1
|
Quelhas P, Morgado D, dos Santos J. Primary Cilia, Hypoxia, and Liver Dysfunction: A New Perspective on Biliary Atresia. Cells 2025; 14:596. [PMID: 40277920 PMCID: PMC12026149 DOI: 10.3390/cells14080596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
Ciliopathies are disorders that affect primary or secondary cellular cilia or structures associated with ciliary function. Primary cilia (PC) are essential for metabolic regulation and embryonic development, and pathogenic variants in cilia-related genes are linked to several pediatric conditions, including renal-hepatic diseases and congenital defects. Biliary atresia (BA) is a progressive infantile cholangiopathy and the leading cause of pediatric liver transplantation. Although the exact etiology of BA remains unclear, evidence suggests a multifactorial pathogenesis influenced by both genetic and environmental factors. Patients with BA and laterality defects exhibit genetic variants associated with ciliopathies. Interestingly, even isolated BA without extrahepatic anomalies presents morphological and functional ciliary abnormalities, suggesting that environmental triggers may disrupt the ciliary function. Among these factors, hypoxia has emerged as a potential modulator of this dysfunction. Hypoxia-inducible factor 1-alpha (HIF-1α) plays a central role in hepatic responses to oxygen deprivation, influencing bile duct remodeling and fibrosis, which are key processes in BA progression. This review explores the crosstalk between hypoxia and hepatic ciliopathies, with a focus on BA. It discusses the molecular mechanisms through which hypoxia may drive disease progression and examines the therapeutic potential of targeting hypoxia-related pathways. Understanding how oxygen deprivation influences ciliary function may open new avenues for treating biliary ciliopathies and improving patient outcomes.
Collapse
Affiliation(s)
| | | | - Jorge dos Santos
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (P.Q.); (D.M.)
| |
Collapse
|
2
|
Zhang F, Xiong X, Li Z, Wang H, Wang W, Zhao Y, Sun Y. RHEB neddylation by the UBE2F-SAG axis enhances mTORC1 activity and aggravates liver tumorigenesis. EMBO J 2025; 44:1185-1219. [PMID: 39762645 PMCID: PMC11832924 DOI: 10.1038/s44318-024-00353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 02/19/2025] Open
Abstract
Small GTPase RHEB is a well-known mTORC1 activator, whereas neddylation modifies cullins and non-cullin substrates to regulate their activity, subcellular localization and stability. Whether and how RHEB is subjected to neddylation modification remains unknown. Here, we report that RHEB is a substrate of NEDD8-conjugating E2 enzyme UBE2F. In cell culture, UBE2F depletion inactivates mTORC1, inhibiting cell cycle progression, cell growth and inducing autophagy. Mechanistically, UBE2F cooperates with E3 ligase SAG in neddylation of RHEB at K169 to enhance its lysosome localization and GTP-binding affinity. Furthermore, liver-specific Ube2f knockout attenuates steatosis and tumorigenesis induced by Pten loss in an mTORC1-dependent manner, suggesting a causal role of UBE2F in liver tumorigenesis. Finally, UBE2F expression levels and mTORC1 activity correlate with patient survival in hepatocellular carcinoma. Collectively, our study identifies RHEB as neddylation substrate of the UBE2F-SAG axis, and highlights the UBE2F-SAG axis as a potential target for the treatment of non-alcoholic fatty liver disease and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Fengwu Zhang
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China
| | - Xiufang Xiong
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China
| | - Zhijian Li
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China
| | - Haibo Wang
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China
| | - Weilin Wang
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China
| | - Yongchao Zhao
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, China.
| | - Yi Sun
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, China.
- Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang, Hangzhou, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, 310053, Hangzhou, China.
- Institute of Fundamental and Transdisciplinary Research Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Oikawa K, Ohno SI, Ono K, Hirao K, Murakami A, Harada Y, Kumagai K, Sudo K, Takanashi M, Ishikawa A, Mineo S, Fujita K, Umezu T, Watanabe N, Murakami Y, Ogawa S, Schultz KA, Kuroda M. Liver-specific DICER1 syndrome model mice develop cystic liver tumors with defective primary cilia. J Pathol 2024; 264:17-29. [PMID: 38922876 DOI: 10.1002/path.6320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
DICER1 syndrome is a tumor predisposition syndrome caused by familial genetic mutations in DICER1. Pathogenic variants of DICER1 have been discovered in many rare cancers, including cystic liver tumors. However, the molecular mechanisms underlying liver lesions induced by these variants remain unclear. In the present study, we sought to gain a better understanding of the pathogenesis of these variants by generating a mouse model of liver-specific DICER1 syndrome. The mouse model developed bile duct hyperplasia with fibrosis, similar to congenital hepatic fibrosis, as well as cystic liver tumors resembling those in Caroli's syndrome, intrahepatic cholangiocarcinoma, and hepatocellular carcinoma. Interestingly, the mouse model of DICER1 syndrome showed abnormal formation of primary cilia in the bile duct epithelium, which is a known cause of bile duct hyperplasia and cyst formation. These results indicated that DICER1 mutations contribute to cystic liver tumors by inducing defective primary cilia. The mouse model generated in this study will be useful for elucidating the potential mechanisms of tumorigenesis induced by DICER1 variants and for obtaining a comprehensive understanding of DICER1 syndrome. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Keiki Oikawa
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Shin-Ichiro Ohno
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Kana Ono
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Kaito Hirao
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Ayano Murakami
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Yuichirou Harada
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Katsuyoshi Kumagai
- Department of Pre-clinical Research Center, Tokyo Medical University, Tokyo, Japan
| | - Katsuko Sudo
- Department of Pre-clinical Research Center, Tokyo Medical University, Tokyo, Japan
| | | | - Akio Ishikawa
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Shouichirou Mineo
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Koji Fujita
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Tomohiro Umezu
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Noriko Watanabe
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Yoshiki Murakami
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Shinichiro Ogawa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Kris Ann Schultz
- Cancer and Blood Disorders, Children's Minnesota, Minneapolis, MN, USA
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
4
|
Zhou T, Liu K, Wei H, Zhong Q, Luo D, Yang W, Zhang P, Xiao Y. Histopathology and molecular pathology confirmed a diagnosis of atypical Caroli's syndrome: a case report. Diagn Pathol 2024; 19:36. [PMID: 38388441 PMCID: PMC10882844 DOI: 10.1186/s13000-024-01462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Caroli's syndrome is a congenital disease characterized by dilation of intrahepatic bile ducts and congenital hepatic fibrosis. It is a rare condition in clinical work. Typically, the diagnosis of this disease is confirmed through medical imaging. Here, we report a case of atypical Caroli's syndrome in a patient who presented with recurrent upper gastrointestinal tract bleeding. The patient underwent imaging examinations, liver biopsy and whole exome sequencing. The results of the imaging examination were non-specific. However, with the aid of pathological examination, the patient was diagnosed with Caroli's syndrome. In conclusion, for cases where the imaging presentation of Caroli's syndrome is inconclusive, an accurate diagnosis should rely on pathology. By discussing this specific case, our aim is to enhance readers' understanding of this disease, provide valuable information that can aid in the early detection and appropriate management of Caroli's syndrome, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Tianmin Zhou
- Department of Pathology, Infectious Diseases Hospital of Nanchang University, Nanchang, 330001, Jiangxi, China
| | - Keyu Liu
- Queen Mary School, Nanchang University, Nanchang, 330006, China
| | - Hao Wei
- The First Clinical Department, Nanchang University, Nanchang, 330006, China
| | - Qingmei Zhong
- Department of Pathology, Infectious Diseases Hospital of Nanchang University, Nanchang, 330001, Jiangxi, China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Wenjuan Yang
- Infectious Diseases Hospital of Nanchang University, Nanchang, 330001, Jiangxi, China
| | - Ping Zhang
- Department of Pathology, Infectious Diseases Hospital of Nanchang University, Nanchang, 330001, Jiangxi, China
| | - Yingqun Xiao
- Department of Pathology, Infectious Diseases Hospital of Nanchang University, Nanchang, 330001, Jiangxi, China.
| |
Collapse
|
5
|
Cui Y, Xu W, Liu J, Liu S, Huang W, Shi Y, Zhang X, Lu C, Xie W. A BBS4 mutation causes autosomal dominant polycystic liver disease. Genes Dis 2024; 11:72-75. [PMID: 37588201 PMCID: PMC10425791 DOI: 10.1016/j.gendis.2023.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/21/2023] [Indexed: 08/18/2023] Open
Affiliation(s)
- Yalu Cui
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wenping Xu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jinpei Liu
- Department of Gastroenterology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
| | - Shuqing Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wei Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
| | - Yihai Shi
- Department of Gastroenterology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
| | - Weifen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
6
|
Shields MA, Metropulos AE, Spaulding C, Hirose T, Ohno S, Pham TN, Munshi HG. BET inhibition rescues ciliogenesis and ameliorates pancreatitis-driven phenotypic changes in mice with Par3 loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557654. [PMID: 37745543 PMCID: PMC10515915 DOI: 10.1101/2023.09.14.557654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The apical-basal polarity of pancreatic acinar cells is essential for maintaining tissue architecture. However, the mechanisms by which polarity proteins regulate acinar pancreas tissue homeostasis are poorly understood. Here, we evaluate the role of Par3 in acinar pancreas injury and homeostasis. While Par3 loss in the mouse pancreas disrupts tight junctions, Par3 loss is dispensable for pancreatogenesis. However, with aging, Par3 loss results in low-grade inflammation, acinar degeneration, and pancreatic lipomatosis. Par3 loss also exacerbates pancreatitis-induced acinar cell loss, resulting in pronounced pancreatic lipomatosis and failure to regenerate. Moreover, Par3 loss in mice harboring mutant Kras causes extensive pancreatic intraepithelial neoplastic (PanIN) lesions and large pancreatic cysts. We also show that Par3 loss restricts injury-induced primary ciliogenesis. Significantly, targeting BET proteins enhances primary ciliogenesis during pancreatitis-induced injury and, in mice with Par3 loss, limits pancreatitis-induced acinar loss and facilitates acinar cell regeneration. Combined, this study demonstrates how Par3 restrains pancreatitis- and Kras-induced changes in the pancreas and identifies a potential role for BET inhibitors to attenuate pancreas injury and facilitate pancreas tissue regeneration.
Collapse
Affiliation(s)
- Mario A. Shields
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA
| | - Anastasia E. Metropulos
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Christina Spaulding
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama, Japan
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Thao N.D. Pham
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA
| | - Hidayatullah G. Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
7
|
Abstract
Biliary atresia (BA) is the most prevalent serious liver disease of infancy and childhood, and the principal indication for liver transplantation in pediatrics. BA is best considered as an idiopathic panbiliary cholangiopathy characterized by obstruction of bile flow and consequent cholestasis presenting during fetal and perinatal periods. While several etiologies have been proposed, each has significant drawbacks that have limited understanding of disease progression and the development of effective treatments. Recently, modern genetic analyses have uncovered gene variants contributing to BA, thereby shifting the paradigm for explaining the BA phenotype from an acquired etiology (e.g., virus, toxin) to one that results from genetically altered cholangiocyte development and function. Herein we review recently reported genetic contributions to BA, highlighting the enhanced representation of variants in biological pathways involving ciliary function, cytoskeletal structure, and inflammation. Finally, we blend these findings as a new framework for understanding the resultant BA phenotype as a developmental cholangiopathy.
Collapse
Affiliation(s)
- Dominick J Hellen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia
| | - Saul J Karpen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
8
|
King EM, Pappano M, Lorbach SK, Green EM, Parker VJ, Schreeg ME. Severe polycystic liver disease in a cat. JFMS Open Rep 2023; 9:20551169231216859. [PMID: 38146394 PMCID: PMC10749525 DOI: 10.1177/20551169231216859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023] Open
Abstract
Case summary Ductal plate malformations (DPMs) are poorly documented in the veterinary literature, particularly those of the polycystic liver disease (PCLD) phenotype. A 13-year-old female spayed cat presented with progressive icterus, abdominal distension, weight loss and elevated liver enzymes. Initial empirical treatment consisting of amoxicillin/clavulanate, ursodiol and later prednisolone was attempted; however, clinical signs progressed. On abdominal ultrasound, numerous large hepatic cystic masses were noted, characterized by an anechoic center with a heterogeneous, hyperechoic wall. A post-mortem examination confirmed numerous hepatic cysts, the larger of which resulted in hemorrhage and subsequent hemoabdomen. Histologically, these cysts were determined to be of biliary origin, and a diagnosis of PCLD was assigned. Relevance and novel information Herein, we present a detailed report of clinical, gross and histologic findings in a cat clinically affected by PCLD. This case demonstrates that cysts present in this congenital disease can ultimately lead to hepatobiliary malfunction and clinical decline via marked expansion of cysts, compression of the liver and hemoabdomen from cyst rupture. DPMs, specifically PCLD, should be considered in cats presenting with multifocal large hepatic cysts.
Collapse
Affiliation(s)
- Emily M King
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Maria Pappano
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Sarah K Lorbach
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Eric M Green
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Valerie J Parker
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Megan E Schreeg
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Ji R, Chen J, Xie Y, Dou X, Qing B, Liu Z, Lu Y, Dang L, Zhu X, Sun Y, Zheng X, Zhang L, Guo D, Chen Y. Multi-omics profiling of cholangiocytes reveals sex-specific chromatin state dynamics during hepatic cystogenesis in polycystic liver disease. J Hepatol 2023; 78:754-769. [PMID: 36681161 DOI: 10.1016/j.jhep.2022.12.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND & AIMS Cholangiocytes transit from quiescence to hyperproliferation during cystogenesis in polycystic liver disease (PLD), the severity of which displays prominent sex differences. Epigenetic regulation plays important roles in cell state transition. We aimed to investigate the sex-specific epigenetic basis of hepatic cystogenesis and to develop therapeutic strategies targeting epigenetic modifications for PLD treatment. METHODS Normal and cystic primary cholangiocytes were isolated from wild-type and PLD mice of both sexes. Chromatin states were characterized by analyzing chromatin accessibility (ATAC sequencing) and multiple histone modifications (chromatin immunoprecipitation sequencing). Differential gene expression was determined by transcriptomic analysis (RNA sequencing). Pharmacologic inhibition of epigenetic modifying enzymes was undertaken in PLD model mice. RESULTS Through genome-wide profiling of chromatin dynamics, we revealed a profound increase of global chromatin accessibility during cystogenesis in both male and female PLD cholangiocytes. We identified a switch from H3K9me3 to H3K9ac on cis-regulatory DNA elements of cyst-associated genes and showed that inhibition of H3K9ac acetyltransferase or H3K9me3 demethylase slowed cyst growth in male, but not female, PLD mice. In contrast, we found that H3K27ac was specifically increased in female PLD mice and that genes associated with H3K27ac-gained regions were enriched for cyst-related pathways. In an integrated epigenomic and transcriptomic analysis, we identified an estrogen receptor alpha-centered transcription factor network associated with the H3K27ac-regulated cystogenic gene expression program in female PLD mice. CONCLUSIONS Our findings highlight the multi-layered sex-specific epigenetic dynamics underlying cholangiocyte state transition and reveal a potential epigenetic therapeutic strategy for male PLD patients. IMPACT AND IMPLICATIONS In the present study, we elucidate a sex-specific epigenetic mechanism underlying the cholangiocyte state transition during hepatic cystogenesis and identify epigenetic drugs that effectively slow cyst growth in male PLD mice. These findings underscore the importance of sex difference in the pathogenesis of PLD and may guide researchers and physicians to develop sex-specific personalized approaches for PLD treatment.
Collapse
Affiliation(s)
- Rongjie Ji
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Jiayuan Chen
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuyang Xie
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, China
| | - Xudan Dou
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Bo Qing
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Zhiheng Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Yumei Lu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Lin Dang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Xu Zhu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, China
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lirong Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China.
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, China.
| | - Yupeng Chen
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
10
|
Duijzer R, Barten TR, Staring CB, Drenth JP, Gevers TJ. Treatment of Polycystic Liver Disease: Impact on Patient-reported Symptom Severity and Health-related Quality of Life. J Clin Gastroenterol 2022; 56:731-739. [PMID: 35997709 PMCID: PMC9432811 DOI: 10.1097/mcg.0000000000001749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Polycystic liver disease (PLD) is a genetic disorder in which patients suffer from progressive development of multiple (>10) hepatic cysts. Most patients remain asymptomatic during the course of their disease. However, a minority of PLD patients suffer from symptoms caused by hepatomegaly leading to serious limitations in daily life. Untreated symptomatic PLD patients score significantly worse on health-related quality of life (HRQoL) compared to age and gender-matched populations. Currently, liver transplantation is the only curative treatment for PLD. The main goal of other available therapies is to strive for symptomatic relief and improvement of HRQoL by suppressing disease progression. In this review, we summarize the effect of PLD treatment on patient-reported outcome measures with a distinction between HRQoL and symptom severity. At present there is heterogeneity in application of questionnaires and no questionnaire is available that measures both HRQoL and PLD symptom severity. Therefore, we recommend the combination of a validated PLD-specific symptom severity questionnaire and a general HRQoL questionnaire to evaluate treatment success as a minimal core set. However, the specific choice of questionnaires depends on treatment choice and/or research question. These questionnaires may serve as a biomarker of treatment response, failure, and adverse events.
Collapse
Affiliation(s)
- Renée Duijzer
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, the Netherlands
- European Reference Network RARE-LIVER, Hamburg, Germany
| | - Thijs R.M. Barten
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, the Netherlands
- European Reference Network RARE-LIVER, Hamburg, Germany
| | - Christian B. Staring
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, the Netherlands
- European Reference Network RARE-LIVER, Hamburg, Germany
| | - Joost P.H. Drenth
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, the Netherlands
- European Reference Network RARE-LIVER, Hamburg, Germany
| | - Tom J.G. Gevers
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, the Netherlands
- European Reference Network RARE-LIVER, Hamburg, Germany
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
11
|
Norcia LF, Watanabe EM, Hamamoto Filho PT, Hasimoto CN, Pelafsky L, de Oliveira WK, Sassaki LY. Polycystic Liver Disease: Pathophysiology, Diagnosis and Treatment. Hepat Med 2022; 14:135-161. [PMID: 36200122 PMCID: PMC9528914 DOI: 10.2147/hmer.s377530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Polycystic liver disease (PLD) is a clinical condition characterized by the presence of more than 10 cysts in the liver. It is a rare disease Of genetic etiology that presents as an isolated disease or assoc\iated with polycystic kidney disease. Ductal plate malformation, ciliary dysfunction, and changes in cell signaling are the main factors involved in its pathogenesis. Most patients with PLD are asymptomatic, but in 2-5% of cases the disease has disabling symptoms and a significant reduction in quality of life. The diagnosis is based on family history of hepatic and/or renal polycystic disease, clinical manifestations, patient age, and polycystic liver phenotype shown on imaging examinations. PLD treatment has evolved considerably in the last decades. Somatostatin analogues hold promise in controlling disease progression, but liver transplantation remains a unique curative treatment modality.
Collapse
Affiliation(s)
- Luiz Fernando Norcia
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Erika Mayumi Watanabe
- Department of Radiology, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Pedro Tadao Hamamoto Filho
- Department of Neurology, Psychology and Psychiatry, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Claudia Nishida Hasimoto
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Leonardo Pelafsky
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Walmar Kerche de Oliveira
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Ligia Yukie Sassaki
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| |
Collapse
|
12
|
Olaizola P, Rodrigues PM, Caballero-Camino FJ, Izquierdo-Sanchez L, Aspichueta P, Bujanda L, Larusso NF, Drenth JPH, Perugorria MJ, Banales JM. Genetics, pathobiology and therapeutic opportunities of polycystic liver disease. Nat Rev Gastroenterol Hepatol 2022; 19:585-604. [PMID: 35562534 DOI: 10.1038/s41575-022-00617-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Polycystic liver diseases (PLDs) are inherited genetic disorders characterized by progressive development of intrahepatic, fluid-filled biliary cysts (more than ten), which constitute the main cause of morbidity and markedly affect the quality of life. Liver cysts arise in patients with autosomal dominant PLD (ADPLD) or in co-occurrence with renal cysts in patients with autosomal dominant or autosomal recessive polycystic kidney disease (ADPKD and ARPKD, respectively). Hepatic cystogenesis is a heterogeneous process, with several risk factors increasing the odds of developing larger cysts. Depending on the causative gene, PLDs can arise exclusively in the liver or in parallel with renal cysts. Current therapeutic strategies, mainly based on surgical procedures and/or chronic administration of somatostatin analogues, show modest benefits, with liver transplantation as the only potentially curative option. Increasing research has shed light on the genetic landscape of PLDs and consequent cholangiocyte abnormalities, which can pave the way for discovering new targets for therapy and the design of novel potential treatments for patients. Herein, we provide a critical and comprehensive overview of the latest advances in the field of PLDs, mainly focusing on genetics, pathobiology, risk factors and next-generation therapeutic strategies, highlighting future directions in basic, translational and clinical research.
Collapse
Affiliation(s)
- Paula Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian-Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Francisco J Caballero-Camino
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Patricia Aspichueta
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian-Donostia, Spain
- Departments of Medicine and Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian-Donostia, Spain
- Departments of Medicine and Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Nicholas F Larusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Joost P H Drenth
- Department of Gastroenterology & Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian-Donostia, Spain
- Departments of Medicine and Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian-Donostia, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain.
| |
Collapse
|
13
|
Hepatic Cysts: Reappraisal of the Classification, Terminology, Differential Diagnosis, and Clinicopathologic Characteristics in 258 Cases. Am J Surg Pathol 2022; 46:1219-1233. [PMID: 35778790 DOI: 10.1097/pas.0000000000001930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The literature on liver cysts is highly conflicting, mostly owing to definitional variations. Two hundred and fifty-eight ≥1 cm cysts evaluated pathologically using updated criteria were classifiable as: I. Ductal plate malformation related (63%); that is, cystic bile duct hamartoma or not otherwise specified-type benign biliary cyst (35 with polycystic liver disease). These were female predominant (F/M=2.4), large (10 cm), often multifocal with degenerative/inflammatory changes and frequently misclassified as "hepatobiliary cystadenoma." II. Neoplastic (13%); 27 (10.5%) had ovarian-type stroma (OTS) and qualified as mucinous cystic neoplasm (MCN) per World Health Organization (WHO). These were female, solitary, mean age 52, mean size 11 cm, and 2 were associated with carcinoma (1 in situ and 1 microinvasive). There were 3 intraductal papillary neoplasms, 1 intraductal oncocytic papillary neoplasm, 1 cystic cholangiocarcinoma, and 2 cystic metastasis. III. Infectious/inflammatory (12%). These included 23 hydatid cysts (including 2 Echinococcus alveolaris both misdiagnosed preoperatively as cancer), nonspecific inflammatory cysts (abscesses, inflammatory cysts: 3.4%). IV. Congenital (7%). Mostly small (<3 cm); choledochal cyst (5%), foregut cyst (2%). V. Miscellaneous (4%). In conclusion, hepatic cysts occur predominantly in women (3/1), are mostly (90%) non-neoplastic, and seldom (<2%) malignant. Cystic bile duct hamartomas and their relative not otherwise specified-type benign biliary cysts are frequently multifocal and often misdiagnosed as "cystadenoma/carcinoma." Defined by OTS, MCNs (the true "hepatobiliary cystadenoma/carcinoma") are solitary, constitute only 10.5% of hepatic cysts, and have a significantly different profile than the impression in the literature in that essentially all are perimenopausal females, and rarely associated with carcinoma (7%). Since MCNs can only be diagnosed by demonstration of OTS through complete microscopic examination, it is advisable to avoid the term "cystadenoma/cystadenocarcinoma" solely based on radiologic examination, and the following simplified terminology would be preferable in preoperative evaluation to avoid conflicts with the final pathologic diagnosis: (1) noncomplex (favor benign), (2) complex (in 3 subsets, as favor benign, cannot rule out malignancy, or favor malignancy), (3) malignant features.
Collapse
|
14
|
Sharbidre K, Zahid M, Venkatesh SK, Bhati C, Lalwani N. Imaging of fibropolycystic liver disease. Abdom Radiol (NY) 2022; 47:2356-2370. [PMID: 35670875 DOI: 10.1007/s00261-022-03565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/01/2022]
Abstract
Fibropolycystic liver diseases (FLDs) make up a rare spectrum of heritable hepatobiliary diseases resulting from congenital ductal plate malformations (DPMs) due to the dysfunction of proteins expressed on the primary cilia of cholangiocytes. The embryonic development of the ductal plate is key to understanding this spectrum of diseases. In particular, DPMs can result in various degrees of intrahepatic duct involvement and a wide spectrum of cholangiopathies, including congenital hepatic fibrosis, Caroli disease, polycystic liver disease, and Von Meyenberg complexes. The most common clinical manifestations of FLDs are portal hypertension, cholestasis, cholangitis, and (in rare cases) cholangiocarcinoma. This article reviews recent updates in the pathophysiology, imaging, and clinical management of FLDs.
Collapse
Affiliation(s)
- Kedar Sharbidre
- Department of Abdominal Imaging, University of Alabama at Birmingham, Birmingham, AB, USA.
| | - Mohd Zahid
- Department of Abdominal Imaging, University of Alabama at Birmingham, Birmingham, AB, USA
| | | | - Chandra Bhati
- Department of Transplant Surgery, University of Maryland Medical Center, Baltimore, ML, USA
| | - Neeraj Lalwani
- Department of Abdominal Imaging, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
15
|
Qiu YL, Wang L, Huang M, Lian M, Wang F, Gong Y, Ma X, Hao CZ, Zhang J, Li ZD, Xing QH, Cao M, Wang JS. Association of novel TMEM67 variants with mild phenotypes of high gamma-glutamyl transpeptidase cholestasis and congenital hepatic fibrosis. J Cell Physiol 2022; 237:2713-2723. [PMID: 35621037 DOI: 10.1002/jcp.30788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
TMEM67 (mecklin or MKS3) locates in the transition zone of cilia. Dysfunction of TMEM67 disrupts cilia-related signaling and leads to developmental defects of multiple organs in humans. Typical autosomal recessive TMEM67 defects cause partial overlapping phenotypes, including abnormalities in the brain, eyes, liver, kidneys, bones, and so forth. However, emerging reports of isolated nephronophthisis suggest the possibility of a broader phenotype spectrum. In this study, we analyzed the genetic data of cholestasis patients with no obvious extrahepatic involvement but with an unexplained high level of gamma-glutamyl transpeptidase (GGT). We identified five Han Chinese patients from three unrelated families with biallelic nonnull low-frequency TMEM67 variants. All variants were predicted pathogenic in silico, of which p. Arg820Ile and p. Leu144del were previously unreported. In vitro studies revealed that the protein levels of the TMEM67 variants were significantly decreased; however, their interaction with MKS1 remained unaffected. All the patients, aged 7-39 years old, had silently progressive cholestasis with elevated GGT but had normal bilirubin levels. Histological studies of liver biopsy of patients 1, 3, and 5 showed the presence of congenital hepatic fibrosis. We conclude that variants in TMEM67 are associated with a mild phenotype of unexplained, persistent, anicteric, and high GGT cholestasis without typical symptoms of TMEM67 defects; this possibility should be considered by physicians in gastroenterology and hepatology.
Collapse
Affiliation(s)
- Yi-Ling Qiu
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Li Wang
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Min Huang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ying Gong
- Department of Radiology, Children's Hospital of Fudan University, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Chen-Zhi Hao
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jing Zhang
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Zhong-Die Li
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Qing-He Xing
- Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Muqing Cao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-She Wang
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
16
|
Lan T, Qian S, Tang C, Gao J. Role of Immune Cells in Biliary Repair. Front Immunol 2022; 13:866040. [PMID: 35432349 PMCID: PMC9005827 DOI: 10.3389/fimmu.2022.866040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
The biliary system is comprised of cholangiocytes and plays an important role in maintaining liver function. Under normal conditions, cholangiocytes remain in the stationary phase and maintain a very low turnover rate. However, the robust biliary repair is initiated in disease conditions, and different repair mechanisms can be activated depending on the pathological changes. During biliary disease, immune cells including monocytes, lymphocytes, neutrophils, and mast cells are recruited to the liver. The cellular interactions between cholangiocytes and these recruited immune cells as well as hepatic resident immune cells, including Kupffer cells, determine disease outcomes. However, the role of immune cells in the initiation, regulation, and suspension of biliary repair remains elusive. The cellular processes of cholangiocyte proliferation, progenitor cell differentiation, and hepatocyte-cholangiocyte transdifferentiation during biliary diseases are reviewed to manifest the underlying mechanism of biliary repair. Furthermore, the potential role of immune cells in crucial biliary repair mechanisms is highlighted. The mechanisms of biliary repair in immune-mediated cholangiopathies, inherited cholangiopathies, obstructive cholangiopathies, and cholangiocarcinoma are also summarized. Additionally, novel techniques that could clarify the underlying mechanisms of biliary repair are displayed. Collectively, this review aims to deepen the understanding of the mechanisms of biliary repair and contributes potential novel therapeutic methods for treating biliary diseases.
Collapse
Affiliation(s)
- Tian Lan
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuaijie Qian
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Chen J, Cheng NC, Boland JA, Liu K, Kench JG, Watkins DN, Ferreira-Gonzalez S, Forbes SJ, McCaughan GW. Deletion of kif3a in CK19 positive cells leads to primary cilia loss, biliary cell proliferation and cystic liver lesions in TAA-treated mice. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166335. [PMID: 34973373 DOI: 10.1016/j.bbadis.2021.166335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Loss of primary cilia in epithelial cells is known to cause cystic diseases of the liver and kidney. We have previously shown that during experimental and human cirrhosis that primary cilia were predominantly expressed on biliary cells in the ductular reaction. However, the role of primary cilia in the pathogenesis of the ductular reaction is not fully understood. METHODS Primary cilia were specifically removed in biliary epithelial cells (BECs) by the administration of tamoxifen to Kif3af/f;CK19CreERT mice at week 2 of a 20-week course of TAA treatment. Biliary progenitor cells were isolated and grown as organoids from gallbladders. Cells and tissue were analysed using histology, immunohistochemistry and Western blot assays. RESULTS At the end of 20 weeks TAA administration, primary cilia loss in liver BECs resulted in multiple microscopic cystic lesions within an unaltered ductular reaction. These were not seen in control mice who did not receive TAA. There was no effect of biliary primary cilia loss on the development of cirrhosis. Increased cellular proliferation was seen within the cystic structures associated with a decrease in hepatocyte lobular proliferation. Loss of primary cilia within biliary organoids was initially associated with reduced cell passage survival but this inhibitory effect was diminished in later passages. ERK but not WNT signalling was enhanced in primary cilia loss-induced cystic lesions in vivo and its inhibition reduced the expansion of primary cilia deficient biliary progenitor cells in vitro. CONCLUSIONS TAA-treated kif3a BEC-specific knockout mice had an unaltered progression to cirrhosis, but developed cystic lesions that showed increased proliferation.
Collapse
Affiliation(s)
- Jinbiao Chen
- Liver Injury and Cancer Program, Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, NSW 2050, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Ngan Ching Cheng
- Liver Injury and Cancer Program, Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, NSW 2050, Australia
| | - Jade A Boland
- Liver Injury and Cancer Program, Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, NSW 2050, Australia
| | - Ken Liu
- Liver Injury and Cancer Program, Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, NSW 2050, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; A.W. Morrow Gastroenterology and Liver Centre, Australian Liver Transplant Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - James G Kench
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; Department of Tissue Pathology & Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - D Neil Watkins
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada; Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sofia Ferreira-Gonzalez
- Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, United Kingdom
| | - Stuart J Forbes
- Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, United Kingdom
| | - Geoffrey W McCaughan
- Liver Injury and Cancer Program, Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, NSW 2050, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; A.W. Morrow Gastroenterology and Liver Centre, Australian Liver Transplant Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.
| |
Collapse
|
18
|
Center SA, Randolph JF, Warner KL, Flanders JA, Harvey HJ. Clinical features, concurrent disorders, and survival time in cats with suppurative cholangitis-cholangiohepatitis syndrome. J Am Vet Med Assoc 2021; 260:212-227. [PMID: 34936575 DOI: 10.2460/javma.20.10.0555] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To characterize clinical features, comorbidities, frequency of bacterial isolation, and survival time in cats with suppurative cholangitis-cholangiohepatitis syndrome (S-CCHS). ANIMALS 168 client-owned cats with S-CCHS. PROCEDURES Data were prospectively (1980 to 2019) collected regarding clinical features, comorbidities, bacterial infection, illness duration, and treatments. Variables were evaluated for associations with survival time. RESULTS Median age of cats was 10.0 years, with no breed or sex predilection observed. Common clinical features included hyporexia (82%), hyperbilirubinemia (80%), lethargy (80%), vomiting (80%), jaundice (67%), weight loss (54%), and hypoalbuminemia (50%). Comorbidities included extrahepatic bile duct obstruction (53%), cholelithiasis (42%), cholecystitis (40%), and ductal plate malformation (44%) as well as biopsy-confirmed inflammatory bowel disease (60/68 [88%]) and pancreatitis (41/44 [93%]). Bacterial cultures were commonly positive (69%) despite prebiopsy antimicrobial administration in most cats. Of surgically confirmed choleliths, diagnostic imaging identified only 58%. Among 55 cats with "idiopathic pancreatitis," 28 (51%) were documented to have transiting choleliths, and 20 had pancreatic biopsies confirming pancreatitis. Cholelithiasis (with or without bile duct obstruction) and cholecystectomy were associated with survival advantages. Survival disadvantages were found for leukocytosis, ≥ 2-fold increased alkaline phosphatase, and hyperbilirubinemia. Cholecystoenterostomy had no survival impact. Cats with ductal plate malformations were significantly younger at diagnosis and death than other cats. Chronic treatments with antimicrobials, S-adenosylmethionine, and ursodeoxycholic acid were common postbiopsy. CLINICAL RELEVANCE S-CCHS in cats was associated with bacterial infection and various comorbidities and may be confused with pancreatitis. Surgically correctable morbidities (ie, cholecystitis, cholecystocholelithiasis) and cholecystectomy provided a significant survival advantage.
Collapse
|
19
|
Seibert LM, Center SA, Randolph JF, Miller ML, Miller AD, Choi E, Flanders JA, Harvey HJ. Relationships between congenital peritoneopericardial diaphragmatic hernia or congenital central diaphragmatic hernia and ductal plate malformations in dogs and cats. J Am Vet Med Assoc 2021; 259:1009-1024. [PMID: 34647474 DOI: 10.2460/javma.259.9.1009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To characterize the association between peritoneopericardial diaphragmatic hernia (PPDH) or congenital central diaphragmatic hernia (CCDH) and ductal plate malformations (DPMs) in dogs and cats. ANIMALS 18 dogs and 18 cats with PPDH or CCDH and 19 dogs and 18 cats without PPDH or CCDH. PROCEDURES Evaluation of clinical details verified PPDH or CCDH and survival times. Histologic features of nonherniated liver samples were used to categorize DPM. Immunohistochemical staining for cytokeratin-19 distinguished bile duct profiles per portal tract and for Ki-67-assessed cholangiocyte proliferation. Histologic features of herniated liver samples from PPDH or CCDH were compared with those of pathological controls (traumatic diaphragmatic hernia, n = 6; liver lobe torsion, 6; ischemic hepatopathy, 2). RESULTS DPM occurred in 13 of 18 dogs with the proliferative-like phenotype predominating and in 15 of 18 cats with evenly distributed proliferative-like and Caroli phenotypes. Congenital hepatic fibrosis DPM was noted in 3 dogs and 2 cats and renal DPM in 3 dogs and 3 cats. No signalment, clinical signs, or clinicopathologic features discriminated DPM. Kaplan Meier survival curves were similar in dogs and cats. Bile duct profiles per portal tract in dogs (median, 5.0; range, 1.4 to 100.8) and cats (6.6; 1.9 to 11.0) with congenital diaphragmatic hernias significantly exceeded those in healthy dogs (1.4; 1.2 to 1.6) and cats (2.3; 1.7 to 2.6). Animals with DPM lacked active cholangiocyte proliferation. Histologic features characterizing malformative bile duct profiles yet without biliary proliferation were preserved in herniated liver lobes in animals with DPM. CONCLUSIONS AND CLINICAL RELEVANCE DPM was strongly associated with PPDH and CCDH. Because DPM can impact health, awareness of its coexistence with PPDH or CCDH should prompt biopsy of nonherniated liver tissue during surgical correction of PPDH and CCDH.
Collapse
|
20
|
Wang W, Pottorf TS, Wang HH, Dong R, Kavanaugh MA, Cornelius JT, Dennis KL, Apte U, Pritchard MT, Sharma M, Tran PV. IFT-A deficiency in juvenile mice impairs biliary development and exacerbates ADPKD liver disease. J Pathol 2021; 254:289-302. [PMID: 33900625 DOI: 10.1002/path.5685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/16/2021] [Indexed: 02/06/2023]
Abstract
Polycystic liver disease (PLD) is characterized by the growth of numerous biliary cysts and presents in patients with autosomal dominant polycystic kidney disease (ADPKD), causing significant morbidity. Interestingly, deletion of intraflagellar transport-B (IFT-B) complex genes in adult mouse models of ADPKD attenuates the severity of PKD and PLD. Here we examine the role of deletion of an IFT-A gene, Thm1, in PLD of juvenile and adult Pkd2 conditional knockout mice. Perinatal deletion of Thm1 resulted in disorganized and expanded biliary regions, biliary fibrosis, increased serum bile acids, and a shortened primary cilium on cytokeratin 19+ (CK19+) epithelial cells. In contrast, perinatal deletion of Pkd2 caused PLD, with multiple CK19+ epithelial cell-lined cysts, fibrosis, lengthened primary cilia, and increased Notch and ERK signaling. Perinatal deletion of Thm1 in Pkd2 conditional knockout mice increased hepatomegaly, liver necrosis, as well as serum bilirubin and bile acid levels, indicating enhanced liver disease severity. In contrast to effects in the developing liver, deletion of Thm1 alone in adult mice did not cause a biliary phenotype. Combined deletion of Pkd2 and Thm1 caused variable hepatic cystogenesis at 4 months of age, but differences in hepatic cystogenesis between Pkd2- and Pkd2;Thm1 knockout mice were not observed by 6 months of age. Similar to juvenile PLD, Notch and ERK signaling were increased in adult Pkd2 conditional knockout cyst-lining epithelial cells. Taken together, Thm1 is required for biliary tract development, and proper biliary development restricts PLD severity. Unlike IFT-B genes, Thm1 does not markedly attenuate hepatic cystogenesis, suggesting differences in regulation of signaling and cystogenic processes in the liver by IFT-B and -A. Notably, increased Notch signaling in cyst-lining epithelial cells may indicate that aberrant activation of this pathway promotes hepatic cystogenesis, presenting as a novel potential therapeutic target. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Tana S Pottorf
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Henry H Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ruochen Dong
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Matthew A Kavanaugh
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Joseph T Cornelius
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Katie L Dennis
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, The Liver Center, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, The Liver Center, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Madhulika Sharma
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Pamela V Tran
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
21
|
Cinacalcet may suppress kidney enlargement in hemodialysis patients with autosomal dominant polycystic kidney disease. Sci Rep 2021; 11:10014. [PMID: 33976330 PMCID: PMC8113347 DOI: 10.1038/s41598-021-89480-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/21/2021] [Indexed: 12/24/2022] Open
Abstract
A massively enlarged kidney can impact quality of life of autosomal dominant polycystic kidney disease (ADPKD) patients. A recent in vitro study demonstrated that an allosteric modulator of the calcium sensing receptor decreases adenosine-3′,5′-cyclic monophosphate, an important factor for kidney enlargement in ADPKD. Therefore, the present study was performed to determine whether cinacalcet, a calcium sensing receptor agonist, suppresses kidney enlargement in hemodialysis patients with ADPKD. Alteration of total kidney volume together with clinical parameters was retrospectively examined in 12 hemodialysis patients with ADPKD treated at a single institution in Japan. In the non-cinacalcet group with longer hemodialysis duration (n = 5), total kidney volume had an annual increase of 4.19 ± 1.71% during an overall period of 877 ± 494 days. In contrast, the annual rate of increase in total kidney volume in the cinacalcet group (n = 7) was significantly suppressed after cinacalcet treatment, from 3.26 ± 2.87% during a period of 734 ± 352 days before the start of cinacalcet to − 4.71 ± 6.42% during 918 ± 524 days after initiation of treatment (p = 0.047). The present findings showed that cinacalcet could be a novel therapeutic tool for suppression of kidney enlargement in hemodialysis patients with ADPKD.
Collapse
|
22
|
Xu WP, Cui YL, Chen LL, Ding K, Ding CH, Chen F, Zhang X, Xie WF. Deletion of Sox9 in the liver leads to hepatic cystogenesis in mice by transcriptionally downregulating Sec63. J Pathol 2021; 254:57-69. [PMID: 33512716 DOI: 10.1002/path.5636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/07/2021] [Accepted: 01/27/2021] [Indexed: 11/10/2022]
Abstract
Hepatic cysts are found in heterogeneous disorders with different pathogeneses, of which simple hepatic cysts and polycystic liver diseases are two major types. The process of hepatic cytogenesis for these two diseases is caused by defects in remodelling of the ductal plate during biliary tract development, which is called ductal plate malformation. SOX9 is a transcription factor participating in the process of bile duct development, and thus, its dysregulation may play important roles in hepatic cystogenesis. SEC63 encodes an endoplasmic reticulum membrane protein that is mutated in human autosomal dominant polycystic liver disease. However, the transcriptional regulation of SEC63 is largely unknown. In the present study, a liver-specific Sox9 knockout (Sox9LKO ) mouse was generated to investigate the roles and underlying mechanism of SOX9 in hepatic cystogenesis. We found that hepatic cysts began to be observed in Sox9LKO mice at 6 months of age. The number and size of cysts increased with age in Sox9LKO mice. In addition, the characteristics of hepatic cytogenesis, including the activation of proliferation, absence of primary cilium, and disorder of polarity in biliary epithelial cells, were detected in the livers of Sox9LKO mice. RNAi silencing of SOX9 in human intrahepatic biliary epithelial cells (HIBEpic) resulted in increased proliferation and reduced formation of the primary cilium. Moreover, Sec63 was downregulated in primary biliary epithelial cells from Sox9LKO mice and SEC63 in HIBEpic transfected with siSOX9. Chromatin immunoprecipitation assays and luciferase reporter assays further demonstrated that SOX9 transcriptionally regulated the expression of SEC63 in biliary epithelial cells. Importantly, the overexpression of SEC63 in HIBEpic partially reversed the effects of SOX9 depletion on the formation of primary cilia and cell proliferation. These findings highlight the biological significance of SOX9 in hepatic cytogenesis and elucidate a novel molecular mechanism underlying hepatic cytogenesis. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wen-Ping Xu
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Ya-Lu Cui
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Li-Lin Chen
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Kai Ding
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Chen-Hong Ding
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Fei Chen
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| |
Collapse
|
23
|
Kim YJ, Kim J. Therapeutic perspectives for structural and functional abnormalities of cilia. Cell Mol Life Sci 2019; 76:3695-3709. [PMID: 31147753 PMCID: PMC11105626 DOI: 10.1007/s00018-019-03158-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
Abstract
Ciliopathies are a group of hereditary disorders that result from structural or functional abnormalities of cilia. Recent intense research efforts have uncovered the genetic bases of ciliopathies, and our understanding of the assembly and functions of cilia has been improved significantly. Although mechanism-specific therapies for ciliopathies have not yet received regulatory approval, the use of innovative therapeutic modalities such as oligonucleotide therapy, gene replacement therapy, and gene editing in addition to symptomatic treatments are expected to provide valid treatment options in the near future. Moreover, candidate chemical compounds for developing small molecule drugs to treat ciliopathies have been identified. This review introduces the key features of cilia and ciliopathies, and summarizes the advances as well as the challenges that remain with the development of therapies for treating ciliopathies.
Collapse
Affiliation(s)
- Yong Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
24
|
Wang D, Weng Y, Guo S, Qin W, Ni J, Yu L, Zhang Y, Zhao Q, Ben J, Ma J. microRNA-1 Regulates NCC Migration and Differentiation by Targeting sec63. Int J Biol Sci 2019; 15:2538-2547. [PMID: 31754327 PMCID: PMC6854364 DOI: 10.7150/ijbs.35357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background/Aims: Neural crest cells play a vital role in craniofacial development, microRNA-1 (miR-1) is essential in development and disease of the cardiac and skeletal muscle, the objective of our study is to investigate effects of miR-1 on neural crest cell in the craniofacial development and its molecular mechanism. Methods: We knocked down miR-1 in zebrafish by miR-1 morpholino (MO) microinjection and observed phenotype of neural crest derivatives. We detected neural crest cell migration by time-lapse. Whole-mount in situ hybridization was used to monitor the expressions of genes involved in neural crest cell induction, specification, migration and differentiation. We performed a quantitative proteomics study (iTRAQ) and bioinformatics prediction to identify the targets of miR-1 and validate the relationship between miR-1 and its target gene sec63. Results: We found defects in the tissues derived from neural crest cells: a severely reduced lower jaw and delayed appearance of pigment cells. miR-1 MO injection also disrupted neural crest cell migration. At 24 hours post fertilization (hpf), reduced expression of tfap2a, dlx2, dlx3b, ngn1 and crestin indicated that miR-1 deficiency affected neural crest cell differentiation. iTRAQ and luciferase reporter assay identified SEC63 as a direct target gene of miR-1. The defects of miR-1 deficiency could be reversed, at least in part, by specific suppression of sec63 expression. Conclusion: miR-1 is involved in the regulation of neural crest cell development, and that it acts, at least partially, by targeting sec63 expression.
Collapse
Affiliation(s)
- Dongyue Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Yajuan Weng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Wenhao Qin
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Jieli Ni
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Lei Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Yuxin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Qingshun Zhao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210029, China
| | - Jingjing Ben
- Department of Pathophysiology, Key laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| |
Collapse
|
25
|
Mamone G, Carollo V, Cortis K, Aquilina S, Liotta R, Miraglia R. Magnetic resonance imaging of fibropolycystic liver disease: the spectrum of ductal plate malformations. Abdom Radiol (NY) 2019; 44:2156-2171. [PMID: 30852632 DOI: 10.1007/s00261-019-01966-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibropolycystic liver diseases, also known as ductal plate malformations, are a group of associated congenital disorders resulting from abnormal development of the biliary ductal system. These disorders include congenital hepatic fibrosis, biliary hamartomas, polycystic liver disease, choledochal cysts and Caroli disease. Recently, it has been thought to include biliary atresia in this group of diseases, because ductal plate malformations could be implicated in the pathogenesis of this disease. Concomitant associated renal anomalies can also be present, such as autosomal recessive polycystic kidney disease (ARPKD), medullary sponge kidney and nephronophthisis. These disorders can be clinically silent or can cause abnormalities such as cholangitis, portal hypertension, gastrointestinal bleeding and infections. The different types of ductal plate malformations show typical findings at magnetic resonance (MR) imaging. A clear knowledge of the embryology and pathogenesis of the ductal plate plays a pivotal role to understand the characteristic imaging appearances of these complex diseases. Awareness of these MR imaging findings is central to the detecting and differentiating between various fibropolycystic liver diseases and is important to direct appropriate clinical management and prevent misdiagnosis.
Collapse
Affiliation(s)
- Giuseppe Mamone
- Radiology Unit, Department of Diagnostic and Therapeutic Services, IRCCS ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Via Tricomi 5, 90127, Palermo, Italy.
| | - Vincenzo Carollo
- Radiology Unit, Department of Diagnostic and Therapeutic Services, IRCCS ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Via Tricomi 5, 90127, Palermo, Italy
| | - Kelvin Cortis
- Department of Medical Imaging, Mater Dei Hospital, Msida, MSD 2090, Malta
| | - Sarah Aquilina
- Department of Medical Imaging, Mater Dei Hospital, Msida, MSD 2090, Malta
| | - Rosa Liotta
- Pathology Unit, Department of Diagnostic and Therapeutic Services, IRCCS ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Via Tricomi 5, 90127, Palermo, Italy
| | - Roberto Miraglia
- Radiology Unit, Department of Diagnostic and Therapeutic Services, IRCCS ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Via Tricomi 5, 90127, Palermo, Italy
| |
Collapse
|
26
|
Liang C, Takahashi K, Kurata M, Sakashita S, Oda T, Ohkohchi N. Recurrent renal cell carcinoma leading to a misdiagnosis of polycystic liver disease: A case report. World J Gastroenterol 2019; 25:2264-2270. [PMID: 31143076 PMCID: PMC6526153 DOI: 10.3748/wjg.v25.i18.2264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Polycystic liver disease (PCLD) with a large cystic volume deteriorates the quality of life of patients through substantial effects on the adjacent organs, recurrent cyst infections, cyst rupture, and hemorrhage. Surgical or radiological intervention is usually needed to alleviate these symptoms. We report a rare case of the cystic metastasis of renal cell carcinoma (RCC), which was misdiagnosed as PCLD, as a result of the clinical and radiological similarity between these disorders. CASE SUMMARY A 74-year-old female who had undergone nephrectomy for papillary-type RCC (PRCC) was suffering from abdominal pain and the recurrent intracystic hemorrhage of multiple cysts in the liver. Imaging studies and aspiration cytology of the cysts showed no evidence of malignancy. With a diagnosis of autosomal dominant polycystic liver disease, the patient received hepatectomy for the purpose of mass reduction and infectious cyst removal. Surgery was performed without complications, and the patient was discharged on postoperative day 14. Postoperatively, the pathology revealed a diagnosis of recurrent PRCC with cystic formation. CONCLUSION This case demonstrates the importance of excluding the cystic metastasis of a cancer when liver cysts are observed.
Collapse
Affiliation(s)
- Chen Liang
- Department of Surgery, University of Tsukuba, Tsukuba, Ibaraki Prefecture 3058575, Japan
| | - Kazuhiro Takahashi
- Department of Surgery, University of Tsukuba, Tsukuba, Ibaraki Prefecture 3058575, Japan
| | - Masanao Kurata
- Department of Surgery, University of Tsukuba, Tsukuba, Ibaraki Prefecture 3058575, Japan
| | - Shingo Sakashita
- Department of Diagnostic Pathology, University of Tsukuba, Tsukuba, Ibaraki Prefecture 3058575, Japan
| | - Tatsuya Oda
- Department of Surgery, University of Tsukuba, Tsukuba, Ibaraki Prefecture 3058575, Japan
| | - Nobuhiro Ohkohchi
- Department of Surgery, University of Tsukuba, Tsukuba, Ibaraki Prefecture 3058575, Japan
| |
Collapse
|
27
|
Ding F, Tang H, Zhao H, Feng X, Yang Y, Chen GH, Chen WJ, Xu C. Long-term results of liver transplantation for polycystic liver disease: Single-center experience in China. Exp Ther Med 2019; 17:4183-4189. [PMID: 31007749 DOI: 10.3892/etm.2019.7449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 02/15/2019] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to explore the indications for and safety of orthotopic liver transplantation for polycystic liver disease (PLD). Orthotopic liver transplantation in 11 patients with PLD between May 2004 and September 2013 was retrospectively analyzed. Patient epidemiological, clinical and follow-up data were collected. The survival rate was calculated using the Kaplan-Meier method. Over the 10-year period, 11 patients received orthotopic liver transplantation (n=9) and combined liver-kidney transplantation (n=2) for PLD. The recipients' median age was 56 years [(interquartile range (IQR), 52-57 years], and 7 of the patients (63.6%) were classified as having Gigot type II PLD and 4 (36.4%) as having Gigot type III. A total of 8 (72.7%) patients had a severely decreased quality of life (Eastern Cooperative Oncology Group performance status score, ≥3). Only 3 cases (27.3%) were of Class C stage. The mean hospitalization duration was 45.4±15.3 days and the mean length of stay at the intensive care unit was 4.1±1.9 days. The peri-operative mortality was 18.2% and the morbidity was 54.5%. The median follow-up period was 111 months (IQR, 33-132 months). A total of 2 patients died of severe complications after combined liver-kidney transplantation. Furthermore, 1 patient died of ischemia cholangitis during the follow-up period. The actuarial 1-, 5- and 10-year survival rate during the follow-up period was 81.8, 81.8 and 65.5%, respectively. The mean physical component summary score was 87.1±6.9 and the mean mental component summary score was 81.5±6.4. In conclusion, liver transplantation is the only curative procedure for PLD, and the present study indicated that it is relatively and safe and leads to good long-term prognosis and high quality of life. Based on our experience and results, liver transplantation is a primary option for cases of PLD with progressive or advanced symptomatic disease where previous other forms of therapy to palliate symptoms have been insufficient.
Collapse
Affiliation(s)
- Fan Ding
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China.,Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hui Tang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China.,Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hui Zhao
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China.,Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiao Feng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China.,Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China.,Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Gui-Hua Chen
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China.,Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wen-Jie Chen
- Department of Biological Treatment Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Chi Xu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China.,Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW This review provides an outline of the most recent insights and significant discoveries regarding the genetic mechanisms involved in polycystic liver disease. RECENT FINDINGS Polycystic liver disease includes a heterogeneous group of genetic disorders characterized by multiple hepatic cysts. Isolated liver cysts are caused by mutations in Protein Kinase C Substrate 80K-H (PRKCSH), SEC63, and LDL Receptor Related Protein 5 (LRP5), whereas Polycystic Kidney Disease (PKD)1, PKD2, and PKHD1 mutations cause kidney cysts often accompanied by liver cysts. Glucosidase II Alpha Subunit (GANAB) has been reported to cause both phenotypes. These mutations, together with the newly identified ones in SEC61B and Alpha-1,3-Glucosyltransferase (ALG8), can be found in ∼50% of patients with isolated polycystic liver disease. Somatic second hit-mutations are hypothesized as driving force leading to cystogenesis. Subsequently, loss of heterozygosity in the cystic tissue aggravates disease progression. All genetic mutations lead to reduced levels of functional polycystin-1. This ciliary protein is therefore considered to be the central factor in the development and severity of liver cysts. SUMMARY Recent advances of the genetic complexity leading to hepatic cystogenesis provide novel candidate genes and important mechanistic insights with polycystin-1 as a common denominator.
Collapse
|
29
|
van Aerts RMM, Kievit W, de Jong ME, Ahn C, Bañales JM, Reiterová J, Nevens F, Drenth JPH. Severity in polycystic liver disease is associated with aetiology and female gender: Results of the International PLD Registry. Liver Int 2019; 39:575-582. [PMID: 30225933 DOI: 10.1111/liv.13965] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/26/2018] [Accepted: 09/09/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Polycystic liver disease (PLD) occurs in two genetic disorders, autosomal-dominant polycystic kidney disease (ADPKD) and autosomal-dominant polycystic liver disease (ADPLD). The aim of this study is to compare disease severity between ADPKD and ADPLD by determining the association between diagnosis and height-adjusted total liver volume (hTLV). METHODS We performed a cross-sectional analysis with hTLV as endpoint. Patients were identified from the International PLD Registry (>10 liver cysts) and included in our analysis when PLD diagnosis was made prior to September 2017, hTLV was available before volume-reducing therapy (measured on computed tomography or magnetic resonance imaging) and when patients were tertiary referred. Data from the registry were retrieved for age, diagnosis (ADPKD or ADPLD), gender, height and hTLV. RESULTS A total of 360 patients (ADPKD n = 241; ADPLD n = 119) met our inclusion criteria. Female ADPKD patients had larger hTLV compared with ADPLD (P = 0.008). In a multivariate regression analysis, ADPKD and lower age at index CT were independently associated with larger hTLV in females, whereas in males a higher age was associated with larger hTLV. Young females (≤51 years) had larger liver volumes compared with older females (>51 years) in ADPKD. CONCLUSION Aetiology is presented as a new risk factor associated with PLD severity. Young females with ADPKD represent a subgroup of PLD patients with the most severe phenotype expressed in hTLV.
Collapse
Affiliation(s)
- René M M van Aerts
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wietske Kievit
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michiel E de Jong
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jesús M Bañales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute-Donostia University Hospital, IKERBASQUE, CIBERehd, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Jana Reiterová
- Department of Nephrology, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Frederik Nevens
- Department of Gastroenterology and Hepatology, University Hospital KU Leuven, Leuven, Belgium
| | - Joost P H Drenth
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
30
|
Helgert ND, Sula MM. Caroli Syndrome in a 6-Year-Old Rottweiler Dog. J Comp Pathol 2018; 167:1-5. [PMID: 30898291 DOI: 10.1016/j.jcpa.2018.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022]
Abstract
A 6-year-old entire female rottweiler dog with a recent history of ascites and respiratory disease was submitted for necropsy examination. The dog had been diagnosed ultrasonographically with biliary cysts as a puppy. Grossly, the liver was smaller than expected with an irregular surface. Islands of hepatocytes were separated by bands of fibrosis and many bile ducts were markedly dilated. Histologically, extensive fibrosis extended beyond the limiting plate and into the surrounding hepatic parenchyma and was associated with abundant small bile ducts throughout. In conjunction with the detection of biliary cysts early in life, the gross and histological findings were consistent with a diagnosis of Caroli syndrome. In man, Caroli syndrome is frequently associated with renal and pancreatic cysts; a single renal cyst was identified in this case.
Collapse
Affiliation(s)
- N D Helgert
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, Tennessee, USA.
| | - M M Sula
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, Tennessee, USA
| |
Collapse
|
31
|
Kamiya A, Chikada H, Ida K, Ando E, Tsuruya K, Kagawa T, Inagaki Y. An in vitro model of polycystic liver disease using genome-edited human inducible pluripotent stem cells. Stem Cell Res 2018; 32:17-24. [PMID: 30172093 DOI: 10.1016/j.scr.2018.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 01/23/2023] Open
Abstract
In the developing liver, bile duct structure is formed through differentiation of hepatic progenitor cells (HPC) into cholangiocytes. A subtype of polycystic liver diseases characterized by uncontrolled expansion of bile ductal cells is caused by genetic abnormalities such as in that of protein kinase C substrate 80 K-H (PRKCSH). In this study, we aimed to mimic the disease process in vitro by genome editing of the PRKCSH locus in human inducible pluripotent stem (iPS) cells. A proportion of cultured human iPS cell-derived CD13+CD133+ HPC differentiated into CD13- cells. During the subsequent gel embedding culture, CD13- cells formed bile ductal marker-positive cystic structures with the polarity of epithelial cells. A deletion of PRKCSH gene increased expression of cholangiocytic transcription factors in CD13- cells and the number of cholangiocytic cyst structure. These results suggest that PRKCSH deficiency promotes the differentiation of HPC-derived cholangiocytes, providing a good in vitro model to analyze the molecular mechanisms underlying polycystic diseases.
Collapse
Affiliation(s)
- Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan; Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Hiromi Chikada
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan; Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Kinuyo Ida
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Emi Ando
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Kota Tsuruya
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan; Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Tatehiro Kagawa
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; Department of Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
32
|
Sato Y, Yamamura M, Sasaki M, Harada K. Blockade of Hedgehog Signaling Attenuates Biliary Cystogenesis in the Polycystic Kidney (PCK) Rat. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2251-2263. [DOI: 10.1016/j.ajpath.2018.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/15/2018] [Accepted: 06/19/2018] [Indexed: 01/14/2023]
|
33
|
Tam PKH, Yiu RS, Lendahl U, Andersson ER. Cholangiopathies - Towards a molecular understanding. EBioMedicine 2018; 35:381-393. [PMID: 30236451 PMCID: PMC6161480 DOI: 10.1016/j.ebiom.2018.08.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Liver diseases constitute an important medical problem, and a number of these diseases, termed cholangiopathies, affect the biliary system of the liver. In this review, we describe the current understanding of the causes of cholangiopathies, which can be genetic, viral or environmental, and the few treatment options that are currently available beyond liver transplantation. We then discuss recent rapid progress in a number of areas relevant for decoding the disease mechanisms for cholangiopathies. This includes novel data from analysis of transgenic mouse models and organoid systems, and we outline how this information can be used for disease modeling and potential development of novel therapy concepts. We also describe recent advances in genomic and transcriptomic analyses and the importance of such studies for improving diagnosis and determining whether certain cholangiopathies should be viewed as distinct or overlapping disease entities.
Collapse
Affiliation(s)
- Paul K H Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, and Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, and The University of Hong Kong, Hong Kong.
| | - Rachel S Yiu
- Department of Surgery, Li Ka Shing Faculty of Medicine, and Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, and The University of Hong Kong, Hong Kong
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden; Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden.
| |
Collapse
|
34
|
Wijnands TFM, Gevers TJG, Lantinga MA, Te Morsche RH, Schultze Kool LJ, Drenth JPH. Pasireotide does not improve efficacy of aspiration sclerotherapy in patients with large hepatic cysts, a randomized controlled trial. Eur Radiol 2018; 28:2682-2689. [PMID: 29318424 PMCID: PMC5938297 DOI: 10.1007/s00330-017-5205-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/28/2017] [Accepted: 11/22/2017] [Indexed: 01/13/2023]
Abstract
OBJECTIVES We tested whether complementary use of the somatostatin analogue pasireotide would augment efficacy of aspiration sclerotherapy of hepatic cysts. METHODS We conducted a double-blind, placebo-controlled trial in patients who underwent aspiration sclerotherapy of a large (>5 cm) symptomatic hepatic cyst. Patients were randomized to either intramuscular injections of pasireotide 60 mg long-acting release (n = 17) or placebo (sodium chloride 0.9 %, n = 17). Injections were administered 2 weeks before and 2 weeks after aspiration sclerotherapy. The primary endpoint was proportional cyst diameter reduction (%) from baseline to 6 weeks. Secondary outcomes included long-term cyst reduction at 26 weeks, patient-reported outcomes including the polycystic liver disease-questionnaire (PLD-Q) and safety. RESULTS Thirty-four patients (32 females; 53.6 ± 7.8 years) were randomized between pasireotide or placebo. Pasireotide did not improve efficacy of aspiration sclerotherapy at 6 weeks compared to controls (23.6 % [IQR 12.6-30.0] vs. 21.8 % [9.6-31.8]; p = 0.96). Long-term cyst diameter reduction was similar in both groups (49.1 % [27.0-73.6] and 45.6 % [29.6-59.6]; p = 0.90). Mean PLD-Q scores improved significantly in both groups (p < 0.01) without differences between arms (p = 0.92). CONCLUSIONS In patients with large symptomatic hepatic cysts, complementary pasireotide to aspiration sclerotherapy did not improve cyst reduction or clinical response. KEY POINTS • Complementary pasireotide treatment does not improve efficacy of aspiration sclerotherapy. • Cyst fluid reaccumulation after aspiration sclerotherapy is a transient phenomenon. • Aspiration sclerotherapy strongly reduces symptoms and normalizes quality of life.
Collapse
Affiliation(s)
- Titus F M Wijnands
- Department of Gastroenterology and Hepatology, Radboud University Medical Centre, P.O. Box 9101, code 455, 6500 HB, Nijmegen, The Netherlands.
| | - Tom J G Gevers
- Department of Gastroenterology and Hepatology, Radboud University Medical Centre, P.O. Box 9101, code 455, 6500 HB, Nijmegen, The Netherlands
| | - Marten A Lantinga
- Department of Gastroenterology and Hepatology, Radboud University Medical Centre, P.O. Box 9101, code 455, 6500 HB, Nijmegen, The Netherlands
| | - René H Te Morsche
- Department of Gastroenterology and Hepatology, Radboud University Medical Centre, P.O. Box 9101, code 455, 6500 HB, Nijmegen, The Netherlands
| | - Leo J Schultze Kool
- Department of Radiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Joost P H Drenth
- Department of Gastroenterology and Hepatology, Radboud University Medical Centre, P.O. Box 9101, code 455, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
35
|
Ober EA, Lemaigre FP. Development of the liver: Insights into organ and tissue morphogenesis. J Hepatol 2018; 68:1049-1062. [PMID: 29339113 DOI: 10.1016/j.jhep.2018.01.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/29/2017] [Accepted: 01/06/2018] [Indexed: 02/08/2023]
Abstract
Recent development of improved tools and methods to analyse tissues at the three-dimensional level has expanded our capacity to investigate morphogenesis of foetal liver. Here, we review the key morphogenetic steps during liver development, from the prehepatic endoderm stage to the postnatal period, and consider several model organisms while focussing on the mammalian liver. We first discuss how the liver buds out of the endoderm and gives rise to an asymmetric liver. We next outline the mechanisms driving liver and lobe growth, and review morphogenesis of the intra- and extrahepatic bile ducts; morphogenetic responses of the biliary tract to liver injury are discussed. Finally, we describe the mechanisms driving formation of the vasculature, namely venous and arterial vessels, as well as sinusoids.
Collapse
Affiliation(s)
- Elke A Ober
- Novo Nordisk Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
36
|
Masyuk TV, Masyuk AI, LaRusso NF. Therapeutic Targets in Polycystic Liver Disease. Curr Drug Targets 2018; 18:950-957. [PMID: 25915482 DOI: 10.2174/1389450116666150427161743] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/06/2015] [Accepted: 03/02/2015] [Indexed: 02/06/2023]
Abstract
Polycystic liver diseases (PLD) are a group of genetic disorders initiated by mutations in several PLD-related genes and characterized by the presence of multiple cholangiocyte-derived hepatic cysts that progressively replace liver tissue. PLD co-exists with Autosomal Dominant Polycystic Kidney Disease (ADPKD) and Autosomal Recessive PKD as well as occurs alone (i.e., Autosomal Dominant Polycystic Liver Disease [ADPLD]). PLD associated with ADPKD and ARPKD belong to a group of disorders known as cholangiociliopathies since many disease-causative and disease-related proteins are expressed in primary cilia of cholangiocytes. Aberrant expression of these proteins in primary cilia affects their structures and functions promoting cystogenesis. Current medical therapies for PLD include symptomatic management and surgical interventions. To date, the only available drug treatment for PLD patients that halt disease progression and improve quality of life are somatostatin analogs. However, the modest clinical benefits, need for long-term maintenance therapy, and the high cost of treatment justify the necessity for more effective treatment options. Substantial evidence suggests that experimental manipulations with components of the signaling pathways that influence cyst development (e.g., cAMP, intracellular calcium, receptor tyrosine kinase, transient receptor potential cation channel subfamily V member 4 (TRPV4) channel, mechanistic target of rapamycin (mTOR), histone deacetylase (HDAC6), Cdc25A phosphatase, miRNAs and metalloproteinases) attenuate growth of hepatic cysts. Many of these targets have been evaluated in pre-clinical trials suggesting their value as potential new therapies. This review outlines the current clinical and preclinical treatment strategies for PLD.
Collapse
Affiliation(s)
- Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Anatoliy I Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street, SW Rochester, Minnesota, MN 55905, United States
| |
Collapse
|
37
|
Di Mise A, Tamma G, Ranieri M, Centrone M, van den Heuvel L, Mekahli D, Levtchenko EN, Valenti G. Activation of Calcium-Sensing Receptor increases intracellular calcium and decreases cAMP and mTOR in PKD1 deficient cells. Sci Rep 2018; 8:5704. [PMID: 29632324 PMCID: PMC5890283 DOI: 10.1038/s41598-018-23732-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/13/2018] [Indexed: 12/25/2022] Open
Abstract
Clinical and fundamental research suggest that altered calcium and cAMP signaling might be the most proximal events in ADPKD pathogenesis. Cells from ADPKD cysts have a reduced resting cytosolic calcium [Ca2+]i and increased cAMP levels. CaSR plays an essential role in regulating calcium homeostasis. Its activation is associated with [Ca2+]i increase and cAMP decrease, making CaSR a possible therapeutic target. Human conditionally immortalized Proximal Tubular Epithelial cells (ciPTEC) with stable knockdown of PKD1 (ciPTEC-PC1KD) and ciPTEC generated from an ADPKD1 patient (ciPTEC-PC1Pt) were used as experimental tools. CaSR functional expression was confirmed by studies showing that the calcimimetic NPS-R568 induced a significant increase in [Ca2+]i in ciPTEC-PC1KD and ciPTEC-PC1Pt. Resting [Ca2+]i were significantly lower in ciPTEC-PC1KD with respect to ciPTECwt, confirming calcium dysregulation. As in native cyst cells, significantly higher cAMP levels and mTOR activity were found in ciPTEC-PC1KD compared to ciPTECwt. Of note, NPS-R568 treatment significantly reduced intracellular cAMP and mTOR activity in ciPTEC-PC1KD and ciPTEC-PC1Pt. To conclude, we demonstrated that selective CaSR activation in human ciPTEC carrying PKD1 mutation increases [Ca2+]i, reduces intracellular cAMP and mTOR activity, reversing the principal dysregulations considered the most proximal events in ADPKD pathogenesis, making CaSR a possible candidate as therapeutic target.
Collapse
Affiliation(s)
- Annarita Di Mise
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70125, Italy.
| | - Grazia Tamma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70125, Italy.,Istituto Nazionale di Biostrutture e Biosistemi, Roma, 00136, Italy
| | - Marianna Ranieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70125, Italy
| | - Mariangela Centrone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70125, Italy
| | - Lambertus van den Heuvel
- Department of Pediatric Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, 6525 HP, The Netherlands
| | - Djalila Mekahli
- Department of Pediatric Nephrology, University Hospital Gasthuisberg, Leuven, 3000, Belgium.,Department of Development & Regeneration, University of Leuven (KU Leuven), Leuven, 3000, Belgium
| | - Elena N Levtchenko
- Department of Pediatric Nephrology, University Hospital Gasthuisberg, Leuven, 3000, Belgium.,Department of Development & Regeneration, University of Leuven (KU Leuven), Leuven, 3000, Belgium
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70125, Italy. .,Istituto Nazionale di Biostrutture e Biosistemi, Roma, 00136, Italy. .,Center of Excellence in Comparative Genomics (CEGBA), University of Bari, Bari, 70125, Italy.
| |
Collapse
|
38
|
van Aerts RMM, van de Laarschot LFM, Banales JM, Drenth JPH. Clinical management of polycystic liver disease. J Hepatol 2018; 68:827-837. [PMID: 29175241 DOI: 10.1016/j.jhep.2017.11.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/20/2017] [Accepted: 11/18/2017] [Indexed: 12/22/2022]
Abstract
A 41-year old female underwent a computed tomography (CT) scan in 2010 because of symptoms suggestive of appendicitis. Incidentally, multiple liver lesions characterised as cysts were detected. The presence of small to medium sized liver cysts (diameter between <1 cm and 4 cm) in all liver segments (>100 cysts) and absence of kidney cysts in the context of normal renal function led to the clinical diagnosis of autosomal dominant polycystic liver disease (ADPLD). Five years later she was referred to the outpatient clinic with increased abdominal girth, pain in the right upper abdomen and right flank, and early satiety. She had difficulties bending over and could neither cut her toenails nor tie her shoe laces. In her early twenties she had used oral contraception for five years. She has been pregnant twice. Clinical examination showed an enlarged liver reaching into the right pelvic region and crossing the midline of the abdomen. Laboratory testing demonstrated increased gamma-glutamyl transferase (80 IU/L, normal <40 IU/L) and alkaline phosphatase (148 IU/L, normal <100 IU/L) levels. Bilirubin, albumin and coagulation times were within the normal range. A new CT scan in 2015 was compatible with an increased number and size of liver cysts. The diameter of cysts varied between <1 cm and 6 cm (anatomic distribution shown [Fig. 2B]). There were no signs of hepatic venous outflow obstruction, portal hypertension or compression on the biliary tract. Height-adjusted total liver volume (htTLV) increased from 2,667 ml/m in 2012 to 4,047 ml/m in 2015 (height 172 cm). The case we present here is not uncommon, and prompts several relevant questions.
Collapse
Affiliation(s)
- René M M van Aerts
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), IKERBASQUE, CIBERehd, San Sebastián, Spain
| | - Joost P H Drenth
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
39
|
Ma M, Gallagher AR, Somlo S. Ciliary Mechanisms of Cyst Formation in Polycystic Kidney Disease. Cold Spring Harb Perspect Biol 2017; 9:a028209. [PMID: 28320755 PMCID: PMC5666631 DOI: 10.1101/cshperspect.a028209] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is a disease of defective tissue homeostasis resulting in active remodeling of nephrons and bile ducts to form fluid-filled sacs called cysts. The causal genes PKD1 and PKD2 encode transmembrane proteins polycystin 1 (PC1) and polycystin 2 (PC2), respectively. Together, the polycystins localize to the solitary primary cilium that protrudes from the apical surface of most kidney tubule cells and is thought to function as a privileged compartment that the cell uses for signal integration of sensory inputs. It has been proposed that PC1 and PC2 form a receptor-channel complex that detects external stimuli and transmit a local calcium-mediated signal, which may control a multitude of cellular processes by an as-yet unknown mechanism. Genetic studies using mouse models of cilia and polycystin dysfunction have shown that polycystins regulate an unknown cilia-dependent signal that is normally part of the homeostatic maintenance of nephron structure. ADPKD ensues when this pathway is dysregulated by absence of polycystins from intact cilia, but disruption of cilia also disrupts this signaling mechanism and ameliorates ADPKD even in the absence of polycystins. Understanding the role of cilia and ciliary signaling in ADPKD is challenging, but success will provide saltatory advances in our understanding of how tubule structure is maintained in healthy kidneys and how disruption of polycystin or cilia function leads to the pathological tissue remodeling process underlying ADPKD.
Collapse
Affiliation(s)
- Ming Ma
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8029
| | - Anna-Rachel Gallagher
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8029
| | - Stefan Somlo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8029
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8029
| |
Collapse
|
40
|
Masyuk TV, Masyuk AI, Pisarello ML, Howard BN, Huang BQ, Lee PY, Fung X, Sergienko E, Ardesky RJ, Chung TDY, Pinkerton AB, LaRusso NF. TGR5 contributes to hepatic cystogenesis in rodents with polycystic liver diseases through cyclic adenosine monophosphate/Gαs signaling. Hepatology 2017; 66:1197-1218. [PMID: 28543567 PMCID: PMC5605412 DOI: 10.1002/hep.29284] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/10/2017] [Accepted: 05/19/2017] [Indexed: 12/23/2022]
Abstract
UNLABELLED Hepatic cystogenesis in polycystic liver disease is associated with increased levels of cyclic adenosine monophosphate (cAMP) in cholangiocytes lining liver cysts. Takeda G protein receptor 5 (TGR5), a G protein-coupled bile acid receptor, is linked to cAMP and expressed in cholangiocytes. Therefore, we hypothesized that TGR5 might contribute to disease progression. We examined expression of TGR5 and Gα proteins in cultured cholangiocytes and in livers of animal models and humans with polycystic liver disease. In vitro, we assessed cholangiocyte proliferation, cAMP levels, and cyst growth in response to (1) TGR5 agonists (taurolithocholic acid, oleanolic acid [OA], and two synthetic compounds), (2) a novel TGR5 antagonist (m-tolyl 5-chloro-2-[ethylsulfonyl] pyrimidine-4-carboxylate [SBI-115]), and (3) a combination of SBI-115 and pasireotide, a somatostatin receptor analogue. In vivo, we examined hepatic cystogenesis in OA-treated polycystic kidney rats and after genetic elimination of TGR5 in double mutant TGR5-/- ;Pkhd1del2/del2 mice. Compared to control, expression of TGR5 and Gαs (but not Gαi and Gαq ) proteins was increased 2-fold to 3-fold in cystic cholangiocytes in vitro and in vivo. In vitro, TGR5 stimulation enhanced cAMP production, cell proliferation, and cyst growth by ∼40%; these effects were abolished after TGR5 reduction by short hairpin RNA. OA increased cystogenesis in polycystic kidney rats by 35%; in contrast, hepatic cystic areas were decreased by 45% in TGR5-deficient TGR5-/- ;Pkhd1del2/del2 mice. TGR5 expression and its colocalization with Gαs were increased ∼2-fold upon OA treatment. Levels of cAMP, cell proliferation, and cyst growth in vitro were decreased by ∼30% in cystic cholangiocytes after treatment with SBI-115 alone and by ∼50% when SBI-115 was combined with pasireotide. CONCLUSION TGR5 contributes to hepatic cystogenesis by increasing cAMP and enhancing cholangiocyte proliferation; our data suggest that a TGR5 antagonist alone or concurrently with somatostatin receptor agonists represents a potential therapeutic approach in polycystic liver disease. (Hepatology 2017;66:1197-1218).
Collapse
Affiliation(s)
- Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Anatoliy I Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | | | - Brynn N Howard
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Bing Q Huang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Pui-Yuen Lee
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Xavier Fung
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Eduard Sergienko
- Conrad Prebys Center for Chemical Genomics at Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA USA
| | - Robert J Ardesky
- Conrad Prebys Center for Chemical Genomics at Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA USA
| | - Thomas DY Chung
- Office of Translation to Practice, Mayo Clinic, Rochester, MN USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics at Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
41
|
Wills ES, te Morsche RHM, van Reeuwijk J, Horn N, Geomini I, van de Laarschot LFM, Mans DA, Ueffing M, Boldt K, Drenth JPH, Roepman R. Liver cyst gene knockout in cholangiocytes inhibits cilium formation and Wnt signaling. Hum Mol Genet 2017; 26:4190-4202. [DOI: 10.1093/hmg/ddx308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/26/2017] [Indexed: 01/07/2023] Open
|
42
|
Besse W, Dong K, Choi J, Punia S, Fedeles SV, Choi M, Gallagher AR, Huang EB, Gulati A, Knight J, Mane S, Tahvanainen E, Tahvanainen P, Sanna-Cherchi S, Lifton RP, Watnick T, Pei YP, Torres VE, Somlo S. Isolated polycystic liver disease genes define effectors of polycystin-1 function. J Clin Invest 2017; 127:1772-1785. [PMID: 28375157 PMCID: PMC5409105 DOI: 10.1172/jci90129] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/09/2017] [Indexed: 02/06/2023] Open
Abstract
Dominantly inherited isolated polycystic liver disease (PCLD) consists of liver cysts that are radiologically and pathologically identical to those seen in autosomal dominant polycystic kidney disease, but without clinically relevant kidney cysts. The causative genes are known for fewer than 40% of PCLD index cases. Here, we have used whole exome sequencing in a discovery cohort of 102 unrelated patients who were excluded for mutations in the 2 most common PCLD genes, PRKCSH and SEC63, to identify heterozygous loss-of-function mutations in 3 additional genes, ALG8, GANAB, and SEC61B. Similarly to PRKCSH and SEC63, these genes encode proteins that are integral to the protein biogenesis pathway in the endoplasmic reticulum. We inactivated these candidate genes in cell line models to show that loss of function of each results in defective maturation and trafficking of polycystin-1, the central determinant of cyst pathogenesis. Despite acting in a common pathway, each PCLD gene product demonstrated distinct effects on polycystin-1 biogenesis. We also found enrichment on a genome-wide basis of heterozygous mutations in the autosomal recessive polycystic kidney disease gene PKHD1, indicating that adult PKHD1 carriers can present with clinical PCLD. These findings define genetic and biochemical modulators of polycystin-1 function and provide a more complete definition of the spectrum of dominant human polycystic diseases.
Collapse
Affiliation(s)
| | - Ke Dong
- Department of Internal Medicine, and
| | - Jungmin Choi
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | - Murim Choi
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | - James Knight
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Esa Tahvanainen
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Pia Tahvanainen
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | | | - Richard P. Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Terry Watnick
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - York P. Pei
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Stefan Somlo
- Department of Internal Medicine, and
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
43
|
Lee KB. Histopathology of a benign bile duct lesion in the liver: Morphologic mimicker or precursor of intrahepatic cholangiocarcinoma. Clin Mol Hepatol 2017; 22:400-405. [PMID: 27729636 PMCID: PMC5066375 DOI: 10.3350/cmh.2016.0105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A bile duct lesion originating from intrahepatic bile ducts is generally regarded as an incidental pathologic finding in liver specimens. However, a recent study on the molecular classification of intrahepatic cholangiocarcinoma has focused on the heterogeneity of this carcinoma and has suggested that the cells of different origins present in the biliary tree may have a major role in the mechanism of oncogenesis. In this review, benign intrahepatic bile duct lesions—regarded in the past as reactive changes or remnant developmental anomalies and now noted to have potential for developing precursor lesions of intrahepatic cholangiocarcinoma—are discussed by focusing on the histopathologic features and its implications in clinical practice.
Collapse
Affiliation(s)
- Kyoung-Bun Lee
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
44
|
Adenylate Cyclase Type III Is Not a Ubiquitous Marker for All Primary Cilia during Development. PLoS One 2017; 12:e0170756. [PMID: 28122017 PMCID: PMC5266283 DOI: 10.1371/journal.pone.0170756] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/23/2016] [Indexed: 12/17/2022] Open
Abstract
Adenylate cyclase type III (AC3) is localized in plasma membrane of neuronal primary cilium and can be used as a marker of this cilium. AC3 has also been detected in some other primary cilia such as those of fibroblasts, synoviocytes or astrocytes. Despite the presence of a cilium in almost all cell types, we show that AC3 is not a common marker of all primary cilia of different human and mouse tissues during development. In peripheral organs, AC3 is present mainly in primary cilia in cells of the mesenchymal lineage (fibroblasts, chondroblasts, osteoblasts-osteocytes, odontoblasts, muscle cells and endothelial cells). In epithelia, the apical cilium of renal and pancreatic tubules and of ductal plate in liver is AC3-negative whereas the cilium of basal cells of stratified epithelia is AC3-positive. Using fibroblasts cell culture, we show that AC3 appears at the plasma membrane of the primary cilium as soon as this organelle develops. The functional significance of AC3 localization at the cilium membrane in some cells but not others has to be investigated in relationship with cell physiology and expression at the cilium plasma membrane of specific upstream receptors.
Collapse
|
45
|
Li H, Lan R, Chan CF, Bao G, Xie C, Chu PH, Tai WCS, Zha S, Zhang JX, Wong KL. A luminescent lanthanide approach towards direct visualization of primary cilia in living cells. Chem Commun (Camb) 2017. [DOI: 10.1039/c7cc03021e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and direct imaging tool (HGEu001) for primary cilia based on long-lived europium luminescence is firstly presented.
Collapse
Affiliation(s)
- Hongguang Li
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- Hong Kong SAR
| | - Rongfeng Lan
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- Hong Kong SAR
| | - Chi-Fai Chan
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- Hong Kong SAR
| | - Guochen Bao
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- Hong Kong SAR
| | - Chen Xie
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- Hong Kong SAR
| | - Pak-Ho Chu
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- Hong Kong SAR
| | - William C. S. Tai
- Department of Applied Biological and Chemical Technology
- Hong Kong Polytechnic University
- Hung Hum
- Hong Kong SAR
| | - Shuai Zha
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- Hong Kong SAR
| | - Jing-Xiang Zhang
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- Hong Kong SAR
- School of Chemistry and Environment Engineering
| | - Ka-Leung Wong
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- Hong Kong SAR
- Partner State Key Laboratory of Environmental and Biological Analysis
| |
Collapse
|
46
|
Evidence for a "Pathogenic Triumvirate" in Congenital Hepatic Fibrosis in Autosomal Recessive Polycystic Kidney Disease. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4918798. [PMID: 27891514 PMCID: PMC5116503 DOI: 10.1155/2016/4918798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/20/2016] [Accepted: 10/13/2016] [Indexed: 12/29/2022]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a severe monogenic disorder that occurs due to mutations in the PKHD1 gene. Congenital hepatic fibrosis (CHF) associated with ARPKD is characterized by the presence of hepatic cysts derived from dilated bile ducts and a robust, pericystic fibrosis. Cyst growth, due to cyst wall epithelial cell hyperproliferation and fluid secretion, is thought to be the driving force behind disease progression. Liver fibrosis is a wound healing response in which collagen accumulates in the liver due to an imbalance between extracellular matrix synthesis and degradation. Whereas both hyperproliferation and pericystic fibrosis are hallmarks of CHF/ARPKD, whether or not these two processes influence one another remains unclear. Additionally, recent studies demonstrate that inflammation is a common feature of CHF/ARPKD. Therefore, we propose a "pathogenic triumvirate" consisting of hyperproliferation of cyst wall growth, pericystic fibrosis, and inflammation which drives CHF/ARPKD progression. This review will summarize what is known regarding the mechanisms of cyst growth, fibrosis, and inflammation in CHF/ARPKD. Further, we will discuss the potential advantage of identifying a core pathogenic feature in CHF/ARPKD to aid in the development of novel therapeutic approaches. If a core pathogenic feature does not exist, then developing multimodality therapeutic approaches to target each member of the "pathogenic triumvirate" individually may be a better strategy to manage this debilitating disease.
Collapse
|
47
|
Vasopressin regulates the growth of the biliary epithelium in polycystic liver disease. J Transl Med 2016; 96:1147-1155. [PMID: 27571215 PMCID: PMC5480400 DOI: 10.1038/labinvest.2016.93] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 01/04/2023] Open
Abstract
The neurohypophysial hormone arginine vasopressin (AVP) acts by three distinct receptor subtypes: V1a, V1b, and V2. In the liver, AVP is involved in ureogenesis, glycogenolysis, neoglucogenesis and regeneration. No data exist about the presence of AVP in the biliary epithelium. Cholangiocytes are the target cells in a number of animal models of cholestasis, including bile duct ligation (BDL), and in several human pathologies, such as polycystic liver disease characterized by the presence of cysts that bud from the biliary epithelium. In vivo, liver fragments from normal and BDL mice and rats as well as liver samples from normal and ADPKD patients were collected to evaluate: (i) intrahepatic bile duct mass by immunohistochemistry for cytokeratin-19; and (ii) expression of V1a, V1b and V2 by immunohistochemistry, immunofluorescence and real-time PCR. In vitro, small and large mouse cholangiocytes, H69 (non-malignant human cholangiocytes) and LCDE (human cholangiocytes from the cystic epithelium) were stimulated with vasopressin in the absence/presence of AVP antagonists such as OPC-31260 and Tolvaptan, before assessing cellular growth by MTT assay and cAMP levels. Cholangiocytes express V2 receptor that was upregulated following BDL and in ADPKD liver samples. Administration of AVP increased proliferation and cAMP levels of small cholangiocytes and LCDE cells. We found no effect in the proliferation of large mouse cholangiocytes and H69 cells. Increases were blocked by preincubation with the AVP antagonists. These results showed that AVP and its receptors may be important in the modulation of the proliferation rate of the biliary epithelium.
Collapse
|
48
|
Chromosomal abnormalities in hepatic cysts point to novel polycystic liver disease genes. Eur J Hum Genet 2016; 24:1707-1714. [PMID: 27552964 DOI: 10.1038/ejhg.2016.97] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 06/22/2016] [Accepted: 06/28/2016] [Indexed: 12/27/2022] Open
Abstract
Autosomal dominant polycystic liver disease (ADPLD) is caused by variants in PRKCSH, SEC63, and LRP5, whereas autosomal dominant polycystic kidney disease is caused by variants in PKD1 and PKD2. Liver cyst development in these disorders is explained by somatic loss-of-heterozygosity (LOH) of the wild-type allele in the developing cyst. We hypothesize that we can use this mechanism to identify novel disease genes that reside in LOH regions. In this study, we aim to map abnormal genomic regions using high-density SNP microarrays to find novel PLD genes. We collected 46 cysts from 23 patients with polycystic or sporadic hepatic cysts, and analyzed DNA from those cysts using high-resolution microarray (n=24) or Sanger sequencing (n=22). We here focused on regions of homozygosity on the autosomes (>3.0 Mb) and large CNVs (>1.0 Mb). We found frequent LOH in PRKCSH (22/29) and PKD1/PKD2 (2/3) cysts of patients with known heterozygous germline variants in the respective genes. In the total cohort, 12/23 patients harbored abnormalities outside of familiar areas. In individual ADPLD cases, we identified germline events: a 2q13 complex rearrangement resulting in BUB1 haploinsufficiency, a 47XXX karyotype, chromosome 9q copy-number loss, and LOH on chromosome 3p. The latter region was overlapping with an LOH region identified in two other cysts. Unique germline and somatic abnormalities occur frequently in and outside of known genes underlying cysts. Each liver cyst has a unique genetic makeup. LOH driver gene BUB1 may imply germline causes of genetic instability in PLD.
Collapse
|
49
|
Loo CKC, Pereira TN, Ramsing M, Vogel I, Petersen OB, Ramm GA. Mechanism of pancreatic and liver malformations in human fetuses with short-rib polydactyly syndrome. ACTA ACUST UNITED AC 2016; 106:549-62. [PMID: 26970085 DOI: 10.1002/bdra.23495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND The short-rib polydactyly (SRP) syndromes are rare skeletal dysplasias caused by abnormalities in primary cilia, sometimes associated with visceral malformations. METHODS The pathogenesis of ductal plate malformation (DPM) varies in different syndromes and has not been investigated in SRP. We have studied liver development in five SRP fetuses and pancreatic development in one SRP fetus, with genetically confirmed mutations in cilia related genes, with and without DPMs, using the immunoperoxidase technique, and compared these to other syndromes with DPM. RESULTS Acetylated tubulin expression was abnormal in DPM in SRP, Meckel syndrome, and autosomal recessive polycystic kidney disease (ARPKD), confirming ciliary anomalies. SDF-1 was abnormally expressed in SRP and two of three cases of autosomal dominant polycystic kidney disease (ADPKD) but not ARPKD or Meckel. Increased density of quiescent hepatic stellate cells was seen in SRP, Meckel, one of three cases of ARPKD, and two of three cases of ADPKD with aberrant hepatocyte expression of keratin 19 in SRP and ADPKD. Immunophenotypic abnormalities were present even in fetal liver without fully developed DPMs. The SRP case with DPM and pancreatic malformations showed abnormalities in the pancreatic head (influenced by mesenchyme from the septum transversum, similar to liver) but not pancreatic body (influenced by mesenchyme adjacent to the notochord). CONCLUSION In SRP, there are differentiation defects of hepatocytes, cholangiocytes, and liver mesenchyme and, in rare cases, pancreatic mesenchymal anomalies. The morphological changes were subtle in early gestation but immunophenotypic abnormalities were present. Mesenchymal-epithelial interactions may contribute to the malformations. Birth Defects Research (Part A) 106:549-562, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christine K C Loo
- Department of Anatomical Pathology SEALS, Prince of Wales Hospital, Sydney, Australia (formerly: Department of Anatomical Pathology, Royal Brisbane and Women's Hospital, Brisbane, Australia.).,Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Discipline of Pathology School of Medicine, University of Western Sydney, Australia
| | - Tamara N Pereira
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Mette Ramsing
- Department of Pathology, Aarhus University Hospital, Denmark
| | - Ida Vogel
- Department of Clinical Genetics, Aarhus University Hospital, Denmark
| | - Olav B Petersen
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, Denmark
| | - Grant A Ramm
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
50
|
Pillai S, Center SA, McDonough SP, Demarco J, Pintar J, Henderson AK, Cooper J, Bolton T, Sharpe K, Hill S, Benedict AG, Haviland R. Ductal Plate Malformation in the Liver of Boxer Dogs: Clinical and Histological Features. Vet Pathol 2016; 53:602-13. [PMID: 26797094 DOI: 10.1177/0300985815610567] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ductal plate malformations (DPMs) represent developmental biliary disorders with a wide phenotypic spectrum. This study characterizes DPM in 30 Boxer dogs. Median age was 1.5 (range, 0.3-10.0) years, with 12 dogs <1 year. Clinical features included increased serum levels of liver enzymes (28), gastrointestinal signs (16), poor body condition (14), abdominal effusion (9), and hepatic encephalopathy (2). Additional malformations included gallbladder atresia (8), atrophied left liver (2), absent quadrate lobe with left-displaced gallbladder (1), portal vasculature atresia (left liver, 1), intrahepatic portosystemic shunt (1), and complex intrahepatic arteriovenous malformation (1). All dogs had portal tracts dimensionally expanded by a moderate-to-severe multiple small bile duct phenotype embedded in abundant extracellular matrix; 80% displayed variable portal-to-portal bridging. Quantitative analysis confirmed significantly increased fibrillar collagen and a 3-fold increased portal tract area relative to 6 Boxer and 10 non-Boxer controls. Biliary phenotype was dominated by tightly formed CK19-positive ductules, typically 10 to 15 μm in diameter, with 3 to >30 profiles per portal tract, reduced luminal apertures, and negative Ki-67 immunoreactivity. CK19-positive biliary epithelium intersected directly with zone 1 hepatocytes as a signature feature when considered with other DPM characteristics. Phenotypic variation included a multiple small bile duct phenotype (all dogs), predominantly thin-walled sacculated ducts (4), well-formed saccular ducts (4), and sacculated segmental, interlobular, and intralobular ducts (Caroli malformation, 2 dogs, one with bridging portal fibrosis). Histologic evidence of portal venous hypoperfusion accompanied increased biliary profiles in every case. We propose that this spectrum of disorders be referred to as DPM with appropriate modifiers to characterize the unique phenotypes.
Collapse
Affiliation(s)
- S Pillai
- Comparative and Genomic Pathology at Memorial Sloan Kettering Cancer Center, Laboratory of comparative pathology, New York, NY, USA
| | - S A Center
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - S P McDonough
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - J Demarco
- Garden State Veterinary Specialists, Tinton Falls, NJ, USA
| | - J Pintar
- Garden State Veterinary Specialists, Tinton Falls, NJ, USA
| | - A K Henderson
- Garden State Veterinary Specialists, Tinton Falls, NJ, USA
| | - J Cooper
- Tuft's Veterinary Emergency Treatment and Specialities, Walpole, MA, USA
| | - T Bolton
- Internal Medicine Resident, Department of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - K Sharpe
- Blue Pearl Specialty and Emergency Medicine for Pets, Grand Rapids, MI, USA
| | - S Hill
- Veterinary Specialty Hospital, San Diego, San Diego, CA, USA
| | - A G Benedict
- VCA Shoreline Veterinary Referral and Emergency Center, Shelton, CT, USA
| | - R Haviland
- South Carolina Veterinary Specialists, Columbia, SC, USA
| |
Collapse
|