1
|
Penner I, Krämer N, Hirsch J, Büscher N, Schmidt H, Plachter B. Deletion of the Human Cytomegalovirus US2 to US11 Gene Family Members Impairs the Type-I Interferon Response. Viruses 2025; 17:426. [PMID: 40143353 PMCID: PMC11945591 DOI: 10.3390/v17030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Infection of cells with the human cytomegalovirus (HCMV) triggers the expression of interferon-stimulated genes (ISGs). ISGs encode proteins with antiviral functions, such as inhibiting viral replication, promoting cell death of infected cells and enhancing immune responses. HCMV has evolved mechanisms to evade the antiviral effects of ISGs. The viral proteins encoded by the viral genes US7, US8, and US9 have been shown to interfere with interferon induction. US7 to US9 are embedded in a cluster of HCMV genes, termed US2 to US11. The individual members of this gene family interfere on multiple levels with innate and adaptive immune responses to HCMV infection. Using viral mutants with different deletions in US2 to US11, we addressed the question if genes other than US7 to US9 would also influence the IFN responses. Surprisingly, deletion of the complete US2 to US11 gene region led to reduced levels of selected ISGs. Cells infected with viruses in which individual US2 to US11 genes were deleted showed a less pronounced reduction of the selected ISGs. The experiments including RNA-seq analyses indicate that genes of the US2 to US11 gene family have a complex interaction with the IFN-ISG response which is likely regulated on the level of ISG protein stability. As US2-US11 are dispensable for replication in cell culture, the genomic region was frequently used for the insertion of bacterial artificial chromosome vectors in the process of cloning the complete HCMV genome. The results shown here must be considered when viruses derived from BACs with US2-US11 deletions are used and whether appropriate controls must be applied.
Collapse
|
2
|
Hunter LM, Kite J, Fletcher-Etherington A, Nightingale K, Nobre L, Antrobus R, Fielding CA, Stanton RJ, Weekes MP. HCMV US2 co-opts TRC8 to degrade the endoplasmic reticulum-resident protein LMAN2L. J Gen Virol 2024; 105:001980. [PMID: 38687323 PMCID: PMC11083459 DOI: 10.1099/jgv.0.001980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
The human cytomegalovirus (HCMV) pUS2 glycoprotein exploits the host's endoplasmic reticulum (ER)-associated degradation (ERAD) pathway to degrade major histocompatibility complex class I (MHC-I) and prevent antigen presentation. Beyond MHC-I, pUS2 has been shown to target a range of cellular proteins for degradation, preventing their cell surface expression. Here we have identified a novel pUS2 target, ER-resident protein lectin mannose binding 2 like (LMAN2L). pUS2 expression was both necessary and sufficient for the downregulation of LMAN2L, which was dependent on the cellular E3 ligase TRC8. Given the hypothesized role of LMAN2L in the trafficking of glycoproteins, we employed proteomic plasma membrane profiling to measure LMAN2L-dependent changes at the cell surface. A known pUS2 target, integrin alpha-6 (ITGA6), was downregulated from the surface of LMAN2L-deficient cells, but not other integrins. Overall, these results suggest a novel strategy of pUS2-mediated protein degradation whereby pUS2 targets LMAN2L to impair trafficking of ITGA6. Given that pUS2 can directly target other integrins, we propose that this single viral protein may exhibit both direct and indirect mechanisms to downregulate key cell surface molecules.
Collapse
Affiliation(s)
- Leah M. Hunter
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 2QQ, UK
| | - Joanne Kite
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 2QQ, UK
| | - Alice Fletcher-Etherington
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 2QQ, UK
| | - Katie Nightingale
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 2QQ, UK
| | - Luis Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 2QQ, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 2QQ, UK
| | - Ceri A. Fielding
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Richard J. Stanton
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 2QQ, UK
| |
Collapse
|
3
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
4
|
Yu C, He S, Zhu W, Ru P, Ge X, Govindasamy K. Human cytomegalovirus in cancer: the mechanism of HCMV-induced carcinogenesis and its therapeutic potential. Front Cell Infect Microbiol 2023; 13:1202138. [PMID: 37424781 PMCID: PMC10327488 DOI: 10.3389/fcimb.2023.1202138] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Human cytomegalovirus (HCMV), a well-studied herpesvirus, has been implicated in malignancies derived from breast, colorectal muscle, brain, and other cancers. Intricate host-virus interactions are responsible for the cascade of events that have the potential to result in the transformed phenotype of normal cells. The HCMV genome contains oncogenes that may initiate these types of cancers, and although the primary HCMV infection is usually asymptomatic, the virus remains in the body in a latent or persistent form. Viral reactivation causes severe health issues in immune-compromised individuals, including cancer patients, organ transplants, and AIDS patients. This review focuses on the immunologic mechanisms and molecular mechanisms of HCMV-induced carcinogenesis, methods of HCMV treatment, and other studies. Studies show that HCMV DNA and virus-specific antibodies are present in many types of cancers, implicating HCMV as an important player in cancer progression. Importantly, many clinical trials have been initiated to exploit HCMV as a therapeutic target for the treatment of cancer, particularly in immunotherapy strategies in the treatment of breast cancer and glioblastoma patients. Taken together, these findings support a link between HCMV infections and cellular growth that develops into cancer. More importantly, HCMV is the leading cause of birth defects in newborns, and infection with HCMV is responsible for abortions in pregnant women.
Collapse
Affiliation(s)
- Chuan Yu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Suna He
- Department of Pharmaceutical Sciences, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, Henan, China
| | - Wenwen Zhu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Penghui Ru
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Xuemei Ge
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Kavitha Govindasamy
- School of Arts and Science, Rutgers, the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
5
|
Targeted Protein-Specific Multi-Epitope-Based Vaccine Designing against Human Cytomegalovirus by Using Immunoinformatics Approaches. Vaccines (Basel) 2023; 11:vaccines11020203. [PMID: 36851082 PMCID: PMC9959080 DOI: 10.3390/vaccines11020203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Cytomegaloviruses are emerging pathogenic agents known to cause congenital disorders in humans. In this study, immune epitopes (CTL, B cell and HTL) were screened for highly antigenic target proteins of the Human Cytomegalovirus. These shortlisted epitopes were then joined together through suitable linkers to construct multi epitope-based vaccine constructs (MEVCs). The functionality of each vaccine construct was evaluated through tertiary vaccine structure modelling and validations. Furthermore, physio-chemical properties including allergenicity, antigenicity molecular weight and many others were also predicted. The vaccine designs were also docked with the human TLR-4 receptor to demonstrate the receptor specific affinity and formed interactions. The vaccine peptides sequences were also subjected to codon optimization to confirm the potential vaccines expression in E. coli hosts. Additionally, all the MEVCs were also evaluated for immune response (IgG and IgM) induction. However, further in vivo tests are needed to ensure the efficacy of these vaccine designs.
Collapse
|
6
|
The Deletion of US3 Gene of Pseudorabies Virus (PRV) ΔgE/TK Strain Induces Increased Immunogenicity in Mice. Vaccines (Basel) 2022; 10:vaccines10101603. [DOI: 10.3390/vaccines10101603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Re-emerging pseudorabies (PR) caused by pseudorabies virus (PRV) variant has been prevailing among immunized herds in China since 2011, indicating that commercially available PR vaccine strains couldn’t provide complete protection against novel, epidemic PRV variant. Before this study, a gE/TK-gene-deleted virus (PRV ΔgE/TK) was constructed from PRV QYY2012 variant through homologous recombination and Cre/LoxP system. Here, PRV ΔgE/TK/US3 strain was generated by deleting US3 gene based on PRV ΔgE/TK strain using the same method. The growth characteristics of PRV ΔgE/TK/US3 were analogous to that of PRV ΔgE/TK. Moreover, the deletion of US3 gene could promote apoptosis, upregulate the level of swine leukocyte antigen class I molecule (SLA-I) in vitro, and relieve inflammatory response in inoculated BALB/c mice. Subsequently, the safety and immunogenicity of PRV ΔgE/TK/US3 was evaluated as a vaccine candidate in mice. The results revealed that PRV ΔgE/TK/US3 was safe for mice, and mice vaccinated with PRV ΔgE/TK/US3 could induce a higher level of PRV-specific neutralizing antibodies and cytokines, including IFN-γ, IL-2 and IL-4, also higher level of CD8+ CD69+ Tissue-Resident Memory T cells (TRM). The results show that the deletion of US3 gene of PRV ΔgE/TK strain could induce increased immunogenicity, indicating that the PRV ΔgE/TK/US3 strain is a promising vaccine candidate for preventing and controlling of the epidemic PR in China.
Collapse
|
7
|
Evasion of the Host Immune Response by Betaherpesviruses. Int J Mol Sci 2021; 22:ijms22147503. [PMID: 34299120 PMCID: PMC8306455 DOI: 10.3390/ijms22147503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
The human immune system boasts a diverse array of strategies for recognizing and eradicating invading pathogens. Human betaherpesviruses, a highly prevalent subfamily of viruses, include human cytomegalovirus (HCMV), human herpesvirus (HHV) 6A, HHV-6B, and HHV-7. These viruses have evolved numerous mechanisms for evading the host response. In this review, we will highlight the complex interplay between betaherpesviruses and the human immune response, focusing on protein function. We will explore methods by which the immune system first responds to betaherpesvirus infection as well as mechanisms by which viruses subvert normal cellular functions to evade the immune system and facilitate viral latency, persistence, and reactivation. Lastly, we will briefly discuss recent advances in vaccine technology targeting betaherpesviruses. This review aims to further elucidate the dynamic interactions between betaherpesviruses and the human immune system.
Collapse
|
8
|
Manandhar T, Hò GGT, Pump WC, Blasczyk R, Bade-Doeding C. Battle between Host Immune Cellular Responses and HCMV Immune Evasion. Int J Mol Sci 2019; 20:E3626. [PMID: 31344940 PMCID: PMC6695940 DOI: 10.3390/ijms20153626] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) is ubiquitously prevalent. HCMV infection is typically asymptomatic and controlled by the immune system in healthy individuals, yet HCMV can be severely pathogenic for the fetus during pregnancy and in immunocompromised persons, such as transplant recipients or HIV infected patients. HCMV has co-evolved with the hosts, developed strategies to hide from immune effector cells and to successfully survive in the human organism. One strategy for evading or delaying the immune response is maintenance of the viral genome to establish the phase of latency. Furthermore, HCMV immune evasion involves the downregulation of human leukocyte antigens (HLA)-Ia molecules to hide infected cells from T-cell recognition. HCMV expresses several proteins that are described for downregulation of the HLA class I pathway via various mechanisms. Here, we review the wide range of immune evasion mechanisms of HCMV. Understanding the mechanisms of HCMV immune evasion will contribute to the development of new customized therapeutic strategies against the virus.
Collapse
Affiliation(s)
- Trishna Manandhar
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Gia-Gia T Hò
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Wiebke C Pump
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | | |
Collapse
|
9
|
Stein KR, Gardner TJ, Hernandez RE, Kraus TA, Duty JA, Ubarretxena-Belandia I, Moran TM, Tortorella D. CD46 facilitates entry and dissemination of human cytomegalovirus. Nat Commun 2019; 10:2699. [PMID: 31221976 PMCID: PMC6586906 DOI: 10.1038/s41467-019-10587-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/20/2019] [Indexed: 11/22/2022] Open
Abstract
Human cytomegalovirus (CMV) causes a wide array of disease to diverse populations of immune-compromised individuals. Thus, a more comprehensive understanding of how CMV enters numerous host cell types is necessary to further delineate the complex nature of CMV pathogenesis and to develop targeted therapeutics. To that end, we establish a vaccination strategy utilizing membrane vesicles derived from epithelial cells to generate a library of monoclonal antibodies (mAbs) targeting cell surface proteins in their native conformation. A high-throughput inhibition assay is employed to screen these antibodies for their ability to limit infection, and mAbs targeting CD46 are identified. In addition, a significant reduction of viral proliferation in CD46-KO epithelial cells confirms a role for CD46 function in viral dissemination. Further, we demonstrate a CD46-dependent entry pathway of virus infection in trophoblasts, but not in fibroblasts, highlighting the complexity of CMV entry and identifying CD46 as an entry factor in congenital infection.
Collapse
Affiliation(s)
- Kathryn R Stein
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Thomas J Gardner
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rosmel E Hernandez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Thomas A Kraus
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center of Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - James A Duty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center of Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Iban Ubarretxena-Belandia
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Thomas M Moran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center of Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
10
|
Schlottmann F, Strauss S, Hake K, Vogt PM, Bucan V. Down-Regulation of MHC Class I Expression in Human Keratinocytes Using Viral Vectors Containing US11 Gene of Human Cytomegalovirus and Cultivation on Bovine Collagen-Elastin Matrix (Matriderm ®): Potential Approach for an Immune-Privileged Skin Substitute. Int J Mol Sci 2019; 20:E2056. [PMID: 31027326 PMCID: PMC6540026 DOI: 10.3390/ijms20092056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/31/2022] Open
Abstract
Skin transplantation, especially in burn patients, is still challenging because surgeons are faced with limited disposability of autologous donor side material. The in vitro culture of keratinocytes has become an important reconstructive option. However, only non-immunogenic allogenic keratinocytes offer the opportunity to develop a skin graft that can overcome rejection. The purpose of the study was to develop targeted gene modification of keratinocytes in order to reduce immunogenicity for the use as allogenic transplantable skin graft by decreasing the expression of MHC class I. To reduce MHC class I expression, viral vectors containing the US11 gene of human cytomegalovirus were generated and tested on their functionality using Western blotting, indirect immunofluorescence staining, and flow cytometry. Transfected keratinocytes were seeded on commercially available bovine collagen-elastin matrices and further cultured for histological and cell survival assays. Results showed transient down-regulation of MHC class I after 24 h post-transfection, with recovery of MHC class I expression after 48 h. Histological assessments showed long-term cell survival as well as histological patterns comparable to epidermal layers of healthy human skin. The data postulates the potential application of US11 transfected keratinocytes as an approach towards an immune-privileged skin substitute. Nevertheless, further studies and data are needed.
Collapse
Affiliation(s)
- Frederik Schlottmann
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - Sarah Strauss
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - Kevin Hake
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - Peter M Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - Vesna Bucan
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| |
Collapse
|
11
|
Immune Ecosystem of Virus-Infected Host Tissues. Int J Mol Sci 2018; 19:ijms19051379. [PMID: 29734779 PMCID: PMC5983771 DOI: 10.3390/ijms19051379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022] Open
Abstract
Virus infected host cells serve as a central immune ecological niche during viral infection and replication and stimulate the host immune response via molecular signaling. The viral infection and multiplication process involves complex intracellular molecular interactions between viral components and the host factors. Various types of host cells are also involved to modulate immune factors in delicate and dynamic equilibrium to maintain a balanced immune ecosystem in an infected host tissue. Antiviral host arsenals are equipped to combat or eliminate viral invasion. However, viruses have evolved with strategies to counter against antiviral immunity or hijack cellular machinery to survive inside host tissue for their multiplication. However, host immune systems have also evolved to neutralize the infection; which, in turn, either clears the virus from the infected host or causes immune-mediated host tissue injury. A complex relationship between viral pathogenesis and host antiviral defense could define the immune ecosystem of virus-infected host tissues. Understanding of the molecular mechanism underlying this ecosystem would uncover strategies to modulate host immune function for antiviral therapeutics. This review presents past and present updates of immune-ecological components of virus infected host tissue and explains how viruses subvert the host immune surveillances.
Collapse
|
12
|
Holder KA, Comeau EM, Grant MD. Origins of natural killer cell memory: special creation or adaptive evolution. Immunology 2018; 154:38-49. [PMID: 29355919 DOI: 10.1111/imm.12898] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/09/2018] [Accepted: 01/14/2018] [Indexed: 12/13/2022] Open
Abstract
The few initial formative studies describing non-specific and apparently spontaneous activity of natural killer (NK) cells have since multiplied into thousands of scientific reports defining their unique capacities and means of regulation. Characterization of the array of receptors that govern NK cell education and activation revealed an unexpected relationship with the major histocompatibility molecules that NK cells originally became well known for ignoring. Proceeding true to form, NK cells continue to up-end archetypal understanding of their ever-expanding capabilities. Discovery that the NK cell repertoire is extremely diverse and can be reshaped by particular viruses into unique subsets of adaptive NK cells challenges, or at least broadens, the definition of immunological memory. This review provides an overview of studies identifying adaptive NK cells, addressing the origins of NK cell memory and introducing the heretical concept of NK cells with extensive antigenic specificity. Whether these newly apparent properties reflect adaptive utilization of known NK cell attributes and receptors or a specially creative allocation from an undefined receptor array remains to be fully determined.
Collapse
Affiliation(s)
- Kayla A Holder
- Immunology and Infectious Diseases Programme, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| | - Emilie M Comeau
- Immunology and Infectious Diseases Programme, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| | - Michael D Grant
- Immunology and Infectious Diseases Programme, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| |
Collapse
|
13
|
van de Weijer ML, Schuren ABC, van den Boomen DJH, Mulder A, Claas FHJ, Lehner PJ, Lebbink RJ, Wiertz EJHJ. Multiple E2 ubiquitin-conjugating enzymes regulate human cytomegalovirus US2-mediated immunoreceptor downregulation. J Cell Sci 2017; 130:2883-2892. [PMID: 28743740 DOI: 10.1242/jcs.206839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/10/2017] [Indexed: 12/13/2022] Open
Abstract
Misfolded endoplasmic reticulum (ER) proteins are dislocated towards the cytosol and degraded by the ubiquitin-proteasome system in a process called ER-associated protein degradation (ERAD). During infection with human cytomegalovirus (HCMV), the viral US2 protein targets HLA class I molecules (HLA-I) for degradation via ERAD to avoid elimination by the immune system. US2-mediated degradation of HLA-I serves as a paradigm of ERAD and has facilitated the identification of TRC8 (also known as RNF139) as an E3 ubiquitin ligase. No specific E2 enzymes had previously been described for cooperation with TRC8. In this study, we used a lentiviral CRISPR/Cas9 library targeting all known human E2 enzymes to assess their involvement in US2-mediated HLA-I downregulation. We identified multiple E2 enzymes involved in this process, of which UBE2G2 was crucial for the degradation of various immunoreceptors. UBE2J2, on the other hand, counteracted US2-induced ERAD by downregulating TRC8 expression. These findings indicate the complexity of cellular quality control mechanisms, which are elegantly exploited by HCMV to elude the immune system.
Collapse
Affiliation(s)
- Michael L van de Weijer
- Dept. Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Anouk B C Schuren
- Dept. Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | | | - Arend Mulder
- Dept. Immunohematology and blood transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Frans H J Claas
- Dept. Immunohematology and blood transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Paul J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Robert Jan Lebbink
- Dept. Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Emmanuel J H J Wiertz
- Dept. Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| |
Collapse
|
14
|
Gardner TJ, Stein KR, Duty JA, Schwarz TM, Noriega VM, Kraus T, Moran TM, Tortorella D. Functional screening for anti-CMV biologics identifies a broadly neutralizing epitope of an essential envelope protein. Nat Commun 2016; 7:13627. [PMID: 27966523 PMCID: PMC5171902 DOI: 10.1038/ncomms13627] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/20/2016] [Indexed: 12/30/2022] Open
Abstract
The prototypic β-herpesvirus human cytomegalovirus (CMV) establishes life-long persistence within its human host. The CMV envelope consists of various protein complexes that enable wide viral tropism. More specifically, the glycoprotein complex gH/gL/gO (gH-trimer) is required for infection of all cell types, while the gH/gL/UL128/130/131a (gH-pentamer) complex imparts specificity in infecting epithelial, endothelial and myeloid cells. Here we utilize state-of-the-art robotics and a high-throughput neutralization assay to screen and identify monoclonal antibodies (mAbs) targeting the gH glycoproteins that display broad-spectrum properties to inhibit virus infection and dissemination. Subsequent biochemical characterization reveals that the mAbs bind to gH-trimer and gH-pentamer complexes and identify the antibodies' epitope as an 'antigenic hot spot' critical for virus entry. The mAbs inhibit CMV infection at a post-attachment step by interacting with a highly conserved central alpha helix-rich domain. The platform described here provides the framework for development of effective CMV biologics and vaccine design strategies.
Collapse
Affiliation(s)
- Thomas J. Gardner
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Kathryn R. Stein
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - J. Andrew Duty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Center for Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Toni M. Schwarz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Vanessa M. Noriega
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Thomas Kraus
- Center for Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Thomas M. Moran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Center for Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
15
|
Van Damme E, Thys K, Tuefferd M, Van Hove C, Aerssens J, Van Loock M. HCMV Displays a Unique Transcriptome of Immunomodulatory Genes in Primary Monocyte-Derived Cell Types. PLoS One 2016; 11:e0164843. [PMID: 27760232 PMCID: PMC5070835 DOI: 10.1371/journal.pone.0164843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/01/2016] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a betaherpesvirus which rarely presents problems in healthy individuals, yet may result in severe morbidity in immunocompromised patients and in immune-naïve neonates. HCMV has a large 235 kb genome with a coding capacity of at least 165 open reading frames (ORFs). This large genome allows complex gene regulation resulting in different sets of transcripts during lytic and latent infection. While latent virus mainly resides within monocytes and CD34+ progenitor cells, reactivation to lytic infection is driven by differentiation towards terminally differentiated myeloid dendritic cells and macrophages. Consequently, it has been suggested that macrophages and dendritic cells contribute to viral spread in vivo. Thus far only limited knowledge is available on the expression of HCMV genes in terminally differentiated myeloid primary cells and whether or not the virus exhibits a different set of lytic genes in primary cells compared with lytic infection in NHDF fibroblasts. To address these questions, we used Illumina next generation sequencing to determine the HCMV transcriptome in macrophages and dendritic cells during lytic infection and compared it to the transcriptome in NHDF fibroblasts. Here, we demonstrate unique expression profiles in macrophages and dendritic cells which significantly differ from the transcriptome in fibroblasts mainly by modulating the expression of viral transcripts involved in immune modulation, cell tropism and viral spread. In a head to head comparison between macrophages and dendritic cells, we observed that factors involved in viral spread and virion composition are differentially regulated suggesting that the plasticity of the virion facilitates the infection of surrounding cells. Taken together, this study provides the full transcript expression analysis of lytic HCMV genes in monocyte-derived type 1 and type 2 macrophages as well as in monocyte-derived dendritic cells. Thereby underlining the potential of HCMV to adapt to or influence different cellular environments to promote its own survival.
Collapse
Affiliation(s)
- Ellen Van Damme
- Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Kim Thys
- Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Carl Van Hove
- Discovery Sciences, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Jeroen Aerssens
- Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marnix Van Loock
- Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
- * E-mail:
| |
Collapse
|
16
|
Söderberg-Nauclér C, Fornara O, Rahbar A. Cytomegalovirus driven immunosenescence-An immune phenotype with or without clinical impact? Mech Ageing Dev 2016; 158:3-13. [PMID: 27318107 DOI: 10.1016/j.mad.2016.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 11/30/2022]
Abstract
The continuous emerging increase in life span has led to vulnerability to a number of different diseases in the elderly. Some of these risks may be attributed to specific changes in the immune system referred to as immunoscenescence. This term aims to describe decreased immune functions among elderly individuals, and is characterized to be harmful age-associated changes in the immune system that lead to its gradual immune dysfunction. An impaired function of the immune system may increase susceptibility to various diseases in the elderly population such as infections, cardiovascular diseases and cancer. Although it is unclear how this immune phenotype develops, emerging evidence suggest that it may reflect an exhaustion of the immune system, possibly caused by one or several chronic infections. The main candidate is human cytomegalovirus (CMV), which can induce immune dysfunctions observed in immunoscenescence. Although the immune system is currently considered to be exhausted in CMV positive elderly individuals, it is not known whether such dysfunction of the immune system is a main reason for increased susceptibility to other diseases, or if direct effects of the virus in disease pathogenesis reflect the increased vulnerability to them. These aspects will be discussed in this review.
Collapse
Affiliation(s)
- Cecilia Söderberg-Nauclér
- Department of Medicine, Exp Cardiovascular Research Unit and Department of Neurology, Center for Molecular Medicine, Solna, Karolinska Institute, Stockholm, Sweden.
| | - Olesja Fornara
- Department of Medicine, Exp Cardiovascular Research Unit and Department of Neurology, Center for Molecular Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| | - Afsar Rahbar
- Department of Medicine, Exp Cardiovascular Research Unit and Department of Neurology, Center for Molecular Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
17
|
Bagdonaite I, Nordén R, Joshi HJ, King SL, Vakhrushev SY, Olofsson S, Wandall HH. Global Mapping of O-Glycosylation of Varicella Zoster Virus, Human Cytomegalovirus, and Epstein-Barr Virus. J Biol Chem 2016; 291:12014-28. [PMID: 27129252 DOI: 10.1074/jbc.m116.721746] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Indexed: 12/27/2022] Open
Abstract
Herpesviruses are among the most complex and widespread viruses, infection and propagation of which depend on envelope proteins. These proteins serve as mediators of cell entry as well as modulators of the immune response and are attractive vaccine targets. Although envelope proteins are known to carry glycans, little is known about the distribution, nature, and functions of these modifications. This is particularly true for O-glycans; thus we have recently developed a "bottom up" mass spectrometry-based technique for mapping O-glycosylation sites on herpes simplex virus type 1. We found wide distribution of O-glycans on herpes simplex virus type 1 glycoproteins and demonstrated that elongated O-glycans were essential for the propagation of the virus. Here, we applied our proteome-wide discovery platform for mapping O-glycosites on representative and clinically significant members of the herpesvirus family: varicella zoster virus, human cytomegalovirus, and Epstein-Barr virus. We identified a large number of O-glycosites distributed on most envelope proteins in all viruses and further demonstrated conserved patterns of O-glycans on distinct homologous proteins. Because glycosylation is highly dependent on the host cell, we tested varicella zoster virus-infected cell lysates and clinically isolated virus and found evidence of consistent O-glycosites. These results present a comprehensive view of herpesvirus O-glycosylation and point to the widespread occurrence of O-glycans in regions of envelope proteins important for virus entry, formation, and recognition by the host immune system. This knowledge enables dissection of specific functional roles of individual glycosites and, moreover, provides a framework for design of glycoprotein vaccines with representative glycosylation.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| | - Rickard Nordén
- the Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Hiren J Joshi
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| | - Sarah L King
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| | - Sergey Y Vakhrushev
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| | - Sigvard Olofsson
- the Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Hans H Wandall
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| |
Collapse
|
18
|
Gardner TJ, Hernandez RE, Noriega VM, Tortorella D. Human cytomegalovirus gH stability and trafficking are regulated by ER-associated degradation and transmembrane architecture. Sci Rep 2016; 6:23692. [PMID: 27026399 PMCID: PMC4812245 DOI: 10.1038/srep23692] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/14/2016] [Indexed: 11/29/2022] Open
Abstract
The prototypic betaherpesvirus human cytomegalovirus (CMV) establishes life-long persistence within its human host. While benign in healthy individuals, CMV poses a significant threat to the immune compromised, including transplant recipients and neonates. The CMV glycoprotein complex gH/gL/gO mediates infection of fibroblasts, and together with the gH/gL/UL128/130/131 a pentameric complex permits infection of epithelial, endothethial, and myeloid cells. Given the central role of the gH/gL complex during infection, we were interested in studying cellular trafficking of the gH/gL complex through generation of human cells that stably express gH and gL. When expressed alone, CMV gH and gL were degraded through the ER-associated degradation (ERAD) pathway. However, co-expression of these proteins stabilized the polypeptides and enhanced their cell-surface expression. To further define regulatory factors involved in gH/gL trafficking, a CMV gH chimera in which the gH transmembrane and cytoplasmic tail were replaced with that of human CD4 protein permitted cell surface gH expression in absence of gL. We thus demonstrate the ability of distinct cellular processes to regulate the trafficking of viral glycoproteins. Collectively, the data provide insight into the processing and trafficking requirements of CMV envelope protein complexes and provide an example of the co-opting of cellular processes by CMV.
Collapse
Affiliation(s)
- Thomas J Gardner
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, New York, NY 10029, USA
| | - Rosmel E Hernandez
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, New York, NY 10029, USA
| | - Vanessa M Noriega
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, New York, NY 10029, USA
| | - Domenico Tortorella
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, New York, NY 10029, USA
| |
Collapse
|
19
|
Adiko AC, Babdor J, Gutiérrez-Martínez E, Guermonprez P, Saveanu L. Intracellular Transport Routes for MHC I and Their Relevance for Antigen Cross-Presentation. Front Immunol 2015; 6:335. [PMID: 26191062 PMCID: PMC4489332 DOI: 10.3389/fimmu.2015.00335] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/15/2015] [Indexed: 01/22/2023] Open
Abstract
Cross-presentation, in which exogenous antigens are presented via MHC I complexes, is involved both in the generation of anti-infectious and anti-tumoral cytotoxic CD8+ T cells and in the maintenance of immune tolerance. While cross-presentation was described almost four decades ago and while it is now established that some dendritic cell (DC) subsets are better than others in processing and cross-presenting internalized antigens, the involved molecular mechanisms remain only partially understood. Some of the least explored molecular mechanisms in cross-presentation concern the origin of cross-presenting MHC I molecules and the cellular compartments where antigenic peptide loading occurs. This review focuses on MHC I molecules and their intracellular trafficking. We discuss the source of cross-presenting MHC I in DCs as well as the role of the endocytic pathway in their recycling from the cell surface. Next, we describe the importance of the TAP peptide transporter for delivering peptides to MHC I during cross-presentation. Finally, we highlight the impact of innate immunity mechanisms on specific antigen cross-presentation mechanisms in which TLR activation modulates MHC I trafficking and TAP localization.
Collapse
Affiliation(s)
- Aimé Cézaire Adiko
- INSERM U1149, Faculté Bichat Medical School, ELR8252 CNRS, Center for Research on Inflammation , Paris , France ; Université Paris Diderot, Sorbonne Paris Cité , Paris , France
| | - Joel Babdor
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications , Paris , France ; Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; Imagine Institute , Paris , France
| | - Enric Gutiérrez-Martínez
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, King's College London , London , UK
| | - Pierre Guermonprez
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, King's College London , London , UK
| | - Loredana Saveanu
- INSERM U1149, Faculté Bichat Medical School, ELR8252 CNRS, Center for Research on Inflammation , Paris , France ; Université Paris Diderot, Sorbonne Paris Cité , Paris , France
| |
Collapse
|
20
|
Hsu JL, van den Boomen DJH, Tomasec P, Weekes MP, Antrobus R, Stanton RJ, Ruckova E, Sugrue D, Wilkie GS, Davison AJ, Wilkinson GWG, Lehner PJ. Plasma membrane profiling defines an expanded class of cell surface proteins selectively targeted for degradation by HCMV US2 in cooperation with UL141. PLoS Pathog 2015; 11:e1004811. [PMID: 25875600 PMCID: PMC4397069 DOI: 10.1371/journal.ppat.1004811] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 03/13/2015] [Indexed: 11/24/2022] Open
Abstract
Human cytomegalovirus (HCMV) US2, US3, US6 and US11 act in concert to prevent immune recognition of virally infected cells by CD8+ T-lymphocytes through downregulation of MHC class I molecules (MHC-I). Here we show that US2 function goes far beyond MHC-I degradation. A systematic proteomic study using Plasma Membrane Profiling revealed US2 was unique in downregulating additional cellular targets, including: five distinct integrin α-chains, CD112, the interleukin-12 receptor, PTPRJ and thrombomodulin. US2 recruited the cellular E3 ligase TRC8 to direct the proteasomal degradation of all its targets, reminiscent of its degradation of MHC-I. Whereas integrin α-chains were selectively degraded, their integrin β1 binding partner accumulated in the ER. Consequently integrin signaling, cell adhesion and migration were strongly suppressed. US2 was necessary and sufficient for degradation of the majority of its substrates, but remarkably, the HCMV NK cell evasion function UL141 requisitioned US2 to enhance downregulation of the NK cell ligand CD112. UL141 retained CD112 in the ER from where US2 promoted its TRC8-dependent retrotranslocation and degradation. These findings redefine US2 as a multifunctional degradation hub which, through recruitment of the cellular E3 ligase TRC8, modulates diverse immune pathways involved in antigen presentation, NK cell activation, migration and coagulation; and highlight US2’s impact on HCMV pathogenesis. As the largest human herpesvirus, HCMV is a paradigm of viral immune evasion and has evolved multiple mechanisms to evade immune detection and enable survival. The HCMV genes US2, US3, US6 and US11 promote virus persistence by their ability to downregulate cell surface MHC. We developed ‘Plasma Membrane Profiling’ (PMP), an unbiased SILAC-based proteomics technique to ask whether MHC molecules are the only focus of these genes, or whether additional cellular immunoreceptors are also targeted. PMP compares the relative abundance of cell surface receptors between control and viral gene expressing cells. We found that whereas US3, US6 and US11 were remarkably MHC specific, US2 modulated expression of a wide variety of cell surface immunoreceptors. US2-mediated proteasomal degradation of integrin α-chains blocked integrin signaling and suppressed cell adhesion and migration. All US2 substrates were degraded via the cellular E3 ligase TRC8, and in a remarkable example of cooperativity between HCMV immune-evasins, UL141 requisitioned US2 to target the NK cell ligand CD112 for proteasomal degradation. HCMV US2 and UL141 are therefore modulators of multiple immune-related pathways and act as a multifunctional degradation hub that inhibits the migration, immune recognition and killing of HCMV-infected cells.
Collapse
Affiliation(s)
- Jye-Lin Hsu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | - Peter Tomasec
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | - Eva Ruckova
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Daniel Sugrue
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Gavin S. Wilkie
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | | | - Paul J. Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Gabaev I, Elbasani E, Ameres S, Steinbrück L, Stanton R, Döring M, Lenac Rovis T, Kalinke U, Jonjic S, Moosmann A, Messerle M. Expression of the human cytomegalovirus UL11 glycoprotein in viral infection and evaluation of its effect on virus-specific CD8 T cells. J Virol 2014; 88:14326-39. [PMID: 25275132 PMCID: PMC4249143 DOI: 10.1128/jvi.01691-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/25/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The human cytomegalovirus (CMV) UL11 open reading frame (ORF) encodes a putative type I transmembrane glycoprotein which displays remarkable amino acid sequence variability among different CMV isolates, suggesting that it represents an important virulence factor. In a previous study, we have shown that UL11 can interact with the cellular receptor tyrosine phosphatase CD45, which has a central role for signal transduction in T cells, and treatment of T cells with large amounts of a soluble UL11 protein inhibited their proliferation. In order to analyze UL11 expression in CMV-infected cells, we constructed CMV recombinants whose genomes either encode tagged UL11 versions or carry a stop mutation in the UL11 ORF. Moreover, we examined whether UL11 affects the function of virus-specific cytotoxic T lymphocytes (CTLs). We found that the UL11 ORF gives rise to several proteins due to both posttranslational modification and alternative translation initiation sites. Biotin labeling of surface proteins on infected cells indicated that only highly glycosylated UL11 forms are present at the plasma membrane, whereas less glycosylated UL11 forms were found in the endoplasmic reticulum. We did not find evidence of UL11 cleavage or secretion of a soluble UL11 version. Cocultivation of CTLs recognizing different CMV epitopes with fibroblasts infected with a UL11 deletion mutant or the parental strain revealed that under the conditions applied UL11 did not influence the activation of CMV-specific CD8 T cells. For further studies, we propose to investigate the interaction of UL11 with CD45 and the functional consequences in other immune cells expressing CD45. IMPORTANCE Human cytomegalovirus (CMV) belongs to those viruses that extensively interfere with the host immune response, yet the precise function of many putative immunomodulatory CMV proteins remains elusive. Previously, we have shown that the CMV UL11 protein interacts with the leukocyte common antigen CD45, a cellular receptor tyrosine phosphatase with a central role for signal transduction in T cells. Here, we examined the proteins expressed by the UL11 gene in CMV-infected cells and found that at least one form of UL11 is present at the cell surface, enabling it to interact with CD45 on immune cells. Surprisingly, CMV-expressed UL11 did not affect the activity of virus-specific CD8 T cells. This finding warrants investigation of the impact of UL11 on CD45 functions in other leukocyte subpopulations.
Collapse
Affiliation(s)
- Ildar Gabaev
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Endrit Elbasani
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Stefanie Ameres
- Clinical Cooperation Group Immunooncology, Helmholtz Centre Munich, Munich, Germany
| | - Lars Steinbrück
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Richard Stanton
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Marius Döring
- Centre for Experimental and Clinical Infection Research, Twincore, Hannover, Germany
| | - Tihana Lenac Rovis
- Department of Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ulrich Kalinke
- Centre for Experimental and Clinical Infection Research, Twincore, Hannover, Germany
| | - Stipan Jonjic
- Department of Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Andreas Moosmann
- Clinical Cooperation Group Immunooncology, Helmholtz Centre Munich, Munich, Germany German Center for Infection Research (DZIF), partner sites, Hannover and Munich, Germany
| | - Martin Messerle
- Department of Virology, Hannover Medical School, Hannover, Germany German Center for Infection Research (DZIF), partner sites, Hannover and Munich, Germany
| |
Collapse
|
22
|
Classical and non-classical MHC I molecule manipulation by human cytomegalovirus: so many targets—but how many arrows in the quiver? Cell Mol Immunol 2014; 12:139-53. [PMID: 25418469 PMCID: PMC4654289 DOI: 10.1038/cmi.2014.105] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 02/07/2023] Open
Abstract
Major mechanisms for the recognition of pathogens by immune cells have evolved to employ classical and non-classical major histocompatibility complex class I (MHC I) molecules. Classical MHC I molecules present antigenic peptide ligands on infected cells to CD8+ T cells, whereas a key function for non-classical MHC I molecules is to mediate inhibitory or activating stimuli in natural killer (NK) cells. The structural diversity of MHC I puts immense pressure on persisting viruses, including cytomegaloviruses. The very large coding capacity of the human cytomegalovirus allows it to express a whole arsenal of immunoevasive factors assigned to individual MHC class I targets. This review summarizes achievements from more than two decades of intense research on how human cytomegalovirus manipulates MHC I molecules and escapes elimination by the immune system.
Collapse
|
23
|
Goldberger T, Mandelboim O. The use of microRNA by human viruses: lessons from NK cells and HCMV infection. Semin Immunopathol 2014; 36:659-74. [PMID: 25234555 DOI: 10.1007/s00281-014-0447-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/28/2014] [Indexed: 12/21/2022]
Abstract
Depending on ethnicity and on social conditions, between 40 and 90 % of the population is infected with human cytomegalovirus (HCMV). In immunocompetent patients, the virus may cause an acute disease and then revert to a state of latency, which enables its coexistence with the human host. However, in cases of immunosuppression or in neonatal infections, HCMV can cause serious long-lasting illnesses. HCMV has developed multiple mechanisms in order to escape its elimination by the immune system, specifically by two killer cell types of the adaptive and the innate immune systems; cytotoxic T lymphocytes (CTL) and natural killer (NK) cells, respectively. Another fascinating aspect of HCMV is that like other highly developed herpesviruses, it expresses its own unique set of microRNAs. Here, we initially describe how the activity of NK cells is regulated under normal conditions and during infection. Then, we discuss what is currently known about HCMV microRNA-mediated interactions, with special emphasis on immune modulation and NK cell evasion. We further illustrate the significant modulation of cellular microRNAs during HCMV infection. Although, the full target spectrum of HCMV microRNAs is far from being completely elucidated, it can already be concluded that HCMV uses its "multitasking" microRNAs to globally affect its own life cycle, as well as important cellular and immune-related pathways.
Collapse
Affiliation(s)
- Tal Goldberger
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, IMRIC, Jerusalem, 91120, Israel
| | | |
Collapse
|
24
|
Human cytomegalovirus modulates monocyte-mediated innate immune responses during short-term experimental latency in vitro. J Virol 2014; 88:9391-405. [PMID: 24920803 DOI: 10.1128/jvi.00934-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED The ability of human cytomegalovirus (HCMV) to establish lifelong persistence and reactivate from latency is critical to its success as a pathogen. Here we describe a short-term in vitro model representing the events surrounding HCMV latency and reactivation in circulating peripheral blood monocytes that was developed in order to study the immunological consequence of latent virus carriage. Infection of human CD14(+) monocytes by HCMV resulted in the immediate establishment of latency, as evidenced by the absence of particular lytic gene expression, the transcription of latency-associated mRNAs, and the maintenance of viral genomes. Latent HCMV induced cellular differentiation to a macrophage lineage, causing production of selective proinflammatory cytokines and myeloid-cell chemoattractants that most likely play a role in virus dissemination in the host. Analysis of global cellular gene expression revealed activation of innate immune responses and the modulation of protein and lipid synthesis to accommodate latent HCMV infection. Remarkably, monocytes harboring latent virus exhibited selective responses to secondary stimuli known to induce an antiviral state. Furthermore, when challenged with type I and II interferon, latently infected cells demonstrated a blockade of signaling at the level of STAT1 phosphorylation. The data demonstrate that HCMV reprograms specific cellular pathways in monocytes, most notably innate immune responses, which may play a role in the establishment of, maintenance of, and reactivation from latency. The modulation of innate immune responses is likely a viral evasion strategy contributing to viral dissemination and pathogenesis in the host. IMPORTANCE HCMV has the ability to establish a lifelong infection within the host, a phenomenon termed latency. We have established a short-term model system in human peripheral blood monocytes to study the immunological relevance of latent virus carriage. Infection of CD14(+) monocytes by HCMV results in the generation of latency-specific transcripts, maintenance of viral genomes, and the capacity to reenter the lytic cycle. During short-term latency in monocytes the virus initiates a program of differentiation to inflammatory macrophages that coincides with the modulation of cytokine secretion and specific cellular processes. HCMV-infected monocytes are hindered in their capacity to exert normal immunoprotective mechanisms. Additionally, latent virus disrupts type I and II interferon signaling at the level of STAT1 phosphorylation. This in vitro model system can significantly contribute to our understanding of the molecular and inflammatory factors that initiate HCMV reactivation in the host and allow the development of strategies to eradicate virus persistence.
Collapse
|
25
|
Kaposi's sarcoma-associated herpesvirus K3 and K5 ubiquitin E3 ligases have stage-specific immune evasion roles during lytic replication. J Virol 2014; 88:9335-49. [PMID: 24899205 DOI: 10.1128/jvi.00873-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED The downregulation of immune synapse components such as major histocompatibility complex class I (MHC-I) and ICAM-1 is a common viral immune evasion strategy that protects infected cells from targeted elimination by cytolytic effector functions of the immune system. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes two membrane-bound ubiquitin E3 ligases, called K3 and K5, which share the ability to induce internalization and degradation of MHC-I molecules. Although individual functions of K3 and K5 outside the viral genome are well characterized, their roles during the KSHV life cycle are still unclear. In this study, we individually introduced the amino acid-coding sequences of K3 or K5 into a ΔK3 ΔK5 recombinant virus, at either original or interchanged genomic positions. Recombinants harboring coding sequences within the K5 locus showed higher K3 and K5 protein expression levels and more rapid surface receptor downregulation than cognate recombinants in which coding sequences were introduced into the K3 locus. To identify infected cells undergoing K3-mediated downregulation of MHC-I, we employed a novel reporter virus, called red-green-blue-BAC16 (RGB-BAC16), which was engineered to harbor three fluorescent protein expression cassettes: EF1α-monomeric red fluorescent protein 1 (mRFP1), polyadenylated nuclear RNA promoter (pPAN)-enhanced green fluorescent protein (EGFP), and pK8.1-monomeric blue fluorescent protein (tagBFP), marking latent, immediate early, and late viral gene expression, respectively. Analysis of RGB-derived K3 and K5 deletion mutants showed that while the K5-mediated downregulation of MHC-I was concomitant with pPAN induction, the reduction of MHC-I surface expression by K3 was evident in cells that were enriched for pPAN-driven EGFP(high) and pK8.1-driven blue fluorescent protein-positive (BFP(+)) populations. These data support the notion that immunoreceptor downregulation occurs by a sequential process wherein K5 is critical during the immediately early phase and K3 plays a significant role during later stages. IMPORTANCE Although the roles of K3 and K5 outside the viral genome are well characterized, the function of these proteins in the context of the KSHV life cycle has remained unclear, particularly in the case of K3. This study examined the relative contributions of K3 and K5 to the downregulation of MHC-I during the lytic replication of KSHV. We show that while K5 acts immediately upon entry into the lytic phase, K3-mediated downregulation of MHC-I was evident during later stages of lytic replication. The identification of distinctly timed K3 and K5 activities significantly advances our understanding of KSHV-mediated immune evasion. Crucial to this study was the development of a novel recombinant KSHV, called RGB-BAC16, which facilitated the delineation of stage-specific phenotypes.
Collapse
|
26
|
Van Damme E, Van Loock M. Functional annotation of human cytomegalovirus gene products: an update. Front Microbiol 2014; 5:218. [PMID: 24904534 PMCID: PMC4032930 DOI: 10.3389/fmicb.2014.00218] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/25/2014] [Indexed: 01/31/2023] Open
Abstract
Human cytomegalovirus is an opportunistic double-stranded DNA virus with one of the largest viral genomes known. The 235 kB genome is divided in a unique long (UL) and a unique short (US) region which are flanked by terminal and internal repeats. The expression of HCMV genes is highly complex and involves the production of protein coding transcripts, polyadenylated long non-coding RNAs, polyadenylated anti-sense transcripts and a variety of non-polyadenylated RNAs such as microRNAs. Although the function of many of these transcripts is unknown, they are suggested to play a direct or regulatory role in the delicately orchestrated processes that ensure HCMV replication and life-long persistence. This review focuses on annotating the complete viral genome based on three sources of information. First, previous reviews were used as a template for the functional keywords to ensure continuity; second, the Uniprot database was used to further enrich the functional database; and finally, the literature was manually curated for novel functions of HCMV gene products. Novel discoveries were discussed in light of the viral life cycle. This functional annotation highlights still poorly understood regions of the genome but more importantly it can give insight in functional clusters and/or may be helpful in the analysis of future transcriptomics and proteomics studies.
Collapse
Affiliation(s)
- Ellen Van Damme
- Janssen Infectious Diseases BVBA, Therapeutic Area of Infectious Diseases Beerse, Belgium
| | - Marnix Van Loock
- Janssen Infectious Diseases BVBA, Therapeutic Area of Infectious Diseases Beerse, Belgium
| |
Collapse
|
27
|
Ameres S, Besold K, Plachter B, Moosmann A. CD8 T cell-evasive functions of human cytomegalovirus display pervasive MHC allele specificity, complementarity, and cooperativity. THE JOURNAL OF IMMUNOLOGY 2014; 192:5894-905. [PMID: 24808364 DOI: 10.4049/jimmunol.1302281] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunoevasive proteins ("evasins") of human CMV (HCMV) modulate stability and localization of MHC class I (MHC I) molecules, and their supply of antigenic peptides. However, it is largely unknown to what extent these evasins interfere with recognition by virus-specific CD8 T cells. We analyzed the recognition of HCMV-infected cells by a panel of CD8 T cells restricted through one of nine different MHC I allotypes. We employed a set of HCMV mutants deleted for three or all four of the MHC I modulatory genes US2, US3, US6, and US11. We found that different HCMV evasins exhibited different allotype-specific patterns of interference with CD8 T cell recognition of infected cells. In contrast, recognition of different epitopes presented by the same given MHC I allotype was uniformly reduced. For some allotypes, single evasins largely abolished T cell recognition; for others, a concerted action of evasins was required to abrogate recognition. In infected cells whose Ag presentation efficiency had been enhanced by IFN-γ pretreatment, HCMV evasins cooperatively impared T cell recognition for several different MHC I allotypes. T cell recognition and MHC I surface expression under influence of evasins were only partially congruent, underscoring the necessity to probe HCMV immunomodulation using specific T cells. We conclude that the CD8 T cell evasins of HCMV display MHC I allotype specificity, complementarity, and cooperativity.
Collapse
Affiliation(s)
- Stefanie Ameres
- Klinische Kooperationsgruppe Immunonkologie, Medizinische Klinik III, Klinikum der Universität München, 81377 Munich, Germany; Abteilung Genvektoren, Helmholtz Zentrum München, 81377 Munich, Germany; German Center for Infection Research, 81675 Munich, Germany; and
| | - Katrin Besold
- Institut für Virologie, Universitätsmedizin der Johannes-Gutenberg-Universität Mainz, 55131 Mainz, Germany
| | - Bodo Plachter
- Institut für Virologie, Universitätsmedizin der Johannes-Gutenberg-Universität Mainz, 55131 Mainz, Germany
| | - Andreas Moosmann
- Klinische Kooperationsgruppe Immunonkologie, Medizinische Klinik III, Klinikum der Universität München, 81377 Munich, Germany; Abteilung Genvektoren, Helmholtz Zentrum München, 81377 Munich, Germany; German Center for Infection Research, 81675 Munich, Germany; and
| |
Collapse
|
28
|
Nash WT, Teoh J, Wei H, Gamache A, Brown MG. Know Thyself: NK-Cell Inhibitory Receptors Prompt Self-Tolerance, Education, and Viral Control. Front Immunol 2014; 5:175. [PMID: 24795719 PMCID: PMC3997006 DOI: 10.3389/fimmu.2014.00175] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/03/2014] [Indexed: 01/05/2023] Open
Abstract
Natural killer (NK) cells provide essential protection against viral infections. One of the defining features of this lymphocyte population is the expression of a wide array of variable cell surface stimulatory and inhibitory NK receptors (sNKR and iNKR, respectively). The iNKR are particularly important in terms of NK-cell education. As receptors specific for MHC class I (MHC I) molecules, they are responsible for self-tolerance and adjusting NK-cell reactivity based on the expression level of self-MHC I. The end result of this education is twofold: (1) inhibitory signaling tunes the functional capacity of the NK cell, endowing greater potency with greater education, and (2) education on self allows the NK cell to detect aberrations in MHC I expression, a common occurrence during many viral infections. Many studies have indicated an important role for iNKR and MHC I in disease, making these receptors attractive targets for manipulating NK-cell reactivity in the clinic. A greater understanding of iNKR and their ability to regulate NK cells will provide a basis for future attempts at translating their potential utility into benefits for human health.
Collapse
Affiliation(s)
- William T Nash
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia , Charlottesville, VA , USA
| | - Jeffrey Teoh
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia , Charlottesville, VA , USA
| | - Hairong Wei
- Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Division of Nephrology, Department of Medicine, University of Virginia , Charlottesville, VA , USA
| | - Awndre Gamache
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia , Charlottesville, VA , USA
| | - Michael G Brown
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Division of Nephrology, Department of Medicine, University of Virginia , Charlottesville, VA , USA
| |
Collapse
|
29
|
Ameres S, Mautner J, Schlott F, Neuenhahn M, Busch DH, Plachter B, Moosmann A. Presentation of an immunodominant immediate-early CD8+ T cell epitope resists human cytomegalovirus immunoevasion. PLoS Pathog 2013; 9:e1003383. [PMID: 23717207 PMCID: PMC3662661 DOI: 10.1371/journal.ppat.1003383] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 04/10/2013] [Indexed: 02/07/2023] Open
Abstract
Control of human cytomegalovirus (HCMV) depends on CD8+ T cell responses that are shaped by an individual's repertoire of MHC molecules. MHC class I presentation is modulated by a set of HCMV-encoded proteins. Here we show that HCMV immunoevasins differentially impair T cell recognition of epitopes from the same viral antigen, immediate-early 1 (IE-1), that are presented by different MHC class I allotypes. In the presence of immunoevasins, HLA-A- and HLA-B-restricted T cell clones were ineffective, but HLA-C*0702-restricted T cell clones recognized and killed infected cells. Resistance of HLA-C*0702 to viral immunoevasins US2 and US11 was mediated by the alpha3 domain and C-terminal region of the HLA heavy chain. In healthy donors, HLA-C*0702-restricted T cells dominated the T cell response to IE-1. The same HLA-C allotype specifically protected infected cells from attack by NK cells that expressed a corresponding HLA-C-specific KIR. Thus, allotype-specific viral immunoevasion allows HCMV to escape control by NK cells and HLA-A- and HLA-B-restricted T cells, while the virus becomes selectively vulnerable to an immunodominant population of HLA-C-restricted T cells. Our work identifies a T cell population that may be of particular efficiency in HCMV-specific immunotherapy.
Collapse
Affiliation(s)
- Stefanie Ameres
- Clinical Cooperation Group Immunooncology, Department of Medicine III, Klinikum der Universität München, and Department of Gene Vectors, Helmholtz Zentrum München, Munich, Germany
- DZIF – German Center for Infection Research, Munich, Germany
| | - Josef Mautner
- DZIF – German Center for Infection Research, Munich, Germany
- Clinical Cooperation Group Pediatric Tumor Immunology, Helmholtz Zentrum München, and Children's Hospital, Technische Universität München, Munich, Germany
| | - Fabian Schlott
- DZIF – German Center for Infection Research, Munich, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München and Technische Universität München, Munich, Germany
| | - Michael Neuenhahn
- DZIF – German Center for Infection Research, Munich, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München and Technische Universität München, Munich, Germany
| | - Dirk H. Busch
- DZIF – German Center for Infection Research, Munich, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München and Technische Universität München, Munich, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center, Johannes-Gutenberg-Universität Mainz, Mainz, Germany
| | - Andreas Moosmann
- Clinical Cooperation Group Immunooncology, Department of Medicine III, Klinikum der Universität München, and Department of Gene Vectors, Helmholtz Zentrum München, Munich, Germany
- DZIF – German Center for Infection Research, Munich, Germany
- * E-mail:
| |
Collapse
|
30
|
Gardner TJ, Bolovan-Fritts C, Teng MW, Redmann V, Kraus TA, Sperling R, Moran T, Britt W, Weinberger LS, Tortorella D. Development of a high-throughput assay to measure the neutralization capability of anti-cytomegalovirus antibodies. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:540-50. [PMID: 23389931 PMCID: PMC3623408 DOI: 10.1128/cvi.00644-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/30/2013] [Indexed: 11/20/2022]
Abstract
Infection by human cytomegalovirus (CMV) elicits a strong humoral immune response and robust anti-CMV antibody production. Diagnosis of virus infection can be carried out by using a variety of serological assays; however, quantification of serum antibodies against CMV may not present an accurate measure of a patient's ability to control a virus infection. CMV strains that express green fluorescent protein (GFP) fusion proteins can be used as screening tools for evaluating characteristics of CMV infection in vitro. In this study, we employed a CMV virus strain, AD169, that ectopically expresses a yellow fluorescent protein (YFP) fused to the immediate-early 2 (IE2) protein product (AD169IE2-YFP) to quantify a CMV infection in human cells. We created a high-throughput cell-based assay that requires minimal amounts of material and provides a platform for rapid analysis of the initial phase of virus infection, including virus attachment, fusion, and immediate-early viral gene expression. The AD169IE2-YFP cell infection system was utilized to develop a neutralization assay with a monoclonal antibody against the viral surface glycoprotein gH. The high-throughput assay was extended to measure the neutralization capacity of serum from CMV-positive subjects. These findings describe a sensitive and specific assay for the quantification of a key immunological response that plays a role in limiting CMV dissemination and transmission. Collectively, we have demonstrated that a robust high-throughput infection assay can analyze the early steps of the CMV life cycle and quantify the potency of biological reagents to attenuate a virus infection.
Collapse
Affiliation(s)
- Thomas J. Gardner
- Mount Sinai School of Medicine, Department of Microbiology, New York, New York, USA
| | | | | | - Veronika Redmann
- Mount Sinai School of Medicine, Department of Microbiology, New York, New York, USA
| | - Thomas A. Kraus
- Department of Obstetrics, Gynecology and Reproductive Medicine
| | - Rhoda Sperling
- Department of Obstetrics, Gynecology and Reproductive Medicine
| | - Thomas Moran
- Mount Sinai School of Medicine, Department of Microbiology, New York, New York, USA
| | - William Britt
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Leor S. Weinberger
- Gladstone Institutes, San Francisco, California, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| | - Domenico Tortorella
- Mount Sinai School of Medicine, Department of Microbiology, New York, New York, USA
| |
Collapse
|
31
|
Hesse J, Ameres S, Besold K, Krauter S, Moosmann A, Plachter B. Suppression of CD8+ T-cell recognition in the immediate-early phase of human cytomegalovirus infection. J Gen Virol 2012; 94:376-386. [PMID: 23100361 DOI: 10.1099/vir.0.045682-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) interferes with MHC class I-restricted antigen presentation and thereby reduces recognition by CD8(+) T-cells. This interference is mediated primarily by endoplasmic reticulum-resident glycoproteins that are encoded in the US2-11 region of the viral genome. Such a suppression of recognition would be of particular importance immediately after infection, because several immunodominant viral antigens are already present in the cell in this phase. However, which of the evasion proteins gpUS2-11 interfere(s) with antigen presentation to CD8(+) T-cells at this time of infection is not known. Here we address this question, using recombinant viruses (RV) that express only one of the immunoevasins gpUS2, gpUS3 or gpUS11. Infection with RV-US3 had only a limited impact on the presentation of peptides from the CD8(+) T-cell antigens IE1 and pp65 under immediate-early (IE) conditions imposed by cycloheximide/actinomycin D blocking. Unexpectedly, both RV-US2 and RV-US11 considerably impaired the recognition of IE1 and pp65 by CD8(+) T-cells, and both US2 and, to a lesser extent, US11 were transcribed under IE conditions. Thus, gpUS2 and gpUS11 are key effectors of MHC class I immunoevasion immediately after HCMV infection.
Collapse
Affiliation(s)
- Julia Hesse
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stefanie Ameres
- Clinical Cooperation Group Immunooncology, Helmholtz Zentrum München and Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katrin Besold
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Steffi Krauter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Moosmann
- Clinical Cooperation Group Immunooncology, Helmholtz Zentrum München and Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
32
|
The genetic polymorphisms of HLA are strongly correlated with the disease severity after Hantaan virus infection in the Chinese Han population. Clin Dev Immunol 2012; 2012:308237. [PMID: 23091554 PMCID: PMC3472611 DOI: 10.1155/2012/308237] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/05/2012] [Indexed: 11/18/2022]
Abstract
The polymorphism of human leukocyte antigen (HLA), which is a genetic factor that influences the progression of hemorrhagic fever with renal syndrome (HFRS) after Hantaan virus (HTNV) infection, was incompletely understood. In this case-control study, 76 HFRS patients and 370 healthy controls of the Chinese Han population were typed for the HLA-A, -B, and -DRB1 loci. The general variation at the HLA-DRB1 locus was associated with the onset of HFRS (P < 0.05). The increasing frequencies of HLA-DRB1∗09 and HLA-B*46-DRB1*09 in HFRS patients were observed as reproducing a previous study. Moreover, the HLA-B*51-DRB1*09 was susceptible to HFRS (P = 0.037; OR = 3.62; 95% CI: 1.00-13.18). The increasing frequencies of HLA-B*46, HLA-B*46-DRB1*09, and HLA-B*51-DRB1*09 were observed almost in severe/critical HFRS patients. The mean level of maximum serum creatinine was higher in HLA-B∗46-DRB1*09 (P = 0.011), HLA-B*51-DRB1*09 (P = 0.041), or HLA-B*46 (P = 0.011) positive patients than that in the negative patients. These findings suggest that the allele HLA-B*46 and haplotypes HLA-B*46-DRB1*09 and HLA-B*51-DRB1*09 in patients could contribute to a more severe degree of HFRS and more serious kidney injury, which improve our understanding of the HLA polymorphism for a different outcome of HTNV infection.
Collapse
|