1
|
Wang H, Xiang L, Zhang Z, Li G, Li P, Chen W, Fang Y, Lin X, Lin S. Elucidating the interaction mechanism of rutin with β-casein and β-lactoglobulin: A comprehensive analysis using multi-spectroscopy, molecular docking, and molecular dynamic simulations. Food Chem 2025; 476:143411. [PMID: 39987803 DOI: 10.1016/j.foodchem.2025.143411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
Polyphenol-protein interactions are crucial for food processing, nutrition, and functional properties. This study investigates the interaction between rutin and β-casein (β-CAS) or β-lactoglobulin (β-LG) using multispectral analysis, molecular docking, and molecular dynamics (MD) simulations. Fluorescence spectroscopy reveals that rutin binds spontaneously (ΔG < 0) to β-CAS and β-LG, forming complexes with binding constants (Ka) at 298 K of 42.500 × 103 and 2.101 × 103 L·mol-1, respectively, and at 308 K of 5.814 × 103 and 4.350 × 103 L·mol-1. Multispectral analysis and microscopy reveal complex formation and changes in the proteins' secondary, crystalline, and microstructures. Molecular docking and MD simulations verify complex stability, showing heightened binding affinity between rutin and β-CAS. These results validate hydrophobic interactions and hydrogen bonding as the main forces between rutin and the two proteins. These findings offer insights for using milk proteins as rutin carriers and support potential food industry application.
Collapse
Affiliation(s)
- Hailin Wang
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China; Fujian Province-Indonesia Marine Food Joint Research and Development Center, College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Leiwen Xiang
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China; Fujian Province-Indonesia Marine Food Joint Research and Development Center, College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Zhuangwei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
| | - Guoqiang Li
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhe Jiang Institute of Tianjin University, Shaoxing, Zhejiang, China.
| | - Peng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Wentao Chen
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China; Fujian Province-Indonesia Marine Food Joint Research and Development Center, College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Yu Fang
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Xinyan Lin
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Shufen Lin
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| |
Collapse
|
2
|
Hashemi B, Assadpour E, Zhang F, Jafari SM. Interactions between β-lactoglobulin and polyphenols: Mechanisms, properties, characterization, and applications. Adv Colloid Interface Sci 2025; 339:103424. [PMID: 39919619 DOI: 10.1016/j.cis.2025.103424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
β-lactoglobulins (βLGs) have a wide range of applications in food because of their ability to emulsify, foam, and gel. This makes them good functional additives. However, their performance depends on temperature, pH, and mineral levels, so their functional qualities are limited in particular applications. How polyphenols (PPs) interact with βLG is crucial for the functional characteristics and quality of dietary compounds. In most food systems, a spontaneous interaction between proteins and PPs results in a "protein-PP conjugate," which is known to affect the sensory, functional, and nutraceutical qualities of food products. The βLG-PP conjugates can be used to enhance the quality of food. This article emphasizes analytical techniques for describing the characteristics of βLG-PP complexes/conjugates. It also goes over the functions of βLG-PP conjugates, including their solubility, thermal stability, emulsifying, and antioxidant qualities. The majority of βLG-PPs interactions is due to non-covalent (H-bonding, electrostatic interactions) or covalent bonds that are mostly caused by βLG or PP oxidation through enzymatic or non-enzymatic mechanisms. Furthermore, the conformation or type of proteins and PPs, as well as environmental factors like pH and temperature, have a significant impact on proteins-PPs interactions. Higher thermal stability, antioxidant activities, and superior emulsifying capabilities of the βLG-PP conjugates make them useful as innovative additives to enhance the quality and functions of food products.
Collapse
Affiliation(s)
- Behnaz Hashemi
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
3
|
Venkatram R, de Lamo Castellvi S, Rodriguez-Saona L, Jiménez-Flores R. Evaluating secondary structure changes in beta-lactoglobulin induced by supercritical CO 2 treatment. J Dairy Sci 2025:S0022-0302(25)00236-X. [PMID: 40222680 DOI: 10.3168/jds.2025-26415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/11/2025] [Indexed: 04/15/2025]
Abstract
The focus of this research was to evaluate changes in the secondary structure of β-LG induced by supercritical CO2 (ScCO2) treatment of whole milk powder (WMP). Processing conditions of 63°C/200 bar and 75°C/300 bar were chosen for further investigation because they produced the highest reduction in antigenicity, 42.9% ± 2.83% at 63°C/200 bar and 54.75% ± 2.43% at 75°C/300 bar, respectively, via sandwich ELISA. Orbitrap fusion liquid chromatography-MS/MS detected the presence of capric acid under processing conditions of 63°C/200 bar and lactose molecules at 75°C/300 bar, and these post translational modifications were established to be unique to ScCO2 processing. The β-LG was isolated from reconstituted WMP via isoelectric precipitation and membrane filtration, and secondary structure analysis was conducted via UV-absorption, intrinsic and extrinsic, circular dichroism, and FT-MIR spectroscopy. Results indicated the unfolding of the β-LG molecule, with exposure of Trp residuals to the exterior and an increase in surface hydrophobicity of the protein molecule. Circular dichroism spectroscopy results highlighted an increase in α-helices and random coils with a reduction in β-sheets characteristic to β-LG and thus highlighting significant changes in the secondary structure of the protein. Glycoprotein formation and caprylation had the most significant effects on the amide I and II regions of β-LG, indicative of posttranslational modifications and were found to be unique to ScCO2 processing.
Collapse
Affiliation(s)
- Rahul Venkatram
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210
| | - Silvia de Lamo Castellvi
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210; Departament D'Enginyeria Química, Universitat Rovira I Virgili, Campus Sescelades, Tarragona, Spain 43007
| | - Luis Rodriguez-Saona
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210
| | - Rafael Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210.
| |
Collapse
|
4
|
Xue H, Gao Y, Shi Z, Gao H, Xie K, Tan J. Interactions between polyphenols and polysaccharides/proteins: Mechanisms, effect factors, and physicochemical and functional properties: A review. Int J Biol Macromol 2025; 309:142793. [PMID: 40194573 DOI: 10.1016/j.ijbiomac.2025.142793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
Polyphenols have attracted much attention in the food industry and nutrition because of their unique biological activities. However, the health benefits of polyphenols are compromised due to their structural instability and sensitivity to the external environment. The interaction between polyphenols and polysaccharides/proteins largely determines the stability and functional characteristics of polyphenols in food processing and storage. Hence, this topic has attracted widespread attention in recent years. This review initially outlines the basic properties of polyphenols and their applications in food. Subsequently, the interaction mechanisms between polyphenols and polysaccharides/proteins are discussed in detail including non-covalent bonding, covalent modification, and conformational changes. These interactions can display profound impacts on the nutritional value, taste, stability, and safety of food. Additionally, this article also systematically reviews the influencing factors (type, concentration, temperature, pH, and other factors) of interaction between polyphenols and proteins/polysaccharides. Finally, this paper also summarizes systematically the effects of the interaction between polyphenols and polysaccharides/proteins on the physicochemical and functional properties of polyphenols/proteins. The findings provide prospects for the application of composite materials in food preservation, functional food development, and nanocarrier development, which can provide theoretical references for the in-depth development of polyphenols in the food industry.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Zhangmeng Shi
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Haiyan Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, No. 88 East Fuxing Road, Yuetang District, Xiangtan, 411100, China
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
5
|
Ye J, Li X, Weng Z, Li Y, Liu X, Yu X, Liu F, Yan J, Li L. Effect of 4-methylbenzoquinone concentration on its covalent conjugates with β-lactoglobulin: Structural and functional properties. Food Chem 2025; 469:142581. [PMID: 39718315 DOI: 10.1016/j.foodchem.2024.142581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
This study examined the effect of quinone concentration on covalent interaction between β-lactoglobulin (β-Lg) and 4-methylbenzoquinone (4MBQ). β-Lg-4MBQ-0.2, β-Lg-4MBQ-0.4, and β-Lg-4MBQ-0.8 were prepared at 1:2, 1:1, and 2:1 M ratio of 4MBQ to β-Lg thiols, respectively. β-Lg-4MBQ-0.8 had the highest polyphenol content (19.04 ± 0.17 mg/g) and the lowest free sulfhydryl (17.12 ± 0.18 μmol/g) and amino group (181.28 ± 5.37 μmol/g) contents. Compared to β-Lg, β-Lg-4MBQ conjugates showed reduced α-helix (0.82-1.26 %) and increased β-sheet (1.17-1.50 %) content. β-Lg-4MBQ-0.8 and β-Lg-4MBQ-0.4 exhibited higher surface hydrophobicity and emulsifying properties than β-Lg-4MBQ-0.2 and β-Lg. Antioxidant activity (DPPH and ABTS scavenging) followed: β-Lg-4MBQ-0.8 (46.75 ± 0.17 % and 50.97 ± 0.51 %) > β-Lg-4MBQ-0.4 (39.50 ± 0.27 % and 46.63 ± 0.59 %) > β-Lg-4MBQ-0.2 (33.35 ± 0.71 % and 43.00 ± 0.39 %) > β-Lg (31.50 ± 0.56 % and 36.25 ± 0.90 %). β-Carotene emulsions stabilized by β-Lg-4MBQ-0.4 exhibited the highest stability. These findings provide insights into developing antioxidant emulsifiers.
Collapse
Affiliation(s)
- Jinshun Ye
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Xiaotong Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Zhenzhao Weng
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Yuting Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Xiaozhen Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Xiangying Yu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Fengyuan Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Jingkun Yan
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
6
|
Wang XT, Liu LY, Liang H, Ge WY, Chen LL, Jin XQ, Tian YL, Wang X, Yang S, Deng X, Yin DC. Super Stable Coating Based on Ovalbumin and Tannic Acid for Hydrophilic and Antibacterial Functionalization of Polymer Materials. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16040-16056. [PMID: 39932031 DOI: 10.1021/acsami.4c21624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Surface modification of polymer materials is crucial in the biomedical field, as it can endow materials with new properties, including high efficacy and durability and a low risk of infection. Here, we propose a simple, green, and reliable surface modification strategy using ovalbumin (OVA) and tannic acid (TA). The hydrogen bonds and hydrophobic interactions revealed between the OVA and TA molecules make the OVA/TA composite tenacious and stable. The subsequent OVA/TA coatings adhered firmly on five hydrophobic polymer materials using a two-step impregnation method and were highly hydrophilic and repellent to bacterial adhesion. Taking advantage of the reducing ability of OVA and TA, silver ions were reduced in situ to form OVA/TA-AgNPs coatings, which could inhibit a broad spectrum of bacteria, especially some drug-resistant strains. In addition, both the OVA/TA and OVA/TA-AgNPs coatings exhibit good biocompatibility. This simple, reliable, stable, and biobased coating strategy holds great promise for enhancing the versatility of biomaterial surface modification.
Collapse
Affiliation(s)
- Xue-Ting Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
- Weifang People's Hospital, Shandong Second Medical University, Weifang, Shandong 261000, China
| | - Li-Yuan Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Huan Liang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Wan-Yi Ge
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Liang-Liang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Xiao-Qian Jin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Yi-Le Tian
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Xia Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xudong Deng
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| |
Collapse
|
7
|
Wang L, Luo J, Zhang X, Bao Y, Huo J. Effect of bovine serum albumin and Copigments on the stability of Haskap berry anthocyanin extracts at neutral pH. Food Res Int 2025; 205:115995. [PMID: 40032479 DOI: 10.1016/j.foodres.2025.115995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/16/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
Haskap berry anthocyanin extract (HAE), a high-value and high-potential natural pigment, is prone to degradation by external factors such as heat and light. To improve the chemical and color stability of HAE, the binary and ternary composite system of HAE, BSA and copigments was compared for the protection of anthocyanin in the heat and light treatments at neutral pH. Compared to the binary composite system of HAE with BSA and ferulic acid (FA), the select HAE-BSA-FA ternary composite system decreased the total anthocyanin degradation rate (TADR) to 65.26 % and 70.06 % after heat and light treatments, and the color difference value (ΔE) to 43.59 % and 71.64 %, the bioaccessibility index (BAI) at the conclusion of gastric digestion and intestinal digestion increased 17.52 % and 44.57 %, which had a better protective effect on the thermal, light and in vitro digestion stability of HAE. Results of fluorescence spectroscopy, circular binning, FTIR spectroscopy, SDS-PAGE, and particle size analysis indicated that the stability of HAE was promoted by non-covalent binding with BSA and FA, such as hydrogen bonding, electrostatic force. HAE, BSA, and FA are complexed by hydrophobic interactions, and the secondary structure of BSA was changed in the process.
Collapse
Affiliation(s)
- Lianghao Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, PR China
| | - Jiayuan Luo
- College of Life Science, Northeast Forestry University, Harbin 150040, PR China
| | - Xu Zhang
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130012, PR China
| | - Yihong Bao
- College of Life Science, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, PR China.
| | - Junwei Huo
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
8
|
Yang T, Li S, Su W, Pan K, Peng F. Non-covalent interaction of sacha inchi protein and quercetin: Mechanism and physicochemical property. Food Chem X 2025; 26:102296. [PMID: 40083853 PMCID: PMC11905824 DOI: 10.1016/j.fochx.2025.102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/19/2025] [Accepted: 02/16/2025] [Indexed: 03/16/2025] Open
Abstract
Interactions between proteins and polyphenols are essential for the functional properties of foods. This study explores the non-covalent interactions between Sacha Inchi protein (SIP) and quercetin (Que) and examines the physicochemical characteristics of their complex. Fourier transform infrared spectroscopy and Circular dichroism indicated that Que could interact with SIP and change the secondary structure of SIP. The mechanism of Que binding significantly and quenching SIP fluorescence were revealed by fluorescence spectroscopy. The primary forces driving this interaction are hydrogen bonds and van der Waals forces. Additionally, binding with quercetin led to a marked increase in the β-sheet content of SIP and a decrease in random coil structures. With increasing Que levels, its loaded amount rose, although the encapsulation efficiency decreased. SIP-Que complexes displayed larger particle sizes and enhanced antioxidant properties than SIP alone, with antioxidant activity increasing with higher Que concentrations. Furthermore, the bioaccessibility of Que improved upon binding with SIP. This research contributes to the modification of SIP protein and its potential applications in the food industry.
Collapse
Affiliation(s)
- Tao Yang
- School of Pharmacy, Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Medical University, Haikou 571199, China
| | - Shanshan Li
- School of Pharmacy, Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Medical University, Haikou 571199, China
| | - Wenqin Su
- School of Pharmacy, Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Medical University, Haikou 571199, China
| | - Kun Pan
- School of Pharmacy, Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Medical University, Haikou 571199, China
| | - Fei Peng
- School of Food Science and Engineering, Nanchang University, Nanchang, Jiangxi Province 330047, China
| |
Collapse
|
9
|
Irum I, Khan F, Sufyan M, Benish Ali SH, Rehman S. Developing multifaceted drug synergistic therapeutic strategy against neurological disorders. Comput Biol Med 2025; 185:109495. [PMID: 39693689 DOI: 10.1016/j.compbiomed.2024.109495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Drug synergism can alter the ultimate biological effects and bioavailability of phytoconstituents. Acetylcholinesterase (AChE) inhibitors as symptomatic drugs are potent therapeutic regimen for neurodegenerative diseases. In this context, this study characterized the synergistic antioxidant, anti-inflammatory and anti-AChE effects of the selected phytochemicals including standard drugs followed by enzyme kinetics, structure-based ligands screening and molecular dynamics simulation study. The synergistic interactions were evaluated through Isoradiation and Synergy finder 3.0 methods. The combinations of Quercetin (QCT), Folic acid (FA), and Swertiamarin (SWT) with specific reference drugs were studied. The combinations of SWT + GA (Gallic acid) and FA + GA at 1:1 (γ:0.10 & 0.08, respectively) showed the significant synergistic antioxidant effect via ABTS assay. Further, in combination, QCT + SWT showed the maximum synergistic effect (γ: 0.02-0.13) in anti-inflammatory assay. Moreover, the combinations QCT, FA, and SWT with reference drug, Donepezil (DP), illustrated potent synergistic activity as anti-AChE in 1:1 proportion (γ: 0.18). The interaction pattern of phytochemicals significantly exhibited synergism (γ < 1) depicting their optimum activity in combinations compared to individual components. Enzyme kinetics evaluation showed the competitive binding of SWT with AChE as of donepezil. All the parameters of ADMET study proposed the QCT and SWT as acceptable oral drug molecules. Computational docking study revealed that QCT and SWT with lowest RMSD (1.096, 2.104) and lowest docking score (-9.831, -7.435 kcal/mol) showed maximum binding efficacy. Furthermore, molecular simulation study depicted the stability of protein-ligand complexes. These findings provide novel insight in the development of dietary treatment based on their synergistic effects for neurological disorders as optimum alternative therapeutic agents.
Collapse
Affiliation(s)
- Izza Irum
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan
| | - Fariha Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan
| | - Muhammad Sufyan
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Syeda Hafiza Benish Ali
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan
| | - Sidra Rehman
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, 45550, Pakistan.
| |
Collapse
|
10
|
Feng ZJ, Xu QD, Chen N, Zeng WC. Regulation of catechins with different structure characteristics on the physicochemical properties of casein and the structure-activity relationship. Food Chem 2024; 467:142515. [PMID: 39705745 DOI: 10.1016/j.foodchem.2024.142515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/08/2024] [Accepted: 12/14/2024] [Indexed: 12/22/2024]
Abstract
Regulation of catechins with different structure characteristics on the physicochemical properties of casein were investigated, and the structure-activity relationship was further explored. All testing catechins effectively modulated the physicochemical properties of casein, and esterified catechins showed the stronger binding affinity to casein than non-esterified catechins. Catechins significantly altered the secondary and tertiary structures of casein. Fluorescence spectroscopy and thermodynamic analyses indicated that the fluorescence quenching mechanism of casein by the four catechins was static. The Gibbs free energies (ΔG) for the interactions between EC, ECG, EGC, and EGCG with α-casein were - 14.16, -25.41, -22.23, and - 24.48 kJ/mol, respectively. For β-casein, ΔG were - 17.91, -29.85, -17.34, and - 19.33 kJ/mol, respectively. All negative ΔG values suggested that the interactions between catechins and casein occurred spontaneously. At 297 K, the binding constants for catechins with α-casein followed the order: ECG (29.51 × 103 L/mol) > EGCG (20.23 × 103 L/mol) > EGC (8.13 × 103 L/mol) > EC (0.31 × 103 L/mol). For β-casein, the order was: ECG (177.83 × 103 L/mol) > EGCG (2.51 × 103 L/mol) > EC (1.41 × 103 L/mol) > EGC (1.12 × 103 L/mol). Molecular docking combined with multispectral analysis further demonstrated that hydrogen bonds, van der Waals forces, and hydrophobic interactions governed the interactions between catechins and casein, and hydrogen bonds were the predominant force. All results indicate that the amount of hydroxyl groups and the presence of galloyl group significantly affect the capability of catechins to interact with casein.
Collapse
Affiliation(s)
- Zi-Jian Feng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China
| | - Qian-Da Xu
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China
| | - Nan Chen
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China
| | - Wei-Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China; The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
11
|
Al-Shabib NA, Khan JM, Malik A, Rehman MT, Alamri A, Kumar V, Saris PEJ, Husain FM, AlAjmi MF. Multispectroscopic and computational insights into amyloid fibril formation of alpha lactalbumin induced by sodium hexametaphosphate. Sci Rep 2024; 14:30050. [PMID: 39627267 PMCID: PMC11615314 DOI: 10.1038/s41598-024-80897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
The impact of sodium hexametaphosphate (SHMP) on the aggregation behavior of α-lactalbumin (α-LA) was studied at pH 7.4 and 2.0. Turbidity measurements showed a concentration-dependent aggregation of α-LA at pH 2.0 in the presence of SHMP, while no aggregation was observed at pH 7.4. Light scattering (LS) and Thioflavin-T (ThT) data revealed that the aggregation was rapid, following nucleation-independent pathways. In other kinetics experiments such as turbidity and ThT confirmed that SHMP-induced α-LA aggregation was dependent on SHMP concentration rather than incubation time. Once formed, the aggregates remained unchanged for up to five days. Intrinsic fluorescence studies indicated conformational changes in α-LA upon SHMP addition, and dye-binding assays with ThT and Congo Red demonstrated the formation of amyloid-like aggregates. Far-UV circular dichroism (CD) data suggested a structural transition from α-helical to β-structures in α-LA in the presence of SHMP at pH 2.0. Molecular docking studies confirmed stronger interactions between α-LA and SHMP at pH 2.0 (ΔG = -6.2 kcal/mol) compared to pH 7.4 (ΔG = -5.3 kcal/mol), driven by electrostatic forces and hydrogen bonding. These results suggest that SHMP induces amyloid-like aggregation of α-LA, particularly at acidic pH.
Collapse
Affiliation(s)
- Nasser Abdulatif Al-Shabib
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alamri
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun , Uttarakhand, 248016, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Zhai FH, Yan MQ, Wang Y. Extraction optimization, identification using UPLC-tandem mass spectrometry, and antioxidant properties of polyphenols from the fruit body of Morchella sextelata. J Food Sci 2024; 89:9214-9229. [PMID: 39592269 DOI: 10.1111/1750-3841.17578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Polyphenols, as important active ingredients in edible fungi, have many beneficial functions. As rare edible fungi, Morchella spp., are highly popular due to their nutritional value and unique flavor. However, most Morchella have not yet been artificially cultivated due to their special biological characteristics, resulting in limited research on polyphenols in artificially cultivated Morchella. In this study, the extraction parameters of polyphenols from artificially cultivated Morchella sextelata were optimized using response surface methodology, the polyphenol components were analyzed via UPLC‒tandem mass spectrometry, and their antioxidant properties were determined in vitro. The optimal extraction process parameters were as follows: ethanol concentration, 43%; solid‒liquid ratio, 1:41 g mL-1; extraction temperature, 52°C; extraction time, 2 h; rotation speed, 180 r min-1; and extraction frequency, twice. The optimized extraction parameters resulted in a polyphenol yield of 4.82 mg g-1, a 69.97% increase. Fourteen phenolic compounds were identified: gallic acid, protocatechuic acid, dl-4-hydroxyphenyllactic acid, methyl 2,4-dihydroxyphenylacetate, salicylic acid, 4-hydroxybenzaldehyde, 4-hydroxyacetophenone, eucommiol, luteolin, ethylparaben, hinokiflavone, amentoflavone, propyl 4-hydroxybenzoate, and 2,6-di-tert-butylphenol. The EC50 values of 1,1-diphenyl-2-picrylhydrazyl (DPPH)· scavenging ability, reducing power and ferrous ion chelating ability of polyphenols were 2.70, 30.98, and 72.06 µg mL-1, respectively. These findings indicated that polyphenols had a significantly stronger ability to scavenge DPPH· compared with their reducing power and ability to chelate ferrous ions. The results of this study provide a solid foundation for the subsequent study of function of M. sextelata polyphenols as well as a theoretical basis for the further development and utilization of M. sextelata, which will help promote healthy development of Morchella industry. PRACTICAL APPLICATION: The extraction, composition, and antioxidant properties of polyphenols from Morchella sextelata were identified, which provides a theoretical basis for better utilization of Morchella resources.
Collapse
Affiliation(s)
- Fei-Hong Zhai
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, China
- Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Jinzhong, China
| | - Miao-Qing Yan
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, China
| | - Yan Wang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, China
| |
Collapse
|
13
|
Feng Z, Li C, Yi X, Xue C, Gao X, Liao L, Xiang Q, Shen X, Pei Z. Raman spectroscopy and molecular dynamics simulations of protein microgels at the oil-water interface. Int J Biol Macromol 2024; 279:135398. [PMID: 39245112 DOI: 10.1016/j.ijbiomac.2024.135398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The real-time structural changes of the molecular space conformation of myofibrillar protein microgels (MPM) after heat treatment (90 °C, 30 min) were analyzed by molecular dynamics simulation, and the structural properties and changes of MPM at the oil-water interface were analyzed by the combination of Raman spectroscopy and molecular dynamics simulation. The shift in the oil ratio had a major impact on the transformation of disulfide bonds within the protein molecule. Simultaneously, it caused tryptophan and tyrosine residues (I850 cm-1/ I850 cm-1 > 1) to become exposed, increasing the locations of amino acid residues in the protein that interact with the oil phase. HIPE with different oil phases influenced the change in spatial structural conformation of MPM, and there was a flexible structural change in the molecular space. The HIPE system, which was stabilized by 3.0 wt% MPM and 0.75 oil phase, exhibited a thixotropic recovery of >70 % and the highest elastic modulus G' (822.14 Pa) based on the rheological behavior. It is expected to provide a theoretical basis for the development and utilization of high internal phase emulsion stabilized by microgel protein in food industry.
Collapse
Affiliation(s)
- Zilan Feng
- Hainan Provincial Academician Team Innovation Center, Marine Food Engineering Technology Research Center and Collaborative Innovation Center of Marine Food Deep Processing, Hainan Tropical Ocean University, Sanya 572022, China; School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chuan Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiangzhou Yi
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Changfeng Xue
- Hainan Provincial Academician Team Innovation Center, Marine Food Engineering Technology Research Center and Collaborative Innovation Center of Marine Food Deep Processing, Hainan Tropical Ocean University, Sanya 572022, China
| | - Xia Gao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lin Liao
- Hainan Provincial Academician Team Innovation Center, Marine Food Engineering Technology Research Center and Collaborative Innovation Center of Marine Food Deep Processing, Hainan Tropical Ocean University, Sanya 572022, China
| | - Qiongyao Xiang
- Hainan Provincial Academician Team Innovation Center, Marine Food Engineering Technology Research Center and Collaborative Innovation Center of Marine Food Deep Processing, Hainan Tropical Ocean University, Sanya 572022, China
| | - Xuanri Shen
- Hainan Provincial Academician Team Innovation Center, Marine Food Engineering Technology Research Center and Collaborative Innovation Center of Marine Food Deep Processing, Hainan Tropical Ocean University, Sanya 572022, China.
| | - Zhisheng Pei
- Hainan Provincial Academician Team Innovation Center, Marine Food Engineering Technology Research Center and Collaborative Innovation Center of Marine Food Deep Processing, Hainan Tropical Ocean University, Sanya 572022, China.
| |
Collapse
|
14
|
Abdullah EM, Ataya FS, Rehman MT, Arshad M, Al Kheraif AA, Al-Twaijry N, Alshammari AH, AlAjmi MF, Alokail MS, Khan MS. Binding of a Drug (Colchicine) to L-Asparaginase Enzyme Using Multispectroscopic, Thermodynamics, and Simulation Studies: Possible Implication in Acute Lymphoblastic Leukemia Treatment. LUMINESCENCE 2024; 39:e70000. [PMID: 39478354 DOI: 10.1002/bio.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/15/2024] [Accepted: 10/01/2024] [Indexed: 11/07/2024]
Abstract
The research aims to elucidate how drug interactions affect the activity of L-asparaginase (L-ASNase), an essential enzyme in cancer treatment, especially for acute lymphoblastic leukemia (ALL). Understanding these interactions is crucial for optimizing treatment effectiveness and reducing adverse effects. This study explores the intricate molecular interactions and structural dynamics of L-ASNase upon binding with colchicine. Fluorescence quenching experiments were conducted at various temperatures (298, 303, and 310 K), revealing notable interactions between L-ASNase and colchicine. These interactions were characterized by a reduction in fluorescence intensity and a blue shift in emission maxima. Additional analyses, including the determination of Stern-Volmer quenching constants (KSV), bimolecular quenching rate constants (kq), and thermodynamic parameters, indicated a static quenching mechanism with moderate binding affinities (Ka: 1.40-2.71 × 104 M-1) across different temperatures. Thermodynamic study suggested positive enthalpy and entropy changes (ΔH° = -10.26 kcal mol-1; ΔS° = -14.19 cal mol-1 K-1), suggesting a spontaneous reaction with negative ΔG° values (-5.86 to -6.03 kcal mol-1). FRET measurements supported optimal distances (r and Ro) for FRET occurrence, reinforcing the static quenching mechanism. Molecular docking further supported these findings, revealing a 1:1 stoichiometric binding ratio for L-ASNase:colchicine and elucidating specific binding orientations and interactions critical for complex stability. Subsequent molecular dynamics simulations spanning 100 ns underscored the stability of the L-ASNase-colchicine complex, with minimal deviations observed in key structural parameters such as RMSD, RMSF, Rg, and SASA. Additionally, spectroscopic analyses, including circular dichroism (CD), synchronous fluorescence, and 3D fluorescence provided insights into the conformational changes and alterations in the microenvironment of aromatic amino acid residues in L-ASNase upon colchicine binding. Moreover, L-ASNase activity was slightly reduced by 25% in the presence of colchicine. This comprehensive investigation sheds light on the molecular intricacies of the L-ASNase-colchicine complex, advancing our understanding of drug-target interactions and offering potential avenues for therapeutic applications.
Collapse
Affiliation(s)
- Ejlal Mohamed Abdullah
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Arshad
- College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Aziz Al Kheraif
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nojood Al-Twaijry
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohammad F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Majed S Alokail
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Huang S, Zhou H, Lin J, Yin X, Xiong T, Peng F. Interaction between pea protein isolate and quercetin: Effects on protein conformation and quercetin activity. J Food Sci 2024; 89:7549-7560. [PMID: 39349982 DOI: 10.1111/1750-3841.17384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 11/13/2024]
Abstract
Comprehensive comprehension of the interaction between proteins and polyphenols is crucial for advancing their utilization in food processing. This study investigated no-covalent interaction between pea protein isolate (PPI) and quercetin (Que) through spectroscopic analysis and molecular simulation. Fourier transform infrared spectroscopy and circular dichroism spectrum showed that the interaction between PPI and Que changed the secondary structure of the protein due to a decrease in α-helix content and an increase in the random coil. Thermodynamic parameters indicated that the Quebound PPI via hydrogen bonds and hydrophobic interactions (ΔH > 0, ΔS > 0, and ΔG < 0), which was also confirmed by molecular docking. Particle size and ζ-potential showed that PPI and Que demonstrated effective interaction and binding capabilities, enhancing the stability. In addition, the antioxidant and bioaccessibility of complexes have also been enhanced. This study shed a light on the application of protein-polyphenol complexes for developing functional foods. PRACTICAL APPLICATION: Interaction between pea protein isolate and quercetin can change the protein conformation to maintain the stability of quercetin and is helpful to expand the market value and application value of plant protein. The research has important implications for using leguminous protein as embedded support to improve the stability of polyphenols compounds.
Collapse
Affiliation(s)
- Siyun Huang
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Haili Zhou
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Jiaxin Lin
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Xin Yin
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Tao Xiong
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Fei Peng
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
16
|
Abdollahi-Najafabadi M, Farhadian S, Shareghi B, Asgharzadeh S. The investigation of the interaction determination between carbendazim and elastase, using both in vitro and in silico methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124586. [PMID: 38833886 DOI: 10.1016/j.saa.2024.124586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/06/2024]
Abstract
Pesticides, including fungicides, are one of the important groups of environmental toxins that affect human and animal health. Studies have shown that these compounds are considered chemical pollutants. Carbendazim is a systemic fungicide. Unfortunately, excessive use of carbendazim has caused environmental pollution all over the world. In this study, the effect of carbendazim on the enzyme elastase (secreted from the endocrine gland of the pancreas) has been investigated. In a study, the performance and reaction of carbendazim with elastase were investigated using spectroscopic techniques. The stability and structure of elastase enzymes were studied under the influence of carbendazim. The results of fluorescence emission and UV-visible absorption spectrum showed that in the presence of carbendazim, there is an increase in UV-Vis absorption and a decrease in the intensity of the intrinsic fluorescence emission in the protein spectrum. Additionally, a decrease in the thermal stability of elastase was observed in the presence of carbendazim. The stability and structure of elastase enzyme were investigated in the presence of carbendazim. The results revealed that the UV-Vis absorption increased due to the presence of carbendazim, as indicated by the hyperchromic spectrum at 220 and 280 nm peaks. Additionally, the intrinsic fluorescence emission in the protein spectrum decreased with increasing carbendazim concentration at three different temperatures (298, 303, and 313 K). Moreover, the study demonstrated that the TM decreased from 2.59 to 4.58 with the increase of carbendazim, suggesting a decrease in the stability of the elastase structure in response to the elevated carbendazim concentration. According to the results of the research, the interaction between elastase and carbendazim has occurred, and changes have been made in the enzyme under the influence of carbendazim. The formation of the complex between elastase and carbendazim was consistent with the results obtained from molecular simulation and confirmed the thermodynamic data.
Collapse
Affiliation(s)
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Sanaz Asgharzadeh
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
17
|
Uddin MM, Hossain MT, Hossain MA, Ahsan A, Shamim KH, Hossen MA, Rahman MS, Rahman MH, Ahmed K, Bui FM, Al-Zahrani FA. Unraveling the potential effects of non-synonymous single nucleotide polymorphisms (nsSNPs) on the Protein structure and function of the human SLC30A8 gene on type 2 diabetes and colorectal cancer: An In silico approach. Heliyon 2024; 10:e37280. [PMID: 39296124 PMCID: PMC11408818 DOI: 10.1016/j.heliyon.2024.e37280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Background and aims The single nucleotide polymorphisms (SNPs) in SLC30A8 gene have been recognized as contributing to type 2 diabetes (T2D) susceptibility and colorectal cancer. This study aims to predict the structural stability, and functional impacts on variations in non-synonymous SNPs (nsSNPs) in the human SLC30A8 gene using various computational techniques. Materials and methods Several in silico tools, including SIFT, Predict-SNP, SNPs&GO, MAPP, SNAP2, PhD-SNP, PANTHER, PolyPhen-1,PolyPhen-2, I-Mutant 2.0, and MUpro, have been used in our study. Results After data analysis, out of 336 missenses, the eight nsSNPs, namely R138Q, I141N, W136G, I349N, L303R, E140A, W306C, and L308Q, were discovered by ConSurf to be in highly conserved regions, which could affect the stability of their proteins. Project HOPE determines any significant molecular effects on the structure and function of eight mutated proteins and the three-dimensional (3D) structures of these proteins. The two pharmacologically significant compounds, Luzonoid B and Roseoside demonstrate strong binding affinity to the mutant proteins, and they are more efficient in inhibiting them than the typical SLC30A8 protein using Autodock Vina and Chimera. Increased binding affinity to mutant SLC30A8 proteins has been determined not to influence drug resistance. Ultimately, the Kaplan-Meier plotter study revealed that alterations in SLC30A8 gene expression notably affect the survival rates of patients with various cancer types. Conclusion Finally, the study found eight highly deleterious missense nsSNPs in the SLC30A8 gene that can be helpful for further proteomic and genomic studies for T2D and colorectal cancer diagnosis. These findings also pave the way for personalized treatments using biomarkers and more effective healthcare strategies.
Collapse
Affiliation(s)
- Md Moin Uddin
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Tanvir Hossain
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Arju Hossain
- Department of Microbiology, Primeasia University, Banani, Dhaka 1213, Bangladesh
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Asif Ahsan
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Kamrul Hasan Shamim
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Md Arif Hossen
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Md Shahinur Rahman
- Department of Diabetes and Endocrinology, Pabna Diabetic Association Hospital, Pabna 6600, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Kawsar Ahmed
- Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
- Group of Biophotomatiχ, Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
- Health Informatics Research Lab, Department of Computer Science and Engineering, Daffodil International University, Daffodil Smart City (DSC), Birulia, Savar, Dhaka-1216, Bangladesh
| | - Francis M Bui
- Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| | | |
Collapse
|
18
|
Molaakbari E, Aallae MR, Golestanifar F, Garakani-Nejad Z, Khosravi A, Rezapour M, Eshaghi Malekshah R, Ghomi M, Ren G. In silico assessment of hesperidin on SARS-CoV-2 main protease and RNA polymerase: Molecular docking and dynamics simulation approach. Biochem Biophys Rep 2024; 39:101804. [PMID: 39193225 PMCID: PMC11347860 DOI: 10.1016/j.bbrep.2024.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
The present study uses molecular docking and dynamic simulations to evaluate the inhibitory effect of flavonoid glycosides-based compounds on coronavirus Main protease (Mpro) and RNA polymerase. The Molegro Virtual Docker (MVD) software is utilized to simulate and calculate the binding parameters of compounds with coronavirus. The docking results show that the selected herbal compounds are more effective than those of chemical compounds. It is also revealed that five herbal ligands and two chemical ligands have the best docking scores. Furthermore, a Molecular Dynamics (MD) simulation was conducted for Hesperidin, confirming docking results. Analysis based on different parameters such as Root-mean-square deviation (RMSD), Root mean square fluctuation (RMSF), Radius of gyration (Rg), Solvent accessibility surface area (SASA), and the total number of hydrogen bonds suggests that Hesperidin formed a stable complex with Mpro. Absorption, Distribution, Metabolism, Excretion, And Toxicity (ADMET) analysis was performed to compare Hesperidin and Grazoprevir as potential antiviral medicines, evaluating both herbal and chemical ligand results. According to the study, herbal compounds could be effective on coronavirus and are admissible candidates for developing potential operative anti-viral medicines. Hesperidin was found to be the most acceptable interaction. Grazoprevir is an encouraging candidate for drug development and clinical trials, with the potential to become a highly effective Mpro inhibitor. Compared to RNA polymerase, Mpro showed a greater affinity for bonding with Hesperidin. van der Waals and electrostatic energies dominated, creating a stable Hesperidin-Mpro and Hesperidin-RNA polymerase complex.
Collapse
Affiliation(s)
- Elaheh Molaakbari
- Leishmaniasis Research Center, Kerman University of Medical Science, Kerman, Iran
| | | | | | | | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Mohsen Rezapour
- Department of Biostatics and Data Science, University of Texas, Health Science Center at Houston, Texas, USA
| | | | - Mahsa Ghomi
- Students Research Committee, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Guogang Ren
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, UK
| |
Collapse
|
19
|
Al-Shabib NA, Khan JM, Malik A, AlAmri A, Rehman MT, AlAjmi MF, Husain FM. Integrated spectroscopic and computational analyses unravel the molecular interaction of pesticide azinphos-methyl with bovine beta-lactoglobulin. J Mol Recognit 2024; 37:e3086. [PMID: 38686702 DOI: 10.1002/jmr.3086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Organophosphorus are typically hazardous chemicals used in the pharmaceutical, agricultural, and other industries. They pose a serious risk to human life and can be fatal upon direct exposure. Hence, studying the interaction between such compounds with proteins is crucial for environmental, health, and food safety. In this study, we investigated the interaction mechanism between azinphos-methyl (AZM) and β-lactoglobulin (BLG) at pH 7.4 using a combination of biophysical techniques. Intrinsic fluorescence investigations revealed that BLG fluorescence was quenched in the presence of increasing AZM concentrations. The quenching mechanism was identified as static, as evidenced by a decrease in the fluorescence quenching constant (1.25 × 104, 1.18 × 104, and 0.86 × 104 M-1) with an increase in temperatures. Thermodynamic calculations (ΔH > 0; ΔS > 0) affirmed the formation of a complex between AZM and BLG through hydrophobic interactions. The BLG's secondary structure was found to be increased due to AZM interaction. Ultraviolet -visible spectroscopy data showed alterations in BLG conformation in the presence of AZM. Molecular docking highlighted the significant role of hydrophobic interactions involving residues such as Val43, Ile56, Ile71, Val92, Phe105, and Met107 in the binding between BLG and AZM. A docking energy of -6.9 kcal mol-1, and binding affinity of 1.15 × 105 M-1 suggest spontaneous interaction between AZM and BLG with moderate to high affinity. These findings underscore the potential health risks associated with the entry of AZM into the food chain, emphasizing the need for further consideration of its impact on human health.
Collapse
Affiliation(s)
- Nasser Abdulatif Al-Shabib
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz AlAmri
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Vahedi SZ, Farhadian S, Shareghi B, Asgharzadeh S. Thermodynamic and functional changes of alpha-chymotrypsin after interaction with gallic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124109. [PMID: 38447443 DOI: 10.1016/j.saa.2024.124109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/24/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
In the present study, the interaction mechanism between gallic acid (GA) and α-Chymotrypsin (α-CT) was investigated by employing a series ofspectroscopic methods, computational docking and molecular dynamic (MD) simulation. Fluorescence spectra analysis indicated the formation of a stable complex between GA and α-CT, where the quenching of the fluorescence emission was predominantly characterized by a static mechanism. TheCA obtained binding constants for the α-CT-GA complex were in the order of 103 M-1, indicating the moderate binding affinity of GA for α-CT. The corresponding CD findings showed that the interaction between GA and α-CT resulted in an alteration of the protein's secondary structure. The findings of the enzyme activity investigation clearly showed that the presence of GA led to a notable decline in the enzymatic activity of α-CT, highlighting GA's function as an effective inhibitor for α-CT. The molecular docking simulations revealed the optimal binding site for the GA molecule within the α-CT structure and MD simulations confirmed the stability of the α-CT-GA complex. This research expands our comprehension regarding the behavior of enzymes in the presence of small-molecule ligands and opens avenues for food safety.
Collapse
Affiliation(s)
- Seyedeh Zohreh Vahedi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Sanaz Asgharzadeh
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
21
|
Wu Y, Li Y, Liu H, Li P, Du B, Xie XA, Li L. Covalent conjugation of Inca peanut albumin and polyphenols with different phenolic hydroxyl numbers through laccase catalysis to improve functional properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4028-4038. [PMID: 38252689 DOI: 10.1002/jsfa.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Enzymatic crosslinking is a method that can be used to modify Inca peanut albumin (IPA) using polyphenols, and provides desirable functionalities; however, the effect of polyphenol structures on conjugate properties is unclear. In this study, we selected four polyphenols with different numbers of phenolic hydroxyl groups [para-hydroxybenzoic acid (HBA), protocatechuic acid (PCA), gallic acid (GA), and epigallocatechin gallate (EGCG)] for covalent modification of IPA by enzymatic crosslinking, and explored the structure-function changes of the IPA-polyphenol conjugates. RESULTS Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis showed that laccase successfully promoted covalent crosslinking of IPA with polyphenols, with the order of degree of conjugation as EGCG > GA > PCA > HBA, the IPA-EGCG conjugate showed the highest polyphenol binding equivalents (98.35 g kg-1 protein), and a significant reduction in the content of free amino, sulfhydryl, and tyrosine group. The oxidation of polyphenols by laccase forms quinone or semiquinone radicals that are covalently crosslinked to the reactive groups of IPA, leading to significant changes in the secondary and tertiary structures of IPA, with spherical structures transforming into dense lamellar structures. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability and emulsification stability of IPA-EGCG conjugates improved by almost 6-fold and 2.7-fold, respectively, compared with those of unmodified IPA. CONCLUSION These data suggest that the higher the number of polyphenol hydroxyl groups, the higher the degree of IPA-polyphenol conjugation; additionally, enzymatic crosslinking can significantly improve the functional properties of IPA. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongqing Wu
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yanxin Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Honglang Liu
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xin-An Xie
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lu Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
22
|
Al-Shabib NA, Khan JM, Malik A, Alamri A, Rehman MT, AlAjmi MF, Husain FM. Probing the interaction mechanisms between sunset yellow dye and trypsin protein leading to amorphous aggregation under low pH conditions. Int J Biol Macromol 2024; 265:130442. [PMID: 38417745 DOI: 10.1016/j.ijbiomac.2024.130442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Protein aggregation poses a significant concern in the field of food sciences, and various factors, such as synthetic food dyes, can contribute to protein aggregation. One such dye, Sunset Yellow (SY), is commonly employed in the food industry. Trypsin was used as a model protein to assess the impact of SY. We employed several biophysical techniques to examine the binding and aggregation mechanisms between SY and trypsin at different pHs. Results from intrinsic fluorescence measurements indicate a stronger interaction between SY and trypsin at pH 2.0 compared to pH 6.0. Turbidity data reveal trypsin aggregation in the presence of 0.05-3.0 mM SY at pH 2.0, while no aggregation was observed at pH 6.0. Kinetic data demonstrate a rapid, lag-phase-free SY-induced aggregation of trypsin. Circular dichroism analysis reveals that trypsin adopts a secondary structure in the presence of SY at pH 6.0, whereas at pH 2.0, the secondary structure was nearly lost with increasing SY concentrations. Furthermore, turbidity and kinetics data suggest that trypsin aggregation depends on trypsin concentrations and pH. Our study highlights potential health risks associated with the consumption of SY, providing insights into its impact on human health and emphasizing the necessity for further research in this field.
Collapse
Affiliation(s)
- Nasser Abdulatif Al-Shabib
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alamri
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- King Saud University, Department of Pharmacognosy, College of Pharmacy, Riyadh 11451, Saudi Arabia
| | - Mohamed F AlAjmi
- King Saud University, Department of Pharmacognosy, College of Pharmacy, Riyadh 11451, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
23
|
Zhang L, Lin L, Hu Y, Wu D, Zhang Z, Chen C, Wang L, Li J. Debittering of Emblica ( Phyllanthus emblica L.) fruit powder: Preparation and biological activity. Food Chem X 2024; 21:100853. [PMID: 38282828 PMCID: PMC10818184 DOI: 10.1016/j.fochx.2023.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 01/30/2024] Open
Abstract
Emblica, also known as Phyllanthus emblica L., is a drug homologous food that is rich in polyphenols with various biological activities. However, its bitterness and astringency pose a significant challenge to its utilization in food products. In this study, we aimed to identify the optimal conditions for debittering Emblica. Our findings revealed that the best debittering conditions were: temperature = 50 °C, pH = 4, α-l-rhamnosidase concentration 200 U/g, and time = 5 h. High-performance liquid chromatography (HPLC) and molecular docking analysis revealed that enzymatic hydrolysis partially removed bitterness compounds. The results of antioxidant activity, xanthine oxidase, and α-glucosidase inhibitory activity assays confirmed that the Emblica fruit powder still exhibited good biological activity after enzymatic debitterization. Moreover, gastric fluids treatment might contribute to the above enhancing effect of enzymatic hydrolysates of Emblica. This study provided a theoretical basis for promoting the processing and utilization of Emblica fruit powder, as well as understanding its biological activity.
Collapse
Affiliation(s)
- Lingyu Zhang
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Liting Lin
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yunxuan Hu
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Dazhou Xinyan (Xiamen) Biotechnology Co., Ltd, Xiamen 361021, Fujian, China
| | - Daren Wu
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Zhengxiao Zhang
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Chaoxiang Chen
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Li Wang
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Jian Li
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| |
Collapse
|
24
|
Samandar F, Malek-Mohammadi S, Aram Z, Rastin F, Tolou-Shikhzadeh-Yazdi S, Amiri-Tehranizadeh Z, Saberi MR, Chamani J. New Perspective on the Interaction Behavior Between Riboflavin and β Lactoglobulin-β Casein Complex by Biophysical Techniques. Cell Biochem Biophys 2024; 82:175-191. [PMID: 37978103 DOI: 10.1007/s12013-023-01197-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Riboflavin (RF) is a vitamin that only exists in plants and microorganisms and must be procured externally by humans. On the other hand, there are two major allergic factors in cow's milk, including β-lactoglobulin (βLG) and β-casein (βCN), while their allergic properties can be eliminated by binding to micronutrients. In this regard, we examined the binding process of RF to βLG and βCN in the binary and ternary systems by different spectroscopies such as zeta potential, electric conductivity, and molecular modeling. According to the result of the fluorescence spectrum regarding the interaction of RF with βLG and βCN in binary and ternary systems, an increase in RF concentration declined the fluorescence intensity of three systems and also caused the quenching of proteins. Static quenching plays a pivotal role in the formation of stable interactions. The obtained thermodynamic parameters by Van't Hoff equation ascertained the predominance of hydrogen bonds and van der Waals interaction in all the systems. Considering how the negative value of ΔH0 resulted in the negative value of ΔG0, the systems were assumed to be enthalpy driven. The outcomes of circular dichroism (CD) disclosed that the attachment of RF to the targets of systems increased their a-helix content, which particularly included the binding of RF to βLG that led to the conversion of β-sheet to α-helix content. As indicated by the results of zeta potential, the low concentration of RF contained the dominance of hydrophobic forces in the interactions, whereas the enlargement of this concentration prevailed electrostatic forces. Moreover, conductometry measurements showed an extension in the rate of ionizable groups due to the addition of RF to the systems, which may increase the probability of an interaction between RF, βCN, and βLG in binary and ternary systems. In consistency with the outcomes of molecular dynamics simulation, the data of molecular docking approved the capability of RF in forming strong and stable interactions with βCN and βLG.
Collapse
Affiliation(s)
- Farzaneh Samandar
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Zahra Aram
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Farangis Rastin
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Zeinab Amiri-Tehranizadeh
- Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Saberi
- Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
25
|
Luo Z, Li P, Zhang D, Zhu J, Wang W, Zhao W, Li P, Yuan G. A Novel Antimicrobial Mechanism of Azalomycin F Acting on Lipoteichoic Acid Synthase and Cell Envelope. Molecules 2024; 29:856. [PMID: 38398608 PMCID: PMC10893547 DOI: 10.3390/molecules29040856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Lipoteichoic acid (LTA) plays an essential role in bacterial growth and resistance to antibiotics, and LTA synthetase (LtaS) was considered as an attractive target for combating Gram-positive infections. Azalomycin F, a natural guanidyl-containing polyhydroxy macrolide, can target the LTA of Staphylococcus aureus. Using various technologies including enzyme-linked immunosorbent assay, transmission electron microscope, proteomics, and parallel reaction monitoring, here, the experimental results indicated that azalomycin F can accelerate the LTA release and disrupt the cell envelope, which would also lead to the feedback upregulation on the expressions of LtaS and other related enzymes. Simultaneously, the reconstituted enzyme activity evaluations showed that azalomycin F can significantly inhibit the extracellular catalytic domain of LtaS (eLtaS), while this was vague for LtaS embedded in the liposomes. Subsequently, the fluorescence analyses for five incubation systems containing azalomycin F and eLtaS or the LtaS-embedded liposome indicated that azalomcyin F can spontaneously bind to the active center of LtaS. Combining the mass spectroscopy analyses and the molecular dockings, the results further indicated that this interaction involves the binding sites of substrates and the LTA prolongation, especially the residues Lys299, Phe353, Trp354 and His416. All these suggested that azalomycin F has multiple antibacterial mechanisms against S. aureus. It can not only inhibit LTA biosynthesis through the interactions of its guanidyl side chain with the active center of LtaS but also disrupt the cell envelope through the synergistic effect of accelerating the LTA release, damaging the cell membrane, and electrostatically interacting with LTA. Simultaneously, these antibacterial mechanisms exhibit a synergistic inhibition effect on S. aureus cells, which would eventually cause the cellular autolysis.
Collapse
Affiliation(s)
- Zilong Luo
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Pingyi Li
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Duoduo Zhang
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianping Zhu
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wan Wang
- School of Basic Medicine, Nanchang Medical College, Nanchang 330006, China
| | - Wenjia Zhao
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Peibo Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ganjun Yuan
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
26
|
Xu T, Li X, Wu C, Fan G, Li T, Zhou D, Zhu J, Wu Z, Hua X. Improved encapsulation effect and structural properties of whey protein isolate by dielectric barrier discharge cold plasma. Int J Biol Macromol 2024; 257:128556. [PMID: 38061529 DOI: 10.1016/j.ijbiomac.2023.128556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023]
Abstract
The whey protein isolate (WPI) was modified by dielectric barrier discharge cold plasma (DBD) in order to improve its encapsulation efficiency of rutin. In this work, the effect of DBD treatment on structure and physicochemical properties of WPI and the interaction between DBD-treated WPI and rutin were investigated. The results showed that the structural change of WPI leaded to the exposure of internal hydrophobic groups, increasing the interaction site with rutin. The encapsulation efficiency of DBD-treated WPI (30 kV, 30 s) on rutin was improved by 12.42 % compared with control group. The results of multispectral analysis showed that static quenching occurred in the process of interaction between DBD-treated and rutin, hydrogen bond and van der Waals force were the main forces between them. Therefore, DBD treatment can be used as a method to improve the encapsulation efficiency of WPI on hydrophobic active substances.
Collapse
Affiliation(s)
- Ting Xu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Gongjian Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Tingting Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Dandan Zhou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jinpeng Zhu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhihao Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiaowen Hua
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201 Ningbo, China
| |
Collapse
|
27
|
Fu M, Gao J, Mao K, Sun J, Ahmed Sadiq F, Sang Y. Interaction mechanism between surface layer protein and yeast mannan: Insights from multi-spectroscopic and molecular dynamics simulation analyses. Food Chem 2024; 433:137352. [PMID: 37678123 DOI: 10.1016/j.foodchem.2023.137352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Tibet kefir grain (TKG) formation is mainly dependent on the aggregation of lactobacillus and yeasts. The interaction of surface layer protein (SLP) and yeast mannan plays an important role in mediating the co-aggregation of Lactobacillus kefiri with Saccharomyces cerevisiae. The interaction mechanism of the two was researched through multispectral spectroscopy, morphology observation and silico approaches. Fluorescence spectra data revealed that mannan was bound to SLP through a spontaneous binding process. The particle size of the binding complex increased as the mannan concentration increased. Synchronous fluorescence spectroscopy and circular dichroism (CD) spectra showed the conformational and microenvironment alteration of SLP treated with mannan. Molecular docking results indicated that hydrophobic interactions played major roles in the formation of SLP-mannan complexes. These findings provide a deeper insight into the interactions of protein and polysaccharide, and this knowledge is valuable in the application of SLP and mannan in co-fermentation systems.
Collapse
Affiliation(s)
- Mengqi Fu
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jie Gao
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China.
| | - Kemin Mao
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jilu Sun
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | | | - Yaxin Sang
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
28
|
Shihab WA, Kubba AAR, Tahtamouni LH, Saleh KM, AlSakhen MF, Kanaan SI, Saleh AM, Yasin SR. Synthesis, In Silico Prediction, and In Vitro Evaluation of Anti-tumor Activities of Novel 4'-Hydroxybiphenyl-4-carboxylic Acid Derivatives as EGFR Allosteric Site Inhibitors. Curr Med Chem 2024; 31:6336-6356. [PMID: 38693732 DOI: 10.2174/0109298673305163240427065543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 05/03/2024]
Abstract
INTRODUCTION Allosteric inhibition of EGFR tyrosine kinase (TK) is currently among the most attractive approaches for designing and developing anti-cancer drugs to avoid chemoresistance exhibited by clinically approved ATP-competitive inhibitors. The current work aimed to synthesize new biphenyl-containing derivatives that were predicted to act as EGFR TK allosteric site inhibitors based on molecular docking studies. METHODS A new series of 4'-hydroxybiphenyl-4-carboxylic acid derivatives, including hydrazine-1-carbothioamide (S3-S6) and 1,2,4-triazole (S7-S10) derivatives, were synthesized and characterized using IR, 1HNMR, 13CNMR, and HR-mass spectroscopy. RESULTS Compound S4 had a relatively high pharmacophore-fit score, indicating that it may have biological activity similar to the EGFR allosteric inhibitor reference, and it scored a relatively low ΔG against EGFR TK allosteric site, indicating a high likelihood of drug-receptor complex formation. Compound S4 was cytotoxic to the three cancer cell lines tested, particularly HCT-116 colorectal cancer cells, with an IC50 value comparable to Erlotinib. Compound S4 induced the intrinsic apoptotic pathway in HCT-116 cells by arresting them in the G2/M phase. All of the new derivatives, including S4, met the in silico requirements for EGFR allosteric inhibitory activity. CONCLUSION Compound S4 is a promising EGFR tyrosine kinase allosteric inhibitor that warrants further research.
Collapse
Affiliation(s)
- Wurood A Shihab
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Bab-Al-Mouadam, Baghdad, 10001, Iraq
| | - Ammar A Razzak Kubba
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Bab-Al-Mouadam, Baghdad, 10001, Iraq
| | - Lubna H Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Khaled M Saleh
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mai F AlSakhen
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Sana I Kanaan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Abdulrahman M Saleh
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
- Epidemiological Surveillance Unit, Aweash El-Hagar Family Medicine Center, MOHP, Mansoura, 35711, Egypt
| | - Salem R Yasin
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
29
|
Li Z, Li Z, Ma H, Fu S, Liu G, Hao C, Liu Y. Molecular insight into binding behavior of caffeine with lactoferrin: Spectroscopic, molecular docking, and simulation study. J Dairy Sci 2023; 106:8249-8261. [PMID: 37641325 DOI: 10.3168/jds.2023-23631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/29/2023] [Indexed: 08/31/2023]
Abstract
The majority of bioactive substances in the human diet come from polyphenols. Here, we use spectroscopy, molecular docking, molecular dynamics simulations, and in vitro digestion to look at the relationship between caffeine (CAF) and bovine lactoferrin (BLF). The correlation analysis of the CAF-BLF fluorescence quenching process revealed that the reaction was spontaneous and that the CAF-BLF fluorescence quenching process may have been static. The predominant intrinsic binding forces were hydrogen bonds and van der Waals forces, which were also supported by molecular docking and molecular dynamics simulations. Through Fourier infrared and circular dichroism spectroscopy experiments, it was found that CAF changed the secondary structure of BLF and might bind to the hydrophobic amino acids of BLF. Compared with BLF, CAF-BLF showed inhibitory effects on digestion in simulated in vitro digestion. It will be helpful to better understand the interaction between CAF and BLF and provide the basis for the development of innovative dairy products.
Collapse
Affiliation(s)
- Zekun Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Zhixi Li
- College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Haorui Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Shangchen Fu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Guanxu Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Changchun Hao
- College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| |
Collapse
|
30
|
Deng Z, Xia Y, Chen L, Zhao Y, Wang R, Liang G. Insight into covalent conjugates of β-lactoglobulin with rutin: Characterizing allergenicity, digestibility, and antioxidant properties in vitro. Food Res Int 2023; 173:113401. [PMID: 37803745 DOI: 10.1016/j.foodres.2023.113401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
β-lactoglobulin (β-LG) is an essential nutrient in milk, but it is the primary allergen causing dairy allergy in humans. Currently, researchers are focusing on using flavonoids to covalently modify β-LG for improving its functionality. However, the impact and underlying mechanisms of rutin covalent modification on the functional properties and allergenicity of β-LG remain unclear. Here, we aim to investigate the changes in allergenicity, digestive characteristics, and antioxidant properties of β-LG after covalent modification using a combination of spectroscopy, enzyme-linked immunosorbent assay (ELISA), simulated digestion, and antioxidant assays. The results indicate that rutin forms covalent bonds with the free amino group, sulfhydryl group, and tryptophan of β-LG, leading to alterations in the secondary structure of β-LG. Furthermore, the modified β-LG exhibits improved antioxidant capacity and decreased allergenicity, along with reduced resistance to pancreatin digestion in vitro. This study provides novel insights and strategies to expand the functional application of β-LG.
Collapse
Affiliation(s)
- Zhifen Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Yuting Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Lang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Yi Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Ruihong Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
31
|
Wang Q, Li J, Tu Y, Cai J, Ren F, Zhang H. Characteristics and antioxidant activity of Maillard reaction products from β-lactoglobulin and isomaltooligosaccharide. Front Nutr 2023; 10:1282485. [PMID: 37915620 PMCID: PMC10616461 DOI: 10.3389/fnut.2023.1282485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Starch-derived isomaltooligosaccharide (IMO) is potentially used as prebiotics in infant formulas. Given that they are non-digestible carbohydrates rich in reducing substrates, it's crucial to understand if they can interact with β-lactoglobulin (β-LG) to produce Maillard reaction products (MRPs) and how these MRPs might influence the nutritional properties of β-LG. In our investigation, we conjugated β-LG with IMO to generate MRPs. Using a spectrophotometer, we identified the intermediates and assessed browning. We also evaluated changes in free amino groups and structural alterations. The antioxidative activity of the resulting compounds was assessed using DPPH and the ferric reducing/antioxidant power (FRAP) assay. Our data revealed increased visible absorption and fluorescence intensity, suggesting the formation of intermediate and browning products. The content of free amino groups diminished by 33%, supporting the conjugation of IMO with β-LG. However, circular dichroism results indicated no significant alterations in the secondary structure of β-LG. Notably, the β-LG-IMO MRPs exhibited enhanced 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity and ferric reducing/antioxidant power (FRAP). The findings provide insights into the characteristics and antioxidant activities of the conjugates derived from IMO and dairy protein in infant formula.
Collapse
Affiliation(s)
- Qingyu Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Jiayang Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yaqi Tu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jianping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Fazheng Ren
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Food Laboratory of Zhongyuan, Luohe, Henan, China
| | - Hao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Food Laboratory of Zhongyuan, Luohe, Henan, China
| |
Collapse
|
32
|
Carlos JP, Carlos GC, Sergio AS, Lorena GR, Gabriela RS, Mariano GG, Alma CG. Evaluation of the pH effect on complex formation between bovine β-lactoglobulin and aflatoxin M1: a molecular dynamic simulation and molecular docking study. J Biomol Struct Dyn 2023; 42:12133-12143. [PMID: 37817538 DOI: 10.1080/07391102.2023.2268178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023]
Abstract
The aim of this work was to evaluate interaction between aflatoxin M1 (AFM1) and structural models of β-lactoglobulin (β-LG) at pH 4.0 and 6.5. This information would provide an explanation of the variability in AFM1 during cheese production. Once β-LG models were optimized using molecular dynamic (MD) simulation, it was found that a region of the Calyx cavity underwent conformational changes, at the E-F loop, from the closed conformation at pH 6.5 to the open at pH 4.0. No differences in Site C conformation were observed at both pH. The binding free energy (ΔGb) of the β-LG-AFM1 complexes at the different pHs were determined by molecular docking. The ΔGb values obtained for the Calyx cavity showed that at pH 4.0 there is a more stable complex formation compared to pH 6.5 with values of -42.6 and -32.0 kJ mol-1, respectively. On the contrary, in the complexes formed in Site C at both pH´s there were no differences. Likewise, the ΔGb in the dimer interface was evaluated, obtaining a value of -29.3 kJ mol-1, like those obtained at Site C. In addition, by the MD simulations of the β-LG-AFM1 complexes, it was observed that at acidic pH the binding of AFM1 with β-LG is more stable. In conclusion, the computational tools showed that the most stable complex was formed at the Calyx cavity at pH 4.0. This suggests that during cheese production using acidic coagulation, the whey proteins show higher affinity toward AFM1 which may explain the observed variability of mycotoxin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jiménez-Pérez Carlos
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, México, México
| | - Gómez-Castro Carlos
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Unidad Universitaria, Pachuca-Hidalgo, México
| | | | - Gómez-Ruiz Lorena
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, México, México
| | | | - García-Garibay Mariano
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, México, México
- Departamento de Ciencias de la Alimentación, Universidad Autónoma Metropolitana-Lerma. Av, México, México
| | - Cruz-Guerrero Alma
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, México, México
| |
Collapse
|
33
|
Al-Wahaibi LH, Rehman MT, Al-Saleem MSM, Basudan OA, El-Gamal AA, Abdelkader MSA, AlAjmi MF, Abdel-Mageed WM. Virtual screening and molecular dynamics simulation study of abyssomicins as potential inhibitors of COVID-19 virus main protease and spike protein. J Biomol Struct Dyn 2023; 41:8961-8977. [PMID: 36300522 DOI: 10.1080/07391102.2022.2139295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/18/2022] [Indexed: 10/31/2022]
Abstract
The lack of any effective cure for the infectious COVID-19 disease has created a sense of urgency and motivated the search for effective antiviral drugs. Abyssomicins are actinomyces-derived spirotetronates polyketides antibiotics known for their promising antibacterial, antitumor, and antiviral activities. In this study, computational approaches were used to investigate the binding mechanism and the inhibitory ability of 38 abyssomicins against the main protease (Mpro) and the spike protein receptor-binding domain (RBD) of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The results identified abyssomicins C, J, W, atrop-O-benzyl abyssomicin C, and atrop-O-benzyl desmethyl abyssomicin C as the most potential inhibitors of Mpro and RBD with binding energy ranges between -8.1 and -9.9 kcal mol-1; and between -6.9 and -8.2 kcal mol-1, respectively. Further analyses of physicochemical properties and drug-likeness suggested that all selected active abyssomicins, with the exception of abyssomicin J, obeyed Lipinski's rule of five. The stability of protein-ligand complexes was confirmed by performing molecular dynamics simulation for 100 ns and evaluating parameters such as such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), total number of contacts, and secondary structure. Prime/MM-GBSA (Molecular Mechanics-General Born Surface Area) and principal component analysis (PCA) analyses also confirmed the stable nature of protein-ligand complexes. Overall, the results showed that the studied abyssomicins have significant interactions with the selected protein targets; therefore, they were deemed viable candidates for further in vitro and in vivo evaluation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lamya H Al-Wahaibi
- Department of Chemistry, Science College, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muneera S M Al-Saleem
- Department of Chemistry, Science College, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Omer A Basudan
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali A El-Gamal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, El Mansoura, Egypt
| | | | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael M Abdel-Mageed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Pharmacognosy Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
34
|
Cao L, Wang Y, Chen X, Deng F, Li Z, Wang M, Zhang Y, Su R, Kim CK. Discovery of novel glucosinolates inhibiting advanced glycation end products: Virtual screening and molecular dynamic simulation. Proteins 2023; 91:1351-1360. [PMID: 37163477 DOI: 10.1002/prot.26506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/07/2023] [Accepted: 04/19/2023] [Indexed: 05/12/2023]
Abstract
Protein glycation can result in the formation of advanced glycation end products (AGEs), which pose a potential health risk due to their association with diabetic complications. Natural products are a source of drugs discovery and the search for potential natural inhibitors of AGEs is of great significance. Glucosinolates (GSLs) mainly from cruciferous plants have potential antioxidant, anti-inflammatory, and anti-glycation activities. In this study, the inhibitory activity of GSLs on bovine serum albumin (BSA) along with its mechanism was investigated by virtual screening and various computational simulation techniques. Virtual screening revealed that 174 GSLs were screened using Maestro based on the glide score and 89% of the compounds were found to have potential anti-glycation ability with the docking scores less than -5 kcal/mol. Molecular docking showed that the top 10 GSLs were bound to the IIA structural domain of BSA. Among them, glucohesperin (1) and 2-hydroxyethyl glucosinolate (2) had the lowest docking scores of -9.428 and -9.333 kcal/mol, respectively, reflecting their good binding affinity. Molecular dynamics simulations of 1 (ΔG = -43.46 kcal/mol) and 2 (ΔG = -43.71 kcal/mol) revealed that the complexes of these two compounds with proteins had good stability. Further binding site analysis suggested that the mechanism of inhibition of protein glycation by these two active ingredients might be through competitive hydrogen bonding to maintain the structural integrity of the protein, thus inhibiting glycation reaction. Moreover, the ADMET values and CYP450 metabolism prediction data were within the recommended values. Therefore, it can be concluded that 1 and 2 may act as potential anti-glycation agents.
Collapse
Affiliation(s)
- Lan Cao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| | - Yueyang Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| | - Xin'an Chen
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| | - Fanyu Deng
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| | - Zongchang Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| | - Maosheng Wang
- School of Environment and Safety Engineering, North University of China, Taiyuan, China
| | - Yiqing Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| | - Rui Su
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, China
| | - Chan Kyung Kim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Republic of Korea
| |
Collapse
|
35
|
Zhang R, Jia W. Deciphering the competitive binding interaction of β-lactoglobulin with benzaldehyde and vanillic acid via high-spatial-resolution multi-spectroscopic. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
36
|
Yadav N, Mor S, Venkatesu P. The attenuating ability of deep eutectic solvents towards the carboxylated multiwalled carbon nanotubes induced denatured β-lactoglobulin structure. Phys Chem Chem Phys 2023. [PMID: 37470288 DOI: 10.1039/d3cp02908e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The stabilization of proteins has been a major challenge for their practical utilization in industrial applications. Proteins can easily lose their native conformation in the presence of denaturants, which unfolds the protein structure. Since the introduction of deep eutectic solvents (DESs), there are numerous studies in which DESs act as promising co-solvents that are biocompatible with biomolecules. DESs have emerged as sustainable biocatalytic media and an alternative to conventional organic solvents and ionic liquids (ILs). However, the superiority of DESs over the deleterious influence of denaturants on proteins is often neglected. To address this, we present the counteracting ability of biocompatible DESs, namely, choline chloride-glycerol (DES-1) and choline chloride-urea (DES-2), against the structural changes induced in β-lactoglobulin (Blg) by carboxylated multiwalled carbon nanotubes (CA-MWCNTs). The work is substantiated with various spectroscopic and thermal studies. The spectroscopic results revealed that the fluorescence emission intensity enhances for the protein in DESs. Contrary to this, the emission intensity extremely quenches in the presence of CA-MWCNTs. However, in the mixture of DESs and CA-MWCNTs, there was a slight increase in the fluorescence intensity. Circular dichroism spectral studies reflect the reappearance of the native band that was lost in the presence of CA-MWCNTs, which is a good indicator of the counteraction ability of DESs. Further, thermal fluorescence studies showed that the protein exhibited extremely great thermal stability in both DESs as well as in the mixture of DES-CA-MWCNTs compared to the protein in buffer. This study is also supported by dynamic light scattering and zeta potential measurements; the results reveal that DESs were successfully able to maintain the protein structure. The addition of CA-MWCNTs results in complex formation with the protein, which is indicated by the increased hydrodynamic size of the protein. The presence of DESs in the mixture of CA-MWCNTs and DESs was quite successful in eliminating the negative impact of CA-MWCNTs on protein structural alteration. DES-1 proved to be superior to DES-2 over counteraction against CA-MWCNTs and maintained the native conformation of the protein. Overall, both DESs act as recoiling media for both native and unfolded (denatured by CA-MWCNTs) Blg structures. Both the DESs can be described as potential co-solvents for Blg with increased structural and thermal stability of the protein. To the best of our knowledge, this study for the first time has demonstrated the role of choline-based DESs in the mixture with CA-MWCNTs in the structural transition of Blg. The DESs in the mixture successfully enhance the stability of the protein by reducing the perturbation caused by CA-MWCNTs and then amplifying the advantages of the DESs present in the mixture. Overall, these results might find implications for understanding the role of DES-CA-MWCNT mixtures in protein folding/unfolding and pave a new direction for the development of eco-friendly protein-protective solvents.
Collapse
Affiliation(s)
- Niketa Yadav
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Sanjay Mor
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Pannuru Venkatesu
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
37
|
Sun Y, Lu J, Li J, Li P, Zhao M, Xia G. Optimization of ultrasonic-assisted extraction of polyphenol from Areca nut (Areca catechu L.) seeds using response surface methodology and its effects on osteogenic activity. ULTRASONICS SONOCHEMISTRY 2023; 98:106511. [PMID: 37423070 PMCID: PMC10339244 DOI: 10.1016/j.ultsonch.2023.106511] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/13/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
Areca nut (Areca catechu L.) seeds are rich in polyphenols, while few studies focused on it. This study was designed to obtain the maximum extraction yield of areca nut seed polyphenol (ACP). An ultrasonic-assisted extraction method optimized by response surface methodology (RSM) was established to extract ACP. Under the optimal conditions (ultrasonic power of 87 W, ethanol concentration of 65%, extraction temperature of 62℃, and extraction time of 153 min), the actual extraction yield of ACP was 139.62 mg/g. Then we investigated the effects of ACP on the proliferation, differentiation and mineralization of MC3T3-E1 pre-osteoblasts. Results suggested that ACP notably promoted the proliferation of MC3T3-E1 cells without cytotoxicity, and the contents of collagen type Ⅰ (COL-Ⅰ) and osteocalcin (OCN) were rising. Meanwhile, the alkaline phosphatase (ALP) activity and mineralized nodules were enhanced. These findings demonstrated that ACP could induce the proliferation, differentiation and mineralization of osteoblasts in vitro. This work provided a certain experimental basis for the developing and utilization of polyphenols from Areca nut seeds.
Collapse
Affiliation(s)
- Ying Sun
- College of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Jinfeng Lu
- College of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Jiaqi Li
- College of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Peng Li
- College of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Meihui Zhao
- College of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Guanghua Xia
- College of Food Science and Engineering, Hainan University, Hainan 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan 570228, China.
| |
Collapse
|
38
|
Habibi A, Farhadian S, Shareghi B, Hashemi-Shahraki F. Structural change study of pepsin in the presence of spermidine trihydrochloride: Insights from spectroscopic to molecular dynamics methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122264. [PMID: 36652806 DOI: 10.1016/j.saa.2022.122264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Spermidine is an aliphatic polyamine that directs a set of biological processes. This work aimed to use UV-Vis spectroscopy, fluorescence spectroscopy, thermal stability, kinetic methods, docking, and molecular dynamic simulations to examine the influence of spermidine trihydrochloride (SP) on the structure and function of pepsin. The results of the fluorescence emission spectra indicated that spermidine could quench pepsin's intrinsic emission in a static quenching process, resulting in the formation of the pepsin-spermidine complex. The results discovered that spermidine had a strong affinity to the pepsin structure because of its high binding constant. The obtained results from spectroscopy and molecular dynamic approaches showed the binding interaction between spermidine and pepsin, induced micro-environmental modifications around tryptophan residues that caused a change in the tertiary and secondary structure of the enzyme. FTIR analysis showed hypochromic effects in the spectra of amide I and II and redistribution of the helical structure. Moreover, the molecular dynamic (MD) and docking studies confirmed the experimental data. Both experimental and molecular dynamics simulation results clarified that electrostatic bond interactions were dominant forces.
Collapse
Affiliation(s)
- Atefeh Habibi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P.O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P.O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P.O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Fatemeh Hashemi-Shahraki
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P.O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
39
|
Geng Q, McClements DJ, Wu Z, Li T, He X, Shuai X, Liu C, Dai T. Investigation of bovine β-lactoglobulin-procyanidin complexes interactions and its utilization in O/W emulsion. Int J Biol Macromol 2023; 240:124457. [PMID: 37068535 DOI: 10.1016/j.ijbiomac.2023.124457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Procyanidins are bioactive polyphenols that have a strong affinity to proteins. Beta-lactoglobulin (BLG) is widely used as an emulsifier in the food and other industries. This study evaluated the interaction between BLG and A-type procyanidin dimer (PA2) using the spectroscopic, thermodynamic, and molecular simulation. PA2 decreased the transmissivity and quenched the intrinsic fluorescence of BLG, suggesting that the two molecules formed a complex. The binding of PA2 reduced the surface hydrophobicity and altered the conformation of BLG with increasing the random coil regions. Thermodynamic and isothermal titration calorimetry analyses suggested that the main driving force of PA2-BLG interaction was hydrophobic attraction. Molecular docking simulations were used to identify the main interaction sites and forces in the BLG-PA2 complexes, which again indicated that hydrophobic interactions dominated. In addition, the influence of PA2 on the ability of BLG to form and stabilize O/W emulsions was analyzed. Emulsions formulated using BLG-PA2 complexes contained relatively small droplets (D4,3 ≈ 0.7 μm) and high surface potentials (absolute value >50 mV). Compared to BLG alone, BLG-PA2 complexes improved the storage stability of the emulsions. This study provides valuable new insights into the formation, properties, and application of protein-polyphenol complexes as functional ingredients in foods.
Collapse
Affiliation(s)
- Qin Geng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | | | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xuemei He
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, Guangxi 530007, China
| | - Xixiang Shuai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, Guangxi 530007, China.
| |
Collapse
|
40
|
Chen Y, Li M, Kong J, Liu J, Zhang Q. Molecular Interaction Mechanism and Preservative Effect of Lactone Sophorolipid and Lactoferrin/ β-Lactoglobulin Systems. Foods 2023; 12:foods12081561. [PMID: 37107357 PMCID: PMC10137667 DOI: 10.3390/foods12081561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Multispectral and molecular docking methods were used to study the interaction mode and mechanism of two important components of whey proteins, lactoferrin (LF) and β-lactoglobulin (β-LG), and of a lactone sophorolipid (LSL) mixed system. The preservation effect of the mixed system on milk was also studied and compared. The results showed that the quenching mechanism of LSL on both β-LG and LF was static, but that the non-covalent complexes formed were the result of the different interacting forces: hydrogen bonds and the van der Waals force for the LSL-β-LG system, and electrostatic force for the LSL-LF system. The binding constants of LSL-β-LG and LSL-LF were all relatively small, and the interaction of LSL with β-LG was stronger than its interaction with LF. After adding β-LG, LF, or the mixed system with LSL to the milk, the stability of milk emulsion was effectively improved in all cases, while the preservative ability was effectively enhanced only by the addition of LF or LSL-LF. These results provide supportive data and a theoretical basis for enhancing the production of dairy products and other byproducts.
Collapse
Affiliation(s)
- Yanrong Chen
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Mingyuan Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jing Kong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
41
|
Pop OL, Suharoschi R, Socaci SA, Berger Ceresino E, Weber A, Gruber-Traub C, Vodnar DC, Fărcaș AC, Johansson E. Polyphenols—Ensured Accessibility from Food to the Human Metabolism by Chemical and Biotechnological Treatments. Antioxidants (Basel) 2023; 12:antiox12040865. [PMID: 37107240 PMCID: PMC10135483 DOI: 10.3390/antiox12040865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Polyphenols are plant-based compounds famous for their positive impact on both human health and the quality of food products. The benefits of polyphenols are related to reducing cardiovascular diseases, cholesterol management, cancers, and neurological disorders in humans and increasing the shelf life, management of oxidation, and anti-microbial activity in food products. The bioavailability and bio-accessibility of polyphenols are of the highest importance to secure their impact on human and food health. This paper summarizes the current state-of-the-art approaches on how polyphenols can be made more accessible in food products to contribute to human health. For example, by using food processing methods including various technologies, such as chemical and biotechnological treatments. Food matrix design and simulation procedures, in combination with encapsulation of fractionated polyphenols utilizing enzymatic and fermentation methodology, may be the future technologies to tailor specific food products with the ability to ensure polyphenol release and availability in the most suitable parts of the human body (bowl, intestine, etc.). The development of such new procedures for utilizing polyphenols, combining novel methodologies with traditional food processing technologies, has the potential to contribute enormous benefits to the food industry and health sector, not only reducing food waste and food-borne illnesses but also to sustain human health.
Collapse
Affiliation(s)
- Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Sonia Ancuța Socaci
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Elaine Berger Ceresino
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| | - Achim Weber
- Innovation Field Functional Surfaces and Materials, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Carmen Gruber-Traub
- Innovation Field Functional Surfaces and Materials, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Anca Corina Fărcaș
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Eva Johansson
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| |
Collapse
|
42
|
Al-Massarani SM, Aldurayhim LS, Alotaibi IA, Abdelmageed MWM, Rehman MT, Basudan OA, Abdel-Kader MS, Alajmi MF, Abdel Bar FM, Alam P, Al Tamimi MM, El Gamal AA. Biomarker Quantification, Spectroscopic, and Molecular Docking Studies of the Active Compounds Isolated from the Edible Plant Sisymbrium irio L. Pharmaceuticals (Basel) 2023; 16:ph16040498. [PMID: 37111255 PMCID: PMC10146147 DOI: 10.3390/ph16040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Phytochemical investigation of the ethanolic extract of the aerial parts of Sisymbrium irio L. led to the isolation of four unsaturated fatty acids (1–4), including a new one (4), and four indole alkaloids (5–8). The structures of the isolated compounds were characterized with the help of spectroscopic techniques such as 1D, 2D NMR, and mass spectroscopy, and by correlation with the known compounds. In terms of their notable structural diversity, a molecular docking approach with the AutoDock 4.2 program was used to analyze the interactions of the identified fatty acids with PPAR-γ and the indole alkaloids with 5-HT1A and 5-HT2A, subtypes of serotonin receptors, respectively. Compared to the antidiabetic drug rivoglitazone, compound 3 acted as a potential PPAR-γ agonist with a binding energy of −7.4 kcal mol−1. Moreover, compound 8 displayed the strongest affinity, with binding energies of −6.9 kcal/mol to 5HT1A and −8.1 kcal/mol to 5HT2A, using serotonin and the antipsychotic drug risperidone as positive controls, respectively. The results of docked conformations represent an interesting target for developing novel antidiabetic and antipsychotic drugs and warrant further evaluation of these ligands in vitro and in vivo. On the other hand, an HPTLC method was developed to quantify α-linolenic acid in the hexane fraction of the ethanol extract of S. irio. The regression equation/correlation coefficient (r2) for linolenic acid was Y = 6.49X + 2310.8/0.9971 in the linearity range of 100–1200 ng/band. The content of α-linolenic acid in S. irio aerial parts was found to be 28.67 μg/mg of dried extract.
Collapse
|
43
|
Liu Z, Lin S, Liu W, Nakamura Y, Tang Y. Construction of benzyl isothiocyanate-loaded fish skin gelatin-luteolin compound emulsion delivery system, and its digestion and absorption characteristics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1864-1873. [PMID: 36571447 DOI: 10.1002/jsfa.12411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Fish skin gelatin (FSG) and luteolin (LUT) were used as composite emulsifiers, and benzyl isothiocyanate (BITC) was used as a model of nutrient delivery to construct a stable emulsion. The storage stability of the FSG-LUT emulsion and its effect on BITC release were investigated both in vitro and ex vivo. RESULTS LUT can quench FSG fluorophores statically and form a stable complex through hydrogen bonding and hydrophobic interactions. The FSG-LUT emulsion storage stability and embedding rate were higher than those of the FSG emulsion. The FSG-LUT emulsion microstructure was resistant to oral and gastric digestion, and the BITC retention rate and bioaccessibility were much higher than those of the FSG emulsion. Lastly, the ex vivo everted gut sac of rat intestine study demonstrated that BITC showed the highest absorption in the ileum, and the FSG-LUT emulsion absorbed BITC and sustained a controlled release in a specific position. CONCLUSION LUT could form stable complexes with FSG, which improved the stability and bioavailability of BITC in the FSG-LUT emulsion delivery system, and promoted further intestinal BITC absorption. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiyu Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Wenwen Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Yoshimasa Nakamura
- Environmental and Life Science, Institute of Academic and Research, Okayama University, Okayama, Japan
| | - Yue Tang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
44
|
Exploring the interaction of myricetin with human alpha-2-macroglobulin: biophysical and in-silico analysis. J Biol Phys 2023; 49:29-48. [PMID: 36662317 PMCID: PMC9867608 DOI: 10.1007/s10867-022-09621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/26/2022] [Indexed: 01/21/2023] Open
Abstract
Myricetin (MYR) is a bioactive secondary metabolite found in plants that is recognized for its nutraceutical value and is an essential constituent of various foods and beverages. It is reported to exhibit a plethora of activities, including antioxidant, antimicrobial, antidiabetic, anticancer, and anti-inflammatory. Alpha-2-macroglobulin (α2M) is a major plasma anti-proteinase that can inhibit proteinases of both human and non-human origin, regardless of their specificity and catalytic mechanism. Here, we explored the interaction of MYR-α2M using various biochemical and biophysical techniques. It was found that the interaction of MYR brings subtle change in its anti-proteolytic potential and thereby alters its structure and function, as can be seen from absorbance and fluorescence spectroscopy. UV spectroscopy of α2M in presence of MYR indicated the occurrence of hyperchromism, suggesting complex formation. Fluorescence spectroscopy reveals that MYR reduces the fluorescence intensity of native α2M with a shift in the wavelength maxima. At 318.15 K, MYR binds to α2M with a binding constant of 2.4 × 103 M-1, which indicates significant binding. The ΔG value was found to be - 7.56 kcal mol-1 at 298.15 K, suggesting the interaction to be spontaneous and thermodynamically favorable. The secondary structure of α2M does not involve any major change as was confirmed by CD analysis. The molecular docking indicates that Asp-146, Ser-172, Glu-174, and Tyr-180 were the key residues involved in α2M-MYR complex formation. This study contributes to our understanding of the function and mechanism of protein and flavonoid binding by providing a molecular basis of the interaction between MYR and α2M.
Collapse
|
45
|
How do the hydroxyl group number and position of polyphenols affect the foaming properties of ovalbumin? Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
46
|
Wang C, Zhao R, Liu J, Wang C. Towards understanding the interaction between ultrasound-pretreated β-lactoglobulin monomer with resveratrol. LUMINESCENCE 2023; 38:116-126. [PMID: 36563058 DOI: 10.1002/bio.4427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/06/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Increasingly, studies are using ultrasound to elevate the functional properties of proteins, so the interaction between phenolic compounds and proteins induced by ultrasound needs to be further understood. β-Lactoglobulin (β-LG) at pH 8.1, which exists mainly as monomers, was ultrasound treated at 20 kHz ultrasonic intensity and 30% amplitude for 0-5 min and subsequently interacted with resveratrol. Fluorescence data showed that ultrasound pretreatment improved binding constant (Ka ) from (1.62 ± 0.45) × 105 to (9.43 ± 0.55) × 105 M-1 and binding number from 1.13 ± 0.09 to 1.28 ± 0.11 in a static quenching mode. Fluorescence resonance energy transfer (FRET) analysis indicated that resveratrol bound to the surface hydrophobic pocket of native and treated proteins with no obvious changes in energy transfer efficiency (E) and Föster's distance (r). Thermodynamic parameters indicated that ultrasonication shifted the main driving force from the hydrophobic force for native and 1-min treated β-LG to van der Waals forces and hydrogen bonding for both 3-min and 5-min treated proteins. Ultrasonication and resveratrol addition generated significant differences in surface hydrophobicity and the surface charge of the protein (P < 0.05), whereas they had little influence on the secondary structure of β-LG. Compared with the native β-LG/resveratrol complex, ultrasound-treated protein complexes showed significantly stronger 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) scavenging capacity (P < 0.05), and kept relatively stable after 180-min irradiation. Data provided by this study can lead to a better comprehension of the structure and molecular events occurring during the complexing process between an ultrasound-pretreated protein with polyphenol.
Collapse
Affiliation(s)
- Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Ru Zhao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jia Liu
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Ce Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
47
|
Interaction, bioaccessibility and stability of bovine serum albumin-gamma-oryzanol complex: Spectroscopic and computational approaches. Food Chem 2023; 402:134493. [DOI: 10.1016/j.foodchem.2022.134493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/15/2022] [Accepted: 09/29/2022] [Indexed: 01/30/2023]
|
48
|
Nag A, Dhull N, Gupta A. Evaluation of tea (Camellia sinensis L.) phytochemicals as multi-disease modulators, a multidimensional in silico strategy with the combinations of network pharmacology, pharmacophore analysis, statistics and molecular docking. Mol Divers 2023; 27:487-509. [PMID: 35536529 PMCID: PMC9086669 DOI: 10.1007/s11030-022-10437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022]
Abstract
Tea (Camellia sinensis L.) is considered as to be one of the most consumed beverages globally and a reservoir of phytochemicals with immense health benefits. Despite numerous advantages, tea compounds lack a robust multi-disease target study. In this work, we presented a unique in silico approach consisting of molecular docking, multivariate statistics, pharmacophore analysis, and network pharmacology approaches. Eight tea phytochemicals were identified through literature mining, namely gallic acid, catechin, epigallocatechin gallate, epicatechin, epicatechin gallate (ECG), quercetin, kaempferol, and ellagic acid, based on their richness in tea leaves. Further, exploration of databases revealed 30 target proteins related to the pharmacological properties of tea compounds and multiple associated diseases. Molecular docking experiment with eight tea compounds and all 30 proteins revealed that except gallic acid all other seven phytochemicals had potential inhibitory activities against these targets. The docking experiment was validated by comparing the binding affinities (Kcal mol-1) of the compounds with known drug molecules for the respective proteins. Further, with the aid of the application of statistical tools (principal component analysis and clustering), we identified two major clusters of phytochemicals based on their chemical properties and docking scores (Kcal mol-1). Pharmacophore analysis of these clusters revealed the functional descriptors of phytochemicals, related to the ligand-protein docking interactions. Tripartite network was constructed based on the docking scores, and it consisted of seven tea phytochemicals (gallic acid was excluded) targeting five proteins and ten associated diseases. Epicatechin gallate (ECG)-hepatocyte growth factor receptor (PDB id 1FYR) complex was found to be highest in docking performance (10 kcal mol-1). Finally, molecular dynamic simulation showed that ECG-1FYR could make a stable complex in the near-native physiological condition.
Collapse
Affiliation(s)
- Anish Nag
- Department of Life Sciences, Christ (Deemed to be University), Bangalore, India.
| | - Nikhil Dhull
- Department of Life Sciences, Christ (Deemed to be University), Bangalore, India
| | - Ashmita Gupta
- Department of Life Sciences, Christ (Deemed to be University), Bangalore, India
| |
Collapse
|
49
|
Habibian-Dehkordi S, Farhadian S, Ghasemi M, Evini M. Insight into the binding behavior, structure, and thermal stability properties of β-lactoglobulin/Amoxicillin complex in a neutral environment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Waqar K, Engholm-Keller K, Joehnke MS, Chatterton DE, Poojary MM, Lund MN. Covalent bonding of 4-methylcatechol to β-lactoglobulin results in the release of cysteine-4-methylcatechol adducts after in vitro digestion. Food Chem 2022; 397:133775. [DOI: 10.1016/j.foodchem.2022.133775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 01/02/2023]
|