, Ross N, Kamal A, Kim KY, Kropf E, Deschatelets P, Francois C, Quinn WJ, Singh I, Majowicz A, Mingozzi F, Kuranda K. Pre-existing humoral immunity and complement pathway contribute to immunogenicity of adeno-associated virus (AAV) vector in human blood. Front Immunol 2022; 13:999021. [PMID: 36189251 PMCID: PMC9523746 DOI: 10.3389/fimmu.2022.999021] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
AAV gene transfer is a promising treatment for many patients with life-threatening genetic diseases. However, host immune response to the vector poses a significant challenge for the durability and safety of AAV-mediated gene therapy. Here, we characterize the innate immune response to AAV in human whole blood. We identified neutrophils, monocyte-related dendritic cells, and monocytes as the most prevalent cell subsets able to internalize AAV particles, while conventional dendritic cells were the most activated in terms of the CD86 co-stimulatory molecule upregulation. Although low titers (≤1:10) of AAV neutralizing antibodies (NAb) in blood did not have profound effects on the innate immune response to AAV, higher NAb titers (≥1:100) significantly increased pro-inflammatory cytokine/chemokine secretion, vector uptake by antigen presenting cells (APCs) and complement activation. Interestingly, both full and empty viral particles were equally potent in inducing complement activation and cytokine secretion. By using a compstatin-based C3 and C3b inhibitor, APL-9, we demonstrated that complement pathway inhibition lowered CD86 levels on APCs, AAV uptake, and cytokine/chemokine secretion in response to AAV. Together these results suggest that the pre-existing humoral immunity to AAV may contribute to trigger adverse immune responses observed in AAV-based gene therapy, and that blockade of complement pathway may warrant further investigation as a potential strategy for decreasing immunogenicity of AAV-based therapeutics.
Collapse
Affiliation(s)
- Corinne J. Smith
- Immunology Department, Spark Therapeutics, Inc., Philadelphia, PA, United States
| | - Nikki Ross
- Immunology Department, Spark Therapeutics, Inc., Philadelphia, PA, United States
| | - Ali Kamal
- Immunology Department, Spark Therapeutics, Inc., Philadelphia, PA, United States
| | - Kevin Y. Kim
- Immunology Department, Spark Therapeutics, Inc., Philadelphia, PA, United States
| | - Elizabeth Kropf
- Immunology Department, Spark Therapeutics, Inc., Philadelphia, PA, United States
| | | | - Cedric Francois
- Research Department, Apellis Pharmaceuticals, Waltham, MA, United States
| | - William J. Quinn
- Immunology Department, Spark Therapeutics, Inc., Philadelphia, PA, United States
| | - Inderpal Singh
- Immunology Department, Spark Therapeutics, Inc., Philadelphia, PA, United States
| | - Anna Majowicz
- Immunology Department, Spark Therapeutics, Inc., Philadelphia, PA, United States
| | - Federico Mingozzi
- Immunology Department, Spark Therapeutics, Inc., Philadelphia, PA, United States
| | - Klaudia Kuranda
- Immunology Department, Spark Therapeutics, Inc., Philadelphia, PA, United States
- *Correspondence: Klaudia Kuranda,
| |
Collapse
|
5
|
Meng T, Deng J, Xiao D, Arowolo MA, Liu C, Chen L, Deng W, He S, He J. Protective Effects and Potential Mechanisms of Dietary Resveratrol Supplementation on the Spleen of Broilers Under Heat Stress. Front Nutr 2022; 9:821272. [PMID: 35651504 PMCID: PMC9150503 DOI: 10.3389/fnut.2022.821272] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Resveratrol (RSV) is a natural polyphenolic compound with potent antioxidant and anti-inflammatory properties. This study aimed to investigate the protective effects of RSV supplementation on the inflammatory responses of broilers during heat stress. A total of 432 28-d-old white-feathered broilers (817 crossbred chicken) with an average weight of 549 ± 4 g were randomly allotted to 4 equal groups (Half male and half female, 6 replicates/group, 18 chickens/replicate), including normal temperature (NT) group (24 ± 2°C for 24 h/d, basal diet), NT+RSV group (24 ± 2°C for 24 h/d, basal diet + RSV), heat stress (HT) group (37 ± 2°C for 8 h/d, basal diet), and HT+RSV group (37 ± 2°C for 8 h/d, basal diet + RSV). Serum samples were collected on d 7 and 14 of heat stress, and thymus, spleen, jejunum, and bursa of Fabricius samples were collected and analyzed on d14. RSV treatment decreased the feed conversion ratio, partially reversed the negative alternations in body weight, average daily gain, and average daily feed intake caused by heat stress. RSV treatment also decreased the elevated levels of corticosterone on d 14, adrenocorticotropic hormone, and triiodothyronine in serum on d 7 caused by heat stress, and significantly increased the villus height to crypt depth ratio in the jejunum on d 14. Dietary RSV also reduced heat stress-induced splenic pro-inflammatory cytokine concentrations. TUNEL assay showed that RSV significantly reduced heat stress-induced the number of apoptotic cells. Remarkably, RSV down-regulated some splenic related genes for apoptosis genes, including BCL-2, Apaf-1, and MDM2 mRNA levels induced by heat stress. According to GO and KEGG enrichment analyses, the differential genes between HT and HT + RSV groups were mainly associated with immune system process, hematopoietic or lymphoid organ development, and toll-like receptor signaling pathway. The relative mRNA expression of NF-κB, heat shock protein 70 (HSP70), and p38 MAPK were markedly decreased by the combination of RSV and heat stress. These findings showed that RSV might reduce the splenic inflammatory response in heat-stressed white-feather broilers by inhibiting heat stress-induced activation of NF-B, MAPK, and HSP70, as well as inhibiting the activation of mitochondrial apoptotic pathways.
Collapse
Affiliation(s)
- Tiantian Meng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Juying Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | | | - Chunming Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Liang Chen
- Institute of Animal Husbandry and Aquaculture, Huaihua Academy of Agricultural Sciences, Huaihua, China
| | - Wei Deng
- Institute of Animal Husbandry and Aquaculture, Huaihua Academy of Agricultural Sciences, Huaihua, China
| | - Shaoping He
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Institute of Animal Husbandry and Aquaculture, Huaihua Academy of Agricultural Sciences, Huaihua, China
| |
Collapse
|
6
|
Essen MF, Schlagwein N, den Hoven EM, Gijlswijk‐Janssen DJ, Lubbers R, den Bos RM, den Born J, Ruben JM, Trouw LA, Kooten C. Initial properdin binding contributes to alternative pathway activation at the surface of viable and necrotic cells. Eur J Immunol 2022; 52:597-608. [PMID: 35092629 PMCID: PMC9303752 DOI: 10.1002/eji.202149259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 12/01/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Abstract
Properdin, the only known positive regulator of the complement system, stabilizes the C3 convertase, thereby increasing its half‐life. In contrast to most other complement factors, properdin is mainly produced extrahepatically by myeloid cells. Recent data suggest a role for properdin as a pattern recognition molecule. Here, we confirmed previous findings of properdin binding to different necrotic cells including Jurkat T cells. Binding can occur independent of C3, as demonstrated by HAP‐1 C3 KO cells, excluding a role for endogenous C3. In view of the cellular source of properdin, interaction with myeloid cells was examined. Properdin bound to the surface of viable monocyte‐derived pro‐ and anti‐inflammatory macrophages, but not to DCs. Binding was demonstrated for purified properdin as well as fractionated P2, P3, and P4 properdin oligomers. Binding contributed to local complement activation as determined by C3 and C5b‐9 deposition on the cell surfaces and seems a prerequisite for alternative pathway activation. Interaction of properdin with cell surfaces could be inhibited with the tick protein Salp20 and by different polysaccharides, depending on sulfation and chain length. These data identify properdin as a factor interacting with different cell surfaces, being either dead or alive, contributing to the local stimulation of complement activation.
Collapse
Affiliation(s)
- Mieke F. Essen
- Div. of Nephrology and Transplant Medicine Dept. of Medicine Leiden University Medical Center Leiden The Netherlands
| | - Nicole Schlagwein
- Div. of Nephrology and Transplant Medicine Dept. of Medicine Leiden University Medical Center Leiden The Netherlands
| | - Elisa M.P. den Hoven
- Div. of Nephrology and Transplant Medicine Dept. of Medicine Leiden University Medical Center Leiden The Netherlands
| | - Daniëlle J. Gijlswijk‐Janssen
- Div. of Nephrology and Transplant Medicine Dept. of Medicine Leiden University Medical Center Leiden The Netherlands
| | - Rosalie Lubbers
- Department of Rheumatology Leiden University Medical Center Leiden The Netherlands
| | - Ramon M. den Bos
- Crystal and Structural Chemistry Bijvoet Center for Biomolecular Research Department of Chemistry Faculty of Science Utrecht University Utrecht The Netherlands
| | - Jacob den Born
- Department of Nephrology University Medical Center Groningen Groningen The Netherlands
| | - Jurjen M. Ruben
- Div. of Nephrology and Transplant Medicine Dept. of Medicine Leiden University Medical Center Leiden The Netherlands
| | - Leendert A. Trouw
- Department of Rheumatology Leiden University Medical Center Leiden The Netherlands
- Department of Immunology Leiden University Medical Center Leiden The Netherlands
| | - Cees Kooten
- Div. of Nephrology and Transplant Medicine Dept. of Medicine Leiden University Medical Center Leiden The Netherlands
| | | |
Collapse
|
7
|
The paraventricular thalamus serves as a nexus in the regulation of stress and immunity. Brain Behav Immun 2021; 95:36-44. [PMID: 33540073 DOI: 10.1016/j.bbi.2021.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 11/23/2022] Open
Abstract
Many temperate zone animals exhibit seasonal rhythms in physiology and behavior, including seasonal cycles of reproduction, energetics, stress responsiveness, and immune function, among many others. These rhythms are driven by seasonal changes in the duration of pineal melatonin secretion. The neural melatonin target tissues that mediate several of these rhythms have been identified, though the target(s) mediating melatonin's regulation of glucocorticoid secretion, immune cell numbers, and bacterial killing capacity remain unspecified. The present results indicate that one melatonin target tissue, the paraventricular nucleus of the thalamus (PVT), is necessary for the expression of these seasonal rhythms. Thus, while radiofrequency ablations of the PVT failed to alter testicular and body mass response to short photoperiod exposure, they did block the effect of short day lengths on cortisol secretion and bacterial killing efficacy. These results are consistent with the independent regulation by separate neural circuits of several physiological traits that vary seasonally in mammals.
Collapse
|
8
|
Ghosh S, Das S, Mukherjee J, Abdullah S, Mondal R, Sultana S, Sehgal A, Behl T. Enumerating the role of properdin in the pathogenesis of IgA nephropathy and its possible therapies. Int Immunopharmacol 2021; 93:107429. [PMID: 33571820 DOI: 10.1016/j.intimp.2021.107429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND IgA nephropathy (IgAN) has become the most prevalent form of glomerulonephritis affecting almost 1.3% of the total population worldwide. It is an autoimmune disorder where the host autoantibody forms an immune complex with the defective galactose-deficient IgA1 and gets deposited at the mesangium and endocapillary region of glomeruli. IgA has the capability to activate alternative and lectin complement cascades which even aggravates the condition. Properdin is directly associated with IgAN by activating and stabilising the alternative complement pathway at the mesangium, thereby causing progressive renal damage. OBJECTIVE The present review mainly focuses on correlating the influence of properdin in activating the complement cascade at glomeruli which is the major cause of disease exacerbation. Secondly, we have described the probable therapies and new targets that are under trials to check their efficacy in IgAN. METHODS An in-depth research was carried out from different peer-reviewed articles till December 2020 from several renowned databases like PubMed, Frontier, and MEDLINE, and the information was analysed and written in a simplified manner. RESULTS Co-deposition of properdin is observed along with IgA and C3 in 75%-100% of the patients. It is not yet fully understood whether properdin inhibition can attenuate IgAN, as many conflicting reports have revealed worsening of IgAN after impeding properdin. CONCLUSION With no specific cure still available, the treatment strategies are of great concern to find a better target to restrict the disease progression. More research and clinical trials are required to find out a prominent target to combat IgAN.
Collapse
Affiliation(s)
- Srijit Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Kolkata 700114, West Bengal, India
| | - Srijita Das
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Kolkata 700114, West Bengal, India
| | - Joy Mukherjee
- Bengal School of Technology, Sugandha, Hooghly 712102, West Bengal, India
| | - Salik Abdullah
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Kolkata 700114, West Bengal, India
| | - Rupsa Mondal
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Kolkata 700114, West Bengal, India
| | - Shirin Sultana
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Kolkata 700114, West Bengal, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, Punjab, India.
| |
Collapse
|
9
|
Mangogna A, Varghese PM, Agostinis C, Alrokayan SH, Khan HA, Stover CM, Belmonte B, Martorana A, Ricci G, Bulla R, Kishore U. Prognostic Value of Complement Properdin in Cancer. Front Immunol 2021; 11:614980. [PMID: 33542722 PMCID: PMC7851055 DOI: 10.3389/fimmu.2020.614980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/08/2020] [Indexed: 02/05/2023] Open
Abstract
The complement system is readily triggered by the presence of damage-associated molecular patterns on the surface of tumor cells. The complement alternative pathway provides rapid amplification of the molecular stress signal, leading to complement cascade activation to deal with pathogens or malignant cells. Properdin is the only known positive regulator of the alternative pathway. In addition, properdin promotes the phagocytic uptake of apoptotic T cells by macrophages and dendritic cells without activating the complement system, thus, establishing its ability to recognize "altered-self". Dysregulation of properdin has been implicated in substantial tissue damage in the host, and in some cases, chronic unresolved inflammation. A corollary of this may be the development of cancer. Hence, to establish a correlation between properdin presence/levels in normal and cancer tissues, we performed bioinformatics analysis, using Oncomine and UALCAN. Survival analyses were performed using UALCAN and PROGgeneV2 to assess if properdin can serve as a potential prognostic marker for human lung adenocarcinoma (LUAD), liver hepatocellular carcinoma (LIHC), cervical squamous cell carcinoma (CESC), and pancreatic adenocarcinoma (PAAD). We also analyzed levels of tumor-infiltrating immune cells using TIMER, a tool for characterizing immune cell composition in cancers. We found that in LUAD and LIHC, there was a lower expression of properdin in the tumors compared to normal tissues, while no significant difference was observed in CESC and PAAD. Survival analysis demonstrated a positive association between properdin mRNA expression and overall survival in all 4 types of cancers. TIMER analysis revealed that properdin expression correlated negatively with tumor purity and positively with levels of infiltrating B cells, cytotoxic CD8+ T cells, CD4+ helper T cells, macrophages, neutrophils and dendritic cells in LUAD, CESC and PAAD, and with levels of B cells, CD8+ T cells and dendritic cells in LIHC. Immunohistochemical analysis revealed that infiltrating immune cells were the most likely source of properdin in the tumor microenvironment. Thus, complement protein properdin shows promise as a prognostic marker in cancer and warrants further study.
Collapse
Affiliation(s)
- Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Burlo Garofolo, Trieste, Italy
| | - Praveen M. Varghese
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Burlo Garofolo, Trieste, Italy
| | - Salman H. Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Cordula M. Stover
- School of Biological Sciences, University of Leicester, Leicester, United Kingdom
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Anna Martorana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
10
|
Martinez APG, Abreu PAE, de Arruda Vasconcellos S, Ho PL, Ferreira VP, Saggu G, Barbosa AS, Isaac L. The Role of Properdin in Killing of Non-Pathogenic Leptospira biflexa. Front Immunol 2020; 11:572562. [PMID: 33240263 PMCID: PMC7683387 DOI: 10.3389/fimmu.2020.572562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/05/2020] [Indexed: 11/25/2022] Open
Abstract
Properdin (P) is a positive regulatory protein that stabilizes the C3 convertase and C5 convertase of the complement alternative pathway (AP). Several studies have suggested that properdin can bind directly to the surface of certain pathogens regardless of the presence of C3bBb. Saprophytic Leptospira are susceptible to complement-mediated killing, but the interaction of properdin with Leptospira spp. has not been evaluated so far. In this work, we demonstrate that properdin present in normal human serum, purified properdin, as well as properdin oligomers P2, P3, and P4, interact with Leptospira. Properdin can bind directly to the bacterial surface even in the absence of C3b. In line with our previous findings, AP activation was shown to be important for killing non-pathogenic L. biflexa, and properdin plays a key role in this process since this microorganism survives in P-depleted human serum and the addition of purified properdin to P-depleted human serum decreases the number of viable leptospires. A panel of pathogenic L.interrogans recombinant proteins was used to identify putative properdin targets. Lsa30, an outer membrane protein from L. interrogans, binds to unfractionated properdin and to a lesser extent to P2-P4 properdin oligomers. In conclusion, properdin plays an important role in limiting bacterial proliferation of non-pathogenic Leptospira species. Once bound to the leptospiral surface, this positive complement regulatory protein of the AP contributes to the formation of the C3 convertase on the leptospire surface even in the absence of prior addition of C3b.
Collapse
Affiliation(s)
| | | | - Silvio de Arruda Vasconcellos
- Laboratory of Bacterial Zoonoses, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Paulo Lee Ho
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | - Viviana P. Ferreira
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Gurpanna Saggu
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | | | - Lourdes Isaac
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Sharma S, Bhatnagar R, Gaur D. Complement Evasion Strategies of Human Pathogenic Bacteria. Indian J Microbiol 2020; 60:283-296. [PMID: 32655196 PMCID: PMC7329968 DOI: 10.1007/s12088-020-00872-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Human pathogens need to overcome an elaborate network of host defense mechanisms in order to establish their infection, colonization, proliferation and eventual dissemination. The interaction of pathogens with different effector molecules of the immune system results in their neutralization and elimination from the host. The complement system is one such integral component of innate immunity that is critically involved in the early recognition and elimination of the pathogen. Hence, under this immune pressure, all virulent pathogens capable of inducing active infections have evolved immune evasive strategies that primarily target the complement system, which plays an essential and central role for host defense. Recent reports on several bacterial pathogens have elucidated the molecular mechanisms underlying complement evasion, inhibition of opsonic phagocytosis and cell lysis. This review aims to comprehensively summarize the recent findings on the various strategies adopted by pathogenic bacteria to escape complement-mediated clearance.
Collapse
Affiliation(s)
- Shikhar Sharma
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067 India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067 India
| |
Collapse
|
12
|
Paes VM, Liao SF, Figueiredo JR, Willard ST, Ryan PL, Feugang JM. Proteome changes of porcine follicular fluid during follicle development. J Anim Sci Biotechnol 2019; 10:94. [PMID: 31827787 PMCID: PMC6902611 DOI: 10.1186/s40104-019-0400-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
Background Ovarian follicular fluid influences follicle and oocyte growth, but the fluctuation of its protein content during folliculogenesis has not been comprehensively analyzed. Here we used a shotgun approach and bioinformatics analyses to investigate and compare the proteomes of porcine follicular fluid (pFF) obtained from small (< 4 mm), medium (4–6 mm) and large (> 6–12 mm) follicles. Results Follicular fluid samples containing highest estrogen levels were selected as non-atretic from small (SNA: 26.1 ± 15 ng/mL), medium (MNA: 162 ± 54 ng/mL), and large (LNA: 290 ± 37 ng/mL) follicles for proteomic analyses. We detected 1627, 1699, and 1756 proteins in SNA, MNA, and LNA samples, respectively. Nearly 60–63% of total proteins were specific to each sample, 11–13% were shared in pairwise comparisons, and 247 proteins were shared among all samples. Functional categorization indicated comparable gene ontology (GO) terms distribution per cellular component, molecular function, and biological process categories across samples; however, the ranking of highly significantly enriched GO terms per category revealed differences between samples. The patterns of protein-to-protein interactions varied throughout follicle development, and proteins such as serine protease inhibitor, clade E (SERPINE); plasminogen activator, urokinase (PLAU); and plasminogen activator, urokinase receptor (PLAUR) appeared stage-specific to SNA, MNA, and LNA, respectively. The “complement and coagulation cascades” was the common major pathway. Besides, properdin and fibulin-1 were abundant proteins that appeared absent in LNA samples. Conclusion This study provides extensive and functional analyses of the pFF proteome changes during folliculogenesis and offers the potential for novel biomarker discovery in pFF for oocyte quality assessment.
Collapse
Affiliation(s)
- Victor M Paes
- 1Department of Animal and Dairy Sciences, Mississippi State University, 4025 Wise Center, PO Box 9815, Starkville, Mississippi State MS 39762 USA.,2Laboratory of Manipulation of Oocyte and Preantral follicles, State University of Ceará, Fortaleza, CE Brazil
| | - Shengfa F Liao
- 1Department of Animal and Dairy Sciences, Mississippi State University, 4025 Wise Center, PO Box 9815, Starkville, Mississippi State MS 39762 USA
| | - Jose R Figueiredo
- 2Laboratory of Manipulation of Oocyte and Preantral follicles, State University of Ceará, Fortaleza, CE Brazil
| | - Scott T Willard
- 1Department of Animal and Dairy Sciences, Mississippi State University, 4025 Wise Center, PO Box 9815, Starkville, Mississippi State MS 39762 USA
| | - Peter L Ryan
- 1Department of Animal and Dairy Sciences, Mississippi State University, 4025 Wise Center, PO Box 9815, Starkville, Mississippi State MS 39762 USA
| | - Jean M Feugang
- 1Department of Animal and Dairy Sciences, Mississippi State University, 4025 Wise Center, PO Box 9815, Starkville, Mississippi State MS 39762 USA
| |
Collapse
|
13
|
Akk A, Springer LE, Yang L, Hamilton-Burdess S, Lambris JD, Yan H, Hu Y, Wu X, Hourcade DE, Miller MJ, Pham CTN. Complement activation on neutrophils initiates endothelial adhesion and extravasation. Mol Immunol 2019; 114:629-642. [PMID: 31542608 PMCID: PMC6815348 DOI: 10.1016/j.molimm.2019.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/08/2019] [Accepted: 09/08/2019] [Indexed: 01/07/2023]
Abstract
Neutrophils are essential to the pathogenesis of many inflammatory diseases. In the autoantibody-mediated K/BxN model of inflammatory arthritis, the alternative pathway (AP) of complement and Fc gamma receptors (FcγRs) are required for disease development while the classical pathway is dispensable. The reason for this differential requirement is unknown. We show that within minutes of K/BxN serum injection complement activation (CA) is detected on circulating neutrophils, as evidenced by cell surface C3 fragment deposition. CA requires the AP factor B and FcγRs but not C4, implying that engagement of FcγRs by autoantibody or immune complexes directly triggers AP C3 convertase assembly. The absence of C5 does not prevent CA on neutrophils but diminishes the upregulation of adhesion molecules. In vivo two-photon microscopy reveals that CA on neutrophils is critical for neutrophil extravasation and generation of C5a at the site of inflammation. C5a stimulates the release of neutrophil proteases, which contribute to the degradation of VE-cadherin, an adherens junction protein that regulates endothelial barrier integrity. C5a receptor antagonism blocks the extracellular release of neutrophil proteases, suppressing VE-cadherin degradation and neutrophil transendothelial migration in vivo. These results elucidate the AP-dependent intravascular neutrophil-endothelial interactions that initiate the inflammatory cascade in this disease model but may be generalizable to neutrophil extravasation in other inflammatory processes.
Collapse
Affiliation(s)
- Antonina Akk
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Luke E Springer
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lihua Yang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Samantha Hamilton-Burdess
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Huimin Yan
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ying Hu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Xiaobo Wu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Dennis E Hourcade
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Mark J Miller
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Christine T N Pham
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA; John Cochran VA Medical Center, Saint Louis, MO, USA.
| |
Collapse
|
14
|
Ermert D, Ram S, Laabei M. The hijackers guide to escaping complement: Lessons learned from pathogens. Mol Immunol 2019; 114:49-61. [PMID: 31336249 DOI: 10.1016/j.molimm.2019.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Pathogens that invade the human host are confronted by a multitude of defence mechanisms aimed at preventing colonization, dissemination and proliferation. The most frequent outcome of this interaction is microbial elimination, in which the complement system plays a major role. Complement, an essential feature of the innate immune machinery, rapidly identifies and marks pathogens for efficient removal. Consequently, this creates a selective pressure for microbes to evolve strategies to combat complement, permitting host colonization and access to resources. All successful pathogens have developed mechanisms to resist complement activity which are intimately aligned with their capacity to cause disease. In this review, we describe the successful methods various pathogens use to evade complement activation, shut down inflammatory signalling through complement, circumvent opsonisation and override terminal pathway lysis. This review summarizes how pathogens undermine innate immunity: 'The Hijackers Guide to Complement'.
Collapse
Affiliation(s)
- David Ermert
- Department of Preclinical Research, BioInvent International AB, Lund, Sweden; Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Sanjay Ram
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Maisem Laabei
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom.
| |
Collapse
|
15
|
Shao S, Sun X, Chen Y, Zhan B, Zhu X. Complement Evasion: An Effective Strategy That Parasites Utilize to Survive in the Host. Front Microbiol 2019; 10:532. [PMID: 30949145 PMCID: PMC6435963 DOI: 10.3389/fmicb.2019.00532] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/01/2019] [Indexed: 12/15/2022] Open
Abstract
Parasitic infections induce host immune responses that eliminate the invading parasites. However, parasites have evolved to develop many strategies to evade host immune attacks and survive in a hostile environment. The complement system acts as the first line of immune defense to eliminate the invading parasites by forming the membrane attack complex (MAC) and promoting an inflammatory reaction on the surface of invading parasites. To date, the complement activation pathway has been precisely delineated; however, the manner in which parasites escape complement attack, as a survival strategy in the host, is not well understood. Increasing evidence has shown that parasites develop sophisticated strategies to escape complement-mediated killing, including (i) recruitment of host complement regulatory proteins on the surface of the parasites to inhibit complement activation; (ii) expression of orthologs of host RCA to inhibit complement activation; and (iii) expression of parasite-encoded proteins, specifically targeting different complement components, to inhibit complement function and formation of the MAC. In this review, we compiled information regarding parasitic abilities to escape host complement attack as a survival strategy in the hostile environment of the host and the mechanisms underlying complement evasion. Effective escape of host complement attack is a crucial step for the survival of parasites within the host. Therefore, those proteins expressed by parasites and involved in the regulation of the complement system have become important targets for the development of drugs and vaccines against parasitic infections.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ximeng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yi Chen
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Compound heterozygous mutations in IL10RA combined with a complement factor properdin mutation in infantile-onset inflammatory bowel disease. Eur J Gastroenterol Hepatol 2018; 30:1491-1496. [PMID: 30199474 DOI: 10.1097/meg.0000000000001247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Inflammatory bowel diseases (IBDs) are chronic and multifactorial diseases resulting from a complex interaction of host genetic factors and environmental stimuli. Although many genome-wide association studies have identified host genetic factors associated with IBD, rare Mendelian forms of IBD have been reported in patients with very early onset forms. Therefore, this study aimed to identify genetic variants associated with infantile-onset IBD. PARTICIPANTS AND METHODS We obtained genomic DNA from whole blood samples of a male patient with infantile-onset IBD and nonconsanguineous Korean parents. Whole-exome sequencing was performed using trio samples. Then, we analyzed the data using susceptibility genes for monogenic forms of IBD and various immunodeficiencies and protein structural analysis. RESULTS The patient who presented with oral aphthous ulcers at the age of 14 days suffered from severe colitis and was refractory to medical treatment. Compound heterozygous mutations in IL10RA (p.R101W; p.T179T) were found in the patient. In addition, a hemizygous mutation in complement factor properdin (CFP) (p.L456V) located on the X-chromosome was detected, inherited from the patient's mother. Protein structural modeling suggested impaired properdin subunit interactions by p.L456V that may hamper protein oligomerization required for complement activation. CONCLUSION This study identified compound heterozygous mutations in IL10RA combined with a hemizygous CFP mutation in infantile-onset IBD by using whole-exome sequencing. CFP p.L456V may exacerbate symptoms of infantile-onset IBD by disturbing oligomerization of properdin.
Collapse
|
17
|
Ekdahl KN, Persson B, Mohlin C, Sandholm K, Skattum L, Nilsson B. Interpretation of Serological Complement Biomarkers in Disease. Front Immunol 2018; 9:2237. [PMID: 30405598 PMCID: PMC6207586 DOI: 10.3389/fimmu.2018.02237] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/10/2018] [Indexed: 01/07/2023] Open
Abstract
Complement system aberrations have been identified as pathophysiological mechanisms in a number of diseases and pathological conditions either directly or indirectly. Examples of such conditions include infections, inflammation, autoimmune disease, as well as allogeneic and xenogenic transplantation. Both prospective and retrospective studies have demonstrated significant complement-related differences between patient groups and controls. However, due to the low degree of specificity and sensitivity of some of the assays used, it is not always possible to make predictions regarding the complement status of individual patients. Today, there are three main indications for determination of a patient's complement status: (1) complement deficiencies (acquired or inherited); (2) disorders with aberrant complement activation; and (3) C1 inhibitor deficiencies (acquired or inherited). An additional indication is to monitor patients on complement-regulating drugs, an indication which may be expected to increase in the near future since there is now a number of such drugs either under development, already in clinical trials or in clinical use. Available techniques to study complement include quantification of: (1) individual components; (2) activation products, (3) function, and (4) autoantibodies to complement proteins. In this review, we summarize the appropriate indications, techniques, and interpretations of basic serological complement analyses, exemplified by a number of clinical disorders.
Collapse
Affiliation(s)
- Kristina N Ekdahl
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Centre of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Barbro Persson
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Camilla Mohlin
- Centre of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Kerstin Sandholm
- Centre of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Lillemor Skattum
- Section of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Clinical Immunology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Bo Nilsson
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Triebwasser MP, Wu X, Bertram P, Hourcade DE, Nelson DM, Atkinson JP. Timing and mechanism of conceptus demise in a complement regulatory membrane protein deficient mouse. Am J Reprod Immunol 2018; 80:e12997. [PMID: 29924462 PMCID: PMC6160323 DOI: 10.1111/aji.12997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/24/2018] [Indexed: 01/01/2023] Open
Abstract
PROBLEM Crry is a widely expressed type 1 transmembrane complement regulatory protein in rodents which protects self-tissue by downregulating C3 activation. Crry-/- concepti produced by Crry+/- × Crry+/- matings are attacked by maternal complement system leading to loss before day 10. The membrane attack complex is not the mediator of this death. We hypothesized that the ability of C3b to engage the alternative pathway's feedback loop relatively unchecked on placental membranes induces the lesion yielding the demise of the Crry-/- mouse. METHOD OF STUDY We investigated the basis of Crry-/- conceptus demise by depleting maternal complement with cobra venom factor and blocking antibodies. We monitored their effects primarily by genotyping and histologic analyses. RESULTS We narrowed the critical period of the complement effect from 6.5 to 8.5 days post-coitus (dpc), which is immediately after the conceptus is exposed to maternal blood. Deposition by 5.5 dpc of maternal C3b on the placental vasculature lacking Crry-/- yielded loss of the conceptus by 8.5 dpc. Fusion of the allantois to the chorion during placental assembly did not occur, fetal vessels originating in the allantois did not infiltrate the chorioallantoic placenta, the chorionic plate failed to develop, and the labyrinthine component of the placenta did not mature. CONCLUSION Our data are most consistent with the deposition of C3b being responsible for the failure of the allantois to fuse to the chorion leading to subsequent conceptus demise.
Collapse
Affiliation(s)
- Michael P Triebwasser
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaobo Wu
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paula Bertram
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis E Hourcade
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Donald Michael Nelson
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Ultrasound and Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - John P Atkinson
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
19
|
Al-Mozaini MA, Tsolaki AG, Abdul-Aziz M, Abozaid SM, Al-Ahdal MN, Pathan AA, Murugaiah V, Makarov EM, Kaur A, Sim RB, Kishore U, Kouser L. Human Properdin Modulates Macrophage: Mycobacterium bovis BCG Interaction via Thrombospondin Repeats 4 and 5. Front Immunol 2018; 9:533. [PMID: 29867915 PMCID: PMC5951972 DOI: 10.3389/fimmu.2018.00533] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 03/01/2018] [Indexed: 02/01/2023] Open
Abstract
Mycobacterium tuberculosis can proficiently enter macrophages and diminish complement activation on its cell surface. Within macrophages, the mycobacterium can suppress macrophage apoptosis and survive within the intracellular environment. Previously, we have shown that complement regulatory proteins such as factor H may interfere with pathogen–macrophage interactions during tuberculosis infection. In this study, we show that Mycobacterium bovis BCG binds properdin, an upregulator of the complement alternative pathway. TSR4+5, a recombinant form of thrombospondin repeats 4 and 5 of human properdin expressed in tandem, which is an inhibitor of the alternative pathway, was also able to bind to M. bovis BCG. Properdin and TSR4+5 were found to inhibit uptake of M. bovis BCG by THP-1 macrophage cells in a dose-dependent manner. Quantitative real-time PCR revealed elevated pro-inflammatory responses (TNF-α, IL-1β, and IL-6) in the presence of properdin or TSR4+5, which gradually decreased over 6 h. Correspondingly, anti-inflammatory responses (IL-10 and TGF-β) showed suppressed levels of expression in the presence of properdin, which gradually increased over 6 h. Multiplex cytokine array analysis also revealed that properdin and TSR4+5 significantly enhanced the pro-inflammatory response (TNF-α, IL-1β, and IL-1α) at 24 h, which declined at 48 h, whereas the anti-inflammatory response (IL-10) was suppressed. Our results suggest that properdin may interfere with mycobacterial entry into macrophages via TSR4 and TSR5, particularly during the initial stages of infection, thus affecting the extracellular survival of the pathogen. This study offers novel insights into the non-complement related functions of properdin during host–pathogen interactions in tuberculosis.
Collapse
Affiliation(s)
- Maha Ahmed Al-Mozaini
- College of Health and Life Sciences, Brunel University London, London, United Kingdom.,Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Anthony G Tsolaki
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Munirah Abdul-Aziz
- College of Health and Life Sciences, Brunel University London, London, United Kingdom.,Department of Biochemistry, Oxford University, Oxford, United Kingdom
| | - Suhair M Abozaid
- College of Health and Life Sciences, Brunel University London, London, United Kingdom.,Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohammed N Al-Ahdal
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ansar A Pathan
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Valarmathy Murugaiah
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Evgeny M Makarov
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Anuvinder Kaur
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Robert B Sim
- Department of Biochemistry, Oxford University, Oxford, United Kingdom
| | - Uday Kishore
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Lubna Kouser
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
20
|
Ramírez-Toloza G, Ferreira A. Trypanosoma cruzi Evades the Complement System as an Efficient Strategy to Survive in the Mammalian Host: The Specific Roles of Host/Parasite Molecules and Trypanosoma cruzi Calreticulin. Front Microbiol 2017; 8:1667. [PMID: 28919885 PMCID: PMC5585158 DOI: 10.3389/fmicb.2017.01667] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/17/2017] [Indexed: 12/20/2022] Open
Abstract
American Trypanosomiasis is an important neglected reemerging tropical parasitism, infecting about 8 million people worldwide. Its agent, Trypanosoma cruzi, exhibits multiple mechanisms to evade the host immune response and infect host cells. An important immune evasion strategy of T. cruzi infective stages is its capacity to inhibit the complement system activation on the parasite surface, avoiding opsonizing, immune stimulating and lytic effects. Epimastigotes, the non-infective form of the parasite, present in triatomine arthropod vectors, are highly susceptible to complement-mediated lysis while trypomastigotes, the infective form, present in host bloodstream, are resistant. Thus T. cruzi susceptibility to complement varies depending on the parasite stage (amastigote, trypomastigotes or epimastigote) and on the T. cruzi strain. To avoid complement-mediated lysis, T. cruzi trypomastigotes express on the parasite surface a variety of complement regulatory proteins, such as glycoprotein 58/68 (gp58/68), T. cruzi complement regulatory protein (TcCRP), trypomastigote decay-accelerating factor (T-DAF), C2 receptor inhibitor trispanning (CRIT) and T. cruzi calreticulin (TcCRT). Alternatively, or concomitantly, the parasite captures components with complement regulatory activity from the host bloodstream, such as factor H (FH) and plasma membrane-derived vesicles (PMVs). All these proteins inhibit different steps of the classical (CP), alternative (AP) or lectin pathways (LP). Thus, TcCRP inhibits the CP C3 convertase assembling, gp58/68 inhibits the AP C3 convertase, T-DAF interferes with the CP and AP convertases assembling, TcCRT inhibits the CP and LP, CRIT confers ability to resist the CP and LP, FH is used by trypomastigotes to inhibit the AP convertases and PMVs inhibit the CP and LP C3 convertases. Many of these proteins have similar molecular inhibitory mechanisms. Our laboratory has contributed to elucidate the role of TcCRT in the host-parasite interplay. Thus, we have proposed that TcCRT is a pleiotropic molecule, present not only in the parasite endoplasmic reticulum, but also on the trypomastigote surface, participating in key processes to establish T. cruzi infection, such as inhibition of the complement system and serving as an important virulence factor. Additionally, TcCRT interaction with key complement components, participates as an anti-angiogenic and anti-tumor molecule, inhibiting at least in important part, tumor growth in infected animals.
Collapse
Affiliation(s)
- Galia Ramírez-Toloza
- Laboratory of Parasitology, Department of Animal Preventive Medicine, Faculty of Veterinary Medicine and Livestock Sciences, University of ChileSantiago, Chile
| | - Arturo Ferreira
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of ChileSantiago, Chile
| |
Collapse
|
21
|
Schatz-Jakobsen JA, Pedersen DV, Andersen GR. Structural insight into proteolytic activation and regulation of the complement system. Immunol Rev 2017; 274:59-73. [PMID: 27782336 DOI: 10.1111/imr.12465] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complement system is a highly complex and carefully regulated proteolytic cascade activated through three different pathways depending on the activator recognized. The structural knowledge regarding the intricate proteolytic enzymes that activate and control complement has increased dramatically over the last decade. This development has been pivotal for understanding how mutations within complement proteins might contribute to pathogenesis and has spurred new strategies for development of complement therapeutics. Here we describe and discuss the complement system from a structural perspective and integrate the most recent findings obtained by crystallography, small-angle X-ray scattering, and electron microscopy. In particular, we focus on the proteolytic enzymes governing activation and their products carrying the biological effector functions. Additionally, we present the structural basis for some of the best known complement inhibitors. The large number of accumulated molecular structures enables us to visualize the relative size, position, and overall orientation of many of the most interesting complement proteins and assembled complexes on activator surfaces and in membranes.
Collapse
Affiliation(s)
| | - Dennis V Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
22
|
Dixon KO, O'Flynn J, Klar-Mohamad N, Daha MR, van Kooten C. Properdin and factor H production by human dendritic cells modulates their T-cell stimulatory capacity and is regulated by IFN-γ. Eur J Immunol 2017; 47:470-480. [PMID: 28105653 PMCID: PMC5363362 DOI: 10.1002/eji.201646703] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/16/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) and complement are both key members of the innate and adaptive immune response. Recent experimental mouse models have shown that production of alternative pathway (AP) components by DCs strongly affects their ability to activate and regulate T-cell responses. In this study we investigated the production and regulation of properdin (fP) and factor H (fH) both integral regulators of the AP, by DCs and tolerogenic DCs (tolDCs). Both fP and fH were produced by DCs, with significantly higher levels of both AP components produced by tolDCs. Upon activation with IFN-γ both cells increased fH production, while simultaneously decreasing production of fP. IL-27, a member of the IL-12 family, increased fH, but production of fP remained unaffected. The functional capacity of fP and fH produced by DCs and tolDCs was confirmed by their ability to bind C3b. Inhibition of fH production by DCs resulted in a greater ability to induce allogenic CD4+ T-cell proliferation. In contrast, inhibition of fP production led to a significantly reduced allostimulatory capacity. In summary, this study shows that production of fP and fH by DCs, differentially regulates their immunogenicity, and that the local cytokine environment can profoundly affect the production of fP and fH.
Collapse
Affiliation(s)
- Karen O Dixon
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.,Evergrande Center for Immunologic Diseases at Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Joseph O'Flynn
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ngaisah Klar-Mohamad
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mohamed R Daha
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cees van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
23
|
Recent progress in the understanding of complement activation and its role in tumor growth and anti-tumor therapy. Biomed Pharmacother 2017; 91:446-456. [DOI: 10.1016/j.biopha.2017.04.101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 02/07/2023] Open
|
24
|
Ma YJ, Lee BL, Garred P. An overview of the synergy and crosstalk between pentraxins and collectins/ficolins: their functional relevance in complement activation. Exp Mol Med 2017; 49:e320. [PMID: 28428631 PMCID: PMC6130212 DOI: 10.1038/emm.2017.51] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023] Open
Abstract
The complement system is an innate immune defense machinery comprising components that deploy rapid immune responses and provide efficient protection against foreign invaders and unwanted host elements. The complement system is activated upon recognition of pathogenic microorganisms or altered self-cells by exclusive pattern recognition molecules (PRMs), such as collectins, ficolins and pentraxins. Recent accumulating evidence shows that the different classes of effector PRMs build up a co-operative network and exert synergistic effects on complement activation. In this review, we describe our updated view of the crosstalk between previously unlinked PRMs in complement activation and the potential pathogenic effects during infection and inflammation.
Collapse
Affiliation(s)
- Ying Jie Ma
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bok Luel Lee
- National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Busan, Korea
| | - Peter Garred
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Pedersen DV, Roumenina L, Jensen RK, Gadeberg TA, Marinozzi C, Picard C, Rybkine T, Thiel S, Sørensen UB, Stover C, Fremeaux-Bacchi V, Andersen GR. Functional and structural insight into properdin control of complement alternative pathway amplification. EMBO J 2017; 36:1084-1099. [PMID: 28264884 DOI: 10.15252/embj.201696173] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/16/2017] [Accepted: 01/31/2017] [Indexed: 12/22/2022] Open
Abstract
Properdin (FP) is an essential positive regulator of the complement alternative pathway (AP) providing stabilization of the C3 and C5 convertases, but its oligomeric nature challenges structural analysis. We describe here a novel FP deficiency (E244K) caused by a single point mutation which results in a very low level of AP activity. Recombinant FP E244K is monomeric, fails to support bacteriolysis, and binds weakly to C3 products. We compare this to a monomeric unit excised from oligomeric FP, which is also dysfunctional in bacteriolysis but binds the AP proconvertase, C3 convertase, C3 products and partially stabilizes the convertase. The crystal structure of such a FP-convertase complex suggests that the major contact between FP and the AP convertase is mediated by a single FP thrombospondin repeat and a small region in C3b. Small angle X-ray scattering indicates that FP E244K is trapped in a compact conformation preventing its oligomerization. Our studies demonstrate an essential role of FP oligomerization in vivo while our monomers enable detailed structural insight paving the way for novel modulators of complement.
Collapse
Affiliation(s)
- Dennis V Pedersen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Aarhus, Denmark
| | - Lubka Roumenina
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Rasmus K Jensen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Aarhus, Denmark
| | - Trine Af Gadeberg
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Aarhus, Denmark
| | - Chiara Marinozzi
- Assistance Publique - Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
| | - Capucine Picard
- Centre d'études des déficits immunitaires, CHU Paris - Hôpital Necker-Enfants Malades, Paris, France
| | - Tania Rybkine
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Cordula Stover
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Veronique Fremeaux-Bacchi
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Assistance Publique - Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
26
|
Berger BE. The Alternative Pathway of Complement and the Evolving Clinical-Pathophysiological Spectrum of Atypical Hemolytic Uremic Syndrome. Am J Med Sci 2016; 352:177-90. [PMID: 27524217 DOI: 10.1016/j.amjms.2016.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/31/2016] [Accepted: 05/03/2016] [Indexed: 01/31/2023]
Abstract
Complement-mediated atypical hemolytic uremic syndrome (aHUS) comprises approximately 90% of cases of aHUS, and results from dysregulation of endothelial-anchored complement activation with resultant endothelial damage. The discovery of biomarker ADAMTS13 has enabled a more accurate diagnosis of thrombotic thrombocytopenic purpura (TTP) and an appreciation of overlapping clinical features of TTP and aHUS. Given our present understanding of the pathogenic pathways involved in aHUS, it is unlikely that a specific test will be developed. Rather the use of biomarker data, complement functional analyses, genomic analyses and clinical presentation will be required to diagnose aHUS. This approach would serve to clarify whether a thrombotic microangiopathy present in a complement-amplifying condition arises from the unmasking of a genetically driven aHUS versus a time-limited complement storm-mediated aHUS due to direct endothelial damage in which no genetic predisposition is present. Although both scenarios result in the phenotypic expression of aHUS and involve the alternate pathway of complement activation, long-term management would differ.
Collapse
Affiliation(s)
- Bruce E Berger
- School of Medicine, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
27
|
Kouser L, Abdul-Aziz M, Tsolaki AG, Singhal D, Schwaeble WJ, Urban BC, Khan HA, Sim RB, Kishore U. A recombinant two-module form of human properdin is an inhibitor of the complement alternative pathway. Mol Immunol 2016; 73:76-87. [PMID: 27060503 DOI: 10.1016/j.molimm.2016.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 02/08/2023]
Abstract
Properdin upregulates the alternative complement pathway by binding and stabilising the C3 convertase complex (C3bBb). Properdin is a soluble glycoprotein and its flexible rod-like 53kDa monomers form cyclic polymers (dimers, trimers, tetramers and pentamers). The properdin monomer consists of seven thrombospondin type I repeats (TSR 0-6), which are similar and homologous to domains found in circumsporozoite and thrombospondin-related anonymous proteins of Plasmodium species, ETP100 of Eimeria tenella, various complement components C6-C9, and thrombospondin I and II. Using deletion constructs, TSR4 and TSR5 of human properdin were implicated in C3b binding and stabilising C3 convertase. However, individually expressed TSR4 or TSR5 failed to bind properdin ligands. Here, we have expressed and characterized biologically active TSR4 and TSR5 together (TSR4+5) in tandem in Escherichia coli, fused to maltose-binding protein. MBP-TSR4+5 bind solid-phase C3b, sulfatides and glycosaminoglycans. In addition, functionally active recombinant TSR4+5 modules inhibit the alternative pathway of complement.
Collapse
Affiliation(s)
- Lubna Kouser
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Munirah Abdul-Aziz
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Anthony G Tsolaki
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Dipti Singhal
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Wilhelm J Schwaeble
- Department of Infection, Immunity and Inflammation, Maurice Shock Medical Sciences Building, University Road, Leicester, LE1 9HN, UK
| | - Britta C Urban
- Liverpool School of Tropical Medicine, Pembroke Place Liverpool, L3 5QA, UK
| | - Haseeb A Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Robert B Sim
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK; Department of Infection, Immunity and Inflammation, Maurice Shock Medical Sciences Building, University Road, Leicester, LE1 9HN, UK
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| |
Collapse
|
28
|
Yuen J, Pluthero FG, Douda DN, Riedl M, Cherry A, Ulanova M, Kahr WHA, Palaniyar N, Licht C. NETosing Neutrophils Activate Complement Both on Their Own NETs and Bacteria via Alternative and Non-alternative Pathways. Front Immunol 2016; 7:137. [PMID: 27148258 PMCID: PMC4831636 DOI: 10.3389/fimmu.2016.00137] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/28/2016] [Indexed: 01/28/2023] Open
Abstract
Neutrophils deposit antimicrobial proteins, such as myeloperoxidase and proteases on chromatin, which they release as neutrophil extracellular traps (NETs). Neutrophils also carry key components of the complement alternative pathway (AP) such as properdin or complement factor P (CFP), complement factor B (CFB), and C3. However, the contribution of these complement components and complement activation during NET formation in the presence and absence of bacteria is poorly understood. We studied complement activation on NETs and a Gram-negative opportunistic bacterial pathogen Pseudomonas aeruginosa (PA01, PAKwt, and PAKgfp). Here, we show that anaphylatoxin C5a, formyl-methionyl-leucyl-phenylalanine (fMLP) and phorbol myristate acetate (PMA), which activates NADPH oxidase, induce the release of CFP, CFB, and C3 from neutrophils. In response to PMA or P. aeruginosa, neutrophils secrete CFP, deposit it on NETs and bacteria, and induce the formation of terminal complement complexes (C5b-9). A blocking anti-CFP antibody inhibited AP-mediated but not non-AP-mediated complement activation on NETs and P. aeruginosa. Therefore, NET-mediated complement activation occurs via both AP- and non AP-based mechanisms, and AP-mediated complement activation during NETosis is dependent on CFP. These findings suggest that neutrophils could use their "AP tool kit" to readily activate complement on NETs and Gram-negative bacteria, such as P. aeruginosa, whereas additional components present in the serum help to fix non-AP-mediated complement both on NETs and bacteria. This unique mechanism may play important roles in host defense and help to explain specific roles of complement activation in NET-related diseases.
Collapse
Affiliation(s)
- Joshua Yuen
- Cell Biology Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Program in Physiology and Experimental Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Fred G Pluthero
- Cell Biology Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - David N Douda
- Program in Physiology and Experimental Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Magdalena Riedl
- Cell Biology Program, The Hospital for Sick Children Research Institute , Toronto, ON , Canada
| | - Ahmed Cherry
- Cell Biology Program, The Hospital for Sick Children Research Institute , Toronto, ON , Canada
| | - Marina Ulanova
- Division of Medical Sciences, Northern Ontario School of Medicine, Lakehead University , Thunder Bay, ON , Canada
| | - Walter H A Kahr
- Cell Biology Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Nades Palaniyar
- Program in Physiology and Experimental Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Christoph Licht
- Cell Biology Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Program in Physiology and Experimental Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Department of Paediatrics, University of Toronto, Toronto, ON, Canada; Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
29
|
Macedo ACL, Isaac L. Systemic Lupus Erythematosus and Deficiencies of Early Components of the Complement Classical Pathway. Front Immunol 2016; 7:55. [PMID: 26941740 PMCID: PMC4764694 DOI: 10.3389/fimmu.2016.00055] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/05/2016] [Indexed: 12/24/2022] Open
Abstract
The complement system plays an important role in the innate and acquired immune response against pathogens. It consists of more than 30 proteins found in soluble form or attached to cell membranes. Most complement proteins circulate in inactive forms and can be sequentially activated by the classical, alternative, or lectin pathways. Biological functions, such as opsonization, removal of apoptotic cells, adjuvant function, activation of B lymphocytes, degranulation of mast cells and basophils, and solubilization and clearance of immune complex and cell lysis, are dependent on complement activation. Although the activation of the complement system is important to avoid infections, it also can contribute to the inflammatory response triggered by immune complex deposition in tissues in autoimmune diseases. Paradoxically, the deficiency of early complement proteins from the classical pathway (CP) is strongly associated with development of systemic lupus erythematous (SLE) - mainly C1q deficiency (93%) and C4 deficiency (75%). The aim of this review is to focus on the deficiencies of early components of the CP (C1q, C1r, C1s, C4, and C2) proteins in SLE patients.
Collapse
Affiliation(s)
- Ana Catarina Lunz Macedo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Faculty of Medicine, Children's Hospital, Clinics Hospital, University of São Paulo, São Paulo, Brazil
| | - Lourdes Isaac
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| |
Collapse
|
30
|
Corvillo F, Bravo García-Morato M, Nozal P, Garrido S, Tortajada A, Rodríguez de Córdoba S, López-Trascasa M. Serum properdin consumption as a biomarker of C5 convertase dysregulation in C3 glomerulopathy. Clin Exp Immunol 2016; 184:118-25. [PMID: 26660535 DOI: 10.1111/cei.12754] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022] Open
Abstract
Properdin (P) stabilizes the alternative pathway (AP) convertases, being the only known positive regulator of the complement system. In addition, P is a pattern recognition molecule able to initiate directly the AP on non-self surfaces. Although P deficiencies have long been known to be associated with Neisseria infections and P is often found deposited at sites of AP activation and tissue injury, the potential role of P in the pathogenesis of complement dysregulation-associated disorders has not been studied extensively. Serum P levels were measured in 49 patients with histological and clinical evidence of C3 glomerulopathy (C3G). Patients were divided into two groups according to the presence or absence of C3 nephritic factor (C3NeF), an autoantibody that stabilizes the AP C3 convertase. The presence of this autoantibody results in a significant reduction in circulating C3 (P < 0·001) and C5 levels (P < 0·05), but does not alter factor B, P and sC5b-9 levels. Interestingly, in our cohort, serum P levels were low in 17 of the 32 C3NeF-negative patients. This group exhibited significant reduction of C3 (P < 0·001) and C5 (P < 0·001) and increase of sC5b-9 (P < 0·001) plasma levels compared to the control group. Also, P consumption was correlated significantly with C3 (r = 0·798, P = 0·0001), C5 (r = 0·806, P < 0·0001), sC5b-9 (r = -0·683, P = 0·043) and a higher degree of proteinuria (r = -0·862, P = 0·013). These results illustrate further the heterogeneity among C3G patients and suggest that P serum levels could be a reliable clinical biomarker to identify patients with underlying surface AP C5 convertase dysregulation.
Collapse
Affiliation(s)
- F Corvillo
- Unidad de Inmunología, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U754), Madrid, Spain
| | | | - P Nozal
- Unidad de Inmunología, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U754), Madrid, Spain
| | - S Garrido
- Unidad de Inmunología, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U754), Madrid, Spain
| | - A Tortajada
- Centro De Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain (CIB-CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CBERER U738), Madrid, Spain
| | - S Rodríguez de Córdoba
- Centro De Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain (CIB-CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CBERER U738), Madrid, Spain
| | - M López-Trascasa
- Unidad de Inmunología, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U754), Madrid, Spain
| |
Collapse
|
31
|
Ma YJ, Hein E, Munthe-Fog L, Skjoedt MO, Bayarri-Olmos R, Romani L, Garred P. Soluble Collectin-12 (CL-12) Is a Pattern Recognition Molecule Initiating Complement Activation via the Alternative Pathway. THE JOURNAL OF IMMUNOLOGY 2015; 195:3365-73. [DOI: 10.4049/jimmunol.1500493] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/23/2015] [Indexed: 12/12/2022]
|
32
|
Kenawy HI, Boral I, Bevington A. Complement-Coagulation Cross-Talk: A Potential Mediator of the Physiological Activation of Complement by Low pH. Front Immunol 2015; 6:215. [PMID: 25999953 PMCID: PMC4422095 DOI: 10.3389/fimmu.2015.00215] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/18/2015] [Indexed: 11/26/2022] Open
Abstract
The complement system is a major constituent of the innate immune system. It not only bridges innate and adaptive arms of the immune system but also links the immune system with the coagulation system. Current understanding of the role of complement has extended far beyond fighting of infections, and now encompasses maintenance of homeostasis, tissue regeneration, and pathophysiology of multiple diseases. It has been known for many years that complement activation is strongly pH sensitive, but only relatively recently has the physiological significance of this been appreciated. Most complement assays are carried out at the physiological pH 7.4. However, pH in some extracellular compartments, for example, renal tubular fluid in parts of the tubule, and extracellular fluid at inflammation loci, is sufficiently acidic to activate complement. The exact molecular mechanism of this activation is still unclear, but possible cross-talk between the contact system (intrinsic pathway) and complement may exist at low pH with subsequent complement activation. The current article reviews the published data on the effect of pH on the contact system and complement activity, the nature of the pH sensor molecules, and the clinical implications of these effects. Of particular interest is chronic kidney disease (CKD) accompanied by metabolic acidosis, in which therapeutic alkalinization of urine has been shown significantly to reduce tubular complement activation products, an effect, which may have important implications for slowing progression of CKD.
Collapse
Affiliation(s)
- Hany Ibrahim Kenawy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University , Mansoura , Egypt
| | - Ismet Boral
- Department of Infection, Immunity and Inflammation, College of Medicine, Biological Sciences and Psychology, University of Leicester , Leicester , UK
| | - Alan Bevington
- Department of Infection, Immunity and Inflammation, College of Medicine, Biological Sciences and Psychology, University of Leicester , Leicester , UK
| |
Collapse
|
33
|
Segers FM, Verdam FJ, de Jonge C, Boonen B, Driessen A, Shiri-Sverdlov R, Bouvy ND, Greve JWM, Buurman WA, Rensen SS. Complement alternative pathway activation in human nonalcoholic steatohepatitis. PLoS One 2014; 9:e110053. [PMID: 25299043 PMCID: PMC4192551 DOI: 10.1371/journal.pone.0110053] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/08/2014] [Indexed: 01/07/2023] Open
Abstract
The innate immune system plays a major role in the pathogenesis of nonalcoholic steatohepatitis (NASH). Recently we reported complement activation in human NASH. However, it remained unclear whether the alternative pathway of complement, which amplifies C3 activation and which is frequently associated with pathological complement activation leading to disease, was involved. Here, alternative pathway components were investigated in liver biopsies of obese subjects with healthy livers (n = 10) or with NASH (n = 12) using quantitative PCR, Western blotting, and immunofluorescence staining. Properdin accumulated in areas where neutrophils surrounded steatotic hepatocytes, and colocalized with the C3 activation product C3c. C3 activation status as expressed by the C3c/native C3 ratio was 2.6-fold higher (p<0.01) in subjects with NASH despite reduced native C3 concentrations (0.94±0.12 vs. 0.57±0.09; p<0.01). Hepatic properdin levels positively correlated with levels of C3c (rs = 0.69; p<0.05) and C3c/C3 activation ratio (rs = 0.59; p<0.05). C3c, C3 activation status (C3c/C3 ratio) and properdin levels increased with higher lobular inflammation scores as determined according to the Kleiner classification (C3c: p<0.01, C3c/C3 ratio: p<0.05, properdin: p<0.05). Hepatic mRNA expression of factor B and factor D did not differ between subjects with healthy livers and subjects with NASH (factor B: 1.00±0.19 vs. 0.71±0.07, p = 0.26; factor D: 1.00±0.21 vs. 0.66±0.14, p = 0.29;). Hepatic mRNA and protein levels of Decay Accelerating Factor tended to be increased in subjects with NASH (mRNA: 1.00±0.14 vs. 2.37±0.72; p = 0.22; protein: 0.51±0.11 vs. 1.97±0.67; p = 0.28). In contrast, factor H mRNA was downregulated in patients with NASH (1.00±0.09 vs. 0.71±0.06; p<0.05) and a similar trend was observed with hepatic protein levels (1.12±0.16 vs. 0.78±0.07; p = 0.08). Collectively, these data suggest a role for alternative pathway activation in driving hepatic inflammation in NASH. Therefore, alternative pathway factors may be considered attractive targets for treating NASH by inhibiting complement activation.
Collapse
Affiliation(s)
- Filip M. Segers
- Department of General Surgery, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Froukje J. Verdam
- Department of General Surgery, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Charlotte de Jonge
- Department of General Surgery, Maastricht University Medical Centre+, Maastricht, the Netherlands
- Department of Surgery, Atrium Medical Centre Parkstad, Heerlen, the Netherlands
| | - Bas Boonen
- Department of General Surgery, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Ann Driessen
- Department of Pathology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Genetics and Cell Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Nicole D. Bouvy
- Department of General Surgery, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Jan Willem M. Greve
- Department of Surgery, Atrium Medical Centre Parkstad, Heerlen, the Netherlands
| | - Wim A. Buurman
- Department of General Surgery, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Sander S. Rensen
- Department of General Surgery, Maastricht University Medical Centre+, Maastricht, the Netherlands
- * E-mail:
| |
Collapse
|
34
|
Nagamachi S, Ohsawa I, Suzuki H, Sato N, Inoshita H, Hisada A, Honda D, Shimamoto M, Shimizu Y, Horikoshi S, Tomino Y. Properdin has an ascendancy over factor H regulation in complement-mediated renal tubular damage. BMC Nephrol 2014; 15:82. [PMID: 24885016 PMCID: PMC4037424 DOI: 10.1186/1471-2369-15-82] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 05/14/2014] [Indexed: 02/13/2023] Open
Abstract
Background Urinary (U)-complement components have been detected in patients with proteinuric renal diseases, and complement activation via the alternative pathway (AP) is believed to play a role in renal tubular damage. The present study aimed to examine the regulation of complement AP activation in patients with renal tubular damage by focusing on the balance between properdin (P) and factor H (fH). Methods In the in vivo studies, U concentrations of P, fH and membrane attack complex (MAC) were measured in patients with renal diseases using an enzyme-linked immunosorbent assay (ELISA), and their relationships with the clinical data were evaluated. In the in vitro studies, human proximal tubular epithelial cells (PTECs) were incubated with normal human serum (NHS), P-depleted serum (PDS), purified P and/or fH. Changes in cell morphology and phenotype were assessed by microscopy, real-time polymerase chain reaction (PCR), immunostaining and a cell viability assay. Results The U-P, fH and MAC concentrations were significantly higher in patients with renal disease than in normal controls and correlated with the U-protein and tubular damage markers. Furthermore, multivariate analysis revealed a relationship between P levels and tubular damage markers. There were no significant changes in morphology and mRNA expression in the AP components (P, fH, fB, C3, C5 and C9) after the addition of up to 25% NHS. Dose-dependent depositions of P or fH were observed after the addition of P or fH on PTECs. Depositions of P were not inhibited by fH in a mixture of a fixed concentration of P and a variable concentration of fH, and vice versa. Preincubation with the fixed concentration of P before the addition of NHS or PDS increased the depositions of P, C3 and MAC compared with incubation with intact NHS or intact PDS only; the depositions of C3 and MAC showed a serum-dependent trend. Preincubation with P before NHS addition significantly suppressed cell viability without causing morphological changes. Conclusions In the pathogenesis of renal tubular damage, P can directly bind to PTECs and may accelerate AP activation by surpassing fH regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yasuhiko Tomino
- Division of Nephrology, Department of Internadl Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.
| |
Collapse
|
35
|
Abstract
Although new activation and regulatory mechanisms are still being identified, the basic architecture of the complement system has been known for decades. Two major roles of complement are to control certain bacterial infections and to promote clearance of apoptotic cells. In addition, although inappropriate complement activation has long been proposed to cause tissue damage in human inflammatory and autoimmune diseases, whether this is indeed true has been uncertain. However, recent studies in humans, especially those using newly available biological therapeutics, have now clearly demonstrated the pathophysiologic importance of the complement system in several rare diseases. Beyond these conditions, recent genetic studies have strongly supported an injurious role for complement in a wide array of human inflammatory, degenerative, and autoimmune diseases. This review includes an overview of complement activation, regulatory, and effector mechanisms. It then focuses on new understandings gained from genetic studies, ex vivo analyses, therapeutic trials, and animal models as well as on new research opportunities.
Collapse
Affiliation(s)
- V Michael Holers
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045;
| |
Collapse
|
36
|
Duehrkop C, Rieben R. Ischemia/reperfusion injury: effect of simultaneous inhibition of plasma cascade systems versus specific complement inhibition. Biochem Pharmacol 2013; 88:12-22. [PMID: 24384116 DOI: 10.1016/j.bcp.2013.12.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/25/2013] [Accepted: 12/16/2013] [Indexed: 02/06/2023]
Abstract
Ischemia/reperfusion injury (IRI) may occur from ischemia due to thrombotic occlusion, trauma or surgical interventions, including transplantation, with subsequent reestablishment of circulation. Time-dependent molecular and structural changes result from the deprivation of blood and oxygen in the affected tissue during ischemia. Upon restoration of blood flow a multifaceted network of plasma cascades is activated, including the complement-, coagulation-, kinin-, and fibrinolytic system, which plays a major role in the reperfusion-triggered inflammatory process. The plasma cascade systems are therefore promising therapeutic targets for attenuation of IRI. Earlier studies showed beneficial effects through inhibition of the complement system using specific complement inhibitors. However, pivotal roles in IRI are also attributed to other cascades. This raises the question, whether drugs, such as C1 esterase inhibitor, which regulate more than one cascade at a time, have a higher therapeutic potential. The present review discusses different therapeutic approaches ranging from specific complement inhibition to simultaneous inhibition of plasma cascade systems for reduction of IRI, gives an overview of the plasma cascade systems in IRI as well as highlights recent findings in this field.
Collapse
Affiliation(s)
- Claudia Duehrkop
- Department of Clinical Research, University of Bern, Murtenstrasse 50, P.O. Box 44, CH-3010 Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Robert Rieben
- Department of Clinical Research, University of Bern, Murtenstrasse 50, P.O. Box 44, CH-3010 Bern, Switzerland.
| |
Collapse
|
37
|
Manenti L, Gnappi E, Vaglio A, Allegri L, Noris M, Bresin E, Pilato FP, Valoti E, Pasquali S, Buzio C. Atypical haemolytic uraemic syndrome with underlying glomerulopathies. A case series and a review of the literature. Nephrol Dial Transplant 2013; 28:2246-59. [DOI: 10.1093/ndt/gft220] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Zhang Y, Chen J, Yao F, Ji D, Li H, Zhang S. Expression and functional analysis of properdin in zebrafish Danio rerio. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:123-131. [PMID: 23416932 DOI: 10.1016/j.dci.2013.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/01/2013] [Accepted: 02/01/2013] [Indexed: 06/01/2023]
Abstract
Properdin, an upregulator of the alternative complement pathway, has been thoroughly studied in the mammalian species, but its research in the lower vertebrates such as fish is rather limited. Additionally, information regarding the structure-activity relationship of properdin remains rather fragmentary. In this report, we showed that zebrafish properdin gene zfp was abundantly expressed in the liver of adult fish, while it was primarily expressed in the brain, neural plate, developing lens, and neutrophil in the early embryos/larvae. Recombinant TSR modules of zfP were demonstrated to be able to bind to C3b, LPS, LTA and both gram-negative and positive bacteria. Moreover, TSR5 of zfP was able to enhance the phagocytosis of microbes by macrophages. These results together support the notion that properdin is a pattern recognition molecule capable of identifying non-self antigens/structures, and indicate that TSR5 plays a central role in the capacity of properdin to promote phagocytosis. It is also suggested that properdin is associated with the pattern formation and immune defense of early developing embryos/larvae.
Collapse
Affiliation(s)
- Yanjie Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | | | | | | | | | | |
Collapse
|
39
|
Kouser L, Abdul-Aziz M, Nayak A, Stover CM, Sim RB, Kishore U. Properdin and factor h: opposing players on the alternative complement pathway "see-saw". Front Immunol 2013; 4:93. [PMID: 23630525 PMCID: PMC3632793 DOI: 10.3389/fimmu.2013.00093] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/05/2013] [Indexed: 12/16/2022] Open
Abstract
Properdin and factor H are two key regulatory proteins having opposite functions in the alternative complement pathway. Properdin up-regulates the alternative pathway by stabilizing the C3bBb complex, whereas factor H downregulates the pathway by promoting proteolytic degradation of C3b. While factor H is mainly produced in the liver, there are several extrahepatic sources. In addition to the liver, factor H is also synthesized in fetal tubuli, keratinocytes, skin fibroblasts, ocular tissue, adipose tissue, brain, lungs, heart, spleen, pancreas, kidney, muscle, and placenta. Neutrophils are the major source of properdin, and it is also produced by monocytes, T cells and bone marrow progenitor cell line. Properdin is released by neutrophils from intracellular stores following stimulation by N-formyl-methionine-leucine-phenylalanine (fMLP) and tumor necrosis factor alpha (TNF-α). The HEP G2 cells derived from human liver has been found to produce functional properdin. Endothelial cells also produce properdin when induced by shear stress, thus is a physiological source for plasma properdin. The diverse range of extrahepatic sites for synthesis of these two complement regulators suggests the importance and need for local availability of the proteins. Here, we discuss the significance of the local synthesis of properdin and factor H. This assumes greater importance in view of recently identified unexpected and novel roles of properdin and factor H that are potentially independent of their involvement in complement regulation.
Collapse
Affiliation(s)
- Lubna Kouser
- Centre for Infection, Immunity and Disease Mechanisms, Biosciences, School of Health Sciences and Social Care, Brunel University London, UK
| | | | | | | | | | | |
Collapse
|
40
|
Roles for endothelial cells in dengue virus infection. Adv Virol 2012; 2012:840654. [PMID: 22952474 PMCID: PMC3431041 DOI: 10.1155/2012/840654] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 07/19/2012] [Indexed: 02/06/2023] Open
Abstract
Dengue viruses cause two severe diseases that alter vascular fluid barrier functions, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The endothelium is the primary fluid barrier of the vasculature and ultimately the effects of dengue virus infection that cause capillary leakage impact endothelial cell (EC) barrier functions. The ability of dengue virus to infect the endothelium provides a direct means for dengue to alter capillary permeability, permit virus replication, and induce responses that recruit immune cells to the endothelium. Recent studies focused on dengue virus infection of primary ECs have demonstrated that ECs are efficiently infected, rapidly produce viral progeny, and elicit immune enhancing cytokine responses that may contribute to pathogenesis. Furthermore, infected ECs have also been implicated in enhancing viremia and immunopathogenesis within murine dengue disease models. Thus dengue-infected ECs have the potential to directly contribute to immune enhancement, capillary permeability, viremia, and immune targeting of the endothelium. These effects implicate responses of the infected endothelium in dengue pathogenesis and rationalize therapeutic targeting of the endothelium and EC responses as a means of reducing the severity of dengue virus disease.
Collapse
|
41
|
Dimitrova P, Ivanovska N, Belenska L, Milanova V, Schwaeble W, Stover C. Abrogated RANKL expression in properdin-deficient mice is associated with better outcome from collagen-antibody-induced arthritis. Arthritis Res Ther 2012; 14:R173. [PMID: 22830570 PMCID: PMC3580567 DOI: 10.1186/ar3926] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/25/2012] [Indexed: 02/07/2023] Open
Abstract
Introduction Properdin amplifies the alternative pathway of complement activation. In the present study, we evaluated its role in the development of collagen antibody-induced arthritis (CAIA). Methods Arthritis was induced by intraperitoneal injection of a collagen antibody cocktail into properdin-deficient (KO) and wild-type (WT) C57BL/6 mice. Symptoms of disease were evaluated daily. The degree of joint damage was assessed histologically and with immunostaining for bone-resorption markers. Phenotypes of cell populations, their receptor expression, and intracellular cytokine production were determined with flow cytometry. Osteoclast differentiation of bone marrow (BM) precursors was evaluated by staining for tartrate-resistant acid phosphatase (TRAP). Results Properdin-deficient mice developed less severe CAIA than did WT mice. They showed significantly improved clinical scores and downregulated expression of bone-resorption markers in the joints at day 10 of disease. The frequencies of Ly6G+CD11b+ cells were fewer in BM, blood, and synovial fluid (SF) of KO than of WT CAIA mice. The receptor activator of nuclear factor κB ligand (RANKL) was downregulated on arthritic KO neutrophils from BM and the periphery. Decreased C5a amounts in KO SF contributed to lower frequencies of CD5aR+-bearing neutrophils. In blood, surface C5aR was detected on KO Ly6G+ cells as a result of low receptor engagement. Circulating CD4+ T cells had an altered ability to produce interleukin (IL)-17 and interferon (IFN)-γ and to express RANKL. In KO CAIA mice, decreased frequencies of CD4+ T cells in the spleen were related to low CD86 expression on Ly6GhighCD11b+ cells. Arthritic KO T cells spontaneously secreted IFN-γ but not IL-17 and IL-6, and responded to restimulation with less-vigorous cytokine production in comparison to WT cells. Fewer TRAP-positive mature osteoclasts were found in KO BM cell cultures. Conclusions Our data show that the active involvement of properdin in arthritis is related to an increased proinflammatory cytokine production and RANKL expression on immune cells and to a stimulation of the RANKL-dependent osteoclast differentiation.
Collapse
|
42
|
Collins AJ, Schleicher TR, Rader BA, Nyholm SV. Understanding the role of host hemocytes in a squid/vibrio symbiosis using transcriptomics and proteomics. Front Immunol 2012; 3:91. [PMID: 22590467 PMCID: PMC3349304 DOI: 10.3389/fimmu.2012.00091] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/08/2012] [Indexed: 11/13/2022] Open
Abstract
The symbiosis between the squid, Euprymna scolopes, and the bacterium, Vibrio fischeri, serves as a model for understanding interactions between beneficial bacteria and animal hosts. The establishment and maintenance of the association is highly specific and depends on the selection of V. fischeri and exclusion of non-symbiotic bacteria from the environment. Current evidence suggests that the host's cellular innate immune system, in the form of macrophage-like hemocytes, helps to mediate host tolerance of V. fischeri. To begin to understand the role of hemocytes in this association, we analyzed these cells by high-throughput 454 transcriptomic and liquid chromatography/tandem mass spectrometry (LC-MS/MS) proteomic analyses. 454 high-throughput sequencing produced 650, 686 reads totaling 279.9 Mb while LC-MS/MS analyses of circulating hemocytes putatively identified 702 unique proteins. Several receptors involved with the recognition of microbial-associated molecular patterns were identified. Among these was a complete open reading frame to a putative peptidoglycan recognition protein (EsPGRP5) with conserved residues for amidase activity. Assembly of the hemocyte transcriptome showed EsPGRP5 had high coverage, suggesting it is among the 5% most abundant transcripts in circulating hemocytes. Other transcripts and proteins identified included members of the conserved NF-κB signaling pathway, putative members of the complement pathway, the carbohydrate binding protein galectin, and cephalotoxin. Quantitative Real-Time PCR of complement-like genes, cephalotoxin, EsPGRP5, and a nitric oxide synthase showed differential expression in circulating hemocytes from adult squid with colonized light organs compared to those isolated from hosts where the symbionts were removed. These data suggest that the presence of the symbiont influences gene expression of the cellular innate immune system of E. scolopes.
Collapse
Affiliation(s)
- Andrew J Collins
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | | | | | | |
Collapse
|
43
|
Gauvreau D, Roy C, Tom FQ, Lu H, Miegueu P, Richard D, Song WC, Stover C, Cianflone K. A new effector of lipid metabolism: Complement factor properdin. Mol Immunol 2012; 51:73-81. [DOI: 10.1016/j.molimm.2012.02.110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 02/01/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
|
44
|
Cipriani V, Matharu BK, Khan JC, Shahid H, Stanton CM, Hayward C, Wright AF, Bunce C, Clayton DG, Moore AT, Yates JRW. Genetic variation in complement regulators and susceptibility to age-related macular degeneration. Immunobiology 2012; 217:158-61. [PMID: 22024702 PMCID: PMC3657157 DOI: 10.1016/j.imbio.2011.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/15/2011] [Accepted: 09/28/2011] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Age-related macular degeneration (AMD) is the commonest cause of blindness in Western populations. Risk is influenced by age, genetic and environmental factors. Complement activation appears to be important in the pathogenesis and associations have been found between AMD and genetic variations in complement regulators such as complement factor H. We therefore investigated other complement regulators for association with AMD. METHODS We carried out a case-control study to test for association between AMD and single nucleotide polymorphisms (SNPs) spanning the genes encoding complement factor P (CFP, properdin), CD46 (membrane cofactor protein, MCP), CD55 (decay accelerating factor, DAF) and CD59 (protectin). All cases and controls were examined by an ophthalmologist and had independent grading of fundus photographs to confirm their disease status. RESULTS 20 SNPs were genotyped in 446 cases and 262 controls. For two SNPs with p-values approaching significance additional subjects were genotyped to increase the numbers to 622 cases and 359 controls. There was no evidence of association between AMD and any of the SNPs typed in CFP, CD46, CD55 or CD59. CONCLUSIONS In a case-control sample that has shown the well established associations between AMD and variants in CFH, CFB and C3 there was absence of association with SNPs in CFP, CD46, CD55 and CD59. This suggests that these are not important susceptibility genes for AMD.
Collapse
Key Words
- amd, age-related macular degeneration
- arm, age-related maculopathy
- cfb, complement factor b
- cfh, complement factor h
- ci, confidence interval
- cpi, complement factor i
- cfp, complement factor p
- cnv, choroidal neovascularisation
- daf, decay accelerating factor
- dna, deoxyribonucleic acid
- ga, geographic atrophy
- hwe, hardy–weinberg equilibrium
- mac, membrane attack complex
- maf, minor allele frequency
- mcp, membrane cofactor protein
- or, odds ratio
- rpe, retinal pigment epithelium
- snp, single nucleotide polymorphism
- age-related macular degeneration
- complement
- complement regulators
- genetic association
- genetic variation
- single nucleotide polymorphism
Collapse
Affiliation(s)
- Valentina Cipriani
- Institute of Ophthalmology, Department of Genetics, University College London, 11-43 Bath Street, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Antibody directs properdin-dependent activation of the complement alternative pathway in a mouse model of abdominal aortic aneurysm. Proc Natl Acad Sci U S A 2012; 109:E415-22. [PMID: 22308431 DOI: 10.1073/pnas.1119000109] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a complex inflammatory vascular disease. There are currently limited treatment options for AAA when surgery is inapplicable. Therefore, insights into molecular mechanisms underlying AAA pathogenesis may reveal therapeutic targets that could be manipulated pharmacologically or biologically to halt disease progression. Using an elastase-induced AAA mouse model, we previously established that the complement alternative pathway (AP) plays a critical role in the development of AAA. However, the mechanism by which complement AP is initiated remains undefined. The complement protein properdin, traditionally viewed as a positive regulator of the AP, may also initiate complement activation by binding directly to target surfaces. In this study, we sought to determine whether properdin serves as a focal point for the initiation of the AP complement activation in AAA. Using a properdin loss of function mutation in mice and a mutant form of the complement factor B protein that produces a stable, properdin-free AP C3 convertase, we show that properdin is required for the development of elastase-induced AAA in its primary role as a convertase stabilizer. Unexpectedly, we find that, in AAA, natural IgG antibodies direct AP-mediated complement activation. The absence of IgG abrogates C3 deposition in elastase-perfused aortic wall and protects animals from AAA development. We also determine that blockade of properdin activity prevents aneurysm formation. These results indicate that an innate immune response to self-antigens activates the complement system and initiates the inflammatory cascade in AAA. Moreover, the study suggests that properdin-targeting strategies may halt aneurysmal growth.
Collapse
|
46
|
Ratajczak MZ, Kim C, Wu W, Shin DM, Bryndza E, Kucia M, Ratajczak J. The role of innate immunity in trafficking of hematopoietic stem cells-an emerging link between activation of complement cascade and chemotactic gradients of bioactive sphingolipids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 946:37-54. [PMID: 21948361 DOI: 10.1007/978-1-4614-0106-3_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) circulate under steady-state conditions at detectable levels in peripheral blood (PB). The phenomenon of enforced release of HSPCs from BM into PB is called mobilization and may be envisioned as a danger-sensing response mechanism triggered by hypoxia or mechanical- or infection-induced tissue damage and is a part of stress response. It is unquestionable that the a-chemokine stromal derived factor-1 (SDF-1)-CXCR4 axis plays crucial role in retention of HSPCs in BM. However, all factors that direct mobilization of HSPCs into PB and homing back to the BM or their allocation to damaged organs are not characterized very well. In this chapter we will present mounting evidence that elements of innate immunity such as complement cascade (CC) cleavage fragments (e.g., C3a and C5a), granulocytes, generation of membrane attack complex (MAC) together with sphingosine-1 phosphate (S1P) orchestrate HSPC mobilization. On other hand some other bioactive lipids e.g., ceramide-1-phosphate (C1P) that is released from damaged/"leaky" cells in BM after myeloablative conditioning for transplant may play an opposite important role in homing of HSPCs to BM. Finally, the chemotactic activity of all chemoattractants for HSPCs including SDF-1, S1P and C1P is enhanced in presence of CC cleavage fragments (e.g., C3a) and MAC that is a final product of CC activation.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Ye RR, Lei ENY, Lam MHW, Chan AKY, Bo J, van de Merwe JP, Fong ACC, Yang MMS, Lee JS, Segner HE, Wong CKC, Wu RSS, Au DWT. Gender-specific modulation of immune system complement gene expression in marine medaka Oryzias melastigma following dietary exposure of BDE-47. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 19:2477-87. [PMID: 22828878 PMCID: PMC3404281 DOI: 10.1007/s11356-012-0887-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 03/20/2012] [Indexed: 05/11/2023]
Abstract
BDE-47 is one of the most widely found congeners of PBDEs in marine environments. The potential immunomodulatory effects of BDE-47 on fish complement system were studied using the marine medaka Oryzias melastigma as a model fish. Three-month-old O. melastigma were subjected to short-term (5 days) and long-term (21 days) exposure to two concentrations of BDE-47 (low dose at 290 ± 172 ng/day; high dose at 580 ± 344 ng/day) via dietary uptake of BDE-47 encapsulated in Artemia nauplii. Body burdens of BDE-47 and other metabolic products were analyzed in the exposed and control fish. Only a small amount of debrominated product, BDE-28, was detected, while other metabolic products were all under detection limit. Transcriptional expression of six major complement system genes involved in complement activation: C1r/s (classical pathway), MBL-2 (lectin pathway), CFP (alternative pathway), F2 (coagulation pathway), C3 (the central component of complement system), and C9 (cell lysis) were quantified in the liver of marine medaka. Endogenous expression of all six complement system genes was found to be higher in males than in females (p < 0.05). Upon dietary exposure of marine medaka to BDE-47, expression of all six complement genes were downregulated in males at day 5 (or longer), whereas in females, MBl-2, CFP, and F2 mRNAs expression were upregulated, but C3 and C9 remained stable with exposure time and dose. A significant negative relationship was found between BDE-47 body burden and mRNA expression of C1r/s, CFP, and C3 in male fish (r = -0.8576 to -0.9447). The above findings on changes in complement gene expression patterns indicate the complement system may be compromised in male O. melastigma upon dietary exposure to BDE-47. Distinct gender difference in expression of six major complement system genes was evident in marine medaka under resting condition and dietary BDE-47 challenge. The immunomodulatory effects of BDE-47 on transcriptional expression of these complement components in marine medaka were likely induced by the parent compound instead of biotransformed products. Our results clearly demonstrate that future direction for fish immunotoxicology and risk assessment of immunosuppressive chemicals must include parallel evaluation for both genders.
Collapse
Affiliation(s)
- Roy R. Ye
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Elva N. Y. Lei
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Michael H. W. Lam
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Alice K. Y. Chan
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Jun Bo
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Jason P. van de Merwe
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Amy C. C. Fong
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Michael M. S. Yang
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - J. S. Lee
- National Research Lab of Marine Molecular and Environmental Bioscience, Department of Chemistry College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Helmut E. Segner
- Centre for Fish and Wildlife Health, University of Bern, CH3012 Bern, Switzerland
| | - Chris K. C. Wong
- Department of Biology, Baptist University of Hong Kong, Kowloon Tong, Hong Kong
| | - Rudolf S. S. Wu
- School of Biological Science, The University of Hong Kong, Pokfulam, Hong Kong
| | - Doris W. T. Au
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
48
|
|
49
|
Veerhuis R, Nielsen HM, Tenner AJ. Complement in the brain. Mol Immunol 2011; 48:1592-603. [PMID: 21546088 DOI: 10.1016/j.molimm.2011.04.003] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/04/2011] [Accepted: 04/04/2011] [Indexed: 01/24/2023]
Abstract
The brain is considered to be an immune privileged site, because the blood-brain barrier limits entry of blood borne cells and proteins into the central nervous system (CNS). As a result, the detection and clearance of invading microorganisms and senescent cells as well as surplus neurotransmitters, aged and glycated proteins, in order to maintain a healthy environment for neuronal and glial cells, is largely confined to the innate immune system. In recent years it has become clear that many factors of innate immunity are expressed throughout the brain. Neuronal and glial cells express Toll like receptors as well as complement receptors, and virtually all complement components can be locally produced in the brain, often in response to injury or developmental cues. However, as inflammatory reactions could interfere with proper functioning of the brain, tight and fine tuned regulatory mechanisms are warranted. In age related diseases, such as Alzheimer's disease (AD), accumulating amyloid proteins elicit complement activation and a local, chronic inflammatory response that leads to attraction and activation of glial cells that, under such activation conditions, can produce neurotoxic substances, including pro-inflammatory cytokines and oxygen radicals. This process may be exacerbated by a disturbed balance between complement activators and complement regulatory proteins such as occurs in AD, as the local synthesis of these proteins is differentially regulated by pro-inflammatory cytokines. Much knowledge about the role of complement in neurodegenerative diseases has been derived from animal studies with transgenic overexpressing or knockout mice for specific complement factors or receptors. These studies have provided insight into the potential therapeutic use of complement regulators and complement receptor antagonists in chronic neurodegenerative diseases as well as in acute conditions, such as stroke. Interestingly, recent animal studies have also indicated that complement activation products are involved in brain development and synapse formation. Not only are these findings important for the understanding of how brain development and neural network formation is organized, it may also give insights into the role of complement in processes of neurodegeneration and neuroprotection in the injured or aged and diseased adult central nervous system, and thus aid in identifying novel and specific targets for therapeutic intervention.
Collapse
Affiliation(s)
- Robert Veerhuis
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
50
|
Abstract
Complement is a part of the body's innate immune system that helps defend the host from microbial infection. It is tightly controlled by a number of cell surface and fluid-phase proteins so that under normal circumstances injury to autologous tissues is avoided. In many pathological settings, such as when the complement regulatory mechanisms are dysfunctional or overwhelmed, complement attack of autologous tissues can occur with severe, sometimes life-threatening consequences. The kidney appears to be particularly vulnerable to complement-mediated inflammatory injury and many kidney pathologies have been linked to abnormal complement activation. Clinical and experimental studies have shown that complement attack can be a primary cause in rare, genetically predisposed kidney diseases or a significant contributor to kidney injury caused by other etiological factors. Here we provide a brief review of recent advances on the activation and regulation of the complement system in kidney disease, with a particular emphasis on the relevance of complement regulatory proteins.
Collapse
Affiliation(s)
- Allison M Lesher
- Institute for Translational Medicine and Therapeutics and Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|