1
|
Zannah S, Arrigan DWM. Exploring the electrochemical behaviour of digestive enzymes at a liquid|liquid micro-interface array. Bioelectrochemistry 2025; 164:108911. [PMID: 39923264 DOI: 10.1016/j.bioelechem.2025.108911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/11/2025]
Abstract
Trypsin and pepsin are proteolytic enzymes secreted by the digestive system to digest proteins. Here, we examine the electrochemical behaviour and detection of trypsin and pepsin at a liquid/liquid (L|L) micro-interface array. For both proteins, aqueous phase of 10 mM hydrochloric acid was the only electrolyte solution in which they were electroactive. Neither protein was detected below 30 μM by cyclic voltammetry (CV) but stripping voltammetry following adsorption (AdSV) enabled the detection of sub-micromolar concentrations of both proteins. Although pepsin was electroactive at the micro-interface array in aqueous phase of 10 mM HCl, its behaviour was ill-defined and unsuitable for characterization by CV. It was found that pepsin easily blocked the micro-interfaces, as seen by greatly hampered ion transfer voltammetry of tetrapropylammonium ion (TPrA+) whereas trypsin only slightly impeded TPrA+ transfer. This highlights the dissimilarity between pepsin and trypsin. These results illustrate the rich viability of electrochemistry at L|L micro-interface arrays as a tool to explore the behaviour and detection of biological macromolecules.
Collapse
Affiliation(s)
- Shaheda Zannah
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Damien W M Arrigan
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia.
| |
Collapse
|
2
|
Giri A, Hong IS, Kwon TK, Kang JS, Jeong JH, Kweon S, Yook S. Exploring therapeutic and diagnostic potential of cysteine cathepsin as targets for cancer therapy with nanomedicine. Int J Biol Macromol 2025; 315:144324. [PMID: 40398760 DOI: 10.1016/j.ijbiomac.2025.144324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/05/2025] [Accepted: 05/15/2025] [Indexed: 05/23/2025]
Abstract
Cysteine cathepsins have been discovered to be substantially expressed in multiple types of cancer. They play a key role in the progression and growth of these cancers, rendering them appealing targets for nanoscale delivery and noninvasive diagnostic imaging. This review explores cathepsins from the papain-like enzyme family (C1) within the cysteine peptidase clan (CA), emphasizing the role of cathepsin-responsive nanoparticles in tumor growth. Furthermore, it also explores how nanotechnology can harness cathepsin activity to enable targeted drug delivery, improve tumor imaging, and reduce systemic toxicity. By examining the molecular mechanisms governing cathepsin function and evaluating different nanocarrier systems, this work aims to enhance our understanding of targeted cancer treatment. Despite significant advances, challenges remain in translating these nanomedicine platforms into clinical use, including improving delivery efficiency, biocompatibility, long-term safety, and addressing issues such as interspecies protease variability and scalable nanomanufacturing. Future advancement, integrating advanced biomaterials, patient-derived organoid models, bispecific immune-protease targeting, CRISPR-based cathepsin editing, and artificial intelligence-driven pharmacokinetic modeling and analysis will be critical to fully realizing the clinical potential of cathepsin targeted nanomedicines. These innovations hold promises for advancing precision oncology by overcoming current limitations and improving patient outcomes.
Collapse
Affiliation(s)
- Anil Giri
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - In-Sun Hong
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Seho Kweon
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
3
|
Guo R, Zheng Q, Zhang L. Identification and validation of diagnostic markers and drugs for pediatric bronchopulmonary dysplasia based on integrating bioinformatics and molecular docking analysis. PLoS One 2025; 20:e0323006. [PMID: 40333951 PMCID: PMC12057968 DOI: 10.1371/journal.pone.0323006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/01/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND BPD is a prevalent chronic lung disease in infancy with lifelong impacts. Its early diagnosis and treatment are hindered by complex pathophysiology and limited mechanistic understanding. This study seeks to establish a foundation for early diagnosis and targeted therapy by identifying diagnostic markers and exploring drug-gene associations. METHODS Gene expression data were retrieved from the GEO database. Functional enrichment analyses were conducted on the differentially expressed genes (DEGs). DEGs were used to construct a PPI network. Three algorithms were applied to identify diagnostic markers. Immune cell infiltration was analyzed using the CIBERSORT tool, assessing relationships between immune cells and diagnostic markers. Molecular docking was performed to evaluate interactions between predict candidate drugs and diagnostic markers. RESULTS Six hub genes were identified as diagnostic markers. Diagnostic markers showed significant correlations with specific immune cells. Resveratrol and progesterone were found to stably bind to all six diagnostic markers in molecular docking analyses, suggesting therapeutic potential. CONCLUSION In conclusion, our results show that IL7R, CXCL10, DEFA4, PRTN3, NCAPG and CCNB1 are BPD diagnostic indicators, and revealing immunological features associated with BPD. The molecular interactions of resveratrol and progesterone with the aforementioned key targets suggest their potential as therapeutic drugs for treating BPD.
Collapse
Affiliation(s)
- Rui Guo
- Neonatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Qirui Zheng
- Department of Ultrasound, The People’s Hospital of China Medical University, The People’s Hospital of Liaoning Province, Shenyang, Liaoning Province, China
| | - Liang Zhang
- Neonatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
4
|
Tran NM, Truong AT, Nguyen DT, Dang TT. Profiling Pro-Inflammatory Proteases as Biomolecular Signatures of Material-Induced Subcutaneous Host Response in Immuno-Competent Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2309709. [PMID: 39630111 PMCID: PMC11792001 DOI: 10.1002/advs.202309709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/19/2024] [Indexed: 02/05/2025]
Abstract
Proteases are important modulators of inflammation, but they remain understudied in material-induced immune response, which is critical to clinical success of biomedical implants. Herein, molecular expression and proteolytic activity of three distinct proteases, namely neutrophil elastase, matrix metalloproteinases, cysteine cathepsins (cathepsin-K and cathepsin-B) are comprehensively profiled, in the subcutaneous host response of immuno-competent mice against different biomaterial implants. Quantitative non-invasive monitoring with activatable fluorescent probes reveals that different microparticulate materials induce distinct levels of protease activity with degradable poly(lactic-co-glycolic) acid inducing the strongest signal compared to nondegradable materials such as polystyrene and silica oxide. Furthermore, protein expression of selected proteases, attributable to both their inactive and active forms, notably deviates from their activities associated only with their active forms. Protease activity exhibits positive correlations with protein expression of pro-inflammatory cytokines tumor necrosis factor α and interleukin 6 but negative correlation with pro-fibrotic cytokine transforming growth factor β1. This study also demonstrates the predictive utility of protease activity as a non-invasive, pro-inflammatory parameter for evaluation of the anti-inflammatory effects of model bioactive compounds on material-induced host response. Overall, the findings provide new insights into protease presence in material-induced immune responses, facilitating future biomaterial assessment to evoke appropriate host responses for implant applications.
Collapse
Affiliation(s)
- Nam M.P. Tran
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University70 Nanyang DriveSingapore637459Singapore
| | - Anh T.H. Truong
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University70 Nanyang DriveSingapore637459Singapore
| | - Dang T. Nguyen
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University70 Nanyang DriveSingapore637459Singapore
| | - Tram T. Dang
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological University70 Nanyang DriveSingapore637459Singapore
| |
Collapse
|
5
|
Guo D, Liu C, Zhu H, Cheng Y, Huo X, Guo Y, Qian H. Food-Induced Adverse Reactions: A Review of Physiological Food Quality Control, Mucosal Defense Mechanisms, and Gastrointestinal Physiology. TOXICS 2025; 13:61. [PMID: 39853059 PMCID: PMC11769199 DOI: 10.3390/toxics13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/30/2024] [Accepted: 01/15/2025] [Indexed: 01/26/2025]
Abstract
Although food is essential for the survival of organisms, it can also trigger a variety of adverse reactions, ranging from nutrient intolerances to celiac disease and food allergies. Food not only contains essential nutrients but also includes numerous substances that may have positive or negative effects on the consuming organism. To protect against potentially harmful components, all animals have evolved defense mechanisms, which are similar to antimicrobial defenses but often come at the cost of the organism's health. When these defensive responses are exaggerated or misdirected, they can lead to adverse food reactions, where the costs outweigh the benefits. Furthermore, due to the persistent toxicity of harmful food components, the failure of defense mechanisms can also result in pathological effects triggered by food. This article review presents a food quality control framework that aims to clarify how these reactions relate to normal physiological processes. Organisms utilize several systems to coexist with symbiotic microbes, regulate them, and concurrently avoid, expel, or neutralize harmful pathogens. Similarly, food quality control systems allow organisms to absorb necessary nutrients while defending against low-quality or harmful components in food. Although many microbes are lethal in the absence of antimicrobial defenses, diseases related to microbiome dysregulation, such as inflammatory bowel disease, have significantly increased. Antitoxin defenses also come with costs and may fail due to insufficiencies, exaggerations, or misdirected actions, ultimately leading to adverse food reactions. With the changes in human diet and lifestyle, the failure of defense mechanisms has contributed to the rising incidence of food intolerances. This review explores the mechanisms of antitoxin defenses and analyzes how their failure can lead to adverse food reactions, emphasizing the importance of a comprehensive understanding of food quality control mechanisms for developing more effective treatments for food-triggered diseases.
Collapse
Affiliation(s)
- Dongdong Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chang Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongkang Zhu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiang Huo
- Key Laboratory of Pathogenic Microorganisms for Emerging and Outbreaks of Major Infectious Diseases, Jiangsu Engineering Research Centre for Health Emergency Response, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Stafford JL, Montoya VK, Bierman JJ, Walker MC. Assessing the Impact of the Leader Peptide in Protease Inhibition by the Microviridin Family of RiPPs. Biomedicines 2024; 12:2873. [PMID: 39767778 PMCID: PMC11672978 DOI: 10.3390/biomedicines12122873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing class of natural products biosynthesized from a genetically encoded precursor peptide. RiPPs have attracted attention for the ability to generate and screen libraries of these compounds for useful biological activities. To facilitate this screening, it is useful to be able to do so with the leader peptide still present. We assessed the suitability of the microviridin family for these screening experiments by determining their activity with the leader peptide still present. Methods: Modified precursor peptides with the leader present were heterologously expressed in Escherichia coli. Their ability to inhibit elastase was tested with a fluorogenic substrate. HPLC was used to monitor degradation of the modified precursor peptides by elastase. SDS-PAGE was used to determine the ability of immobilized modified precursor peptide to pull down elastase. Results: We found that the fully modified precursor peptide of microviridin B can inhibit the serine protease elastase with a low nanomolar IC50, and that the fully modified precursor with an N-terminal His-tag can mediate interactions between elastase and Ni-NTA resin, all indicating leader peptide removal is not necessary for microviridins to bind their target proteases. Additionally, we found that a bicyclic variant was able to inhibit elastase with the leader peptide still present, although with a roughly 100-fold higher IC50 and being subject to hydrolysis by elastase. Conclusions: These results open a pathway to screening libraries of microviridin variants for improved protease inhibition or other characteristics that can serve as, or as inspirations for, new pharmaceuticals.
Collapse
Affiliation(s)
| | | | | | - Mark C. Walker
- Department of Chemistry and Chemical Biology, University of New Mexico, 346 Clark Hall, 300 Terrace St. NE, Albuquerque, NM 87131, USA; (J.L.S.); (V.K.M.); (J.J.B.)
| |
Collapse
|
7
|
Zhu HY, Wang HJ, Liu P. Versatile roles for neutrophil proteinase 3 in hematopoiesis and inflammation. Immunol Res 2024; 73:1. [PMID: 39658724 DOI: 10.1007/s12026-024-09578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/16/2024] [Indexed: 12/12/2024]
Abstract
Neutrophil proteinase 3 (PR3), cathepsin G, elastase, and neutrophil serine protease 4 constitute the neutrophil serine protease family. These four members share varying sequence homology and functional similarities with each other. However, PR3 stands out as a unique autoantigen, serving as a primary autoantigen in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Numerous studies have documented or reviewed the molecular pathogenesis or diagnostic utility of PR3 in ANCA-associated vasculitis. Nevertheless, the role of PR3 in other areas, particularly within the hematopoietic system, appears to have been overlooked. Indeed, beyond its involvement in vasculitis, PR3 contributes to cell apoptosis, hematopoietic abnormalities, diabetic ketoacidosis, and various other inflammatory diseases. In this study, we aim to summarize the research on the function of neutrophil PR3 in hematopoiesis and to elucidate its potential role in neutrophil aging and inflammatory diseases.
Collapse
Affiliation(s)
- Hai-Yan Zhu
- Clinical Laboratory Center, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Hai-Juan Wang
- Clinical Laboratory Center, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Peng Liu
- Clinical Laboratory Center, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China.
| |
Collapse
|
8
|
Slapak EJ, Zwijnenburg DA, Koster J, Bijlsma MF, Spek CA. Identification of pancreatic cancer-specific protease substrates for protease-dependent targeted delivery. Oncogenesis 2024; 13:40. [PMID: 39567504 PMCID: PMC11579016 DOI: 10.1038/s41389-024-00542-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents significant challenges due to the inadequacy of existing chemotherapeutics, which often result in toxicity-dependent dose limitations and premature cessation of therapy. Targeted delivery of therapeutic molecules offers a promising solution. Given that PDAC is marked by a desmoplastic reaction with extensive aberrant protease activity, protease-dependent targeted delivery could minimize off-target toxicities and is of increasing interest. The efficacy of targeted delivery hinges on the specificity of the substrates used; insufficient specificity can lead to off-target effects, reducing the advantage over non-targeted methods. Here, we employ an unbiased library approach to screen over 7 million peptide substrates for proteolytic cleavage by PDAC cell lysates, identifying 37 substrates enriched by at least 500-fold after three rounds of selection. As systemically administered targeted delivery depends on the absence of substrate cleavage in circulation, the peptide library was also screened against whole blood lysates, and enriched substrates were removed from the PDAC-enriched dataset to obtain PDAC-specific substrates. In vitro validation using FRET-peptides showed that 13 of the selected 15 substrates are cleaved by a panel of PDAC cell line lysates. Moreover, evaluation against healthy murine organ and human blood lysates to assess off-target cleavage revealed that the identified substrates are indeed PDAC-specific and that several substrates may be superior with respect to PDAC specificity over the CAPN2-responsive substrate, which has recently shown preclinical potential in targeted therapy, but future animal models should address the potential superiority. Overall, we thus identified substrates with high selectivity and sensitivity for PDAC that could be employed in protease-dependent targeted therapies.
Collapse
Affiliation(s)
- Etienne J Slapak
- Amsterdam UMC location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancesr Biology, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Danny A Zwijnenburg
- Amsterdam UMC location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jan Koster
- Amsterdam UMC location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancesr Biology, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - C Arnold Spek
- Amsterdam UMC location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancesr Biology, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Assylbekova A, Allayarova M, Konysbekova M, Bekturgan A, Makhanova A, Brown S, Grzegorzek N, Kalbacher H, Kalendar R, Burster T. The Proteolytic Activity of Neutrophil-Derived Serine Proteases Bound to the Cell Surface Arming Lung Epithelial Cells for Viral Defense. Molecules 2024; 29:4449. [PMID: 39339444 PMCID: PMC11434079 DOI: 10.3390/molecules29184449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The collaboration between cellular proteases and host cells is pivotal in mounting an effective innate immune defense. Of particular interest is the synergistic interaction between cathepsin G (CatG) and neutrophil elastase (NE), which are proteases secreted by activated neutrophils, and the human alveolar basal epithelial cell line (A549) and the human lung epithelial-like cell line (H1299), because of the potential implications for viral infection. Our study aimed to investigate the binding capacity of CatG and NE on the surface of A549 and H1299 cells through preincubation with purified CatG and NE; thereby, the proteolytic activity could be detected using activity-based probes. Both CatG and NE were capable of binding to the cell surface and exhibited proteolytic activity, leading to increased cell surface levels of MHC I molecules, which is crucial for displaying the endogenous antigenic repertoire. In addition, CatG cleaved the S2' site of the SARS-CoV-2 spike protein at two specific sites (815RS816 and 817FI818) as well as NE (813SK814 and 818IE819), which potentially leads to the destruction of the fusion peptide. Additionally, furin required the presence of Ca2+ ions for the distinct cleavage site necessary to generate the fusion peptide. Overall, the findings suggest that CatG and NE can fortify target cells against viral entry, underscoring the potential significance of cell surface proteases in protecting against viral invasion.
Collapse
Affiliation(s)
- Akmaral Assylbekova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan (M.K.); (A.B.); (A.M.)
| | - Maiya Allayarova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan (M.K.); (A.B.); (A.M.)
| | - Moldir Konysbekova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan (M.K.); (A.B.); (A.M.)
| | - Amanbek Bekturgan
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan (M.K.); (A.B.); (A.M.)
| | - Aiya Makhanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan (M.K.); (A.B.); (A.M.)
| | - Samantha Brown
- Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, 72076 Tübingen, Germany
| | - Norbert Grzegorzek
- Mass Spectrometry Facility, Organic Chemistry, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Hubert Kalbacher
- Institute of Clinical Anatomy and Cell Analysis, University Hospital Tübingen, Eberhard Karls University Tübingen, Österbergstraße 3, 72074 Tübingen, Germany
| | - Ruslan Kalendar
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan;
| | - Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan (M.K.); (A.B.); (A.M.)
| |
Collapse
|
10
|
Lee OYA, Wong ANN, Ho CY, Tse KW, Chan AZ, Leung GPH, Kwan YW, Yeung MHY. Potentials of Natural Antioxidants in Reducing Inflammation and Oxidative Stress in Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:751. [PMID: 38929190 PMCID: PMC11201162 DOI: 10.3390/antiox13060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic kidney disease (CKD) presents a substantial global public health challenge, with high morbidity and mortality. CKD patients often experience dyslipidaemia and poor glycaemic control, further exacerbating inflammation and oxidative stress in the kidney. If left untreated, these metabolic symptoms can progress to end-stage renal disease, necessitating long-term dialysis or kidney transplantation. Alleviating inflammation responses has become the standard approach in CKD management. Medications such as statins, metformin, and GLP-1 agonists, initially developed for treating metabolic dysregulation, demonstrate promising renal therapeutic benefits. The rising popularity of herbal remedies and supplements, perceived as natural antioxidants, has spurred investigations into their potential efficacy. Notably, lactoferrin, Boerhaavia diffusa, Amauroderma rugosum, and Ganoderma lucidum are known for their anti-inflammatory and antioxidant properties and may support kidney function preservation. However, the mechanisms underlying the effectiveness of Western medications and herbal remedies in alleviating inflammation and oxidative stress occurring in renal dysfunction are not completely known. This review aims to provide a comprehensive overview of CKD treatment strategies and renal function preservation and critically discusses the existing literature's limitations whilst offering insight into the potential antioxidant effects of these interventions. This could provide a useful guide for future clinical trials and facilitate the development of effective treatment strategies for kidney functions.
Collapse
Affiliation(s)
- On Ying Angela Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Alex Ngai Nick Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Ching Yan Ho
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Ka Wai Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Angela Zaneta Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China;
| | - Yiu Wa Kwan
- The School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Martin Ho Yin Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Zhang D, Liang G, Gui L, Zheng W, Zeng Y, Liu Y, Li X, Yang Y, Fan R, Lu Y, Hu X, Guan J, Li T, Yang H, Cheng J, Gong M. Nanometabolomics Elucidated Biological Prospective of Mo 4/3B 2-x Nanosheets: Toward Metabolic Reprogramming of Amino Acid Metabolism. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30622-30635. [PMID: 38857197 DOI: 10.1021/acsami.4c02018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Mo4/3B2-x nanosheets are newly developed, and 2D transition metal borides (MBene) were reported in 2021, but there is no report on their further applications and modification; hence, this article sheds light on the significance of potential biological prospects for future biomedical applications. Therefore, elucidation of the biocompatibility, biotoxicology, and bioactivity of Mo4/3B2-x nanosheets has been an urgent need to be fulfilled. Nanometabolomics (also referred as nanomaterials-based metabolomics) was first proposed and utilized in our previous work, which specialized in interpreting nanomaterials-induced metabolic reprogramming through aqueous metabolomics and lipidomics approach. Hence, nanometabolomics could be considered as a novel concept combining nanoscience and metabolomics to provide bioinformation on nanomaterials' biomedical applications. In this work, the safe range of concentration (<50 mg/L) with good biosafety toward human umbilical vein endothelial cells (HUVECs) was discovered. The low concentration (5 mg/L) and high concentration (50 mg/L) of Mo4/3B2-x nanosheets were utilized for the in vitro Mo4/3B2-x-cell interaction. Nanometabolomics has elucidated the biological prospective of Mo4/3B2-x nanosheets via monitoring its biocompatibility and metabolic shift of HUVECs. The results revealed that 50 mg/L Mo4/3B2-x nanosheets could lead to a stronger alteration of amino acid metabolism with disturbance of the corresponding amino acid-related pathways (including amino acid metabolism, amino acid degradation, fatty acid biosynthesis, and lipid biosynthesis and metabolism). These interesting results were closely involved with the oxidative stress and production of excess ROS. This work could be regarded as a pathbreaking study on Mo4/3B2-x nanosheets at a biological level, which also designates their further biochemical, medical, and industrial application and development based on nanometabolomics bioinformation.
Collapse
Affiliation(s)
- Dingkun Zhang
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ge Liang
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Luolan Gui
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Zheng
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Zeng
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yumeng Liu
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Li
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yin Yang
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rong Fan
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR; Chengdu Research Institute, City University of Hong Kong, Hong Kong 999077, China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR; Chengdu Research Institute, City University of Hong Kong, Hong Kong 999077, China
| | - Xinyi Hu
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junwen Guan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Li
- Laboratory of Mitochondria and Metabolism, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Gong
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Parisi MG, Ozón B, Vera González SM, García-Pardo J, Obregón WD. Plant Protease Inhibitors as Emerging Antimicrobial Peptide Agents: A Comprehensive Review. Pharmaceutics 2024; 16:582. [PMID: 38794245 PMCID: PMC11125377 DOI: 10.3390/pharmaceutics16050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial peptides (AMPs) are important mediator molecules of the innate defense mechanisms in a wide range of living organisms, including bacteria, mammals, and plants. Among them, peptide protease inhibitors (PPIs) from plants play a central role in their defense mechanisms by directly attacking pathogens or by modulating the plant's defense response. The growing prevalence of microbial resistance to currently available antibiotics has intensified the interest concerning these molecules as novel antimicrobial agents. In this scenario, PPIs isolated from a variety of plants have shown potential in inhibiting the growth of pathogenic bacteria, protozoans, and fungal strains, either by interfering with essential biochemical or physiological processes or by altering the permeability of biological membranes of invading organisms. Moreover, these molecules are active inhibitors of a range of proteases, including aspartic, serine, and cysteine types, with some showing particular efficacy as trypsin and chymotrypsin inhibitors. In this review, we provide a comprehensive analysis of the potential of plant-derived PPIs as novel antimicrobial molecules, highlighting their broad-spectrum antimicrobial efficacy, specificity, and minimal toxicity. These natural compounds exhibit diverse mechanisms of action and often multifunctionality, positioning them as promising molecular scaffolds for developing new therapeutic antibacterial agents.
Collapse
Affiliation(s)
- Mónica G. Parisi
- Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu) and Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución, Luján B6700, Buenos Aires, Argentina;
| | - Brenda Ozón
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| | - Sofía M. Vera González
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| | - Javier García-Pardo
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| |
Collapse
|
13
|
Li K, Dong L, Gao S, Zhang J, Feng Y, Gu L, Yang J, Liu X, Wang Y, Mao Z, Jiang D, Xia Z, Zhang G, Tang J, Ma P, Zhang W. Safety, tolerability, pharmacokinetics and neutrophil elastase inhibitory effects of Sivelestat: A randomized, double-blind, placebo-controlled single- and multiple-dose escalation study in Chinese healthy subjects. Eur J Pharm Sci 2024; 195:106723. [PMID: 38336251 DOI: 10.1016/j.ejps.2024.106723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND AND OBJECTIVE Neutrophil elastase has been identified as a potential therapeutic target for acute lung injury or acute respiratory distress syndrome, and Sivelestat is a selective, reversible and competitive neutrophil elastase inhibitor. This study was designed to investigate the safety, tolerability, pharmacokinetics and neutrophil elastase inhibitory effects of Sivelestat in healthy Chinese subjects. METHODS A randomized, double-blind, placebo-controlled single- and multiple-dose escalation clinical trial was carried out. Briefly, healthy volunteers in twelve cohorts with 8 per cohort received 1.0-20.2 mg/kg/h Sivelestat or placebo in an intravenous infusion manner for two hours, and healthy volunteers in four cohorts received two hours intravenous infusion of 2.0-5.0 mg/kg/h Sivelestat or placebo with an interval of twelve hours for seven times. The safety and tolerability were evaluated and serial blood samples were collected for pharmacokinetics and neutrophil elastase inhibitory effects analysis at the specified time-point. RESULTS A total of 128 subjects were enrolled and all participants completed the study except one. Sivelestat exhibited satisfactory safety and tolerability up to 20.2 mg/kg/h in single-dose cohorts and 5.0 mg/kg/h in multiple-dose cohorts. Even so, more attention should be paid to the safety risks when using high doses. The Cmax and AUC of Sivelestat increased in a dose dependent manner, and Tmax was similar for different dose cohorts. In multiple-dose cohorts, the plasma concentrations reached steady state 48 h after first administration and the accumulation of Cmax and AUC was not obvious. Furthermore, the Cmin_ss of 5.0 mg/kg/h dose cohort could meet the needs of clinical treatment. For some reason, the pharmacodynamics data revealed that the inhibitory effect of Sivelestat on neutrophil elastase content in healthy subjects was inconclusive. CONCLUSION Sivelestat was safe and well tolerated with appropriate pharmacokinetic parameters, which provided support for more diverse dosing regimen in clinical application. CLINICAL TRIAL REGISTRATION www.chinadrugtrials.org.cn identifier is CTR20210072.
Collapse
Affiliation(s)
- Kun Li
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Lingfang Dong
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Shan Gao
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Jingying Zhang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Yinghua Feng
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Li Gu
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Jie Yang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Xing Liu
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Yaqin Wang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Zhenkun Mao
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Dandan Jiang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Zhengchao Xia
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Guoliang Zhang
- Shanghai Precise Biotechnology Co., Ltd, Shanghai, China
| | - Jingwen Tang
- Shanghai Huilun Pharmaceutical Co., Ltd, Shanghai, China
| | - Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China
| | - Wei Zhang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, Zhengzhou, China.
| |
Collapse
|
14
|
Mongkolpathumrat P, Pikwong F, Phutiyothin C, Srisopar O, Chouyratchakarn W, Unnajak S, Nernpermpisooth N, Kumphune S. The secretory leukocyte protease inhibitor (SLPI) in pathophysiology of non-communicable diseases: Evidence from experimental studies to clinical applications. Heliyon 2024; 10:e24550. [PMID: 38312697 PMCID: PMC10835312 DOI: 10.1016/j.heliyon.2024.e24550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/13/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Non-communicable diseases (NCDs) are a worldwide health issue because of their prevalence, negative impacts on human welfare, and economic costs. Protease enzymes play important roles in viral and NCD diseases. Slowing disease progression by inhibiting proteases using small-molecule inhibitors or endogenous inhibitory peptides appears to be crucial. Secretory leukocyte protease inhibitor (SLPI), an inflammatory serine protease inhibitor, maintains protease/antiprotease balance. SLPI is produced by host defense effector cells during inflammation to prevent proteolytic enzyme-induced tissue damage. The etiology of noncommunicable illnesses is linked to SLPI's immunomodulatory and tissue regeneration roles. Disease phases are associated with SLPI levels and activity changes in regional tissue and circulation. SLPI has been extensively evaluated in inflammation, but rarely in NCDs. Unfortunately, the thorough evaluation of SLPI's pathophysiological functions in NCDs in multiple research models has not been published elsewhere. In this review, data from PubMed from 2014 to 2023 was collected, analysed, and categorized into in vitro, in vivo, and clinical studies. According to the review, serine protease inhibitor (SLPI) activity control is linked to non-communicable diseases (NCDs) and other illnesses. Overexpression of the SLPI gene and protein may be a viable diagnostic and therapeutic target for non-communicable diseases (NCDs). SLPI is also cytoprotective, making it a unique treatment. These findings suggest that future research should focus on these pathways using advanced methods, reliable biomarkers, and therapy approaches to assess susceptibility and illness progression. Implications from this review will help pave the way for a new therapeutic target and diagnosis marker for non-communicable diseases.
Collapse
Affiliation(s)
- Podsawee Mongkolpathumrat
- Cardiovascular and Thoracic Technology Program, Chulabhorn International College of Medicine (CICM), Thammasat University (Rangsit Center), Pathumthani 12120, Thailand
| | - Faprathan Pikwong
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chayanisa Phutiyothin
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Onnicha Srisopar
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Wannapat Chouyratchakarn
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Sasimanas Unnajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900 Thailand
| | - Nitirut Nernpermpisooth
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000 Thailand
| | - Sarawut Kumphune
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| |
Collapse
|
15
|
Kim S, Kwak J, Song M, Cho J, Kim ES, Keum GB, Doo H, Pandey S, Cho JH, Ryu S, Kim S, Im YM, Kim HB. Effects of Lacticaseibacillus casei ( Lactobacillus casei) and Saccharomyces cerevisiae mixture on growth performance, hematological parameters, immunological responses, and intestinal microbiome in weaned pigs. Front Vet Sci 2023; 10:1140718. [PMID: 37383354 PMCID: PMC10296769 DOI: 10.3389/fvets.2023.1140718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/16/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction This study was conducted to evaluate the effects of Lacticaseibacillus casei (Lactobacillus casei) and Saccharomyces cerevisiae mixture on growth performance, hematological parameters, immunological responses, and gut microbiome in weaned pigs. Methods A total of 300 crossbred pigs [(Landrace × Yorkshire] × Duroc; 8.87 ± 0.34 kg of average initial body weight [BW]; 4 weeks of age) were divided into two dietary treatments (15 pigs/pen, 10 replicates/treatment) using a randomized complete block design (block = BW): control (CON) and the effective microorganism (MEM). The CON was not treated, while the MEM was treated with the mixture of L. casei (1 × 107 CFU/mL) and S. cerevisiae (1 × 107 CFU/mL) at 3 mL/pig/day for 4 weeks via the drinking water supply. Two feces and one blood sample from the randomly selected pigs in each pen were collected on D1 and D28 after weaning. Pigs were individually weighed, and pen feed intakes were recorded to evaluate pig growth performance. For the gut microbiome analysis, 16S rRNA gene hypervariable regions (V5 to V6) were sequenced using the Illumina MiSeq platform, and Quantitative Insight into Microbial Ecology (QIIME) and Microbiome Helper pipeline were used for 16S rRNA gene sequence analysis. Results and Discussion The daily weight gain and feed efficiency of MEM were significantly higher than those of CON (p < 0.001). There were no significant differences in hematological parameters and immune responses between CON and MEM. However, MEM had significantly lower Treponema genus, whereas significantly higher Lactobacillus and Roseburia genera compared to CON. Overall, our data showed that L. casei and S. cerevisiae mixture could promote growth performance through the modulation of gut microbiota in pigs. This study will help to understand the correlation between the growth performance and the gut microbiome.
Collapse
Affiliation(s)
- Sheena Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Jinok Kwak
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Jinho Cho
- Division of Food and Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Eun Sol Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Gi Beom Keum
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Hyunok Doo
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Sriniwas Pandey
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Jae Hyoung Cho
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Sumin Ryu
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - San Kim
- BRD Korea Corp., Hwaseong, Republic of Korea
| | - Yu-Mi Im
- Department of Nursing, Dankook University, Cheonan, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
16
|
Kumar AA, Vine KL, Ranson M. Recent Advances in Targeting the Urokinase Plasminogen Activator with Nanotherapeutics. Mol Pharm 2023. [PMID: 37119285 DOI: 10.1021/acs.molpharmaceut.3c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The aberrant proteolytic landscape of the tumor microenvironment is a key contributor of cancer progression. Overexpression of urokinase plasminogen activator (uPA) and/or its associated cell-surface receptor (uPAR) in tumor versus normal tissue is significantly associated with worse clinicopathological features and poorer patient survival across multiple cancer types. This is linked to mechanisms that facilitate tumor cell invasion and migration, via direct and downstream activation of various proteolytic processes that degrade the extracellular matrix─ultimately leading to metastasis. Targeting uPA has thus long been considered an attractive anticancer strategy. However, poor bioavailability of several uPA-selective small-molecule inhibitors has limited early clinical progress. Nanodelivery systems have emerged as an exciting method to enhance the pharmacokinetic (PK) profile of existing chemotherapeutics, allowing increased circulation time, improved bioavailability, and targeted delivery to tumor tissue. Combining uPA inhibitors with nanoparticle-based delivery systems thus offers a remarkable opportunity to overcome existing PK challenges associated with conventional uPA inhibitors, while leveraging potent candidates into novel targeted nanotherapeutics for an improved anticancer response in uPA positive tumors.
Collapse
Affiliation(s)
- Ashna A Kumar
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Kara L Vine
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marie Ranson
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
17
|
Huynh PT, Vu HD, Ryu J, Kim HS, Jung H, Youn SW. Gadolinium-Cyclic 1,4,7,10-Tetraazacyclododecane-1,4,7,10-Tetraacetic Acid-Click-Sulfonyl Fluoride for Probing Serine Protease Activity in Magnetic Resonance Imaging. Molecules 2023; 28:molecules28083538. [PMID: 37110769 PMCID: PMC10141219 DOI: 10.3390/molecules28083538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Serine protease is linked to a wide range of diseases, prompting the development of robust, selective, and sensitive protease assays and sensing methods. However, the clinical needs for serine protease activity imaging have not yet been met, and the efficient in vivo detection and imaging of serine protease remain challenging. Here, we report the development of the gadolinium-cyclic 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-click-Sulfonyl Fluoride (Gd-DOTA-click-SF) MRI contrast agent targeting serine protease. The HR-FAB mass spectrum confirmed the successful formation of our designed chelate. The molar longitudinal relaxivity (r1) of the Gd-DOTA-click-SF probe (r1 = 6.82 mM-1 s-1) was significantly higher than that of Dotarem (r1 = 4.63 mM-1 s-1), in the range of 0.01-0.64 mM at 9.4 T. The in vitro cellular study and the transmetallation kinetics study showed that the safety and stability of this probe are comparable to those of conventional Dotarem. Ex vivo abdominal aortic aneurysm (AAA) MRI revealed that this probe has a contrast-agent-to-noise ratio (CNR) that is approximately 51 ± 23 times greater than that of Dotarem. This study of superior visualization of AAA suggests that it has the potential to detect elastase in vivo and supports the feasibility of probing serine protease activity in T1-weighted MRI.
Collapse
Affiliation(s)
- Phuong Tu Huynh
- Department of Radiology, Daegu Catholic University School of Medicine, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 42472, Republic of Korea
| | - Huy Duc Vu
- Department of Radiology, Daegu Catholic University School of Medicine, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 42472, Republic of Korea
| | - Junghwa Ryu
- Department of Radiology, Daegu Catholic University School of Medicine, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 42472, Republic of Korea
| | - Hee Su Kim
- Korea Basic Science Institute (Daegu Center), Kyungpook University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Hoesu Jung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIhub), 88, Dongnae-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Sung Won Youn
- Department of Radiology, Daegu Catholic University School of Medicine, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 42472, Republic of Korea
| |
Collapse
|
18
|
Characterization of proteases in the seminal plasma and spermatozoa of llama. Theriogenology 2023; 199:30-42. [PMID: 36682266 DOI: 10.1016/j.theriogenology.2023.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Camelids' semen has peculiar characteristics that differentiate it from other species, including the highly viscous aspect of seminal plasma that greatly difficult sperm manipulation and the development of techniques such as cryopreservation, artificial insemination, and/or in vitro fertilization. The presence of proteases in the seminal plasma is responsible for semen liquefaction, and sperm functionality to achieve fertilization. The enzymatic and molecular composition of the semen of llama remains unknown. Therefore, the goal of the study was to characterize the protease activity and composition of the seminal plasma and sperm of llama semen. The proteolytic activity was performed using gelatine zymography and the composition by mass-spectrometry. Metallo-proteases were the major source of gelatinolytic activity in seminal plasma, while serine-peptidases were the main enzymes of sperm cells. Matrix Metalloproteinase 2 (MMP2) was the most prominent metallo-protease of llama seminal plasma characterized under the exposure of different inhibitors (EDTA and benzamidine) and by a specific immunodetection. Moreover, the prostate and epididymis were identified as potential sites of its synthesis and secretion. Outstandingly, this metalloproteinase was undetectable in llama sperm. Regarding, the molecular composition of semen by mass-spectrometry, 4 metallo-, 9 serine-, 8 threonine-, and 1 aspartic-peptidases were identified alongside 15 regulators in the sperm cell; where 24 were directly or indirectly interacting. Whereas 6 metallo-, 12 serine-, 3 cysteine-, and 1 aspartic-peptidases were identified, besides 7 inhibitors and 5 regulators in llama seminal plasma where 30 of them were directly or indirectly interconnected. This is the first study describing a partial degradome of llama seminal plasma and spermatozoa suggesting significant differences especially the absence of MMP2 in spermatozoa in contrast to data observed in other species. The characterization of proteases in llama semen will provide a better understanding of the molecular mechanisms involved in the in vivo or in vitro fertilization process in this species.
Collapse
|
19
|
Woodrow JS, Hines M, Sommardahl C, Flatland B, Lo Y, Wang Z, Sheats MK, Lennon EM. Initial investigation of molecular phenotypes of airway mast cells and cytokine profiles in equine asthma. Front Vet Sci 2023; 9:997139. [PMID: 36713876 PMCID: PMC9875299 DOI: 10.3389/fvets.2022.997139] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Equine asthma is a naturally occurring lung disease characterized by chronic, partially reversible airway obstruction, pulmonary remodeling, and lower airway inflammation. Asthma is currently divided into two major groups, mild to moderate asthma (mEA) and severe asthma (sEA), but further subtyping by phenotype (i.e., clinical presentation) and/or endotype (i.e., cellular mechanisms) may be warranted. For this study, we were interested in further investigation of cellular and inflammatory characteristics of EA, including airway mast cells. The purpose of this study was to: (1) compare mast cell protease mRNA expression between healthy and asthmatic horses, (2) analyze the cytokine profile present in BALF of currently defined equine asthma groups, and (3) use these data to evaluate potential biomarkers of defined asthma groups. We hypothesized that there would be significant differences in the cellular mast cell phenotypes (i.e., mucosal vs. connective tissue) and cytokine profiles in the BALF of asthmatic vs. healthy horses and across asthma groups. We assert these characteristics may inform additional subtypes of equine asthma. Adult horses were recruited from the institution's teaching herd and clinical caseload. Mast cell protease gene expression of the BALF cellular component and multiplex bead immunoassay for cytokine concentrations in the BALF supernatant were investigated. Airway mast cells primarily expressed tryptase, with low levels of chymase. No significant changes in protease expression were detected across groups. Horses with severe asthma had increased TNF-α, CXCL-8, and IFN-γ concentrations in BALF supernatant. Multidimensional analysis demonstrated healthy and mEA horses have overlapping characteristics, with sEA separating from the other groups. This difference was primarily due to BALF neutrophil and lymphocyte concentrations. These study results further inform understanding of EA immunopathology, and future studies designed to investigate asthma phenotypes and endotypes. Ultimately, a better understanding of these groups could help identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Jane S. Woodrow
- Department of Comparative and Experimental Medicine, College of Veterinary Medicine, University of Tennessee, Knoxville, Knoxville, TN, United States,Department of Clinical Sciences and Advanced Medicine, College of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Melissa Hines
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Carla Sommardahl
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Bente Flatland
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Yancy Lo
- Bioinformatics Core, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Zhiping Wang
- Bioinformatics Core, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Mary Katie Sheats
- Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Elizabeth M. Lennon
- Department of Clinical Sciences and Advanced Medicine, College of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States,*Correspondence: Elizabeth M. Lennon ✉
| |
Collapse
|
20
|
Carvalho R, Bonfá IS, de Araújo Isaías Muller J, Pando SC, Toffoli-Kadri MC. Protease inhibitor from Libidibia ferrea seeds attenuates inflammatory and nociceptive responses in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115694. [PMID: 36096346 DOI: 10.1016/j.jep.2022.115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Libidibia ferrea (Mart. ex. Tul.) L.P. Queiroz is a Brazilian native tree locally known as jucá and pau-ferro, and it has been used in folk medicine for relieving, asthma, bronchitis, sore throat, rheumatism, enterocolitis and fever. The anti-inflammatory properties of L. ferrea were confirmed for its stem, fruit, leaves, bark and seeds extracts, however little is known about the natural compounds that may be associated with that response. AIM OF THIS STUDY In a normal physiological condition, many enzymes play an important role in catalyzing biological functions. Among them, proteases are of great interest. Although they take part of many biological systems, as the inflammatory process, when deregulated, proteases may cause system malfunctions, such as under- or overproduction of cytokines, or immune cells activation. Thus, protease inhibitors prevent these immune responses by regulating proteases. The objective of this study was to evaluate the anti-inflammatory and anti-nociceptive response of a protease inhibitor purified from L. ferrea seeds (LfTI). MATERIALS AND METHODS In vitro (5, 50 and 250 μg/mL of LfTI) and in vivo (0.6, 3 e 15 mg/kg of LfTI) assays were performed. Male Swiss mice weighing 18-25 g were used for cell harvesting and for the in vivo assays. The anti-inflammatory activity was analyzed in vitro by macrophage cytotoxicity, hydrogen peroxide (H2O2) production, and cell adhesion assays; and in vivo by leukocyte recruitment, nitric oxide (NO) production, vascular permeability, paw edema and mast cell degranulation assays. The anti-nociceptive activity was evaluated through abdominal writhing test induced by acetic acid and formalin sensitization. RESULTS Our results showed that, in vitro, LfTI is not cytotoxic. Also, LfTI (50 μg/mL) inhibited macrophage H2O2 production (48.2%), and adhesion (48.4%). LfTI (0.6, 3 e 15 mg/kg) decreased polymorphonuclear cell recruitment dose-dependently, and it inhibited NO production (53%), vascular permeability (40.7%) and paw edema at 3 mg/kg at different time, but it did not inhibit mast cell degranulation. Besides, LfTI did not inhibit either the number of writhing or the licking time in the formalin test in the second phase (inflammatory). However, LfTI (3 mg/kg) inhibited licking time at the first phase (neurogenic) in the formalin sensitization (46.1%). CONCLUSIONS Our results show that LfTI has anti-inflammatory and antinociceptive (neurogenic pain) effects, and these effects might be associated with the inhibition of inflammatory proteases and/or protease-activated receptors activation hindering.
Collapse
Affiliation(s)
- Raquel Carvalho
- Graduate Program in Biotechnology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil; Laboratory of Pharmacology and Inflammation, Faculty of Pharmaceutical Sciences, Food and Nutrition, UFMS, Campo Grande, MS, Brazil.
| | - Iluska Senna Bonfá
- Laboratory of Pharmacology and Inflammation, Faculty of Pharmaceutical Sciences, Food and Nutrition, UFMS, Campo Grande, MS, Brazil.
| | - Jéssica de Araújo Isaías Muller
- Laboratory of Pharmacology and Inflammation, Faculty of Pharmaceutical Sciences, Food and Nutrition, UFMS, Campo Grande, MS, Brazil; Multicenter Graduate Program in Biochemistry and Molecular Biology, Institute of Biosciences, UFMS, Campo Grande, MS, Brazil.
| | | | - Mônica Cristina Toffoli-Kadri
- Graduate Program in Biotechnology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil; Laboratory of Pharmacology and Inflammation, Faculty of Pharmaceutical Sciences, Food and Nutrition, UFMS, Campo Grande, MS, Brazil; Multicenter Graduate Program in Biochemistry and Molecular Biology, Institute of Biosciences, UFMS, Campo Grande, MS, Brazil.
| |
Collapse
|
21
|
Sengupta S, Abhinav N, Singh S, Dutta J, Mabalirajan U, Kaliyamurthy K, Mukherjee PK, Jaisankar P, Bandyopadhyay A. Standardised Sonneratia apetala Buch.-Ham. fruit extract inhibits human neutrophil elastase and attenuates elastase-induced lung injury in mice. Front Pharmacol 2022; 13:1011216. [PMID: 36569308 PMCID: PMC9768866 DOI: 10.3389/fphar.2022.1011216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) along with asthma is a major and increasing global health problem. Smoking contributes to about 80%-90% of total COPD cases in the world. COPD leads to the narrowing of small airways and destruction of lung tissue leading to emphysema primarily caused by neutrophil elastase. Neutrophil elastase plays an important role in disease progression in COPD patients and has emerged as an important target for drug discovery. Sonneratia apetala Buch.-Ham. is a mangrove plant belonging to family Sonneratiaceae. It is widely found in the Sundarban regions of India. While the fruits of this plant have antibacterial, antifungal, antioxidant and astringent activities, fruit and leaf extracts have been shown to reduce the symptoms of asthma and cough. The aim of this study is to find whether hydro alcoholic fruit extracts of S. apetala inhibit neutrophil elastase and thus prevent the progression of neutrophil elastase-driven lung emphysema. The hydroalcoholic extract, ethanol: water (90:10), of the S. apetala Buch.-Ham. fresh fruits (SAM) were used for neutrophil elastase enzyme kinetic assay and IC50 of the extract was determined. The novel HPLC method has been developed and the extract was standardized with gallic acid and ellagic acid as standards. The extract was further subjected to LC-MS2 profiling to identify key phytochemicals. The standardized SAM extract contains 53 μg/mg of gallic acid and 95 μg/mg of ellagic acid, based on the HPLC calibration curve. SAM also reversed the elastase-induced morphological change of human epithelial cells and prevented the release of ICAM-1 in vitro and an MTT assay was conducted to assess the viability. Further, 10 mg/kg SAM had reduced alveolar collapse induced by neutrophil elastase in the mice model. Thus, in this study, we reported for the first time that S. apetala fruit extract has the potential to inhibit human neutrophil elastase in vitro and in vivo.
Collapse
Affiliation(s)
- Sayantan Sengupta
- Cardiovascular Disease and Respiratory Disorders Laboratory, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Nipun Abhinav
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Sabita Singh
- Molecular Pathobiology of Respiratory Diseases Laboratory, Cell Biology and Physiology Department, CSIR-Indian Institute of Chemical Biology, Kolkata, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Joytri Dutta
- Molecular Pathobiology of Respiratory Diseases Laboratory, Cell Biology and Physiology Department, CSIR-Indian Institute of Chemical Biology, Kolkata, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases Laboratory, Cell Biology and Physiology Department, CSIR-Indian Institute of Chemical Biology, Kolkata, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Karthigeyan Kaliyamurthy
- Central National Herbarium, Botanical Survey of India, A.J.C.B. Indian Botanic Garden, Howrah, India
| | | | - Parasuraman Jaisankar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,Laboratory of Catalysis and Chemical Biology, Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India,*Correspondence: Parasuraman Jaisankar, ; Arun Bandyopadhyay,
| | - Arun Bandyopadhyay
- Cardiovascular Disease and Respiratory Disorders Laboratory, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,*Correspondence: Parasuraman Jaisankar, ; Arun Bandyopadhyay,
| |
Collapse
|
22
|
Zhilinskaya IN, Marchenko VA, Kharchenko EP. Comparison of Fragments in Human Hemostatic Proteins That Mimics Fragments in Proteins of A/H1N1 Viruses and Coronaviruses. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2022; 37:209-225. [PMID: 36968805 PMCID: PMC10026243 DOI: 10.3103/s0891416822040103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/05/2022] [Accepted: 05/20/2022] [Indexed: 03/22/2023]
Abstract
Objective: To compare the repertoire of proteins of the human hemostatic system and fragments mimicking these proteins in the proteins of influenza A/H1N1 viruses and coronaviruses. Material and methods. Influenza viruses A/H1N1 (A/Brevig Mission/1/18), A/St. Petersburg /RII04/2016 (H1N1)pdm09, coronaviruses SARS-CoV and SARS-CoV-2 (strain Wuhan-Hu-1) were used for comparative computer analysis. The sources of the primary structures of proteins of the analyzed viruses and 41 proteins of the human hemostatic system were publicly available Internet databases, respectively, www.ncbi.nlm.nih.gov and www.nextprot.org. The search for homologous sequences in the structure of viral proteins and hemostatic proteins was carried out by comparing fragments of 12 amino acids in length, taking as related those that showed identity at ≥8 positions. Results. Comparative analysis of the repertoire of cellular proteins of the hemostatic system and fragments mimicking these proteins in the structure of proteins of viruses A/H1N1 1918, A(H1N1)pdm09 isolated in 2016, SARS-CoV and SARS-CoV-2, showed a significant difference between SARS-CoV-2 and analyzed viruses. In the protein structure of the SARS-CoV-2 virus, mimicry was revealed for almost all analyzed hemostasis proteins. As for the comparison of viruses A/H1N1 1918, A(H1N1)pdm09 2016 and SARS-CoV, the influenza virus A/H1N1 1918 and SARS-CoV are the closest in the repertoire of hemostatic proteins. Conclusion. Obtained bioinformatic analysis data can serve as a basis for further study of the role of homologous fragments in the regulation of hemostasis of the host organism.
Collapse
|
23
|
Schoots MH, Bezemer RE, Dijkstra T, Timmer B, Scherjon SA, Erwich JJHM, Hillebrands JL, Gordijn SJ, van Goor H, Prins JR. Distribution of decidual mast cells in fetal growth restriction and stillbirth at (near) term. Placenta 2022; 129:104-110. [PMID: 36283342 DOI: 10.1016/j.placenta.2022.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Placental pathology and pregnancy complications are associated with unfavorable regulation of the maternal immune system. Although much research has been performed towards the role of immune cells like macrophages and T cells in this context, little is known about the presence and function of mast cells (MC). MC can be sub classified in tryptase-positive (MCT) and tryptase- and chymase-positive (MCTC). This study investigates the presence of MC in the decidua of pregnancies complicated by fetal growth restriction (FGR) and stillbirth (SB). METHODS Placental tissue from FGR (n = 250), SB (n = 64) and healthy pregnancies (n = 42) was included. Histopathological lesions were classified according to the Amsterdam Placental Workshop Group criteria. Tissue sections were stained for tryptase and chymase. Decidual MC were counted manually, and the results were expressed as number of cells/mm2 decidual tissue. RESULTS A significant lower median number of MCTC was found in the decidua of FGR (0.40 per mm2; p < 0.001) and SB (0.51 per mm2; p < 0.05) compared to healthy controls (1.04 per mm2). No difference in MCT number (1.19 per mm2, 1.88 per mm2 and 1.37 per mm2 respectively) was seen between the groups. There was no difference in number of MCT and MCTC between placental pathological lesions. DISCUSSION Our findings suggest a shift in decidual MC balance towards MCT in pregnancy complications. No difference in numbers of MC subtypes was found to be related to histopathologic lesions.
Collapse
Affiliation(s)
- Mirthe H Schoots
- Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands.
| | - Romy E Bezemer
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Tetske Dijkstra
- Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Bert Timmer
- Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Sicco A Scherjon
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Jan Jaap H M Erwich
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Sanne J Gordijn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Jelmer R Prins
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| |
Collapse
|
24
|
Kobpornchai P, Reamtong O, Phuphisut O, Malaitong P, Adisakwattana P. Serine protease inhibitor derived from Trichinella spiralis (TsSERP) inhibits neutrophil elastase and impairs human neutrophil functions. Front Cell Infect Microbiol 2022; 12:919835. [PMID: 36389172 PMCID: PMC9640929 DOI: 10.3389/fcimb.2022.919835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
During early infection with Trichinella spiralis, host neutrophils destroy newborn larvae migrating in the bloodstream, preventing infection. However, parasites secrete various immunomodulatory molecules to escape the host’s defense mechanisms, allowing them to infect the host and live for long periods. T. spiralis secretes serine protease inhibitors (TsSERPs), which are key inhibitory molecules that regulate serine proteases involved in digestion and inflammation. However, the modulatory roles of TsSERP in the inhibition of neutrophil serine proteases (NSPs) and neutrophil functions are unknown. Therefore, the immunomodulatory properties of recombinant TsSERP1 (rTsSERP1) on NSPs and neutrophil functions were investigated in this study. rTsSERP1 preferentially inhibited human neutrophil elastase (hNE). In addition, incubation of rTsSERP1 with fMLP-induced neutrophils impaired their phagocytic ability. The formation of neutrophil extracellular traps (NETs) was activated with phorbol myristate acetate (PMA), and NETs were dramatically reduced when treated with rTsSERP1. Furthermore, rTsSERP1 suppressed the production of proinflammatory cytokines and chemokines during neutrophil activation, which are essential for neutrophil-mediated local or systemic inflammation regulation. In conclusion, T. spiralis immune evasion mechanisms are promoted by the inhibitory properties of TsSERP1 against neutrophil elastase and neutrophil defense functions, and these might be promising alternative treatment targets for inflammatory disorders.
Collapse
Affiliation(s)
- Porntida Kobpornchai
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Orawan Phuphisut
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Preeyarat Malaitong
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- *Correspondence: Poom Adisakwattana,
| |
Collapse
|
25
|
Proteases and Their Potential Role as Biomarkers and Drug Targets in Dry Eye Disease and Ocular Surface Dysfunction. Int J Mol Sci 2022; 23:ijms23179795. [PMID: 36077189 PMCID: PMC9456293 DOI: 10.3390/ijms23179795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disorder that leads to ocular discomfort, visual disturbance, and tear film instability. DED is accompanied by an increase in tear osmolarity and ocular surface inflammation. The diagnosis and treatment of DED still present significant challenges. Therefore, novel biomarkers and treatments are of great interest. Proteases are present in different tissues on the ocular surface. In a healthy eye, proteases are highly regulated. However, dysregulation occurs in various pathologies, including DED. With this review, we provide an overview of the implications of different families of proteases in the development and severity of DED, along with studies involving protease inhibitors as potential therapeutic tools. Even though further research is needed, this review aims to give suggestions for identifying novel biomarkers and developing new protease inhibitors.
Collapse
|
26
|
Singh M, Jayant K, Singh D, Bhutani S, Poddar NK, Chaudhary AA, Khan SUD, Adnan M, Siddiqui AJ, Hassan MI, Khan FI, Lai D, Khan S. Withania somnifera (L.) Dunal (Ashwagandha) for the possible therapeutics and clinical management of SARS-CoV-2 infection: Plant-based drug discovery and targeted therapy. Front Cell Infect Microbiol 2022; 12:933824. [PMID: 36046742 PMCID: PMC9421373 DOI: 10.3389/fcimb.2022.933824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has killed huge populations throughout the world and acts as a high-risk factor for elderly and young immune-suppressed patients. There is a critical need to build up secure, reliable, and efficient drugs against to the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Bioactive compounds of Ashwagandha [Withania somnifera (L.) Dunal] may implicate as herbal medicine for the management and treatment of patients infected by SARS-CoV-2 infection. The aim of the current work is to update the knowledge of SARS-CoV-2 infection and information about the implication of various compounds of medicinal plant Withania somnifera with minimum side effects on the patients' organs. The herbal medicine Withania somnifera has an excellent antiviral activity that could be implicated in the management and treatment of flu and flu-like diseases connected with SARS-CoV-2. The analysis was performed by systematically re-evaluating the published articles related to the infection of SARS-CoV-2 and the herbal medicine Withania somnifera. In the current review, we have provided the important information and data of various bioactive compounds of Withania somnifera such as Withanoside V, Withanone, Somniferine, and some other compounds, which can possibly help in the management and treatment of SARS-CoV-2 infection. Withania somnifera has proved its potential for maintaining immune homeostasis of the body, inflammation regulation, pro-inflammatory cytokines suppression, protection of multiple organs, anti-viral, anti-stress, and anti-hypertensive properties. Withanoside V has the potential to inhibit the main proteases (Mpro) of SARS-CoV-2. At present, synthetic adjuvant vaccines are used against COVID-19. Available information showed the antiviral activity in Withanoside V of Withania somnifera, which may explore as herbal medicine against to SARS-CoV-2 infection after standardization of parameters of drug development and formulation in near future.
Collapse
Affiliation(s)
- Manali Singh
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
- Department of Biochemistry, C.B.S.H, G.B Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, India
| | - Kuldeep Jayant
- Department of Agricultural and Food Engineering, IIT Kharagpur, West Bengal, Kharagpur, India
| | - Dipti Singh
- Department of Biochemistry, C.B.S.H, G.B Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, India
| | - Shivani Bhutani
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faez Iqbal Khan
- Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, China
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Shahanavaj Khan
- Department of Health Sciences, Novel Global Community Educational Foundation 7 Peterlee Place, Hebersham, NSW, Australia
- Department of Medical Lab Technology, Indian Institute of Health and Technology (IIHT), Deoband, Saharanpur, UP, India
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Szukiewicz D, Wojdasiewicz P, Watroba M, Szewczyk G. Mast Cell Activation Syndrome in COVID-19 and Female Reproductive Function: Theoretical Background vs. Accumulating Clinical Evidence. J Immunol Res 2022; 2022:9534163. [PMID: 35785029 PMCID: PMC9242765 DOI: 10.1155/2022/9534163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), a pandemic disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, can affect almost all systems and organs of the human body, including those responsible for reproductive function in women. The multisystem inflammatory response in COVID-19 shows many analogies with mast cell activation syndrome (MCAS), and MCAS may be an important component in the course of COVID-19. Of note, the female sex hormones estradiol (E2) and progesterone (P4) significantly influence mast cell (MC) behavior. This review presents the importance of MCs and the mediators from their granules in the female reproductive system, including pregnancy, and discusses the mechanism of potential disorders related to MCAS. Then, the available data on COVID-19 in the context of hormonal disorders, the course of endometriosis, female fertility, and the course of pregnancy were compiled to verify intuitively predicted threats. Surprisingly, although COVID-19 hyperinflammation and post-COVID-19 illness may be rooted in MCAS, the available clinical data do not provide grounds for treating this mechanism as significantly increasing the risk of abnormal female reproductive function, including pregnancy. Further studies in the context of post COVID-19 condition (long COVID), where inflammation and a procoagulative state resemble many aspects of MCAS, are needed.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Wojdasiewicz
- Department of Biophysics Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Watroba
- Department of Biophysics Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz Szewczyk
- Department of Biophysics Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
28
|
Bensaoud C, Tenzer S, Poplawski A, Medina JM, Jmel MA, Voet H, Mekki I, Aparicio-Puerta E, Cuveele B, Distler U, Marini F, Hackenberg M, Kotsyfakis M. Quantitative proteomics analysis reveals core and variable tick salivary proteins at the tick-vertebrate host interface. Mol Ecol 2022; 31:4162-4175. [PMID: 35661311 DOI: 10.1111/mec.16561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
Abstract
Few studies have examined tick proteomes, how they adapt to their environment, and their roles in the parasite-host interactions that drive tick infestation and pathogen transmission. Here we used a proteomics approach to screen for biologically and immunologically relevant proteins acting at the tick-host interface during tick feeding and, as proof of principle, measured host antibody responses to some of the discovered candidates. We used a label-free quantitative proteomic workflow to study salivary proteomes of (i) wild Ixodes ricinus ticks fed on different hosts; (ii) wild or laboratory ticks fed on the same host; and (iii) adult ticks co-fed with nymphs. Our results reveal high and stable expression of several protease inhibitors and other tick-specific proteins under different feeding conditions. Most pathways functionally enriched in sialoproteomes were related to proteolysis, endopeptidase, and amine-binding activities. The generated catalog of tick salivary proteins enabled the selection of six candidate secreted immunogenic peptides for rabbit immunizations, three of which induced strong and durable antigen-specific antibody responses in rabbits. Furthermore, rabbits exposed to ticks mounted immune responses against the candidate peptides/proteins, confirming their expression at the tick-vertebrate interface. Our approach provides insights into tick adaptation strategies to different feeding conditions and promising candidates for developing anti-tick vaccines or markers of exposure of vertebrate hosts to tick bites.
Collapse
Affiliation(s)
- Chaima Bensaoud
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Budweis, Czechia
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - José María Medina
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, Granada, Spain.,Lab. de Bioinformática, Centro de Investigación Biomédica, PTS, Instituto de Biotecnología, Avda. del Conocimiento s/n, Granada, Spain
| | - Mohamed Amine Jmel
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Budweis, Czechia
| | - Hanne Voet
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Budweis, Czechia.,University of Antwerp, Wilrijk, Belgium
| | - Imen Mekki
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Budweis, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Ernesto Aparicio-Puerta
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, Granada, Spain.,Lab. de Bioinformática, Centro de Investigación Biomédica, PTS, Instituto de Biotecnología, Avda. del Conocimiento s/n, Granada, Spain
| | - Brent Cuveele
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Budweis, Czechia.,University of Antwerp, Wilrijk, Belgium
| | - Ute Distler
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael Hackenberg
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, Granada, Spain.,Lab. de Bioinformática, Centro de Investigación Biomédica, PTS, Instituto de Biotecnología, Avda. del Conocimiento s/n, Granada, Spain
| | - Michalis Kotsyfakis
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Budweis, Czechia
| |
Collapse
|
29
|
Miao X, Li S, Xiao B, Yang J, Huang R. Metabolomics study of the effect of Danggui Buxue Tang on rats with chronic fatigue syndrome. Biomed Chromatogr 2022; 36:e5379. [PMID: 35373377 DOI: 10.1002/bmc.5379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 11/06/2022]
Abstract
Danggui Buxue Tang (DBT), a traditional Chinese medicine formula for "invigorating qi and enriching blood", has been reported to produce a good effect on chronic fatigue syndrome (CFS). However, the related mechanism remains largely unresolved. In this study, a metabolomics approach with gas chromatography coupled to mass spectrometry combined with pattern recognition was devised to estimate the extent to which DBT alleviated CFS induced by food restriction and force swimming in rats. After four weeks of treatment, the endurance capability of rats was significantly better and the motionless time was significantly shorter in the DBT group than in CFS model group. Moreover, the activities of SOD and GSH-Px were increased, while the levels of MDA, IL-6 and TNF-α were decreased in the DBT treatment group. Fifteen significantly changed metabolites were observed in the serum of rats with CFS, which was reversed markedly by DBT treatment. Metabolic pathway analysis showed that DBT could possibly alleviate CFS in rats by regulating phenylalanine, tyrosine and tryptophan biosynthesis, glycine, serine and the metabolism of threonine, glycerolipid, glyoxylate, dicarboxylate and tyrosine. It was observed that the metabolism of glycine, serine and threonine was most closely related to the improvement of CFS by DBT treatment. This study showed that DBT could improve CFS effectively and metabolomics was a powerful means to gain insights into the traditional Chinese medicine formulas against CFS.
Collapse
Affiliation(s)
- Xiaoyao Miao
- Department of pharmaceutical science, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuo Li
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Bingkun Xiao
- Department of pharmaceutical science, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jianyun Yang
- Department of pharmaceutical science, Beijing Institute of Radiation Medicine, Beijing, China
| | - Rongqing Huang
- Department of pharmaceutical science, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
30
|
Caron B, Patin E, Rotival M, Charbit B, Albert ML, Quintana-Murci L, Duffy D, Rausell A. Integrative genetic and immune cell analysis of plasma proteins in healthy donors identifies novel associations involving primary immune deficiency genes. Genome Med 2022; 14:28. [PMID: 35264221 PMCID: PMC8905727 DOI: 10.1186/s13073-022-01032-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Blood plasma proteins play an important role in immune defense against pathogens, including cytokine signaling, the complement system, and the acute-phase response. Recent large-scale studies have reported genetic (i.e., protein quantitative trait loci, pQTLs) and non-genetic factors, such as age and sex, as major determinants to inter-individual variability in immune response variation. However, the contribution of blood-cell composition to plasma protein heterogeneity has not been fully characterized and may act as a mediating factor in association studies. METHODS Here, we evaluated plasma protein levels from 400 unrelated healthy individuals of western European ancestry, who were stratified by sex and two decades of life (20-29 and 60-69 years), from the Milieu Intérieur cohort. We quantified 229 proteins by Luminex in a clinically certified laboratory and their levels of variation were analyzed together with 5.2 million single-nucleotide polymorphisms. With respect to non-genetic variables, we included 254 lifestyle and biochemical factors, as well as counts of seven circulating immune cell populations measured by hemogram and standardized flow cytometry. RESULTS Collectively, we found 152 significant associations involving 49 proteins and 20 non-genetic variables. Consistent with previous studies, age and sex showed a global, pervasive impact on plasma protein heterogeneity, while body mass index and other health status variables were among the non-genetic factors with the highest number of associations. After controlling for these covariates, we identified 100 and 12 pQTLs acting in cis and trans, respectively, collectively associated with 87 plasma proteins and including 19 novel genetic associations. Genetic factors explained the largest fraction of the variability of plasma protein levels, as compared to non-genetic factors. In addition, blood-cell fractions, including leukocytes, lymphocytes, monocytes, neutrophils, eosinophils, basophils, and platelets, had a larger contribution to inter-individual variability than age and sex and appeared as confounders of specific genetic associations. Finally, we identified new genetic associations with plasma protein levels of five monogenic Mendelian disease genes including two primary immunodeficiency genes (Ficolin-3 and FAS). CONCLUSIONS Our study identified novel genetic and non-genetic factors associated to plasma protein levels which may inform health status and disease management.
Collapse
Affiliation(s)
- Barthelemy Caron
- Université de Paris, INSERM UMR1163, Imagine Institute, Clinical Bioinformatics Laboratory, F-75006, Paris, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR2000, CNRS, Université de Paris, F-75015, Paris, France
| | - Maxime Rotival
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR2000, CNRS, Université de Paris, F-75015, Paris, France
| | - Bruno Charbit
- Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, Université de Paris, F-75015, Paris, France
| | | | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR2000, CNRS, Université de Paris, F-75015, Paris, France
- Human Genomics and Evolution, Collège de France, F-75005, Paris, France
| | - Darragh Duffy
- Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, Université de Paris, F-75015, Paris, France.
- Translational Immunology Unit, Institut Pasteur, Université de Paris, F-75015, Paris, France.
| | - Antonio Rausell
- Université de Paris, INSERM UMR1163, Imagine Institute, Clinical Bioinformatics Laboratory, F-75006, Paris, France.
- Service de Médecine Génomique des Maladies Rares, AP-HP, Necker Hospital for Sick Children, F-75015, Paris, France.
| |
Collapse
|
31
|
Lopes BRP, da Silva GS, de Lima Menezes G, de Oliveira J, Watanabe ASA, Porto BN, da Silva RA, Toledo KA. Serine proteases in neutrophil extracellular traps exhibit anti-Respiratory Syncytial Virus activity. Int Immunopharmacol 2022; 106:108573. [PMID: 35183035 DOI: 10.1016/j.intimp.2022.108573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 11/24/2022]
Abstract
Human respiratory syncytial virus (hRSV) is an infectious agent in infants and young children which there are no vaccines or drugs for treatment. Neutrophils are recruited for airway, where they are stimulated by hRSV to release large amounts of neutrophil extracellular traps (NETs). NETs are compound by DNA and proteins, including microbicidal enzymes. They constitute a large part of the mucus accumulated in the lung of patients, compromising their breathing capacity. In contrast, NETs can capture/inactivate hRSV, but the molecules responsible for this effect are unknown. OBJECTIVES We selected microbicidal NET enzymes (elastase, myeloperoxidase, cathepsin-G, and proteinase-3) to assess their anti-hRSV role. METHODS AND RESULTS Through in vitro assays using HEp-2 cells, we observed that elastase, proteinase-3, and cathepsin-G, but not myeloperoxidase, showed virucidal effects even at non-cytotoxic concentrations. Elastase and proteinase-3, but not cathepsin-G, cleaved viral F-protein, which is responsible for viral adhesion and fusion with the target cells. Molecular docking analysis indicated the interaction of these macromolecules in the antigenic regions of F-protein through the active regions of the enzymes. CONCLUSIONS Serine proteases from NETs interact and inactive hRSV. These results contribute to the understanding the role of NETs in hRSV infection and to designing treatment strategies for the inflammatory process during respiratory infections.
Collapse
Affiliation(s)
- Bruno Rafael Pereira Lopes
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto - SP, Brazil
| | - Gabriel Soares da Silva
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, Brazil
| | - Gabriela de Lima Menezes
- Biosystems Collaborative Nucleus, Institute of Exact Sciences, Federal University of Jatai, Jatai-GO, Brazil
| | - Juliana de Oliveira
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, Brazil; Graduate Program in Applied and Computational Mathematics - PGMAC - State University of Londrina, Londrina-PR, Brazil
| | - Aripuanã Sakurada Aranha Watanabe
- Virology Laboratory, Center for Microbiology Studies, Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Bárbara Nery Porto
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Roosevelt Alves da Silva
- Biosystems Collaborative Nucleus, Institute of Exact Sciences, Federal University of Jatai, Jatai-GO, Brazil
| | - Karina Alves Toledo
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto - SP, Brazil; São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, Brazil.
| |
Collapse
|
32
|
Clavé C, Dyrka W, Turcotte EA, Granger-Farbos A, Ibarlosa L, Pinson B, Vance RE, Saupe SJ, Daskalov A. Fungal gasdermin-like proteins are controlled by proteolytic cleavage. Proc Natl Acad Sci U S A 2022; 119:e2109418119. [PMID: 35135876 PMCID: PMC8851545 DOI: 10.1073/pnas.2109418119] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022] Open
Abstract
Gasdermins are a family of pore-forming proteins controlling an inflammatory cell death reaction in the mammalian immune system. The pore-forming ability of the gasdermin proteins is released by proteolytic cleavage with the removal of their inhibitory C-terminal domain. Recently, gasdermin-like proteins have been discovered in fungi and characterized as cell death-inducing toxins in the context of conspecific non-self-discrimination (allorecognition). Although functional analogies have been established between mammalian and fungal gasdermins, the molecular pathways regulating gasdermin activity in fungi remain largely unknown. Here, we characterize a gasdermin-based cell death reaction controlled by the het-Q allorecognition genes in the filamentous fungus Podospora anserina We show that the cytotoxic activity of the HET-Q1 gasdermin is controlled by proteolysis. HET-Q1 loses a ∼5-kDa C-terminal fragment during the cell death reaction in the presence of a subtilisin-like serine protease termed HET-Q2. Mutational analyses and successful reconstitution of the cell death reaction in heterologous hosts (Saccharomyces cerevisiae and human 293T cells) suggest that HET-Q2 directly cleaves HET-Q1 to induce cell death. By analyzing the genomic landscape of het-Q1 homologs in fungi, we uncovered that the vast majority of the gasdermin genes are clustered with protease-encoding genes. These HET-Q2-like proteins carry either subtilisin-like or caspase-related proteases, which, in some cases, correspond to the N-terminal effector domain of nucleotide-binding and oligomerization-like receptor proteins. This study thus reveals the proteolytic regulation of gasdermins in fungi and establishes evolutionary parallels between fungal and mammalian gasdermin-dependent cell death pathways.
Collapse
Affiliation(s)
- Corinne Clavé
- UMR 5095, CNRS, Non-self Recognition in Fungi, Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 33077 Bordeaux, France;
| | - Witold Dyrka
- Politechnika Wrocławska, Wydział Podstawowych Problemów Techniki, Katedra Inżynierii Biomedycznej, 50-370 Wrocław, Poland
| | - Elizabeth A Turcotte
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Alexandra Granger-Farbos
- UMR 5095, CNRS, Non-self Recognition in Fungi, Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 33077 Bordeaux, France
| | - Léa Ibarlosa
- UMR 5095, CNRS, Non-self Recognition in Fungi, Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 33077 Bordeaux, France
| | - Benoît Pinson
- UMR 5095, CNRS, Genetics of Metabolic Pathways, Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 33077 Bordeaux, France
| | - Russell E Vance
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- HHMI, University of California, Berkeley, CA 94720
- Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, CA 94720
- Cancer Research Laboratory, University of California, Berkeley, CA 94720
| | - Sven J Saupe
- UMR 5095, CNRS, Non-self Recognition in Fungi, Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 33077 Bordeaux, France
| | - Asen Daskalov
- UMR 5095, CNRS, Non-self Recognition in Fungi, Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 33077 Bordeaux, France;
| |
Collapse
|
33
|
Nagashima S, Dutra AA, Arantes MP, Zeni RC, Klein CK, de Oliveira FC, Piper GW, Brenny ID, Pereira MRC, Stocco RB, Martins APC, de Castro EM, Vaz de Paula CB, Amaral ANM, Machado-Souza C, Baena CP, Noronha L. COVID-19 and Lung Mast Cells: The Kallikrein-Kinin Activation Pathway. Int J Mol Sci 2022; 23:1714. [PMID: 35163636 PMCID: PMC8836064 DOI: 10.3390/ijms23031714] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023] Open
Abstract
Mast cells (MCs) have relevant participation in inflammatory and vascular hyperpermeability events, responsible for the action of the kallikrein-kinin system (KKS), that affect patients inflicted by the severe form of COVID-19. Given a higher number of activated MCs present in COVID-19 patients and their association with vascular hyperpermeability events, we investigated the factors that lead to the activation and degranulation of these cells and their harmful effects on the alveolar septum environment provided by the action of its mediators. Therefore, the pyroptotic processes throughout caspase-1 (CASP-1) and alarmin interleukin-33 (IL-33) secretion were investigated, along with the immunoexpression of angiotensin-converting enzyme 2 (ACE2), bradykinin receptor B1 (B1R) and bradykinin receptor B2 (B2R) on post-mortem lung samples from 24 patients affected by COVID-19. The results were compared to 10 patients affected by H1N1pdm09 and 11 control patients. As a result of the inflammatory processes induced by SARS-CoV-2, the activation by immunoglobulin E (IgE) and degranulation of tryptase, as well as Toluidine Blue metachromatic (TB)-stained MCs of the interstitial and perivascular regions of the same groups were also counted. An increased immunoexpression of the tissue biomarkers CASP-1, IL-33, ACE2, B1R and B2R was observed in the alveolar septum of the COVID-19 patients, associated with a higher density of IgE+ MCs, tryptase+ MCs and TB-stained MCs, in addition to the presence of intra-alveolar edema. These findings suggest the direct correlation of MCs with vascular hyperpermeability, edema and diffuse alveolar damage (DAD) events that affect patients with a severe form of this disease. The role of KKS activation in events involving the exacerbated increase in vascular permeability and its direct link with the conditions that precede intra-alveolar edema, and the consequent DAD, is evidenced. Therapy with drugs that inhibit the activation/degranulation of MCs can prevent the worsening of the prognosis and provide a better outcome for the patient.
Collapse
Affiliation(s)
- Seigo Nagashima
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Anderson Azevedo Dutra
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Mayara Pezzini Arantes
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Rafaela Chiuco Zeni
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Carolline Konzen Klein
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Flávia Centenaro de Oliveira
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Giulia Werner Piper
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Isadora Drews Brenny
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Marcos Roberto Curcio Pereira
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Rebecca Benicio Stocco
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Ana Paula Camargo Martins
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Eduardo Morais de Castro
- Postgraduate Program in Biotechnology Applied in Health of Children and Adolescent, Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil; (E.M.d.C.); (C.M.-S.)
| | - Caroline Busatta Vaz de Paula
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Andréa Novaes Moreno Amaral
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Cleber Machado-Souza
- Postgraduate Program in Biotechnology Applied in Health of Children and Adolescent, Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil; (E.M.d.C.); (C.M.-S.)
| | - Cristina Pellegrino Baena
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
- Marcelino Champagnat Hospital, Curitiba 80020-110, Brazil
| | - Lucia Noronha
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| |
Collapse
|
34
|
Li B, Lei Z, Wu Y, Li B, Zhai M, Zhong Y, Ju P, Kou W, Shi Y, Zhang X, Peng W. The Association and Pathogenesis of SERPINA3 in Coronary Artery Disease. Front Cardiovasc Med 2021; 8:756889. [PMID: 34957248 PMCID: PMC8692672 DOI: 10.3389/fcvm.2021.756889] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Serine proteinase inhibitor A3 (SERPINA3) has been discovered in the pathogenesis of many human diseases, but little is known about the role of SERPINA3 in coronary artery disease (CAD). Therefore, we aim to determine its relationship with CAD and its function in the pathogenesis of atherosclerosis. Methods: In total 86 patients with CAD and 64 patients with non-CAD were compared. The plasma SERPINA3 levels were measured using ELISA. Logistic regression analysis and receiver-operating characteristic (ROC) analysis were performed to illustrate the association between plasma SERPINA3 levels and CAD. In vitro, real-time PCR (RT-PCR) and immunofluorescence staining were used to determine the expression of SERPINA3 in atherosclerotic plaques and their component cells. Then rat aortic smooth muscle cells (RASMCs) were transfected with siRNA to knock down the expression of SERPINA3 and human umbilical vein endothelial cells (HUVECs) were stimulated by SERPINA3 protein. EdU assay and scratch assay were used for assessing the capability of proliferation and migration. The cell signaling pathway was evaluated by western blot and RT-PCR. Results: Patients with CAD [104.4(54.5–259.2) μg/mL] had higher levels of plasma SERPINA3 than non-CAD [65.3(47.5–137.3) μg/mL] (P = 0.004). After being fully adjusted, both log-transformed and tertiles of plasma SERPINA3 levels were significantly associated with CAD. While its diagnostic value was relatively low since the area under the ROC curve was 0.64 (95% CI: 0.55–0.73). Secreted SERPINA3 might increase the expression of inflammatory factors in HUVECs. Vascular smooth muscle cells had the highest SERPINA3 expression among the aorta compared to endothelial cells and inflammatory cells. The knockdown of SERPINA3 in RASMCs attenuated its proliferation and migration. The phosphorylated IκBα and its downstream pathway were inhibited when SERPINA3 was knocked down. Conclusions: Elevated plasma SERPINA3 levels were associated with CAD. SERPINA3 can increase inflammatory factors expression in HUVECs. It can regulate VSMCs proliferation, migration, and releasing of inflammatory factors through the NF-κB signaling pathway. Thus, SERPINA3 played a significant role in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Bo Li
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhijun Lei
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - You Wu
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingyu Li
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ming Zhai
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan Zhong
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peinan Ju
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenxin Kou
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yefei Shi
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xianling Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
35
|
Ghodasara P, Satake N, Sadowski P, Kopp S, Mills PC. Investigation of cattle plasma proteome in response to pain and inflammation using next generation proteomics technique, SWATH-MS. Mol Omics 2021; 18:133-142. [PMID: 34860232 DOI: 10.1039/d1mo00354b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pain assessment in farm animals has primarily relied on a combination of behavioral and physiological responses, although these are relatively subjective and difficult to quantify. It is essential to develop more effective biomarkers of pain in production animals since they are frequently exposed to routine surgical husbandry procedures. More effective biomarkers of pain would improve welfare, limit the loss of productivity associated with pain and permit better assessment of analgesics. This study aimed to investigate the use of a modern mass spectrometry data independent acquisition strategy, termed Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS), to detect candidate protein biomarkers that are known to associate with nociceptive and inflammatory processes in cattle, which could then be used to assess the efficacy of potential analgesics. Calves were randomly divided into two groups that were either surgically dehorned or subjected to restraint stress, without provision of anaesthesia or analgesia in accordance with current industry standards. Samples were analysed before and after dehorning at multiple timepoints. Significant changes in protein concentrations were detected predominantly at 24 and 96 h following dehorning, including kininogens, proteins associated with the coagulation and complement cascades and serine protease inhibitors. Gene ontology analysis revealed that the identified candidate biomarkers were associated with stress, wound healing, immune response, blood coagulation and the inflammatory and acute phase responses, which could be expected following surgical damage to tissues, but can now be more objectively assessed. These results offer more definitive and quantitative monitoring of response to tissue injury induced pain and inflammation.
Collapse
Affiliation(s)
- Priya Ghodasara
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia.,VIDO-InterVac, University of Saskatchewan, Saskatoon, Canada
| | - Nana Satake
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia.,School of Agriculture and Food Sciences, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Pawel Sadowski
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Steven Kopp
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia
| | - Paul C Mills
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia
| |
Collapse
|
36
|
González-Silvera D, Cuesta A, Esteban MÁ. Immune defence mechanisms presented in liver homogenates and bile of gilthead seabream (Sparus aurata). JOURNAL OF FISH BIOLOGY 2021; 99:1958-1967. [PMID: 34486119 DOI: 10.1111/jfb.14901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Because the role of the liver of fishes in providing possible immunity remains largely unknown, the aim of this work was to identify and characterize different humoral defence mechanisms in the liver homogenates and bile of gilthead seabream (Sparus aurata) for the first time. Total protein levels and several immune parameters (complement activity, lysozyme and immunoglobulin M level) were studied. Furthermore, the activity of some lytic (proteases, antiproteases, esterase, alkaline phosphatase) and antioxidant (superoxide dismutase, catalase and peroxidase) enzymes was determined. Finally, bacteriostatic activity on three opportunist fish pathogens (Vibrio harveyi, Vibrio angillarum and Photobacterium damselae) was measured. Lysozyme and antiprotease activity were undetected in liver and bile, while natural haemolytic complement activity was only detected in bile, and immunoglobulin M was detected in both samples. The levels of proteases, esterase and antioxidant enzymes were greater in bile than in liver homogenates, while the level of alkaline phosphatase was very low in both samples. In addition, while no bacteriostatic activity was detected on liver homogenates, the bile revealed a very potent bacteriostatic activity against all the tested pathogenic bacteria. These results corroborate that fish liver - especially fish bile - contains many factors involved in innate immunity that could be useful for better understanding the role of the liver as an organ involved in fish immune functions as well as the possible contribution of bile to gut mucosal immunity.
Collapse
Affiliation(s)
- Daniel González-Silvera
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Maria Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
37
|
Howng B, Winter MB, LePage C, Popova I, Krimm M, Vasiljeva O. Novel Ex Vivo Zymography Approach for Assessment of Protease Activity in Tissues with Activatable Antibodies. Pharmaceutics 2021; 13:pharmaceutics13091390. [PMID: 34575469 PMCID: PMC8471274 DOI: 10.3390/pharmaceutics13091390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022] Open
Abstract
Proteases are involved in the control of numerous physiological processes, and their dysregulation has been identified in a wide range of pathologies, including cancer. Protease activity is normally tightly regulated post-translationally and therefore cannot be accurately estimated based on mRNA or protein expression alone. While several types of zymography approaches to estimate protease activity exist, there remains a need for a robust and reliable technique to measure protease activity in biological tissues. We present a novel quantitative ex vivo zymography (QZ) technology based on Probody® therapeutics (Pb-Tx), a novel class of protease-activated cancer therapeutics that contain a substrate linker cleavable by tumor-associated proteases. This approach enables the measurement and comparison of protease activity in biological tissues via the detection of Pb-Tx activation. By exploiting substrate specificity and selectivity, cataloguing and differentiating protease activities is possible, with further refinement achieved using protease-specific inhibitors. Using the QZ assay and human tumor xenografts, patient tumor tissues, and patient plasma, we characterized protease activity in preclinical and clinical samples. The QZ assay offers the potential to increase our understanding of protease activity in tissues and inform diagnostic and therapeutic development for diseases, such as cancer, that are characterized by dysregulated proteolysis.
Collapse
|
38
|
Silva-Júnior NR, Cabrera YM, Barbosa SL, Barros RDA, Barros E, Vital CE, Ramos HJO, Oliveira MGA. Intestinal proteases profiling from Anticarsia gemmatalis and their binding to inhibitors. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21792. [PMID: 33948994 DOI: 10.1002/arch.21792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/25/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Although the importance of intestinal hydrolases is recognized, there is little information on the intestinal proteome of lepidopterans such as Anticarsia gemmatalis. Thus, we carried out the proteomic analysis of the A. gemmatalis intestine to characterize the proteases by LC/MS. We examined the interactions of proteins identified with protease inhibitors (PI) using molecular docking. We found 54 expressed antigens for intestinal protease, suggesting multiple important isoforms. The hydrolytic arsenal featured allows for a more comprehensive understanding of insect feeding. The docking analysis showed that the soybean PI (SKTI) could bind efficiently with the trypsin sequences and, therefore, insect resistance does not seem to involve changing the sequences of the PI binding site. In addition, a SERPIN was identified and the interaction analysis showed the inhibitor binding site is in contact with the catalytic site of trypsin, possibly acting as a regulator. In addition, this SERPIN and the identified PI sequences can be targets for the control of proteolytic activity in the caterpillar intestine and serve as a support for the rational design of a molecule with greater stability, less prone to cleavage by proteases and viable for the control of insect pests such as A. gemmatalis.
Collapse
Affiliation(s)
- Neilier R Silva-Júnior
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| | - Yaremis M Cabrera
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| | - Samuel L Barbosa
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| | - Rafael de A Barros
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| | - Edvaldo Barros
- Núcleo de Análise de Biomoléculas, NuBioMol, Centro de Ciências Biológicas e da Saúde - CCB, Universidade Federal de Viçosa - UFV, Viçosa, Minas Gerais, Brazil
| | - Camilo E Vital
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| | - Humberto J O Ramos
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
- Núcleo de Análise de Biomoléculas, NuBioMol, Centro de Ciências Biológicas e da Saúde - CCB, Universidade Federal de Viçosa - UFV, Viçosa, Minas Gerais, Brazil
| | - Maria Goreti A Oliveira
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
39
|
Proteomic Exploration of Plasma Exosomes and Other Small Extracellular Vesicles in Pediatric Hodgkin Lymphoma: A Potential Source of Biomarkers for Relapse Occurrence. Diagnostics (Basel) 2021; 11:diagnostics11060917. [PMID: 34063765 PMCID: PMC8223799 DOI: 10.3390/diagnostics11060917] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
Exosomes and other small extracellular vesicles (EVs) are potential sources of cancer biomarkers. Plasma-derived EVs have not yet been studied in pediatric Hodgkin lymphoma (HL), for which predictive biomarkers of relapse are greatly needed. In this two-part proteomic study, we used two-dimensional difference gel electrophoresis (2D-DIGE) followed by liquid chromatography–tandem mass spectrometry (LC–MS/MS) to analyze EV proteins of plasma collected at diagnosis from children with nodular sclerosis HL, relapsed or not. EVs isolated using membrane affinity had radii ranging from 20 to 130 nm and contained the programmed cell death 6-interacting (ALIX) and the tumor susceptibility gene 101 (TSG101) proteins, whereas calnexin (CANX) was not detected. 2D-DIGE identified 16 spots as differentially abundant between non-relapsed and relapsed HL (|fold change| ≥ 1.5, p < 0.05). LC–MS/MS identified these spots as 11 unique proteins, including five more abundant in non-relapsed HL (e.g., complement C4b, C4B; fibrinogen γ chain, FGG) and six more abundant in relapsed HL (e.g., transthyretin, TTR). Shotgun LC–MS/MS on pooled EV proteins from non-relapsed HL identified 161 proteins, including 127 already identified in human exosomes (ExoCarta data). This EV cargo included 89 proteins not yet identified in exosomes from healthy plasma. Functional interrogation by the Database for Annotation, Visualization and Integrated Discovery (DAVID) revealed that the EV proteins participate in platelet degranulation and serine-type endopeptidase activity as the most significant Gene Ontology (GO) biological process and molecular function (p < 0.01).
Collapse
|
40
|
Kasperkiewicz P. Peptidyl Activity-Based Probes for Imaging Serine Proteases. Front Chem 2021; 9:639410. [PMID: 33996745 PMCID: PMC8117214 DOI: 10.3389/fchem.2021.639410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/15/2021] [Indexed: 01/12/2023] Open
Abstract
Proteases catalyze the hydrolysis of peptide bonds. Products of this breakdown mediate signaling in an enormous number of biological processes. Serine proteases constitute the most numerous group of proteases, accounting for 40%, and they are prevalent in many physiological functions, both normal and disease-related functions, making them one of the most important enzymes in humans. The activity of proteases is controlled at the expression level by posttranslational modifications and/or endogenous inhibitors. The study of serine proteases requires specific reagents not only for detecting their activity but also for their imaging. Such tools include inhibitors or substrate-related chemical molecules that allow the detection of proteolysis and visual observation of active enzymes, thus facilitating the characterization of the activity of proteases in the complex proteome. Peptidyl activity-based probes (ABPs) have been extensively studied recently, and this review describes the basic principles in the design of peptide-based imaging agents for serine proteases, provides examples of activity-based probe applications and critically discusses their strengths, weaknesses, challenges and limitations.
Collapse
Affiliation(s)
- Paulina Kasperkiewicz
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
41
|
Capraro J, Benedetti SD, Heinzl GC, Scarafoni A, Magni C. Bioactivities of Pseudocereal Fractionated Seed Proteins and Derived Peptides Relevant for Maintaining Human Well-Being. Int J Mol Sci 2021; 22:3543. [PMID: 33805525 PMCID: PMC8036814 DOI: 10.3390/ijms22073543] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
Food proteins and peptides are able to exert a variety of well-known bioactivities, some of which are related to well-being and disease prevention in humans and animals. Currently, an active trend in research focuses on chronic inflammation and oxidative stress, delineating their major pathogenetic role in age-related diseases and in some forms of cancer. The present study aims to investigate the potential effects of pseudocereal proteins and their derived peptides on chronic inflammation and oxidative stress. After purification and attribution to protein classes according to classic Osborne's classification, the immune-modulating, antioxidant, and trypsin inhibitor activities of proteins from quinoa (Chenopodium quinoa Willd.), amaranth (Amaranthus retroflexus L.), and buckwheat (Fagopyrum esculentum Moench) seeds have been assessed in vitro. The peptides generated by simulated gastro-intestinal digestion of each fraction have been also investigated for the selected bioactivities. None of the proteins or peptides elicited inflammation in Caco-2 cells; furthermore, all protein fractions showed different degrees of protection of cells from IL-1β-induced inflammation. Immune-modulating and antioxidant activities were, in general, higher for the albumin fraction. Overall, seed proteins can express these bioactivities mainly after hydrolysis. On the contrary, higher trypsin inhibitor activity was expressed by globulins in their intact form. These findings lay the foundations for the exploitation of these pseudocereal seeds as source of anti-inflammatory molecules.
Collapse
Affiliation(s)
- Jessica Capraro
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Stefano De Benedetti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Giuditta Carlotta Heinzl
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Alessio Scarafoni
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Chiara Magni
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
42
|
Gao S, Liang H, Shou Z, Yao Y, Lv Y, Shang J, Lu W, Jia C, Liu Q, Zhang H, Xiao L. De novo transcriptomic and proteomic analysis and potential toxin screening of Mesobuthus martensii samples from four different provinces. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113268. [PMID: 32810618 DOI: 10.1016/j.jep.2020.113268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/04/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As well-known medicinal materials in traditional Chinese medicine, scorpions, commonly called as Quanxie () in Chinese, have been widely used to treat several diseases such as rheumatoid arthritis, apoplexy, epilepsy and chronic pain for more than a thousand years. Not only in the ancient times, the scorpions have also been recorded nowadays in the Pharmacopoeia of the People's Republic of China since 1963. AIM OF STUDY This study aims to explore the differences in composition of the venom of scorpions from different regions by using the method of transcriptomics and proteomics. MATERIALS AND METHODS Whole de novo transcriptomes, proteomics and their bioinformatic analyses were performed on samples of the scorpion Mesobuthus martensii and their venoms from four different provinces with clear geographical boundaries, including Hebei, Henan, Shandong and Shanxi. RESULTS The four captured samples had the same morphology, and the conserved CO-1 sequence matched that of M. martensii. A total of 141,003 of 174,653 transcripts were identified as unigenes, of which we successfully annotated 51,627 (36.61%), 21,970 (15.58%), 7,168 (5.08%), and 45,263 (32.10%) unigenes with the NR, GO, KEGG and SWISSPROT databases, respectively, while a total of 427 proteins were collected from the protein extracted from venoms. Both GO and KEGG annotations exhibited only slight differences among the four samples while the expression level of gene and protein was quite different. A total of 249 toxin-related unigenes were successfully screened, including 41 serine proteases and serine protease inhibitors, 39 potassium channel toxins, 38 phospholipases, 16 host defense peptides, 9 metalloproteases, and 50 other toxins. Although the toxin species were similar among the four samples, the gene expression of each toxin varied considerably, for example, the scorpion from HB province has the most abundant expression quality in sequences c48391_g1, c55239_g1 and c47749_g1 while the lowest expressions of c51178_g1, c62033_g3 and c63754_g2. CONCLUSION The regional differences in the transcriptomes and proteomes of M. martensii are mainly from expression levels e.g. toxins rather than expression species, of which the method can be further extended to evaluate the qualities of traditional Chinese medicines obtained from different regions.
Collapse
Affiliation(s)
- Songyu Gao
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Hongyu Liang
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China; College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China.
| | - Zhaoyong Shou
- Faculty of Health Service, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Yuzhe Yao
- School of Nursing, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Yang Lv
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Jing Shang
- School of Nursing, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Wei Lu
- 905th Hospital of PLA Navy, Second Military Medical University (Naval Medical University), Shanghai, 200052, China.
| | - Changliang Jia
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Qing Liu
- College of Animal Science and Veterinary Medicine, ShanXi Agricultural University, ShanXi, TaiGu, 030801, China.
| | - Haiyan Zhang
- Department of Health Care, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Liang Xiao
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| |
Collapse
|
43
|
Wang X, Avsec D, Obreza A, Yousefi S, Mlinarič-Raščan I, Simon HU. A Putative Serine Protease is Required to Initiate the RIPK3-MLKL-Mediated Necroptotic Death Pathway in Neutrophils. Front Pharmacol 2021; 11:614928. [PMID: 33551816 PMCID: PMC7860068 DOI: 10.3389/fphar.2020.614928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
Adhesion receptors, such as CD44, have been shown to activate receptor interacting protein kinase-3 (RIPK3)—mixed lineage kinase-like (MLKL) signaling, leading to a non-apoptotic cell death in human granulocyte/macrophage colony-stimulating factor (GM-CSF) – primed neutrophils. The signaling events of this necroptotic pathway, however, remain to be investigated. In the present study, we report the design, synthesis, and characterization of a series of novel serine protease inhibitors. Two of these inhibitors, compounds 1 and 3, were able to block CD44-triggered necroptosis in GM-CSF-primed neutrophils. Both inhibitors prevented the activation of MLKL, p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3’—kinase (PI3K), hence blocking the increased levels of reactive oxygen species (ROS) required for cell death. Although compounds one and three partially inhibited isolated human neutrophil elastase (HNE) activity, we obtained no pharmacological evidence that HNE is involved in the initiation of this death pathway within a cellular context. Interestingly, neither serine protease inhibitor had any effect on FAS receptor-mediated apoptosis. Taken together, these results suggest that a serine protease is involved in non-apoptotic CD44-triggered RIPK3-MLKL-dependent neutrophil cell death, but not FAS receptor-mediated caspase-dependent apoptosis. Thus, a pharmacological block on serine proteases might be beneficial for preventing exacerbation of disease in neutrophilic inflammatory responses.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, Bern, Switzerland
| | - Damjan Avsec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Aleš Obreza
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, Bern, Switzerland
| | | | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, Bern, Switzerland.,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
| |
Collapse
|
44
|
Inhibition of inflammatory cytokine production and proliferation in macrophages by Kunitz-type inhibitors from Echinococcus granulosus. Mol Biochem Parasitol 2021; 242:111351. [PMID: 33428949 DOI: 10.1016/j.molbiopara.2021.111351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
The genus Echinococcus of cestode parasites includes important pathogens of humans and livestock animals. Transcriptomic and genomic studies on E. granulosus and E. multilocularis uncovered striking expansion of monodomain Kunitz proteins. This expansion is accompanied by the specialization of some family members away from the ancestral protease inhibition function to fulfill cation channel blockade functions. Since cation channels are involved in immune processes, we tested the effects on macrophage physiology of two E. granulosus Kunitz-type inhibitors of voltage-activated cation channels (Kv) that are close paralogs. Both inhibitors, EgKU-1 and EgKU-4, inhibited production of the Th1/Th17 cytokine subunit IL-12/23p40 by macrophages stimulated with the TLR4 agonist LPS. In addition, EgKU-4 but not EgKU-1 inhibited production of the inflammatory cytokine IL-6. These activities were not displayed by EgKU-3, a family member that is a protease inhibitor without known activity on cation channels. EgKU-4 potently inhibited macrophage proliferation in response to M-CSF, whereas EgKU-1 displayed similar activity but with much lower potency, similar to EgKU-3. We discuss structural differences, including a heavily cationic C-terminal extension present in EgKU-4 but not in EgKU-1, that may explain the differential activities of the two close paralogs.
Collapse
|
45
|
El Amri C. Serine Protease Inhibitors to Treat Lung Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:215-226. [PMID: 34019272 DOI: 10.1007/978-3-030-68748-9_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lung is a vital organ that ensures breathing function. It provides the essential interface of air filtering providing oxygen to the whole body and eliminating carbon dioxide in the blood; because of its exposure to the external environment, it is fall prey to many exogenous elements, such as pathogens, especially viral infections or environmental toxins and chemicals. These exogenous actors in addition to intrinsic disorders lead to important inflammatory responses that compromise lung tissue and normal functioning. Serine proteases regulating inflammation responses are versatile enzymes, usually involved in pro-inflammatory cytokines or other molecular mediator's production and activation of immune cells. In this chapter, an overview on major serine proteases in airway inflammation as therapeutic targets and their clinically relevant inhibitors is provided. Recent updates on serine protease inhibitors in the context of the COVID-19 pandemic are summarized.
Collapse
Affiliation(s)
- Chahrazade El Amri
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256 CNRS-UPMC, ERL INSERM U1164, Biological Adaptation and Ageing, Paris, France.
| |
Collapse
|
46
|
Thomas C, Nothaft H, Yadav R, Fodor C, Alemka A, Oni O, Bell M, Rada B, Szymanski CM. Characterization of ecotin homologs from Campylobacter rectus and Campylobacter showae. PLoS One 2020; 15:e0244031. [PMID: 33378351 PMCID: PMC7773321 DOI: 10.1371/journal.pone.0244031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022] Open
Abstract
Ecotin, first described in Escherichia coli, is a potent
inhibitor of a broad range of serine proteases including those typically
released by the innate immune system such as neutrophil elastase (NE). Here we
describe the identification of ecotin orthologs in various
Campylobacter species, including Campylobacter
rectus and Campylobacter showae residing in the
oral cavity and implicated in the development and progression of periodontal
disease in humans. To investigate the function of these ecotins in
vitro, the orthologs from C.
rectus and C. showae were
recombinantly expressed and purified from E.
coli. Using CmeA degradation/protection assays,
fluorescence resonance energy transfer and NE activity assays, we found that
ecotins from C. rectus and C.
showae inhibit NE, factor Xa and trypsin, but not the
Campylobacter jejuni serine protease HtrA or its ortholog
in E. coli, DegP. To further evaluate ecotin
function in vivo, an E. coli
ecotin-deficient mutant was complemented with the C.
rectus and C. showae
homologs. Using a neutrophil killing assay, we demonstrate that the low survival
rate of the E. coli ecotin-deficient mutant
can be rescued upon expression of ecotins from C.
rectus and C. showae. In
addition, the C. rectus and
C. showae ecotins partially compensate for
loss of N-glycosylation and increased protease susceptibility in the related
pathogen, Campylobacter jejuni, thus implicating a similar role
for these proteins in the native host to cope with the protease-rich environment
of the oral cavity.
Collapse
Affiliation(s)
- Cody Thomas
- Department of Microbiology and Complex Carbohydrate Research Center,
University of Georgia, Athens, Georgia, United States of
America
| | - Harald Nothaft
- Department of Biological Sciences, University of Alberta, Edmonton,
Alberta, Canada
| | - Ruchi Yadav
- Department of Infectious Diseases, University of Georgia, Athens,
Georgia, United States of America
| | - Christopher Fodor
- Department of Biological Sciences, University of Alberta, Edmonton,
Alberta, Canada
| | - Abofu Alemka
- Department of Biological Sciences, University of Alberta, Edmonton,
Alberta, Canada
| | - Oluwadamilola Oni
- Department of Infectious Diseases, University of Georgia, Athens,
Georgia, United States of America
| | - Michael Bell
- Department of Infectious Diseases, University of Georgia, Athens,
Georgia, United States of America
| | - Balázs Rada
- Department of Infectious Diseases, University of Georgia, Athens,
Georgia, United States of America
| | - Christine M. Szymanski
- Department of Microbiology and Complex Carbohydrate Research Center,
University of Georgia, Athens, Georgia, United States of
America
- Department of Biological Sciences, University of Alberta, Edmonton,
Alberta, Canada
- * E-mail:
| |
Collapse
|
47
|
Frolova AS, Petushkova AI, Makarov VA, Soond SM, Zamyatnin AA. Unravelling the Network of Nuclear Matrix Metalloproteinases for Targeted Drug Design. BIOLOGY 2020; 9:E480. [PMID: 33352765 PMCID: PMC7765953 DOI: 10.3390/biology9120480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that are responsible for the degradation of a wide range of extracellular matrix proteins, which are involved in many cellular processes to ensure the normal development of tissues and organs. Overexpression of MMPs has been observed to facilitate cellular growth, migration, and metastasis of tumor cells during cancer progression. A growing number of these proteins are being found to exist in the nuclei of both healthy and tumor cells, thus highlighting their localization as having a genuine purpose in cellular homeostasis. The mechanism underlying nuclear transport and the effects of MMP nuclear translocation have not yet been fully elucidated. To date, nuclear MMPs appear to have a unique impact on cellular apoptosis and gene regulation, which can have effects on immune response and tumor progression, and thus present themselves as potential therapeutic targets in certain types of cancer or disease. Herein, we highlight and evaluate what progress has been made in this area of research, which clearly has some value as a specific and unique way of targeting the activity of nuclear matrix metalloproteinases within various cell types.
Collapse
Affiliation(s)
- Anastasia S. Frolova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Anastasiia I. Petushkova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Vladimir A. Makarov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Surinder M. Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.F.); (A.I.P.); (V.A.M.); (S.M.S.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| |
Collapse
|
48
|
Purification and Biochemical Characterization of a New Protease Inhibitor from Conyza dioscoridis with Antimicrobial, Antifungal and Cytotoxic Effects. Molecules 2020; 25:molecules25225452. [PMID: 33233753 PMCID: PMC7699837 DOI: 10.3390/molecules25225452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 11/17/2020] [Indexed: 11/26/2022] Open
Abstract
The main objective of the current study was the extraction, purification, and biochemical characterization of a protein protease inhibitor from Conyzadioscoridis. Antimicrobial potential and cytotoxic effects were also examined. The protease inhibitor was extracted in 0.1 M phosphate buffer (pH 6–7). Then, the protease inhibitor, named PDInhibitor, was purified using ammonium sulfate precipitation followed by filtration through a Sephadex G-50 column and had an apparent molecular weight of 25 kDa. The N-terminal sequence of PDInhibitor showed a high level of identity with those of the Kunitz family. PDInhibitor was found to be active at pH values ranging from 5.0 to 11.0, with maximal activity at pH 9.0. It was also fully active at 50 °C and maintained 90% of its stability at over 55 °C. The thermostability of the PDInhibitor was clearly enhanced by CaCl2 and sorbitol, whereas the presence of Ca2+ and Zn2+ ions, Sodium taurodeoxycholate (NaTDC), Sodium dodecyl sulfate (SDS), Dithiothreitol (DTT), and β-ME dramatically improved the inhibitory activity. A remarkable affinity of the protease inhibitor with available important therapeutic proteases (elastase and trypsin) was observed. PDInhibitor also acted as a potent inhibitor of commercial proteases from Aspergillus oryzae and of Proteinase K. The inhibitor displayed potent antimicrobial activity against gram+ and gram- bacteria and against fungal strains. Interestingly, PDInhibitor affected several human cancer cell lines, namely HCT-116, MDA-MB-231, and Lovo. Thus, it can be considered a potentially powerful therapeutic agent.
Collapse
|
49
|
Seth S, Batra J, Srinivasan S. COVID-19: Targeting Proteases in Viral Invasion and Host Immune Response. Front Mol Biosci 2020; 7:215. [PMID: 33195400 PMCID: PMC7581869 DOI: 10.3389/fmolb.2020.00215] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022] Open
Abstract
An acute respiratory disorder (COVID-19) that accelerated across the globe has been found to be caused by a novel strain of coronaviruses (SARS-CoV-2). The absence of a specific antiviral drug or vaccination has promoted the development of immediate therapeutic responses against SARS-CoV-2. As increased levels of plasma chemokines and, cytokines and an uncontrolled influx of inflammatory cells were observed in lethal cases, it was concluded that the severity of the infection corresponded with the imbalanced host immunity against the virus. Tracing back the knowledge acquired from SERS and MERS infections, clinical evidence suggested similar host immune reactions and host ACE2 receptor-derived invasion by SARS-CoV-2. Further studies revealed the integral role of proteases (TMPRSS2, cathepsins, plasmin, etc.) in viral entry and the immune system. This review aims to provide a brief review on the latest research progress in identifying the potential role of proteases in SARS-CoV-2 viral spread and infection and combines it with already known information on the role of different proteases in providing an immune response. It further proposes a multidisciplinary clinical approach to target proteases specifically, through a combinatorial administration of protease inhibitors. This predictive review may help in providing a perspective to gain deeper insights of the proteolytic web involved in SARS-CoV-2 viral invasion and host immune response.
Collapse
Affiliation(s)
- Sanchit Seth
- School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
50
|
Novak T, Fortune F, Bergmeier L, Khan I, Hagi‐Pavli E. Neutrophil elastase and endogenous inhibitors in Behçet's disease saliva. Clin Exp Immunol 2020; 202:93-105. [PMID: 32580239 PMCID: PMC7488119 DOI: 10.1111/cei.13483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/24/2022] Open
Abstract
Behçet's disease (BD) is a vasculitis of unknown aetiology typified by chronic recurrent oral ulcers and systemic inflammatory manifestations. Neutrophils, and specifically their protease neutrophil elastase (NE), have been implicated in its pathology. Although NE is an effective anti-microbial, excessive NE can damage host tissue. Recurrent oral ulceration is a primary BD symptom, therefore we hypothesized that excessive neutrophil infiltration evidenced by increased NE and a reduction in specific endogenous inhibitors, secretory leucocyte protease inhibitor (SLPI) and alpha1-anti-trypsin (α1AT) contributes to BD mucosal instability. NE, SLPI and α1AT were quantified in saliva from BD patients with active oral ulcers (BDa) and quiet without ulcers (BDq), recurrent aphthous stomatitis (RASa; RASq) and healthy controls (HC). Although BDq saliva had marginally higher median NE levels (1112 ng/ml) compared to both RASq (1043 ng/ml) and HC (999 ng/ml), SLPI was significantly reduced in BDq (P < 0·01). Despite decreased SLPI protein, mRNA expression was significantly increased in BDq buccal epithelial swabs compared to RASq and HC (P < 0·05, P < 0·001). NE remained enzymatically active, although α1AT levels were at least eight times higher than SLPI in all groups, suggesting that α1AT does not have a primary role in counteracting NE in saliva. Furthermore, NE levels in BDa patients medicated with both azathioprine (AZA) and colchicine (COLC) were significantly lower than those on COLC (P = 0·0008) or neither (P = 0·02), indicating that combining AZA + COLC may help to regulate excessive NE during ulceration. This study showed that enzymatically active NE coupled with reduced SLPI in BD saliva may contribute to recurrent oral ulcerations.
Collapse
Affiliation(s)
- T. Novak
- Centre for Immunobiology and Regenerative MedicineBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Department of AnesthesiologyCritical Care and Pain MedicineBoston Children’s HospitalHarvard Medical SchoolBostonMAUSA
| | - F. Fortune
- Centre for Immunobiology and Regenerative MedicineBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - L. Bergmeier
- Centre for Immunobiology and Regenerative MedicineBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - I. Khan
- Centre for Immunobiology and Regenerative MedicineBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Department of Oral PathologyIslamabad Medical and Dental CollegeBharakahu, IslamabadPakistan
| | - E. Hagi‐Pavli
- Centre for Immunobiology and Regenerative MedicineBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| |
Collapse
|