1
|
Yu J, Luo W, Xu G, Tao M, Wang Y, Dong Q, Hu L, Hou X, Zhao J, Li D, Wei S, Ruan X, Zheng X. Identification of stemness subtypes and prognostic modeling in thyroid cancer: the critical role of DPYSL3 in tumor progression and immune microenvironment. Discov Oncol 2025; 16:1086. [PMID: 40512244 DOI: 10.1007/s12672-025-02883-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 06/02/2025] [Indexed: 06/16/2025] Open
Abstract
PURPOSE The objective of this study was to develop and evaluate a novel classifier and prognostic model based on the stemness characteristics of thyroid cancer patients. METHODS Utilizing transcriptomic data from thyroid carcinoma (THCA) patients in The Cancer Genome Atlas (TCGA) database, we calculated the stemness index (mRNAsi) using the one-class logistic regression (OCLR) method. Patients were subsequently classified into three distinct subtypes through consensus cluster analysis. RESULTS Subtype III, characterized by its stem-like properties, exhibited significantly lower overall survival (OS) and a higher somatic mutational burden. Comprehensive analysis of the tumor immune microenvironment (TIME) in Subtype III suggested an immunosuppressive phenotype. Through the application of four machine learning algorithms and LASSO regression, we identified key genes and constructed a prognostic model based on the stemness signature. This model revealed that patients in the high-risk group had lower progression-free survival (PFS) but may benefit more from immune checkpoint blockade therapy, as indicated by TIME analysis. Functional experiments demonstrated that the stemness signature gene DPYSL3 promotes the proliferation, migration, and invasion of thyroid cancer cells and is associated with cancer stem cell properties. CONCLUSION This study provides a new strategy for thyroid cancer immunotherapy by integrating stemness-based classification and prognostic modeling.
Collapse
Affiliation(s)
- Jialong Yu
- Department of Thyroid and Neck Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, No. 1, Huanhu West Road, Tianjin, 300060, China
| | - Wei Luo
- Department of Thyroid and Neck Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, No. 1, Huanhu West Road, Tianjin, 300060, China
| | - Guangwei Xu
- Department of Thyroid and Neck Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, No. 1, Huanhu West Road, Tianjin, 300060, China
| | - Mei Tao
- Department of Thyroid and Neck Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, No. 1, Huanhu West Road, Tianjin, 300060, China
| | - Yuqi Wang
- Department of Thyroid and Neck Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, No. 1, Huanhu West Road, Tianjin, 300060, China
| | - Qiman Dong
- Department of Thyroid and Neck Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, No. 1, Huanhu West Road, Tianjin, 300060, China
| | - Linfei Hu
- Department of Thyroid and Neck Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, No. 1, Huanhu West Road, Tianjin, 300060, China
| | - Xiukun Hou
- Department of Thyroid and Neck Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, No. 1, Huanhu West Road, Tianjin, 300060, China
| | - Jingzhu Zhao
- Department of Thyroid and Neck Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, No. 1, Huanhu West Road, Tianjin, 300060, China
| | - Dapeng Li
- Department of Thyroid and Neck Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, No. 1, Huanhu West Road, Tianjin, 300060, China
| | - Songfeng Wei
- Department of Thyroid and Neck Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, No. 1, Huanhu West Road, Tianjin, 300060, China.
| | - Xianhui Ruan
- Department of Thyroid and Neck Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, No. 1, Huanhu West Road, Tianjin, 300060, China.
| | - Xiangqian Zheng
- Department of Thyroid and Neck Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, No. 1, Huanhu West Road, Tianjin, 300060, China.
| |
Collapse
|
2
|
Dalmaso B, da Silva-Junior IA, Jancar S, Steenpass L, Del Debbio CB, Pommerenke C. Pan-carcinoma data driven analysis reveals Platelet-Activating Factor Receptor (PTAFR) involvement in immunosuppressive tumor microenvironment signaling and clinical prognosis. Exp Cell Res 2025:114643. [PMID: 40490119 DOI: 10.1016/j.yexcr.2025.114643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/28/2025] [Accepted: 06/05/2025] [Indexed: 06/11/2025]
Abstract
Solid tumor carcinogenesis is driven by complex interactions within the tumor microenvironment (TME), which influence tumor initiation, progression, and response to treatment. The phospholipid platelet-activating factor (PAF) has been described to affect TME and growth; however, evidence so far has been limited to experimental in vitro and in vivo models. This study investigates the role of PAF receptor (PTAFR) across various carcinomas through patient data-driven analysis. We analyzed RNA sequencing and clinical data from publicly available tumor tissue samples of 8,977 carcinoma patients in the Genomic Data Commons. Our findings revealed that PTAFR overexpression correlates with reduced patient survival, increased tumor size, and enhanced lymph node metastasis. Further analysis identified 151 differentially expressed genes associated with PTAFR, many of which regulate immune responses and proto-oncogenic signaling. Histological and single-cell analyses demonstrated an immunosuppressive TME in carcinoma tissues with elevated PTAFR expression. In vivo validation indicated reduced tumor growth and increased infiltration of pro-inflammatory cells in PTAFR knockout mice. Protein modeling suggests that PTAFR forms physical complexes with immunosuppressive mediators STAT3 and PDL2, and that pathogenic variants may disrupt the PAF-binding domain, potentially altering signaling. Together, our findings establish PTAFR as a critical regulator of tumor progression, directly linking its expression to an immunosuppressive signaling in TME, enhanced tumor growth, and reduced patient survival, underscoring its potential as a therapeutic target.
Collapse
Affiliation(s)
- Barbara Dalmaso
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, SP, Brazil - 05508-000; Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany - 38124.
| | | | - Sonia Jancar
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, SP, Brazil - 05508-000
| | - Laura Steenpass
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany - 38124; Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany - 38106
| | - Carolina Beltrame Del Debbio
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, SP, Brazil - 05508-000
| | - Claudia Pommerenke
- Department of Bioinformatics, IT and Databases, Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany - 38124
| |
Collapse
|
3
|
Rajak P. Immune checkpoint inhibitors: From friend to foe. Toxicol Rep 2025; 14:102033. [PMID: 40353246 PMCID: PMC12063143 DOI: 10.1016/j.toxrep.2025.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 05/14/2025] Open
Abstract
Immune checkpoints are crucial in regulating the activation of cell-mediated and humoral immune responses. However, cancer cells hijack this mechanism to evade the immune surveillance and anti-cancer response. Typically, receptors like PD-1 and CTLA4, expressed on immune cells, prevent the activation and differentiation of T cells. They also inhibit the development of autoimmune reactions. However, ligands such as PD-L1 for the receptor PD-1 are also expressed on the surface of cancer cells that help prevent the activation of anti-cancer immune responses by blocking the signalling pathways mediated by PD-1 and CTLA4. Immune checkpoint inhibitors (ICIs) have promising therapeutic efficacy for treating several cancers by activating T cells and their differentiation into effector cells against tumours. Nonetheless, hyperactivated immune cells usually contribute to detrimental issues, also known as immune-related adverse effects (IrAE). IrAEs have been observed in multiple organs, leading to neurological issues, colitis, endocrine dysfunction, renal issues, hepatitis, pneumonitis, and dermatitis. The interplay between hyperactivated T cells and Treg cells helps in orchestrating the development of autoimmunity. Moreover, the crosstalk between proinflammatory interleukins and the development of autoantibodies also mediates the multiorgan effects of ICIs in cancer patients. IrAEs are generally managed by terminating the ICI therapy, reducing the ICI dose, and by using corticosteroids to subvert inflammation. Therefore, the present review aims to delineate the impacts of ICIs on the development of autoimmune diseases and inflammatory outcomes in cancer patients. In addition, mechanistic insight involving immune cells, cytokines, and autoantibodies for ICI-mediated IrAEs will also be discussed with updated findings in this field.
Collapse
Affiliation(s)
- Prem Rajak
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| |
Collapse
|
4
|
Mei Y, Zhu J, Shao J, Li L, Liu F, Sha X, Yang Y, Shen J, Li R, Liu B. Engineered Mycobacterium smegmatis expressing anti-PD-L1/IL-15 immunocytokine induces and activates specific antitumor immunity. J Immunother Cancer 2025; 13:e010118. [PMID: 40404207 PMCID: PMC12097051 DOI: 10.1136/jitc-2024-010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 05/03/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors and cytokines have revolutionized tumor treatment but are still limited by dose-dependent toxicity and efficacy. In situ vaccine platforms based on intelligent microbes are promising therapeutic strategies that sustainably deliver drugs locally without causing severe systemic risks. METHODS In this study, we have innovatively engineered a non-pathogenic, adjuvant-acting Mycobacterium smegmatis (M. smegmatis) that co-expresses a programmed cell death-ligand 1 (PD-L1) inhibitor and an interleukin-15 (IL-15) cytokine complex containing the interleukin-15 receptor alpha (IL-15Rα) sushi domain (Ms-PDL1scfv-IL15). RESULTS We demonstrate that the fusion protein of PD-L1 inhibitor and IL-15 cytokine systemically binds mouse or human PD-L1 and maintains IL-15 stimulatory activity. The bifunctional Ms-PDL1scfv-IL15 overcomes resistance to PD-L1 blockade, recruits numerous immune cells in situ, induces dendritic cells (DCs) maturation, initiates the M1 antitumor polarization of macrophages, increases the proliferation and activation of natural killer cells and tumor-infiltrating CD8+ T cells, inhibits regulatory T cells, elicits abscopal effects, stimulates rapid tumor regression, prevents metastasis, and leads to long-term survival in several syngeneic tumor mouse models. We also found that the combination of Ms-PDL1scfv-IL15 with granulocyte-macrophage colony-stimulating factor (GM-CSF) synergistically stunted the tumor progress and stasis. Moreover, intratumoral administration of Ms-PDL1scfv-IL15 can capture tumor antigen fragments, and boost DCs presentation of antigens, which remarkably initiates tumor antigen-specific immune response, leading to durable tumor regression and specific antitumor immunity. CONCLUSION In summary, the engineered M. smegmatis can recruit and activate innate and adaptive antitumor immune responses, offering a potent cancer immunotherapy strategy to treat patients with cold tumors or resistance to checkpoint blockade.
Collapse
Affiliation(s)
- Yi Mei
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Junmeng Zhu
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Jie Shao
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- Nanjing University of Chinese Medicine Drum Tower Clinical College, Nanjing, Jiangsu, China
| | - Lin Li
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Fangcen Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaoxuan Sha
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yang Yang
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Jie Shen
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Rutian Li
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Baorui Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
He M, Xie W, Yuan Z, Chen J, Wang J, Fu Y, Hu Z, Meng Q, Gao W, Hu D, Zhang Y, Pan Y, Zhou Z. Comparing PD-L1 and PD-1 inhibitors plus bevacizumab combined with hepatic arterial interventional therapies in unresetable hepatocellular carcinoma: A single-center, real-world study. Int J Cancer 2025; 156:1972-1985. [PMID: 39834172 DOI: 10.1002/ijc.35341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
With the rise of anti-vascular endothelial growth factor antibody and programmed cell death-ligand 1 (PD-L1) regimens, particularly bevacizumab and atezolizumab, as first-line treatments for advanced hepatocellular carcinoma (HCC), there is a need to explore PD-L1 and programmed cell death 1 inhibitors in combination therapies for unresectable HCC (uHCC). Integrating systemic therapies with locoregional approaches is also emerging as a potent strategy. This study compares the outcomes of atezolizumab (PD-L1 inhibitor) and sintilimab (programmed cell death 1 inhibitor) with bevacizumab or its biosimilar, combined with hepatic arterial interventional therapies (HAIT) in uHCC patients. From January 2020 to September 2023, a retrospective analysis was conducted on 138 uHCC patients at Sun Yat-sen University Cancer Center. The cohort included 69 patients treated with atezolizumab with bevacizumab (Bev/Ate) and 69 with bevacizumab biosimilar with sintilimab (Bio/Sin), combined with HAIT. The propensity score matching was also employed to further explore the efficacy and safety. The median progression-free survival (mPFS) was 13.8 months for the Bev/Ate group and 10.0 months for the Bio/Sin group (p = 0.188). The Bev/Ate group showed significantly longer intrahepatic mPFS (HR 0.381; 95% confidence interval 0.176-0.824; p = .018) and higher overall response rates compared with the Bio/Sin group (60.87% vs. 31.88%, p = .001; 69.57% vs. 49.28%, p = .024) based on Response Evaluation Criteria in Solid Tumors v1.1 and modified Response Evaluation Criteria in Solid Tumors criteria. Treatment-related adverse events were similar between groups (p > .050). Combining atezolizumab or sintilimab with bevacizumab or its biosimilar alongside HAIT provided similar overall PFS in uHCC patients. However, the atezolizumab-bevacizumab combination with HAIT showed superior intrahepatic PFS and control rates, warranting further validation.
Collapse
Affiliation(s)
- Minrui He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Wa Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Imaging Diagnostic and Interventional Center, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Ze Yuan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Department of Neurosurgery/NeuroOncology, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Jinbin Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Juncheng Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Yizhen Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Zili Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Qi Meng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Department of Clinical Research, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Wenqing Gao
- Department of Oncology, Tengchong People's Hospital, Baoshan, PR China
| | - Dandan Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Yaojun Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Yangxun Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Zhongguo Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| |
Collapse
|
6
|
Mirzaei M, Mirhoseini S, Heidari MM, Khatami M. Design and Production of a Novel Anti-PD-1 Nanobody by CDR Grafting and Site-Directed Mutagenesis Approach. Mol Biotechnol 2025; 67:1843-1851. [PMID: 38736021 DOI: 10.1007/s12033-024-01162-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024]
Abstract
Programmed cell death protein-1 (PD-1) is a membrane protein expressed on the surface of activated T-cells, B-cells, natural killer cells, dendritic cells, macrophages, and monocytes. Inhibition of the PD-1/PD-L1 interaction by monoclonal antibodies (mAbs) has many therapeutic benefits and has led to a major advance in the treatment of various types of tumors. Due to the large size and immunogenicity of the antibodies (Abs), using small molecules such as nanobodies (nanobodies or VHH) is more appropriate for this purpose. In this research, the complementarity determining regions (CDR) grafting method was used to produce anti-PD-1 nanobody. For producing the grafted anti-PD-1 nanobody, CDRs from the tislelizumab mAb were grafted into the frameworks of a nanobody whose sequence is similar to the tislelizumab mAb. Also, the site-directed mutagenesis method was used to produce two mutated anti-PD-1 nanobodies which increased the affinity of grafted anti-PD-1 nanobodies. Two amino acid substitutions (Tyr97Arg and Tyr102Arg) in the VHH-CDR3 were used to improve grafted nanobody affinity and the binding capacity of the mutated nanobodies. The binding of the anti-PD-1 nanobodies and PD-1 antigen (Ag) was confirmed by Dot blot, western blot, and indirect ELISA analysis. According to the results of these in silico and in vitro studies, the binding between grafted and mutated nanobodies with PD-1 was confirmed. Also, our findings show that site-directed mutagenesis can increase the affinity of nanobodies.
Collapse
|
7
|
A N, Zou F, Chen M, Liu M, Zhang H, Cheng S, Liu Y. FAM72 family members serves as prognostic biomarker in liver hepatocellular carcinoma. Pathol Res Pract 2025; 269:155893. [PMID: 40081285 DOI: 10.1016/j.prp.2025.155893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/14/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Liver hepatocellular carcinoma (LIHC) is a common cancer with poor prognosis. The FAM72 gene family enhances neuronal self-renewal, potentially increasing tumor formation, but its functional and predictive relevance in LIHC remains unclear. We sought to investigate the function of the FAM72 gene family in LIHC in the present study. METHODS We acquired TCGA-LIHC expression and phenotypic data as well as extensive clinicopathologic information from the UCSC Xena Database (https://xenabrowser.net/datapages/) database. We analyzed the association between FAM72 gene family expression in LIHC and patient prognosis and immune infiltration; Genomic and functional enrichment analysis for FAM72 genes was analyzed. Finally, Western blot method, quantitative real-time polymerase chain reaction and CCK8 detection and cell invasion experiments were used to verify the effect of FAM72A expression on LIHC. RESULTS The expression of FAM72 gene family is different between LIHC and normal liver tissues. The expression of FAM72 gene family increased with increasing grading of LIHC tissues. The expression of FAM72 gene family was significantly reduced in LIHC stage IV. LIHC tissues expressed significantly more FAM72 genes than did normal tissues at the T stage (p < 0.001,). which has a good value in the diagnosis of LIHC (AUC greater than 0.85), and was strongly linked with the tumor stage in LIHC. Based on Cox analysis of univariate data, the FAM72 gene family was associated with poor overall survival (OS) in patients with LIHC. Analysis of multifactorial Cox data revealed an independent relationship between FAM72 expression and OS. Increased FAM72 gene expression is associated with poor survival rates and immune cell infiltration. Methylation levels were associated with the prognosis of patients with LIHC. Ultimately, our findings revealed that FAM72A is abundantly expressed in LIHC cells, facilitating proliferation and metastasis. CONCLUSION These findings indicate that the FAM72 gene family is a potential molecular marker for poor prognosis in LIHC, providing additional insights into the development of therapeutic approaches and prognostic markers.
Collapse
Affiliation(s)
- Naer A
- Thyroid and Breast Surgery Department, Shenzhen Bao'an District Songgang People's Hospital, No.2 Shajiang Road, Shenzhen, Guangdong, China
| | - Feilong Zou
- Thyroid and Breast Surgery Department, Shenzhen Bao'an District Songgang People's Hospital, No.2 Shajiang Road, Shenzhen, Guangdong, China
| | - Meiyan Chen
- Thyroid and Breast Surgery Department, Shenzhen Bao'an District Songgang People's Hospital, No.2 Shajiang Road, Shenzhen, Guangdong, China
| | - Meiling Liu
- Thyroid and Breast Surgery Department, Shenzhen Bao'an District Songgang People's Hospital, No.2 Shajiang Road, Shenzhen, Guangdong, China
| | - Huishan Zhang
- Thyroid and Breast Surgery Department, Shenzhen Bao'an District Songgang People's Hospital, No.2 Shajiang Road, Shenzhen, Guangdong, China
| | - Shaohua Cheng
- Thyroid and Breast Surgery Department, Shenzhen Bao'an District Songgang People's Hospital, No.2 Shajiang Road, Shenzhen, Guangdong, China.
| | - Yunhong Liu
- Thyroid and Breast Surgery Department, Shenzhen Bao'an District Songgang People's Hospital, No.2 Shajiang Road, Shenzhen, Guangdong, China.
| |
Collapse
|
8
|
Cai W, Fan T, Xiao C, Deng Z, Liu Y, Li C, He J. Neutrophils in cancer: At the crucial crossroads of anti-tumor and pro-tumor. Cancer Commun (Lond) 2025. [PMID: 40296668 DOI: 10.1002/cac2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Neutrophils are important components of the immune system and play a key role in defending against pathogenic infections and responding to inflammatory cues, including cancer. Their dysregulation indicates potential disease risk factors. However, their functional importance in disease progression has often been underestimated due to their short half-life, especially as there is limited information on the role of intratumoral neutrophils. Recent studies on their prominent role in cancer have led to a paradigm shift in our understanding of the functional diversity of neutrophils. These studies highlight that neutrophils have emerged as key components of the tumor microenvironment, where they can play a dual role in promoting and suppressing cancer. Moreover, several approaches to therapeutically target neutrophils have emerged, and clinical trials are investigating their efficacy. In this review, we discussed the involvement of neutrophils in cancer initiation and progression. We summarized recent advances in therapeutic strategies targeting neutrophils and, most importantly, suggested future research directions that could facilitate the manipulation of neutrophils for therapeutic purposes in cancer patients.
Collapse
Affiliation(s)
- Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
9
|
Wang JM, Zhang FH, Xie HY, Liu ZX, Tang YJ, Shu X, Wu YQ, Lu DH, Sun JZ, Ying YF, Ma XY, Zheng XY, Wang X, Liu B, Li JF, Xie LP, Luo JD. KIF26B promotes bladder cancer progression via activating Wnt/β-catenin signaling in a TRAF2-dependent pathway. Cell Rep 2025; 44:115595. [PMID: 40253697 DOI: 10.1016/j.celrep.2025.115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/18/2025] [Accepted: 03/30/2025] [Indexed: 04/22/2025] Open
Abstract
In this study, we report that KIF26B is upregulated in bladder cancer and acts as an independent prognostic factor. Knockdown of kif26b blocks the proliferation, metastasis, and cisplatin resistance of bladder cancer cells. Mechanistically, TCF4 potently stimulates kif26b transcription by directly binding to its promoter. KIF26B activates the Wnt/β-catenin signaling pathway through association with TRAF2 and thus promotes the formation of the TCF4/β-catenin complex. KIF26B promotes the protein stability of TRAF2 by facilitating the OTUB2-mediated de-ubiquitination of TRAF2. Importantly, KIF26B promotes the nuclear translocation of TRAF2 through enhancing its association with IPO11, a process that is dependent on the C-terminal domain of β-catenin. Additionally, phosphorylation of tyrosine 78 in TRAF2 is essential for its binding to KIF26B in response to Wnt3a signaling. Furthermore, a KIF26B/TRAF2/PD-L1 axis is identified in bladder cancer, and combined therapy of anti-B7-H3 antibody with kif26b knockdown yields superior anti-tumor effects.
Collapse
Affiliation(s)
- Jia-Ming Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Feng-Hao Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Hai-Yun Xie
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Zi-Xiang Liu
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, P.R. China
| | - Yi-Jie Tang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xuan Shu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Yu-Qing Wu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Ding-Heng Lu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Jia-Zhu Sun
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Yu-Fan Ying
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xue-You Ma
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xiang-Yi Zheng
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xiao Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Ben Liu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Jiang-Feng Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.
| | - Li-Ping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.
| | - Jin-Dan Luo
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.
| |
Collapse
|
10
|
Hu H, Zhan X, Xiong Y, Yuan R, Du Y, Dong Q, Li S, Guo B, Li Z, Feng J, Xiong S, Xiong J, Li D, Fu B, Xu S, Guo J. Non-classic deubiquitinase USP13 inhibits bladder cancer metastasis through destabilizing cytoplasmic KDM3A. Oncogene 2025:10.1038/s41388-025-03410-3. [PMID: 40253486 DOI: 10.1038/s41388-025-03410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
Bladder cancer (BLCa) metastasis is a predominant cause of death for bladder cancer patients. Histone demethylase KDM3A specifically removes the repressive mono- or di-methyl marks from H3K9 and thus contributes to the activation of gene transcription. However, the underlying mechanisms of KDM3A in bladder cancer are poorly understood. Here, we report that high levels of KDM3A are associated with bladder cancer clinical progression. KDM3A silencing inhibits bladder cancer cell growth, cell migration and invasion in vitro and in vivo. Mechanistically, we identify that non-classic deubiquitinase USP13 interacts with KDM3A to promote its degradation in cytoplasm via the proteasome-specific pathway. USP13 was significantly down-regulated in bladder cancer tissues and negatively associated with KDM3A expression. Furthermore, we show in bladder injected-liver metastasis xenograft model that USP13 inhibits bladder cancer metastasis through destabilizing cytoplasmic KDM3A. Collectively, our findings identify KDM3A is an important regulator of bladder cancer cell growth and metastasis and targeting USP13/KDM3A complex could be a valuable strategy to ameliorate bladder cancer progression and metastasis.
Collapse
Affiliation(s)
- Hongji Hu
- Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiangpeng Zhan
- Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yunqiang Xiong
- Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ruize Yuan
- Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuanzhuo Du
- Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qianxi Dong
- Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Sheng Li
- Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Biao Guo
- Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhongqi Li
- Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Feng
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Situ Xiong
- Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jing Xiong
- Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Dongshui Li
- Department of Andrology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Bin Fu
- Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Songhui Xu
- Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Ju Guo
- Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
11
|
Xu C, Wei H, Wang Y, Ma X, Li Q, Bi Y, Li Z, Li Z, Zhu S, Tian J, Quan C, Qi S. The role of adherent-to-suspension transition factors in clear cell renal cell carcinoma progression: a comprehensive analysis. Sci Rep 2025; 15:13618. [PMID: 40253446 PMCID: PMC12009395 DOI: 10.1038/s41598-025-96807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 03/31/2025] [Indexed: 04/21/2025] Open
Abstract
Recent studies have identified a biological process called adherent-to-suspension transition (AST) as a key factor in promoting metastasis. The involvement of AST in the progression of clear cell renal cell carcinoma (ccRCC) remains largely unexplored. We comprehensively investigated the overall landscape of all 20 AST factors at the pan-cancer level. The risk stratification method and the prognostic model based on AST factors were established with consensus clustering analysis and LASSO regression algorithm. The potential molecular mechanism of AST was further investigated by multi-omics analysis and cell experiments. We found that AST factors play distinct roles in different cancer types. Consequently, we utilized AST factors to develop a risk stratification method and a prognostic model, which can effectively guide the treatment of ccRCC patients. We proposed that the promotion of AST is facilitated by SPIB through the SAA1-AKT pathway, enhancing the likelihood of ccRCC metastasis, and conducted rigorous analyses using multi-omics data and cellular experiments. Our study presents a novel risk stratification method and prognostic model for ccRCC. And we identified the SPIB-SAA1-AKT pathway as one of the potential mechanisms by which AST factors promote ccRCC metastasis.
Collapse
Affiliation(s)
- Chenglong Xu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haotian Wei
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yue Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaocheng Ma
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qi Li
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yingjie Bi
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zifei Li
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhaochen Li
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shimiao Zhu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jing Tian
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Changyi Quan
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Shiyong Qi
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
12
|
Tian Y, Yang Y, He L, Yu X, Zhou H, Wang J. Exploring the tumor microenvironment of breast cancer to develop a prognostic model and predict immunotherapy responses. Sci Rep 2025; 15:12569. [PMID: 40221624 PMCID: PMC11993623 DOI: 10.1038/s41598-025-97784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/07/2025] [Indexed: 04/14/2025] Open
Abstract
Breast cancer is the most prevalent malignancy in women and exhibits significant heterogeneity. The tumor microenvironment (TME) plays a critical role in tumorigenesis, progression, and response to therapy. However, its impact on the prognosis and immunotherapy responses is incompletely understood. Using public databases, we conducted a comprehensive investigation of transcriptome and single-cell sequencing data. After performing immune infiltration analysis, we conducted consensus clustering, weighted gene co-expression network analysis (WGCNA), Cox regression, and least absolute shrinkage and selection operator (Lasso) regression to identify independent prognostic genes in breast cancer. Subsequently, we developed a prognostic model for patients with breast cancer. Tumor Immune Dysfunction and Exclusion (TIDE) values were used to assess patient's responsiveness to breast cancer. Based on single-cell RNA-sequencing data, we identified various cell types through cluster analysis and investigated the expression of prognostic model genes in each cell type. The drug sensitivity of targeted therapeutic agents for breast cancer treatment was analyzed in different cell types. We identified 12 independent prognostic genes associated with breast cancer and used these genes to construct a prognostic model. The prognostic model accurately discriminated between patients classified as high- and low-risk, providing precise prognostic predictions for individual patients. Additionally, our model exhibited a robust capacity to predict the immunotherapeutic response in breast cancer patients. Our investigation revealed a notable association between the proportion of endothelial cells (ECs) and patient prognosis in breast cancer. A prognostic model for breast cancer was formulated that showed close associations between prognosis and response to immunotherapy. For patients predicted by our model to not respond effectively to immunotherapeutic agents, it may be considered to combine immunotherapeutic agents with targeted therapeutic agents identified through our drug sensitivity analysis, which could potentially enhance treatment efficacy.
Collapse
Affiliation(s)
- Ye Tian
- Department of Thyroid and Breast Surgery, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Thyroid and Breast Surgery, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei He
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaocheng Yu
- Department of Thyroid and Breast Surgery, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Zhou
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Wang
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Xu L, Ma X, Yang Y, Ding Z, Luo Y. Successful treatment of an elderly patient with lung squamous cell carcinoma by tislelizumab and chemotherapy: a case report with novel imaging findings. Front Immunol 2025; 16:1543114. [PMID: 40196110 PMCID: PMC11973309 DOI: 10.3389/fimmu.2025.1543114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
The advent of immunotherapy has transformed the therapeutic landscape for inoperable, locally advanced Non-Small cell lung cancer (NSCLC), particularly for lung squamous cell carcinoma (LUSC) with a predominance of negative driver genes. Based on the results of clinical trials such as KEYNOTE-042 and KEYNOTE-407, PD-1/PD-L1 inhibitors are now recognized as the standard of care for first-line or second-line treatment in many countries. Among the 17 immune checkpoint inhibitors sanctioned in China, tislelizumab, a domestically developed PD-1 inhibitor, enjoys broad application. Here, we present a case of a patient with LUSC who attained complete remission by cyst formation with the combination of tislelizumab and chemotherapy. Despite the absence of expression data for this patient, imaging studies revealed a reduction in the primary lesion size and the emergence of an uncommon cystic alteration post-treatment with sequential immunochemotherapy and tislelizumab monotherapy. As per the most recent follow-up, the lesion has vanished entirely. This outcome holds significant implications for the treatment of driver gene-negative LUSC by tislelizumab.
Collapse
Affiliation(s)
- Lufan Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinxin Ma
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Yang
- Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Zhiqiang Ding
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Luo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Al-Nakhle H, Al-Shahrani R, Al-Ahmadi J, Al-Madani W, Al-Juhani R. Integrative In Silico Analysis to Identify Functional and Structural Impacts of nsSNPs on Programmed Cell Death Protein 1 (PD-1) Protein and UTRs: Potential Biomarkers for Cancer Susceptibility. Genes (Basel) 2025; 16:307. [PMID: 40149458 PMCID: PMC11942535 DOI: 10.3390/genes16030307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Programmed cell death protein 1 (PD-1), encoded by the PDCD1 gene, is critical in immune checkpoint regulation and cancer immune evasion. Variants in PDCD1 may alter its function, impacting cancer susceptibility and disease progression. Objectives: This study evaluates the structural, functional, and regulatory impacts of non-synonymous single-nucleotide polymorphisms (nsSNPs) in the PDCD1 gene, focusing on their pathogenic and oncogenic roles. Methods: Computational tools, including PredictSNP1.0, I-Mutant2.0, MUpro, HOPE, MutPred2, Cscape, Cscape-Somatic, GEPIA2, cBioPortal, and STRING, were used to analyze 695 nsSNPs in the PD1 protein. The analysis covered structural impacts, stability changes, regulatory effects, and oncogenic potential, focusing on conserved domains and protein-ligand interactions. Results: The analysis identified 84 deleterious variants, with 45 mapped to conserved regions like the Ig V-set domain essential for ligand-binding interactions. Stability analyses identified 78 destabilizing variants with significant protein instability (ΔΔG values). Ten nsSNPs were identified as potential cancer drivers. Expression profiling showed differential PDCD1 expression in tumor versus normal tissues, correlating with improved survival in skin melanoma but limited value in ovarian cancer. Regulatory SNPs disrupted miRNA-binding sites and transcriptional regulation, affecting PDCD1 expression. STRING analysis revealed key PD-1 protein partners within immune pathways, including PD-L1 and PD-L2. Conclusions: This study highlights the significance of PDCD1 nsSNPs as potential biomarkers for cancer susceptibility, advancing the understanding of PD-1 regulation. Experimental validation and multi-omics integration are crucial to refine these findings and enhance theraputic strategies.
Collapse
Affiliation(s)
- Hakeemah Al-Nakhle
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Monawarah 42353, Saudi Arabia
| | | | | | | | | |
Collapse
|
15
|
Cao X, Wan S, Wu B, Liu Z, Xu L, Ding Y, Huang H. Antitumor Research Based on Drug Delivery Carriers: Reversing the Polarization of Tumor-Associated Macrophages. Mol Pharm 2025; 22:1174-1197. [PMID: 39868820 DOI: 10.1021/acs.molpharmaceut.4c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The development of malignant tumors is a complex process that involves the tumor microenvironment (TME). An immunosuppressive TME presents significant challenges to current cancer therapies, serving as a key mechanism through which tumor cells evade immune detection and play a crucial role in tumor progression and metastasis. This impedes the optimal effectiveness of immunotherapeutic approaches, including cytokines, immune checkpoint inhibitors, and cancer vaccines. Tumor-associated macrophages (TAMs), a major component of tumor-infiltrating immune cells, exhibit dual functionalities: M1-like TAMs suppress tumorigenesis, while M2-like TAMs promote tumor growth and metastasis. Consequently, the development of various nanocarriers aimed at polarizing M2-like TAMs to M1-like phenotypes through distinct mechanisms has emerged as a promising therapeutic strategy to inhibit tumor immune escape and enhance antitumor responses. This Review covers the origin and types of TAMs, common pathways regulating macrophage polarization, the role of TAMs in tumor progression, and therapeutic strategies targeting TAMs, aiming to provide a comprehensive understanding and guidance for future research and clinical applications.
Collapse
Affiliation(s)
- Xinyu Cao
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shen Wan
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Bingyu Wu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Zhikuan Liu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Lixing Xu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yu Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Haiqin Huang
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| |
Collapse
|
16
|
Zhang YJN, Xiao Y, Li ZZ, Bu LL. Immunometabolism in head and neck squamous cell carcinoma: Hope and challenge. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167629. [PMID: 39689765 DOI: 10.1016/j.bbadis.2024.167629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
Immunotherapy has improved the survival rate of patients with head and neck squamous cell carcinoma (HNSCC), but less than 20 % of them have a durable response to these treatments. Excessive local recurrence and lymph node metastasis ultimately lead to death, making the 5-year survival rate of HNSCC still not optimistic. Cell metabolism has become a key determinant of the viability and function of cancer cells and immune cells. In order to maintain the enormous anabolic demand, tumor cells choose a specialized metabolism different from non-transformed somatic cells, leading to changes in the tumor microenvironment (TME). In recent years, our understanding of immune cell metabolism and cancer cell metabolism has gradually increased, and we have begun to explore the interaction between cancer cell metabolism and immune cell metabolism in a way which is meaningful for treatment. Understanding the different metabolic requirements of different cells that constitute the immune response to HNSCC is beneficial for revealing metabolic heterogeneity and plasticity, thereby enhancing the effect of immunotherapy. In this review, we have concluded that the relevant metabolic processes that affect the function of immune cells in HNSCC TME and proposed our own opinions and prospects on how to use metabolic intervention to enhance anti-tumor immune responses.
Collapse
Affiliation(s)
- Yi-Jia-Ning Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
17
|
Zhao L, Zhang Y, Wang J, Li D, Hao X. UBE2I depletion regulated tumor-associated macrophage polarization into M1 type through reprogramming glycolysis and increases immunotherapy efficacy of anti-PD-L1 in ovarian cancer. Mol Immunol 2025; 179:29-41. [PMID: 39919348 DOI: 10.1016/j.molimm.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/09/2025]
Abstract
There is ample evidence that ubiquitin-conjugating enzyme E2I (UBE2I) is involved in progression of diverse cancers. However, the influence of UBE2I on ovarian cancer (OC) has been poorly reported. This study tries to discover the mechanisms and functions of UBE2I in OC. Relative mRNA expression of UBE2I, CD86, iNOS, MHC II and programmed death ligand 1 (PD-L1) was detected through qRT-PCR. We identified UBE2I, Vimentin, E-Cadherin, N-Cadherin and Ki67 protein expression levels in tumor tissues through immunohistochemistry staining. Protein levels of UBE2I, cleaved caspase-3, cleaved PARP, E-cadherin, N-cadherin and Vimentin were detected through western blot. Cell viability, invasion, and migration were examined by means of cell counting kit-8 (CCK-8), transwell, and wound healing assays. Immunofluorescence was used to detect colocalization between UBE2I and CD68. We assessed expression levels of IFN-γ and TNF-α via flow cytometry and ELISA. We used the TUNEL assay to assess tumor cell apoptosis. Glycolysis was assessed through the consumption of glucose, ATP production, production of lactate, and extracellular acidification rate. For establishing a xenograft model, OC cells were subcutaneously injected into mice. UBE2I expression was boosted in OC cells and tissues, which was negatively associated with OC patients' prognosis. Silencing of UBE2I suppressed OC cell proliferation, invasion, EMT (epithelial-to-mesenchymal transition) and migration. UBE2I inhibition promoted macrophages toward the M1 phenotype and macrophage viability. After deletion of UBE2I in vivo, mice tumor growth and EMT were suppressed, and apoptosis of tumor cells was increased. Meantime, an increasing proportion of CD86+ TAMs (tumor-associated macrophages) was observed after the deletion of UBE2I. Besides, increases in consumption of glucose, lactate production, ATP production and ECAR in THP-1 cells were observed by silencing of UBE2I; however, glycolysis inhibitor reversed UBE2I-mediated polarization of M1 macrophages in a dose-dependent fashion. Importantly, UBE2I-mediated M1 macrophages promoted PD-L1 expression. Furthermore, the combinatorial therapy of UBE2I inhibitor plus anti-PD-1 repressed tumor growth, reduced Ki67 expression, and promoted apoptosis in tumor cells, exhibiting higher efficiency than UBE2I inhibitor/anti-PD-L1 alone. UBE2I inhibition regulated polarization of M1 macrophages via glycolysis and improved anti-PD-L1 immunotherapy efficacy, paving a novel avenue to prevent OC development.
Collapse
Affiliation(s)
- Lei Zhao
- College of Medical Laboratory Science and Technology, Harbin Medical University at Daqing, Daqing, Heilongjiang 163319, China.
| | - Yuxin Zhang
- College of Medical Laboratory Science and Technology, Harbin Medical University at Daqing, Daqing, Heilongjiang 163319, China
| | - Jinming Wang
- College of Medical Laboratory Science and Technology, Harbin Medical University at Daqing, Daqing, Heilongjiang 163319, China
| | - Dongliang Li
- College of Medical Laboratory Science and Technology, Harbin Medical University at Daqing, Daqing, Heilongjiang 163319, China
| | - Xuewei Hao
- College of Medical Laboratory Science and Technology, Harbin Medical University at Daqing, Daqing, Heilongjiang 163319, China
| |
Collapse
|
18
|
Liu Z, Wang Z, Zhu J, Tao H, Huang Z, Han L, Patel AJ, Hu Y. Comparative outcomes of first-line PD-1/PD-L1 inhibitors plus chemotherapy for advanced squamous non-small cell lung cancer: a systematic review and network meta-analysis of randomized clinical trials. Transl Lung Cancer Res 2025; 14:563-574. [PMID: 40114962 PMCID: PMC11921199 DOI: 10.21037/tlcr-2025-83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
Background Head-to-head comparisons between the available first-line regimens with programmed cell death-1/programmed death-ligand 1 (PD-1/PD-L1) inhibitors and chemotherapy for advanced squamous non-small cell lung cancer (NSCLC) are lacking. Therefore, we conducted a systematic review and network meta-analysis to identify the optimal first-line regimen with PD-1/PD-L1 inhibitors plus chemotherapy for advanced squamous NSCLC. Methods A systematic review and network meta-analysis of randomized clinical trials (RCTs) were performed. PubMed, Embase, Web of Science, and the ClinicalTrials.gov databases and major annual conferences were searched. RCTs that compared PD-1/PD-L1 inhibitors plus chemotherapy with chemotherapy alone in patients with advanced squamous NSCLC were eligible for inclusion. Risk of bias was assessed using the Cochrane Risk of Bias Tool (version 2.0), and a funnel plot was used to assess the publication bias. Results A total of nine RCTs comprising 3,210 patients were included. When combined with chemotherapy, PD-1 inhibitors were superior to PD-L1 inhibitors in terms of overall survival (OS) [PD-1: hazard ratio (HR) 0.70, 95% credible interval (CrI): 0.62 to 0.79; PD-L1: HR 0.82, 95% CrI: 0.71 to 0.94] and progression-free survival (PFS) (PD-1: HR 0.50, 95% CrI: 0.45 to 0.55; PD-L1: HR 0.63, 95% CrI: 0.55 to 0.72). Moreover, the PD-1 inhibitor camrelizumab was the most effective agent in combined therapy for prolonging OS (HR 0.56, 95% CrI: 0.44 to 0.71) and PFS (HR 0.32, 95% CrI: 0.25 to 0.42), followed by the PD-L1 inhibitor sugemalimab (OS: HR 0.61, 95% CrI: 0.43 to 0.86; PFS: HR 0.37, 95% CrI: 0.26 to 0.52). Moreover, the addition of camrelizumab or tislelizumab to chemotherapy was associated with the improved objective response rate (ORR) and a longer duration of response (DoR). Regarding safety, pembrolizumab and camrelizumab were associated with the lowest risk of developing grade 3-5 treatment-related adverse events (TRAEs). Most of the trials were at low risk for bias, and no obvious publication bias was observed in the outcomes. Conclusions When combined with first-line chemotherapy, camrelizumab has the potential to be a preferred option in patients with advanced squamous NSCLC. This finding might serve as a guideline to aid in the selection of first-line immunotherapy plus chemotherapy strategies for advanced squamous NSCLC.
Collapse
Affiliation(s)
- Zhefeng Liu
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhikuan Wang
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jun Zhu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Nanjing, China
| | - Haitao Tao
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ziwei Huang
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Lu Han
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Akshay J Patel
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Yi Hu
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
19
|
Zielińska MK, Ciążyńska M, Sulejczak D, Rutkowski P, Czarnecka AM. Mechanisms of Resistance to Anti-PD-1 Immunotherapy in Melanoma and Strategies to Overcome It. Biomolecules 2025; 15:269. [PMID: 40001572 PMCID: PMC11853485 DOI: 10.3390/biom15020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 02/27/2025] Open
Abstract
Resistance to anti-PD-1 therapy in melanoma remains a major obstacle in achieving effective and durable treatment outcomes, highlighting the need to understand and address the underlying mechanisms. The first key factor is innate anti-PD-1 resistance signature (IPRES), an expression of a group of genes associated with tumor plasticity and immune evasion. IPRES promotes epithelial-to-mesenchymal transition (EMT), increasing melanoma cells' invasiveness and survival. Overexpressed AXL, TWIST2, and WNT5a induce phenotypic changes. The upregulation of pro-inflammatory cytokines frequently coincides with EMT-related changes, further promoting a resistant and aggressive tumor phenotype. Inflamed tumor microenvironment may also drive the expression of resistance. The complexity of immune resistance development suggests that combination therapies are necessary to overcome it. Furthermore, targeting epigenetic regulation and exploring novel approaches such as miR-146a modulation may provide new strategies to counter resistance in melanoma.
Collapse
Affiliation(s)
- Magdalena K. Zielińska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
- Faculty of Medicine, Warsaw Medical University, 02-091 Warsaw, Poland
| | - Magdalena Ciążyńska
- Chemotherapy Unit and Day Chemotherapy Ward, Specialised Oncology Hospital, 97-200 Tomaszów Mazowiecki, Poland;
- Department of Dermatology, Paediatric Dermatology and Oncology Clinic, Medical University of Lodz, 91-347 Łódź, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| |
Collapse
|
20
|
Feng S, Shen Y, Zhang H, Liu W, Feng W, Chen X, Zhang L, Chen J, Lu M, Xue X, Shen X. Human cytomegalovirus tegument protein UL23 promotes gastric cancer immune evasion by facilitating PD-L1 transcription. Mol Med 2025; 31:57. [PMID: 39934685 PMCID: PMC11816993 DOI: 10.1186/s10020-025-01114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Immune checkpoint therapy targeting PD-1/PD-L1 has shown promise in treating tumors, however, its clinical benefits are limited to a subset of gastric cancer (GC) patients. Recent research has highlighted a the correlation between PD-L1 expression and the clinical efficacy of anti-PD-1/PD-L1 therapies. Human cytomegalovirus (HCMV) has been implicated in GC, but its specific role in modulating this disease remains elusive. In this study, we analyzed clinical tissue samples using bioinformatics and real-time quantitative polymerase chain reaction (RT-qPCR). We found that GC tissues infected with HCMV presented higher PD-L1 expression compared to those without virus. Furthermore, we demonstrated that HCMV infection enhances PD-L1 expression in GC cells. Cytotoxicity assays revealed that HCMV modulates cancer immune responses via the PD-1/PD-L1 pathway. Mechanistically, we showed that HCMV activates the PI3K-Akt signaling cascade and modulates PD-L1 expression through its tegument protein UL23. Functionally, increased UL23 expression leads to elevated PD-L1 levels, which diminishes tumor cell sensitivity to T-cell-mediated cytotoxicity and triggers T-cell apoptosis. Additionally, in vivo experiments revealed that UL23-induced PD-L1 upregulation inhibits CD8+ T-cell infiltration and reduces the expression of inflammatory factors in tumor microenvironment, ultimately weakening antitumor immunity. Our findings reveal a novel mechanism whereby HCMV and its tegument protein UL23 contribute to cancer immunosuppression through the regulation of PD-L1 expression. This discovery may serve as a potential therapeutic target for enhancing the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Shiyu Feng
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yitian Shen
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Haoke Zhang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wanfeng Liu
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weixu Feng
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiuting Chen
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liang Zhang
- The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiangli Chen
- Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang, China
| | - Mingdong Lu
- The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xian Shen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
21
|
Wang M, Li X, Wu Y, Wang L, Zhang X, Dai M, Long Y, Zuo D, Li S, Yin X. Loss of RPN1 promotes antitumor immunity via PD-L1 checkpoint blockade in triple-negative breast cancer - experimental studies. Int J Surg 2025; 111:1801-1813. [PMID: 39705151 DOI: 10.1097/js9.0000000000002164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/14/2024] [Indexed: 12/22/2024]
Abstract
BACKGROUND RPN1, also known as ribophorin I (RPN1), is a type I transmembrane protein that plays an important role in glycosylation. However, the effects of RPN1 on cancer progression and immune evasion in breast cancer (BC) have not been identified. MATERIALS AND METHODS The expression of RPN1 was evaluated using RT-qPCR and immunohistochemistry (IHC). The effects of RPN1 on tumor cells were assessed using RT-qPCR, western blotting, flow cytometry, Cell Counting Kit 8 (CCK-8), colony formation assays, and in vivo experiments. The mechanism by which RPN1 modifies programmed death ligand-1 (PD-L1) and the tumor microenvironment was examined by RT-qPCR, western blotting, co-immunoprecipitation (Co-IP), and flow cytometry. The influence of the transcription factor YY1 on RPN1 expression was revealed using bioinformatics analysis, RT-qPCR, and dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays. RESULTS RPN1 is aberrantly expressed in triple-negative breast cancer (TNBC) cells, correlating with increased proliferation and poor prognosis. RPN1 mediates the post-translational modification of PD-L1, enhancing its glycosylation and stability, thus facilitating PD-L1-mediated immune escape and tumor growth. The deletion of RPN1 improves the TNBC microenvironment and enhances the efficacy of anti-PD-1 therapy. Additionally, we uncovered a novel regulatory axis involving YY1/RPN1/YBX1 in PD-L1 regulation, affecting TNBC growth and metastasis. CONCLUSIONS Our preliminary study reveals that targeting RPN1 promotes immune suppression, providing a new potential immunotherapy strategy for TNBC. However, further research is necessary to fully elucidate and understand the specific mechanisms of RPN1 in TNBC and its potential for clinical application.
Collapse
Affiliation(s)
- Mengxue Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xunjia Li
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
| | - Yushen Wu
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Long Wang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Xue Zhang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Meng Dai
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Yang Long
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Deyu Zuo
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
- Department of Rehabilitation Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Shengwei Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuedong Yin
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Wu GL, Tan S, Tan X, Chen G, Yang Q. Recent advances in ferrocene-based nanomedicines for enhanced chemodynamic therapy. Theranostics 2025; 15:384-407. [PMID: 39744691 PMCID: PMC11671379 DOI: 10.7150/thno.101697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/25/2024] [Indexed: 01/11/2025] Open
Abstract
Malignant tumors have been a serious threat to human health with their increasing incidence. Difficulties with conventional treatments are toxicity, drug resistance, and recurrence. For this reason, non-invasive treatment modalities such as photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), and others have received much attention. Among them, Ferrocene (Fc)-based nanomedicines for enhanced Chemodynamic Therapy (ECDT) is a new therapeutic strategy based on the Fenton reaction. Based on ferrocene's good biocompatibility, potentiation in medicinal chemistry, and good stability of divalent iron ions, scientists are increasingly using it as a Fenton's iron donor for tumor therapy. Such ferrocene-based ECDT nanoplatforms have shown remarkable promise for clinical applications and have significantly increased the efficacy of CDT treatment. Ferrocene-based nanomedicines exhibit exceptional consistency owing to their low toxicity, high stability, enhanced bioavailability, and a multitude of advantages over conventional approaches to cancer treatment. As a consequence, a number of tactics have been investigated in recent years to raise the effectiveness of ferrocene-based ECDT. In this review, we detail the different forms and strategies used to enhance Ferrocene-based ECDT efficiency.
Collapse
Affiliation(s)
- Gui-long Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Center for Molecular Imaging Probe of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Senyou Tan
- Center for Molecular Imaging Probe of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaofeng Tan
- Center for Molecular Imaging Probe of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of general Surgery, Turpan City People's Hospital, Tulufan 838000, China
| | - Qinglai Yang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Center for Molecular Imaging Probe of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
23
|
Kaviyarasan V, Das A, Deka D, Saha B, Banerjee A, Sharma NR, Duttaroy AK, Pathak S. Advancements in immunotherapy for colorectal cancer treatment: a comprehensive review of strategies, challenges, and future prospective. Int J Colorectal Dis 2024; 40:1. [PMID: 39731596 DOI: 10.1007/s00384-024-04790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2024] [Indexed: 12/30/2024]
Abstract
PURPOSE Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Metastatic colorectal cancer (mCRC) continues to present significant challenges, particularly in patients with proficient mismatch repair/microsatellite stable (pMMR/MSS) tumors. This narrative review aims to provide recent developments in immunotherapy for CRC treatment, focusing on its efficacy and challenges. METHODS This review discussed the various immunotherapeutic strategies for CRC treatment, including immune checkpoint inhibitors (ICIs) targeting PD-1 and PD-L1, combination therapies involving ICIs with other modalities, chimeric antigen receptor T-cell (CAR-T) cell therapy, and cancer vaccines. The role of the tumor microenvironment and immune evasion mechanisms was also explored to understand their impact on the effectiveness of these therapies. RESULTS This review provides a comprehensive update of recent advancements in immunotherapy for CRC, highlighting the potential of various immunotherapeutic approaches, including immune checkpoint inhibitors, combination therapies, CAR-T therapy, and vaccination strategies. The results of checkpoint inhibitors, particularly in patients with MSI-H/dMMR tumors, which have significant improvements in survival rates have been observed. Furthermore, this review also addresses the challenges faced in treating pMMR/MSS CRC, which remains resistant to immunotherapy. CONCLUSION Immunotherapy plays a significant role in the treatment of CRC, particularly in patients with MSI-H/dMMR tumors. However, many challenges remain, especially in treating pMMR/MSS CRC. This review discussed the need for further research into combination therapies, biomarker development, CAR-T cell therapy, and a deeper understanding of immune evasion mechanisms for CRC treatment.
Collapse
Affiliation(s)
- Vaishak Kaviyarasan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Dikshita Deka
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Biki Saha
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.
| |
Collapse
|
24
|
Zhao X, Qi X, Liu D, Che X, Wu G. A Novel Approach for Bladder Cancer Treatment: Nanoparticles as a Drug Delivery System. Int J Nanomedicine 2024; 19:13461-13483. [PMID: 39713223 PMCID: PMC11662911 DOI: 10.2147/ijn.s498729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024] Open
Abstract
Bladder cancer represents one of the most prevalent malignant neoplasms of the urinary tract. In the Asian context, it represents the eighth most common cancer in males. In 2022, there were approximately 613,791 individuals diagnosed with bladder cancer worldwide. Despite the availability of efficacious treatments for the two principal forms of bladder cancer, namely non-invasive and invasive bladder cancer, the high incidence of recurrence following treatment and the suboptimal outcomes observed in patients with high-grade and advanced disease represent significant concerns in the management of bladder cancer at this juncture. Nanoparticles have gained attention for their excellent properties, including stable physical properties, a porous structure that can be loaded with a variety of substances, and so on. The in-depth research on nanoparticles has led to their emergence as a new class of nanoparticles for combination therapy, due to their advantageous properties. These include the extension of the drug release window, the enhancement of drug bioavailability, the improvement of drug targeting ability, the reduction of local and systemic toxicity, and the simultaneous delivery of multiple drugs for combination therapy. As a result, nanoparticles have become a novel agent of the drug delivery system. The advent of nanoparticles has provided a new impetus for the development of non-surgical treatments for bladder cancer, including chemotherapy, immunotherapy, gene therapy and phototherapy. The unique properties of nanoparticles have facilitated the combination of diverse non-surgical therapeutic modalities, enhancing their overall efficacy. This review examines the recent advancements in the use of nanoparticles in non-surgical bladder cancer treatments, encompassing aspects such as delivery, therapeutic efficacy, and the associated toxicity of nanoparticles, as well as the challenges encountered in clinical applications.
Collapse
Affiliation(s)
- Xinming Zhao
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| |
Collapse
|
25
|
Yi L, Pan H, Ning Z, Xu L, Zhang H, Peng L, Liu Y, Yang Y, Si W, Wang Y, Zhu X, Huang S, Meng Z, Xie J. Clinical and biomarker analyses of SHR-1701 combined with famitinib in patients with previously treated advanced biliary tract cancer or pancreatic ductal adenocarcinoma: a phase II trial. Signal Transduct Target Ther 2024; 9:347. [PMID: 39668159 PMCID: PMC11638339 DOI: 10.1038/s41392-024-02052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 12/14/2024] Open
Abstract
Advanced biliary tract cancer (BTC) and pancreatic ductal adenocarcinoma (PDAC) have poor prognoses and limited treatment options. Here, we conducted this first-in-class phase II study to evaluate the efficacy and safety of SHR-1701, a bifunctional fusion protein targeting programmed death-ligand 1 (PD-L1) and transforming growth factor-beta (TGF-β), combined with famitinib, a multi-targeted receptor tyrosine kinase inhibitor, in patients with advanced BTC or PDAC who failed previous standard treatment (trial registration: ChiCTR2000037927). Among 51 enrolled patients, the BTC cohort showed an objective response rate (ORR) of 28% (including 2 complete responses) and a disease control rate (DCR) of 80%, with a median progression-free survival (mPFS) of 5.1 months and a median overall survival (mOS) of 16.0 months. In the PDAC cohort, the ORR was 15% (2 complete responses), with a DCR of 60%, and the mPFS and mOS were 2.1 months and 5.3 months, respectively. Grade 3 or 4 treatment-related adverse events (TRAEs) occurred in 29.4% of patients, with no grade 5 TRAEs reported. Exploratory analyses revealed that primary tumor resection history, peripheral blood immunophenotype changes, and distinct immune-metabolic profiles were associated with treatment benefits. An immune/metabolism score integrating the features of six genes was developed as a predictive biomarker for immunotherapy response in multiple cohorts, allowing for the selection of patients most likely to experience positive outcomes from this therapy regimen. In conclusion, our study provides proof-of-concept data supporting the potential of SHR-1701 plus famitinib as an effective and safe subsequent-line therapy for refractory BTC and PDAC, highlighting the promise of targeting PD-L1, TGF-β, and angiogenesis pathways simultaneously.
Collapse
Affiliation(s)
- Lixia Yi
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haoqi Pan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhouyu Ning
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Litao Xu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hena Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Longfei Peng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yaowu Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yifan Yang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Waimei Si
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ying Wang
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Xiaoyan Zhu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglin Huang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jing Xie
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Montagner A, Arleo A, Suzzi F, D’Assoro AB, Piscaglia F, Gramantieri L, Giovannini C. Notch Signaling and PD-1/PD-L1 Interaction in Hepatocellular Carcinoma: Potentialities of Combined Therapies. Biomolecules 2024; 14:1581. [PMID: 39766289 PMCID: PMC11674819 DOI: 10.3390/biom14121581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Immunotherapy has shown significant improvement in the survival of patients with hepatocellular carcinoma (HCC) compared to TKIs as first-line treatment. Unfortunately, approximately 30% of HCC exhibits intrinsic resistance to ICIs, making new therapeutic combinations urgently needed. The dysregulation of the Notch signaling pathway observed in HCC can affect immune cell response, reducing the efficacy of cancer immunotherapy. Here, we provide an overview of how Notch signaling regulates immune responses and present the therapeutic rationale for combining Notch signaling inhibition with ICIs to improve HCC treatment. Moreover, we propose using exosomes as non-invasive tools to assess Notch signaling activation in hepatic cancer cells, enabling accurate stratification of patients who can benefit from combined strategies.
Collapse
Affiliation(s)
- Annapaola Montagner
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA;
| | - Andrea Arleo
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
| | - Fabrizia Suzzi
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
| | - Antonino B. D’Assoro
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA;
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Catia Giovannini
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
27
|
Park HB, An EK, Kim SJ, Ryu D, Zhang W, Pack CG, Kim H, Kwak M, Im W, Ryu JH, Lee PCW, Jin JO. Anti-PD-L1 Antibody Fragment Linked to Tumor-Targeting Lipid Nanoparticle Can Eliminate Cancer and Its Metastasis via Photoimmunotherapy. ACS NANO 2024; 18:33366-33380. [PMID: 39603816 DOI: 10.1021/acsnano.4c08448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Effective cancer therapy aims to treat primary tumors and metastatic and recurrent cancer. Immune checkpoint blockade-mediated immunotherapy has shown promising effects against tumors; however, its efficacy in metastatic or recurrent cancer is limited. Here, based on the advantages of nanomedicine, lipid nanoparticles (LNPs) that can target tumors are synthesized for photothermal therapy (PTT) and immunotherapy to treat primary and metastatic recurrent cancer. These LNPs, termed piLNPs, are encapsulated with indocyanine green and incorporated with the antigen (Ag)-binding fragment of the anti-PD-L1 antibody for targeting tumors and immunotherapy. Intravenously injected piLNPs in 4T1 breast tumor-bearing BALB/c mice effectively target the 4T1 tumor and are suitable for performing PTT using a near-infrared laser. Moreover, lung metastatic 4T1 tumor growth is completely prevented in mice previously cured of the 4T1 breast tumor by piLNP treatment and rechallenged with lung 4T1 metastatic cancer. Blockage of the second challenged metastatic 4T1 breast cancer by piLNP is due to the activation of Ag-specific T cells. Cytotoxic T lymphocytes from piLNP-cured mice selectively attack 4T1 breast cancer cells. Therefore, piLNP can be used as a multifunctional breast cancer treatment composition that can target tumors, treat primary tumors, and prevent metastasis and recurrence.
Collapse
Affiliation(s)
- Hae-Bin Park
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Eun-Koung An
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - So-Jung Kim
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Dayoung Ryu
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Chan-Gi Pack
- Department of Biomedical Engineering, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Hyuncheol Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, South Korea
| | - Minseok Kwak
- Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, South Korea
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Peter C W Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Jun-O Jin
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| |
Collapse
|
28
|
Yang F. The integration of radiotherapy with systemic therapy in advanced triple-negative breast cancer. Crit Rev Oncol Hematol 2024; 204:104546. [PMID: 39476993 DOI: 10.1016/j.critrevonc.2024.104546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with high aggressiveness and poor prognosis. For patients who have undergone multiple treatments, systemic drug therapy often presents challenges with limited efficacy and significant side effects. Radiotherapy, a pivotal local treatment, has shown substantial local control benefits in patients with inoperable locally advanced or metastatic disease. Clinical evidence suggests that integrating systemic therapy with locoregional radiotherapy can confer survival advantages in advanced malignancies. Within multidisciplinary treatment, the synergy between radiotherapy and systemic therapies shows promise for enhancing outcomes and extending survival. This review synthesizes recent advances in combining radiotherapy and systemic therapy in managing advanced TNBC, focusing on preclinical and clinical evidence regarding efficacy and safety. By reviewing these advancements, we aim to identify novel therapeutic strategies and integrate clinical evidence to inform best practices in TNBC management, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Fang Yang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
29
|
Wang ZM, Li MK, Yang QL, Duan SX, Lou XY, Yang XY, Liu Y, Zhong YW, Qiao Y, Wang ZS, Sun L, Qian F. Recombinant human adenovirus type 5 promotes anti-tumor immunity via inducing pyroptosis in tumor endothelial cells. Acta Pharmacol Sin 2024; 45:2646-2656. [PMID: 39030309 PMCID: PMC11579340 DOI: 10.1038/s41401-024-01349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/28/2024] [Indexed: 07/21/2024]
Abstract
Recombinant human type 5 adenovirus (H101) is an oncolytic virus used to treat nasopharyngeal carcinoma. Owing to the deletion of the E1B-55kD and E3 regions, H101 is believed to selectively inhibit nasopharyngeal carcinoma. Whether H101 inhibits other type of tumors via different mechanisms remains unclear. In this study we investigated the effects of H101 on melanomas. We established B16F10 melanoma xenograft mouse model, and treated the mice with H101 (1 × 108 TCID50) via intratumoral injection for five consecutive days. We found that H101 treatment significantly inhibited B16F10 melanoma growth in the mice. H101 treatment significantly increased the infiltration of CD8+ T cells and reduced the proportion of M2-type macrophages. We demonstrated that H101 exhibited low cytotoxicity against B16F10 cells, but the endothelial cells were more sensitive to H101 treatment. H101 induced endothelial cell pyroptosis in a caspase-1/GSDMD-dependent manner. Furthermore, we showed that the combination of H101 with the immune checkpoint inhibitor PD-L1 antibody (10 mg/kg, i.p., every three days for three times) exerted synergic suppression on B16F10 tumor growth in the mice. This study demonstrates that, in addition to oncolysis, H101 inhibits melanoma growth by promoting anti-tumor immunity and inducing pyroptosis of vascular endothelial cells.
Collapse
Affiliation(s)
- Zhi-Ming Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Meng-Kai Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qing-Ling Yang
- Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, Bengbu, 233030, China
| | - Shi-Xin Duan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin-Yi Lou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin-Yi Yang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Liu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-Wen Zhong
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Qiao
- Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, Bengbu, 233030, China
| | - Zi-Shu Wang
- Department of Medical Oncology, Anhui Province Key Laboratory of Translational Cancer Research, First Affiliated Hospital of Bengbu Medical College, Bengbu Medical University, Bengbu, 233004, China.
| | - Lei Sun
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Feng Qian
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
30
|
Xiong X, Zhang Y, Huang X, Zhang S, Li Q. Generating Immunological Memory Against Cancer by Camouflaging Gold-Based Photothermal Nanoparticles in NIR-II Biowindow for Mimicking T-Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407038. [PMID: 39394989 DOI: 10.1002/smll.202407038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Indexed: 10/14/2024]
Abstract
Photothermal therapy (PTT) against cancer not only directly ablates tumors but also induces tumor immunogenic cell death (ICD). However, the antitumor immune response elicited by ICD is insufficient to prevent relapse and metastasis because of the immunosuppressive tumor microenvironment (TME). A biomimetic nanoplatform (bmNP) mimicking cytotoxic lymphocytes (CTLs) for combinational photothermal-immunotherapy to effectively regulate the immunosuppressive TME is reported here. The bmNP is constructed by wrapping the T-cell membrane onto a new type of photothermal agents, spherical Au-based PNCs (sAuPNCs). Similar to T-cells, the bmNP enhanced accumulation at the tumor site by targeting the tumor via adhesion proteins on T-cell membrane. The obtained sAuPNCs have a wide absorption band in the second near-infrared (NIR-II) region with a high photothermal conversion efficiency (PCE) up to about 75% and excellent photostability. The bmNP with a smaller size is more superior compete with T-cells to bond with tumor cells via PD-1/PD-L1 interaction to effectively block the PD-1 checkpoint of T-cells for preventing T-cell exhaustion. Furthermore, in vivo studies reveal the immunological memory effect is significantly elicited in mice received bmNPs therapy. Collectively, bmNPs show great potential in photothermal-enhanced immunotherapy.
Collapse
Affiliation(s)
- Xuefan Xiong
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, P. R. China
| | - Ying Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, P. R. China
| | - Xinqi Huang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, P. R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| | - Qiong Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| |
Collapse
|
31
|
Feng S, Zhang Y, Wang Y, Gao Y, Song Y. Harnessing Gene Editing Technology for Tumor Microenvironment Modulation: An Emerging Anticancer Strategy. Chemistry 2024; 30:e202402485. [PMID: 39225329 DOI: 10.1002/chem.202402485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Cancer is a multifaceted disease influenced by both intrinsic cellular traits and extrinsic factors, with the tumor microenvironment (TME) being crucial for cancer progression. To satisfy their high proliferation and aggressiveness, cancer cells always plunder large amounts of nutrients and release various signals to their surroundings, forming a dynamic TME with special metabolic, immune, microbial and physical characteristics. Due to the neglect of interactions between tumor cells and the TME, traditional cancer therapies often struggle with challenges such as drug resistance, low efficacy, and recurrence. Importantly, the development of gene editing technologies, particularly the CRISPR-Cas system, offers promising new strategies for cancer treatment. Combined with nanomaterial strategies, CRISPR-Cas technology exhibits precision, affordability, and user-friendliness with reduced side effects, which holds great promise for profoundly altering the TME at the genetic level, potentially leading to lasting anticancer outcomes. This review will delve into how CRISPR-Cas can be leveraged to manipulate the TME, examining its potential as a transformative anticancer therapy.
Collapse
Affiliation(s)
- Shujun Feng
- College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Yanyi Wang
- College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China
| | - Yanfeng Gao
- School of Medical Imaging, Wannan Medical College, 241002, Wuhu, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China
| |
Collapse
|
32
|
Asaka S, Verma N, Yen TT, Hicks JL, Nonogaki H, Shen YA, Hong J, Asaka R, DeMarzo AM, Wang TL, Shih IM, Gaillard S. Association of glutaminase expression with immune-suppressive tumor microenvironment, clinicopathologic features, and clinical outcomes in endometrial cancer. Int J Gynecol Cancer 2024; 34:1737-1744. [PMID: 39414312 PMCID: PMC11560285 DOI: 10.1136/ijgc-2024-005920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/23/2024] [Indexed: 10/18/2024] Open
Abstract
OBJECTIVE Increased glutamine metabolism by cancer cells via upregulation of the drug-targetable enzyme glutaminase may contribute to an immune-suppressive tumor microenvironment. Inhibiting glutamine metabolism can not only suppress tumor growth, but also enhance tumor-specific immunity. We investigated the relationship between glutaminase expression, the immune tumor microenvironment, and clinicopathologic features in endometrial cancer. METHODS Tissue microarrays constructed from 87 primary endometrial cancer specimens were stained by immunohistochemistry for glutaminase, c-Myc, mutL homolog 1 (MLH1), mutS homolog 2 (MSH2), mutS homolog 6 (MSH6), postmeiotic segregation increased 2 (PMS2), estrogen receptor (ER), progresterone receptor (PR), CD8, FoxP3, CD68, programmed cell death protein 1 (PD-1), and programmed cell death ligand 1 (PD-L1). We compared the immune tumor microenvironment and clinicopathologic features between glutaminase-high (H-score≥median) versus glutaminase-low (H-score RESULTS In the tissue microarray analysis, glutaminase expression was positively correlated with c-Myc expression (r=0.4226, p<0.0001). Glutaminase-high endometrial cancers were associated with non-endometrioid histology (p=0.0001), high histologic grade (p=0.0004), myometrial invasion (p=0.017), advanced stage (p=0.012), increased FoxP3+ regulatory T cells (p=0.008), increased CD68+ tumor-associated macrophages (p=0.010), and higher PD-L1 combined positive scores (p=0.043). In the TCGA analysis, glutaminase-high (RNA-Seq Z-score≥median) patients showed worse overall (p=0.004) and progression-free (p=0.032) survival than glutaminase-low (RNA-Seq score CONCLUSIONS Our findings indicate that increased glutaminase expression is associated with an immune-suppressive tumor microenvironment, poor clinicopathologic features, and worse long-term outcomes in patients with endometrial cancer.
Collapse
Affiliation(s)
- Shiho Asaka
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Neha Verma
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ting-Tai Yen
- Department of Gynecology and Obstetrics, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jessica L Hicks
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Hiro Nonogaki
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yao-An Shen
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Taipei Medical University, Taipei, Taiwan
| | - Jiaxin Hong
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ryoichi Asaka
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Angelo M DeMarzo
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Tian-Li Wang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Gynecology and Obstetrics, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ie-Ming Shih
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Gynecology and Obstetrics, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Stephanie Gaillard
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Gynecology and Obstetrics, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Yi M, Li T, Niu M, Wu Y, Zhao B, Shen Z, Hu S, Zhang C, Zhang X, Zhang J, Yan Y, Zhou P, Chu Q, Dai Z, Wu K. Blockade of CCR5 + T Cell Accumulation in the Tumor Microenvironment Optimizes Anti-TGF-β/PD-L1 Bispecific Antibody. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408598. [PMID: 39303165 PMCID: PMC11578335 DOI: 10.1002/advs.202408598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Indexed: 09/22/2024]
Abstract
In the previous studies, anti-TGF-β/PD-L1 bispecific antibody YM101 is demonstrated, with superior efficacy to anti-PD-L1 monotherapy in multiple tumor models. However, YM101 therapy can not achieve complete regression in most tumor-bearing mice, suggesting the presence of other immunosuppressive elements in the tumor microenvironment (TME) beyond TGF-β and PD-L1. Thoroughly exploring the TME is imperative to pave the way for the successful translation of anti-TGF-β/PD-L1 BsAb into clinical practice. In this work, scRNA-seq is employed to comprehensively profile the TME changes induced by YM101. The scRNA-seq analysis reveals an increase in immune cell populations associated with antitumor immunity and enhances cell-killing pathways. However, the analysis also uncovers the presence of immunosuppressive CCR5+ T cells in the TME after YM101 treatment. To overcome this hurdle, YM101 is combined with Maraviroc, a widely used CCR5 antagonist for treating HIV infection, suppressing CCR5+ T cell accumulation, and optimizing the immune response. Mechanistically, YM101-induced neutrophil activation recruits immunosuppressive CCR5+ T cells via CCR5 ligand secretion, creating a feedback loop that diminishes the antitumor response. Maraviroc then cleared these infiltrating cells and offset YM101-mediated immunosuppressive effects, further unleashing the antitumor immunity. These findings suggest selectively targeting CCR5 signaling with Maraviroc represents a promising and strategic approach to enhance YM101 efficacy.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310000P. R. China
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical ScienceTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032P. R. China
| | - Tianye Li
- Department of GynecologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhou310009P. R. China
| | - Mengke Niu
- Department of Medical OncologyThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310000P. R. China
- Department of OncologyTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Yuze Wu
- Department of OncologyTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Bin Zhao
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310000P. R. China
| | - Zhuoyang Shen
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310000P. R. China
| | - Shengtao Hu
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310000P. R. China
| | - Chaomei Zhang
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310000P. R. China
| | - Xiaojun Zhang
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical ScienceTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032P. R. China
| | - Jing Zhang
- Wuhan YZY Biopharma Co., LtdBiolake, C2‐1, No.666 Gaoxin RoadWuhan430075P. R. China
| | - Yongxiang Yan
- Wuhan YZY Biopharma Co., LtdBiolake, C2‐1, No.666 Gaoxin RoadWuhan430075P. R. China
| | - Pengfei Zhou
- Wuhan YZY Biopharma Co., LtdBiolake, C2‐1, No.666 Gaoxin RoadWuhan430075P. R. China
| | - Qian Chu
- Department of OncologyTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Zhijun Dai
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310000P. R. China
| | - Kongming Wu
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical ScienceTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032P. R. China
- Department of OncologyTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030P. R. China
| |
Collapse
|
34
|
Jiang Y, Yuan Y, Qiao G, Deng Z, Liu Z, Zhang Y, Yu L, Lin H, Ma L, Zhang J. Paradoxical action of PP2A inhibition and its potential for therapeutic sensitization. J Cell Physiol 2024; 239:e31413. [PMID: 39150149 DOI: 10.1002/jcp.31413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/19/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
The protein phosphatase 2A (PP2A), a serine/threonine phosphatase, is recognized as a tumor suppressor involved in diverse cellular processes and essential for maintaining cell viability in vivo. However, endogenous inhibitors of PP2A such as cancerous inhibitor of PP2A (CIP2A) and endogenous nuclear protein inhibitor 2 of PP2A (SET) counteract the anticancer function of PP2A, promoting tumorigenesis, development, and drug resistance in tumors. Surprisingly though, contrary to conventional understanding, inhibition of the tumor suppressor gene PP2A with exogenous small molecule compounds can enhance the efficacy of cancer treatment and achieve superior tumor inhibition. Moreover, exogenous PP2A inhibitors resensitize cancers to treatment and provide novel therapeutic strategies for drug-resistant tumors, which warrant further investigation.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Yuan
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guanglei Qiao
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhoufeng Deng
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zimei Liu
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liping Yu
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongjian Lin
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lijun Ma
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianjun Zhang
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Wang Z, Zou X, Wang H, Hao Z, Li G, Wang S. Companion diagnostics and predictive biomarkers for PD-1/PD-L1 immune checkpoint inhibitors therapy in malignant melanoma. Front Immunol 2024; 15:1454720. [PMID: 39530091 PMCID: PMC11550933 DOI: 10.3389/fimmu.2024.1454720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
Programmed cell death receptor 1 (PD-1), when bound to the ligand programmed death-ligand 1 (PD-L1), can suppress cellular immunity and play a critical role in the initiation and development of cancer. Immune drugs targeting these two sites have been developed for different cancers, including malignant melanoma. The accompanying diagnostic method has been approved by the FDA to guide patient medication. However, the method of immunohistochemical staining, which varies widely due to the antibody and staining cut-off values, has certain limitations in application and does not benefit all patients. Increasing researches begin to focus on new biomarkers to improve objective response rates and survival in cancer patients. In this article, we enumerated three major groups, including tumour microenvironment, peripheral circulation, and gene mutation, which covered the current main research directions. In the future, we hope those biomarkers may be used to guide the treatment of patients with malignant melanoma.
Collapse
Affiliation(s)
- Zeping Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaojing Zou
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haiyan Wang
- Beijing Biomedical Science and Technology Center, Zhaofenghua Biotechnology (Nanjing) Company Limited, Beijing, China
| | - Zhihui Hao
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing, China
| | - Gebin Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuaiyu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing, China
| |
Collapse
|
36
|
Rajaram J, Kuthati Y. Metal Peroxide Nanoparticles for Modulating the Tumor Microenvironment: Current Status and Recent Prospects. Cancers (Basel) 2024; 16:3581. [PMID: 39518022 PMCID: PMC11545372 DOI: 10.3390/cancers16213581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background: The significant expansion of nanobiotechnology and nanomedicine has led to the development of innovative and effective techniques to combat various pathogens, demonstrating promising results with fewer adverse effects. Metal peroxide nanoparticles stand out among the crucial yet often overlooked types of nanomaterials, including metals. These nanoparticles are key in producing oxygen (O2) and hydrogen peroxide (H2O2) through simple chemical reactions, which are vital in treating various diseases. These compounds play a crucial role in boosting the effectiveness of different treatment methods and also possess unique properties due to the addition of metal ions. Methods: This review discusses and analyzes some of the most common metal peroxide nanoparticles, including copper peroxide (CuO2), calcium peroxide (CaO2), magnesium peroxide (MgO2), zinc peroxide (ZnO2), barium peroxide (BaO2), and titanium peroxide (TiOx) nanosystems. These nanosystems, characterized by their greater potential and treatment efficiency, are primarily needed in nanomedicine to combat various harmful pathogens. Researchers have extensively studied the effects of these peroxides in various treatments, such as catalytic nanotherapeutics, photodynamic therapy, radiation therapy, and some combination therapies. The tumor microenvironment (TME) is particularly unique, making the impact of nanomedicine less effective or even null. The presence of high levels of reactive oxygen species (ROS), hypoxia, low pH, and high glutathione levels makes them competitive against nanomedicine. Controlling the TME is a promising approach to combating cancer. Results: Metal peroxides with low biodegradability, toxicity, and side effects could reduce their effectiveness in treating the TME. It is important to consider the distribution of metal peroxides to effectively target cancer cells while avoiding harm to nearby normal cells. As a result, modifying the surface of metal peroxides is a key strategy to enhance their delivery to the TME, thereby improving their therapeutic benefits. Conclusions: This review discussed the various aspects of the TME and the importance of modifying the surface of metal peroxides to enhance their therapeutic advantages against cancer, as well as address safety concerns. Additionally, this review covered the current challenges in translating basic research findings into clinical applications of therapies based on metal peroxide nanoparticles.
Collapse
Affiliation(s)
- Jagadeesh Rajaram
- Department of Biochemistry and Molecular Medicine, National Dong Hwa University, Hualien 974, Taiwan;
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan
| |
Collapse
|
37
|
Boumpas A, Papaioannou AS, Bousounis P, Grigoriou M, Bergo V, Papafragkos I, Tasis A, Iskas M, Boon L, Makridakis M, Vlachou A, Gavriilaki E, Hatzioannou A, Mitroulis I, Trompouki E, Verginis P. PD-L1 blockade immunotherapy rewires cancer-induced emergency myelopoiesis. Front Immunol 2024; 15:1386838. [PMID: 39464894 PMCID: PMC11502414 DOI: 10.3389/fimmu.2024.1386838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/06/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Immune checkpoint blockade (ICB) immunotherapy has revolutionized cancer treatment, demonstrating exceptional clinical responses in a wide range of cancers. Despite the success, a significant proportion of patients still fail to respond, highlighting the existence of unappreciated mechanisms of immunotherapy resistance. Delineating such mechanisms is paramount to minimize immunotherapy failures and optimize the clinical benefit. Methods In this study, we treated tumour-bearing mice with PD-L1 blockage antibody (aPD-L1) immunotherapy, to investigate its effects on cancer-induced emergency myelopoiesis, focusing on bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs). We examined the impact of aPD-L1 treatment on HSPC quiescence, proliferation, transcriptomic profile, and functionality. Results Herein, we reveal that aPD-L1 in tumour-bearing mice targets the HSPCs in the BM, mediating their exit from quiescence and promoting their proliferation. Notably, disruption of the PDL1/PD1 axis induces transcriptomic reprogramming in HSPCs, observed in both individuals with Hodgkin lymphoma (HL) and tumour-bearing mice, shifting towards an inflammatory state. Furthermore, HSPCs from aPDL1-treated mice demonstrated resistance to cancer-induced emergency myelopoiesis, evidenced by a lower generation of MDSCs compared to control-treated mice. Discussion Our findings shed light on unrecognized mechanisms of action of ICB immunotherapy in cancer, which involves targeting of BM-driven HSPCs and reprogramming of cancer-induced emergency myelopoiesis.
Collapse
Affiliation(s)
- Athina Boumpas
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Antonis S. Papaioannou
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Pavlos Bousounis
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Maria Grigoriou
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Veronica Bergo
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Department of Cellular and Molecular Immunology, International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Iosif Papafragkos
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- The Institute of Molecular Biology and Biotechnology of the Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Athanasios Tasis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michael Iskas
- Hematology Department, BMT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | | | - Manousos Makridakis
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Antonia Vlachou
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Eleni Gavriilaki
- Hematology Department, BMT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | - Aikaterini Hatzioannou
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ioannis Mitroulis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR), Université Côte, Nice, France
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
- The Institute of Molecular Biology and Biotechnology of the Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| |
Collapse
|
38
|
Chen L, Huang L, Gu Y, Li C, Sun P, Xiang Y. Novel post-translational modifications of protein by metabolites with immune responses and immune-related molecules in cancer immunotherapy. Int J Biol Macromol 2024; 277:133883. [PMID: 39033895 DOI: 10.1016/j.ijbiomac.2024.133883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 06/30/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Tumour immunotherapy is an effective and essential treatment for cancer. However, the heterogeneity of tumours and the complex and changeable tumour immune microenvironment (TME) creates many uncertainties in the clinical application of immunotherapy, such as different responses to tumour immunotherapy and significant differences in individual efficacy. It makes anti-tumour immunotherapy face many challenges. Immunometabolism is a critical determinant of immune cell response to specific immune effector molecules, significantly affecting the effects of tumour immunotherapy. It is attributed mainly to the fact that metabolites can regulate the function of immune cells and immune-related molecules through the protein post-translational modifications (PTMs) pathway. This study systematically summarizes a variety of novel protein PTMs including acetylation, propionylation, butyrylation, succinylation, crotonylation, malonylation, glutarylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation, benzoylation, lactylation and isonicotinylation in the field of tumour immune regulation and immunotherapy. In particular, we elaborate on how different PTMs in the TME can affect the function of immune cells and lead to immune evasion in cancer. Lastly, we highlight the potential treatment with the combined application of target-inhibited protein modification and immune checkpoint inhibitors (ICIs) for improved immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Lixiang Huang
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, PR China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fuzhou 350001, Fujian, PR China
| | - Yu Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Chen Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, PR China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fuzhou 350001, Fujian, PR China.
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China.
| |
Collapse
|
39
|
Yuan L, Li W, Hu S, Wang Y, Wang S, Tian H, Sun X, Yang X, Hu M, Zhang Y. Protective effects of ginsenosides on ulcerative colitis: a meta-analysis and systematic review to reveal the mechanisms of action. Inflammopharmacology 2024; 32:3079-3098. [PMID: 38977646 DOI: 10.1007/s10787-024-01516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory disease of the colon. Ginsenoside may be an ideal agent for UC treatment. However, its efficacy and safety are unknown. We aim to conduct a systematic evaluation to assess the effects and potential mechanisms of ginsenosides in animal models of UC. METHODS Six electronic databases will be searched (PubMed, Embase, Web of Science, China Knowledge Network (CNKI), China Science and Technology Journal Database (CQVIP), and Wanfang Data Knowledge). SYRCLE list will be used to assess the quality of literature, and STATA 15.1 for data analysis. Time-dose effects analysis will be used to reveal the time-dosage response relations between ginsenosides and UC. RESULTS Ultimately, fifteen studies involving 300 animals were included. Preliminary evidence was shown that ginsenosides could reduce Disease Activity Index (DAI) scores, weight loss, histological colitis score (HCS), spleen weight, Malondialdehyde (MDA), Myeloperoxidase (MPO) activity, interleukin-1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α) and increase colon length (CL), myeloperoxidase (GSH), interleukin 4 (IL-4), interleukin 10 (IL-10), Zonula Occludens-1 (ZO-1) and occludin. Results of time-dose interval analysis indicated that ginsenosides at a dosage of 5-200 mg/kg with an intervention time of 7-28 days were relatively effective. CONCLUSIONS Preclinical evidence suggests that ginsenoside is a novel treatment for UC. And the mechanisms of ginsenosides in treating UC may involve anti-inflammatory, antioxidant, barrier protection, intestinal flora regulation, and immune regulation. Although, due to the high heterogeneity, further large-scale and high-quality preclinical studies are needed to examine the protection of ginsenosides against UC.
Collapse
Affiliation(s)
- Lingling Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuangyuan Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingyi Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaofeng Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huai'e Tian
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuhui Sun
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuli Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengyun Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
40
|
Gaudio G, Martino E, Pellizzari G, Cavallone M, Castellano G, Omar A, Katselashvili L, Trapani D, Curigliano G. Developing combination therapies with biologics in triple-negative breast cancer. Expert Opin Biol Ther 2024; 24:1075-1094. [PMID: 39360776 DOI: 10.1080/14712598.2024.2408756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/22/2024] [Indexed: 10/11/2024]
Abstract
INTRODUCTION Novel compounds have entered the triple-negative breast cancer (TNBC) treatment algorithm, namely immune checkpoints inhibitors (ICIs), PARP inhibitors and antibody-drug conjugates (ADCs). The optimization of treatment efficacy can be enhanced with the use of combination treatments, and the incorporation of novel compounds. In this review, we discuss the combination treatments under development for the treatment of TNBC. AREAS COVERED The development of new drugs occurring in recent years has boosted the research for novel combinations to target TNBC heterogeneity and improve outcomes. ICIs, ADCs, tyrosine kinase inhibitors (TKIs), and PARP inhibitors have emerged as leading players in this new landscape, while other compounds like novel intracellular pathways inhibitors or cancer vaccines are drawing more and more interest. The future of TNBC is outlined in combination approaches, and based on new cancer targets, including many chemotherapy-free treatments. EXPERT OPINION A large number of TNBC therapies have either proved clinically ineffective or weighted by unacceptable safety profiles. Others, however, have provided promising results and are currently in late-stage clinical trials, while a few have actually changed clinical practice in recent years. As novel, more and more selective drugs come up, combination strategies focusing the concept of synergy are fully warranted for the future.
Collapse
Affiliation(s)
- Gilda Gaudio
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Enzo Martino
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Gloria Pellizzari
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Matteo Cavallone
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Grazia Castellano
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Abeid Omar
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Nuclear Medicine, Kenyatta University Teaching Referral and Research Hospital, Nairobi, Kenya
| | - Lika Katselashvili
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology, Caucasus Medical Centre, Tbilisi, Georgia
| | - Dario Trapani
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| |
Collapse
|
41
|
Long BY, Wang Y, Hao SH, Shi G. Molecular significance of circRNAs in malignant lymphoproliferative disorders: pathogenesis and novel biomarkers or therapeutic targets. Am J Cancer Res 2024; 14:4633-4651. [PMID: 39417189 PMCID: PMC11477815 DOI: 10.62347/kmwb5164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024] Open
Abstract
Recent studies have shown that circular RNAs (CircRNAs) have the novel functions and molecular mechanisms in the pathogenesis of malignant diseases. CircRNAs have been found to be associated with the occurrence and development of lymphoproliferative diseases, impacting on lymphocyte proliferation. This article provides a review of the pathogenesis of circRNAs in malignant lymphoproliferative disorders, focusing on conditions such as acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), and lymphoma. Additionally, it discusses the potential value of circRNAs as novel biomarkers or therapeutic targets in these disorders.
Collapse
Affiliation(s)
- Bo-Yang Long
- Department of Oncology and Hematology, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - Yan Wang
- Department of Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai, Shandong, China
| | - Shu-Hong Hao
- Department of Oncology and Hematology, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - Guang Shi
- Department of Oncology and Hematology, The Second Hospital of Jilin UniversityChangchun, Jilin, China
| |
Collapse
|
42
|
Li W, Wei J, Cheng M, Liu M. Unveiling promising targets in gastric cancer therapy: A comprehensive review. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200857. [PMID: 39280587 PMCID: PMC11396074 DOI: 10.1016/j.omton.2024.200857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Gastric cancer (GC) poses a significant global health challenge, ranking fifth in incidence and third in mortality among all malignancies worldwide. Its insidious onset, aggressive growth, proclivity for metastasis, and limited treatment options have contributed to its high fatality rate. Traditional approaches for GC treatment primarily involve surgery and chemotherapy. However, there is growing interest in targeted therapies and immunotherapies. This comprehensive review highlights recent advancements in GC targeted therapy and immunotherapy. It delves into the mechanisms of various strategies, underscoring their potential in GC treatment. Additionally, the review evaluates the efficacy and safety of relevant clinical trials. Despite the benefits observed in numerous advanced GC patients with targeted therapies and immunotherapies, challenges persist. We discuss pertinent strategies to overcome these challenges, thereby providing a solid foundation for enhancing the clinical effectiveness of targeted therapies and immunotherapies.
Collapse
Affiliation(s)
- Wenke Li
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jing Wei
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Mo Cheng
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Ming Liu
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| |
Collapse
|
43
|
Zhang F, Yu Q, Wu C, Sun S, Wang Y, Wang R, Chen Z, Zhang H, Xiong X, Awadasseid A, Rao G, Zhao X, Zhang W. Design, synthesis, anti-tumor activity and mechanism of novel PROTACs as degraders of PD-L1 and inhibitors of PD-1/PD-L1 interaction. Bioorg Med Chem 2024; 111:117867. [PMID: 39121678 DOI: 10.1016/j.bmc.2024.117867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Currently, antibody drugs targeting programmed cell death ligand 1 (PD-L1) have achieved promising results in cancer treatment, while the development of small-molecule drugs lags behind. In this study, we designed and synthesized a series of PD-L1-degrading agents based on the PROTAC design principle, utilizing the PD-L1 inhibitor A56. Through systematic screening of ligands and linkers and investigating the structure-activity relationship of the degraders, we identified two highly active compounds, 9i and 9j. These compounds enhance levels of CD4+, CD8+, granzyme B, and perforin, demonstrating significant in vivo antitumor effects with a tumor growth inhibition (TGI) of up to 57.35 %. Both compounds facilitate the internalization of PD-L1 from the cell surface and promote its degradation through proteasomal and lysosomal pathways, while also maintaining inhibition of the PD-1/PD-L1 interaction. In summary, our findings provide a novel strategy and mechanism for developing biphenyl-based PROTAC antitumor drugs targeting and degrading PD-L1.
Collapse
Affiliation(s)
- Feng Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Qimeng Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Caiyun Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Shishi Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Yu Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Rui Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Zejie Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Hua Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Xuqiong Xiong
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Annoor Awadasseid
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China; Moganshan Institute, Zhejiang University of Technology, Deqing 313200, China
| | - Guowu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China.
| | - Xiaoyin Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China.
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China; Zhejiang Jieyuan Med-Tech Co., Ltd., Hangzhou 311113, China.
| |
Collapse
|
44
|
Vilela T, Valente S, Correia J, Ferreira F. Advances in immunotherapy for breast cancer and feline mammary carcinoma: From molecular basis to novel therapeutic targets. Biochim Biophys Acta Rev Cancer 2024; 1879:189144. [PMID: 38914239 DOI: 10.1016/j.bbcan.2024.189144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
The role of inflammation in cancer is a topic that has been investigated for many years. As established, inflammation emerges as a defining characteristic of cancer, presenting itself as a compelling target for therapeutic interventions in the realm of oncology. Controlling the tumor microenvironment (TME) has gained paramount significance, modifying not only the effectiveness of immunotherapy but also modulating the outcomes and prognoses of standard chemotherapy and other anticancer treatments. Immunotherapy has surfaced as a central focus within the domain of tumor treatments, using immune checkpoint inhibitors as cancer therapy. Immune checkpoints and their influence on the tumor microenvironment dynamic are presently under investigation, aiming to ascertain their viability as therapeutic interventions across several cancer types. Cancer presents a significant challenge in humans and cats, where female breast cancer ranks as the most prevalent malignancy and feline mammary carcinoma stands as the third most frequent. This review seeks to summarize the data about the immune checkpoints cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), lymphocyte activation gene-3 (LAG-3), programmed cell death protein-1 (PD-1), V-domain Ig suppressor of T cell activation (VISTA), and T-cell immunoglobulin and mucin domain 3 (TIM-3) respective ongoing investigations as prospective targets for therapy for human breast cancer, while also outlining findings from studies reported on feline mammary carcinoma (FMC), strengthening the rationale for employing FMC as a representative model in the exploration of human breast cancer.
Collapse
Affiliation(s)
- Tatiana Vilela
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Sofia Valente
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Jorge Correia
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; CIISA-Center of Interdisciplinary Research in Animal Health, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Fernando Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; CIISA-Center of Interdisciplinary Research in Animal Health, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal.
| |
Collapse
|
45
|
Feng H, Liu J, Jia H, Bu X, Yang W, Su P. Cancer-associated fibroblasts-derived exosomal ZNF250 promotes the proliferation, migration, invasion, and immune escape of hepatocellular carcinoma cells by transcriptionally activating PD-L1. J Biochem Mol Toxicol 2024; 38:e23778. [PMID: 39252517 DOI: 10.1002/jbt.23778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/18/2024] [Accepted: 07/14/2024] [Indexed: 09/11/2024]
Abstract
Hepatocellular carcinoma (HCC) is a lethal form of liver cancer, and the tumor microenvironment, particularly cancer-associated fibroblasts (CAFs), plays a critical role in its progression. This study aimed to elucidate the mechanism by which CAF-derived exosomes regulate the development of HCC. The study employed quantitative real-time polymerase chain reaction for mRNA expression analysis and western blot analysis for protein expression detection. Chromatin immunoprecipitation assay and dual-luciferase reporter assay were performed to investigate the relationship between zinc finger protein 250 (ZNF250) and programmed cell death 1 ligand 1 (PD-L1). Transmission electron microscopy and western blot analysis were used to characterize the isolated exosomes. The transferability of CAF-derived exosomes and normal fibroblasts (NFs)-derived exosomes into HCC cells was analyzed using a green fluorescent labeling dye PKH67. Cell proliferation was assessed via a 5-Ethynyl-2'-deoxyuridine assay, while Transwell assays were conducted to evaluate cell migration and invasion. Flow cytometry was performed to measure cell apoptosis, while enzyme-linked immunosorbent assays were used to assess the levels of tumor necrosis factor-α and perforin. Finally, a xenograft mouse model was constructed to examine the effects of exosomes derived from ZNF250-deficient CAFs on the tumor properties of HCC cells. The study revealed increased expression of ZNF250 in HCC tissues and cells, with ZNF250 transcriptionally activating PD-L1 in HCC cells. ZNF250 expression was associated with HbsAg, clinical stage and tumor size of HCC patients. CAF-derived exosomal ZNF250 can regulate PD-L1 expression in HCC cells. Furthermore, exosomes derived from ZNF250-deficient CAFs inhibited the proliferation, migration, invasion, and immune escape of HCC cells by downregulating PD-L1 expression. Moreover, CAF-derived exosomal ZNF250 promoted tumor formation in vivo. These findings provide insights into the role of CAF-derived exosomes in the suppression of HCC development, highlighting the significance of ZNF250 and PD-L1 regulation in tumor progression.
Collapse
Affiliation(s)
- Huizhi Feng
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jingmei Liu
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Haixia Jia
- Department of Scientific Research, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xiaoqian Bu
- Department of Digestive System Cancer Center, Shanxi Bethune Hospital, Taiyuan, China
| | - Wenhui Yang
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Peng Su
- Department of Medical Service, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
46
|
Zych M, Kniotek M, Roszczyk A, Dąbrowski F, Jędra R, Zagożdżon R. Surface Immune Checkpoints as Potential Biomarkers in Physiological Pregnancy and Recurrent Pregnancy Loss. Int J Mol Sci 2024; 25:9378. [PMID: 39273326 PMCID: PMC11395075 DOI: 10.3390/ijms25179378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Due to the genetic diversity between the mother and the fetus, heightened control over the immune system during pregnancy is crucial. Immunological parameters determined by clinicians in women with idiopathic recurrent spontaneous abortion (RSA) include the quantity and activity of Natural Killer (NK) and Natural Killer T (NKT) cells, the quantity of regulatory T lymphocytes, and the ratio of pro-inflammatory cytokines, which indicate imbalances in Th1 and Th2 cell response. The processes are controlled by immune checkpoint proteins (ICPs) expressed on the surface of immune cells. We aim to investigate differences in the expression of ICPs on T cells, T regulatory lymphocytes, NK cells, and NKT cells in peripheral blood samples collected from RSA women, pregnant women, and healthy multiparous women. We aim to discover new insights into the role of ICPs involved in recurrent pregnancy loss. Peripheral blood mononuclear cells (PBMCs) were isolated by gradient centrifugation from blood samples obtained from 10 multiparous women, 20 pregnant women (11-14th week of pregnancy), and 20 RSA women, at maximum of 72 h after miscarriage. The PBMCs were stained for flow cytometry analysis. Standard flow cytometry immunophenotyping of PBMCs was performed using antibodies against classical lymphocyte markers, including CD3, CD4, CD8, CD56, CD25, and CD127. Additionally, ICPs were investigated using antibodies against Programmed Death Protein-1 (PD-1, CD279), T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3, CD366), V-domain Ig suppressor of T cell activation (VISTA), T cell immunoglobulin and ITIM domain (TIGIT), and Lymphocyte activation gene 3 (LAG-3). We observed differences in the surface expression of ICPs in the analyzed subpopulations of lymphocytes between early pregnancy and RSA, after miscarriage, and in women. We noted diminished expression of PD-1 on T lymphocytes (p = 0.0046), T helper cells (CD3CD4 positive cells, p = 0.0165), T cytotoxic cells (CD3CD8 positive cells, p = 0.0046), T regulatory lymphocytes (CD3CD4CD25CD127 low positive cells, p = 0.0106), and NKT cells (CD3CD56/CD16 positive cells, p = 0.0438), as well as LAG-3 on lymphocytes T (p = 0.0225) T helper, p = 0.0426), T cytotoxic cells (p = 0.0458) and Treg (p = 0.0293), and cells from RSA women. Impaired expression of TIM-3 (p = 0.0226) and VISTA (p = 0.0039) on CD8 cytotoxic T and NK (TIM3 p = 0.0482; VISTA p = 0.0118) cells was shown, with an accompanying increased expression of TIGIT (p = 0.0211) on NKT cells. The changes in the expression of surface immune checkpoints indicate their involvement in the regulation of pregnancy. The data might be utilized to develop specific therapies for RSA women based on the modulation of ICP expression.
Collapse
MESH Headings
- Humans
- Female
- Pregnancy
- Abortion, Habitual/immunology
- Abortion, Habitual/metabolism
- Abortion, Habitual/blood
- Adult
- Biomarkers/blood
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Immune Checkpoint Proteins/metabolism
- Immune Checkpoint Proteins/genetics
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Immunophenotyping
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/immunology
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Antigens, CD/metabolism
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Programmed Cell Death 1 Receptor/metabolism
Collapse
Affiliation(s)
- Michał Zych
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Monika Kniotek
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Filip Dąbrowski
- Department of Gynecology and Gynecological Oncology, Medical Centre of Postgraduate Medical Education, CMKP, Marymoncka 99/103, 01-813 Warsaw, Poland
- Club35, Polish Society of Obstetricians and Gynecologists PTGiP, Cybernetyki7F/87, 02-677 Warsaw, Poland
| | - Robert Jędra
- Department of Gynecology and Gynecological Oncology, Medical Centre of Postgraduate Medical Education, CMKP, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Radosław Zagożdżon
- Laboratory of Cellular and Genetic Therapies, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| |
Collapse
|
47
|
Niu J, Jing X, Xu Q, Liu H, Tian Y, Yang Z, Zhu H, Sun Y. Strong PD-L1 affect clinical outcomes in advanced NSCLC treated with third-generation EGFR-TKIs. Future Oncol 2024; 20:2481-2490. [PMID: 39155845 PMCID: PMC11520565 DOI: 10.1080/14796694.2024.2385290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Background: In first/second generation EGFR-TKIs, strong PD-L1 expression contributes to primary resistance, significantly affecting patient prognosis. The relationship between PD-L1 expression levels and third-generation TKIs remains unclear.Methods: This study analyzed advanced NSCLC who received third-generation EGFR-TKIs as first-line systemic therapy from March 2019 to June 2022. The EGFR and PD-L1 status of the patients was also assessed.Results: Overall, 150 patients were included in this study. PD-L1 expression was negative (PD-L1 tumor proportion score <1%) in 89 cases, weak (1-49%) in 42 cases, and strong (≥50%) in 19 cases. mPFS for patients with negative, weak and strong PD-L1 expressions was 23.60, 26.12 and 16.60 months, respectively. The mPFS for strong PD-L1 expression was significantly shorter than that for with weak PD-L1 expression but was not associated with negativity. The same conclusions were shown in subgroup analyses of mutation types and TKI kinds. In addition, Relative to PD-L1-negative patients, resistance to TKIs may be associated with early progression for patients with strong PD-L1 expression.Conclusion: PD-L1 expression in tumor cells influenced the clinical outcomes of patients with advanced NSCLC treated with third-generation EGFR-TKIs. Stronger PD-L1 expression in TKIs-treated patients with advanced first-line EGFR-mutated NSCLC was associated with worse PFS.
Collapse
Affiliation(s)
- Jiling Niu
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Xuquan Jing
- Department of Radiation Oncology, Shandong University Cancer Center, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Qinhao Xu
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Haoyu Liu
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yaru Tian
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Zhengqiang Yang
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yulan Sun
- Department of Internal Medicine Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Science, 250117, Jinan,China
| |
Collapse
|
48
|
Zhao J, Zhang K, Sui D, Wang S, Li Y, Tang X, Liu X, Song Y, Deng Y. Recent advances in sialic acid-based active targeting chemoimmunotherapy promoting tumor shedding: a systematic review. NANOSCALE 2024; 16:14621-14639. [PMID: 39023195 DOI: 10.1039/d4nr01740d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Tumors have always been a major public health concern worldwide, and attempts to look for effective treatments have never ceased. Sialic acid is known to be a crucial element for tumor development and its receptors are highly expressed on tumor-associated immune cells, which perform significant roles in establishing the immunosuppressive tumor microenvironment and further boosting tumorigenesis, progression, and metastasis. Obviously, it is essential to consider sophisticated crosstalk between tumors, the immune system, and preparations, and understand the links between pharmaceutics and immunology. Sialic acid-based chemoimmunotherapy enables active targeting drug delivery via mediating the recognition between the sialic acid-modified nano-drug delivery system represented by liposomes and sialic acid-binding receptors on tumor-associated immune cells, which inhibit their activity and utilize their homing ability to deliver drugs. Such a "Trojan horse" strategy has remarkably improved the shortcomings of traditional passive targeting treatments, unexpectedly promoted tumor shedding, and persistently induced robust immunological memory, thus highlighting its prospective application potential for targeting various tumors. Herein, we review recent advances in sialic acid-based active targeting chemoimmunotherapy to promote tumor shedding, summarize the current viewpoints on the tumor shedding mechanism, especially the formation of durable immunological memory, and analyze the challenges and opportunities of this attractive approach.
Collapse
Affiliation(s)
- Jingyi Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Kunfeng Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Dezhi Sui
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yantong Li
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Xueying Tang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| |
Collapse
|
49
|
Grabska S, Grabski H, Makunts T, Abagyan R. Co-Occurring Infections in Cancer Patients Treated with Checkpoint Inhibitors Significantly Increase the Risk of Immune-Related Adverse Events. Cancers (Basel) 2024; 16:2820. [PMID: 39199593 PMCID: PMC11352782 DOI: 10.3390/cancers16162820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Therapeutic antibodies designed to target three immune checkpoint proteins have been applied in the treatment of various malignancies, including small and non-small cell lung cancers, melanoma, renal cell carcinoma, and others. These treatments combat cancers by reactivating cytotoxic T cells. Nevertheless, this mode of action was found to be associated with a broad range of immune-related adverse events (irAEs), including pneumonitis, sarcoidosis, myocarditis, nephritis, colitis, and hepatitis. Depending on their severity, these irAEs often necessitate the suspension or discontinuation of treatment and, in rare instances, may lead to fatalities. We analyzed over nineteen million reports and identified over eighty thousand adverse event reports from patients treated with immune checkpoint inhibitors submitted to the Food and Drug Administration's Adverse Event Reporting System MedWatch. Reports concerning pembrolizumab, nivolumab, cemiplimab, avelumab, durvalumab, atezolizumab, and ipilimumab revealed a statistically significant association between the irAEs and concurrent infectious diseases for five out of seven treatments. Furthermore, the association trend was preserved across all three types of checkpoint inhibitors and each of the five individual therapeutic agent cohorts, while the remaining two showed the same trend, but an increased confidence interval, due to an insufficient number of records.
Collapse
Affiliation(s)
- Siranuysh Grabska
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (H.G.); (T.M.)
- L.A. Orbeli Institute of Physiology, National Academy of Sciences, Yerevan 0028, Armenia
| | - Hovakim Grabski
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (H.G.); (T.M.)
- L.A. Orbeli Institute of Physiology, National Academy of Sciences, Yerevan 0028, Armenia
| | - Tigran Makunts
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (H.G.); (T.M.)
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (H.G.); (T.M.)
| |
Collapse
|
50
|
Alanzi A, Moussa AY, Mothana RA, Abbas M, Ali I. In silico exploration of PD-L1 binding compounds: Structure-based virtual screening, molecular docking, and MD simulation. PLoS One 2024; 19:e0306804. [PMID: 39121024 PMCID: PMC11315321 DOI: 10.1371/journal.pone.0306804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/23/2024] [Indexed: 08/11/2024] Open
Abstract
Programmed death-ligand 1 (PD-L1), a transmembrane protein, is associated with the regulation of immune system. It frequently has overexpression in various cancers, allowing tumor cells to avoid immune detection. PD-L1 inhibition has risen as a potential strategy in the field of therapeutic immunology for cancer. In the current study, structure-based virtual screening of drug libraries was conducted and then the screened hits were docked to the active residues of PD-L1 to select the optimal binding poses. The top ten compounds with binding affinities ranging from -10.734 to -10.398 kcal/mol were selected for further analysis. The ADMET analysis of selected compounds showed the compounds meet the criteria of ADMET properties. Further, the conformational changes and binding stability of the top two compounds was analyzed by conducting 200 ns simulation and it was observed that the hits did not exert conformational changes to the protein structure. All the results suggest that the chosen hits can be considered as lead compounds for the inhibition of biological activity of PD-L1 in in vitro studies.
Collapse
Affiliation(s)
- Abdullah Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ashaimaa Y. Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Munawar Abbas
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, China
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Hawally, Kuwait
| |
Collapse
|