1
|
Bovin N, Sablina M, Pazynina G, Obukhova P, Ragimov A, Shilova N. Caution, these are glycan sulfates. The features of their interaction with proteins. Carbohydr Res 2025; 552:109433. [PMID: 40037211 DOI: 10.1016/j.carres.2025.109433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/06/2025]
Abstract
In studies of viruses, lectins and especially human blood anti-glycan antibodies using printed glycan array (PGA), sulfated glycans suspiciously often turn out to be the highest-level binders. The binding to sulfated glycan along with parent neutral is easily explained by the similarity of these two glycans, while the unexpected thing is the many times stronger binding. Analysis of data accumulated over almost two decades allows us to explain the observed effect by the Coulomb interaction of the sulfate residue with a positively charged amino acid that accidently appears near the binding site of the neutral glycan backbone. That is, there is an effect of enhancing the specific interaction by an additional electrostatic one. It is expected that the material considered in the article will be useful for the correct interpretation of other data on the specificity of proteins capable of binding charged glycans, which are often encountered in nature.
Collapse
Affiliation(s)
- Nicolai Bovin
- M. M. Shemyakin & Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - Marina Sablina
- M. M. Shemyakin & Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Galina Pazynina
- M. M. Shemyakin & Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Polina Obukhova
- M. M. Shemyakin & Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After V. I. Kulakov of the Ministry of Health Care of Russian Federation, Moscow, Russia
| | - Aligeydar Ragimov
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health Care of the Russian Federation (Sechenov University), Moscow, Russia
| | - Nadezhda Shilova
- M. M. Shemyakin & Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After V. I. Kulakov of the Ministry of Health Care of Russian Federation, Moscow, Russia; Semiotik LLC, Moscow, Russia
| |
Collapse
|
2
|
Kim H, Lupoli TJ. Defined Glycan Ligands for Detecting Rare l-Sugar-Binding Proteins. J Am Chem Soc 2025; 147:11693-11699. [PMID: 40167164 PMCID: PMC11987014 DOI: 10.1021/jacs.5c03251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Most cells are decorated with distinct sugar sequences that can be recognized by carbohydrate-binding proteins (CBPs), such as antibodies and lectins. While humans utilize ten monosaccharide building blocks, bacteria biosynthesize hundreds of activated sugars to assemble diverse glycans. Monosaccharides absent in mammals are termed "rare" and are enriched in deoxy l-sugars beyond the "common" sugar l-fucose (l-Fuc) found across species. While immune proteins recognize microbial surfaces, there are limited probes to identify CBPs for the many rare sugars that may mediate these interactions. Here, we devise chemoenzymatic strategies to defined glycoconjugates containing l-Fuc and its structural analog l-colitose (l-Col), a bacterial dideoxysugar believed to bind immune proteins. We report a concise synthesis of l-Col and semisynthetic routes to several activated l-sugars. Incorporation of these sugars into glycans is evaluated using bacterial and mammalian glycosyltransferases (GTs) annotated to transfer l-Col or l-Fuc, respectively. We find that each GT can transfer both l-sugars, along with the rare hexose l-galactose (l-Gal), onto various glycan acceptors. Incorporation of these l-sugars into the resulting glycoconjugates is confirmed using known CBPs. Finally, these glycan ligands are employed to detect rare sugar-binding proteins in human serum. Overall, this work reveals similarities between bacterial and mammalian GTs that may be exploited for in vitro glycoconjugate construction to unveil novel mediators of host-pathogen interactions.
Collapse
Affiliation(s)
- Hanee Kim
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - Tania J. Lupoli
- Department of Chemistry, New
York University, New York, New York 10003, United States
| |
Collapse
|
3
|
Shilova N, Nokel A, Lipatnikov A, Khasbiullina N, Knirel Y, Baidakova L, Tuzikov A, Khaidukov S, Obukhova P, Henry S, Shoibonov B, Salimov E, Rieben R, Bovin N. Some Human Anti-Glycan Antibodies Lack the Ability to Activate the Complement System. Antibodies (Basel) 2024; 13:105. [PMID: 39727488 DOI: 10.3390/antib13040105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Background. Naturally occurring human antibodies against glycans recognize and quickly eliminate infectious bacteria, viruses and aberrantly glycosylated neoplastic malignant cells, and they often initiate processes that involve the complement system. Methods. Using a printed glycan array (PGA) containing 605 glycoligands (oligo- and polysaccharides, glycopeptides), we examined which of the glycan-binding antibodies are able to activate the complement system. Using this PGA, the specificities of antibodies of the IgM and IgG classes were determined in the blood serum of healthy donors (suggested as mostly natural), and, then, using the same array, it was determined which types of the bound immunoglobulins were also showing C3 deposition. Results. It was found that about 30% of anti-glycan antibodies in human serum detected by the PGA did not activate the complement. They were mostly IgGs and directed to bacterial O-antigens; no apparent common structural motif within their target polysaccharides was found. Antibodies to blood group systems ABO and Forssman, xeno-antigens, a number of polysaccharides from various strains of S. enterica, E. coli and P. alcalifaciens, as well as small fragments of bacterial polysaccharides were recognized by complement-activating antibodies as expected. A complement-activating antibody was affinity-isolated on glycan-Sepharose from human serum, and, in the presence of the complement, it lysed red blood cells coated with the same glycan (kodecytes, where glycans expressed on biological membranes), while an isolated complement non-activating antibody did not, which confirms the validity of the solid-phase PGA results. Conclusions. Thus, ~30% of human anti-glycan antibodies lack the ability to activate the complement system. The function of the widely represented immunoglobulins that do not cause C3 deposition remains unclear.
Collapse
Affiliation(s)
- Nadezhda Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Science, 117991 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, 117991 Moscow, Russia
| | - Alexey Nokel
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Science, 117991 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, 117991 Moscow, Russia
| | - Alexander Lipatnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Science, 117991 Moscow, Russia
| | - Nailya Khasbiullina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, 117991 Moscow, Russia
| | - Yuri Knirel
- Zelinsky Institute of Organic Chemistry Russian Academy of Science, 119991 Moscow, Russia
| | - Ludmila Baidakova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Alexander Tuzikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Science, 117991 Moscow, Russia
| | - Sergei Khaidukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Science, 117991 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, 117991 Moscow, Russia
| | - Polina Obukhova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Science, 117991 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, 117991 Moscow, Russia
| | - Stephen Henry
- School of Engineering, AUT University, Auckland 92006, New Zealand
| | - Batozhab Shoibonov
- Federal Research Center for Original and Promising Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia
| | - Emin Salimov
- Clinical Center of Sechenov First Moscow State Medical University of the Ministry of Health Care of the Russian Federation, 119435 Moscow, Russia
| | - Robert Rieben
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Nicolai Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Science, 117991 Moscow, Russia
| |
Collapse
|
4
|
Szymczak-Kulus K, Czerwinski M, Kaczmarek R. Human Gb3/CD77 synthase: a glycosyltransferase at the crossroads of immunohematology, toxicology, and cancer research. Cell Mol Biol Lett 2024; 29:137. [PMID: 39511480 PMCID: PMC11546571 DOI: 10.1186/s11658-024-00658-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Human Gb3/CD77 synthase (α1,4-galactosyltransferase, P1/Pk synthase, UDP-galactose: β-D-galactosyl-β1-R 4-α-D-galactosyltransferase, EC 2.4.1.228) forms Galα1 → 4Gal structures on glycosphingolipids and glycoproteins. These glycans are recognized by bacterial adhesins and toxins. Globotriaosylceramide (Gb3), the major product of Gb3/CD77 synthase, is a glycosphingolipid located predominantly in plasma membrane lipid rafts, where it serves as a main receptor for Shiga toxins released by enterohemorrhagic Escherichia coli and Shigella dysenteriae of serotype 1. On the other hand, accumulation of glycans formed by Gb3/CD77 synthase contributes to the symptoms of Anderson-Fabry disease caused by α-galactosidase A deficiency. Moreover, variation in Gb3/CD77 synthase expression and activity underlies the P1PK histo-blood group system. Glycosphingolipids synthesized by the enzyme are overproduced in colorectal, gastric, pancreatic, and ovarian cancer, and elevated Gb3 biosynthesis is associated with cancer cell chemo- and radioresistance. Furthermore, Gb3/CD77 synthase acts as a key glycosyltransferase modulating ovarian cancer cell plasticity. Here, we describe the role of human Gb3/CD77 synthase and its products in the P1PK histo-blood group system, Anderson-Fabry disease, and bacterial infections. Additionally, we provide an overview of emerging evidence that Gb3/CD77 synthase and its glycosphingolipid products are involved in cancer metastasis and chemoresistance.
Collapse
Affiliation(s)
- Katarzyna Szymczak-Kulus
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland.
| | - Marcin Czerwinski
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Radoslaw Kaczmarek
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| |
Collapse
|
5
|
Heimburg-Molinaro J, Mehta AY, Tilton CA, Cummings RD. Insights Into Glycobiology and the Protein-Glycan Interactome Using Glycan Microarray Technologies. Mol Cell Proteomics 2024; 23:100844. [PMID: 39307422 PMCID: PMC11585810 DOI: 10.1016/j.mcpro.2024.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 11/11/2024] Open
Abstract
Glycans linked to proteins and lipids and also occurring in free forms have many functions, and these are partly elicited through specific interactions with glycan-binding proteins (GBPs). These include lectins, adhesins, toxins, hemagglutinins, growth factors, and enzymes, but antibodies can also bind glycans. While humans and other animals generate a vast repertoire of GBPs and different glycans in their glycomes, other organisms, including phage, microbes, protozoans, fungi, and plants also express glycans and GBPs, and these can also interact with their host glycans. This can be termed the protein-glycan interactome, and in nature is likely to be vast, but is so far very poorly described. Understanding the breadth of the protein-glycan interactome is also a key to unlocking our understanding of infectious diseases involving glycans, and immunology associated with antibodies binding to glycans. A key technological advance in this area has been the development of glycan microarrays. This is a display technology in which minute quantities of glycans are attached to the surfaces of slides or beads. This allows the arrayed glycans to be interrogated by GBPs and antibodies in a relatively high throughput approach, in which a protein may bind to one or more distinct glycans. Such binding can lead to novel insights and hypotheses regarding both the function of the GBP, the specificity of an antibody and the function of the glycan within the context of the protein-glycan interactome. This article focuses on the types of glycan microarray technologies currently available to study animal glycobiology and examples of breakthroughs aided by these technologies.
Collapse
Affiliation(s)
- Jamie Heimburg-Molinaro
- Department of Surgery Beth Israel Deaconess Medical Center, National Center for Functional Glycomics (NCFG), Harvard Medical School, Boston, Massachusetts, USA
| | - Akul Y Mehta
- Department of Surgery Beth Israel Deaconess Medical Center, National Center for Functional Glycomics (NCFG), Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine A Tilton
- Department of Surgery Beth Israel Deaconess Medical Center, National Center for Functional Glycomics (NCFG), Harvard Medical School, Boston, Massachusetts, USA
| | - Richard D Cummings
- Department of Surgery Beth Israel Deaconess Medical Center, National Center for Functional Glycomics (NCFG), Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
6
|
New JS, Fucile CF, Callahan AR, Burke JN, Davis RS, Duck WL, Rosenberg AF, Kearney JF, King RG. Human Anti-Glycan Reactivity is Driven by the Selection of B cells Utilizing Private Antibody Gene Rearrangements that are Affinity Maturated in Germinal Centers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618486. [PMID: 39464096 PMCID: PMC11507706 DOI: 10.1101/2024.10.15.618486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The human antibody repertoire is broadly reactive with carbohydrate antigens represented in the universe of all living things, including both the host/self- as well as the commensal microflora-derived glycomes. Here we have used BCR receptor cloning and expression together with single-cell transcriptomics to analyze the B cell repertoire to the ubiquitous N-acetyl-D-glucosamine (GlcNAc) epitope in human cohorts and dissect the immune phylogeny of this predominant class of antibodies. We find that circulating anti-GlcNAc B cells exhibiting canonical BMem phenotypes emerge rapidly after birth and couple this observation with evidence for germinal center-dependent affinity maturation of carbohydrate-specific B cell receptors in situ during early childhood. Direct analysis of individual B cell clonotypes reveals they exhibit strikingly distinct fine-specificity profiles for palettes of GlcNAc containing moieties. These results suggest that a generalized exposure to complex environmental glycans drives the steady state anti-glycan repertoire.
Collapse
Affiliation(s)
- J. Stewart New
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham AL 35294, USA
| | - Christopher F. Fucile
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Amanda R. Callahan
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham AL 35294, USA
| | - Julia N. Burke
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham AL 35294, USA
| | - Randall S. Davis
- Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Wayne L. Duck
- Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | | | - John F. Kearney
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham AL 35294, USA
| | - R. Glenn King
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham AL 35294, USA
- Lead Contact
| |
Collapse
|
7
|
Wu-Chuang A, Rojas A, Bernal C, Cardozo F, Valenzuela A, Romero C, Mateos-Hernández L, Cabezas-Cruz A. Influence of microbiota-driven natural antibodies on dengue transmission. Front Immunol 2024; 15:1368599. [PMID: 38558802 PMCID: PMC10978734 DOI: 10.3389/fimmu.2024.1368599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Dengue has had a significant global health impact, with a dramatic increase in incidence over the past 50 years, affecting more than 100 countries. The absence of a specific treatment or widely applicable vaccine emphasizes the urgent need for innovative strategies. This perspective reevaluates current evidence supporting the concept of dual protection against the dengue virus (DENV) through natural antibodies (NAbs), particularly anti-α-Gal antibodies induced by the host's gut microbiome (GM). These anti-α-Gal antibodies serve a dual purpose. Firstly, they can directly identify DENV, as mosquito-derived viral particles have been observed to carry α-Gal, thereby providing a safeguard against human infections. Secondly, they possess the potential to impede virus development in the vector by interacting with the vector's microbiome and triggering infection-refractory states. The intricate interplay between human GM and NAbs on one side and DENV and vector microbiome on the other suggests a novel approach, using NAbs to directly target DENV and simultaneously disrupt vector microbiome to decrease pathogen transmission and vector competence, thereby blocking DENV transmission cycles.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandra Rojas
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Cynthia Bernal
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Fátima Cardozo
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Adriana Valenzuela
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Cristina Romero
- Universidad Nacional de Asunción, Facultad de Ciencias Químicas, San Lorenzo, Paraguay
| | - Lourdes Mateos-Hernández
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
8
|
Marglous S, Brown CE, Padler-Karavani V, Cummings RD, Gildersleeve JC. Serum antibody screening using glycan arrays. Chem Soc Rev 2024; 53:2603-2642. [PMID: 38305761 PMCID: PMC7616341 DOI: 10.1039/d3cs00693j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Humans and other animals produce a diverse collection of antibodies, many of which bind to carbohydrate chains, referred to as glycans. These anti-glycan antibodies are a critical part of our immune systems' defenses. Whether induced by vaccination or natural exposure to a pathogen, anti-glycan antibodies can provide protection against infections and cancers. Alternatively, when an immune response goes awry, antibodies that recognize self-glycans can mediate autoimmune diseases. In any case, serum anti-glycan antibodies provide a rich source of information about a patient's overall health, vaccination history, and disease status. Glycan microarrays provide a high-throughput platform to rapidly interrogate serum anti-glycan antibodies and identify new biomarkers for a variety of conditions. In addition, glycan microarrays enable detailed analysis of the immune system's response to vaccines and other treatments. Herein we review applications of glycan microarray technology for serum anti-glycan antibody profiling.
Collapse
Affiliation(s)
- Samantha Marglous
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Claire E Brown
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
9
|
Roy R. Cancer cells and viruses share common glycoepitopes: exciting opportunities toward combined treatments. Front Immunol 2024; 15:1292588. [PMID: 38495885 PMCID: PMC10940920 DOI: 10.3389/fimmu.2024.1292588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
Aberrant glycosylation patterns of glycoproteins and glycolipids have long been recognized as one the major hallmarks of cancer cells that has led to numerous glycoconjugate vaccine attempts. These abnormal glycosylation profiles mostly originate from the lack of key glycosyltransferases activities, mutations, over expressions, or modifications of the requisite chaperone for functional folding. Due to their relative structural simplicity, O-linked glycans of the altered mucin family of glycoproteins have been particularly attractive in the design of tumor associated carbohydrate-based vaccines. Several such glycoconjugate vaccine formulations have generated potent monoclonal anti-carbohydrate antibodies useful as diagnostic and immunotherapies in the fight against cancer. Paradoxically, glycoproteins related to enveloped viruses also express analogous N- and O-linked glycosylation patterns. However, due to the fact that viruses are not equipped with the appropriate glycosyl enzyme machinery, they need to hijack that of the infected host cells. Although the resulting N-linked glycans are very similar to those of normal cells, some of their O-linked glycan patterns often share the common structural simplicity to those identified on tumor cells. Consequently, given that both cancer cells and viral glycoproteins share both common N- and O-linked glycoepitopes, glycoconjugate vaccines could be highly attractive to generate potent immune responses to target both conditions.
Collapse
Affiliation(s)
- René Roy
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
10
|
Hong H, Zhao J, Zhou K, Li Y, Li D, Wu Z. Rhamnose modified antibodies show improved immune killing towards EGFR-positive solid tumor cells. Carbohydr Res 2024; 536:109038. [PMID: 38219633 DOI: 10.1016/j.carres.2024.109038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Therapeutic monoclonal antibodies (mAbs) against the epidermal growth factor receptor (EGFR) have shown clinical efficacy in colorectal cancer and other solid cancers. Enhancing the effector functions of these anti-EGFR mAbs is believed to be a valuable approach to achieve improved efficacy in clinical setting. Here, we report the development of an effector function-enhanced antibody by rhamnose (Rha) functionalization. Cetuximab, a human/mouse chimeric anti-EGFR mAb, was selected and site-specifically conjugated with Rha haptens. The obtained cetuximab-Rha conjugate was shown to be able to selectively redirect amounts of endogenous anti-Rha antibodies onto EGFR-positive solid tumor cells and thereby provide more Fc domains to achieve enhancement of effector functions including complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated phagocytosis (ADCP). Particularly, CDC, one powerful cell killing mechanism which is inactive in cetuximab, was dramatically improved. This study demonstrates the potential of rhamnose-modified antibody for EGFR-positive solid tumor immunotherapy.
Collapse
Affiliation(s)
- Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Jie Zhao
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Kun Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Yanchun Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Dan Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| |
Collapse
|
11
|
Hefermehl AK, Hensen SMM, Versantvoort C, Rothermel A, Şahin U. Automated glycan-bead coupling for high throughput, highly reproducible anti-glycan antibody analysis. SLAS Technol 2024; 29:100103. [PMID: 37595636 DOI: 10.1016/j.slast.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Automation of diagnostic assays generally aims to increase reproducibility and throughput while decreasing human errors and hands-on time. Here, we introduce a protocol for the automated chemical conjugation of glycans to color-coded magnetic beads using the KingFisher Flex magnetic particle processor. The resulting glycan-coupled magnetic beads allow the detection of anti-glycan antibodies of different isotypes from various species. By generating anti-glycan antibody profiles, monoclonal antibodies can be screened for their specificity and cross-reactivity, while anti-glycan antibody profiles from different human body fluids can aid in predicting response to treatment or outcome of disease. This efficient, scalable protocol can also be adapted to attach proteins and other biomolecules to beads, making it useful for a wider range of applications that require bead-based laboratory methods.
Collapse
Affiliation(s)
- Antonia Katharina Hefermehl
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Freiligrathstr. 12, Mainz, Germany.
| | | | - Carina Versantvoort
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Freiligrathstr. 12, Mainz, Germany
| | - Andrée Rothermel
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Freiligrathstr. 12, Mainz, Germany
| | - Uğur Şahin
- BioNTech SE, An der Goldgrube 12, Mainz, Germany
| |
Collapse
|
12
|
Ziganshina MM, Shilova NV, Khalturina EO, Dolgushina NV, V Borisevich S, Yarotskaya EL, Bovin NV, Sukhikh GT. Antibody-Dependent Enhancement with a Focus on SARS-CoV-2 and Anti-Glycan Antibodies. Viruses 2023; 15:1584. [PMID: 37515270 PMCID: PMC10384250 DOI: 10.3390/v15071584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Antibody-dependent enhancement (ADE) is a phenomenon where virus-specific antibodies paradoxically cause enhanced viral replication and/or excessive immune responses, leading to infection exacerbation, tissue damage, and multiple organ failure. ADE has been observed in many viral infections and is supposed to complicate the course of COVID-19. However, the evidence is insufficient. Since no specific laboratory markers have been described, the prediction and confirmation of ADE are very challenging. The only possible predictor is the presence of already existing (after previous infection) antibodies that can bind to viral epitopes and promote the disease enhancement. At the same time, the virus-specific antibodies are also a part of immune response against a pathogen. These opposite effects of antibodies make ADE research controversial. The assignment of immunoglobulins to ADE-associated or virus neutralizing is based on their affinity, avidity, and content in blood. However, these criteria are not clearly defined. Another debatable issue (rather terminological, but no less important) is that in most publications about ADE, all immunoglobulins produced by the immune system against pathogens are qualified as pre-existing antibodies, thus ignoring the conventional use of this term for natural antibodies produced without any stimulation by pathogens. Anti-glycan antibodies (AGA) make up a significant part of the natural immunoglobulins pool, and there is some evidence of their antiviral effect, particularly in COVID-19. AGA have been shown to be involved in ADE in bacterial infections, but their role in the development of ADE in viral infections has not been studied. This review focuses on pros and cons for AGA as an ADE trigger. We also present the results of our pilot studies, suggesting that AGAs, which bind to complex epitopes (glycan plus something else in tight proximity), may be involved in the development of the ADE phenomenon.
Collapse
Affiliation(s)
- Marina M Ziganshina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
| | - Nadezhda V Shilova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Eugenia O Khalturina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Natalya V Dolgushina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | | | - Ekaterina L Yarotskaya
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
| | - Nicolai V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Gennady T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
13
|
Pazynina GV, Tsygankova SV, Sablina MA, Shilova NV, Paramonov AS, Chizhov AO, Bovin NV. Synthesis of Sug1-4GalNAcα disaccharides and their interaction with human blood antibodies. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
14
|
Tran PMH, Dong F, Kim E, Richardson KP, Tran LKH, Waugh K, Hopkins D, Cummings RD, Wang PG, Rewers MJ, She JX, Purohit S. Use of a glycomics array to establish the anti-carbohydrate antibody repertoire in type 1 diabetes. Nat Commun 2022; 13:6527. [PMID: 36316364 PMCID: PMC9622713 DOI: 10.1038/s41467-022-34341-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease, characterized by the presence of autoantibodies to protein and non-protein antigens. Here we report the identification of specific anti-carbohydrate antibodies (ACAs) that are associated with pathogenesis and progression to T1D. We compare circulatory levels of ACAs against 202 glycans in a cross-sectional cohort of T1D patients (n = 278) and healthy controls (n = 298), as well as in a longitudinal cohort (n = 112). We identify 11 clusters of ACAs associated with glycan function class. Clusters enriched for aminoglycosides, blood group A and B antigens, glycolipids, ganglio-series, and O-linked glycans are associated with progression to T1D. ACAs against gentamicin and its related structures, G418 and sisomicin, are also associated with islet autoimmunity. ACAs improve discrimination of T1D status of individuals over a model with only clinical variables and are potential biomarkers for T1D.
Collapse
Affiliation(s)
- Paul M H Tran
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, CT06510, USA
| | - Fran Dong
- Barbara Davis Center for Diabetes, University of Colorado Denver, Mail Stop A-140, 1775 Aurora Court, Aurora, CO, 80045, USA
| | - Eileen Kim
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Katherine P Richardson
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Lynn K H Tran
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Kathleen Waugh
- Barbara Davis Center for Diabetes, University of Colorado Denver, Mail Stop A-140, 1775 Aurora Court, Aurora, CO, 80045, USA
| | - Diane Hopkins
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Marian J Rewers
- Barbara Davis Center for Diabetes, University of Colorado Denver, Mail Stop A-140, 1775 Aurora Court, Aurora, CO, 80045, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Sharad Purohit
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
- Department of Undergraduate Health Professionals, College of Allied Health Sciences Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
15
|
Nikiforova AV, Golovchenko VV, Mikshina PV, Patova OA, Gorshkova TA, Bovin NV, Shilova NV. Plant Polysaccharide Array for Studying Carbohydrate-Binding Proteins. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:890-902. [PMID: 36180984 DOI: 10.1134/s0006297922090036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 06/16/2023]
Abstract
The specificity of the most plant carbohydrate-binding proteins (CBP), many of which are known only through bioinformatic analysis of the genome, has either not been studied at all or characterized to a limited extent. The task of deciphering the carbohydrate specificity of the proteins can be solved using glycoarrays composed of many tens or even hundreds of glycans immobilized on a glass surface. Plant carbohydrates are the most significant natural ligands for plant proteins; this work shows that plant polysaccharides without additional modification can be immobilized on the surface, bearing N-hydroxysuccinimide activated carboxyl groups. As a result, an array of 113 well-characterized polysaccharides isolated from various plant cell walls, 23 mono- and oligosaccharides - components of polysaccharides, and glycans - ligands for widely known plant lectins was designed. Upon chemical immobilization of polysaccharides, their functional activity was preserved, which was confirmed by the results of interaction with antibodies and the plant lectin ricin. Using the constructed array, a previously unknown ability of ricin to bind polysaccharides was found, which significantly expands the knowledge of its specificity, and it was also found that a large variety of antibodies to plant polysaccharides are present in human peripheral blood.
Collapse
Affiliation(s)
- Anna V Nikiforova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Victoria V Golovchenko
- Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, 167982, Russia
| | - Polina V Mikshina
- Kazan Institute of Biochemistry and Biophysics of FRC Kazan Scientific Center of the Russian Academy of Sciences, Kazan, 420111, Russia
| | - Olga A Patova
- Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, 167982, Russia
| | - Tatyana A Gorshkova
- Kazan Institute of Biochemistry and Biophysics of FRC Kazan Scientific Center of the Russian Academy of Sciences, Kazan, 420111, Russia
| | - Nikolai V Bovin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| | - Nadezhda V Shilova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
16
|
Obukhova PS, Ziganshina MM, Shilova NV, Chinarev AA, Pazynina GV, Nokel AY, Terenteva AV, Khasbiullina NR, Sukhikh GT, Ragimov AA, Salimov EL, Butvilovskaya VI, Polyakova SM, Saha J, Bovin NV. Antibodies Against Unusual Forms of Sialylated Glycans. Acta Naturae 2022; 14:85-92. [PMID: 35923565 PMCID: PMC9307978 DOI: 10.32607/actanaturae.11631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that in the blood of healthy donors (1) there are
no natural antibodies against sialylated glycoproteins, which contain
Neu5Acα (N-acetylneuraminic acid) as the most widespread form of human
sialic acid, and (2) there is a moderate level of antibodies capable of binding
unnatural oligosaccharides, where Neu5Ac is beta-linked to a typical mammalian
glycan core. In the present study, we investigated antibodies against
βNeu5Ac in more detail and verified the presence of Kdn (2-keto-3-deoxy-
D-glycero-D-galacto-nonulosonic acid) as a possible cause behind their
appearance in humans, taking into account the expected cross-reactivity to Kdn
glycans, which are found in bacterial glycoconjugates in both the α- and
β-forms. We observed the binding of peripheral blood immunoglobulins to
sialyllactosamines (where “sialyl” is Kdn or neuraminic acid) in
only a very limited number of donors, while the binding to monosaccharide Kdn
occurred in all samples, regardless of the configuration of the glycosidic bond
of the Kdn moiety. In some individuals, the binding level of some of the
immunoglobulins was high. This means that bacterial Kdn glycoconjugates are
very unlikely to induce antibodies to βNeu5Ac glycans in humans. To
determine the reason for the presence of these antibodies, we focused on
noninfectious pathologies, as well as on a normal state in which a significant
change in the immune system occurs: namely, pregnancy. As a result, we found
that 2/3 of pregnant women have IgM in the blood against
Neu5Acβ2-3Galβ1-4GlcNAcβ. Moreover, IgG class antibodies against
Neu5Acβ2-3Galβ1-4GlcNAcβ and
Neu5Acβ2-6Galβ1-4GlcNAcβ were also detected in eluates from the
placenta. Presumably, these antibodies block fetal antigens.
Collapse
Affiliation(s)
- P. S. Obukhova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov of the Ministry of Health care of Russian Federation, Moscow, 117997 Russia
| | - M. M. Ziganshina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov of the Ministry of Health care of Russian Federation, Moscow, 117997 Russia
| | - N. V. Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov of the Ministry of Health care of Russian Federation, Moscow, 117997 Russia
| | - A. A. Chinarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - G. V. Pazynina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. Y. Nokel
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov of the Ministry of Health care of Russian Federation, Moscow, 117997 Russia
| | - A. V. Terenteva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov of the Ministry of Health care of Russian Federation, Moscow, 117997 Russia
| | - N. R. Khasbiullina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov of the Ministry of Health care of Russian Federation, Moscow, 117997 Russia
| | - G. T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov of the Ministry of Health care of Russian Federation, Moscow, 117997 Russia
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health care of the Russian Federation (Sechenov University), Moscow, 119991 Russia
| | - A. A. Ragimov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health care of the Russian Federation (Sechenov University), Moscow, 119991 Russia
| | - E. L. Salimov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health care of the Russian Federation (Sechenov University), Moscow, 119991 Russia
| | - V. I. Butvilovskaya
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - S. M. Polyakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Synthaur LLC, Moscow, 117997 Russia
| | - J. Saha
- Centre of Biomedical Research, Sanjay Gandhi PostGraduate Institute of Medical Science, Lucknow, 226014 India
| | - N. V. Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Centre for Kode Technology Innovation, Auckland University of Technology, Auckland, 1010 New Zealand
| |
Collapse
|
17
|
Hribernik N, Chiodo F, Pieters R, Bernardi A. Rhamnose-based glycomimetic for recruitment of endogenous anti-rhamnose antibodies. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Ou C, Prabhu SK, Zhang X, Zong G, Yang Q, Wang LX. Synthetic Antibody-Rhamnose Cluster Conjugates Show Potent Complement-Dependent Cell Killing by Recruiting Natural Antibodies. Chemistry 2022; 28:e202200146. [PMID: 35106843 PMCID: PMC8930617 DOI: 10.1002/chem.202200146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/06/2022]
Abstract
Monoclonal antibodies (mAbs) are one of the most rapidly growing drug classes used for the treatment of cancer, infectious and autoimmune diseases. Complement-dependent cytotoxicity (CDC) is one of the effector functions for antibodies to deplete target cells. We report here an efficient chemoenzymatic synthesis of structurally well-defined conjugates of a monoclonal antibody with a rhamnose- and an αGal trisaccharide-cluster to recruit natural anti-rhamnose and anti-αGal antibodies, respectively, to enhance the CDC-dependent targeted cell killing. The synthesis was achieved by using a modular antibody Fc-glycan remodeling method that includes site-specific chemoenzymatic Fc-glycan functionalization and subsequent click conjugation of synthetic rhamnose- and αGal trisaccharide-cluster to provide the respective homogeneous antibody conjugates. Cell-based assays indicated that the antibody-rhamnose cluster conjugates could mediate potent CDC activity for targeted cancer cell killing and showed much more potent efficacy than the antibody-αGal trisaccharide cluster conjugates for CDC effects.
Collapse
Affiliation(s)
- Chong Ou
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland, 20742, United States
| | - Sunaina Kiran Prabhu
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland, 20742, United States
| | - Xiao Zhang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland, 20742, United States
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland, 20742, United States
| | - Qiang Yang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland, 20742, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland, 20742, United States
| |
Collapse
|
19
|
Ziganshina MM, Shilova NV, Khasbiullina NR, Terentyeva AV, Dolgopolova EL, Nokel AY, Yarotskaya EL, Shmakov RG, Bovin NV, Sukhikh GT. Repertoire of glycan‐binding placenta‐associated antibodies in healthy pregnancy and in preeclampsia. Scand J Immunol 2022; 95:e13157. [DOI: 10.1111/sji.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/04/2022] [Accepted: 03/06/2022] [Indexed: 12/09/2022]
Affiliation(s)
- Marina M. Ziganshina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation Moscow Russia
| | - Nadezhda V. Shilova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation Moscow Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
| | - Nailia R. Khasbiullina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation Moscow Russia
| | - Anastasia V. Terentyeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation Moscow Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University) Moscow Russia
| | - Elena L. Dolgopolova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation Moscow Russia
| | - Alexey Yu. Nokel
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation Moscow Russia
| | - Ekaterina L. Yarotskaya
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation Moscow Russia
| | - Roman G. Shmakov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation Moscow Russia
| | - Nicolai V. Bovin
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
- Centre for Kode Technology Innovation School of Engineering, Computer and Mathematical Sciences Auckland University of Technology Auckland New Zealand
| | - Gennady T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation Moscow Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University) Moscow Russia
| |
Collapse
|
20
|
Parashar S, Gupta V, Bhatnagar R, Kausar A. A clickable folic acid-rhamnose conjugate for selective binding to cancer cells. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
21
|
Lamarre M, Tremblay T, Bansept MA, Robitaille K, Fradet V, Giguère D, Boudreau D. A glycan-based plasmonic sensor for prostate cancer diagnosis. Analyst 2021; 146:6852-6860. [PMID: 34623365 DOI: 10.1039/d1an00789k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prostate cancer affects thousands of men who undergo clinical screening tests every year. The main biomarker used for the diagnosis of prostate cancer, prostate specific antigen (PSA), presents limitations that justify investigating new biomarkers to improve reliability. Antibodies against the tumor-associated carbohydrate antigen (Tn), or TACA, develop early in carcinogenesis, making them an interesting alternative as a target for prostate cancer diagnostics. In this work, the Tn antigen was synthesized and immobilized on a surface plasmon resonance sensor coated with a polydopamine/polyethylene oxide mixed layer used both as an anchoring surface for Tn capture moieties and to minimize surface fouling. The sensor could be regenerated and reused at least 60 times without any significant loss in sensitivity. Anti-Tn antibodies were detected in the 0-10 nM concentration range with detection limits of 0.1 and 0.3 nM in spiked buffer solutions and diluted human blood serum samples, respectively. Finally, as a proof-of-concept, this carbohydrate-based sensor was used to successfully discriminate blood serum samples from prostate cancer-free and prostate cancer patients.
Collapse
Affiliation(s)
- Mathieu Lamarre
- Department of Chemistry, Université Laval, Québec, QC, Canada. .,Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, QC, Canada
| | - Thomas Tremblay
- Department of Chemistry, Université Laval, Québec, QC, Canada.
| | - Marc-Antoine Bansept
- Department of Chemistry, Université Laval, Québec, QC, Canada. .,Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, QC, Canada
| | - Karine Robitaille
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Centre, Oncology Division, Quebec, QC, Canada
| | - Vincent Fradet
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Centre, Oncology Division, Quebec, QC, Canada.,Faculty of Medicine, Department of Surgery, Université Laval, Québec, QC, Canada.,Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada
| | - Denis Giguère
- Department of Chemistry, Université Laval, Québec, QC, Canada.
| | - Denis Boudreau
- Department of Chemistry, Université Laval, Québec, QC, Canada. .,Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, QC, Canada
| |
Collapse
|
22
|
Smorodin EP. Prospects and Challenges of the Study of Anti-Glycan Antibodies and Microbiota for the Monitoring of Gastrointestinal Cancer. Int J Mol Sci 2021; 22:ijms222111608. [PMID: 34769037 PMCID: PMC8584091 DOI: 10.3390/ijms222111608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022] Open
Abstract
Over the past decades, a large amount of data has been accumulated in various subfields of glycobiology. However, much clinically relevant data and many tools are still not widely used in medicine. Synthetic glycoconjugates with the known structure of glycans are an accurate tool for the study of glycan-binding proteins. We used polyacrylamide glycoconjugates (PGs) including PGs with tumour-associated glycans (TAGs) in immunoassays to assess the prognostic potential of the serum level of anti-glycan antibodies (AG Abs) in gastrointestinal cancer patients and found an association of AG Abs with survival. The specificity of affinity-isolated AG Abs was investigated using synthetic and natural glycoconjugates. AG Abs showed mainly a low specificity to tumour-associated and tumour-derived mucins; therefore, the protective role of the examined circulating AG Abs against cancer remains a challenge. In this review, our findings are analysed and discussed in the context of the contribution of bacteria to the AG Abs stimulus and cancer progression. Examples of the influence of pathogenic bacteria colonising tumours on cancer progression and patient survival through mechanisms of interaction with tumours and dysregulated immune response are considered. The possibilities and problems of the integrative study of AG Abs and the microbiome using high-performance technologies are discussed.
Collapse
Affiliation(s)
- Eugeniy P Smorodin
- Department of Virology and Immunology, National Institute for Health Development, 11619 Tallinn, Estonia
| |
Collapse
|
23
|
Kubelkova K, Macela A. Francisella and Antibodies. Microorganisms 2021; 9:microorganisms9102136. [PMID: 34683457 PMCID: PMC8538966 DOI: 10.3390/microorganisms9102136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/17/2023] Open
Abstract
Immune responses to intracellular pathogens depend largely upon the activation of T helper type 1-dependent mechanisms. The contribution of B cells to establishing protective immunity has long been underestimated. Francisella tularensis, including a number of subspecies, provides a suitable model for the study of immune responses against intracellular bacterial pathogens. We previously demonstrated that Francisella infects B cells and activates B-cell subtypes to produce a number of cytokines and express the activation markers. Recently, we documented the early production of natural antibodies as a consequence of Francisella infection in mice. Here, we summarize current knowledge on the innate and acquired humoral immune responses initiated by Francisella infection and their relationships with the immune defense systems.
Collapse
|
24
|
Pathogenesis of IgA Nephropathy: Current Understanding and Implications for Development of Disease-Specific Treatment. J Clin Med 2021; 10:jcm10194501. [PMID: 34640530 PMCID: PMC8509647 DOI: 10.3390/jcm10194501] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
IgA nephropathy, initially described in 1968 as a kidney disease with glomerular “intercapillary deposits of IgA-IgG”, has no disease-specific treatment and is a common cause of kidney failure. Clinical observations and laboratory analyses suggest that IgA nephropathy is an autoimmune disease wherein the kidneys are damaged as innocent bystanders due to deposition of IgA1-IgG immune complexes from the circulation. A multi-hit hypothesis for the pathogenesis of IgA nephropathy describes four sequential steps in disease development. Specifically, patients with IgA nephropathy have elevated circulating levels of IgA1 with some O-glycans deficient in galactose (galactose-deficient IgA1) and these IgA1 glycoforms are recognized as autoantigens by unique IgG autoantibodies, resulting in formation of circulating immune complexes, some of which deposit in glomeruli and activate mesangial cells to induce kidney injury. This proposed mechanism is supported by observations that (i) glomerular immunodeposits in patients with IgA nephropathy are enriched for galactose-deficient IgA1 glycoforms and the corresponding IgG autoantibodies; (ii) circulatory levels of galactose-deficient IgA1 and IgG autoantibodies predict disease progression; and (iii) pathogenic potential of galactose-deficient IgA1 and IgG autoantibodies was demonstrated in vivo. Thus, a better understanding of the structure–function of these immunoglobulins as autoantibodies and autoantigens will enable development of disease-specific treatments.
Collapse
|
25
|
Obukhova P, Tsygankova S, Chinarev A, Shilova N, Nokel A, Kosma P, Bovin N. Are there specific antibodies against Neu5Gc epitopes in the blood of healthy individuals? Glycobiology 2021; 30:395-406. [PMID: 31897477 DOI: 10.1093/glycob/cwz107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Strong discrepancies in published data on the levels and epitope specificities of antibodies against the xenogenic N-glycolyl forms of sialoglycans (Hanganutziu-Deicher Neu5Gcɑ2-3Galβ1-4Glc and related antigens) in healthy donors prompted us to carry out a systematic study in this area using the printed glycan array and other methods. This article summarizes and discusses our published and previously unpublished data, as well as publicly available data from the Consortium for Functional Glycomics. As a result, we conclude that (1) the level of antibodies referred to as anti-Neu5Gc in healthy individuals is low; (2) there are antibodies that seem to interact with Neu5Gc-containing epitopes, but in fact they recognize internal fragments of Neu5Gc-containing glycans (without sialic acids), which served as antigens in the assays used and; (3) a population capable of interacting specifically with Neu5Gc (it does not bind the corresponding NAc analogs) does exist, but it binds the monosaccharide Neu5Gc better than the entire glycans containing it. In other words, in healthy donors, there are populations of antibodies capable of binding the Neu5Gc monosaccharide or the inner core -Galβ1-4Glc, but very few true anti-Neu5Gcɑ2-3Galβ1-4Glc antibodies, i.e., antibodies capable of specifically recognizing the entire trisaccharide.
Collapse
Affiliation(s)
- Polina Obukhova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, 117997 Moscow, Russia.,Federal State Budget Institution, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 4 Oparin str., 117997, Moscow, Russia
| | - Svetlana Tsygankova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, 117997 Moscow, Russia
| | - Alexander Chinarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, 117997 Moscow, Russia
| | - Nadezhda Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, 117997 Moscow, Russia.,Federal State Budget Institution, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 4 Oparin str., 117997, Moscow, Russia.,Semiotik LLC, 16/10 Miklukho-Maklaya, 117997 Moscow, Russia
| | - Alexey Nokel
- Federal State Budget Institution, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 4 Oparin str., 117997, Moscow, Russia.,Semiotik LLC, 16/10 Miklukho-Maklaya, 117997 Moscow, Russia
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences, 18 Muthgasse, 1190 Vienna, Austria, and
| | - Nicolai Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, 117997 Moscow, Russia.,Auckland University of Technology, 55 Wellesley Street East, 1010, Auckland, New Zealand
| |
Collapse
|
26
|
Todaro B, Achilli S, Liet B, Laigre E, Tiertant C, Goyard D, Berthet N, Renaudet O. Structural influence of antibody recruiting glycodendrimers (ARGs) on antitumoral cytotoxicity. Biomater Sci 2021; 9:4076-4085. [PMID: 33913968 DOI: 10.1039/d1bm00485a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The recruitment of endogenous antibodies against cancer cells has become a reliable antitumoral immunotherapeutic alternative over the last decade. The covalent attachment of antibody and tumor binding modules (ABM and TBM) within a single, well-defined synthetic molecule was indeed demonstrated to promote the formation of an interacting ternary complex between both the antibodies and the targeted cell, which usually results in the simultaneous immune-mediated cellular destruction. In a preliminary study, we have described the first Antibody Recruiting Glycodendrimers (ARGs), combining cRGD as ligands for the αVβ3-expressing melanoma cell line M21 and Rha as ligand for natural IgM, and demonstrated that multivalency is an essential requirement to form this complex. In the present study, we synthesized a new series of ARGs composed of ABMs, i.e. self-condensed rhamnosylated cyclopeptide and polylysine dendrimer, which have been conjugated to the TBM with or without spacer. Flow cytometry and confocal microscopy experiments with human serum and different cell lines revealed that the ABM geometry significantly influences the ternary complex formation in M21, whereas no significant binding occurs in BT 549 having low integrin expression. In addition, we demonstrate with a cellular viability assay that ARGs induce high level of cytotoxicity against M21 which is also in close correlation with the ABM structure. In particular, we have shown that ARG combining cyclopeptide core and branches, with or without spacer, induce 40-57% of selective cytotoxicity against M21 cells in the presence of human serum as the unique source of immunity effectors. Finally, we also highlight that the spacer between ABM and TBM enables an increase of the immune-mediate cytotoxicity even with ABM of lower valency.
Collapse
Affiliation(s)
- Biagio Todaro
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - Silvia Achilli
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - Benjamin Liet
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - Eugénie Laigre
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - Claire Tiertant
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - David Goyard
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - Nathalie Berthet
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - Olivier Renaudet
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| |
Collapse
|
27
|
Miller NL, Clark T, Raman R, Sasisekharan R. Glycans in Virus-Host Interactions: A Structural Perspective. Front Mol Biosci 2021; 8:666756. [PMID: 34164431 PMCID: PMC8215384 DOI: 10.3389/fmolb.2021.666756] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Many interactions between microbes and their hosts are driven or influenced by glycans, whose heterogeneous and difficult to characterize structures have led to an underappreciation of their role in these interactions compared to protein-based interactions. Glycans decorate microbe glycoproteins to enhance attachment and fusion to host cells, provide stability, and evade the host immune system. Yet, the host immune system may also target these glycans as glycoepitopes. In this review, we provide a structural perspective on the role of glycans in host-microbe interactions, focusing primarily on viral glycoproteins and their interactions with host adaptive immunity. In particular, we discuss a class of topological glycoepitopes and their interactions with topological mAbs, using the anti-HIV mAb 2G12 as the archetypical example. We further offer our view that structure-based glycan targeting strategies are ready for application to viruses beyond HIV, and present our perspective on future development in this area.
Collapse
Affiliation(s)
- Nathaniel L Miller
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Thomas Clark
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rahul Raman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ram Sasisekharan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
28
|
Mosaed M, Pourfathollah AA, Moghadam M, Jazayeri MH, Safdarian AR. Evaluation of serum natural autoantibodies reaction in different hematological disorders with prospective view to their probable utilization in predictive medicine. Asian J Transfus Sci 2021; 14:167-171. [PMID: 33767544 PMCID: PMC7983152 DOI: 10.4103/ajts.ajts_15_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 11/24/2017] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND There are some antibodies which are present in healthy individuals without any former exposure to foreign antigens; they are known as natural autoantibodies (NAAbs). In recent years, it was shown that they probably contribute to the homeostasis of the whole body and might be present before beginning of some diseases. Thus, as new biomarkers, they are promising factors to diagnose diseases. MATERIALS AND METHODS In this study, we drew upon samples of 924 individuals (600 controls and 324 cases) with underlying diseases of anemia, polycythemia, leukocytosis, thrombocytopenia, thrombocytosis, and pancytopenia. For detection of NAAbs against red blood cell, plasma samples were incubated with their own red cell suspension in 4°C for 18 h. Then, positive samples were evaluated for antibody screening and titration. RESULTS Fifty-two (8.6%) controls and 58 (17.9%) cases showed positive reaction (Pv < 0.001). The prevalence of positive antibody screens among auto-positive controls was 53% and 100% among cases; moreover, strength of antibody screen reaction had a mean rank of 22.5 in controls and a mean rank of 38.5 in cases (Pv < 0.001). A significant relation was also observed between ABO blood group and prevalence of NAAbs in controls but not in cases (Pv < 0.05). CONCLUSION The prevalence and potency of NAAbs increased along with hematological changes; moreover, the antibody reactions' pattern and titration showed significant differences between the two groups and these may be useful as biomarker for monitoring and prediction of some hematological diseases.
Collapse
Affiliation(s)
- Maryam Mosaed
- Iran Blood Transfusion Research Center, Tarbiat Modares University, Tehran, Iran
| | | | | | - Mir Hadi Jazayeri
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Safdarian
- Department of Immunology, Medical Faculty, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
29
|
Singh S, Thompson JA, Yilmaz B, Li H, Weis S, Sobral D, Truglio M, Aires da Silva F, Aguiar S, Carlos AR, Rebelo S, Cardoso S, Gjini E, Nuñez G, Soares MP. Loss of α-gal during primate evolution enhanced antibody-effector function and resistance to bacterial sepsis. Cell Host Microbe 2021; 29:347-361.e12. [DOI: 10.1016/j.chom.2020.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/17/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022]
|
30
|
Breiman A, Ruvoën-Clouet N, Deleers M, Beauvais T, Jouand N, Rocher J, Bovin N, Labarrière N, El Kenz H, Le Pendu J. Low Levels of Natural Anti-α- N-Acetylgalactosamine (Tn) Antibodies Are Associated With COVID-19. Front Microbiol 2021; 12:641460. [PMID: 33643275 PMCID: PMC7905038 DOI: 10.3389/fmicb.2021.641460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Human serum contains large amounts of anti-carbohydrate antibodies, some of which may recognize epitopes on viral glycans. Here, we tested the hypothesis that such antibodies may confer protection against COVID-19 so that patients would be preferentially found among people with low amounts of specific anti-carbohydrate antibodies since individual repertoires vary considerably. After selecting glycan epitopes commonly represented in the human anti-carbohydrate antibody repertoire that may also be expressed on viral glycans, plasma levels of the corresponding antibodies were determined by ELISA in 88 SARS-CoV-2 infected individuals, including 13 asymptomatic, and in 82 non-infected controls. We observed that anti-Tn antibodies levels were significantly lower in patients as compared to non-infected individuals. This was not observed for any of the other tested carbohydrate epitopes, including anti-αGal antibodies used as a negative control since the epitope cannot be synthesized by humans. Owing to structural homologies with blood groups A and B antigens, we also observed that anti-Tn and anti-αGal antibodies levels were lower in blood group A and B, respectively. Analyses of correlations between anti-Tn and the other anti-carbohydrates tested revealed divergent patterns of correlations between patients and controls, suggesting qualitative differences in addition to the quantitative difference. Furthermore, anti-Tn levels correlated with anti-S protein levels in the patients' group, suggesting that anti-Tn might contribute to the development of the specific antiviral response. Overall, this first analysis allows to hypothesize that natural anti-Tn antibodies might be protective against COVID-19.
Collapse
Affiliation(s)
- Adrien Breiman
- Université de Nantes, INSERM, CRCINA, Nantes, France
- CHU de Nantes, Nantes, France
| | - Nathalie Ruvoën-Clouet
- Université de Nantes, INSERM, CRCINA, Nantes, France
- Oniris, Ecole Nationale Vétérinaire, Agroalimentaire et de l’Alimentation, Nantes, France
| | - Marie Deleers
- Department of Transfusion, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Laboratory of Immunology, LHUB-ULB, Brussels, Belgium
| | - Tiffany Beauvais
- Université de Nantes, INSERM, CRCINA, Nantes, France
- CHU de Nantes, Nantes, France
| | | | | | - Nicolai Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Hanane El Kenz
- Department of Transfusion, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Laboratory of Immunology, LHUB-ULB, Brussels, Belgium
| | | |
Collapse
|
31
|
Dobrochaeva K, Khasbiullina N, Shilova N, Knirel Y, Obukhova P, Nokel A, Kunetskiy R, Tsygankova S, Bello-Gil D, Costa C, Mañez R, Bovin N. Specificity profile of αGal antibodies in αGalT KO mice as probed with comprehensive printed glycan array: Comparison with human anti-Galili antibodies. Xenotransplantation 2021; 28:e12672. [PMID: 33432698 DOI: 10.1111/xen.12672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The α1,3-galactosyltransferase gene-knockout (GalT KO) mice are able to produce natural anti-αGal antibodies apparently without any specific immunization. GalT KO mice are commonly used as a model immunological system for studying anti-αGal responses to Gal-positive xenografts in human. In this study, we compared the specificity of mouse and human αGal antibodies to realize the adequacy of the murine model. METHODS Using hapten-specific affinity chromatography antibodies against Galα1-3Galβ1-4GlcNAcβ epitope were isolated from both human and GalT KO mice blood sera. Specificity of isolated antibodies was determined using a printed glycan array (PGA) containing 400 mammalian glycans and 200 bacterial polysaccharides. RESULTS The quantity of isolated specific anti-Galα antibodies corresponds to a content of <0.2% of total Ig, which is an order of magnitude lower than that generally assumed for both human and murine peripheral blood immunoglobulin, with a high predominance of IgM over IgG (95% vs 5%). Analysis using a printed glycan array has demonstrated that (a) antibodies from both species bind not only the Galα1-3Galβ1-4GlcNAcβ epitope, but also unrelated glycans; (b) particularly, for human (but not mouse) antibodies the best binders appear to be bacterial polysaccharides; (c) the profile of mouse antibodies is broader, it is noteworthy that they recognize a variety of human blood group B epitopes and even glycans without the α-galactosyl residue. CONCLUSIONS We believe that the mouse model should be used cautiously in xenotransplantation experiments when the fine epitope specificity of antibodies is critical.
Collapse
Affiliation(s)
- Kira Dobrochaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nailya Khasbiullina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Nadezhda Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia.,Semiotik LLC, Moscow, Russia
| | - Yuriy Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Polina Obukhova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Alexey Nokel
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia.,Semiotik LLC, Moscow, Russia
| | - Roman Kunetskiy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana Tsygankova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Daniel Bello-Gil
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Cristina Costa
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Rafael Mañez
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Nicolai Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,School of Engineering, Computer & Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
32
|
Shilova NV, Ryzhov IM, Ziganshina MM, Rakitko AS, Huflejt ME, Bovin NV. Negative Correlation between Natural Human Antibodies Directed to Glycotopes Galβ1-3GlcNAc and Galβ1-4GlcNAc. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020060291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Canals Hernaez D, Hughes MR, Dean P, Bergqvist P, Samudio I, Blixt O, Wiedemeyer K, Li Y, Bond C, Cruz E, Köbel M, Gilks B, Roskelley CD, McNagny KM. PODO447: a novel antibody to a tumor-restricted epitope on the cancer antigen podocalyxin. J Immunother Cancer 2020; 8:jitc-2020-001128. [PMID: 33243933 PMCID: PMC7692987 DOI: 10.1136/jitc-2020-001128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background The success of new targeted cancer therapies has been dependent on the identification of tumor-specific antigens. Podocalyxin (Podxl) is upregulated on tumors with high metastatic index and its presence is associated with poor outcome, thus emerging as an important prognostic and theragnostic marker in several human cancers. Moreover, in human tumor xenograft models, Podxl expression promotes tumor growth and metastasis. Although a promising target for immunotherapy, the expression of Podxl on normal vascular endothelia and kidney podocytes could hamper efforts to therapeutically target this molecule. Since pathways regulating post-translational modifications are frequently perturbed in cancer cells, we sought to produce novel anti-Podxl antibodies (Abs) that selectively recognize tumor-restricted glycoepitopes on the extracellular mucin domain of Podxl. Methods Splenic B cells were isolated from rabbits immunized with a Podxl-expressing human tumor cell line. Abs from these B cells were screened for potent reactivity to Podxl+ neoplastic cell lines but not Podxl+ primary endothelial cells. Transcripts encoding heavy and light chain variable regions from promising B cells were cloned and expressed as recombinant proteins. Tumor specificity was assessed using primary normal tissue and an ovarian cancer tissue microarray (TMA). Mapping of the tumor-restricted epitope was performed using enzyme-treated human tumor cell lines and a glycan array. Results One mAb (PODO447) showed strong reactivity with a variety of Podxl+ tumor cell lines but not with normal primary human tissue including Podxl+ kidney podocytes and most vascular endothelia. Screening of an ovarian carcinoma TMA (219 cases) revealed PODO447 reactivity with the majority of tumors, including 65% of the high-grade serous histotype. Subsequent biochemical analyses determined that PODO447 reacts with a highly unusual terminal N-acetylgalactosamine beta-1 (GalNAcβ1) motif predominantly found on the Podxl protein core. Finally, Ab–drug conjugates showed specific efficacy in killing tumor cells in vitro. Conclusions We have generated a novel and exquisitely tumor-restricted mAb, PODO447, that recognizes a glycoepitope on Podxl expressed at high levels by a variety of tumors including the majority of life-threatening high-grade serous ovarian tumors. Thus, tumor-restricted PODO447 exhibits the appropriate specificity for further development as a targeted immunotherapy.
Collapse
Affiliation(s)
- Diana Canals Hernaez
- The Biomedical Research Centre and School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael R Hughes
- The Biomedical Research Centre and School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Pamela Dean
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Bergqvist
- Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Ismael Samudio
- Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Ola Blixt
- Copenhagen Center for Glycomics and Department of Cellular and Molecular Medicine (ICMM), University of Copenhagen, Kobenhavn, Denmark
| | - Katharina Wiedemeyer
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yicong Li
- The Biomedical Research Centre and School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris Bond
- Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Eric Cruz
- Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Blake Gilks
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Calvin D Roskelley
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelly M McNagny
- The Biomedical Research Centre and School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
34
|
Cooper O, Phan HP, Wang B, Lowe S, Day CJ, Nguyen NT, Tiralongo J. Functional Microarray Platform with Self-Assembled Monolayers on 3C-Silicon Carbide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13181-13192. [PMID: 33104368 DOI: 10.1021/acs.langmuir.0c01306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Currently available bioplatforms such as microarrays and surface plasmon resonators are unable to combine high-throughput multiplexing with label-free detection. As such, emerging microelectromechanical systems (MEMS) and microplasmonics platforms offer the potential for high-resolution, high-throughput label-free sensing of biological and chemical analytes. Therefore, the search for materials capable of combining multiplexing and label-free quantitation is of great significance. Recently, interest in silicon carbide (SiC) as a suitable material in numerous biomedical applications has increased due to its well-explored chemical inertness, mechanical strength, bio- and hemocompatibility, and the presence of carbon that enables the transfer-free growth of graphene. SiC is also multifunctional as both a wide-band-gap semiconductor and an efficient low-loss plasmonics material and thus is ideal for augmenting current biotransducers in biosensors. Additionally, the cubic variant, 3C-SiC, is an extremely promising material for MEMS, being a suitable platform for the easy micromachining of microcantilevers, and as such capable of realizing the potential of real time miniaturized multiplexed assays. The generation of an appropriately functionalized and versatile organic monolayer suitable for the immobilization of biomolecules is therefore critical to explore label-free, multiplexed quantitation of biological interactions on SiC. Herein, we address the use of various silane self-assembled monolayers (SAMs) for the covalent functionalization of monocrystalline 3C-SiC films as a novel platform for the generation of functionalized microarray surfaces using high-throughput glycan arrays as the model system. We also demonstrate the ability to robotically print high throughput arrays on free-standing SiC microstructures. The implementation of a SiC-based label-free glycan array will provide a proof of principle that could be extended to the immobilization of other biomolecules in a similar SiC-based array format, thus making potentially significant advances to the way biological interactions are studied.
Collapse
|
35
|
Kappler K, Restin T, Lasanajak Y, Smith DF, Bassler D, Hennet T. Limited Neonatal Carbohydrate-Specific Antibody Repertoire Consecutive to Partial Prenatal Transfer of Maternal Antibodies. Front Immunol 2020; 11:573629. [PMID: 33162988 PMCID: PMC7591393 DOI: 10.3389/fimmu.2020.573629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
Despite the prominence of carbohydrate-specific antibodies in human sera, data on their emergence and antigen specificities are limited. Whereas maternal IgG are transferred prenatally to the fetal circulation, IgM present in cord blood originate from fetal B lymphocytes. Considering the limited exposure of the fetus to foreign antigens, we assessed the repertoire of carbohydrate-specific antibodies in human cord blood and matched maternal blood samples using glycan arrays. Carbohydrate-specific IgM was absent in cord blood, whereas low cord blood IgG reactivity to glycans was detectable. Comparing IgG reactivities of matched pairs, we observed a general lack of correlation in the antigen specificity of IgG from cord blood and maternal blood due to a selective exclusion of most carbohydrate-specific IgG from maternofetal transfer. Given the importance of intestinal bacteria in inducing carbohydrate-specific antibodies, we analyzed global antibody specificities toward commensal bacteria. Similar IgG reactivities to specific Bacteroides species were detected in matched cord and maternal blood samples, thus pointing to an efficient maternal transfer of anti-microbial IgG. Due to the observed selectivity in maternofetal IgG transfer, the lack of fetal antibodies to carbohydrate epitopes is only partially compensated by maternal IgG, thus resulting in a weak response to carbohydrate antigens in neonates.
Collapse
Affiliation(s)
| | - Tanja Restin
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Yi Lasanajak
- Emory Comprehensive Glycomics Core, Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - David F Smith
- Emory Comprehensive Glycomics Core, Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Dirk Bassler
- Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Luetscher RND, McKitrick TR, Gao C, Mehta AY, McQuillan AM, Kardish R, Boligan KF, Song X, Lu L, Heimburg-Molinaro J, von Gunten S, Alter G, Cummings RD. Unique repertoire of anti-carbohydrate antibodies in individual human serum. Sci Rep 2020; 10:15436. [PMID: 32963315 PMCID: PMC7509809 DOI: 10.1038/s41598-020-71967-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Humoral immunity to pathogens and other environmental challenges is paramount to maintain normal health, and individuals lacking or unable to make antibodies are at risk. Recent studies indicate that many human protective antibodies are against carbohydrate antigens; however, little is known about repertoires and individual variation of anti-carbohydrate antibodies in healthy individuals. Here we analyzed anti-carbohydrate antibody repertoires (ACARs) of 105 healthy individual adult donors, aged 20-60+ from different ethnic backgrounds to explore variations in antibodies, as defined by binding to glycan microarrays and by affinity purification. Using microarrays that contained > 1,000 glycans, including antigens from animal cells and microbes, we profiled the IgG and IgM ACARs from all donors. Each donor expressed many ACAs, but had a relatively unique ACAR, which included unanticipated antibodies to carbohydrate antigens not well studied, such as chitin oligosaccharides, Forssman-related antigens, globo-type antigens, and bacterial glycans. We also saw some expected antibodies to ABO(H) blood group and α-Gal-type antigens, although these also varied among individuals. Analysis suggests differences in ACARs are associated with ethnicity and age. Thus, each individual ACAR is relatively unique, suggesting that individualized information could be useful in precision medicine for predicting and monitoring immune health and resistance to disease.
Collapse
Affiliation(s)
- Ralph N D Luetscher
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
- Department of Biology, Institute of Microbiology, ETH Zurich, 8093, Zurich, Switzerland
| | - Tanya R McKitrick
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Chao Gao
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Akul Y Mehta
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Alyssa M McQuillan
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Robert Kardish
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
- Scienion US, 2640 West Medtronic Way, Tempe, AZ, 85281, USA
| | | | - Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30303, USA
| | - Lenette Lu
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | | | - Galit Alter
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Richard D Cummings
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
37
|
Human Natural Antibodies Recognizing Glycan Galβ1-3GlcNAc (Le C). Int J Mol Sci 2020; 21:ijms21186511. [PMID: 32899593 PMCID: PMC7554730 DOI: 10.3390/ijms21186511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 12/05/2022] Open
Abstract
The level of human natural antibodies of immunoglobulin M isotype against LeC in patients with breast cancer is lower than in healthy women. The epitope specificity of these antibodies has been characterized using a printed glycan array and enzyme-linked immunosorbent assay (ELISA), the antibodies being isolated from donors’ blood using LeC-Sepharose (LeC is Galβ1-3GlcNAcβ). The isolated antibodies recognize the disaccharide but do not bind to glycans terminated with LeC, which implies the impossibility of binding to regular glycoproteins of non-malignant cells. The avidity (as dissociation constant value) of antibodies probed with a multivalent disaccharide is 10−9 M; the nanomolar level indicates that the concentration is sufficient for physiological binding to the cognate antigen. Testing of several breast cancer cell lines showed the strongest binding to ZR 75-1. Interestingly, only 7% of the cells were positive in a monolayer with a low density, increasing up to 96% at highest density. The enhanced interaction (instead of the expected inhibition) of antibodies with ZR 75-1 cells in the presence of Galβ1-3GlcNAcβ disaccharide, indicates that the target epitope of anti-LeC antibodies is a molecular pattern with a carbohydrate constituent rather than a glycan.
Collapse
|
38
|
Kappler K, Hennet T. Emergence and significance of carbohydrate-specific antibodies. Genes Immun 2020; 21:224-239. [PMID: 32753697 PMCID: PMC7449879 DOI: 10.1038/s41435-020-0105-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022]
Abstract
Carbohydrate-specific antibodies are widespread among all classes of immunoglobulins. Despite their broad occurrence, little is known about their formation and biological significance. Carbohydrate-specific antibodies are often classified as natural antibodies under the assumption that they arise without prior exposure to exogenous antigens. On the other hand, various carbohydrate-specific antibodies, including antibodies to ABO blood group antigens, emerge after the contact of immune cells with the intestinal microbiota, which expresses a vast diversity of carbohydrate antigens. Here we explore the development of carbohydrate-specific antibodies in humans, addressing the definition of natural antibodies and the production of carbohydrate-specific antibodies upon antigen stimulation. We focus on the significance of the intestinal microbiota in shaping carbohydrate-specific antibodies not just in the gut, but also in the blood circulation. The structural similarity between bacterial carbohydrate antigens and surface glycoconjugates of protists, fungi and animals leads to the production of carbohydrate-specific antibodies protective against a broad range of pathogens. Mimicry between bacterial and human glycoconjugates, however, can also lead to the generation of carbohydrate-specific antibodies that cross-react with human antigens, thereby contributing to the development of autoimmune disorders.
Collapse
Affiliation(s)
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
39
|
Neurological disorders-associated anti-glycosphingolipid IgG-antibodies display differentially restricted IgG subclass distribution. Sci Rep 2020; 10:13074. [PMID: 32753699 PMCID: PMC7403582 DOI: 10.1038/s41598-020-70063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/22/2020] [Indexed: 11/30/2022] Open
Abstract
Antibodies against several self-glycans on glycosphingolipids are frequently detected in different neurological disorders. Their pathogenic role is profusely documented, but the keys for their origin remain elusive. Additionally, antibodies recognizing non-self glycans appear in normal human serum during immune response to bacteria. Using HPTLC-immunostaining we aimed to characterize IgM and IgG subclass antibody responses against glycosphingolipids carrying self glycans (GM1/GM2/GM3/GD1a/GD1b/GD3/GT1b/GQ1b) and non-self glycans (Forssman/GA1/“A” blood group/Nt7) in sera from 27 randomly selected neurological disorder patients presenting IgG reactivity towards any of these antigens. Presence of IgG2 (p = 0.0001) and IgG1 (p = 0.0078) was more frequent for IgG antibodies against non-self glycans, along with less restricted antibody response (two or more simultaneous IgG subclasses). Contrariwise, IgG subclass distribution against self glycans showed clear dominance for IgG3 presence (p = 0.0017) and more restricted IgG-subclass distributions (i.e. a single IgG subclass, p = 0.0133). Interestingly, anti-self glycan IgG antibodies with simultaneous IgM presence had higher proportion of IgG2 (p = 0.0295). IgG subclass frequencies were skewed towards IgG1 (p = 0.0266) for “anti-self glycan A” subgroup (GM2/GM1/GD1b) and to IgG3 (p = 0.0007) for “anti-self glycan B” subgroup (GM3/GD1a/GD3/GT1b/GQ1b). Variations in players and/or antigenic presentation pathways supporting isotype (M-G) and IgG-subclass pattern differences in the humoral immune response against glycosphingolipids carrying non-self versus self-glycans are discussed.
Collapse
|
40
|
Petit B, Mitaine-Offer AC, Fernández FR, Papini AM, Delaude C, Miyamoto T, Tanaka C, Rovero P, Lacaille-Dubois MA. Triterpene glycosides from Blighia welwitschii and evaluation of their antibody recognition capacity in multiple sclerosis. PHYTOCHEMISTRY 2020; 176:112392. [PMID: 32512361 DOI: 10.1016/j.phytochem.2020.112392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Multiple sclerosis (MS) in a multifactorial autoimmune disease in which reliable biomarkers are needed for therapeutic monitoring and diagnosis. Autoantibodies (autoAbs) are known biomarker candidates although their detection in biological fluids requires a thorough characterization of their associated antigens. Over the past twenty years, a reverse chemical-based approach aiming to screen putative autoantigens has underlined the role of glycans, in particular glucose, in MS. Despite the progress achieved, a lack of consensus regarding the nature of innate antigens as well as difficulties proposing new synthetic glucose-based structures have proved to be obstacles. Here is proposed a strategy to extend the current methodology to the field of natural glycosides, in order to dramatically increase the diversity of glycans that could be tested. Triterpene saponins from the Sapindaceace family represent an optimal starting material as their abundant description in the literature has revealed a prevalence of glucose-based oligosaccharides. Blighia welwitschii (Sapindaceae) was thus selected as a case study and twelve triterpene saponins were isolated and characterized. Their structures were elucidated on the basis of 1D and 2D NMR as well as mass spectrometry, revealing seven undescribed compounds. A selection of natural glycosides exhibiting various oligosaccharide moieties were then tested as antigens in enzyme-linked immunosorbent assay (ELISA) to recognize IgM antibodies (Abs) in MS patients' sera. Immunoassay results indicated a correlation between the glycan structures and their antibody recognition capacity, allowing the determination of structure-activity relationships that were coherent with previous studies. This approach might help to identify sugar epitopes putatively involved in MS pathogenesis, which remains poorly understood.
Collapse
Affiliation(s)
- Bastien Petit
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, BP 87900, 21079, Dijon, Cedex, France
| | - Anne-Claire Mitaine-Offer
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, BP 87900, 21079, Dijon, Cedex, France.
| | - Feliciana Real Fernández
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health, NeuroFarBa Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy; Laboratory of Chemical Biology, EA 4505 PeptLab@UCP, University of Cergy Pontoise, 95031, Cergy, Pontoise Cedex, France
| | - Clément Delaude
- Centre de Recherche Phytochimique, Université de Liège, Institut de Chimie-B6, Sart Tilman, B-4000, Liège I, Belgium
| | - Tomofumi Miyamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Chiaki Tanaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Paolo Rovero
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health, NeuroFarBa Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Marie-Aleth Lacaille-Dubois
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, BP 87900, 21079, Dijon, Cedex, France
| |
Collapse
|
41
|
Reintjens NRM, Koemans TS, Zilverschoon N, Castelli R, Cordfunke RA, Drijfhout JW, Meeuwenoord NJ, Overkleeft HS, Filippov DV, Marel GA, Codée JDC. Synthesis of
C
‐Glycosyl Amino Acid Building Blocks Suitable for the Solid‐Phase Synthesis of Multivalent Glycopeptide Mimics. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Niels R. M. Reintjens
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Tony S. Koemans
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Nick Zilverschoon
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Riccardo Castelli
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Robert A. Cordfunke
- Dept. of Immunohematology and Blood Transfusion Leiden University Medical Center Leiden University Albinusdreef 2 2333 ZA Leiden The Netherlands
| | - Jan Wouter Drijfhout
- Dept. of Immunohematology and Blood Transfusion Leiden University Medical Center Leiden University Albinusdreef 2 2333 ZA Leiden The Netherlands
| | - Nico J. Meeuwenoord
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Dmitri V. Filippov
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gijsbert A. Marel
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
42
|
Profiling of Naturally Occurring Antibodies to the Thomsen-Friedenreich Antigen in Health and Cancer: The Diversity and Clinical Potential. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9747040. [PMID: 32280709 PMCID: PMC7128052 DOI: 10.1155/2020/9747040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
The Thomsen-Friedenreich (TF) antigen is expressed in a majority of human tumors due to aberrant glycosylation in cancer cells. There is strong evidence that humoral immune response to TF represents an effective mechanism for the elimination of cancer cells that express TF-positive glycoconjugates. The presence of naturally occurring antibodies to tumor-associated TF and cancer-specific changes in their levels, isotype distribution and interrelation, avidity, and glycosylation profile make these Abs a convenient and ubiquitous marker for cancer diagnostics and prognostics. In this review, we attempt to summarize the latest data on the potential of TF-specific Abs for cancer diagnostics and prognostics.
Collapse
|
43
|
The architecture of the IgG anti-carbohydrate repertoire in primary antibody deficiencies. Blood 2020; 134:1941-1950. [PMID: 31537530 DOI: 10.1182/blood.2019001705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/08/2019] [Indexed: 02/06/2023] Open
Abstract
Immune system failure in primary antibody deficiencies (PADs) has been linked to recurrent infections, autoimmunity, and cancer, yet clinical judgment is often based on the reactivity to a restricted panel of antigens. Previously, we demonstrated that the human repertoire of carbohydrate-specific immunoglobulin G (IgG) exhibits modular organization related to glycan epitope structure. The current study compares the glycan-specific IgG repertoires between different PAD entities. Distinct repertoire profiles with extensive qualitative glycan-recognition defects were observed, which are characterized by the common loss of Galα and GalNAc reactivity and disease-specific recognition of microbial antigens, self-antigens, and tumor-associated carbohydrate antigens. Antibody repertoire analysis may provide a useful tool to elucidate the degree and the clinical implications of immune system failure in individual patients.
Collapse
|
44
|
Dobrochaeva K, Khasbiullina N, Shilova N, Antipova N, Obukhova P, Ovchinnikova T, Galanina O, Blixt O, Kunz H, Filatov A, Knirel Y, LePendu J, Khaidukov S, Bovin N. Specificity of human natural antibodies referred to as anti-Tn. Mol Immunol 2020; 120:74-82. [PMID: 32087569 DOI: 10.1016/j.molimm.2020.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 01/31/2023]
Abstract
To understand the role of human natural IgM known as antibodies against the carbohydrate epitope Tn, the antibodies were isolated using GalNAcα-Sepharose affinity chromatography, and their specificity was profiled using microarrays (a glycan array printed with oligosaccharides and bacterial polysaccharides, as well as a glycopeptide array), flow cytometry, and inhibition ELISA. The antibodies bound a restricted number of GalNAcα-terminated oligosaccharides better than the parent monosaccharide, e.g., 6-O-Su-GalNAcα and GalNAcα1-3Galβ1-3(4)GlcNAcβ. The binding with several bacterial polysaccharides that have no structural resemblance to the affinity ligand GalNAcα was quite unexpected. Given that GalNAcα is considered the key fragment of the Tn antigen, it is surprising that these antibodies bind weakly GalNAcα-OSer and do not bind a wide variety of GalNAcα-OSer/Thr-containing mucin glycopeptides. At the same time, we have observed specific binding to cells having Tn-positive glycoproteins containing similar glycopeptide motifs in a conformationally rigid macromolecule. Thus, specific recognition of the Tn antigen apparently requires that the naturally occurring "anti-Tn" IgM recognize a complex epitope comprising the GalNAcα as an essential component and a fairly long amino acid sequence where the amino acids adjacent to GalNAcα do not contact the antibody paratope; i.e., the antibodies recognize a spatial epitope or a molecular pattern rather than a classical continuous sequence. In addition, we have not found any increase in the binding of natural antibodies when GalNAcα residues were clustered. These results may help in further development of anticancer vaccines based on synthetic Tn constructs.
Collapse
Affiliation(s)
- Kira Dobrochaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation
| | - Nailya Khasbiullina
- Semiotik LLC, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation; National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow 117997, Russian Federation; Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Nadezhda Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation; Semiotik LLC, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation; National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow 117997, Russian Federation
| | - Nadezhda Antipova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation; Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya, Moscow 117198, Russian Federation; National Research University Higher School of Economics, Moscow 101000, Russian Federation
| | - Polina Obukhova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation; National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow 117997, Russian Federation
| | - Tatiana Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation
| | - Oxana Galanina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation
| | - Ola Blixt
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Horst Kunz
- Institut Für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Alexander Filatov
- Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, 115478, Russian Federation
| | - Yuriy Knirel
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Jacques LePendu
- University of Nantes, Inserm, U892 IRT UN, 8 Quai MonCousu, BP70721 Nantes, FR 44007, France
| | - Sergey Khaidukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation
| | - Nicolai Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russian Federation.
| |
Collapse
|
45
|
Martinez JER, Thomas B, Flitsch SL. Glycan Array Technology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:435-456. [PMID: 31907566 DOI: 10.1007/10_2019_112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Glycan (or carbohydrate) arrays have become an essential tool in glycomics, providing fast and high-throughput data on protein-carbohydrate interactions with small amounts of carbohydrate ligands. The general concepts of glycan arrays have been adopted from other microarray technologies such as those used for nucleic acid and proteins. However, carbohydrates have presented their own challenges, in particular in terms of access to glycan probes, linker attachment chemistries and analysis, which will be reviewed in this chapter. As more and more glycan probes have become available through chemical and enzymatic synthesis and robust linker chemistries have been developed, the applications of glycan arrays have dramatically increased over the past 10 years, which will be illustrated with recent examples.
Collapse
Affiliation(s)
| | - Baptiste Thomas
- School of Chemistry and MIB, The University of Manchester, Manchester, UK
| | | |
Collapse
|
46
|
E Perry H, Ryzhov I, Galanina O, V Bovin N, M Henry S. Incidence in plasma of low level antibodies against three xenotransplantation and immunotherapeutic glycan antigens. AIMS ALLERGY AND IMMUNOLOGY 2020. [DOI: 10.3934/allergy.2020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Abstract
Adaptive antibody responses provide a crucial means of host defense against viral infections by mediating the neutralization and killing infectious pathogens. At the forefront of humoral defense against viruses lie a subset of innate-like serum antibodies known as natural antibodies (NAbs). NAbs serve multifaceted functions in host defense and play an essential role in early immune responses against viruses. However, there remain many unanswered questions with regard to both the breadth of viral antigens recognized by NAbs, and how B cell ontology and individual antigenic histories intersect to control the development and function of antiviral human NAbs. In the following article we briefly review the current understanding of the functions and source of NAbs in the immune repertoire, their role during antiviral immune responses, the factors influencing the maturation of the NAb repertoire, and finally, the gaps and future research needed to advance our understanding of innate-like B cell biology for the purpose of harnessing NAbs for host defense against viral infections.
Collapse
Affiliation(s)
- J Stewart New
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - R Glenn King
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John F Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
48
|
Liet B, Laigre E, Goyard D, Todaro B, Tiertant C, Boturyn D, Berthet N, Renaudet O. Multifunctional Glycoconjugates for Recruiting Natural Antibodies against Cancer Cells. Chemistry 2019; 25:15508-15515. [PMID: 31613028 PMCID: PMC6916168 DOI: 10.1002/chem.201903327] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/05/2019] [Indexed: 01/04/2023]
Abstract
We have developed a fully synthetic and multifunctional antibody-recruiting molecule (ARM) to guide natural antibodies already present in the blood stream against cancer cells without pre-immunization. Our ARM is composed of antibody and tumor binding modules (i.e., ABM and TBM) displaying clustered rhamnose and cyclo-RGD, respectively. By using a stepwise approach, we have first demonstrated the importance of multivalency for efficient recognition with naturel IgM and αv β3 integrin expressing M21 tumor cell line. Once covalently conjugated by click chemistry, we confirmed by flow cytometry and confocal microscopy that the recognition properties of both the ABM and TBM are conserved, and more importantly, that the resulting ARM promotes the formation of a ternary complex between natural IgM and cancer cells, which is required for the stimulation of the cytotoxic immune response in vivo. Due to the efficiency of the synthetic process, a larger diversity of heterovalent ligands could be easily explored by using the same multivalent approach and could open new perspectives in this field.
Collapse
Affiliation(s)
- Benjamin Liet
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | - Eugénie Laigre
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | - David Goyard
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | - Biagio Todaro
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | - Claire Tiertant
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | - Didier Boturyn
- DCM, UMR 5250Université Grenoble Alpes, CNRS38000GrenobleFrance
| | | | | |
Collapse
|
49
|
Jackson MD, Wong SM, Akerley BJ. Underlying Glycans Determine the Ability of Sialylated Lipooligosaccharide To Protect Nontypeable Haemophilus influenzae from Serum IgM and Complement. Infect Immun 2019; 87:e00456-19. [PMID: 31405955 PMCID: PMC6803340 DOI: 10.1128/iai.00456-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) efficiently colonizes the human nasopharynx asymptomatically but also causes respiratory mucosal infections, including otitis media, sinusitis, and bronchitis. The lipooligosaccharide (LOS) on the cell surface of NTHi displays complex glycans that mimic host structures, allowing it to evade immune recognition. However, LOS glycans are also targets of host adaptive and innate responses. To aid in evasion of these responses, LOS structures exhibit interstrain heterogeneity and are also subject to phase variation, the random on/off switching of gene expression, generating intrastrain population diversity. Specific LOS modifications, including terminal sialylation of the LOS, which exploits host-derived sialic acid (Neu5Ac), can also block recognition of NTHi by bactericidal IgM and complement by mechanisms that are not fully understood. We investigated the LOS sialic acid-mediated resistance of NTHi to antibody-directed killing by serum complement. We identified specific LOS structures extending from heptose III that are targets for binding by naturally occurring bactericidal IgM in serum and are protected by sialylation of the LOS. Phase-variable galactosyltransferases encoded by lic2A and lgtC each add a galactose epitope bound by IgM that results in antibody-dependent killing via the classical pathway of complement. NTHi's survival can be influenced by the expression of phase-variable structures on the LOS that may also depend on environmental conditions, such as the availability of free sialic acid. Identification of surface structures on NTHi representing potential targets for antibody-based therapies as alternatives to antibiotic treatment would thus be valuable for this medically important pathogen.
Collapse
Affiliation(s)
- Mary Darby Jackson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Sandy M Wong
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Brian J Akerley
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
50
|
Lardone RD, Irazoqui FJ, Nores GA. Most of anti-glycolipid IgG-antibodies associated to neurological disorders occur without their IgM counterpart. J Biomed Sci 2019; 26:67. [PMID: 31492138 PMCID: PMC6729026 DOI: 10.1186/s12929-019-0562-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/29/2019] [Indexed: 12/04/2022] Open
Abstract
Background Different neurological disorders frequently display antibodies against several self-glycans. Increasing evidence supports their pathogenic role; however, far less is known about their origin. Meanwhile, antibodies recognizing non-self glycans appear in normal human serum during immune response to bacteria. Methods Using high performance thin layer chromatography-immunostaining, we comparatively evaluated humoral immune response (IgG and IgM immunoreactivity) against glycolipids carrying self-glycans (GM3/GM2/GM1/GD1a/GD1b/GD3/GT1b/GQ1b) and non-self glycans (Forssman/GA1/“A” blood group/Nt7) in sera from 383 patients with neurological disorders along with 87 healthy controls. Results In contrast to no healthy controls having anti-self glycan IgG antibodies, one-fifth of patients’ sera had anti-self glycan IgG antibodies: remarkably, 60% of these occurred without IgM antibodies of the same specificity. Contrary to this unusual fact (anti-self glycan IgG occurrence without simultaneous presence of IgM having the same specificity ~ IgG/IgM discordance), all IgG antibodies against non-self glycans occurred simultaneously with their IgM antibody counterpart (i.e. 0% discordance). When analyzed closer, the IgG/IgM discordance frequency for anti-self glycans exhibited a dual trend: below 40% for IgG antibodies against GM2, GM1 and GD1b, and greater than 53% for IgG antibodies against the remaining self glycans. Interestingly, this discordance behavior was common to several different neurological disorders. Conclusions Classic immunology principles indicate this anti-self glycan IgG/IgM discordance should not occur in an antibody response; its unusual presence is discussed within the “binding site drift hypothesis” context, where anti-self glycan IgG antibodies could originate from pre-existing IgG recognizing structurally-related non-self glycans. Electronic supplementary material The online version of this article (10.1186/s12929-019-0562-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ricardo Dante Lardone
- Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina. .,Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET. Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Fernando José Irazoqui
- Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.,Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET. Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gustavo Alejandro Nores
- Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.,Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET. Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|