1
|
Zheng Z, Chen J, Xu J, Jiang B, Li L, Li Y, Dai Y, Wang B. Peripheral blood RNA biomarkers can predict lesion severity in degenerative cervical myelopathy. Neural Regen Res 2025; 20:1764-1775. [PMID: 39104114 PMCID: PMC11688566 DOI: 10.4103/nrr.nrr-d-23-01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/10/2023] [Accepted: 11/23/2023] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202506000-00027/figure1/v/2024-08-05T133530Z/r/image-tiff Degenerative cervical myelopathy is a common cause of spinal cord injury, with longer symptom duration and higher myelopathy severity indicating a worse prognosis. While numerous studies have investigated serological biomarkers for acute spinal cord injury, few studies have explored such biomarkers for diagnosing degenerative cervical myelopathy. This study involved 30 patients with degenerative cervical myelopathy (51.3 ± 7.3 years old, 12 women and 18 men), seven healthy controls (25.7 ± 1.7 years old, one woman and six men), and nine patients with cervical spondylotic radiculopathy (51.9 ± 8.6 years old, three women and six men). Analysis of blood samples from the three groups showed clear differences in transcriptomic characteristics. Enrichment analysis identified 128 differentially expressed genes that were enriched in patients with neurological disabilities. Using least absolute shrinkage and selection operator analysis, we constructed a five-gene model (TBCD, TPM2, PNKD, EIF4G2, and AP5Z1) to diagnose degenerative cervical myelopathy with an accuracy of 93.5%. One-gene models (TCAP and SDHA) identified mild and severe degenerative cervical myelopathy with accuracies of 83.3% and 76.7%, respectively. Signatures of two immune cell types (memory B cells and memory-activated CD4+ T cells) predicted levels of lesions in degenerative cervical myelopathy with 80% accuracy. Our results suggest that peripheral blood RNA biomarkers could be used to predict lesion severity in degenerative cervical myelopathy.
Collapse
Affiliation(s)
- Zhenzhong Zheng
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Jialin Chen
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Jinghong Xu
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Bin Jiang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Lei Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yawei Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yuliang Dai
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| |
Collapse
|
2
|
Duque C, So J, Castro-Sesquen YE, DeToy K, Gutierrez Guarnizo SA, Jahanbakhsh F, Malaga Machaca E, Miranda-Schaeubinger M, Chakravarti I, Cooper V, Schmidt ME, Adamo L, Marcus R, Talaat KR, Gilman RH, Mugnier MR. Immunologic changes in the peripheral blood transcriptome of individuals with early-stage chronic Chagas cardiomyopathy: a cross-sectional study. LANCET REGIONAL HEALTH. AMERICAS 2025; 45:101090. [PMID: 40290486 PMCID: PMC12033964 DOI: 10.1016/j.lana.2025.101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/07/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025]
Abstract
Background Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is a neglected disease that affects approximately 6 million individuals worldwide. Of those infected, 20-30% will go on to develop chronic Chagas cardiomyopathy (CCC), and many ultimately to advanced heart failure. The mechanisms by which this progression occurs are poorly understood. In this exploratory study, we sought to provide insight into the physiologic changes associated with the development of early CCC. Methods We used RNA sequencing to analyse the gene expression changes in the peripheral blood of six patients with Chagas disease with early structural heart disease, four patients with Chagas disease without any signs or symptoms of disease, thirteen patients without Chagas disease with early structural heart disease, and ten patients without Chagas disease or signs of heart disease. Pathway analyses and immune cell deconvolution were employed to further elucidate the biological processes underlying early CCC development. Findings Our analysis suggests that early CCC is associated with a downregulation of various peripheral immune response genes, including changes suggestive of reduced antigen presentation and T cell activation. Notably, these genes and processes appear to be distinct from those of non-Chagas cardiomyopathies. Interpretation This work highlights the potential importance of the immune response in early CCC, providing insight into the early pathogenesis of this disease and how it may differ from other cardiomyopathies. The changes we have identified may serve as biomarkers of early CCC and could inform future longitudinal cohort studies of markers of disease progression and strategies for the treatment of CCC in its early stages. Funding NIH, FONDECYT, IDSA, NSF.
Collapse
Affiliation(s)
- Carolina Duque
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jaime So
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Kelly DeToy
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Fatemeh Jahanbakhsh
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Edith Malaga Machaca
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Indira Chakravarti
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Virginia Cooper
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mary E. Schmidt
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Luigi Adamo
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel Marcus
- MedStar Washington Hospital Center, Washington, D.C., USA
| | - Kawsar R. Talaat
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Robert H. Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Monica R. Mugnier
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - the Chagas Working Group
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- MedStar Washington Hospital Center, Washington, D.C., USA
| |
Collapse
|
3
|
Church RJ, Anchang B, Bennett BD, Bushel PR, Watkins PB. Blood toxicogenomics reveals potential biomarkers for management of idiosyncratic drug-induced liver injury. Front Genet 2025; 16:1524433. [PMID: 40201567 PMCID: PMC11975945 DOI: 10.3389/fgene.2025.1524433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025] Open
Abstract
Introduction: Accurate diagnosis, assessment, and prognosis of idiosyncratic drug-induced liver injury (IDILI) is problematic, in part due to the shortcomings of traditional blood biomarkers. Studies in rodents and healthy volunteers have supported that RNA transcript changes in whole blood may address some of these shortcomings. Methods: In this study, we conducted RNA-Seq analysis on peripheral blood samples collected from 55 patients with acute IDILI and 17 patients with liver injuries not attributed to IDILI. Results and discussion: Three differentially expressed genes (DEGs; CFD, SQLE, and INKA1) were identified as significantly associated with IDILI vs. other liver injuries. No DEGs were identified comparing IDILI patients to the 5 patients with autoimmune hepatitis, suggesting possible common underlying mechanisms. Two genes (VMO1 and EFNA1) were significantly associated with hepatocellular injury compared to mixed/cholestatic injury. When patients with severe vs. milder IDILI were compared, we identified over 500 DEGs. The top pathways identified from these DEGs had in common down regulation of multiple T-cell specific genes. Further analyses confirmed that these changes could largely be accounted for by a fall in the concentration of circulating T-cells during severe DILI, perhaps due to exhaustion or sequestration of these cells in the liver. Exploration of DEGs specific for the individual causal agents was largely unsuccessful, but isoniazid-induced IDILI demonstrated 25 DEGs compared to other non-isoniazid IDILI cases. Finally, among the 14 IDILI patients that had hepatocellular jaundice (i.e., Hy's Law cases), we identified 39 DEGs between the 4 patients with fatal or liver transplantation outcomes compared to those that recovered. These findings suggest the potential for blood-based transcriptomic biomarkers to aid in the diagnosis and prognostic stratification of IDILI.
Collapse
Affiliation(s)
- Rachel J. Church
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, United States
| | - Benedict Anchang
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Brian D. Bennett
- Integrative Bioinformatics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Pierre R. Bushel
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Paul B. Watkins
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Ling S, Deng D, Yang F, Wang P, He M, Wang Q, Deng L, Wang X, Zhao L, Ye G, Huang X. MicroRNA Expression Profile Analysis in Blood During Giant Panda ( Ailuropoda melanoleuca) Growth and Development. Genes (Basel) 2025; 16:243. [PMID: 40149395 PMCID: PMC11942061 DOI: 10.3390/genes16030243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Blood is an essential component of the immune system. As post-transcriptional regulators, miRNAs, abundant in blood, are necessary aspects in blood's immune and physiological functions. However, there is limited knowledge about the expression and function of miRNAs in the blood of giant pandas. METHODS We comparatively analyzed miRNA expression profiles in the blood of giant pandas of different ages using small-RNA sequencing technology. RESULTS We identified 393 known miRNAs, 219 conserved miRNAs, and 71 novel miRNAs in the blood of giant pandas, and functional enrichment analysis showed that the genes regulated by DE (differentially expressed) miRNAs were mainly enriched in the regulation of enzyme-linked receptor protein signaling pathways and the signaling pathways of MAPK, Hippo, and FoXO. CONCLUSIONS Our study clarified giant pandas' blood miRNA expression profiles at different developmental stages, which will help elucidate the blood immunity and regulation of blood cell physiological functions in giant pandas.
Collapse
Affiliation(s)
- Shanshan Ling
- China Conservation and Research Centre for the Giant Panda, Dujiangyan, Chengdu 611800, China; (S.L.); (P.W.); (M.H.); (Q.W.); (L.D.)
| | - Die Deng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (F.Y.); (X.W.)
| | - Fuxing Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (F.Y.); (X.W.)
| | - Pingfeng Wang
- China Conservation and Research Centre for the Giant Panda, Dujiangyan, Chengdu 611800, China; (S.L.); (P.W.); (M.H.); (Q.W.); (L.D.)
| | - Ming He
- China Conservation and Research Centre for the Giant Panda, Dujiangyan, Chengdu 611800, China; (S.L.); (P.W.); (M.H.); (Q.W.); (L.D.)
| | - Qian Wang
- China Conservation and Research Centre for the Giant Panda, Dujiangyan, Chengdu 611800, China; (S.L.); (P.W.); (M.H.); (Q.W.); (L.D.)
| | - Linhua Deng
- China Conservation and Research Centre for the Giant Panda, Dujiangyan, Chengdu 611800, China; (S.L.); (P.W.); (M.H.); (Q.W.); (L.D.)
| | - Xun Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (D.D.); (F.Y.); (X.W.)
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.Z.); (G.Y.)
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.Z.); (G.Y.)
| | - Xiaoyu Huang
- China Conservation and Research Centre for the Giant Panda, Dujiangyan, Chengdu 611800, China; (S.L.); (P.W.); (M.H.); (Q.W.); (L.D.)
| |
Collapse
|
5
|
Zhang C, Correia C, Weiskittel T, Tan SH, Zhang Z, Yeo KS, Zhu S, Ung CY, Li H. Symmetry as a Fundamental Principle in Defining Gene Expression and Phenotypic Traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.634930. [PMID: 39975010 PMCID: PMC11838231 DOI: 10.1101/2025.01.27.634930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Symmetry refers to properties that remain invariant upon mathematical transformations. The principles of symmetry have guided numerous important discoveries in physics and chemistry but not in biology and medicine. Here, we aim to explore the presence of symmetry relationships at the gene expression level as a mean to distinguish between healthy and disease states. We deployed Learning-Based Invariant Feature Engineering - LIFE, a hybrid machine learning approach implemented with two symmetric invariant feature functions (IFFs) to identify Invariant Feature Genes (IFGs), which are gene pairs whose IFF single-value outputs remain invariant across individual samples in a given biological phenotype. Our multiclass classification results across the transcriptomes of 25 normal organs, 25 cancer types, and blood samples obtained from 4 different types of neurodegenerative diseases revealed the presence of unique phenotype-specific IFGs. We constructed networks using these IFGs (IF-Nets) and intriguingly, we demonstrated that the hubs could serve as information encoders, capable of reconstructing sample-wise expression values in relation to their counterpart genes. More importantly, we found that hubs of cancer IF-Nets were enriched with both approved and clinical trial drugs, highlighting "symmetry breaking" as a novel approach for treating diseases.
Collapse
|
6
|
Yang C, Chen Y, Tang G, Shen T, Li L. Dysregulation of c-Jun (JUN) and FBJ murine osteosarcoma viral oncogene homolog B (FOSB) in obese people and their predictive values for metabolic syndrome. Endocr J 2024; 71:1157-1163. [PMID: 39284711 PMCID: PMC11778360 DOI: 10.1507/endocrj.ej24-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/16/2024] [Indexed: 02/01/2025] Open
Abstract
The incidences of metabolic syndrome (MetS), denoting insulin resistance-associated various metabolic disorders, are increasing. This study aimed to identify new biomarkers for predicting MetS and provide a novel diagnostic approach. Herein, the expression profiles of c-Jun (JUN) and FBJ murine osteosarcoma viral oncogene homolog B (FOSB) in individuals with obesity and patients with MetS from the Gene Expression Omnibus database. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to evaluate the messenger RNA levels of JUN and FOSB in the peripheral blood of healthy volunteers (lean and obese) and patients with MetS (lean and obese), along with that in the adipose tissue and peripheral blood of obese mouse model. Furthermore, receiver operating characteristic (ROC) curve and logistic regression analyses were performed to determine the diagnostic value of JUN and FOSB in MetS. The expression profiles and RT-qPCR results showed that JUN and FOSB were highly expressed in individuals with obesity, obese mouse models, and patients with MetS. The ROC analysis results showed an area under the curve values of 0.872 and 0.879 for JUN, 0.802 and 0.962 for FOSB, and 0.946 and 0.979 for JUN-FOSB in the lean group and the group with obesity, respectively, in predicting MetS. Logistic regression analysis showed that the p-values of both JUN and FOSB as MetS-affecting factors were <0.05. Altogether, the findings of this study indicate that both JUN and FOSB, abnormally expressed in individuals with obesity, are good biomarkers of MetS.
Collapse
Affiliation(s)
- Chenxi Yang
- Department of Endocrinology, Xi’an Baoshi Flower Changqing Hospital (Changqing Oilfield Staff Hospital), Xi’an 710201, China
| | - Yi Chen
- Medical Insurance Department, The Sixth People’s Hospital of Deyang City, Deyang 618000, China
| | - Guangfeng Tang
- Endocrinology Department, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou 239001, China
| | - Tongtong Shen
- Cardiovascular Medicine, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou 239001, China
| | - Li Li
- Department of Obstetrics and Gynecology, Taishan Vocational College of Nursing, Taian 271000, China
| |
Collapse
|
7
|
Fritsch H, Giovanetti M, Clemente LG, da Rocha Fernandes G, Fonseca V, de Lima MM, Falcão M, de Jesus N, de Cerqueira EM, Venâncio da Cunha R, de Oliveira Francisco MVL, de Siqueira IC, de Oliveira C, Xavier J, Ferreira JGG, Queiroz FR, Smith E, Tisoncik-Go J, Van Voorhis WC, Rabinowitz PM, Wasserheit JN, Gale M, de Filippis AMB, Alcantara LCJ. Unraveling the Complexity of Chikungunya Virus Infection Immunological and Genetic Insights in Acute and Chronic Patients. Genes (Basel) 2024; 15:1365. [PMID: 39596565 PMCID: PMC11593632 DOI: 10.3390/genes15111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The chikungunya virus (CHIKV), transmitted by infected Aedes mosquitoes, has caused a significant number of infections worldwide. In Brazil, the emergence of the CHIKV-ECSA genotype in 2014 posed a major public health challenge due to its association with more severe symptoms. Objectives/Methods: This study aimed to shed new light on the host immune response by examining the whole-blood transcriptomic profile of both CHIKV-acute and chronically infected individuals from Feira de Santana, Bahia, Brazil, a region heavily affected by CHIKV, Dengue, and Zika virus epidemics. Results: Our data reveal complex symptomatology characterized by arthralgia and post-chikungunya neuropathy in individuals with chronic sequelae, particularly affecting women living in socially vulnerable situations. Analysis of gene modules suggests heightened metabolic processes, represented by an increase in NADH, COX5A, COA3, CYC1, and cap methylation in patients with acute disease. In contrast, individuals with chronic manifestations exhibit a distinct pattern of histone methylation, probably mediated by NCOA3 in the coactivation of different nuclear receptors, KMT2 genes, KDM3B and TET2, and with alterations in the immunological response, majorly led by IL-17RA, IL-6R, and STAT3 Th17 genes. Conclusion: Our results emphasize the complexity of CHIKV disease progression, demonstrating the heterogeneous gene expression and symptomatologic scenario across both acute and chronic phases. Moreover, the identification of specific gene modules associated with viral pathogenesis provides critical insights into the molecular mechanisms underlying these distinct clinical manifestations.
Collapse
Affiliation(s)
- Hegger Fritsch
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (H.F.); (J.X.)
- Institut National de la Santé et de la Recherche Médicale, U1259—MAVIVHe, Université de Tours, 37032 Tours, France
| | - Marta Giovanetti
- Department of Science and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil;
- Climate Amplified Diseases and Epidemics (CLIMADE)—CLIMADE Americas, Belo Horizonte 30190-002, Brazil
| | - Luan Gaspar Clemente
- Escola Superior de Agricultura Luiz de Queiroz, Departamento de Zootecnia, Universidade de São Paulo, Piracicaba 13418-900, Brazil;
| | | | - Vagner Fonseca
- Departamento de Ciências Exatas e da Terra, Universidade Estadual da Bahia, Salvador 41150-000, Brazil;
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Maricelia Maia de Lima
- Departamento de Saúde, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, Brazil; (M.M.d.L.); (E.M.d.C.)
- Secretaria de Municipal de Saúde de Feira de Santana, Divisão de Vigilância Epidemiológica, Feira de Santana 44027-010, Brazil; (M.F.); (N.d.J.)
| | - Melissa Falcão
- Secretaria de Municipal de Saúde de Feira de Santana, Divisão de Vigilância Epidemiológica, Feira de Santana 44027-010, Brazil; (M.F.); (N.d.J.)
| | - Neuza de Jesus
- Secretaria de Municipal de Saúde de Feira de Santana, Divisão de Vigilância Epidemiológica, Feira de Santana 44027-010, Brazil; (M.F.); (N.d.J.)
| | - Erenilde Marques de Cerqueira
- Departamento de Saúde, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, Brazil; (M.M.d.L.); (E.M.d.C.)
| | | | | | | | - Carla de Oliveira
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
| | - Joilson Xavier
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (H.F.); (J.X.)
| | - Jorge Gomes Goulart Ferreira
- Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte 30380-420, Brazil; (J.G.G.F.); (F.R.Q.)
| | - Fábio Ribeiro Queiroz
- Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte 30380-420, Brazil; (J.G.G.F.); (F.R.Q.)
| | - Elise Smith
- Department of Immunology, University of Washington, Seattle, WA 98109, USA; (E.S.); (J.T.-G.); (M.G.J.)
| | - Jennifer Tisoncik-Go
- Department of Immunology, University of Washington, Seattle, WA 98109, USA; (E.S.); (J.T.-G.); (M.G.J.)
| | | | - Peter M. Rabinowitz
- Departments of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA;
| | | | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA 98109, USA; (E.S.); (J.T.-G.); (M.G.J.)
| | - Ana Maria Bispo de Filippis
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
| | - Luiz Carlos Junior Alcantara
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil;
- Climate Amplified Diseases and Epidemics (CLIMADE)—CLIMADE Americas, Belo Horizonte 30190-002, Brazil
| |
Collapse
|
8
|
Yuan M, Wan W, Xing W, Pu C, Wu X, Liao Z, Zhu X, Hu X, Li Z, Zhao Q, Zhao H, Xu X. Decoding the Immune Response and Its Biomarker B2M for High Altitude Pulmonary Edema in Rat: Implications for Diagnosis and Prognosis. J Inflamm Res 2024; 17:7195-7217. [PMID: 39411751 PMCID: PMC11476754 DOI: 10.2147/jir.s477633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose We aimed to investigate whether peripheral blood biomarkers B2M related to immune response can serve as indicators of HAPE pathophysiological characteristics or disease progression. Patients and Methods Bioinformatics technology was used to explore the peripheral blood pathophysiological mechanisms and immune hub genes related to the occurrence of HAPE. The hub gene was verified through animal experiments, and its function and correlation between its expression level and the diagnosis, treatment effect and prognosis of HAPE were explored. Results The GSVA results showed that the occurrence of HAPE was related to the down-regulation of immune response pathways by RUNX3 and STING. WGCNA results showed that the peripheral blood immune gene module related to the development of HAPE was related to the decrease of immune function and the increase of immune checkpoint molecule PD-L1 gene expression, and the expression of immune checkpoint genes LILRB2 and SIGLEC15 increased. Cytoscape software, RT-qPCR and WB confirmed that the hub gene B2M is a specific peripheral blood biomarker of HAPE. ROC, DCA, RT-qPCR, HE and Masson results showed that the expression of peripheral blood B2M has the ability to indicate the diagnosis, treatment effect and prognosis of HAPE. The decreased expression of B2M protein in peripheral blood leukocytes may be a marker of HAPE. Single-gene GSEA confirmed that the reduced expression of B2M in peripheral blood may be involved in the down-regulation of the antigen presentation pathway mediated by MHC class I molecules, was positively correlated with the down-regulation of the TNF signaling pathway, and was negatively correlated with the expression of LILRB2 and SIGLEC15. Conclusion The occurrence of HAPE may be related to decreased immune function and immune tolerance. Peripheral blood B2M may be involved in the related pathways, its expression level can prompt the diagnosis, treatment and prognosis of HAPE.
Collapse
Affiliation(s)
- Mu Yuan
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Weijun Wan
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Wei Xing
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Chengxiu Pu
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Xiaofeng Wu
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Zhikang Liao
- Research Department Fourth Laboratory, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Xiyan Zhu
- Research Department Fourth Laboratory, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Xueting Hu
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Zhan Li
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Qing Zhao
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Hui Zhao
- Research Department Fourth Laboratory, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Xiang Xu
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| |
Collapse
|
9
|
Shen Y, Aly RSS, Chen T, Jiang H, Liu Y, Wang Y, Chen X. Short time-series expression transcriptome data reveal the gene expression patterns and potential biomarkers of blood infection with LPS and poly (I:C) in Mandarin fish (Siniperca chuatsi). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109806. [PMID: 39102971 DOI: 10.1016/j.fsi.2024.109806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/13/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Blood transcriptomics has emerged as a vital tool for tracking the immune system and supporting disease diagnosis, prognosis, treatment, and research. The present study was conducted to analyze the gene expression profile and potential biomarker candidates using the whole blood of mandarin fish (Siniperca chuatsi) infected with LPS or poly (I:C) at 0 h, 3 h, 6 h, and 12 h. Our data suggest that 310 shared differentially expressed genes (DEGs) were identified among each comparison group after LPS infection, and 137 shared DEGs were identified after poly (I:C) infection. A total of 62 shared DEGs were differentially expressed in all compared groups after LPS or poly (I:C) infection. Pathways analysis for DEGs in all different compared groups showed that cytokine-cytokine receptor interaction was the most enrichment pathway. The expression levels of genes C-X-C chemokine receptor type 2-like (cxcr2), chemokine (C-C motif) receptor 9a (ccr9a), chemokine (C-C motif) receptor 9b (ccr9b), chemokine (C-X-C motif) receptor 4b (cxcr4b), and interleukin 10 receptor alpha (il10ra) were significantly different in all compared groups and most enriched in cytokine-cytokine receptor interaction pathway. The protein-protein interactions analysis among all shared DEGs showed that cxcr4 was the hub gene with the highest degree. The biomarker candidates discovered in this study may, following validation, prove effective as diagnostic tools in monitoring mandarin fish diseases.
Collapse
Affiliation(s)
- Yawei Shen
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China; Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Rahma Sakina Said Aly
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Tiantian Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hewei Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yufei Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yongxiang Wang
- Huangshan Fisheries Station, Huangshan 245000, Anhui, China
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
10
|
Ping S, Xuehu M, Chunli H, Xue F, Yanhao A, Yun M, Yanfen M. Multiomics reveals blood differential metabolites and differential genes in the early onset of ketosis in dairy cows. Genomics 2024; 116:110927. [PMID: 39187030 DOI: 10.1016/j.ygeno.2024.110927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Ketosis-a metabolic state characterized by elevated levels of ketone bodies in the blood or urine-reduces the performance and health of dairy cows and causes substantial economic losses for the dairy industry. Currently, beta-hydroxybutyric acid is the gold standard for determining ketosis in cows; however, as this method is only applicable postpartum, it is not conducive to the early intervention of ketosis in dairy cows. In this study, the sera of dry, periparturient, postpartum ketotic, and healthy cows were analyzed by both transcriptomics and metabolomics techniques. Moreover, changes of gene expression and metabolites were observed, and serum physiological and biochemical indexes were detected by ELISA. The purpose was to screen biomarkers that can be used to detect the incidence of dry or periparturient ketosis in cows. The results showed that ketotic cows had increased levels of glycolipid metabolism indexes, oxidizing factors, and inflammatory factors during dry periods and liver damage, which could be used as early biomarkers to predict the onset of ketosis. Transcriptomic results yielded 20 differentially expressed genes (DEGs) between ketotic and healthy cows during dry, peripartum, and postpartum periods. GO and KEGG enrichment analyses indicated that these DEGs were involved in amino acid metabolism, energy metabolism, and disease-related signaling pathways. The metabolomics sequencing results showed that ketotic cows mainly showed enrichment in tricarboxylic acid cycle, butyric acid metabolism, carbon metabolism, lysine degradation, fatty acid degradation, and other signaling pathways. Metabolites differed between ketotic and healthy cows in dry, pre-parturition, and post-parturition periods. Combined transcriptomics and metabolomics analyses identified significant enrichment in the glucagon signaling pathway and the lysine degradation signaling pathway in dry, periparturient, and postpartum ketotic cows. PRKAB2 and SETMAR-key DEGs of the glucagon signaling pathway and lysine degradation signaling pathway, respectively-can be used as key marker genes for determining the early onset of ketosis in dairy cows.
Collapse
Affiliation(s)
- Sha Ping
- College of Animal Science and Technology, Ningxia Hui Autonomous Region Key Laboratory of Ruminant Molecular Cell and Breeding, Ningxia University, Yinchuan 750021, China
| | - Ma Xuehu
- College of Animal Science and Technology, Ningxia Hui Autonomous Region Key Laboratory of Ruminant Molecular Cell and Breeding, Ningxia University, Yinchuan 750021, China
| | - Hu Chunli
- College of Animal Science and Technology, Ningxia Hui Autonomous Region Key Laboratory of Ruminant Molecular Cell and Breeding, Ningxia University, Yinchuan 750021, China
| | - Feng Xue
- College of Animal Science and Technology, Ningxia Hui Autonomous Region Key Laboratory of Ruminant Molecular Cell and Breeding, Ningxia University, Yinchuan 750021, China
| | - An Yanhao
- College of Animal Science and Technology, Ningxia Hui Autonomous Region Key Laboratory of Ruminant Molecular Cell and Breeding, Ningxia University, Yinchuan 750021, China
| | - Ma Yun
- College of Animal Science and Technology, Ningxia Hui Autonomous Region Key Laboratory of Ruminant Molecular Cell and Breeding, Ningxia University, Yinchuan 750021, China
| | - Ma Yanfen
- College of Animal Science and Technology, Ningxia Hui Autonomous Region Key Laboratory of Ruminant Molecular Cell and Breeding, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
11
|
Limardi PC, Panigoro SS, Siregar NC, Sutandyo N, Witjaksono F, Priliani L, Oktavianthi S, Malik SG. Higher peripheral blood mitochondrial DNA copy number and relative telomere length in under 48 years Indonesian breast cancer patients. BMC Res Notes 2024; 17:120. [PMID: 38679744 PMCID: PMC11057172 DOI: 10.1186/s13104-024-06783-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/18/2024] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVE Breast cancer is the leading cause of cancer incidence and mortality among Indonesian women. A comprehensive investigation is required to enhance the early detection of this disease. Mitochondrial DNA copy number (mtDNA-CN) and relative telomere length (RTL) have been proposed as potential biomarkers for several cancer risks, as they are linked through oxidative stress mechanisms. We conducted a case-control study to examine peripheral blood mtDNA-CN and RTL patterns in Indonesian breast cancer patients (n = 175) and healthy individuals (n = 181). The relative ratios of mtDNA-CN and RTL were determined using quantitative real-time PCR (qPCR). RESULTS Median values of mtDNA-CN and RTL were 1.62 and 0.70 in healthy subjects and 1.79 and 0.73 in breast cancer patients, respectively. We found a positive association between peripheral blood mtDNA-CN and RTL (p < 0.001). In under 48 years old breast cancer patients, higher peripheral blood mtDNA-CN (mtDNA-CN ≥ 1.73 (median), p = 0.009) and RTL (continuous variable, p = 0.010) were observed, compared to the corresponding healthy subjects. We also found a significantly higher 'High-High' pattern of mtDNA-CN and RTL in breast cancer patients under 48 years old (p = 0.011). Our findings suggest that peripheral blood mtDNA-CN and RTL could serve as additional minimally invasive biomarkers for breast cancer risk evaluation.
Collapse
Affiliation(s)
- Prisca C Limardi
- Master's Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Genome Diversity and Diseases Division, Mochtar Riady Institute for Nanotechnology, Jl. Boulevard Jenderal Sudirman 1688, Lippo Karawaci, Tangerang, Banten, 15811, Indonesia
| | - Sonar Soni Panigoro
- Department of Surgical Oncology, Dr. Cipto Mangunkusumo Hospital-Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Nurjati Chairani Siregar
- Department of Anatomical Pathology, Dr. Cipto Mangunkusumo Hospital-Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Noorwati Sutandyo
- Department of Hematology and Medical Oncology, Dharmais Hospital National Cancer Center, Jakarta, Indonesia
| | - Fiastuti Witjaksono
- Department of Nutrition, Dr. Cipto Mangunkusumo Hospital-Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Lidwina Priliani
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Genome Diversity and Diseases Division, Mochtar Riady Institute for Nanotechnology, Jl. Boulevard Jenderal Sudirman 1688, Lippo Karawaci, Tangerang, Banten, 15811, Indonesia
| | - Sukma Oktavianthi
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Genome Diversity and Diseases Division, Mochtar Riady Institute for Nanotechnology, Jl. Boulevard Jenderal Sudirman 1688, Lippo Karawaci, Tangerang, Banten, 15811, Indonesia
| | - Safarina G Malik
- Master's Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia.
- Genome Diversity and Diseases Division, Mochtar Riady Institute for Nanotechnology, Jl. Boulevard Jenderal Sudirman 1688, Lippo Karawaci, Tangerang, Banten, 15811, Indonesia.
| |
Collapse
|
12
|
Chen Q, Guo X, Wang H, Sun S, Jiang H, Zhang P, Shang E, Zhang R, Cao Z, Niu Q, Zhang C, Liu Y, Shi L, Yu Y, Hou W, Zheng Y. Plasma-Free Blood as a Potential Alternative to Whole Blood for Transcriptomic Analysis. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:109-124. [PMID: 38884056 PMCID: PMC11169349 DOI: 10.1007/s43657-023-00121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 06/18/2024]
Abstract
RNA sequencing (RNAseq) technology has become increasingly important in precision medicine and clinical diagnostics, and emerged as a powerful tool for identifying protein-coding genes, performing differential gene analysis, and inferring immune cell composition. Human peripheral blood samples are widely used for RNAseq, providing valuable insights into individual biomolecular information. Blood samples can be classified as whole blood (WB), plasma, serum, and remaining sediment samples, including plasma-free blood (PFB) and serum-free blood (SFB) samples that are generally considered less useful byproducts during the processes of plasma and serum separation, respectively. However, the feasibility of using PFB and SFB samples for transcriptome analysis remains unclear. In this study, we aimed to assess the suitability of employing PFB or SFB samples as an alternative RNA source in transcriptomic analysis. We performed a comparative analysis of WB, PFB, and SFB samples for different applications. Our results revealed that PFB samples exhibit greater similarity to WB samples than SFB samples in terms of protein-coding gene expression patterns, detection of differentially expressed genes, and immunological characterizations, suggesting that PFB can serve as a viable alternative to WB for transcriptomic analysis. Our study contributes to the optimization of blood sample utilization and the advancement of precision medicine research. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00121-1.
Collapse
Affiliation(s)
- Qingwang Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Xiaorou Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Haiyan Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Shanyue Sun
- Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021 China
| | - He Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Peipei Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Erfei Shang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Ruolan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Zehui Cao
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Quanne Niu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Chao Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Yaqing Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
- The International Human Phenome Institutes, Shanghai, 200438 China
| | - Ying Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Wanwan Hou
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| |
Collapse
|
13
|
Jang WJ, Lee S, Jeong CH. Uncovering transcriptomic biomarkers for enhanced diagnosis of methamphetamine use disorder: a comprehensive review. Front Psychiatry 2024; 14:1302994. [PMID: 38260797 PMCID: PMC10800441 DOI: 10.3389/fpsyt.2023.1302994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Methamphetamine use disorder (MUD) is a chronic relapsing disorder characterized by compulsive Methamphetamine (MA) use despite its detrimental effects on physical, psychological, and social well-being. The development of MUD is a complex process that involves the interplay of genetic, epigenetic, and environmental factors. The treatment of MUD remains a significant challenge, with no FDA-approved pharmacotherapies currently available. Current diagnostic criteria for MUD rely primarily on self-reporting and behavioral assessments, which have inherent limitations owing to their subjective nature. This lack of objective biomarkers and unidimensional approaches may not fully capture the unique features and consequences of MA addiction. Methods We performed a literature search for this review using the Boolean search in the PubMed database. Results This review explores existing technologies for identifying transcriptomic biomarkers for MUD diagnosis. We examined non-invasive tissues and scrutinized transcriptomic biomarkers relevant to MUD. Additionally, we investigated transcriptomic biomarkers identified for diagnosing, predicting, and monitoring MUD in non-invasive tissues. Discussion Developing and validating non-invasive MUD biomarkers could address these limitations, foster more precise and reliable diagnostic approaches, and ultimately enhance the quality of care for individuals with MA addiction.
Collapse
Affiliation(s)
| | | | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
14
|
Amente LD, Mills NT, Le TD, Hyppönen E, Lee SH. Unraveling phenotypic variance in metabolic syndrome through multi-omics. Hum Genet 2024; 143:35-47. [PMID: 38095720 DOI: 10.1007/s00439-023-02619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/18/2023] [Indexed: 01/19/2024]
Abstract
Complex multi-omics effects drive the clustering of cardiometabolic risk factors, underscoring the imperative to comprehend how individual and combined omics shape phenotypic variation. Our study partitions phenotypic variance in metabolic syndrome (MetS), blood glucose (GLU), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and blood pressure through genome, transcriptome, metabolome, and exposome (i.e., lifestyle exposome) analyses. Our analysis included a cohort of 62,822 unrelated individuals with white British ancestry, sourced from the UK biobank. We employed linear mixed models to partition phenotypic variance using the restricted maximum likelihood (REML) method, implemented in MTG2 (v2.22). We initiated the analysis by individually modeling omics, followed by subsequent integration of pairwise omics in a joint model that also accounted for the covariance and interaction between omics layers. Finally, we estimated the correlations of various omics effects between the phenotypes using bivariate REML. Significant proportions of the MetS variance were attributed to distinct data sources: genome (9.47%), transcriptome (4.24%), metabolome (14.34%), and exposome (3.77%). The phenotypic variances explained by the genome, transcriptome, metabolome, and exposome ranged from 3.28% for GLU to 25.35% for HDL-C, 0% for GLU to 19.34% for HDL-C, 4.29% for systolic blood pressure (SBP) to 35.75% for TG, and 0.89% for GLU to 10.17% for HDL-C, respectively. Significant correlations were found between genomic and transcriptomic effects for TG and HDL-C. Furthermore, significant interaction effects between omics data were detected for both MetS and its components. Interestingly, significant correlation of omics effect between the phenotypes was found. This study underscores omics' roles, interaction effects, and random-effects covariance in unveiling phenotypic variation in multi-omics domains.
Collapse
Affiliation(s)
- Lamessa Dube Amente
- Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia.
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA, 5000, Australia.
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.
| | - Natalie T Mills
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Thuc Duy Le
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Elina Hyppönen
- Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - S Hong Lee
- Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia.
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA, 5000, Australia.
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.
| |
Collapse
|
15
|
Singh DN, Daripelli S, Elamin Bushara MO, Polevoy GG, Prasanna M. Genetic Testing for Successful Cancer Treatment. Cureus 2023; 15:e49889. [PMID: 38179395 PMCID: PMC10765765 DOI: 10.7759/cureus.49889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Cancer genetic testing is a revolutionary medical approach that involves the assessment of genetic markers in asymptomatic individuals to predict their future susceptibility to cancer. This paradigm shift in early detection and intervention has the potential to profoundly alter our strategies for cancer prevention and treatment. One pivotal area where genetic testing can have a significant impact is among families with a hereditary predisposition to cancer. Recent research has seen a surge in the exploration of how individuals perceive their cancer risk within the realm of cancer genetics. This proactive approach to genetic testing allows healthcare professionals to identify family members who may carry the same cancer-related genetic mutations, empowering them to make informed decisions regarding their healthcare and cancer risk management. Genetic testing for cancer-related disorders has significantly improved in accuracy and affordability, potentially revolutionizing monitoring and treatment methods. The expanding knowledge of genetic mutations associated with cancer susceptibility has driven significant progress in cancer therapy. Identifying numerous major cancer susceptibility genes has propelled predictive genetic testing, providing individuals with valuable insights into their genetic predisposition to cancer. While perceived risk plays a vital role in genetic counseling, it is equally essential to offer comprehensive information about the advantages and potential risks associated with genetic testing. Ensuring that individuals have a clear understanding of the benefits and potential drawbacks of genetic testing is imperative for making informed healthcare decisions. In our comprehensive review, researchers explored several critical aspects of genetic testing in the context of cancer, including awareness and knowledge, the communication of cancer genetic risk, genetic testing for inherited cancer syndromes, and the challenges and limitations linked to genetic testing. Through this examination, we aim to illuminate the transformative potential of genetic testing in cancer prevention and treatment.
Collapse
Affiliation(s)
- Desh Nidhi Singh
- Microbiology, Rama Medical College Hospital & Research Centre, Kanpur, IND
| | - Sushma Daripelli
- Anatomy, Government Medical College (GMC) Jangaon, Jangaon, IND
- Anatomy, Gandhi Medical College, Hyderabad, IND
- Anatomy, All India Institute of Medical Sciences, Bibinagar, Bibinagar, IND
| | | | | | - Muthu Prasanna
- Pharmaceutics and Pharmaceutical Biotechnology, Surya School of Pharmacy, Surya Group of Educational Institutions, Villupuram, IND
| |
Collapse
|
16
|
Zhang Y, Wang JW, Su X, Li JE, Wei XF, Yang JR, Gao S, Fan YC, Wang K. F-box protein 43 promoter methylation as a novel biomarker for hepatitis B virus-associated hepatocellular carcinoma. Front Microbiol 2023; 14:1267844. [PMID: 38029156 PMCID: PMC10652413 DOI: 10.3389/fmicb.2023.1267844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) has a high prevalence and poor prognosis worldwide. Therefore, it is urgent to find effective and timely diagnostic markers. The objective of this study was to evaluate the diagnostic value of F-box protein 43 promoter methylation in peripheral blood mononuclear cells (PBMCs) for HCC. METHOD A total of 247 participants were included in this study, comprising individuals with 123 hepatitis B virus-associated HCC, 79 chronic hepatitis B, and 45 healthy controls. F-box protein 43 methylation and mRNA levels in PBMCs were detected by MethyLight and quantitative real-time PCR. RESULT F-box protein 43 promoter methylation levels were significantly lower in HCC PBMCs than the chronic hepatitis B (P < 0.001) and healthy control PBMCs (P < 0.001). Relative mRNA expression levels of F-box protein 43 in HCC PBMCs were significantly higher than those in chronic hepatitis B (P < 0.001) and healthy control PBMCs (P < 0.001). Receiver operating characteristic analysis of F-box protein 43 promoter methylation levels yielded an area under curve (AUC) of 0.793 with 76.42% sensitivity and 68.35% specificity when differentiating HCC from chronic hepatitis. These values for the F-box protein 43 promoter methylation level were superior to those of the alpha-fetoprotein serum (AFP) level (AUC: 0.780, sensitivity: 47.97%, and specificity: 96.20%), with increments in values for the combination of F-box protein 43 promoter methylation AFP levels (AUC: 0.888, sensitivity: 76.42%, and specificity: 86.08%). CONCLUSION Hypomethylation of the F-box protein 43 promoter in PBMCs is a promising biochemical marker for HBV-associated HCC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing-Wei Wang
- Department of Hepatology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Xing Su
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jin-E Li
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Xue-Fei Wei
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie-Ru Yang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Hepatology Institute of Shandong University, Shandong University, Jinan, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Hepatology Institute of Shandong University, Shandong University, Jinan, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Department of Hepatology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
- Hepatology Institute of Shandong University, Shandong University, Jinan, China
| |
Collapse
|
17
|
Kertz NC, Banerjee P, Dyce PW, Diniz WJS. Harnessing Genomics and Transcriptomics Approaches to Improve Female Fertility in Beef Cattle-A Review. Animals (Basel) 2023; 13:3284. [PMID: 37894009 PMCID: PMC10603720 DOI: 10.3390/ani13203284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Female fertility is the foundation of the cow-calf industry, impacting both efficiency and profitability. Reproductive failure is the primary reason why beef cows are sold in the U.S. and the cause of an estimated annual gross loss of USD 2.8 billion. In this review, we discuss the status of the genomics, transcriptomics, and systems genomics approaches currently applied to female fertility and the tools available to cow-calf producers to maximize genetic progress. We highlight the opportunities and limitations associated with using genomic and transcriptomic approaches to discover genes and regulatory mechanisms related to beef fertility. Considering the complex nature of fertility, significant advances in precision breeding will rely on holistic, multidisciplinary approaches to further advance our ability to understand, predict, and improve reproductive performance. While these technologies have advanced our knowledge, the next step is to translate research findings from bench to on-farm applications.
Collapse
|
18
|
Shvetcov A, Thomson S, Spathos J, Cho AN, Wilkins HM, Andrews SJ, Delerue F, Couttas TA, Issar JK, Isik F, Kaur S, Drummond E, Dobson-Stone C, Duffy SL, Rogers NM, Catchpoole D, Gold WA, Swerdlow RH, Brown DA, Finney CA. Blood-Based Transcriptomic Biomarkers Are Predictive of Neurodegeneration Rather Than Alzheimer's Disease. Int J Mol Sci 2023; 24:15011. [PMID: 37834458 PMCID: PMC10573468 DOI: 10.3390/ijms241915011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
Alzheimer's disease (AD) is a growing global health crisis affecting millions and incurring substantial economic costs. However, clinical diagnosis remains challenging, with misdiagnoses and underdiagnoses being prevalent. There is an increased focus on putative, blood-based biomarkers that may be useful for the diagnosis as well as early detection of AD. In the present study, we used an unbiased combination of machine learning and functional network analyses to identify blood gene biomarker candidates in AD. Using supervised machine learning, we also determined whether these candidates were indeed unique to AD or whether they were indicative of other neurodegenerative diseases, such as Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Our analyses showed that genes involved in spliceosome assembly, RNA binding, transcription, protein synthesis, mitoribosomes, and NADH dehydrogenase were the best-performing genes for identifying AD patients relative to cognitively healthy controls. This transcriptomic signature, however, was not unique to AD, and subsequent machine learning showed that this signature could also predict PD and ALS relative to controls without neurodegenerative disease. Combined, our results suggest that mRNA from whole blood can indeed be used to screen for patients with neurodegeneration but may be less effective in diagnosing the specific neurodegenerative disease.
Collapse
Affiliation(s)
- Artur Shvetcov
- Department of Psychological Medicine, Sydney Children’s Hospitals Network, Sydney, NSW 2031, Australia
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shannon Thomson
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Jessica Spathos
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Ann-Na Cho
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Heather M. Wilkins
- University of Kansas Alzheimer’s Disease Research Centre, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Centre, Kansas City, KS 66160, USA
- Department of Neurology, University of Kansas Medical Centre, Kansas City, KS 66160, USA
| | - Shea J. Andrews
- Department of Psychiatry & Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Fabien Delerue
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Timothy A. Couttas
- Brain and Mind Centre, Translational Research Collective, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Jasmeen Kaur Issar
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Medical Research Institute, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Finula Isik
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Simranpreet Kaur
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Department of Pediatrics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Eleanor Drummond
- School of Medical Sciences, Faculty of Medicine Health, The University of Sydney, Sydney, NSW 2050, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Carol Dobson-Stone
- School of Medical Sciences, Faculty of Medicine Health, The University of Sydney, Sydney, NSW 2050, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Shantel L. Duffy
- Allied Health, Research and Strategic Partnerships, Nepean Blue Mountains Local Health District, Penrith, NSW 2750, Australia
| | - Natasha M. Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- Renal and Transplant Medicine Unit, Westmead Hospital, Westmead, NSW 2145, Australia
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Daniel Catchpoole
- The Tumor Bank, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Children’s Cancer Research Institute, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Wendy A. Gold
- School of Medical Sciences, Faculty of Medicine Health, The University of Sydney, Sydney, NSW 2050, Australia
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Medical Research Institute, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Research Centre, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Centre, Kansas City, KS 66160, USA
- Department of Neurology, University of Kansas Medical Centre, Kansas City, KS 66160, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Centre, Kansas City, KS 66160, USA
| | - David A. Brown
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Department of Immunopathology, Institute for Clinical Pathology and Medical Research-New South Wales Health Pathology, Sydney, NSW 2145, Australia
| | - Caitlin A. Finney
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine Health, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
19
|
Duque C, So J, Castro-Sesquen YE, DeToy K, Gutierrez Guarnizo SA, Jahanbakhsh F, Machaca EM, Miranda-Schaeubinger M, Chakravarti I, Cooper V, Schmidt ME, Adamo L, Marcus R, Talaat KR, Gilman RH, Mugnier MR. Immunologic changes are detectable in the peripheral blood transcriptome of clinically asymptomatic Chagas cardiomyopathy patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560680. [PMID: 37873108 PMCID: PMC10592925 DOI: 10.1101/2023.10.03.560680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is a neglected parasitic disease that affects approximately 6 million individuals worldwide. Of those infected, 20-30% will go on to develop chronic Chagas cardiomyopathy (CCC), and ultimately many of these individuals will progress to advanced heart failure. The mechanism by which this progression occurs is poorly understood, as few studies have focused on early CCC. In this study, we sought to understand the physiologic changes associated with T. cruzi infection and the development of CCC. We analyzed gene expression in the peripheral blood of asymptomatic Chagas patients with early structural heart disease, Chagas patients without any signs or symptoms of disease, and Chagas-negative patients with and without early structural heart disease. Our analysis shows that early CCC was associated with a downregulation of various peripheral immune response genes, with gene expression changes suggestive of reduced antigen presentation and T cell activation. Notably, these genes and processes were distinct from those of early cardiomyopathy in Chagas-negative patients, suggesting that the processes mediating CCC may be unique from those mediating progression to other cardiomyopathies. This work highlights the importance of the immune response in early CCC, providing insight into the early pathogenesis of this disease. The changes we have identified may serve as biomarkers of progression and could inform strategies for the treatment of CCC in its early stages, before significant cardiac damage has occurred.
Collapse
Affiliation(s)
- Carolina Duque
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jaime So
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yagahira E Castro-Sesquen
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kelly DeToy
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Fatemeh Jahanbakhsh
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Edith Malaga Machaca
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Monica Miranda-Schaeubinger
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Indira Chakravarti
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Virginia Cooper
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Mary E Schmidt
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Luigi Adamo
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rachel Marcus
- MedStar Washington Hospital Center, Washington, D.C., USA
| | - Kawsar R Talaat
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Robert H Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Monica R Mugnier
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Sekita A, Kawasaki H, Fukushima-Nomura A, Yashiro K, Tanese K, Toshima S, Ashizaki K, Miyai T, Yazaki J, Kobayashi A, Namba S, Naito T, Wang QS, Kawakami E, Seita J, Ohara O, Sakurada K, Okada Y, Amagai M, Koseki H. Multifaceted analysis of cross-tissue transcriptomes reveals phenotype-endotype associations in atopic dermatitis. Nat Commun 2023; 14:6133. [PMID: 37783685 PMCID: PMC10545679 DOI: 10.1038/s41467-023-41857-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
Atopic dermatitis (AD) is a skin disease that is heterogeneous both in terms of clinical manifestations and molecular profiles. It is increasingly recognized that AD is a systemic rather than a local disease and should be assessed in the context of whole-body pathophysiology. Here we show, via integrated RNA-sequencing of skin tissue and peripheral blood mononuclear cell (PBMC) samples along with clinical data from 115 AD patients and 14 matched healthy controls, that specific clinical presentations associate with matching differential molecular signatures. We establish a regression model based on transcriptome modules identified in weighted gene co-expression network analysis to extract molecular features associated with detailed clinical phenotypes of AD. The two main, qualitatively differential skin manifestations of AD, erythema and papulation are distinguished by differential immunological signatures. We further apply the regression model to a longitudinal dataset of 30 AD patients for personalized monitoring, highlighting patient heterogeneity in disease trajectories. The longitudinal features of blood tests and PBMC transcriptome modules identify three patient clusters which are aligned with clinical severity and reflect treatment history. Our approach thus serves as a framework for effective clinical investigation to gain a holistic view on the pathophysiology of complex human diseases.
Collapse
Affiliation(s)
- Aiko Sekita
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Kawasaki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | | | - Kiyoshi Yashiro
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Keiji Tanese
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Susumu Toshima
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Ashizaki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, Tokyo, Japan
| | - Tomohiro Miyai
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Junshi Yazaki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Atsuo Kobayashi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shinichi Namba
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Naito
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Qingbo S Wang
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiryo Kawakami
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, Tokyo, Japan
- Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jun Seita
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, Tokyo, Japan
| | | | - Kazuhiro Sakurada
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, Tokyo, Japan
- Department of Extended Intelligence for Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yukinori Okada
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan.
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Masayuki Amagai
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan.
| | - Haruhiko Koseki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Cellular and Molecular Medicine, Advanced Research Departments, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
21
|
Gonzales EL, Jeon SJ, Han KM, Yang SJ, Kim Y, Remonde CG, Ahn TJ, Ham BJ, Shin CY. Correlation between immune-related genes and depression-like features in an animal model and in humans. Brain Behav Immun 2023; 113:29-43. [PMID: 37379963 DOI: 10.1016/j.bbi.2023.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/01/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
A growing body of evidence suggests that immune-related genes play pivotal roles in the pathophysiology of depression. In the present study, we investigated a plausible connection between gene expression, DNA methylation, and brain structural changes in the pathophysiology of depression using a combined approach of murine and human studies. We ranked the immobility behaviors of 30 outbred Crl:CD1 (ICR) mice in the forced swim test (FST) and harvested their prefrontal cortices for RNA sequencing. Of the 24,532 analyzed genes, 141 showed significant correlations with FST immobility time, as determined through linear regression analysis with p ≤ 0.01. The identified genes were mostly involved in immune responses, especially interferon signaling pathways. Moreover, induction of virus-like neuroinflammation in the brains of two separate mouse cohorts (n = 30 each) using intracerebroventricular polyinosinic:polycytidylic acid injection resulted in increased immobility during FST and similar expression of top immobility-correlated genes. In human blood samples, candidate gene (top 5%) expression profiling using DNA methylation analysis found the interferon-related USP18 (cg25484698, p = 7.04 × 10-11, Δβ = 1.57 × 10-2; cg02518889, p = 2.92 × 10-3, Δβ = - 8.20 × 10-3) and IFI44 (cg07107453, p = 3.76 × 10-3, Δβ = - 4.94 × 10-3) genes to be differentially methylated between patients with major depressive disorder (n = 350) and healthy controls (n = 161). Furthermore, cortical thickness analyses using T1-weighted images revealed that the DNA methylation scores for USP18 were negatively correlated with the thicknesses of several cortical regions, including the prefrontal cortex. Our results reveal the important role of the interferon pathway in depression and suggest USP18 as a potential candidate target. The results of the correlation analysis between transcriptomic data and animal behavior carried out in this study provide insights that could enhance our understanding of depression in humans.
Collapse
Affiliation(s)
- Edson Luck Gonzales
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Se Jin Jeon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea; Department of Integrative Biotechnology, College of Science and Technology, Sahmyook University, Seoul 01795, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Seung Jin Yang
- Department of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Yujeong Kim
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Chilly Gay Remonde
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae Jin Ahn
- Department of Life Science, Handong Global University, Pohang 37554, Republic of Korea.
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
22
|
O'Connell GC. Variability in donor leukocyte counts confound the use of common RNA sequencing data normalization strategies in transcriptomic biomarker studies performed with whole blood. Sci Rep 2023; 13:15514. [PMID: 37726353 PMCID: PMC10509252 DOI: 10.1038/s41598-023-41443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/26/2023] [Indexed: 09/21/2023] Open
Abstract
Gene expression data generated from whole blood via next generation sequencing is frequently used in studies aimed at identifying mRNA-based biomarker panels with utility for diagnosis or monitoring of human disease. These investigations often employ data normalization techniques more typically used for analysis of data originating from solid tissues, which largely operate under the general assumption that specimens have similar transcriptome composition. However, this assumption may be violated when working with data generated from whole blood, which is more cellularly dynamic, leading to potential confounds. In this study, we used next generation sequencing in combination with flow cytometry to assess the influence of donor leukocyte counts on the transcriptional composition of whole blood specimens sampled from a cohort of 138 human subjects, and then subsequently examined the effect of four frequently used data normalization approaches on our ability to detect inter-specimen biological variance, using the flow cytometry data to benchmark each specimens true cellular and molecular identity. Whole blood samples originating from donors with differing leukocyte counts exhibited dramatic differences in both genome-wide distributions of transcript abundance and gene-level expression patterns. Consequently, three of the normalization strategies we tested, including median ratio (MRN), trimmed mean of m-values (TMM), and quantile normalization, noticeably masked the true biological structure of the data and impaired our ability to detect true interspecimen differences in mRNA levels. The only strategy that improved our ability to detect true biological variance was simple scaling of read counts by sequencing depth, which unlike the aforementioned approaches, makes no assumptions regarding transcriptome composition.
Collapse
Affiliation(s)
- Grant C O'Connell
- Molecular Biomarker Core, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4904, USA.
- School of Nursing, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
23
|
Wang W, Xu L, Cao Y, Liu G, Lin Q, Mao X. Transcriptomic and Metabolomic Changes Reveal the Immunomodulatory Function of Casein Phosphopeptide-Selenium Chelate in Beagle Dogs. Vet Sci 2023; 10:vetsci10050345. [PMID: 37235428 DOI: 10.3390/vetsci10050345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Casein phosphopeptide-selenium chelate (CPP-Se) is an organic compound produced by the chelation of casein phosphopeptide with selenium. This compound showed the ability to modulate canine immune response in our previous study; but its effect on the peripheral blood transcriptome and serum metabolome was unknown. This study aims to reveal the potential mechanism behind the immunomodulatory function of CPP-Se. We have identified 341 differentially expressed genes (DEGs) in CPP-Se groups as compared to the control group which comprised 110 up-regulated and 231 down-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis found that DEGs were mainly involved in immune-related signaling pathways. Moreover, the immune-related DEGs and hub genes were identified. Similarly, metabolomics identified 53 differentially expressed metabolites (DEMs) in the CPP-Se group, of which 17 were up-regulated and 36 were down-regulated. The pathways mainly enriched by DEMs were primary bile acid biosynthesis, tryptophan metabolism, and other amino acids metabolic pathways. Combined analysis of transcriptomic and metabolomic data showed that the DEGs and DEMs were commonly enriched in fatty acid biosynthesis, pyrimidine metabolism, glutathione metabolism, and glycerolipid metabolic pathways. Taken together, our findings provided a theoretical basis for further understanding of the immunomodulatory function of CPP-Se as well as a scientific reference for the future use of CPP-Se in pet foods as a dietary supplement to modulate the immunity.
Collapse
Affiliation(s)
- Wencan Wang
- Chongqing Sweet Pet Products Co., Ltd., Chongqing 400000, China
| | - Ling Xu
- Chongqing Sweet Pet Products Co., Ltd., Chongqing 400000, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianru Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin Mao
- Chongqing Sweet Pet Products Co., Ltd., Chongqing 400000, China
| |
Collapse
|
24
|
Qi D, Geng Y, Cardenas J, Gu J, Yi SS, Huang JH, Fonkem E, Wu E. Transcriptomic analyses of patient peripheral blood with hemoglobin depletion reveal glioblastoma biomarkers. NPJ Genom Med 2023; 8:2. [PMID: 36697401 PMCID: PMC9877004 DOI: 10.1038/s41525-022-00348-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023] Open
Abstract
Peripheral blood is gaining prominence as a noninvasive alternative to tissue biopsy to develop biomarkers for glioblastoma (GBM); however, widely utilized blood-based biomarkers in clinical settings have not yet been identified due to the lack of a robust detection approach. Here, we describe the application of globin reduction in RNA sequencing of whole blood (i.e., WBGR) and perform transcriptomic analysis to identify GBM-associated transcriptomic changes. By using WBGR, we improved the detection sensitivity of informatic reads and identified differential gene expression in GBM blood. By analyzing tumor tissues, we identified transcriptomic traits of GBM blood. Further functional enrichment analyses retained the most changed genes in GBM. Subsequent validation elicited a 10-gene panel covering mRNA, long noncoding RNA, and microRNA (i.e., GBM-Dx panel) that has translational potential to aid in the early detection or clinical management of GBM. Here, we report an integrated approach, WBGR, with comprehensive analytic capacity for blood-based marker identification.
Collapse
Affiliation(s)
- Dan Qi
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, 76508, USA
| | - Yiqun Geng
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, 76508, USA
- Laboratory of Molecular Pathology, Shantou University Medical College, 515041, Shantou, China
| | - Jacob Cardenas
- Baylor Scott & White Research Institute, Dallas, TX, 75204, USA
| | - Jinghua Gu
- Baylor Scott & White Research Institute, Dallas, TX, 75204, USA
| | - S Stephen Yi
- Institute for Cellular and Molecular Biology (ICMB), College of Natural Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Oncology, LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jason H Huang
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, 76508, USA.
- Texas A & M University School of Medicine, Temple, TX, 76508, USA.
| | - Ekokobe Fonkem
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, 76508, USA.
- Texas A & M University School of Medicine, Temple, TX, 76508, USA.
| | - Erxi Wu
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, 76508, USA.
- Department of Oncology, LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA.
- Texas A & M University School of Medicine, Temple, TX, 76508, USA.
- Texas A & M University School of Pharmacy, College Station, TX, 77843, USA.
| |
Collapse
|
25
|
Boisseau M, Dhorne-Pollet S, Bars-Cortina D, Courtot É, Serreau D, Annonay G, Lluch J, Gesbert A, Reigner F, Sallé G, Mach N. Species interactions, stability, and resilience of the gut microbiota - Helminth assemblage in horses. iScience 2023; 26:106044. [PMID: 36818309 PMCID: PMC9929684 DOI: 10.1016/j.isci.2023.106044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/16/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The nature and strength of interactions entertained among helminths and their host gut microbiota remain largely unexplored. Using 40 naturally infected Welsh ponies, we tracked the gut microbiota-cyathostomin temporal dynamics and stability before and following anthelmintic treatment and the associated host blood transcriptomic response. High shedders harbored 14 species of cyathostomins, dominated by Cylicocyclus nassatus. They exhibited a highly diverse and temporal dynamic gut microbiota, with butyrate-producing Clostridia likely driving the ecosystem steadiness and host tolerance toward cyathostomins infection. However, anthelmintic administration sharply bent the microbial community. It disrupted the ecosystem stability and the time-dependent network of interactions, affecting longer term microbial resilience. These observations highlight how anthelmintic treatments alter the triangular relationship of parasite, host, and gut microbiota and open new perspectives for adding nutritional intervention to current parasite management strategies.
Collapse
Affiliation(s)
- Michel Boisseau
- , Université de Tours, INRAE, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly, France,IHAP, Université de Toulouse, INRAE, ENVT, 31076 Toulouse, France
| | - Sophie Dhorne-Pollet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - David Bars-Cortina
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Élise Courtot
- , Université de Tours, INRAE, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly, France
| | - Delphine Serreau
- , Université de Tours, INRAE, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly, France
| | - Gwenolah Annonay
- INRAE, US UMR 1426, Genomic platform, 31326 Castanet-Tolosan, France
| | - Jérôme Lluch
- INRAE, US UMR 1426, Genomic platform, 31326 Castanet-Tolosan, France
| | - Amandine Gesbert
- INRAE, UE Physiologie Animale de l’Orfrasière, 37380 Nouzilly, France
| | - Fabrice Reigner
- INRAE, UE Physiologie Animale de l’Orfrasière, 37380 Nouzilly, France
| | - Guillaume Sallé
- , Université de Tours, INRAE, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly, France,Corresponding author
| | - Núria Mach
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France,IHAP, Université de Toulouse, INRAE, ENVT, 31076 Toulouse, France,Corresponding author
| |
Collapse
|
26
|
Huang T, Lv Z, Cui K, Wang X, Zhang X, Yue B, Chu Y, Zhao K. Involvement of the E3 ubiquitin ligase Cblb in host defense and evaluation of transcriptome during Trueperella pyogenes infection. Microbes Infect 2023; 25:105104. [PMID: 36682520 DOI: 10.1016/j.micinf.2023.105104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
Trueperella pyogenes (T. pyogenes) is a versatile and ingenious bacterium that causes severe suppurative injuries in lots of economically important ruminants. The underlying pathogenesis of T. pyogenes infection remains poorly understood. In the current study, we performed transcriptome sequencing of mouse blood tissue infected with T. pyogenes. A total of 36.73 G clean data were collected, and 136 differentially expressed genes were obtained in the infection group compared to the control group. In addition, we found that the E3 ubiquitin ligase Cblb exhibited significant upregulation in the infection groups compared to the control group. Mechanistically, T. pyogenes infection markedly enhanced the expression of Cblb and regulated the host defense response. Inhibiting Cblb expression with Cblb siRNA impaired the inflammatory response and reduced the effect of phagocytosis in RAW264.7 murine macrophages. Intriguingly, overexpression of Cblb induced a strong inflammatory response and enhanced phagocytosis against T. pyogenes infection in macrophages. More importantly, the overexpression of Cblb significantly reduced the bacterial load and protected mice from the T. pyogenes infections. Therefore, our findings reveal that Cblb is a novel and potential regulator in response to T. pyogenes infection and shed new light on the development of promising treatments against T. pyogenes-related diseases.
Collapse
Affiliation(s)
- Ting Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of pharmacy, Chengdu University, Chengdu 610052, China.
| | - Zheng Lv
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of pharmacy, Chengdu University, Chengdu 610052, China.
| | - Kai Cui
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China.
| | - Xinrong Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of pharmacy, Chengdu University, Chengdu 610052, China.
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China.
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China.
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of pharmacy, Chengdu University, Chengdu 610052, China.
| | - Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of pharmacy, Chengdu University, Chengdu 610052, China.
| |
Collapse
|
27
|
Zhang H, Chen D, Ji Q, Yang M, Ding R. miR-146a-5p Promotes the Inflammatory Response in PBMCs Induced by Microcystin-Leucine-Arginine. J Inflamm Res 2023; 16:1979-1993. [PMID: 37193070 PMCID: PMC10182803 DOI: 10.2147/jir.s403945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
Background Microcystin-leucine-arginine (MC-LR) is the most abundant and most toxic variant of microcystin isomers. Various experiments have clearly shown that MC-LR has hepatotoxicity and carcinogenicity, but there are relatively few studies on its immune damage effect. In addition, numerous studies have shown that microRNAs (miRNAs) are involved in a wide range of biological processes. Do miRNAs also play a role in inflammatory response caused by microcystin exposure? This is the question to be answered in this study. Moreover, this study can also provides experimental evidence for the significance of miRNA applications. Objective To investigate the effect of MC-LR on the expressions of miR-146a and pro/anti-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs) and to further explore the role of miR-146a in the inflammatory responses caused by MC-LR. Methods Serum samples from 1789 medical examiners were collected and detect the concentrations of MCs, and 30 serum samples with concentrations of MCs around P25, P50, and p75 were randomly selected for the detection of inflammatory factors. PBMCs from fresh peripheral blood extracted from these 90 medical examiners were subsequently tested for relative miR-146a expression. In vitro, the MC-LR were exposed to the PBMCs to detect the levels of inflammatory factors as well as the relative expression of miR-146a-5p. Then, a miRNA transfection assay was performed to verify the regulation of inflammatory factors by miR-146a-5p. Results In population samples, the expression of inflammatory factors and miR-146a-5p increased with increasing MCs concentration. In vitro experiments showed that the expression of inflammatory factors and miR-146a-5p in PBMCs increased with MC-LR exposure time or exposure dose too. In addition, inhibiting the expression of miR-146a-5p in PBMCs reduced inflammatory factor levels. Conclusion miR-146a-5p exerts a promoting effect on the MC-LR-induced inflammatory response by positively regulating inflammatory factor levels.
Collapse
Affiliation(s)
- Huiying Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Daojun Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
- School of Medical Technology, Anhui Medical College, Hefei, Anhui, 230601, People’s Republic of China
- Correspondence: Daojun Chen, Email
| | - Qianqian Ji
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Meiyan Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| |
Collapse
|
28
|
Blood-based DNA methylation signatures in cancer: A systematic review. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166583. [PMID: 36270476 DOI: 10.1016/j.bbadis.2022.166583] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
DNA methylation profiles are in dynamic equilibrium via the initiation of methylation, maintenance of methylation and demethylation, which control gene expression and chromosome stability. Changes in DNA methylation patterns play important roles in carcinogenesis and primarily manifests as hypomethylation of the entire genome and the hypermethylation of individual loci. These changes may be reflected in blood-based DNA, which provides a non-invasive means for cancer monitoring. Previous blood-based DNA detection objects primarily included circulating tumor DNA/cell-free DNA (ctDNA/cfDNA), circulating tumor cells (CTCs) and exosomes. Researchers gradually found that methylation changes in peripheral blood mononuclear cells (PBMCs) also reflected the presence of tumors. Blood-based DNA methylation is widely used in early diagnosis, prognosis prediction, dynamic monitoring after treatment and other fields of clinical research on cancer. The reversible methylation of genes also makes them important therapeutic targets. The present paper summarizes the changes in DNA methylation in cancer based on existing research and focuses on the characteristics of the detection objects of blood-based DNA, including ctDNA/cfDNA, CTCs, exosomes and PBMCs, and their application in clinical research.
Collapse
|
29
|
Park SM, Lee SH, Zhao H, Kim J, Jang JY, Choi Y, Jeong S, Son S, Jung K, Jang JH. Literature review on the interdisciplinary biomarkers of multi-target and multi-time herbal medicine therapy to modulate peripheral systems in cognitive impairment. Front Neurosci 2023; 17:1108371. [PMID: 36875644 PMCID: PMC9978226 DOI: 10.3389/fnins.2023.1108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic progressive neurodegenerative disease characterized by the deposition of amyloid-beta (Aβ) peptide and neurofibrillary tangles in the brain. The approved drug for AD has certain limitations such as a short period of cognitive improvement effect; moreover, the development of drug for AD therapeutic single target for Aβ clearance in brain ended in failure. Therefore, diagnosis and treatment of AD using a multi-target strategy according to the modulation of the peripheral system, which is not only limited to the brain, is needed. Traditional herbal medicines can be beneficial for AD based on a holistic theory and personalized treatment according to the time-order progression of AD. This literature review aimed to investigate the effectiveness of herbal medicine therapy based on syndrome differentiation, a unique theory of traditional diagnosis based on the holistic system, for multi-target and multi-time treatment of mild cognitive impairment or AD stage. Possible interdisciplinary biomarkers including transcriptomic and neuroimaging studies by herbal medicine therapy for AD were investigated. In addition, the mechanism by which herbal medicines affect the central nervous system in connection with the peripheral system in an animal model of cognitive impairment was reviewed. Herbal medicine may be a promising therapy for the prevention and treatment of AD through a multi-target and multi-time strategy. This review would contribute to the development of interdisciplinary biomarkers and understanding of the mechanisms of action of herbal medicine in AD.
Collapse
Affiliation(s)
- Sang-Min Park
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seung Hyun Lee
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
| | - HuiYan Zhao
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea.,Korea Convergence Medical Science, Korea Institute of Oriental Medicine, University of Science and Technology, Daejeon, Republic of Korea
| | - Jeongtae Kim
- Department of Anatomy, Kosin University College of Medicine, Busan, Republic of Korea
| | - Jae Young Jang
- School of Electrical, Electronics and Communication Engineering, Korea University of Technology and Education (KOREATECH), Cheonan-si, Republic of Korea
| | - Yujin Choi
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Soyeon Jeong
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Soyeong Son
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Kyungsook Jung
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - Jung-Hee Jang
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| |
Collapse
|
30
|
Yu CY, Gu Y, Jiang YC, Zhang XW. Identification of intrinsic genes across general hypertension, hypertension with left ventricular remodeling, and uncontrolled hypertension. Front Cardiovasc Med 2022; 9:992284. [PMID: 36277786 PMCID: PMC9582241 DOI: 10.3389/fcvm.2022.992284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023] Open
Abstract
The purpose of the present article is to identify intrinsic genes across general hypertension (HT), hypertension with left ventricular remodeling (HT-LVR), and uncontrolled hypertension (UN-HT). In total, four microarray datasets (GSE24752, GSE75360, GSE74144, and GSE71994) were downloaded from the GEO database and were used to identify differentially expressed genes (DEGs), respectively. Furthermore, gene set enrichment analysis (GSEA) was utilized to screen for significantly enriched biological pathways across the four datasets above, respectively. Furthermore, weighted gene co-expression network analysis (WGCNA) and functional enrichment analysis were applied to screen out gene modules of interest and potential biological functions, respectively. Finally, a Metascape-based multiple gene list meta-analysis was used to investigate intrinsic genes at different stages of the progression of hypertension. A total of 75 DEGs (63 upregulated genes and 12 downregulated genes, GSE24752) and 23 DEGs (2 upregulated genes and 21 downregulated genes, GSE74144) were identified. However, there were few DEGs identified in GSE75360, GSE71994, and part of the GSE74144 datasets. GSEA and functional enrichment of gene module of interest have indicated that "Heme metabolism," "TNF alpha/NFkB," and "interferon alpha response signaling," and MYC target v1/v2 were enriched significantly in different stages of hypertension progression. Significantly, findings from the multiple gene list meta-analysis suggested that FBXW4 and other 13 genes were unique to the hypertension group, and TRIM11 and other 40 genes were mainly involved in hypertension with the left ventricular remodeling group, while the other 18 genes including F13A1 significantly enriched in uncontrolled hypertension. Collectively, the precise switch of the "immune-metabolic-inflammatory" loop pathway was the most significant hallmark across different stages of hypertension, thereby providing a potential therapeutic target for uncontrolled hypertension treatment.
Collapse
|
31
|
García-Hidalgo MC, Peláez R, González J, Santisteve S, Benítez ID, Molinero M, Perez-Pons M, Belmonte T, Torres G, Moncusí-Moix A, Gort-Paniello C, Aguilà M, Seck F, Carmona P, Caballero J, Barberà C, Ceccato A, Fernández-Barat L, Ferrer R, Garcia-Gasulla D, Lorente-Balanza JÁ, Menéndez R, Motos A, Peñuelas O, Riera J, Bermejo-Martin JF, Torres A, Barbé F, de Gonzalo-Calvo D, Larráyoz IM. Genome-wide transcriptional profiling of pulmonary functional sequelae in ARDS- secondary to SARS-CoV-2 infection. Biomed Pharmacother 2022; 154:113617. [PMID: 36058144 PMCID: PMC9424524 DOI: 10.1016/j.biopha.2022.113617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Up to 80% of patients surviving acute respiratory distress syndrome (ARDS) secondary to SARS-CoV-2 infection present persistent anomalies in pulmonary function after hospital discharge. There is a limited understanding of the mechanistic pathways linked to post-acute pulmonary sequelae. AIM To identify the molecular underpinnings associated with severe lung diffusion involvement in survivors of SARS-CoV-2-induced ARDS. METHODS Survivors attended to a complete pulmonary evaluation 3 months after hospital discharge. RNA sequencing (RNA-seq) was performed using Illumina technology in whole-blood samples from 50 patients with moderate to severe diffusion impairment (DLCO<60%) and age- and sex-matched individuals with mild-normal lung function (DLCO≥60%). A transcriptomic signature for optimal classification was constructed using random forest. Transcriptomic data were analyzed for biological pathway enrichment, cellular deconvolution, cell/tissue-specific gene expression and candidate drugs. RESULTS RNA-seq identified 1357 differentially expressed transcripts. A model composed of 14 mRNAs allowed the optimal discrimination of survivors with severe diffusion impairment (AUC=0.979). Hallmarks of lung sequelae involved cell death signaling, cytoskeleton reorganization, cell growth and differentiation and the immune response. Resting natural killer (NK) cells were the most important immune cell subtype for the prediction of severe diffusion impairment. Components of the signature correlated with neutrophil, lymphocyte and monocyte counts. A variable expression profile of the transcripts was observed in lung cell subtypes and bodily tissues. One upregulated gene, TUBB4A, constitutes a target for FDA-approved drugs. CONCLUSIONS This work defines the transcriptional programme associated with post-acute pulmonary sequelae and provides novel insights for targeted interventions and biomarker development.
Collapse
Affiliation(s)
- María C. García-Hidalgo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Rafael Peláez
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, Logroño, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Sally Santisteve
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Iván D. Benítez
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Marta Molinero
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Manel Perez-Pons
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Thalía Belmonte
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Gerard Torres
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anna Moncusí-Moix
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Clara Gort-Paniello
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Maria Aguilà
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Faty Seck
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Paola Carmona
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Jesús Caballero
- Grup de Recerca Medicina Intensiva, Intensive Care Department Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Carme Barberà
- Intensive Care Department, University Hospital Santa María, IRBLleida, Lleida, Spain
| | - Adrián Ceccato
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Hospital Universitari Sagrat Cor, Barcelona, Spain
| | - Laia Fernández-Barat
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Servei de Pneumologia, Hospital Clinic; Universitat de Barcelona; IDIBAPS, Barcelona, Spain
| | - Ricard Ferrer
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Intensive Care Department, Vall d’Hebron Hospital Universitari. SODIR Research Group, Vall d’Hebron Institut de Recerca (VHIR), Spain
| | | | - Jose Ángel Lorente-Balanza
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Hospital Universitario de Getafe, Madrid, Spain
| | - Rosario Menéndez
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Pulmonology Service, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Ana Motos
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Servei de Pneumologia, Hospital Clinic; Universitat de Barcelona; IDIBAPS, Barcelona, Spain
| | - Oscar Peñuelas
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Hospital Universitario de Getafe, Madrid, Spain
| | - Jordi Riera
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Intensive Care Department, Vall d’Hebron Hospital Universitari. SODIR Research Group, Vall d’Hebron Institut de Recerca (VHIR), Spain
| | - Jesús F. Bermejo-Martin
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Hospital Universitario Río Hortega de Valladolid, Valladolid, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Antoni Torres
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Pneumology Department, Clinic Institute of Thorax (ICT), Hospital Clinic of Barcelona, Insitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), ICREA, University of Barcelona (UB), Barcelona, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain,Correspondence to: Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Avda. Alcalde Rovira Roure 80, Lleida 25198, Spain
| | - Ignacio M. Larráyoz
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, Logroño, Spain,GRUPAC, Department of Nursing, University of La Rioja, Logroño, Spain,Correspondence to: Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area, Center for Biomedical Research of La Rioja, CIBIR. C. Piqueras, 98, Logroño 26006, Spain
| |
Collapse
|
32
|
Vlaanderen J, Vermeulen R, Whitaker M, Chadeau-Hyam M, Hottenga JJ, de Geus E, Willemsen G, Penninx BWJH, Jansen R, Boomsma DI. Impact of long-term exposure to PM 2.5 on peripheral blood gene expression pathways involved in cell signaling and immune response. ENVIRONMENT INTERNATIONAL 2022; 168:107491. [PMID: 36081220 DOI: 10.1016/j.envint.2022.107491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Exposure to ambient air pollution, even at low levels, is a major environmental health risk. The peripheral blood transcriptome provides a potential avenue for the elucidation of ambient air pollution related biological perturbations. We assessed the association between long-term estimates for seven priority air pollutants and perturbations in peripheral blood transcriptomics data collected in the Dutch National Twin Register (NTR) and Netherlands Study of Depression and Anxiety (NESDA) cohorts. METHODS In both the discovery (n = 2438) and replication (n = 1567) cohort, outdoor concentration of 7 air pollutants (NO2, NOx, particulate matter (PM2.5, PM2.5abs, PM10, PMcoarse), and ultrafine particles) was predicted with land use regression models. Gene expression was assessed by Affymetrix U219 arrays. Multi-variable univariate mixed-effect models were applied to test for an association between the air pollutants and the transcriptome. Functional analysis was conducted in DAVID. RESULTS In the discovery cohort, we observed for 335 genes (374 probes with FDR < 5 %) a perturbation in peripheral blood gene expression that was associated with long-term average levels of PM2.5. For 69 genes pooled effect estimates from the NTR and NESDA cohorts were significant. Identified genes play a role in biological pathways related to cell signaling and immune response. Sixty-two out of 69 genes had a similar direction of effect in an analysis in which we regressed the probes on differential PM2.5 exposure within monozygotic twin pairs, indicating that the observed differences in gene expression were likely driven by differences in air pollution, rather than by confounding by genetic factors. CONCLUSION Our results indicate that PM2.5 can elicit a response in cell signaling and the immune system, both hallmarks of environmental diseases. The differential effect that we observed between air pollutants may aid in the understanding of differential health effects that have been observed with these exposures.
Collapse
Affiliation(s)
- Jelle Vlaanderen
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands.
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | | | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Eco de Geus
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute and Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Rick Jansen
- Department of Psychiatry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute and Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
33
|
Sarathkumara YD, Browne DJ, Kelly AM, Pattinson DJ, Rush CM, Warner J, Proietti C, Doolan DL. The Effect of Tropical Temperatures on the Quality of RNA Extracted from Stabilized Whole-Blood Samples. Int J Mol Sci 2022; 23:ijms231810609. [PMID: 36142559 PMCID: PMC9503649 DOI: 10.3390/ijms231810609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Whole-blood-derived transcriptional profiling is widely used in biomarker discovery, immunological research, and therapeutic development. Traditional molecular and high-throughput transcriptomic platforms, including molecular assays with quantitative PCR (qPCR) and RNA-sequencing (RNA-seq), are dependent upon high-quality and intact RNA. However, collecting high-quality RNA from field studies in remote tropical locations can be challenging due to resource restrictions and logistics of post-collection processing. The current study tested the relative performance of the two most widely used whole-blood RNA collection systems, PAXgene® and Tempus™, in optimal laboratory conditions as well as suboptimal conditions in tropical field sites, including the effects of extended storage times and high storage temperatures. We found that Tempus™ tubes maintained a slightly higher RNA quantity and integrity relative to PAXgene® tubes at suboptimal tropical conditions. Both PAXgene® and Tempus™ tubes gave similar RNA purity (A260/A280). Additionally, Tempus™ tubes preferentially maintained the stability of mRNA transcripts for two reference genes tested, Succinate dehydrogenase complex, subunit A (SDHA) and TATA-box-binding protein (TBP), even when RNA quality decreased with storage length and temperature. Both tube types preserved the rRNA transcript 18S ribosomal RNA (18S) equally. Our results suggest that Tempus™ blood RNA collection tubes are preferable to PAXgene® for whole-blood collection in suboptimal tropical conditions for RNA-based studies in resource-limited settings.
Collapse
Affiliation(s)
- Yomani D. Sarathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Daniel J. Browne
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Ashton M. Kelly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - David J. Pattinson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Catherine M. Rush
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Jeffrey Warner
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Carla Proietti
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Denise L. Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
- Correspondence:
| |
Collapse
|
34
|
Transcriptome profiling of blood from common bottlenose dolphins (Tursiops truncatus) in the northern Gulf of Mexico to enhance health assessment capabilities. PLoS One 2022; 17:e0272345. [PMID: 36001538 PMCID: PMC9401185 DOI: 10.1371/journal.pone.0272345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022] Open
Abstract
Following the 2010 Deepwater Horizon disaster and subsequent unusual mortality event, adverse health impacts have been reported in bottlenose dolphins in Barataria Bay, LA including impaired stress response and reproductive, pulmonary, cardiac, and immune function. These conditions were primarily diagnosed through hands-on veterinary examinations and analysis of standard diagnostic panels. In human and veterinary medicine, gene expression profiling has been used to identify molecular mechanisms underlying toxic responses and disease states. Identification of molecular markers of exposure or disease may enable earlier detection of health effects or allow for health evaluation when the use of specialized methodologies is not feasible. To date this powerful tool has not been applied to augment the veterinary data collected concurrently during dolphin health assessments. This study examined transcriptomic profiles of blood from 76 dolphins sampled in health assessments during 2013–2018 in the waters near Barataria Bay, LA and Sarasota Bay, FL. Gene expression was analyzed in conjunction with the substantial suite of health data collected using principal component analysis, differential expression testing, over-representation analysis, and weighted gene co-expression network analysis. Broadly, transcript profiles of Barataria Bay dolphins indicated a shift in immune response, cytoskeletal alterations, and mitochondrial dysfunction, most pronounced in dolphins likely exposed to Deepwater Horizon oiling. While gene expression profiles in Barataria Bay dolphins were altered compared to Sarasota Bay for all years, profiles from 2013 exhibited the greatest alteration in gene expression. Differentially expressed transcripts included genes involved in immunity, inflammation, reproductive failure, and lung or cardiac dysfunction, all of which have been documented in dolphins from Barataria Bay following the Deepwater Horizon oil spill. The genes and pathways identified in this study may, with additional research and validation, prove useful as molecular markers of exposure or disease to assist wildlife veterinarians in evaluating the health of dolphins and other cetaceans.
Collapse
|
35
|
Brown LG, Haack AJ, Kennedy DS, Adams KN, Stolarczuk JE, Takezawa MG, Berthier E, Thongpang S, Lim FY, Chaussabel D, Garand M, Theberge AB. At-home blood collection and stabilization in high temperature climates using homeRNA. Front Digit Health 2022; 4:903153. [PMID: 36033636 PMCID: PMC9405416 DOI: 10.3389/fdgth.2022.903153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Expanding whole blood sample collection for transcriptome analysis beyond traditional phlebotomy clinics will open new frontiers for remote immune research and telemedicine. Determining the stability of RNA in blood samples exposed to high ambient temperatures (>30°C) is necessary for deploying home-sampling in settings with elevated temperatures (e.g., studying physiological response to natural disasters that occur in warm locations or in the summer). Recently, we have developed homeRNA, a technology that allows for self-blood sampling and RNA stabilization remotely. homeRNA consists of a lancet-based blood collection device, the Tasso-SST™ which collects up to 0.5 ml of blood from the upper arm, and a custom-built stabilization transfer tube containing RNAlater™. In this study, we investigated the robustness of our homeRNA kit in high temperature settings via two small pilot studies in Doha, Qatar (no. participants = 8), and the Western and South Central USA during the summer of 2021, which included a heatwave of unusually high temperatures in some locations (no. participants = 11). Samples collected from participants in Doha were subjected to rapid external temperature fluctuations from being moved to and from air-conditioned areas and extreme heat environments (up to 41°C external temperature during brief temperature spikes). In the USA pilot study, regions varied in outdoor temperature highs (between 25°C and 43.4°C). All samples that returned a RNA integrity number (RIN) value from the Doha, Qatar group had a RIN ≥7.0, a typical integrity threshold for downstream transcriptomics analysis. RIN values for the Western and South Central USA samples (n = 12 samples) ranged from 6.9-8.7 with 9 out of 12 samples reporting RINs ≥7.0. Overall, our pilot data suggest that homeRNA can be used in some regions that experience elevated temperatures, opening up new geographical frontiers in disseminated transcriptome analysis for applications critical to telemedicine, global health, and expanded clinical research. Further studies, including our ongoing work in Qatar, USA, and Thailand, will continue to test the robustness of homeRNA.
Collapse
Affiliation(s)
- Lauren G. Brown
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Amanda J. Haack
- Department of Chemistry, University of Washington, Seattle, WA, United States
- School of Medicine, University of Washington, Seattle, WA, United States
| | - Dakota S. Kennedy
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Karen N. Adams
- Institute of Translational Health Sciences, School of Medicine, University of Washington, Seattle, WA, United States
| | | | - Meg G. Takezawa
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Sanitta Thongpang
- Department of Chemistry, University of Washington, Seattle, WA, United States
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, Thailand
| | - Fang Yun Lim
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Damien Chaussabel
- Research Branch, Sidra Medicine, Doha, Qatar
- Computer Sciences Department, The Jackson Laboratory, Farmington, CT, United States
| | - Mathieu Garand
- Research Branch, Sidra Medicine, Doha, Qatar
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Ashleigh B. Theberge
- Department of Chemistry, University of Washington, Seattle, WA, United States
- Department of Urology, School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
36
|
Shin J, Toyoda S, Nishitani S, Onodera T, Fukuda S, Kita S, Fukuhara A, Shimomura I. SARS-CoV-2 infection impairs the insulin/IGF signaling pathway in the lung, liver, adipose tissue, and pancreatic cells via IRF1. Metabolism 2022; 133:155236. [PMID: 35688210 PMCID: PMC9173833 DOI: 10.1016/j.metabol.2022.155236] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND COVID-19 can cause multiple organ damages as well as metabolic abnormalities such as hyperglycemia, insulin resistance, and new onset of diabetes. The insulin/IGF signaling pathway plays an important role in regulating energy metabolism and cell survival, but little is known about the impact of SARS-CoV-2 infection. The aim of this work was to investigate whether SARS-CoV-2 infection impairs the insulin/IGF signaling pathway in the host cell/tissue, and if so, the potential mechanism and association with COVID-19 pathology. METHODS To determine the impact of SARS-CoV-2 on insulin/IGF signaling pathway, we utilized transcriptome datasets of SARS-CoV-2 infected cells and tissues from public repositories for a wide range of high-throughput gene expression data: autopsy lungs from COVID-19 patients compared to the control from non-COVID-19 patients; lungs from a human ACE2 transgenic mouse infected with SARS-CoV-2 compared to the control infected with mock; human pluripotent stem cell (hPSC)-derived liver organoids infected with SARS-CoV-2; adipose tissues from a mouse model of COVID-19 overexpressing human ACE2 via adeno-associated virus serotype 9 (AAV9) compared to the control GFP after SARS-CoV-2 infection; iPS-derived human pancreatic cells infected with SARS-CoV-2 compared to the mock control. Gain and loss of IRF1 function models were established in HEK293T and/or Calu3 cells to evaluate the impact on insulin signaling. To understand the mechanistic regulation and relevance with COVID-19 risk factors, such as older age, male sex, obesity, and diabetes, several transcriptomes of human respiratory, metabolic, and endocrine cells and tissue were analyzed. To estimate the association with COVID-19 severity, whole blood transcriptomes of critical patients with COVID-19 compared to those of hospitalized noncritical patients with COVID-19. RESULTS We found that SARS-CoV-2 infection impaired insulin/IGF signaling pathway genes, such as IRS, PI3K, AKT, mTOR, and MAPK, in the host lung, liver, adipose tissue, and pancreatic cells. The impairments were attributed to interferon regulatory factor 1 (IRF1), and its gene expression was highly relevant to risk factors for severe COVID-19; increased with aging in the lung, specifically in men; augmented by obese and diabetic conditions in liver, adipose tissue, and pancreatic islets. IRF1 activation was significantly associated with the impaired insulin signaling in human cells. IRF1 intron variant rs17622656-A, which was previously reported to be associated with COVID-19 prevalence, increased the IRF1 gene expression in human tissue and was frequently found in American and European population. Critical patients with COVID-19 exhibited higher IRF1 and lower insulin/IGF signaling pathway genes in the whole blood compared to hospitalized noncritical patients. Hormonal interventions, such as dihydrotestosterone and dexamethasone, ameliorated the pathological traits in SARS-CoV-2 infectable cells and tissues. CONCLUSIONS The present study provides the first scientific evidence that SARS-CoV-2 infection impairs the insulin/IGF signaling pathway in respiratory, metabolic, and endocrine cells and tissues. This feature likely contributes to COVID-19 severity with cell/tissue damage and metabolic abnormalities, which may be exacerbated in older, male, obese, or diabetic patients.
Collapse
Affiliation(s)
- Jihoon Shin
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Shinichiro Toyoda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shigeki Nishitani
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Toshiharu Onodera
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shiro Fukuda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Adipose Management, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsunori Fukuhara
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Adipose Management, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
37
|
Luo J, Zhang L, Shen F, Luo L, Chen L, Fan Z, Hou R, Yue B, Zhang X. Blood transcriptome analysis revealing aging gene expression profiles in red panda. PeerJ 2022; 10:e13743. [PMID: 35898935 PMCID: PMC9310792 DOI: 10.7717/peerj.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/27/2022] [Indexed: 01/17/2023] Open
Abstract
The red panda is an endangered forest species distributed on the edge of the Qinghai Tibet Plateau. The species has been conserved in ex-situ in many countries and its survival is threatened by many diseases. Its immune system is vulnerable to age-associated alterations, which accumulate and result in a progressive deterioration that leads to an increased incidence of diseases. We identified 2,219 differentially expressed genes (DEGs) between geriatric (11-16 years) and adult individuals (4-8 years), and 1690 DEGs between adults and juveniles (1 year). The gene expression and functional annotation results showed that the innate immunity of red pandas increases significantly in geriatric individuals, whereas its change remains unclear when comparing adults and juveniles. We found that the adaptive immunity of red pandas first increased and then decreased with age. We identified CXCR3, BLNK, and CCR4 as the hub genes in the age-related protein-protein interaction network, which showed their central role in age-related immune changes. Many DNA repair genes were down-regulated in geriatric red pandas, suggesting that the DNA repair ability of the blood tissue in geriatric red pandas is significantly reduced. The significantly up-regulated TLR5 in geriatric individuals also suggests the possibility of enhancing the vaccination immune response by incorporating flagellin, which could be used to address decreased vaccine responses caused by age-related declines in immune system function. This work provides an insight into gene expression changes associated with aging and paves the way for effective disease prevention and treatment strategies for red pandas in the future.
Collapse
Affiliation(s)
- Jing Luo
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Liang Zhang
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan, China
| | - Fujun Shen
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan, China
| | - Li Luo
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan, China
| | - Lei Chen
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Zhenxin Fan
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Rong Hou
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan, China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Wilson C, Dias NW, Pancini S, Mercadante V, Biase FH. Delayed processing of blood samples impairs the accuracy of mRNA-based biomarkers. Sci Rep 2022; 12:8196. [PMID: 35581252 PMCID: PMC9113984 DOI: 10.1038/s41598-022-12178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
The transcriptome of peripheral white blood cells (PWBCs) are indicators of an organism's physiological state, thus making them a prime biological sample for mRNA-based biomarker discovery. Here, we designed an experiment to evaluate the impact of delayed processing of whole blood samples on gene transcript abundance in PWBCs. We hypothesized that storing blood samples for 24 h at 4 °C would cause RNA degradation resulting in altered transcriptome profiles. There were no statistical differences in RNA quality parameters among samples processed after one, three, six, or eight hours post collection. Additionally, no significant differences were noted in RNA quality parameters or gene transcript abundance between samples collected from the jugular and coccygeal veins. However, samples processed after 24 h of storage had a lower RNA integrity number value (P = 0.03) in comparison to those processed after one hour of storage. Using RNA-sequencing, we identified four and 515 genes with differential transcript abundance in samples processed after storage for eight and 24 h, respectively, relative to samples processed after one hour. Sequencing coverage of transcripts was similar between samples from the 24-h and one-hour groups, thus showing no indication of RNA degradation. This alteration in transcriptome profiles can impair the accuracy of mRNA-based biomarkers, therefore, blood samples collected for mRNA-based biomarker discovery should be refrigerated immediately and processed within six hours post-sampling.
Collapse
Affiliation(s)
- Chace Wilson
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus Dr., Blacksburg, VA, 24061, USA
| | - Nicholas W Dias
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus Dr., Blacksburg, VA, 24061, USA
| | - Stefania Pancini
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus Dr., Blacksburg, VA, 24061, USA
| | - Vitor Mercadante
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus Dr., Blacksburg, VA, 24061, USA
| | - Fernando H Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus Dr., Blacksburg, VA, 24061, USA.
| |
Collapse
|
39
|
Bouzid A, Chelly A, Tekari A, Singh N, Hansdah K, Achour I, Ben Ayed I, Jbeli F, Charfeddine I, Ramchander PV, Hamoudi R, Masmoudi S. Genetic Association of rs1021188 and DNA Methylation Signatures of TNFSF11 in the Risk of Conductive Hearing Loss. Front Med (Lausanne) 2022; 9:870244. [PMID: 35510247 PMCID: PMC9058115 DOI: 10.3389/fmed.2022.870244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
Otosclerosis (OTSC) is a complex bone disorder of the otic capsule, which causes conductive hearing impairment in human adults. The dysregulation of the signaling axis mediated by the receptor activator of nuclear factor-kappa-B (RANK), RANK ligand (RANKL), and osteoprotegerin has been widely attributed to the context of metabolic bone disorders. While genetic associations and epigenetic alterations in the TNFSF11 gene (RANKL) have been well-linked to metabolic bone diseases of the skeleton, particularly osteoporosis, they have never been addressed in OTSC. This study aimed to assess whether the genetic association of rs1021188 polymorphism in the upstream of TNFSF11 and the DNA methylation changes in its promoter CpG-region reveal the susceptibility of OTSC. Peripheral blood DNA samples were collected from unrelated Tunisian-North African subjects for genotyping (109 cases and 120 controls) and for DNA methylation analysis (40 cases and 40 controls). The gender-stratified analysis showed that the TNFSF11 rs1021188 C/T was associated with OTSC in men (p = 0.023), but not in women (p = 0.458). Individuals with CC genotype were more susceptible to OTSC, suggesting an increased risk to disease development. Using publicly available data, the rs1021188 was within a cluster grouping the subpopulations with African ethnicity. Moreover, 26 loci in the TNFSF11 gene were in linkage disequilibrium with rs1021188, revealing relative similarities between different populations. Significant differences in both DNA methylation and unmethylation status were detected with 4.53- and 4.83-fold decreases in the global DNA methylation levels in female and male OTSC groups, respectively. These changes could contribute to an increased risk of OTSC development. Bioinformatic analyses indicated that each of the rs1021188 variations and the DNA methylation changes in the promoter CpG-sites within TNFSF11 may play an important role in its transcription regulation. To our knowledge, this is the first study that investigates an independent effect of the rs1021188 polymorphism and DNA hypomethylation of TNFSF11 promoter in OTSC. Genetic and epigenetic changes in the regulatory regions of TNFSF11 could offer new molecular insights into the understanding of the complexity of OTSC.
Collapse
Affiliation(s)
- Amal Bouzid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- *Correspondence: Amal Bouzid
| | - Ameni Chelly
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Adel Tekari
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Neha Singh
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
| | - Kirtal Hansdah
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
| | - Imen Achour
- Department of Otorhinolaryngology, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Ikhlas Ben Ayed
- Medical Genetic Department, University Hedi Chaker Hospital of Sfax, Sfax, Tunisia
| | - Fida Jbeli
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Ilhem Charfeddine
- Department of Otorhinolaryngology, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | | | - Rifat Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
40
|
Shen H, Li C, He M, Huang Y, Wang J, Luo J, Wang M, Yue B, Zhang X. Whole blood transcriptome profiling identifies candidate genes associated with alopecia in male giant pandas (Ailuropoda melanoleuca). BMC Genomics 2022; 23:297. [PMID: 35413801 PMCID: PMC9004003 DOI: 10.1186/s12864-022-08501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background The giant panda (Ailuropoda melanoleuca) is a threatened species endemic to China. Alopecia, characterized by thinning and broken hair, mostly occurs in breeding males. Alopecia significantly affects the health and public image of the giant panda and the cause of alopecia is unclear. Results Here, we researched gene expression profiles of four alopecia giant pandas and seven healthy giant pandas. All pandas were approximately ten years old and their blood samples collected during the breeding season. A total of 458 up-regulated DEGs and 211 down-regulated DEGs were identified. KEGG pathway enrichment identified that upregulated genes were enriched in the Notch signaling pathway and downregulated genes were enriched in ribosome, oxidative phosphorylation, and thermogenesis pathways. We obtained 28 hair growth-related DEGs, and identified three hub genes NOTCH1, SMAD3, and TGFB1 in PPI analysis. Five hair growth-related signaling pathways were identified with abnormal expression, these were Notch, Wnt, TGF-β, Mapk, and PI3K-Akt. The overexpression of NOTCH1 delays inner root sheath differentiation and results in hair shaft abnormalities. The delayed hair regression was associated with a significant decrease in the expression levels of TGFB1. Conclusions Our data confirmed the abnormal expression of several hair-related genes and pathways and identified alopecia candidate genes in the giant panda. Results of this study provide theoretical basis for the establishment of prevention and treatment strategies for giant pandas with alopecia. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08501-z.
Collapse
Affiliation(s)
- Haibo Shen
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration On Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Ming He
- Key Laboratory of State Forestry and Grassland Administration On Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration On Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Jing Wang
- Key Laboratory of State Forestry and Grassland Administration On Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Jing Luo
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Minglei Wang
- Key Laboratory of State Forestry and Grassland Administration On Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China
| | - Xiuyue Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China. .,No. 24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
41
|
Chen X, Li Q, Zhang Z, Yang M, Wang E. Identification of Potential Diagnostic Biomarkers From Circulating Cells During the Course of Sleep Deprivation-Related Myocardial Infarction Based on Bioinformatics Analyses. Front Cardiovasc Med 2022; 9:843426. [PMID: 35369343 PMCID: PMC8969017 DOI: 10.3389/fcvm.2022.843426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/22/2022] [Indexed: 01/01/2023] Open
Abstract
Background Myocardial infarction (MI) is the leading cause of death from non-infectious diseases worldwide and results in rapid deterioration due to the sudden rupture of plaques associated with atherosclerosis, a chronic inflammatory disease. Sleep is a key factor that regulates immune homeostasis of the body. The imbalance in circulating immune cells caused by sleep deprivation (SD) may represent a risk factor leading to the rapid deterioration of plaques and MI. Therefore, it is of profound significance to identify diagnostic biomarkers for preventing SD-related MI. Methods In the present study, we identified coexpressed differentially expressed genes (co-DEGs) between peripheral blood mononuclear cells from MI and SD samples (compared to controls) from a public database. LASSO regression analysis was applied to identify significant diagnostic biomarkers from co-DEGs. Moreover, receiver operating characteristic (ROC) curve analysis was performed to test biomarker accuracy and diagnostic ability. We further analyzed immune cell enrichment in MI and SD samples using the CIBERSORT algorithm, and the correlation between biomarkers and immune cell composition was assessed. We also investigated whether diagnostic biomarkers are involved in immune cell signaling pathways in SD-related MI processes. Results A total of 10 downregulated co-DEGs from the sets of MI-DEGs and SD-DEGs were overlapped. After applying LASSO regression analysis, SYTL2, KLRD1, and C12orf75 were selected and validated as diagnostic biomarkers using ROC analysis. Next, we found that resting NK cells were downregulated in both the MI samples and SD samples, which is similar to the changes noted for SYTL2. Importantly, SYTL2 was strongly positively correlated not only with resting NK cells but also with most genes related to NK cell markers in the MI and SD datasets. Moreover, SYTL2 was highly associated with genes in NK cell signaling pathways, including the MAPK signaling pathway, cytotoxic granule movement and exocytosis, and NK cell activation. Furthermore, GSEA and KEGG analyses provided evidence that the DEGs identified from MI samples with low vs. high SYTL2 expression exhibited a strong association with the regulation of the immune response and NK cell-mediated cytotoxicity. Conclusion In conclusion, SYTL2, KLRD1, and C12orf75 represent potential diagnostic biomarkers of MI. The association between SYTL2 and resting NK cells may be critically involved in SD-related MI development and occurrence.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Xiangya Hospital Central South University, Changsha, China
| | - Qian Li
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Zhong Zhang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Minjing Yang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - E. Wang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Xiangya Hospital Central South University, Changsha, China
- *Correspondence: E. Wang
| |
Collapse
|
42
|
Jafarpour S, Saberi F, Yazdi M, Nedaeinia R, Amini G, Ferns GA, Salehi R. Association between colorectal cancer and the degree of ITGA4 promoter methylation in peripheral blood mononuclear cells. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Yang M, Huang Y, Wu H, Li C, Ling S, Sun J, Shen H, Yue B, Zhang X. Blood transcriptome analysis revealed the immune changes and immunological adaptation of wildness training giant pandas. Mol Genet Genomics 2022; 297:227-239. [PMID: 34985592 DOI: 10.1007/s00438-021-01841-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/23/2021] [Indexed: 01/06/2023]
Abstract
The giant panda (Ailuropoda melanoleuca) is a global flagship species for biodiversity conservation. As the time for captive giant pandas to be released into the wild matures, wildness training is provided to allow adaptation to their natural environment. It is assumed that changes in the immune system would be integral in this adaptation from captive to wild, where many more pathogens would be encountered in their natural habitats. Therefore, this study aims to determine the expression changes of immune-related genes and their potential as immunoassay markers for adaptation monitoring in wildness training giant pandas, and then to understand the adaptation strategy of wildness training giant pandas to the wild environment, thereby improving the success rate of panda reintroduction. We obtained 300 differentially expressed genes (DEGs) by RNA-seq, with 239 up-regulated and 61 down-regulated DEGs in wildness training giant pandas compared to captive pandas. Functional enrichment analysis indicated that up-regulated DEGs were enriched in several immune-related terms and pathways. There were 21 immune-related DEGs, in which most of them were up-regulated in wildness training giant pandas, including several critical innate and cellular immune genes. IL1R2 was the most significantly up-regulated gene and is a signature of homeostasis within the immune system. In the protein-protein interaction (PPI) analysis, CXCL8, CXCL10, and CCL5 were identified as the hub immune genes. Our results suggested that wildness training giant pandas have stronger innate and cellular immunity than captive giant pandas, and we proposed that a gene set of CXCL8, CXCL10, CCL5, CD3D, NFKBIA, TBX21, IL12RB2, and IL1R2 may serve as potential immunoassay markers to monitor and assess the immune status of wildness training giant pandas. Our study offers the first insight into immune alterations of wildness training giant pandas, paving the way for monitoring and evaluating the immune status of giant pandas when reintroducing them into the wild.
Collapse
Affiliation(s)
- Miao Yang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 623006, Sichuan, People's Republic of China
| | - Honglin Wu
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 623006, Sichuan, People's Republic of China
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 623006, Sichuan, People's Republic of China
| | - Shanshan Ling
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 623006, Sichuan, People's Republic of China
| | - Jie Sun
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Haibo Shen
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, People's Republic of China.
- Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
44
|
Chen HH, Petty LE, North KE, McCormick JB, Fisher-Hoch SP, Gamazon ER, Below JE. OUP accepted manuscript. Hum Mol Genet 2022; 31:3191-3205. [PMID: 35157052 PMCID: PMC9476627 DOI: 10.1093/hmg/ddac039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Type 2 diabetes is a complex, systemic disease affected by both genetic and environmental factors. Previous research has identified genetic variants associated with type 2 diabetes risk; however, gene regulatory changes underlying progression to metabolic dysfunction are still largely unknown. We investigated RNA expression changes that occur during diabetes progression using a two-stage approach. In our discovery stage, we compared changes in gene expression using two longitudinally collected blood samples from subjects whose fasting blood glucose transitioned to a level consistent with type 2 diabetes diagnosis between the time points against those who did not with a novel analytical network approach. Our network methodology identified 17 networks, one of which was significantly associated with transition status. This 822-gene network harbors many genes novel to the type 2 diabetes literature but is also significantly enriched for genes previously associated with type 2 diabetes. In the validation stage, we queried associations of genetically determined expression with diabetes-related traits in a large biobank with linked electronic health records. We observed a significant enrichment of genes in our identified network whose genetically determined expression is associated with type 2 diabetes and other metabolic traits and validated 31 genes that are not near previously reported type 2 diabetes loci. Finally, we provide additional functional support, which suggests that the genes in this network are regulated by enhancers that operate in human pancreatic islet cells. We present an innovative and systematic approach that identified and validated key gene expression changes associated with type 2 diabetes transition status and demonstrated their translational relevance in a large clinical resource.
Collapse
Affiliation(s)
- Hung-Hsin Chen
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lauren E Petty
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joseph B McCormick
- The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, Brownsville, TX 78520, USA
| | - Susan P Fisher-Hoch
- The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, Brownsville, TX 78520, USA
| | - Eric R Gamazon
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Clare Hall, University of Cambridge, Cambridgeshire, UK
| | - Jennifer E Below
- To whom correspondence should be addressed. Tel: +1-615-343-1655;
| |
Collapse
|
45
|
Qiu H, Weng Q. Screening of Crucial Differentially-Methylated/Expressed Genes for Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2022; 37:15333175221116220. [PMID: 35848539 PMCID: PMC10624077 DOI: 10.1177/15333175221116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: We aimed to make an integrated analysis of published transcriptome and DNA methylation dataset to ascertain the key differentially methylated and differentially expressed genes for Alzherimer's disease (AD). Methods: Two gene expression microarrays and 1 gene methylation microarray were downloaded for identification of differentially expressed genes and differentially methylated genes. Then, we used various biological information databases to annotate the functions of the differentially-methylated/expressed genes, and screen out key genes and important signaling pathways. Finally, we validate the differentially-methylated/expressed genes in the additional online datasets and in blood from AD patients.Results: A total of 8 hub hypomethylated-high expression genes were obtained, including Rac family small GTPase 2, FGR proto-oncogene, Src family tyrosine kinase, LYN proto-oncogene, Src family tyrosine kinase, protein kinase C delta, myosin IF, integrin subunit alpha 5, semaphorin 4D, and growth arrest specific protein 7. Some enriched signaling pathways of hypomethylated-high expression genes were identified, including regulation of actin cytoskeleton, chemokine signaling pathway, Fc gamma R-mediated phagocytosis, and axon guidance. Conclusion: Differentially-methylated/expressed genes are likely to be associated with AD.
Collapse
Affiliation(s)
- Haiyuan Qiu
- Internal Medicine Department, Ningbo Psychiatric Hospital, Ningbo, China
| | - Qiuyan Weng
- Neurolog Department, Affiliated Hospital of Medical School Ningbo University, Ningbo, China
| |
Collapse
|
46
|
Sun Y, Zhou D, Rahman MR, Zhu J, Ghoneim D, Cox NJ, Beach TG, Wu C, Gamazon ER, Wu L. A transcriptome-wide association study identifies novel blood-based gene biomarker candidates for Alzheimer's disease risk. Hum Mol Genet 2021; 31:289-299. [PMID: 34387340 PMCID: PMC8831284 DOI: 10.1093/hmg/ddab229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 11/12/2022] Open
Abstract
Alzheimer's disease (ad) adversely affects the health, quality of life and independence of patients. There is a critical need to identify novel blood gene biomarkers for ad risk assessment. We performed a transcriptome-wide association study to identify biomarker candidates for ad risk. We leveraged two sets of gene expression prediction models of blood developed using different reference panels and modeling strategies. By applying the prediction models to a meta-GWAS including 71 880 (proxy) cases and 383 378 (proxy) controls, we identified significant associations of genetically determined expression of 108 genes in blood with ad risk. Of these, 15 genes were differentially expressed between ad patients and controls with concordant directions in measured expression data. With evidence from the analyses based on both genetic instruments and directly measured expression levels, this study identifies 15 genes with strong support as biomarkers in blood for ad risk, which may enhance ad risk assessment and mechanism-focused studies.
Collapse
Affiliation(s)
- Yanfa Sun
- Department of Animal Science and Veterinary Medicine, College of Life Science, Longyan University, Longyan, Fujian, 364012, P.R. China
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, Fujian 364012, P.R. China
- Fujian Province Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan, Fujian, 364012, P.R. China
| | - Dan Zhou
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Md Rezanur Rahman
- Queensland Brain Institute, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Jingjing Zhu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Dalia Ghoneim
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Chong Wu
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Eric R Gamazon
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Clare Hall, University of Cambridge, Cambridge CB3 9AL, UK
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SL, UK
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
47
|
You Y, Bai C, Liu X, Lu Y, Jia T, Xia M, Yin Y, Wang W, Chen Y, Zhang C, Liu Y, Wang L, Pu T, Ma T, Liu Y, Zhou J, Niu L, Xu S, Ni Y, Hu X, Zhang Z. RNA-Seq analysis in giant pandas reveals the differential expression of multiple genes involved in cataract formation. BMC Genom Data 2021; 22:44. [PMID: 34706646 PMCID: PMC8555103 DOI: 10.1186/s12863-021-00996-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The giant panda (Ailuropoda melanoleuca) is an endangered mammalian species native to China. Fewer than 2500 giant pandas are known to exist, many of which are bred in captivity as a means to preserve and repopulate the species. Like other captive mammals, giant pandas acquire age-related cataracts, reducing their quality of life. Recent comparative genome-wide methylation analysis revealed 110 differentially methylated genes associated with cataract formation including six also associated with the formation of age-related cataracts in humans. RESULTS To investigate the pathological pathway in greater detail, here we used RNA-Seq analysis to investigate the differential expression profiles of genes in three giant pandas with cataracts and three healthy controls. We identified more than 700 differentially expressed genes, 29 of which were selected for further analysis based on their low q-value. We found that many of the genes encoded regulatory and signaling proteins associated with the control of cell growth, migration, differentiation and apoptosis, supporting previous research indicating a key role for apoptosis in cataract formation. CONCLUSION The identification of genes involved in the formation of age-related cataracts could facilitate the development of predictive markers, preventative measures and even new therapies to improve the life of captive animals.
Collapse
Affiliation(s)
- Yuyan You
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China.
| | - Chao Bai
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | | | - Yan Lu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | | | | | | | - Wei Wang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Yucun Chen
- Strait (Fuzhou) Giant Panda Research and Exchange Centers, Fuzhou, China
| | - Chenglin Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Yan Liu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | | | | | - Tao Ma
- Beijing Zoo, Beijing, China
| | | | | | | | - Suhui Xu
- Strait (Fuzhou) Giant Panda Research and Exchange Centers, Fuzhou, China
| | | | - Xin Hu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | | |
Collapse
|
48
|
Toxoplasma gondii could have a possible role in the cancer mechanism by modulating the host's cell response. Acta Trop 2021; 220:105966. [PMID: 34023305 DOI: 10.1016/j.actatropica.2021.105966] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022]
Abstract
Toxoplasma gondii, which manipulates many signaling pathways to achieve persistence in host cells, is intimately linked to immune and inflammation responses. However, there is still lack of information about the impact of T. gondii on cellular and immune responses. This study was designed to seek the impact of T. gondii infection causing life-long inflammation in brain, on cancer mechanism. To identify molecular effects of the T. gondii and understand the association between the functional perturbations occurring during infection and cancer development, the transcriptomic datasets obtained mice infected with T. gondii were downloaded from GEO. The differentially expressed genes (DEGs) were identified and functional enrichment analysis was performed using IPA platform, then all results were evaluated with comparison analyses. Subsequently, a T. gondii infection model with human neuroepithelioma cell culture was performed in order to validate top DEGs participated in common networks/pathways in cancer mechanism. Transcriptomic analyses of infected mice and in vitro cell culture model revealed a strong immune response and inflammation occurred by parasite-induced damage and parasite-associated immunopathology in host cell and tissue. T. gondii infection could modulate certain signaling pathways of host, which were also common to those perturbed in carcinogenesis. Interestingly, the network analysis of the data sets predicted an activation in development of solid cancer vice versa inhibition in hematological cancer during T. gondii infection. Parasite might also control the tumor growth due to its potent immune-stimulant effects. As result, T. gondii infection generating a continual inflammation in tissues might potentially contribute to cancer development by regulating critical host signaling pathways or reveal an anti-tumoral activity.
Collapse
|
49
|
Sun Z, Xia W, Lyu Y, Song Y, Wang M, Zhang R, Sui G, Li Z, Song L, Wu C, Liew CC, Yu L, Cheng G, Cheng C. Immune-related gene expression signatures in colorectal cancer. Oncol Lett 2021; 22:543. [PMID: 34079596 PMCID: PMC8157333 DOI: 10.3892/ol.2021.12804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
The immune system is crucial in regulating colorectal cancer (CRC) tumorigenesis. Identification of immune-related transcriptomic signatures derived from the peripheral blood of patients with CRC would provide insights into CRC pathogenesis, and suggest novel clues to potential immunotherapy strategies for the disease. The present study collected blood samples from 59 patients with CRC and 62 healthy control patients and performed whole blood gene expression profiling using microarray hybridization. Immune-related gene expression signatures for CRC were identified from immune gene datasets, and an algorithmic predictive model was constructed for distinguishing CRC from controls. Model performance was characterized using an area under the receiver operating characteristic curve (ROC AUC). Functional categories for CRC-specific gene expression signatures were determined using gene set enrichment analyses. A Kaplan-Meier plotter survival analysis was also performed for CRC-specific immune genes in order to characterize the association between gene expression and CRC prognosis. The present study identified five CRC-specific immune genes [protein phosphatase 3 regulatory subunit Bα (PPP3R1), amyloid β precursor protein, cathepsin H, proteasome activator subunit 4 and DEAD-Box Helicase 3 X-Linked]. A predictive model based on this five-gene panel showed good discriminatory power (independent test set sensitivity, 83.3%; specificity, 94.7%, accuracy, 89.2%; ROC AUC, 0.96). The candidate genes were involved in pathways associated with ‘adaptive immune responses’, ‘innate immune responses’ and ‘cytokine signaling’. The survival analysis found that a high level of PPP3R1 expression was associated with a poor CRC prognosis. The present study identified five CRC-specific immune genes that were potential diagnostic biomarkers for CRC. The biological function analysis indicated a close association between CRC pathogenesis and the immune system, and may reveal more information about the immunogenic and pathogenic mechanisms driving CRC in the future. Overall, the association between PPP3R1 expression and survival of patients with CRC revealed potential new targets for CRC immunotherapy.
Collapse
Affiliation(s)
- Zhenqing Sun
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Wei Xia
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Yali Lyu
- R&D Department, Huaxia Bangfu Technology Incorporated, Beijing 100000, P.R. China
| | - Yanan Song
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Min Wang
- R&D Department, Huaxia Bangfu Technology Incorporated, Beijing 100000, P.R. China
| | - Ruirui Zhang
- R&D Department, Huaxia Bangfu Technology Incorporated, Beijing 100000, P.R. China
| | - Guode Sui
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhenlu Li
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Li Song
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Changliang Wu
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Choong-Chin Liew
- Golden Health Diagnostics Inc., Yan Cheng, Jiangsu 224000, P.R. China.,Department of Clinical Pathology and Laboratory Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lei Yu
- R&D Department, Huaxia Bangfu Technology Incorporated, Beijing 100000, P.R. China
| | - Guang Cheng
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Changming Cheng
- R&D Department, Huaxia Bangfu Technology Incorporated, Beijing 100000, P.R. China
| |
Collapse
|
50
|
Blood Transcriptomics of Turbot Scophthalmus maximus: A Tool for Health Monitoring and Disease Studies. Animals (Basel) 2021; 11:ani11051296. [PMID: 33946507 PMCID: PMC8147184 DOI: 10.3390/ani11051296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The analysis of blood gene expression is emerging as a relevant source of information about the health status of an organism. While these investigations are increasingly performed in human and terrestrial animals, their potential is still underexplored in fish pathology. The aim of this work was to analyze the blood transcriptional profile of a commercially important flatfish species, turbot (Scophthalmus maximus), in healthy and diseased specimens. The analysis of the most expressed genes in healthy fish indicated that turbot red blood cells have important immunological functions. In diseased fish, parasitized by a myxozoan, the blood analysis reflected a broad inhibition of the immune response followed by intense inflammatory activation in heavy infections. The results showed that turbot response appears delayed, dysregulated and ineffective in stopping the infection. Particularly, a proper development of the adaptive immune response was lacking. This study points out that blood gene expression profiling is a reliable tool for health monitoring, as well as to advance in the knowledge of fish immunity and diseases. Abstract Blood transcriptomics is emerging as a relevant tool to monitor the status of the immune system and assist in diagnosis, prognosis, treatment and pathogenesis studies of diseases. In fish pathology, the potential of transcriptome profiling of blood is still poorly explored. Here, RNA sequencing was applied to analyze the blood transcriptional profile of turbot (Scophthalmus maximus), the most important farmed flatfish. The study was conducted in healthy specimens and specimens parasitized by the myxozoan Enteromyxum scophthalmi, which causes one of the most devastating diseases in turbot aquaculture. The blood of healthy turbot showed a transcriptomic profile mainly related to erythrocyte gas transportation function, but also to antigen processing and presentation. In moderately infected turbot, the blood reflected a broad inhibition of the immune response. Particularly, down-regulation of the B cell receptor signaling pathway was shared with heavily parasitized fish, which showed larger transcriptomic changes, including the activation of the inflammatory response. Turbot response to enteromyxosis proved to be delayed, dysregulated and ineffective in stopping the infection. The study evinces that blood transcriptomics can contribute to a better understanding of the teleost immune system and serve as a reliable tool to investigate the physiopathological status of fish.
Collapse
|