1
|
Gonzalez-Nieves S, Wei X, Guignard S, Nguyen T, McQuillan J, Zhang Q, Zhang J, McGuffee RM, Ford DA, Semenkovich CF, Cifarelli V. Insulin regulates lymphatic endothelial integrity via palmitoylation. J Lipid Res 2025; 66:100775. [PMID: 40081576 PMCID: PMC12002826 DOI: 10.1016/j.jlr.2025.100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025] Open
Abstract
Lipid metabolism plays a critical role in lymphatic endothelial cell (LEC) development and vessel maintenance. Altered lipid metabolism is associated with loss of lymphatic vessel integrity, which compromises organ function, protective immunity, and metabolic health. Thus, understanding how lipid metabolism affects LECs is critical for uncovering the mechanisms underlying lymphatic dysfunction. Protein palmitoylation, a lipid-based post-translational modification, has emerged as a critical regulator of protein function, stability, and interaction networks. Insulin, a master regulator of systemic lipid metabolism, also regulates protein palmitoylation. However, the role of insulin-driven palmitoylation in LEC biology remains unexplored. To examine the role of palmitoylation in LEC function, we generated the first palmitoylation proteomics profile in human LECs, validated insulin-regulated targets, and determined the role of palmitoylation in LEC barrier function. In unstimulated conditions, palmitoylation occurred primarily on proteins involved in vesicular and membrane trafficking, and in translation initiation. Insulin treatment, instead, enriched palmitoylation of proteins involved in LEC integrity, namely junctional proteins such as claudin 5, along with small GTPases and ubiquitination enzymes. We also investigated the role of the long-chain fatty acid transporter CD36, a major mediator of palmitate uptake into cells, in regulating optimal lymphatic protein palmitoylation. CD36 silencing in LECs increased by 2-fold palmitoylation of proteins involved in inflammation and immune cell activation. Overall, our findings provide novel insights into the intricate relationship between lipid modification and LEC function, suggesting that insulin and palmitoylation play a critical role in lymphatic endothelial function.
Collapse
Affiliation(s)
- Silvia Gonzalez-Nieves
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Xiaochao Wei
- Division of Endocrinology Metabolism and Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Simon Guignard
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Thi Nguyen
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jay McQuillan
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Qiang Zhang
- Division of Endocrinology Metabolism and Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Reagan M McGuffee
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - David A Ford
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Clay F Semenkovich
- Division of Endocrinology Metabolism and Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA; Department of Cell Biology and Physiology, Washington University, St. Louis, MO, USA
| | - Vincenza Cifarelli
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Fan S, Wang W, Che W, Xu Y, Jin C, Dong L, Xia Q. Nanomedicines Targeting Metabolic Pathways in the Tumor Microenvironment: Future Perspectives and the Role of AI. Metabolites 2025; 15:201. [PMID: 40137165 PMCID: PMC11943624 DOI: 10.3390/metabo15030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Tumor cells engage in continuous self-replication by utilizing a large number of resources and capabilities, typically within an aberrant metabolic regulatory network to meet their own demands. This metabolic dysregulation leads to the formation of the tumor microenvironment (TME) in most solid tumors. Nanomedicines, due to their unique physicochemical properties, can achieve passive targeting in certain solid tumors through the enhanced permeability and retention (EPR) effect, or active targeting through deliberate design optimization, resulting in accumulation within the TME. The use of nanomedicines to target critical metabolic pathways in tumors holds significant promise. However, the design of nanomedicines requires the careful selection of relevant drugs and materials, taking into account multiple factors. The traditional trial-and-error process is relatively inefficient. Artificial intelligence (AI) can integrate big data to evaluate the accumulation and delivery efficiency of nanomedicines, thereby assisting in the design of nanodrugs. Methods: We have conducted a detailed review of key papers from databases, such as ScienceDirect, Scopus, Wiley, Web of Science, and PubMed, focusing on tumor metabolic reprogramming, the mechanisms of action of nanomedicines, the development of nanomedicines targeting tumor metabolism, and the application of AI in empowering nanomedicines. We have integrated the relevant content to present the current status of research on nanomedicines targeting tumor metabolism and potential future directions in this field. Results: Nanomedicines possess excellent TME targeting properties, which can be utilized to disrupt key metabolic pathways in tumor cells, including glycolysis, lipid metabolism, amino acid metabolism, and nucleotide metabolism. This disruption leads to the selective killing of tumor cells and disturbance of the TME. Extensive research has demonstrated that AI-driven methodologies have revolutionized nanomedicine development, while concurrently enabling the precise identification of critical molecular regulators involved in oncogenic metabolic reprogramming pathways, thereby catalyzing transformative innovations in targeted cancer therapeutics. Conclusions: The development of nanomedicines targeting tumor metabolic pathways holds great promise. Additionally, AI will accelerate the discovery of metabolism-related targets, empower the design and optimization of nanomedicines, and help minimize their toxicity, thereby providing a new paradigm for future nanomedicine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Dong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| | - Qin Xia
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| |
Collapse
|
3
|
Wang X, Gao Y, Wang H, Gong X, Bao P. Tumor markers for lipid metabolism-related genes: Based on small cell lung cancer and bronchial asthma dual analysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:2855-2868. [PMID: 38293814 DOI: 10.1002/tox.24152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Numerous studies have elucidated the intricate relationship between bronchial asthma and small cell lung cancer (SCLC), as well as the role lipid metabolism genes play in transitioning from bronchial asthma to SCLC. Despite this, the predictive power of single gene biomarkers remains insufficient and necessitates the development of more accurate prognostic models. In our study, we downloaded and preprocessed scRNA-seq of SCLC from the GEO database GSE164404 and severe asthma scRNA-seq from GSE145013 using the Seurat package. Using the MSigDB database and geneCard database, we selected lipid metabolism-related genes and performed scRNA-seq data analysis from the gene expression GEO database, aiming to uncover potential links between immune signaling pathways in bronchial asthma and SCLC. Our investigations yielded differentially expressed genes based on the scRNA-seq dataset related to lipid metabolism. We executed differential gene analysis, gene ontology, and Kyoto Encyclopedia of Genes and Genomes analyses. In-depth GSEA pathway activation analysis, crucial target gene predictions via protein-protein interactions, and key cluster gene evaluations for differential and diagnostic ROC values correlation analysis confirmed that key cluster genes are significant predictors for the progression of bronchial asthma to SCLC. To validate our findings, we performed wet laboratory experiments using real-time quantitative PCR to assess the expression of these relevant genes in SCLC cell lines. In conclusion, this research proposes a novel lipid metabolism-related gene marker that can offer comprehensive insights into the pathogenesis of bronchial asthma leading to SCLC. Although this study does not directly focus on senescence-associated molecular alterations, our findings in the lipid metabolism genes associated with inflammation and cancer progression offer valuable insights for further research targeting senescence-related changes in treating inflammatory diseases.
Collapse
Affiliation(s)
- Xiaobin Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Medical University, China
| | - Yang Gao
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Medical University, China
| | - Haiqiang Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Medical University, China
| | - Xiaokang Gong
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Medical University, China
| | - Peilong Bao
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Medical University, China
| |
Collapse
|
4
|
Gan Q, Fan C. Orthogonal Translation for Site-Specific Installation of Post-translational Modifications. Chem Rev 2024; 124:2805-2838. [PMID: 38373737 PMCID: PMC11230630 DOI: 10.1021/acs.chemrev.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Post-translational modifications (PTMs) endow proteins with new properties to respond to environmental changes or growth needs. With the development of advanced proteomics techniques, hundreds of distinct types of PTMs have been observed in a wide range of proteins from bacteria, archaea, and eukarya. To identify the roles of these PTMs, scientists have applied various approaches. However, high dynamics, low stoichiometry, and crosstalk between PTMs make it almost impossible to obtain homogeneously modified proteins for characterization of the site-specific effect of individual PTM on target proteins. To solve this problem, the genetic code expansion (GCE) strategy has been introduced into the field of PTM studies. Instead of modifying proteins after translation, GCE incorporates modified amino acids into proteins during translation, thus generating site-specifically modified proteins at target positions. In this review, we summarize the development of GCE systems for orthogonal translation for site-specific installation of PTMs.
Collapse
Affiliation(s)
- Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
5
|
Cheuka PM, Njaria P, Mayoka G, Funjika E. Emerging Drug Targets for Antimalarial Drug Discovery: Validation and Insights into Molecular Mechanisms of Function. J Med Chem 2024; 67:838-863. [PMID: 38198596 DOI: 10.1021/acs.jmedchem.3c01828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Approximately 619,000 malaria deaths were reported in 2021, and resistance to recommended drugs, including artemisinin-combination therapies (ACTs), threatens malaria control. Treatment failure with ACTs has been found to be as high as 93% in northeastern Thailand, and parasite mutations responsible for artemisinin resistance have already been reported in some African countries. Therefore, there is an urgent need to identify alternative treatments with novel targets. In this Perspective, we discuss some promising antimalarial drug targets, including enzymes involved in proteolysis, DNA and RNA metabolism, protein synthesis, and isoprenoid metabolism. Other targets discussed are transporters, Plasmodium falciparum acetyl-coenzyme A synthetase, N-myristoyltransferase, and the cyclic guanosine monophosphate-dependent protein kinase G. We have outlined mechanistic details, where these are understood, underpinning the biological roles and hence druggability of such targets. We believe that having a clear understanding of the underlying chemical interactions is valuable to medicinal chemists in their quest to design appropriate inhibitors.
Collapse
Affiliation(s)
- Peter Mubanga Cheuka
- Department of Chemistry, School of Natural Sciences, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| | - Paul Njaria
- Department of Pharmacognosy and Pharmaceutical Chemistry, Kenyatta University, P.O. Box 14548-00400, Nairobi 00100, Kenya
| | - Godfrey Mayoka
- Department of Pharmacology and Pharmacognosy, School of Pharmacy, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi 00100, Kenya
| | - Evelyn Funjika
- Department of Chemistry, School of Natural Sciences, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| |
Collapse
|
6
|
Zhang C, Zhang Y, Dong Y, Zi R, Wang Y, Chen Y, Liu C, Wang J, Wang X, Li J, Liang H, Ou J. Non-alcoholic fatty liver disease promotes liver metastasis of colorectal cancer via fatty acid synthase dependent EGFR palmitoylation. Cell Death Discov 2024; 10:41. [PMID: 38263401 PMCID: PMC10805926 DOI: 10.1038/s41420-023-01770-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 01/25/2024] Open
Abstract
Liver metastasis is the major reason for most of colorectal cancer (CRC) related deaths. Accumulating evidence indicates that CRC patients with non-alcoholic fatty liver disease (NAFLD) are at a greater risk of developing liver metastasis. With the growing prevalence of NAFLD, a better understanding of the molecular mechanism in NAFLD-driven CRC liver metastasis is needed. In this study, we demonstrated that NAFLD facilitated CRC liver metastasis as a metabolic disorder and promoted the stemness of metastatic CRC cells for their colonization and outgrowth in hepatic niches. Metabolically, the lipid-rich microenvironment in NAFLD activated de novo palmitate biosynthesis in metastatic CRC cells via upregulating fatty acid synthase (FASN). Moreover, increased intracellular palmitate bioavailability promoted EGFR palmitoylation to enhance its protein stability and plasma membrane localization. Furthermore, we demonstrated that the FDA-approved FASN inhibitor orlistat could reduce NAFLD-activated endogenous palmitate production, thus inhibiting palmitoylation of EGFR to suppress CRC cell stemness and restrict liver metastasis in synergy with conventional chemotherapy. These findings reveal that the NAFLD metabolic microenvironment boosts endogenous palmitate biosynthesis in metastatic CRC cells and promotes cell stemness via EGFR palmitoylation, and FASN inhibitor orlistat could be a candidate adjuvant drug to suppress liver metastasis in CRC patients with NAFLD.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yue Zhang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yan Dong
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Ruiyang Zi
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yijie Wang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yanrong Chen
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Chengxiang Liu
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Junyi Wang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Xuesong Wang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Jianjun Li
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
| | - Houjie Liang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
| | - Juanjuan Ou
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
- Jinfeng Laboratory, 401329, Chongqing, China.
| |
Collapse
|
7
|
Harada H, Moriya K, Kobuchi H, Ishihara N, Utsumi T. Protein N-myristoylation plays a critical role in the mitochondrial localization of human mitochondrial complex I accessory subunit NDUFB7. Sci Rep 2023; 13:22991. [PMID: 38151566 PMCID: PMC10752898 DOI: 10.1038/s41598-023-50390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023] Open
Abstract
The present study examined human N-myristoylated proteins that specifically localize to mitochondria among the 1,705 human genes listed in MitoProteome, a mitochondrial protein database. We herein employed a strategy utilizing cellular metabolic labeling with a bioorthogonal myristic acid analog in transfected COS-1 cells established in our previous studies. Four proteins, DMAC1, HCCS, NDUFB7, and PLGRKT, were identified as N-myristoylated proteins that specifically localize to mitochondria. Among these proteins, DMAC1 and NDUFB7 play critical roles in the assembly of complex I of the mitochondrial respiratory chain. DMAC1 functions as an assembly factor, and NDUFB7 is an accessory subunit of complex I. An analysis of the intracellular localization of non-myristoylatable G2A mutants revealed that protein N-myristoylation occurring on NDUFB7 was important for the mitochondrial localization of this protein. Furthermore, an analysis of the role of the CHCH domain in NDUFB7 using Cys to Ser mutants revealed that it was essential for the mitochondrial localization of NDUFB7. Therefore, the present results showed that NDUFB7, a vital component of human mitochondrial complex I, was N-myristoylated, and protein N-myrisotylation and the CHCH domain were both indispensable for the specific targeting and localization of NDUFB7 to mitochondria.
Collapse
Affiliation(s)
- Haruna Harada
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Koko Moriya
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Hirotsugu Kobuchi
- Department of Cell Chemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Naotada Ishihara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Toshihiko Utsumi
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan.
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan.
| |
Collapse
|
8
|
Qi X, Hu Q, Elghobashi-Meinhardt N, Long T, Chen H, Li X. Molecular basis of Wnt biogenesis, secretion, and Wnt7-specific signaling. Cell 2023; 186:5028-5040.e14. [PMID: 37852257 PMCID: PMC10841698 DOI: 10.1016/j.cell.2023.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023]
Abstract
Wnt proteins are enzymatically lipidated by Porcupine (PORCN) in the ER and bind to Wntless (WLS) for intracellular transport and secretion. Mechanisms governing the transfer of these low-solubility Wnts from the ER to the extracellular space remain unclear. Through structural and functional analyses of Wnt7a, a crucial Wnt involved in central nervous system angiogenesis and blood-brain barrier maintenance, we have elucidated the principles of Wnt biogenesis and Wnt7-specific signaling. The Wnt7a-WLS complex binds to calreticulin (CALR), revealing that CALR functions as a chaperone to facilitate Wnt transfer from PORCN to WLS during Wnt biogenesis. Our structures, functional analyses, and molecular dynamics simulations demonstrate that a phospholipid in the core of Wnt-bound WLS regulates the association and dissociation between Wnt and WLS, suggesting a lipid-mediated Wnt secretion mechanism. Finally, the structure of Wnt7a bound to RECK, a cell-surface Wnt7 co-receptor, reveals how RECKCC4 engages the N-terminal domain of Wnt7a to activate Wnt7-specific signaling.
Collapse
Affiliation(s)
- Xiaofeng Qi
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Qinli Hu
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Tao Long
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
9
|
Nicolau MSP, Resende MA, Serafim P, Lima GYP, Ueira-Vieira C, Nicolau-Junior N, Yoneyama KAG. Identification of potential inhibitors for N-myristoyltransferase (NMT) protein of Plasmodium vivax. J Biomol Struct Dyn 2023; 41:7019-7031. [PMID: 36002266 DOI: 10.1080/07391102.2022.2114942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/13/2022] [Indexed: 10/15/2022]
Abstract
Malaria is a neglected parasitic infection of global importance. It is mainly present in tropical countries and caused by a protozoa that belongs to the genus Plasmodium. The disease vectors are female Anopheles mosquitoes infected with the Plasmodium spp. According to the World Health Organization (WHO), there were 241 million malaria cases worldwide in 2020 and approximately 627 thousand malaria deaths in the same year. The increasing resistance to treatment has been a major problem since the beginning of the 21st century. New studies have been conducted to find possible drugs that can be used for the eradication of the disease. In this scenario, a protein named N-myristoyltransferase (NMT) has been studied as a potential drug target. NMT has an important role on the myristoylation of proteins and binds to the plasma membrane, contributing to the stabilization of protein-protein interactions. Thus, inhibition of NMT can lead to death of the parasite cell. Therefore, in order to predict and detect potential inhibitors against Plasmodium NMT, Computer-Aided Drug Design techniques were used in this research that involve virtual screening, molecular docking, and molecular dynamics. Three potential compounds similar to a benzofuran inhibitor were identified as stable PvNMT ligands. These compounds (EXP90, ZBC205 and ZDD968) originate from three different sources, respectively: a commercial library, a natural product library, and the FDA approved drugs dataset. These compounds may be further tested in in vitro and in vivo inhibition tests against Plasmodium vivax NMT.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Milllena Almeida Resende
- Laboratory of Molecular Modeling, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Pedro Serafim
- Laboratory of Molecular Modeling, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Germano Yoneda Pereira Lima
- Laboratory of Molecular Modeling, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Carlos Ueira-Vieira
- Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Nilson Nicolau-Junior
- Laboratory of Molecular Modeling, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Kelly Aparecida Geraldo Yoneyama
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| |
Collapse
|
10
|
Mohammadi-Ghalehbin B, Shiran JA, Gholizadeh N, Razzaghi-Asl N. Synthesis, antileishmanial activity and molecular modeling of new 1-aryl/alkyl-3-benzoyl/cyclopropanoyl thiourea derivatives. Mol Divers 2023; 27:1531-1545. [PMID: 36001225 DOI: 10.1007/s11030-022-10508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022]
Abstract
Due to the lack of effective vaccine(s) against leishmania and also pharmacokinetics issues of current drugs, it is necessary to discover new antileishmanial agents. Within this particular study, a series of novel 1-aryl/alkyl-3-benzoyl/cyclopropanoyl thiourea derivatives were synthesized (yields 69-84%) and evaluated as antileishmanial compounds (1-11). Synthetic derivatives were subjected to in vitro antileishmanial assessment against Leishmania major promastigotes by colorimetric MTT assay. Compounds 3 (IC50 38.54 µg/mL), 5 (IC50 84.75 µg/mL) and 10 (IC50 70.31 µg/mL) exhibited higher activities after 48 h but were less potent than amphotericin B (IC50 0.19 µg/mL). Antileishmanial activities indicated priority of 5-methyl-4-phenyl thiazole over furyl methyl substituents and 4-phenyl thiazole on thiourea nitrogen. N-myristoyltransferase (NMT) was selected as a validated L. major target for molecular docking studies. In silico results indicated the contribution of hydrophobic, π-stacking and H-bond interactions in binding to target. Most of the synthesized derivatives had lower binding affinities to human NMT (hNMT) than leishmanial enzyme. Docking conformations of top-ranked selective binders (compounds 3 and 5) were subjected to 50 ns MD simulations inside L. major HMT (LmNMT) active site. MD trajectories were used to extract RMSD, RMSF, Rg and durability of intramolecular/intermolecular H-bonds of the complex. It was observed that compound 3 escaped from LmNMT binding site during simulation period and no stable complex could be envisaged. Unlike 3, compound 5 attained stable binding conformation with converged stability parameters. Although mechanistic details for antileishmanial effects of synthesized derivatives are to be explored, current results may be implicated in further structure-guided approach toward potent antileishmanial agents.
Collapse
Affiliation(s)
- Behnam Mohammadi-Ghalehbin
- Department of Microbiology and Parasitology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
- Research Center for Zoonoses, Parasitic and Microbial Diseases, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Jafar Abbasi Shiran
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, 5618953141, Ardabil, Iran
| | - Nastaran Gholizadeh
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Razzaghi-Asl
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, 5618953141, Ardabil, Iran.
| |
Collapse
|
11
|
Abstract
The association of AMP-activated protein kinase (AMPK) with membranes plays a critical role in the regulation of AMPK activation and function. Protein lipid modification, including palmitoylation, myristoylation, and farnesyation, constitutes a crucial mechanism in the regulation of protein dynamic interactions with membranes. Among the three subunits of the AMPK heterotrimeric complex, the structural subunit AMPKβ is myristoylated and the catalytic subunit AMPKα is palmitoylated. Here, we report the characterization of AMPKα palmitoylation. We found that AMKPα was palmitoylated at Cys209 and Cys543, and this was required for AMPK activation and subcellular membrane compartmentalization. To understand the regulation of AMPKα palmitoylation, we have identified DHHC17 as a candidate palmitoyltransferase for AMPKα and found that DHHC17, by palmitoylating AMPKα, modulated AMPK membrane association and activation in response to energy stress. To determine the role of DHHC17 in cell function, we generated DHHC17 liver-specific knockout mice and found that inactivation of DHHC17 in the mouse liver impaired AMPK activation and hepatic autophagy and caused a type 2 diabetes-like syndrome. Overall, our studies demonstrate that AMPKα palmitoylation plays a critical role in AMPK activation and that DHHC17, through its modulation of AMPK signaling, constitutes a new regulator of hepatic metabolism.
Collapse
|
12
|
Hanashima S, Mito K, Umegawa Y, Murata M, Hojo H. Lipid chain-driven interaction of a lipidated Src-family kinase Lyn with the bilayer membrane. Org Biomol Chem 2022; 20:6436-6444. [PMID: 35880995 DOI: 10.1039/d2ob01079h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Myristoylation is a process of ubiquitous protein modification, which promotes the interaction of lipidated proteins on cell surfaces, in conjunction with reversible S-palmitoylation. We report the cooperative lipid-lipid interaction of two acyl chains of proteins, which increases the protein-membrane interaction and facilitates selective targeting of membranes containing anionic lipids. Lyn is a member of the Src family kinases distributed on the membrane surface by N-myristoyl and neighbouring S-palmitoyl chain anchors at the unique N-terminus domain. We prepared N-terminal short segments of lipidated Lyn to investigate the behaviour of each acyl chain in the lipid composition-dependent membrane interaction by solid-state nuclear magnetic resonance (NMR) analysis. Solid-state 31P-NMR studies revealed that S-palmitoylation of N-myristoylated Lyn peptides increased the interaction between peptides and phospholipid head groups, particularly with the anionic phosphatidylserine-containing bilayers. The solid-state 2H-NMR of Lyn peptides with a perdeutero N-myristoyl chain indicated an increase (0.6-0.8 Å) in the extent of the N-myristoyl chain in the presence of nearby S-palmitoyl chains, probably through the interaction via the acyl chains. The cooperative hydrocarbon chain interaction of the two acyl chains of Lyn increased membrane binding by extending the hydrocarbon chains deeper into the membrane interior, thereby promoting the peptide-membrane surface interaction between the cationic peptide side chains and the anionic lipid head groups. This lipid-driven mechanism by S-palmitoylation promotes the partition of the lipidated proteins to the cytoplasmic surface of the cell membranes and may be involved in recruiting Lyn at the signalling domains rich in anionic lipids.
Collapse
Affiliation(s)
- Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Kanako Mito
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan. .,Forefront Research Center, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hironobu Hojo
- Forefront Research Center, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.,Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita 565-0871, Japan
| |
Collapse
|
13
|
Mechanisms and inhibition of Porcupine-mediated Wnt acylation. Nature 2022; 607:816-822. [PMID: 35831507 DOI: 10.1038/s41586-022-04952-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022]
Abstract
Wnt signalling is essential for regulation of embryonic development and adult tissue homeostasis1-3, and aberrant Wnt signalling is frequently associated with cancers4. Wnt signalling requires palmitoleoylation on a hairpin 2 motif by the endoplasmic reticulum-resident membrane-bound O-acyltransferase Porcupine5-7 (PORCN). This modification is indispensable for Wnt binding to its receptor Frizzled, which triggers signalling8,9. Here we report four cryo-electron microscopy structures of human PORCN: the complex with the palmitoleoyl-coenzyme A (palmitoleoyl-CoA) substrate; the complex with the PORCN inhibitor LGK974, an anti-cancer drug currently in clinical trials10; the complex with LGK974 and WNT3A hairpin 2 (WNT3Ap); and the complex with a synthetic palmitoleoylated WNT3Ap analogue. The structures reveal that hairpin 2 of WNT3A, which is well conserved in all Wnt ligands, inserts into PORCN from the lumenal side, and the palmitoleoyl-CoA accesses the enzyme from the cytosolic side. The catalytic histidine triggers the transfer of the unsaturated palmitoleoyl group to the target serine on the Wnt hairpin 2, facilitated by the proximity of the two substrates. The inhibitor-bound structure shows that LGK974 occupies the palmitoleoyl-CoA binding site to prevent the reaction. Thus, this work provides a mechanism for Wnt acylation and advances the development of PORCN inhibitors for cancer treatment.
Collapse
|
14
|
ANKRD22 is an N-myristoylated hairpin-like monotopic membrane protein specifically localized to lipid droplets. Sci Rep 2021; 11:19233. [PMID: 34584137 PMCID: PMC8478909 DOI: 10.1038/s41598-021-98486-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
The membrane topology and intracellular localization of ANKRD22, a novel human N-myristoylated protein with a predicted single-pass transmembrane domain that was recently reported to be overexpressed in cancer, were examined. Immunofluorescence staining of COS-1 cells transfected with cDNA encoding ANKRD22 coupled with organelle markers revealed that ANKRD22 localized specifically to lipid droplets (LD). Analysis of the intracellular localization of ANKRD22 mutants C-terminally fused to glycosylatable tumor necrosis factor (GLCTNF) and assessment of their susceptibility to protein N-glycosylation revealed that ANKRD22 is synthesized on the endoplasmic reticulum (ER) membrane as an N-myristoylated hairpin-like monotopic membrane protein with the amino- and carboxyl termini facing the cytoplasm and then sorted to LD. Pro98 located at the center of the predicted membrane domain was found to be essential for the formation of the hairpin-like monotopic topology of ANKRD22. Moreover, the hairpin-like monotopic topology, and positively charged residues located near the C-terminus were demonstrated to be required for the sorting of ANKRD22 from ER to LD. Protein N-myristoylation was found to positively affect the LD localization. Thus, multiple factors, including hairpin-like monotopic membrane topology, C-terminal positively charged residues, and protein N-myristoylation cooperatively affected the intracellular targeting of ANKRD22 to LD.
Collapse
|
15
|
Coronel Arrechea C, Giolito ML, García IA, Soria G, Valdez Taubas J. A novel yeast-based high-throughput method for the identification of protein palmitoylation inhibitors. Open Biol 2021; 11:200415. [PMID: 34343464 PMCID: PMC8331233 DOI: 10.1098/rsob.200415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Protein S-acylation or palmitoylation is a widespread post-translational modification that consists of the addition of a lipid molecule to cysteine residues of proteins through a thioester bond. Palmitoylation and palmitoyltransferases (PATs) have been linked to several types of cancers, diseases of the central nervous system and many infectious diseases where pathogens use the host cell machinery to palmitoylate their effectors. Despite the central importance of palmitoylation in cell physiology and disease, progress in the field has been hampered by the lack of potent-specific inhibitors of palmitoylation in general, and of individual PATs in particular. Herein, we present a yeast-based method for the high-throughput identification of small molecules that inhibit protein palmitoylation. The system is based on a reporter gene that responds to the acylation status of a palmitoylation substrate fused to a transcription factor. The method can be applied to heterologous PATs such as human DHHC20, mouse DHHC21 and also a PAT from the parasite Giardia lamblia. As a proof-of-principle, we screened for molecules that inhibit the palmitoylation of Yck2, a substrate of the yeast PAT Akr1. We tested 3200 compounds and were able to identify a candidate molecule, supporting the validity of our method.
Collapse
Affiliation(s)
- Consuelo Coronel Arrechea
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) CONICET, Córdoba, Argentina.,Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - María Luz Giolito
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) CONICET, Córdoba, Argentina.,Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Iris Alejandra García
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
| | - Gastón Soria
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
| | - Javier Valdez Taubas
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) CONICET, Córdoba, Argentina.,Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Córdoba, Argentina
| |
Collapse
|
16
|
Takahara M, Mochizuki S, Wakabayashi R, Minamihata K, Goto M, Sakurai K, Kamiya N. Extending the Half-Life of a Protein in Vivo by Enzymatic Labeling with Amphiphilic Lipopeptides. Bioconjug Chem 2021; 32:655-660. [PMID: 33689283 DOI: 10.1021/acs.bioconjchem.1c00027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthesis of lipid-protein conjugates is one of the significant techniques in drug delivery systems of proteins; however, the intact conjugation of a lipid and protein is yet challenging due to the hydrophobicity of lipid molecules. In order to facilitate easy handling of the lipid moiety in conjugation, we have focused on a microbial transglutaminase (MTG) that can ligate specific lysine (K) and glutamine (Q) residues in lipopeptides and a protein of interest. As MTG substrates, monolipid- and dilipid-fused amphiphilic short lipopeptide substrates (lipid-G3S-RHK or lipid2-KG3S-RHK) were designed. These amphiphilic lipopeptides and a model protein (enhanced green fluorescent protein, EGFP) fused with LLQG (LQ-EGFP) were both water-soluble, and thus lipid-protein conjugates were efficiently obtained through the MTG reaction with a >80% conversion rate of LQ-EGFP even using cholesterol-G3S-RHK. In vitro cell adhesion and in vivo half-life stability of the successfully obtained lipid-protein conjugates were evaluated, showing that the monocholesterol-G3S-RHK modification of a protein gave the highest cell adhesion efficiency and longest half-life time by formation of a stable albumin/lipid-protein complex.
Collapse
Affiliation(s)
- Mari Takahara
- Department of Materials Science & Chemical Engineering, National Institute of Technology, Kitakyushu College, 5-20-1 Shii, Kokuraminamiku, Kitakyushu 802-0985, Japan
| | - Shinichi Mochizuki
- Department of Chemistry and Biochemistry, the University of Kitakyushu, 1-1 Hibikino, Wakamatsuku, Kitakyushu 808-0135, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.,Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, the University of Kitakyushu, 1-1 Hibikino, Wakamatsuku, Kitakyushu 808-0135, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.,Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
17
|
Abstract
Metabolic reprogramming with heterogeneity is a hallmark of cancer and is at the basis of malignant behaviors. It supports the proliferation and metastasis of tumor cells according to the low nutrition and hypoxic microenvironment. Tumor cells frantically grab energy sources (such as glucose, fatty acids, and glutamine) from different pathways to produce a variety of biomass to meet their material needs via enhanced synthetic pathways, including aerobic glycolysis, glutaminolysis, fatty acid synthesis (FAS), and pentose phosphate pathway (PPP). To survive from stress conditions (e.g., metastasis, irradiation, or chemotherapy), tumor cells have to reprogram their metabolism from biomass production towards the generation of abundant adenosine triphosphate (ATP) and antioxidants. In addition, cancer cells remodel the microenvironment through metabolites, promoting an immunosuppressive microenvironment. Herein, we discuss how the metabolism is reprogrammed in cancer cells and how the tumor microenvironment is educated via the metabolic products. We also highlight potential metabolic targets for cancer therapies.
Collapse
Affiliation(s)
- Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
18
|
Plasma membrane lipid scrambling causing phosphatidylserine exposure negatively regulates NK cell activation. Cell Mol Immunol 2021; 18:686-697. [PMID: 33469162 DOI: 10.1038/s41423-020-00600-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/15/2020] [Indexed: 11/08/2022] Open
Abstract
One of the hallmarks of live cells is the asymmetric distribution of lipids across their plasma membrane. Changes in this asymmetry due to lipid "scrambling" result in phosphatidylserine exposure at the cell surface that is detected by annexin V staining. This alteration is observed during cell death processes such as apoptosis, and during physiological responses such as platelet degranulation and membrane repair. Previous studies have shown that activation of NK cells is accompanied by exposure of phosphatidylserine at the cell surface. While this response was thought to be indicative of ongoing NK cell death, it may also reflect the regulation of NK cell activation in the absence of cell death. Herein, we found that NK cell activation was accompanied by rapid phosphatidylserine exposure to an extent proportional to the degree of NK cell activation. Through enforced expression of a lipid scramblase, we provided evidence that activation-induced lipid scrambling in NK cells is reversible and does not lead to cell death. In contrast, lipid scrambling attenuates NK cell activation. This response was accompanied by reduced cell surface expression of activating receptors such as 2B4, and by loss of binding of Src family protein tyrosine kinases Fyn and Lck to the inner leaflet of the plasma membrane. Hence, lipid scrambling during NK cell activation is, at least in part, a physiological response that reduces the NK cell activation level. This effect is due to the ability of lipid scrambling to alter the distribution of membrane-associated receptors and kinases required for NK cell activation.
Collapse
|
19
|
Zheng M, Wang W, Liu J, Zhang X, Zhang R. Lipid Metabolism in Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:49-69. [PMID: 33740243 DOI: 10.1007/978-981-33-6785-2_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Metabolic reprogramming is one of the most critical hallmarks in cancer cells. In the past decades, mounting evidence has demonstrated that, besides the Warburg Effect, lipid metabolism dysregulation is also one of the essential characteristics of cancer cell metabolism. Lipids are water-insoluble molecules with diverse categories of phosphoglycerides, triacylglycerides, sphingolipids, sterols, etc. As the major utilization for energy storage, fatty acids are the primary building blocks for synthesizing triacylglycerides. And phosphoglycerides, sphingolipids, and sterols are the main components constructing biological membranes. More importantly, lipids play essential roles in signal transduction by functioning as second messengers or hormones. Much evidence has shown specific alterations of lipid metabolism in cancer cells. Consequently, the structural configuration of biological membranes, the energy homeostasis under nutrient stress, and the abundance of lipids in the intracellular signal transduction are affected by these alterations. Furthermore, lipid droplets accumulate in cancer cells and function adaptively to different types of harmful stress. This chapter reviews the regulation, functions, and therapeutic benefits of targeting lipid metabolism in cancer cells. Overall, this chapter highlights the significance of exploring more potential therapeutic strategies for malignant diseases by unscrambling lipid metabolism regulation in cancer cells.
Collapse
Affiliation(s)
- Minhua Zheng
- Department of Medical Genetics and Developmental Biology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Wei Wang
- Department of Immunology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiao Zhang
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Rui Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, People's Republic of China.
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, People's Republic of China.
| |
Collapse
|
20
|
Sun S, Li L, Wu X, Tang R, Lei C, Wang HH, Huang Y, Nie Z, Yao S. Dual-Product Synergistically Enhanced Colorimetric Assay for Sensitive Detection of Lipid Transferase Activity. Anal Chem 2020; 92:15236-15243. [PMID: 33140958 DOI: 10.1021/acs.analchem.0c03973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lipid transferase-catalyzed protein lipidation plays critical roles in many physiological processes and it has been an increasingly attractive therapeutic target from cancer to neurodegeneration, while sensitive detection of lipid transferase activity in biological samples remains challenging. Here, we presented an AuNP-based colorimetric method with dual-product synergistically enhanced sensitivity for convenient detection of lipid transferase activity. Homo sapiens N-myristoyltransferase 1 (HsNMT1), a key lipid transferase, was selected as the model. Accordingly, positively charged substrate peptides (Pep) of HsNMT1 can induce the aggregation of AuNPs through disrupting their electrostatic repulsion, while the HsNMT1-catalyzed lipid modification generates aggregated lipidated peptides (C14-Pep) and negatively charged HS-CoA, which will eliminate the disruption and stabilize the AuNPs by the formation of Au-S bonds, respectively. Consequently, charge reversal of the biomolecules and the formation of Au-S bonds synergistically contribute to the stability of AuNPs in the presence of HsNMT1. Therefore, the HsNMT1 activity can be visually detected by the naked eye through the color change of the AuNPs originated from the change in their distance-dependent surface plasmon resonance absorptions. Here, the A520/A610 ratio can sensitively reflect the activity of HsNMT1 in the linear range of 2-75 nM with a low detection limit of 0.56 nM. Moreover, the method was successfully applied for probing the HsNMT1 activities in different cell lysates and inhibitor screening. Furthermore, given the replaceability of the substrate peptide, the proposed assay is promising for universal application to other lipid transferases and exhibits great potential in lipid transferase-targeted drug development.
Collapse
Affiliation(s)
- Sujuan Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Liangwen Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Xianhua Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Rui Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Hong-Hui Wang
- College of Biology, Hunan University, Changsha 410082, P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
21
|
Vora HD, Johnson M, Brea RJ, Rudd AK, Devaraj NK. Inhibition of NRAS Signaling in Melanoma through Direct Depalmitoylation Using Amphiphilic Nucleophiles. ACS Chem Biol 2020; 15:2079-2086. [PMID: 32568509 DOI: 10.1021/acschembio.0c00222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Activating mutations in the small GTPase NRAS are responsible for driving tumor growth in several cancers. Unfortunately, the development of NRAS inhibitors has proven difficult due to the lack of hydrophobic binding pockets on the protein's surface. To overcome this limitation, we chose to target the post-translational S-palmitoyl modification of NRAS, which is required for its signaling activity. Utilizing an amphiphile-mediated depalmitoylation (AMD) strategy, we demonstrate the ability to directly cleave S-palmitoyl groups from NRAS and inhibit its function. C8 alkyl cysteine causes a dose-dependent decrease in NRAS palmitoylation and inhibits downstream signaling in melanoma cells with an activating mutation in NRAS. This compound reduces cell growth in NRAS-driven versus non-NRAS-driven melanoma lines and inhibits tumor progression in an NRAS-mutated melanoma xenograft mouse model. Our work demonstrates that AMD can effectively suppress NRAS activity and could represent a promising new avenue for discovering lead compounds for treatment of NRAS-driven cancers.
Collapse
Affiliation(s)
- Hetika D. Vora
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, La Jolla, California 92093, United States
| | - Mai Johnson
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, La Jolla, California 92093, United States
| | - Roberto J. Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, La Jolla, California 92093, United States
| | - Andrew K. Rudd
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, La Jolla, California 92093, United States
| | - Neal K. Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, La Jolla, California 92093, United States
| |
Collapse
|
22
|
Ibrahim YHEY, Regdon G, Hamedelniel EI, Sovány T. Review of recently used techniques and materials to improve the efficiency of orally administered proteins/peptides. Daru 2020; 28:403-416. [PMID: 31811628 PMCID: PMC7214593 DOI: 10.1007/s40199-019-00316-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/13/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES The main objective of present review is to explore and evaluate the effectiveness of recently developed methods to improve the bioavailability of orally administered biopharmaceutical drugs. METHODS A systematic search of sciencedirect, tandfonline and Google Scholar databases based on various sets of keywords was performed. All results were evaluated based on their abstracts, and irrelevant studies were neglected during further evaluation. RESULTS At present, biopharmaceuticals are used as injectable therapies as they are not absorbed adequately from the different routes of drug administration, particularly the oral one. Their insufficient absorption is attributed to their high molecular weight, degradation by proteolytic enzymes, high hydrophilicity and rigidity of the absorptive tissues. From industrial aspect incorporation of enzyme inhibitors (EIs) and permeation enhancers (PEs) and mucoadhesive polymers into conventional dosage forms may be the easiest way of formulation of orally administered macromolecular drugs, but the effectiveness of protection and absorption enhancement here is the most questionable. Conjugation may be problematic from regulatory aspect. Encapsulation into lipid-based vesicles sufficiently protects the incorporated macromolecule and improves intestinal uptake but have considerable stability issues. In contrast, polymeric nanocarriers may provide good stability but provides lower internalization efficacy in comparison with the lipid-based carriers. CONCLUSION It can be concluded that the combination of the advantages of mucoadhesive polymeric and lid-based carriers in hybrid lipid/polymer nanoparticles may result in improved absorption and might represent a potential means for the oral administration of therapeutic proteins in the near future. Graphical abstract Delivery systems for oral protein daministration.
Collapse
Affiliation(s)
- Yousif H-E Y Ibrahim
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, Szeged, H-6720, Hungary
- Pharmaceutics Department, Omdurman Islamic University, Omdurman, Sudan
| | - Géza Regdon
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, Szeged, H-6720, Hungary
| | | | - Tamás Sovány
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, Szeged, H-6720, Hungary.
| |
Collapse
|
23
|
Wei X, Adak S, Zayed M, Yin L, Feng C, Speck SL, Kathayat RS, Zhang Q, Dickinson BC, Semenkovich CF. Endothelial Palmitoylation Cycling Coordinates Vessel Remodeling in Peripheral Artery Disease. Circ Res 2020; 127:249-265. [PMID: 32233916 DOI: 10.1161/circresaha.120.316752] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Peripheral artery disease, common in metabolic syndrome and diabetes mellitus, responds poorly to medical interventions and is characterized by chronic vessel immaturity leading to lower extremity amputations. OBJECTIVE To define the role of reversible palmitoylation at the endothelium in the maintenance of vascular maturity. METHODS AND RESULTS Endothelial knockout of the depalmitoylation enzyme APT-1 (acyl-protein thioesterase 1) in mice impaired recovery from chronic hindlimb ischemia, a model of peripheral artery disease. Endothelial APT-1 deficiency decreased fibronectin processing, disrupted adherens junctions, and inhibited in vitro lumen formation. In an unbiased palmitoylation proteomic screen of endothelial cells from genetically modified mice, R-Ras, known to promote vessel maturation, was preferentially affected by APT-1 deficiency. R-Ras was validated as an APT-1 substrate, and click chemistry analyses demonstrated increased R-Ras palmitoylation in cells with APT-1 deficiency. APT-1 enzyme activity was decreased in endothelial cells from db/db mice. Hyperglycemia decreased APT-1 activity in human umbilical vein endothelial cells, due, in part, to altered acetylation of the APT-1 protein. Click chemistry analyses demonstrated increased R-Ras palmitoylation in the setting of hyperglycemia. Altered R-Ras trafficking, increased R-Ras palmitoylation, and fibronectin retention were found in diabetes mellitus models. Loss of R-Ras depalmitoylation caused by APT-1 deficiency constrained R-Ras membrane trafficking, as shown by total internal reflection fluorescence imaging. To rescue cellular phenotypes, we generated an R-Ras molecule with an inserted hydrophilic domain to circumvent membrane rigidity caused by defective palmitoylation turnover. This modification corrected R-Ras membrane trafficking, restored fibronectin processing, increased adherens junctions, and rescued defective lumen formation induced by APT-1 deficiency. CONCLUSIONS These results suggest that endothelial depalmitoylation is regulated by the metabolic milieu and controls plasma membrane partitioning to maintain vascular homeostasis.
Collapse
Affiliation(s)
- Xiaochao Wei
- From the Division of Endocrinology, Metabolism and Lipid Research (X.W., S.A., L.Y., C.F., S.L.S., Q.Z., C.F.S.), Washington University, St Louis, MO
| | - Sangeeta Adak
- From the Division of Endocrinology, Metabolism and Lipid Research (X.W., S.A., L.Y., C.F., S.L.S., Q.Z., C.F.S.), Washington University, St Louis, MO
| | - Mohamed Zayed
- Section of Vascular Surgery, Department of Surgery (M.Z.), Washington University, St Louis, MO.,Veterans Affairs St Louis Health Care System, MO (M.Z.)
| | - Li Yin
- From the Division of Endocrinology, Metabolism and Lipid Research (X.W., S.A., L.Y., C.F., S.L.S., Q.Z., C.F.S.), Washington University, St Louis, MO
| | - Chu Feng
- From the Division of Endocrinology, Metabolism and Lipid Research (X.W., S.A., L.Y., C.F., S.L.S., Q.Z., C.F.S.), Washington University, St Louis, MO
| | - Sarah L Speck
- From the Division of Endocrinology, Metabolism and Lipid Research (X.W., S.A., L.Y., C.F., S.L.S., Q.Z., C.F.S.), Washington University, St Louis, MO
| | - Rahul S Kathayat
- Department of Chemistry, University of Chicago, IL (R.S.K., B.C.D.)
| | - Qiang Zhang
- From the Division of Endocrinology, Metabolism and Lipid Research (X.W., S.A., L.Y., C.F., S.L.S., Q.Z., C.F.S.), Washington University, St Louis, MO
| | | | - Clay F Semenkovich
- From the Division of Endocrinology, Metabolism and Lipid Research (X.W., S.A., L.Y., C.F., S.L.S., Q.Z., C.F.S.), Washington University, St Louis, MO.,Department of Cell Biology and Physiology (C.F.S.), Washington University, St Louis, MO
| |
Collapse
|
24
|
Doti N, Caporale A, Monti A, Sandomenico A, Selis F, Ruvo M. A recent update on the use of microbial transglutaminase for the generation of biotherapeutics. World J Microbiol Biotechnol 2020; 36:53. [PMID: 32172335 DOI: 10.1007/s11274-020-02829-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/07/2020] [Indexed: 01/12/2023]
Abstract
The recent scientific progresses on the use of enzyme-mediated reactions in organic, non-aqueous and aqueous media have significantly supported the growing demand of new biotechnological and/or pharmacological products. Today, a plethora of microbial enzymes, used as biocatalysts, are available. Among these, microbial transglutaminases (MTGs) are broadly used for their ability to catalyse the formation of an isopeptide bond between the γ-amide group of glutamines and the ε-amino group of lysine. Due to their promiscuity towards primary amine-containing substrates and the more stringent specificity for glutamine-containing peptide sequences, several combined approaches can be tailored for different settings, making MTGs very attractive catalysts for generating protein-protein and protein small molecule's conjugates. The present review offers a recent update on the modifications attainable by MTG-catalysed bioreactions as reported between 2014 and 2019. In particular, we present a detailed and comparative overview on the MTG-based methods for proteins and antibodies engineering, with a particular outlook on the synthesis of homogeneous antibody-drug conjugates.
Collapse
Affiliation(s)
- N Doti
- Institute of Biostructure and Bioimaging, CNR (IBB-CNR), Via Mezzocannone, 16, 80134, Naples, Italy.
| | - A Caporale
- Institute of Crystallography, CNR (IC-CNR), c/o Area Science Park s.s. 14 Km 163.5, Basovizza, 34149, Trieste, Italy
| | - Alessandra Monti
- Institute of Biostructure and Bioimaging, CNR (IBB-CNR), Via Mezzocannone, 16, 80134, Naples, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABIF), University L. Vanvitelli, Via Vivaldi, 43, 80100, Caserta, Italy
| | - A Sandomenico
- Institute of Biostructure and Bioimaging, CNR (IBB-CNR), Via Mezzocannone, 16, 80134, Naples, Italy
| | - Fabio Selis
- BioVIIIx R&D, Via B. Brin, 59C, 80142, Naples, Italy
| | - M Ruvo
- Institute of Biostructure and Bioimaging, CNR (IBB-CNR), Via Mezzocannone, 16, 80134, Naples, Italy.
| |
Collapse
|
25
|
Gomaraschi M. Role of Lipoproteins in the Microenvironment of Hormone-Dependent Cancers. Trends Endocrinol Metab 2020; 31:256-268. [PMID: 31837908 DOI: 10.1016/j.tem.2019.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/28/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) is an attractive target to develop novel strategies for hormone-dependent cancers. Several molecules in the TME can favor tumor development and progression, including lipoproteins. Lipoproteins are taken up by cancer cells, providing them with cholesterol and fatty acids. Cholesterol regulates cell signaling and it is converted into a series of bioactive metabolites, including hormones. The conflicting results of epidemiological and interventional studies suggest that the local availability of lipoproteins in the TME is more relevant for cancer biology than their circulating levels. Thus, reducing lipoprotein uptake and stimulating cell cholesterol efflux to high-density lipoproteins (HDLs) can represent a novel adjuvant strategy for cancer management. HDL-like particles can also act as drug delivery systems for tumor targeting.
Collapse
Affiliation(s)
- Monica Gomaraschi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
26
|
Liao C, Li M, Li X, Li N, Zhao X, Wang X, Song Y, Quan J, Cheng C, Liu J, Bode AM, Cao Y, Luo X. Trichothecin inhibits invasion and metastasis of colon carcinoma associating with SCD-1-mediated metabolite alteration. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158540. [PMID: 31678511 DOI: 10.1016/j.bbalip.2019.158540] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 02/08/2023]
Abstract
Lipid metabolic abnormalities have received intensified concerns and increased de novo synthesis of lipids is recognized as a common feature of many human cancers. Nevertheless, the role of lipid metabolism that confers aggressive properties on human cancers still remains to be revealed. Natural compounds represent an abundant pool of agents for the discovery of novel lead compounds. Trichothecin (TCN) is a sesquiterpenoid originating from an endophytic fungus of the herbal plant Maytenus hookeri Loes. Here, we assess the association of stearoyl-CoA desaturase 1 (SCD-1) over-expression with malignant progression of colorectal cancer (CRC). Based on this association, the effect of TCN on migration and invasion of colon carcinoma cells closely related to the inhibition of SCD-1 is evaluated. We further demonstrate that reduced production of unsaturated fatty acids (FAs) by blocking SCD-1 activity is beneficial for the anti-invasion effect of TCN. The aim of this study was to clarify the mechanistic connection between metabolite alterations induced by metabolic rewiring and the aggressive tumor phenotype and further develop novel pharmacological tools for the intervention of tumor invasion associated with SCD-1-mediated metabolite alterations.
Collapse
Affiliation(s)
- Chaoliang Liao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Min Li
- Department of Oncology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210001, China
| | - Xiang Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Namei Li
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Xu Zhao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Xiaoyi Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Yawen Song
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Jing Quan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Can Cheng
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Jikai Liu
- School of Pharmacy, South-central University for Nationalities, Wuhan, Hubei 430074, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, China; National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha 410078, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
27
|
Pinner AL, Mueller TM, Alganem K, McCullumsmith R, Meador-Woodruff JH. Protein expression of prenyltransferase subunits in postmortem schizophrenia dorsolateral prefrontal cortex. Transl Psychiatry 2020; 10:3. [PMID: 32066669 PMCID: PMC7026430 DOI: 10.1038/s41398-019-0610-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 09/09/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022] Open
Abstract
The pathophysiology of schizophrenia includes altered neurotransmission, dysregulated intracellular signaling pathway activity, and abnormal dendritic morphology that contribute to deficits of synaptic plasticity in the disorder. These processes all require dynamic protein-protein interactions at cell membranes. Lipid modifications target proteins to membranes by increasing substrate hydrophobicity by the addition of a fatty acid or isoprenyl moiety, and recent evidence suggests that dysregulated posttranslational lipid modifications may play a role in multiple neuropsychiatric disorders, including schizophrenia. Consistent with these emerging findings, we have recently reported decreased protein S-palmitoylation in schizophrenia. Protein prenylation is a lipid modification that occurs upstream of S-palmitoylation on many protein substrates, facilitating membrane localization and activity of key intracellular signaling proteins. Accordingly, we hypothesized that, in addition to palmitoylation, protein prenylation may be abnormal in schizophrenia. To test this, we assayed protein expression of the five prenyltransferase subunits (FNTA, FNTB, PGGT1B, RABGGTA, and RABGGTB) in postmortem dorsolateral prefrontal cortex from patients with schizophrenia and paired comparison subjects (n = 13 pairs). We found decreased levels of FNTA (14%), PGGT1B (13%), and RABGGTB (8%) in schizophrenia. To determine whether upstream or downstream factors may be driving these changes, we also assayed protein expression of the isoprenoid synthases FDPS and GGPS1 and prenylation-dependent processing enzymes RCE and ICMT. We found these upstream and downstream enzymes to have normal protein expression. To rule out effects from chronic antipsychotic treatment, we assayed FNTA, PGGT1B, and RABGGTB in the cortex from rats treated long-term with haloperidol decanoate and found no change in the expression of these proteins. Given the role prenylation plays in localization of key signaling proteins found at the synapse, these data offer a potential mechanism underlying abnormal protein-protein interactions and protein localization in schizophrenia.
Collapse
Affiliation(s)
- Anita L Pinner
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294-0021, USA.
| | - Toni M Mueller
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294-0021, USA
| | - Khaled Alganem
- Department of Neurosciences, University of Toledo, Toledo, OH, 43614-2598, USA
| | | | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294-0021, USA
| |
Collapse
|
28
|
Cromm PM, Adihou H, Kapoor S, Vazquez-Chantada M, Davey P, Longmire D, Hennes E, Hofer W, Küchler P, Chiarparin E, Waldmann H, Grossmann TN. Lipidated Stapled Peptides Targeting the Acyl Binding Protein UNC119. Chembiochem 2019; 20:2987-2990. [PMID: 31680402 PMCID: PMC6973269 DOI: 10.1002/cbic.201900615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Indexed: 01/09/2023]
Abstract
The acyl-binding UNC119 proteins mediate the activation and transport of various N-myristoylated proteins. In particular, UNC119a plays a crucial role in the completion of cytokinesis. Herein, we report the use of a lipidated peptide originating from the UNC119 binding partner Gnat1 as the basis for the design of lipidated, stabilized α-helical peptides that target UNC119a. By using the hydrocarbon peptide-stapling approach, cell-permeable binders of UNC119a were generated that induced the accumulation of cytokinetic and binucleated cells; this suggests UNC119a as a potential target for the inhibition of cytokinesis.
Collapse
Affiliation(s)
- Philipp M Cromm
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany.,Present address: Research and Development, Pharmaceuticals, Bayer AG, Muellerstrasse 178, 13353, Berlin, Germany
| | - Hélène Adihou
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Early CVRM Medicinal Chemistry, R&D BioPharmaceuticals, AstraZeneca, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Shobhna Kapoor
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Mercedes Vazquez-Chantada
- Chemistry, Oncology R&D, AstraZeneca, Darwin Building 310, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Paul Davey
- Chemistry, Oncology R&D, AstraZeneca, Darwin Building 310, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - David Longmire
- Chemistry, Oncology R&D, AstraZeneca, Darwin Building 310, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Elisabeth Hennes
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Walter Hofer
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Philipp Küchler
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Elisabetta Chiarparin
- Chemistry, Oncology R&D, AstraZeneca, Darwin Building 310, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Herbert Waldmann
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Tom N Grossmann
- Vrije Universiteit Amsterdam, Department of Chemistry and Pharmaceutical Sciences, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Su KH, Dai S, Tang Z, Xu M, Dai C. Heat Shock Factor 1 Is a Direct Antagonist of AMP-Activated Protein Kinase. Mol Cell 2019; 76:546-561.e8. [PMID: 31561952 DOI: 10.1016/j.molcel.2019.08.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/03/2019] [Accepted: 08/21/2019] [Indexed: 02/08/2023]
Abstract
Through transcriptional control of the evolutionarily conserved heat shock, or proteotoxic stress, response, heat shock factor 1 (HSF1) preserves proteomic stability. Here, we show that HSF1, a physiological substrate for AMP-activated protein kinase (AMPK), constitutively suppresses this central metabolic sensor. By physically evoking conformational switching of AMPK, HSF1 impairs AMP binding to the γ subunits and enhances the PP2A-mediated de-phosphorylation, but it impedes the LKB1-mediated phosphorylation of Thr172, and retards ATP binding to the catalytic α subunits. These immediate and manifold regulations empower HSF1 to both repress AMPK under basal conditions and restrain its activation by diverse stimuli, thereby promoting lipogenesis, cholesterol synthesis, and protein cholesteroylation. In vivo, HSF1 antagonizes AMPK to control body fat mass and drive the lipogenic phenotype and growth of melanomas independently of its intrinsic transcriptional action. Thus, the physical AMPK-HSF1 interaction epitomizes a reciprocal kinase-substrate regulation whereby lipid metabolism and proteomic stability intertwine.
Collapse
Affiliation(s)
- Kuo-Hui Su
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Siyuan Dai
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Zijian Tang
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA; Graduate programs, Department of Molecular & Biomedical Sciences, The University of Maine, Orono, ME 04469, USA
| | - Meng Xu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Chengkai Dai
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
30
|
Xu S, Huo J, Huang Y, Aw M, Chen S, Mak S, Yip LY, Ho YS, Ng SW, Tan AHM, Lee A, Ou X, Lam KP. von Hippel-Lindau Protein Maintains Metabolic Balance to Regulate the Survival of Naive B Lymphocytes. iScience 2019; 17:379-392. [PMID: 31351078 PMCID: PMC6660606 DOI: 10.1016/j.isci.2019.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/06/2019] [Accepted: 07/01/2019] [Indexed: 01/07/2023] Open
Abstract
B lymphocytes undergo metabolic reprogramming upon activation to meet the bioenergetic demands for proliferation and differentiation. Yet, little is known if and how the fate of naive B cells is metabolically regulated. Here, we specifically delete von Hippel-Lindau protein (VHL) in B cells using CD19-Cre and demonstrate that metabolic balance is essential for naive B cell survival. Loss of VHL disturbs glycolytic and oxidative metabolic balance and causes severe reduction in mature B cells. Mechanistically, the metabolic imbalance in VHL-deficient B cells, arising from over-stabilization of hypoxia-inducible factor-1α (HIF-1α), triggers reductive glutamine metabolism leading to increased Fas palmitoylation and caspase-8-mediated apoptosis. Blockade of reductive glutamine metabolic flux by lactate supplementation and ATP citrate lyase inhibition restores the metabolic balance and rectifies the impaired survival of VHL-deficient B cells. Hence, we unravel that the VHL/HIF-1α pathway is required to maintain the metabolic balance of naive B cells and ensure their survival. vHL ablation in naive B cells leads to diminishment of mature B cell populations B cells lacking vHL manifest perturbed metabolism and impaired survival vHL deficiency in B cells triggers reductive carboxylation of α-KG Metabolic rewiring in vHL-deficient naive B cells causes caspase-8 activation
Collapse
Affiliation(s)
- Shengli Xu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117559, Singapore.
| | - Jianxin Huo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Yuhan Huang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Melissa Aw
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Shuwen Chen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Shiya Mak
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Lian Yee Yip
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Sze Wai Ng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Andy Hee-Meng Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Alison Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Xijun Ou
- Southern University of Science and Technology, Shenzhen 518055, China
| | - Kong-Peng Lam
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117559, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117559, Singapore.
| |
Collapse
|
31
|
Abstract
Clinical and preclinical studies over the past 3 decades have uncovered a multitude of signaling pathways involved in the initiation and progression of atherosclerosis. From these studies, signaling by proteins of the Wnt family has recently emerged as an important player in the development of atherosclerosis. Wnt signaling is characterized by a large number of ligands, receptors, and coreceptors and can be regulated at many different levels. Among Wnt modulators, the evolutionary conserved Dkk (Dickkopf) proteins, and especially Dkk-1, the founding member of the family, are the best characterized. The role of Dkks in the pathophysiology of the arterial wall is only partially understood, but their involvement in atherosclerosis is becoming increasingly evident. This review introduces recent key findings on Dkk proteins and their functions in atherosclerosis and discusses the potential importance of modulating Dkk signaling as part of a novel, improved strategy for preventing and treating atherosclerosis-related diseases.
Visual Overview—
An online visual overview is available for this article.
Collapse
Affiliation(s)
- Roberta Baetta
- From the Centro Cardiologico Monzino, IRCCS, Milano, Italy
| | - Cristina Banfi
- From the Centro Cardiologico Monzino, IRCCS, Milano, Italy
| |
Collapse
|
32
|
Duncan PJ, Bi D, McClafferty H, Chen L, Tian L, Shipston MJ. S-Acylation controls functional coupling of BK channel pore-forming α-subunits and β1-subunits. J Biol Chem 2019; 294:12066-12076. [PMID: 31213527 PMCID: PMC6690687 DOI: 10.1074/jbc.ra119.009065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
The properties and physiological function of pore-forming α-subunits of large conductance calcium- and voltage-activated potassium (BK) channels are potently modified by their functional coupling with regulatory subunits in many tissues. However, mechanisms that might control functional coupling are very poorly understood. Here we show that S-acylation, a dynamic post-translational lipid modification of proteins, of the intracellular S0–S1 loop of the BK channel pore-forming α-subunit controls functional coupling to regulatory β1-subunits. In HEK293 cells, α-subunits that cannot be S-acylated show attenuated cell surface expression, but expression was restored by co-expression with the β1-subunit. However, we also found that nonacylation of the S0–S1 loop reduces functional coupling between α- and β1-subunits by attenuating the β1-subunit-induced left shift in the voltage for half-maximal activation. In mouse vascular smooth muscle cells expressing both α- and β1-subunits, BK channel α-subunits were endogenously S-acylated. We further noted that S-acylation is significantly reduced in mice with a genetic deletion of the palmitoyl acyltransferase (Zdhhc23) that controls S-acylation of the S0–S1 loop. Genetic deletion of Zdhhc23 or broad-spectrum pharmacological inhibition of S-acylation attenuated endogenous BK channel currents independently of changes in cell surface expression of the α-subunit. We conclude that functional effects of S-acylation on BK channels depend on the presence of β1-subunits. In the absence of β1-subunits, S-acylation promotes cell surface expression, whereas in its presence, S-acylation controls functional coupling. S-Acylation thus provides a mechanism that dynamically regulates the functional coupling with β1-subunits, enabling an additional level of conditional, cell-specific control of ion-channel physiology.
Collapse
Affiliation(s)
- Peter J Duncan
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Danlei Bi
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Heather McClafferty
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Lie Chen
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Lijun Tian
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Michael J Shipston
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
| |
Collapse
|
33
|
Romero AH, Rodríguez N, López SE, Oviedo H. Identification of dehydroxy isoquine and isotebuquine as promising antileishmanial agents. Arch Pharm (Weinheim) 2019; 352:e1800281. [PMID: 30994941 DOI: 10.1002/ardp.201800281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/05/2019] [Accepted: 02/09/2019] [Indexed: 11/06/2022]
Abstract
Traditional antimalarial drugs based on 4-aminoquinolines have exhibited good antiproliferative activities against Leishmania parasites; however, their clinical use is currently limited. To identify new 4-aminoquinolines to combat American cutaneous leishmaniasis, we carried out a full in vitro evaluation of a series of dehydroxy isoquines and isotebuquines against two Leishmania parasites such as Leishmania braziliensis and Leishmania mexicana. First, the antiproliferative activity of the quinolines was studied against the promastigote forms of L. braziliensis and L. mexicana parasites, finding that five of them exhibited good antileishmanial responses with micromolar IC50 values ranging from 3.84 to 10 μM. A structure-activity relationship analysis gave evidence that a piperidine or a morpholine attached as N-alkyamino terminal substituent as well as the inclusion of an extra phenyl ring attached at the aniline ring of the isotebuquine core constitute important pharmacophores to generate the most active derivatives, with antileishmanial responses by far superior to those found for the reference drug, glucantime. All compounds showed a relatively low toxicity on human dermis fibroblasts, with CC50 ranging from 69 to >250 μM. The five most active compounds displayed moderate to good antileishmanial activity against the intracellular amastigote form of L. braziliensis, compared to the reference drug. In particular, compound 2j was identified as the most potent agent against antimony-resistant amastigotes of L. braziliensis with acceptable biological response and selectivity, emerging as a promising candidate for further in vivo antileishmanial evaluation. Diverse mechanism-of-action studies and molecular docking simulations were performed for the most active 4-aminoquinoline.
Collapse
Affiliation(s)
- Angel H Romero
- Cátedra de Química, Facultad de Farmacia, Universidad Central de Venezuela, Caracas, Venezuela.,Laboratorio de Ingeniería Genética, Instituto de Biomedicina, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Noris Rodríguez
- Laboratorio de Ingeniería Genética, Instituto de Biomedicina, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Simón E López
- Department of Chemistry, University of Florida, Gainesville, Florida
| | - Henry Oviedo
- Laboratorio de Ingeniería Genética, Instituto de Biomedicina, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
34
|
Takahara M, Wakabayashi R, Fujimoto N, Minamihata K, Goto M, Kamiya N. Enzymatic Cell‐Surface Decoration with Proteins using Amphiphilic Lipid‐Fused Peptide Substrates. Chemistry 2019; 25:7315-7321. [DOI: 10.1002/chem.201900370] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/03/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Mari Takahara
- Department of Materials Science & Chemical EngineeringNational Institute of Technology, Kitakyushu College 5-20-1 Shii, Kokuraminamiku Kitakyushu 802-0985 Japan
| | - Rie Wakabayashi
- Department of Applied ChemistryGraduate School of EngineeringKyushu University 744 Motooka, Nishiku Fukuoka 819-0395 Japan
| | - Naoki Fujimoto
- Department of Applied ChemistryGraduate School of EngineeringKyushu University 744 Motooka, Nishiku Fukuoka 819-0395 Japan
| | - Kosuke Minamihata
- Department of Applied ChemistryGraduate School of EngineeringKyushu University 744 Motooka, Nishiku Fukuoka 819-0395 Japan
| | - Masahiro Goto
- Department of Applied ChemistryGraduate School of EngineeringKyushu University 744 Motooka, Nishiku Fukuoka 819-0395 Japan
- Division of Biotechnology, Center for Future ChemistryKyushu University 744 Motooka, Nishiku Fukuoka 819-0395 Japan
| | - Noriho Kamiya
- Department of Applied ChemistryGraduate School of EngineeringKyushu University 744 Motooka, Nishiku Fukuoka 819-0395 Japan
- Division of Biotechnology, Center for Future ChemistryKyushu University 744 Motooka, Nishiku Fukuoka 819-0395 Japan
| |
Collapse
|
35
|
Dissecting metabolism using zebrafish models of disease. Biochem Soc Trans 2019; 47:305-315. [PMID: 30700500 DOI: 10.1042/bst20180335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023]
Abstract
Zebrafish (Danio rerio) are becoming an increasingly powerful model organism to study the role of metabolism in disease. Since its inception, the zebrafish model has relied on unique attributes such as the transparency of embryos, high fecundity and conservation with higher vertebrates, to perform phenotype-driven chemical and genetic screens. In this review, we describe how zebrafish have been used to reveal novel mechanisms by which metabolism regulates embryonic development, obesity, fatty liver disease and cancer. In addition, we will highlight how new approaches in advanced microscopy, transcriptomics and metabolomics using zebrafish as a model system have yielded fundamental insights into the mechanistic underpinnings of disease.
Collapse
|
36
|
Brandt C, McFie PJ, Vu H, Chumala P, Katselis GS, Stone SJ. Identification of calnexin as a diacylglycerol acyltransferase-2 interacting protein. PLoS One 2019; 14:e0210396. [PMID: 30615684 PMCID: PMC6322727 DOI: 10.1371/journal.pone.0210396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/21/2018] [Indexed: 11/26/2022] Open
Abstract
Triacylglycerol synthesis is catalyzed by acyl CoA:diacylglycerol acyltransferase-2 (DGAT2). DGAT2 is an integral membrane protein that is localized to the endoplasmic reticulum and interacts with lipid droplets. Using BioId, a method to detect proximal and interacting proteins, we identified calnexin as a DGAT2-interacting protein. Co-immunoprecipitation and proximity ligation assays confirmed this finding. We found that calnexin-deficient mouse embryonic fibroblasts had reduced intracellular triacylglycerol levels and fewer large lipid droplets (>1.0 μm2 area). Despite the alterations in triacylglycerol metabolism, in vitro DGAT2 activity, localization and protein stability were not affected by the absence of calnexin.
Collapse
Affiliation(s)
- Curtis Brandt
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Pamela J. McFie
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Huyen Vu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Paulos Chumala
- Department of Medicine and the Canadian Centre for Health and Safety in Agriculture, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - George S. Katselis
- Department of Medicine and the Canadian Centre for Health and Safety in Agriculture, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Scot J. Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
37
|
Junqueira LO, Costa MOLD, Rando DGG. N-Myristoyltransferases as antileishmanial targets: a piggyback approach with benzoheterocyclic analogues. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000218087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
38
|
Ahmadi M, Suazo KF, Distefano MD. Optimization of Metabolic Labeling with Alkyne-Containing Isoprenoid Probes. Methods Mol Biol 2019; 2009:35-43. [PMID: 31152393 DOI: 10.1007/978-1-4939-9532-5_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein prenylation, found in eukaryotes, is a posttranslational modification in which one or two isoprenoid groups are added to the C terminus of selected proteins using either a farnesyl group or a geranylgeranyl group. Prenylation facilitates protein localization mainly to the plasma membrane where the prenylated proteins, including small GTPases, mediate signal transduction pathways. Changes in the level of prenylated proteins may serve a critical function in a variety of diseases. Metabolic labeling using modified isoprenoid probes followed by enrichment and proteomic analysis allows the identities and levels of prenylated proteins to be investigated. In this protocol, we illustrate how the conditions for metabolic labeling are optimized to maximize probe incorporation in HeLa cells through a combination of in-gel fluorescence and densitometric analysis.
Collapse
Affiliation(s)
- Mina Ahmadi
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | | | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
39
|
Utsumi T, Matsuzaki K, Kiwado A, Tanikawa A, Kikkawa Y, Hosokawa T, Otsuka A, Iuchi Y, Kobuchi H, Moriya K. Identification and characterization of protein N-myristoylation occurring on four human mitochondrial proteins, SAMM50, TOMM40, MIC19, and MIC25. PLoS One 2018; 13:e0206355. [PMID: 30427857 PMCID: PMC6235283 DOI: 10.1371/journal.pone.0206355] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 10/11/2018] [Indexed: 11/29/2022] Open
Abstract
Previously, we showed that SAMM50, a mitochondrial outer membrane protein, is N-myristoylated, and this lipid modification is required for the proper targeting of SAMM50 to mitochondria. In this study, we characterized protein N-myristoylation occurring on four human mitochondrial proteins, SAMM50, TOMM40, MIC19, and MIC25, three of which are components of the mitochondrial intermembrane space bridging (MIB) complex, which plays a critical role in the structure and function of mitochondria. In vitro and in vivo metabolic labeling experiments revealed that all four of these proteins were N-myristoylated. Analysis of intracellular localization of wild-type and non-myristoylated G2A mutants of these proteins by immunofluorescence microscopic analysis and subcellular fractionation analysis indicated that protein N-myristoylation plays a critical role in mitochondrial targeting and membrane binding of two MIB components, SAMM50 and MIC19, but not those of TOMM40 and MIC25. Immunoprecipitation experiments using specific antibodies revealed that MIC19, but not MIC25, was a major N-myristoylated binding partner of SAMM50. Immunoprecipitation experiments using a stable transformant of MIC19 confirmed that protein N-myristoylation of MIC19 is required for the interaction between MIC19 and SAMM50, as reported previously. Thus, protein N-myristoylation occurring on two mitochondrial MIB components, SAMM50 and MIC19, plays a critical role in the mitochondrial targeting and protein-protein interaction between these two MIB components.
Collapse
Affiliation(s)
- Toshihiko Utsumi
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan.,Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Kanako Matsuzaki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Aya Kiwado
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Ayane Tanikawa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Yuki Kikkawa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Takuro Hosokawa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Aoi Otsuka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Yoshihito Iuchi
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Hirotsugu Kobuchi
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koko Moriya
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
40
|
Amara N, Foe IT, Onguka O, Garland M, Bogyo M. Synthetic Fluorogenic Peptides Reveal Dynamic Substrate Specificity of Depalmitoylases. Cell Chem Biol 2018; 26:35-47.e7. [PMID: 30393067 DOI: 10.1016/j.chembiol.2018.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/21/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
Abstract
Palmitoylation is a post-translational modification involving the thioesterification of cysteine residues with a 16-carbon-saturated fatty acid. Little is known about rates of depalmitoylation or the parameters that dictate these rates. Here we report a modular strategy to synthesize quenched fluorogenic substrates for the specific detection of depalmitoylase activity and for mapping the substrate specificity of individual depalmitoylases. We demonstrate that human depalmitoylases APT1 and APT2, and TgPPT1 from the parasite Toxoplasma gondii, have distinct specificities that depend on amino acid residues distal to the palmitoyl cysteine. This information informs the design of optimal and non-optimal substrates as well as isoform-selective substrates to detect the activity of a specific depalmitoylase in complex proteomes. In addition to providing tools for studying depalmitoylases, our findings identify a previously unrecognized mechanism for regulating steady-state levels of distinct palmitoylation sites by sequence-dependent control of depalmitoylation rates.
Collapse
Affiliation(s)
- Neri Amara
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ian T Foe
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ouma Onguka
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Megan Garland
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
41
|
Takahara M, Wakabayashi R, Minamihata K, Goto M, Kamiya N. Design of Lipid–Protein Conjugates Using Amphiphilic Peptide Substrates of Microbial Transglutaminase. ACS APPLIED BIO MATERIALS 2018; 1:1823-1829. [DOI: 10.1021/acsabm.8b00271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mari Takahara
- Department of Materials Science & Chemical Engineering, National Institute of Technology, Kitakyushu College, 5-20-1 Shii, Kokuraminamiku, Kitakyushu, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
42
|
de Carvalho Gallo JC, de Mattos Oliveira L, Araújo JSC, Santana IB, Dos Santos Junior MC. Virtual screening to identify Leishmania braziliensis N-myristoyltransferase inhibitors: pharmacophore models, docking, and molecular dynamics. J Mol Model 2018; 24:260. [PMID: 30159742 DOI: 10.1007/s00894-018-3791-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/12/2018] [Indexed: 01/20/2023]
Abstract
Leishmaniasis is caused by several protozoa species belonging to genus Leishmania that are hosted by humans and other mammals. Millions of new cases are recorded every year and the drugs available on the market do not show satisfactory efficacy and safety. A hierarchical virtual screening approach based on the pharmacophore model, molecular docking, and molecular dynamics was conducted to identify possible Leishmania braziliensis N-misristoyltransferase (LbNMT) inhibitors. The adopted pharmacophore model had three main features: four hydrophobic centers, four hydrogen-bond acceptor atoms, and one positive nitrogen center. The molecules (n=15,000) were submitted to alignment with the pharmacophore model and only 27 molecules aligned to model. Six molecules were submitted to molecular docking, using receptor PDB ID 5A27. After docking, the ZINC35426134 was a top-ranked molecule (- 64.61 kcal/mol). The molecule ZINC35426134 shows hydrophobic interactions with Phe82, Tyr209, Val370, and Leu391 and hydrogen bonds with Asn159, Tyr318, and Val370. Molecular dynamics simulations were performed with the protein in its APO and HOLO forms for 37 ns in order to assess the stability of the protein-ligand complex. Results showed that the HOLO form was more stable than the APO one, and it suggests that the ZINC35426134 binding stabilizes the enzyme. Therefore, the selected molecule has the potential to meet the herein proposed target.
Collapse
Affiliation(s)
- Juliana Cecília de Carvalho Gallo
- Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil. .,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil.
| | - Larissa de Mattos Oliveira
- Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Janay Stefany Carneiro Araújo
- Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Isis Bugia Santana
- Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil.,Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Manoelito Coelho Dos Santos Junior
- Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil.,Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| |
Collapse
|
43
|
Sharma S, Young RJ, Chen J, Chen X, Oh EC, Schiller MR. Minimotifs dysfunction is pervasive in neurodegenerative disorders. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:414-432. [PMID: 30225339 PMCID: PMC6139474 DOI: 10.1016/j.trci.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Minimotifs are modular contiguous peptide sequences in proteins that are important for posttranslational modifications, binding to other molecules, and trafficking to specific subcellular compartments. Some molecular functions of proteins in cellular pathways can be predicted from minimotif consensus sequences identified through experimentation. While a role for minimotifs in regulating signal transduction and gene regulation during disease pathogenesis (such as infectious diseases and cancer) is established, the therapeutic use of minimotif mimetic drugs is limited. In this review, we discuss a general theme identifying a pervasive role of minimotifs in the pathomechanism of neurodegenerative diseases. Beyond their longstanding history in the genetics of familial neurodegeneration, minimotifs are also major players in neurotoxic protein aggregation, aberrant protein trafficking, and epigenetic regulation. Generalizing the importance of minimotifs in neurodegenerative diseases offers a new perspective for the future study of neurodegenerative mechanisms and the investigation of new therapeutics.
Collapse
Affiliation(s)
- Surbhi Sharma
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Richard J. Young
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- Department of Psychology, Las Vegas, NV, USA
| | - Edwin C. Oh
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| |
Collapse
|
44
|
Mertens M, Hilsch M, Haralampiev I, Volkmer R, Wessig P, Müller P. Synthesis and Characterization of a New Bifunctionalized, Fluorescent, and Amphiphilic Molecule for Recruiting SH-Containing Molecules to Membranes. Chembiochem 2018; 19:1643-1647. [PMID: 29785742 DOI: 10.1002/cbic.201800268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 11/10/2022]
Abstract
This study describes the synthesis and characterization of an amphiphilic construct intended to recruit SH-containing molecules to membranes. The construct consists of 1) an aliphatic chain to enable anchoring within membranes, 2) a maleimide moiety to react with the sulfhydryl group of a soluble (bio)molecule, and 3) a fluorescence moiety to allow the construct to be followed by fluorescence spectroscopy and microscopy. It is shown that the construct can be incorporated into preformed membranes, thus allowing application of the approach with biological membranes. The close proximity between the fluorophore and the maleimide moiety within the construct causes fluorescence quenching. This allows monitoring of the reaction with SH-containing molecules by measurement of increases in fluorescence intensity and lifetime. Notably, the construct distributes into laterally ordered membrane domains of lipid vesicles, which is probably triggered by the length of its membrane anchor. The advantages of the new construct can be employed for several biological, biotechnological, and medicinal applications.
Collapse
Affiliation(s)
- Monique Mertens
- University of Potsdam, Department of Chemistry, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Malte Hilsch
- Humboldt Universität zu Berlin, Department of Biology, Invalidenstrasse 42, 10115, Berlin, Germany
| | - Ivan Haralampiev
- Humboldt Universität zu Berlin, Department of Biology, Invalidenstrasse 42, 10115, Berlin, Germany
| | - Rudolf Volkmer
- Institute for Medical Immunology, Charité, University Medicine Berlin, Hessische Strasse 3, 10115, Berlin, Germany
| | - Pablo Wessig
- University of Potsdam, Department of Chemistry, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Peter Müller
- Humboldt Universität zu Berlin, Department of Biology, Invalidenstrasse 42, 10115, Berlin, Germany
| |
Collapse
|
45
|
Singh A, Ruiz C, Bhalla K, Haley JA, Li QK, Acquaah-Mensah G, Montal E, Sudini KR, Skoulidis F, Wistuba II, Papadimitrakopoulou V, Heymach JV, Boros LG, Gabrielson E, Carretero J, Wong KK, Haley JD, Biswal S, Girnun GD. De novo lipogenesis represents a therapeutic target in mutant Kras non-small cell lung cancer. FASEB J 2018; 32:fj201800204. [PMID: 29906244 PMCID: PMC6219836 DOI: 10.1096/fj.201800204] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Oncogenic Kras mutations are one of the most common alterations in non-small cell lung cancer and are associated with poor response to treatment and reduced survival. Driver oncogenes, such as Kras are now appreciated for their ability to promote tumor growth via up-regulation of anabolic pathways. Therefore, we wanted to identify metabolic vulnerabilities in Kras-mutant lung cancer. Using the Kras LSL-G12D lung cancer model, we show that mutant Kras drives a lipogenic gene-expression program. Stable-isotope analysis reveals that mutant Kras promotes de novo fatty acid synthesis in vitro and in vivo. The importance of fatty acid synthesis in Kras-induced tumorigenesis was evident by decreased tumor formation in Kras LSL-G12D mice after treatment with a fatty acid synthesis inhibitor. Importantly, with gain and loss of function models of mutant Kras, we demonstrate that mutant Kras potentiates the growth inhibitory effects of several fatty acid synthesis inhibitors. These studies highlight the potential to target mutant Kras tumors by taking advantage of the lipogenic phenotype induced by mutant Kras.-Singh, A., Ruiz, C., Bhalla, K., Haley, J. A., Li, Q. K., Acquaah-Mensah, G., Montal, E., Sudini, K. R., Skoulidis, F., Wistuba, I. I., Papadimitrakopoulou, V., Heymach, J. V., Boros, L. G., Gabrielson, E., Carretero, J., Wong, K.-k., Haley, J. D., Biswal, S., Girnun, G. D. De novo lipogenesis represents a therapeutic target in mutant Kras non-small cell lung cancer.
Collapse
Affiliation(s)
- Anju Singh
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christian Ruiz
- Department of Pathology, Stony Brook School of Medicine, Stony Brook, New York, USA
| | - Kavita Bhalla
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John A. Haley
- Department of Pathology, Stony Brook School of Medicine, Stony Brook, New York, USA
| | - Qing Kay Li
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - George Acquaah-Mensah
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Worcester, Massachusetts, USA
| | - Emily Montal
- Department of Pathology, Stony Brook School of Medicine, Stony Brook, New York, USA
| | - Kuladeep R. Sudini
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | - John V. Heymach
- University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Laszlo G. Boros
- Stable Isotope-Based Dynamic Metabolic Profiling (SiDMAP), LLC, Los Angeles, California, USA
| | - Edward Gabrielson
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Julian Carretero
- Department of Physiology, University of Valencia, Valencia, Spain
| | - Kwok-Kin Wong
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; and
| | - John D. Haley
- Department of Pathology, Stony Brook School of Medicine, Stony Brook, New York, USA
| | - Shyam Biswal
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Worcester, Massachusetts, USA
| | - Geoffrey D. Girnun
- Department of Pathology, Stony Brook School of Medicine, Stony Brook, New York, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Kowluru A, Kowluru RA. RACking up ceramide-induced islet β-cell dysfunction. Biochem Pharmacol 2018; 154:161-169. [PMID: 29715450 DOI: 10.1016/j.bcp.2018.04.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022]
Abstract
The International Diabetes Federation predicts that by 2045 the number of individuals afflicted with diabetes will increase to 629 million. Furthermore, ∼352 million individuals with impaired glucose tolerance are at increased risk for developing diabetes. Several mechanisms have been proposed for the onset of metabolic dysfunction and demise of the islet β-cell leading to the pathogenesis of diabetes. It is widely accepted that the onset of type 2 diabetes is due to an intricate interplay between genetic expression of the disease and a multitude of factors including increased oxidative and endoplasmic reticulum stress consequential to glucolipotoxicity and inflammation. Compelling experimental evidence from in vitro and in vivo studies implicates intracellular generation of ceramide (CER), a biologically-active sphingolipid, as a trigger in the onset of β-cell demise under above pathological conditions. Recent pharmacological and molecular biological evidence affirms regulatory roles for Ras-related C3 botulinum toxin substrate 1 (Rac1), a small G protein, in the islet β-cell function in health and diabetes. In this Commentary, we overviewed the emerging evidence implicating potential cross-talk between Rac1 and ceramide signaling pathways in the onset of metabolic dysregulation of the islet β-cell culminating in impaired physiological insulin secretion, loss of β-cell mass and the onset of diabetes. Further, we propose a model depicting contributory roles of defective protein lipidation (prenylation) pathway in the induction of metabolic defects in the β-cell under metabolic stress conditions. Potential avenues for the identification of novel therapeutic targets for the prevention/treatment of diabetes and its associated complications are highlighted.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Renu A Kowluru
- Department of Ophthalmology and Anatomy and Cell Biology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
47
|
Petrova E, Scholz A, Paul J, Sturz A, Haike K, Siegel F, Mumberg D, Liu N. Acetyl-CoA carboxylase inhibitors attenuate WNT and Hedgehog signaling and suppress pancreatic tumor growth. Oncotarget 2018; 8:48660-48670. [PMID: 27750213 PMCID: PMC5564715 DOI: 10.18632/oncotarget.12650] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/07/2016] [Indexed: 12/19/2022] Open
Abstract
Acetyl-CoA carboxylase (ACC) is the rate-limiting enzyme in de novo fatty acid synthesis, and its ACC1 isoform is overexpressed in pancreatic and various other cancers. The activity of many oncogenic signaling molecules, including WNT and Hedgehog (HH), is post-translationally modified by lipidation. Here, we report that inhibition of ACC by a small molecule inhibitor, BAY ACC002, blocked WNT3A lipidation, secretion, and signaling. In pancreatic cancer cells, where WNT and HH are key oncogenic drivers, ACC inhibition simultaneously suppressed WNT and HH signaling, and led to anti-proliferative effects. Treatment with ACC inhibitors blocked tumor growth and converted the poorly differentiated histological phenotype to epithelial phenotype in multiple cell line-based and patient-derived pancreatic cancer xenograft models. Together, our data highlight the potential utility of ACC inhibitors for pancreatic cancer treatment, and provide novel insight into the link between upregulated de novo fatty acid synthesis in cancer cells, protein lipidation, and oncogenic signaling.
Collapse
Affiliation(s)
- Elissaveta Petrova
- Bayer AG, Drug Discovery, Berlin, Germany.,Current address: Merck KGaA, Darmstadt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kowalczyk R, Harris PWR, Williams GM, Yang SH, Brimble MA. Peptide Lipidation - A Synthetic Strategy to Afford Peptide Based Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1030:185-227. [PMID: 29081055 PMCID: PMC7121180 DOI: 10.1007/978-3-319-66095-0_9] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peptide and protein aberrant lipidation patterns are often involved in many diseases including cancer and neurological disorders. Peptide lipidation is also a promising strategy to improve pharmacokinetic and pharmacodynamic profiles of peptide-based drugs. Self-adjuvanting peptide-based vaccines commonly utilise the powerful TLR2 agonist PamnCys lipid to stimulate adjuvant activity. The chemical synthesis of lipidated peptides can be challenging hence efficient, flexible and straightforward synthetic routes to access homogeneous lipid-tagged peptides are in high demand. A new technique coined Cysteine Lipidation on a Peptide or Amino acid (CLipPA) uses a 'thiol-ene' reaction between a cysteine and a vinyl ester and offers great promise due to its simplicity, functional group compatibility and selectivity. Herein a brief review of various synthetic strategies to access lipidated peptides, focusing on synthetic methods to incorporate a PamnCys motif into peptides, is provided.
Collapse
Affiliation(s)
- Renata Kowalczyk
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| | - Geoffrey M Williams
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| | - Sung-Hyun Yang
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand. .,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand.
| |
Collapse
|
49
|
Li H, Yu X, Liu X, Hu P, Shen L, Zhou Y, Zhu Y, Li Z, Hui H, Guo Q, Xu J. Wogonoside induces depalmitoylation and translocation of PLSCR1 and N-RAS in primary acute myeloid leukaemia cells. J Cell Mol Med 2018; 22:2117-2130. [PMID: 29377576 PMCID: PMC5867108 DOI: 10.1111/jcmm.13481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/24/2017] [Indexed: 11/30/2022] Open
Abstract
Acute myeloid leukaemia (AML) comprises a range of disparate genetic subtypes, involving complex gene mutations and specific molecular alterations. Post‐translational modifications of specific proteins influence their translocation, stability, aggregation and even leading disease progression. Therapies that target to post‐translational modification of specific proteins in cancer cells represent a novel treatment strategy. Non‐homogenous subcellular distribution of PLSCR1 is involved in the primary AML cell differentiation. However, the nuclear translocation mechanism of PLSCR1 remains poorly understood. Here, we leveraged the observation that nuclear translocation of PLSCR1 could be induced during wogonoside treatment in some primary AML cells, despite their genetic heterogeneity that contributed to the depalmitoylation of PLSCR1 via acyl protein thioesterase 1 (APT‐1), an enzyme catalysing protein depalmitoylation. Besides, we found a similar phenomenon on another AML‐related protein, N‐RAS. Wogonoside inhibited the palmitoylation of small GTPase N‐RAS and enhanced its trafficking into Golgi complex, leading to the inactivation of N‐RAS/RAF1 pathway in some primary AML cells. Taken together, our findings provide new insight into the mechanism of wogonoside‐induced nuclear translocation of PLSCR1 and illuminate the influence of N‐RAS depalmitoylation on its Golgi trafficking and RAF1 signalling inactivation in AML.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Xiaoxuan Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Xiao Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Po Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Le Shen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Yu Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Zhiyu Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Jingyan Xu
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
50
|
Kim Y, Yang H, Min JK, Park YJ, Jeong SH, Jang SW, Shim S. CCN3 secretion is regulated by palmitoylation via ZDHHC22. Biochem Biophys Res Commun 2018; 495:2573-2578. [DOI: 10.1016/j.bbrc.2017.12.128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 02/02/2023]
|