1
|
Levate G, Wang Y, McCredie R, Fenwick M, Rae MT, Duncan WC, Siemienowicz KJ. Insights into the effects of sex and tissue location on the evolution of adipocyte dysfunction in an ovine model of polycystic ovary syndrome (PCOS). Mol Cell Endocrinol 2025; 595:112416. [PMID: 39557184 DOI: 10.1016/j.mce.2024.112416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Adipose tissue dysfunction is one of the features of Polycystic Ovary Syndrome (PCOS) with dysregulated adipogenesis, altered functional pathways and increased inflammation. It is increasingly clear that there are also male correlates of the hormonal and metabolic features of PCOS. We hypothesised that the effects of adipose tissue dysfunction are not sex-specific but rather fat depot-specific and independent of obesity. We used a clinically realistic ovine model of PCOS where pregnant sheep are injected with 100 mg of testosterone propionate twice weekly from day 62 to day 102 of gestation. We studied control and prenatally androgenised (PA) female and male offspring during adolescence and weight-matched control and PA female sheep during adulthood. We examined subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT) and in adult female sheep bone marrow adipose tissue (BMAT). Adipogenesis related gene expression in SAT was similar in adolescent female and male controls and the reduction in adipogenesis related gene expression by PA in female adipose tissue was not observed in males. Differences in expression of genes associated with adipose tissue function in adolescence in SAT driven by PA were found in both sexes. In adulthood, the changes seen in adolescent females were absent or reversed but there was an increase in inflammatory markers that was weight independent. In addition, BMAT showed increased inflammatory markers. Adipose dysfunction evolves with time and is focussed on SAT rather than VAT and is generally sex-specific although there are also effects of prenatal androgenisation on male SAT. In female adults, the inflammation seen in SAT is also present in BMAT and the development of blood cells in an inflammatory environment may have systemic implications.
Collapse
Affiliation(s)
- Giovanni Levate
- Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Yuan Wang
- Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Riada McCredie
- Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Megan Fenwick
- Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Michael T Rae
- Centre for Biomedicine and Global Health, Edinburgh Napier University, Edinburgh, UK
| | - W Colin Duncan
- Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| | | |
Collapse
|
2
|
Zhou L, Li S, Ren J, Wang D, Yu R, Zhao Y, Zhang Q, Xiao X. Circulating exosomal circRNA-miRNA-mRNA network in a familial partial lipodystrophy type 3 family with a novel PPARG frameshift mutation c.418dup. Am J Physiol Endocrinol Metab 2024; 327:E357-E370. [PMID: 39017680 DOI: 10.1152/ajpendo.00094.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/18/2024]
Abstract
Familial partial lipodystrophy 3 (FPLD3) is a rare genetic disorder caused by loss-of-function mutations in the PPARG gene, characterized by a selective absence of subcutaneous fat and associated metabolic complications. However, the molecular mechanisms of FPLD3 remain unclear. In this study, we recruited a 17-yr-old Chinese female with FPLD3 and her family, identifying a novel PPARG frameshift mutation (exon 4: c.418dup: p.R140Kfs*7) that truncates the PPARγ protein at the seventh amino acid, significantly expanding the genetic landscape of FPLD3. By performing next-generation sequencing of circular RNAs (circRNAs), microRNAs (miRNAs), and mRNAs in plasma exosomes, we discovered 59 circRNAs, 57 miRNAs, and 299 mRNAs were significantly altered in the mutation carriers compared with the healthy controls. Integration analysis highlighted that the circ_0001597-miR-671-5p pair and 18 mRNAs might be incorporated into the metabolic regulatory networks of the FPLD3 induced by the novel PPARG mutation. Functional annotation suggested that these genes were significantly enriched in glucose- and lipid metabolism-related pathways. Among the circRNA-miRNA-mRNA network, we identified two critical regulators, early growth response-1 (EGR1), a key transcription factor known for its role in insulin signaling pathways and lipid metabolism, and 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3), which gets involved in the biosynthesis of triglycerides and lipolysis. Circ_0001597 regulates the expression of these genes through miR-671-5p, potentially contributing to the pathophysiology of FPLD3. Overall, this study clarified a circulating exosomal circRNA-miRNA-mRNA network in a FPLD3 family with a novel PPARG mutation, providing evidence for exploring promising biomarkers and developing novel therapeutic strategies for this rare genetic disorder.NEW & NOTEWORTHY Through the establishment of a ceRNA regulatory networks in a novel PPARG frameshift mutation c.418dup-induced FPLD3 pedigree, this study reveals that circ_0001597 may contribute to the pathophysiology of FPLD3 by sequestering miR-671-5p to regulate the expression of EGR1 and AGPAT3, pivotal genes situated in the triglyceride (TG) synthesis and lipolysis pathways. Current findings expand our molecular understanding of adipose tissue dysfunction, providing potential blood biomarkers and therapeutic avenues for lipodystrophy and associated metabolic complications.
Collapse
Affiliation(s)
- Liyuan Zhou
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shunhua Li
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Dongmei Wang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Ruiqi Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yuxing Zhao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
3
|
Silva Barcelos EC, Naslavsky MS, Fernandes IS, Scliar MO, Yamamoto GL, Wang JYT, Bride L, de Sousa VP, Pimassoni LHS, Sportoletti P, de Paula F, von Zeidler SV, Duarte YAO, Passos-Bueno MR, Zatz M, Errera FIV. Genetic variation in NOTCH1 is associated with overweight and obesity in Brazilian elderly. Sci Rep 2024; 14:17096. [PMID: 39048597 PMCID: PMC11269636 DOI: 10.1038/s41598-024-65771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Excessive weight (overweight and obesity) is a common disorder involving genetic and environmental factors, associated with cardiovascular diseases, type-2 diabetes, and others. NOTCH1 is critical for the maintenance of stem cells and adult tissues, being reported as a key player in metabolism and adipogenesis in animals. Thus, we test the hypothesis that NOTCH1 Single Nucleotide Polymorphisms (SNPs) are associated with excessive weight. Participants from the census-based cohort SABE (Saúde, Bem Estar e Envelhecimento-Health, Well-Being, and Aging), carried out in the city of São Paulo-Brazil, were stratified into cases and controls according to BMI. We filter the SNPs located at the start and end positions of NOTCH1 and 50 Kb on both sides. We selected SNPs with minor allelic frequency (MAF) greater than or equal to 0.01 and Hardy-Weinberg equilibrium (p > 0.05) and r2 ≥ 0.8. We performed an association study with genotypes and haplotypes, as well as in silico functional analysis of the identified SNPs. We observed an association of the SNP rs9411207 with the risk of excessive weight, under log-additive model, and the genotype distribution showed an increased frequency of homozygous TT (OR 1.50, CI 1.20-1.88; p = 0.0002). The haplotype GAT constructed from this and other SNPs in high Linkage Disequilibrium was more frequent in excessive-weight individuals (p = 0.003). In silico analyses suggested that these SNPs are likely to affect the transcription of NOTCH1 and other genes involved in adipogenesis and metabolism. This is the first study reporting association between NOTCH1 SNPs and the risk of excessive weight. Considering the possibility of NOTCH1 modulation, additional population studies are important to replicate these data and confirm the usefulness of risk genotypes for management strategies of excessive weight.
Collapse
Affiliation(s)
- Estevão Carlos Silva Barcelos
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michel Satya Naslavsky
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Izadora Silveira Fernandes
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Marilia Oliveira Scliar
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Guilherme Lopes Yamamoto
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Laís Bride
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Valdemir Pereira de Sousa
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Paolo Sportoletti
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Flavia de Paula
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Department of Biological Sciences, Federal University of Espírito Santo, Avenida Fernando Ferrari, 514, Edifício Lídia Behar, Sala 105, Vitória, Espírito Santo, 29075-910, Brazil
| | - Sandra Ventorin von Zeidler
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Department of Pathology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Yeda Aparecida Oliveira Duarte
- School of Nursing, University of São Paulo, São Paulo, Brazil
- School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Flávia Imbroisi Valle Errera
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil.
- Department of Biological Sciences, Federal University of Espírito Santo, Avenida Fernando Ferrari, 514, Edifício Lídia Behar, Sala 105, Vitória, Espírito Santo, 29075-910, Brazil.
- Postgraduate Program in Biochemistry, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil.
| |
Collapse
|
4
|
Zhou H, Fick K, Patel V, Hilton LR, Kim HW, Bagi Z, Weintraub NL, Chen W. AGPAT3 deficiency impairs adipocyte differentiation and leads to a lean phenotype in mice. Am J Physiol Endocrinol Metab 2024; 327:E69-E80. [PMID: 38717361 PMCID: PMC11390115 DOI: 10.1152/ajpendo.00012.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/01/2024] [Accepted: 05/01/2024] [Indexed: 06/22/2024]
Abstract
Acylglycerophosphate acyltransferases (AGPATs) catalyze the de novo formation of phosphatidic acid to synthesize glycerophospholipids and triglycerides. AGPATs demonstrate unique physiological roles despite a similar biochemical function. AGPAT3 is highly expressed in the testis, kidney, and liver, with intermediate expression in adipose tissue. Loss of AGPAT3 is associated with reproductive abnormalities and visual dysfunction. However, the role of AGPAT3 in adipose tissue and whole body metabolism has not been investigated. We found that male Agpat3 knockout (KO) mice exhibited reduced body weights with decreased white and brown adipose tissue mass. Such changes were less pronounced in the female Agpat3-KO mice. Agpat3-KO mice have reduced plasma insulin growth factor 1 (IGF1) and insulin levels and diminished circulating lipid metabolites. They manifested intact glucose homeostasis and insulin sensitivity despite a lean phenotype. Agpat3-KO mice maintained an energy balance with normal food intake, energy expenditure, and physical activity, except for increased water intake. Their adaptive thermogenesis was also normal despite reduced brown adipose mass and triglyceride content. Mechanistically, Agpat3 was elevated during mouse and human adipogenesis and enriched in adipocytes. Agpat3-knockdown 3T3-L1 cells and Agpat3-deficient mouse embryonic fibroblasts (MEFs) have impaired adipogenesis in vitro. Interestingly, pioglitazone treatment rescued the adipogenic deficiency in Agpat3-deficient cells. We conclude that AGPAT3 regulates adipogenesis and adipose development. It is possible that adipogenic impairment in Agpat3-deficient cells potentially leads to reduced adipose mass. Findings from this work support the unique role of AGPAT3 in adipose tissue.NEW & NOTEWORTHY AGPAT3 deficiency results in male-specific growth retardation. It reduces adipose tissue mass but does not significantly impact glucose homeostasis or energy balance, except for influencing water intake in mice. Like AGPAT2, AGPAT3 is upregulated during adipogenesis, potentially by peroxisome proliferator-activated receptor gamma (PPARγ). Loss of AGPAT3 impairs adipocyte differentiation, which could be rescued by pioglitazone. Overall, AGPAT3 plays a significant role in regulating adipose tissue mass, partially involving its influence on adipocyte differentiation.
Collapse
Affiliation(s)
- Hongyi Zhou
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Kendra Fick
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Vijay Patel
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Lisa Renee Hilton
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Ha Won Kim
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Neal L Weintraub
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Weiqin Chen
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
5
|
Zhang X, Bao J, Zhang Y, Wang X. Alpha-Linolenic Acid Ameliorates Cognitive Impairment and Liver Damage Caused by Obesity. Diabetes Metab Syndr Obes 2024; 17:981-995. [PMID: 38435630 PMCID: PMC10909331 DOI: 10.2147/dmso.s434671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/13/2023] [Indexed: 03/05/2024] Open
Abstract
Background Obesity is a growing global problem that causes various complications such as diabetes, cognitive dysfunction, cardiovascular diseases, and hepatobiliary disease. Alpha-linolenic acid (ALA) has been reported to exhibit multiple pharmaceutical effects. This study aimed to explore the effects of ALA on obesity-induced adipose tissue accumulation, cognitive impairment, inflammation, and colonic mucosal barrier integrity. Methods Mice were fed with high-fat diet (HFD) and were treated with ALA (60 or 100 mg/kg). Body weight, adipose tissue, serum glucose and lipid levels, glucose resistance, and insulin resistance were measured. Cognitive ability was analyzed using the behavior tests. PTP1B and IRS/p-AKT/p-GSK3β/p-Tau signaling were examined to evaluate inflammation and synaptogenesis. Colon mucosal barrier integrity was examined by Alcian blue staining and expression of the tight junction proteins. The production of pro-inflammatory cytokines and liver damages were evaluated. 3T3-L1 cells were used for in vitro experiments. Cell viability, migration and invasion were detected. The levels of ROS, iron, and ferrous ions were measured to assess ferroptosis. Metabolomic analysis of adipose tissues was performed. Results ALA treatment prevented HFD-induced adipose tissue accumulation, improved glucose and lipid homeostasis and metabolism. Administration of ALA repressed the HFD-induced increase in insulin levels and insulin resistance index. Serum and colon levels of pro-inflammatory cytokines were decreased after ALA treatment. ALA elevated mitochondrial content in brown adipose tissues. ALA ameliorated obesity-induced cognitive impairment and hippocampal inflammation, enhanced colon mucosa integrity. ALA treatment ameliorated HFD-induced liver damage and lipid accumulation and inhibited differentiation of preadipocyte 3T3-L1 cells into mature adipocytes and induces ferroptosis. Metabolomic analysis suggested that ALA may target the glycerolipid metabolism pathway to ameliorate obesity. Knockdown of AGPAT2 abolished the protective effects of ALA. Conclusion ALA treatment suppressed adipose accumulation in adipocytes, improved cognitive ability and colon integrity, and alleviated liver damage by modulating the 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2).
Collapse
Affiliation(s)
- Xian Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, People’s Republic of China
| | - Jialu Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, People’s Republic of China
| | - Yan Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, People’s Republic of China
| | - Xiaodan Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, People’s Republic of China
| |
Collapse
|
6
|
Peng K, Chen X, Pei K, Wang X, Ma X, Liang C, Dong Q, Liu Z, Han M, Liu G, Yang H, Zheng M, Liu G, Gao M. Lipodystrophic gene Agpat2 deficiency aggravates hyperlipidemia and atherosclerosis in Ldlr -/- mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166850. [PMID: 37591406 DOI: 10.1016/j.bbadis.2023.166850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
AIMS Dysfunction of adipose tissue increases the risk of cardiovascular disease. It was well established that obesity aggravates atherosclerosis, but the effect of adipose tissue loss on atherosclerosis has been less studied. AGPAT2 is the first causative gene of congenital generalized lipodystrophy (CGL), but the role of AGPAT2 on atherosclerosis has not been reported. Hypertriglyceridemia is one of the clinical manifestations of CGL patients, but it is usually absent in CGL mouse model on a normal diet. This study will investigate the effect of Agpat2 on hyperlipidemia and atherosclerosis. METHODS AND RESULTS In this study, Agpat2 knockout (Agpat2-/-) mice were generated using CRISPR/Cas system, which showed severe loss of adipose tissue and fatty liver, consistent with previous reports. Agpat2-/- mice were then crossed with hypercholesterolemic and atherosclerotic prone LDL receptor knockout (Ldlr-/-) mice to obtain double knockout mouse model (Agpat2-/-Ldlr-/-). Plasma lipid profile, insulin resistance, fatty liver, and atherosclerotic lesions were observed after 12 weeks of the atherogenic high-fat diet (HFD) feeding. We found that compared with Ldlr-/- mice, Agpat2-/-Ldlr-/- mice showed significantly higher plasma total cholesterol and triglycerides after HFD feeding. Agpat2-/-Ldlr-/- mice also developed hyperglycemia and hyperinsulinemia, with increased pancreatic islet area. The liver weight of Agpat2-/-Ldlr-/- mice was about 4 times higher than that of Ldlr-/- mice. The liver lipid deposition was severe and Sirius red staining showed liver fibrosis. In addition, in Agpat2-/-Ldlr-/- mice, the area of atherosclerotic lesions in aortic arch and aortic root was significantly increased. CONCLUSIONS Our results show that Agpat2 deficiency led to more severe hyperlipidemia, liver fibrosis and aggravation of atherosclerosis in Ldlr-/- mice. This study provided additional insights into the role of adipose tissue in hyperlipidemia and atherosclerosis.
Collapse
Affiliation(s)
- Kenan Peng
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Laboratory Department of Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Xin Chen
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| | - Kexin Pei
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| | - Xiaowei Wang
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xindi Ma
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Chenxi Liang
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Qianqian Dong
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Ziwei Liu
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW 2052, Australia
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China.
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China.
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
| |
Collapse
|
7
|
Sakuma I, Gaspar RC, Luukkonen PK, Kahn M, Zhang D, Zhang X, Murray S, Golla JP, Vatner DF, Samuel VT, Petersen KF, Shulman GI. Lysophosphatidic acid triggers inflammation in the liver and white adipose tissue in rat models of 1-acyl-sn-glycerol-3-phosphate acyltransferase 2 deficiency and overnutrition. Proc Natl Acad Sci U S A 2023; 120:e2312666120. [PMID: 38127985 PMCID: PMC10756285 DOI: 10.1073/pnas.2312666120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
AGPAT2 (1-acyl-sn-glycerol-3-phosphate-acyltransferase-2) converts lysophosphatidic acid (LPA) into phosphatidic acid (PA), and mutations of the AGPAT2 gene cause the most common form of congenital generalized lipodystrophy which leads to steatohepatitis. The underlying mechanism by which AGPAT2 deficiency leads to lipodystrophy and steatohepatitis has not been elucidated. We addressed this question using an antisense oligonucleotide (ASO) to knockdown expression of Agpat2 in the liver and white adipose tissue (WAT) of adult male Sprague-Dawley rats. Agpat2 ASO treatment induced lipodystrophy and inflammation in WAT and the liver, which was associated with increased LPA content in both tissues, whereas PA content was unchanged. We found that a controlled-release mitochondrial protonophore (CRMP) prevented LPA accumulation and inflammation in WAT whereas an ASO against glycerol-3-phosphate acyltransferase, mitochondrial (Gpam) prevented LPA content and inflammation in the liver in Agpat2 ASO-treated rats. In addition, we show that overnutrition, due to high sucrose feeding, resulted in increased hepatic LPA content and increased activated macrophage content which were both abrogated with Gpam ASO treatment. Taken together, these data identify LPA as a key mediator of liver and WAT inflammation and lipodystrophy due to AGPAT2 deficiency as well as liver inflammation due to overnutrition and identify LPA as a potential therapeutic target to ameliorate these conditions.
Collapse
Affiliation(s)
- Ikki Sakuma
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
- Department of Molecular Diagnosis, Graduate School of Medicine Chiba University, Chiba260-8670, Japan
| | - Rafael C. Gaspar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Panu K. Luukkonen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Xuchen Zhang
- Department of Pathology, Yale School of Medicine, New Haven, CT06520
| | | | - Jaya Prakash Golla
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Daniel F. Vatner
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Varman T. Samuel
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Kitt Falk Petersen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT06520
- Howard Hughes Medical Institute, Chevy Chase, MD20815
| |
Collapse
|
8
|
Agarwal AK, Tunison K, Vale G, McDonald JG, Li X, Scherer PE, Horton JD, Garg A. Regulated adipose tissue-specific expression of human AGPAT2 in lipodystrophic Agpat2-null mice results in regeneration of adipose tissue. iScience 2023; 26:107806. [PMID: 37752957 PMCID: PMC10518674 DOI: 10.1016/j.isci.2023.107806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Genetic loss of Agpat2 in humans and mice results in congenital generalized lipodystrophy with near-total loss of adipose tissue and predisposition to develop insulin resistance, diabetes mellitus, hepatic steatosis, and hypertriglyceridemia. The mechanism by which Agpat2 deficiency results in loss of adipose tissue remains unknown. We studied this by re-expressing human AGPAT2 (hAGPAT2) in Agpat2-null mice, regulated by doxycycline. In both sexes of Agpat2-null mice, adipose-tissue-specific re-expression of hAGPAT2 resulted in partial regeneration of both white and brown adipose tissue (but only 30%-50% compared with wild-type mice), which had molecular signatures of adipocytes, including leptin secretion. Furthermore, the stromal vascular fraction cells of regenerated adipose depots differentiated ex vivo only with doxycycline, suggesting the essential role of Agpat2 in adipocyte differentiation. Turning off expression of hAGPAT2 in vivo resulted in total loss of regenerated adipose tissue, clear evidence that Agpat2 is essential for adipocyte differentiation in vivo.
Collapse
Affiliation(s)
- Anil K. Agarwal
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katie Tunison
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Goncalo Vale
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey G. McDonald
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xilong Li
- Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philipp E. Scherer
- Touchstone Center for Diabetes Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jay D. Horton
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Abhimanyu Garg
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
9
|
Jin L, Wang D, Zhang J, Liu P, Wang Y, Lin Y, Liu C, Han Z, Long K, Li D, Jiang Y, Li G, Zhang Y, Bai J, Li X, Li J, Lu L, Kong F, Wang X, Li H, Huang Z, Ma J, Fan X, Shen L, Zhu L, Jiang Y, Tang G, Feng B, Zeng B, Ge L, Li X, Tang Q, Zhang Z, Li M. Dynamic chromatin architecture of the porcine adipose tissues with weight gain and loss. Nat Commun 2023; 14:3457. [PMID: 37308492 PMCID: PMC10258790 DOI: 10.1038/s41467-023-39191-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
Using an adult female miniature pig model with diet-induced weight gain/weight loss, we investigated the regulatory mechanisms of three-dimensional (3D) genome architecture in adipose tissues (ATs) associated with obesity. We generated 249 high-resolution in situ Hi-C chromatin contact maps of subcutaneous AT and three visceral ATs, analyzing transcriptomic and chromatin architectural changes under different nutritional treatments. We find that chromatin architecture remodeling underpins transcriptomic divergence in ATs, potentially linked to metabolic risks in obesity development. Analysis of chromatin architecture among subcutaneous ATs of different mammals suggests the presence of transcriptional regulatory divergence that could explain phenotypic, physiological, and functional differences in ATs. Regulatory element conservation analysis in pigs and humans reveals similarities in the regulatory circuitry of genes responsible for the obesity phenotype and identified non-conserved elements in species-specific gene sets that underpin AT specialization. This work provides a data-rich tool for discovering obesity-related regulatory elements in humans and pigs.
Collapse
Grants
- National Natural Science Foundation of China (National Science Foundation of China)
- the National Key R & D Program of China (2020YFA0509500), the Sichuan Science and Technology Program (2021YFYZ0009 and 2021YFYZ0030)
- the National Key R & D Program of China (2021YFA0805903), the Tackling Project for Agricultural Key Core Technologies of China (NK2022110602), the Sichuan Science and Technology Program (2021ZDZX0008, 2022NZZJ0028 and 2022JDJQ0054), the Ya’an Science and Technology Program (21SXHZ0022)
- the Sichuan Science and Technology Program (2022NSFSC0056)
- the Sichuan Science and Technology Program (2022NSFSC1618)
- the National Key R & D Program of China (2021YFD1300800), the Sichuan Science and Technology Program (2021YFS0008 and 2022YFQ0022)
- the Opening Foundation of Key Laboratory of Pig Industry Sciences (22519C)
- the Sichuan Science and Technology Program (2021YFH0033), the Major Science and Technology Projects of Tibet Autonomous Region (XZ202101ZD0005N)
- the China Agriculture Research System (CARS-35-01A)
- the National Key R & D Program of China (2022YFF1000100), the Sichuan Science and Technology Program (2021ZDZX0008, 2022NZZJ0028 and 2022JDJQ0054)
- the Strategic Priority Research Program of CAS (XDA24020307), the Special Investigation on Science and Technology Basic Resources of the MOST of China (2019FY100102), the Beijing Natural Science Foundation (Z200021)
Collapse
Affiliation(s)
- Long Jin
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Danyang Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
- Sars-Fang Centre and MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, China
| | - Jiaman Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pengliang Liu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yujie Wang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Lin
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Can Liu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ziyin Han
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Molecular Design and Precise Breeding Key Laboratory of Guangdong Province, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Keren Long
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Guisen Li
- Institute of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yu Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingyi Bai
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaokai Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lu Lu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fanli Kong
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xun Wang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hua Li
- Animal Molecular Design and Precise Breeding Key Laboratory of Guangdong Province, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jideng Ma
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaolan Fan
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linyuan Shen
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanzhi Jiang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoqing Tang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Feng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Zeng
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Ya'an Digital Economy Operation Company, Ya'an, 625014, China
| | - Liangpeng Ge
- Pig Industry Sciences Key Laboratory of Ministry of Agriculture and Rural Affairs, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Xuewei Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qianzi Tang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhihua Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China.
- School of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Mingzhou Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
10
|
Muller YL, Saporito M, Day S, Bandesh K, Koroglu C, Kobes S, Knowler WC, Hanson RL, Van Hout CV, Shuldiner AR, Bogardus C, Baier LJ. Functional characterization of a novel p.Ser76Thr variant in IGFBP4 that associates with body mass index in American Indians. Eur J Hum Genet 2022; 30:1159-1166. [PMID: 35688891 PMCID: PMC9554187 DOI: 10.1038/s41431-022-01129-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/18/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
Insulin-like growth factor binding protein 4 (IGFBP4) is involved in adipogenesis, and IGFBP4 null mice have decreased body fat through decreased PPAR-γ expression. In the current study, we assessed whether variation in the IGFBP4 coding region influences body mass index (BMI) in American Indians who are disproportionately affected by obesity. Whole exome sequence data from a population-based sample of 6779 American Indians with longitudinal measures of BMI were used to identify variation in IGFBP4 that associated with BMI. A novel variant that predicts a p.Ser76Thr in IGFBP4 (Thr-allele frequency = 0.02) was identified which associated with the maximum BMI measured during adulthood (BMI 39.8 kg/m2 for Thr-allele homozygotes combined with heterozygotes vs. 36.2 kg/m2 for Ser-allele homozygotes, β = 6.7% per Thr-allele, p = 8.0 × 10-5, adjusted for age, sex, birth-year and the first five genetic principal components) and the maximum age- and sex-adjusted BMI z-score measured during childhood/adolescence (z-score 0.70 SD for Thr-allele heterozygotes vs. 0.32 SD for Ser-allele homozygotes, β = 0.37 SD per Thr-allele, p = 8.8 × 10-6). In vitro functional studies showed that IGFBP4 with the Thr-allele (BMI-increasing) had a 55% decrease (p = 0.0007) in FOXO-induced transcriptional activity, reflecting increased activation of the PI3K/AKT pathway mediated through increased IGF signaling. Over-expression and knock-down of IGFBP4 in OP9 cells during differentiation showed that IGFBP4 upregulates adipogenesis through PPARγ, CEBPα, AGPAT2 and SREBP1 expression. We propose that this American Indian specific variant in IGFBP4 affects obesity via an increase of IGF signaling.
Collapse
Affiliation(s)
- Yunhua L Muller
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA.
| | - Michael Saporito
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Samantha Day
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Khushdeep Bandesh
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Cigdem Koroglu
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - William C Knowler
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Cristopher V Van Hout
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
- Laboratorio Internacional de Investigation sobre el Genoma Humano, Campus Juriquilla de la Universidad Nacional Autonoma de Mexico, Queretaro, QRO, Mexico
| | - Alan R Shuldiner
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Clifton Bogardus
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| |
Collapse
|
11
|
Toyoda S, Shin J, Fukuhara A, Otsuki M, Shimomura I. Transforming growth factor β1 signaling links extracellular matrix remodeling to intracellular lipogenesis upon physiological feeding events. J Biol Chem 2022; 298:101748. [PMID: 35189145 PMCID: PMC8931428 DOI: 10.1016/j.jbc.2022.101748] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue dynamically changes its mass in response to external nutritional status, which plays an important role in maintaining the lipid homeostasis. Physiologically, feeding events are associated with the expansion of adipose tissue, but little is known about the detailed molecular mechanisms of this expansion. Here, using comprehensive transcriptome analysis, we found that levels of transforming growth factor β1 (TGF-β1), a key regulator of extracellular matrix (ECM) remodeling, were increased in adipose tissue under feeding conditions and associated with the lipogenic pathway. In addition, TGF-β receptors are highly expressed in adipose tissue, and pharmacological inhibition of TGF-β1 reduced adipose tissue mass and caused ectopic lipid accumulation in the liver. This reduced fat mass was associated with decreased gene expression in ECM remodeling and lipogenesis. Furthermore, similar results were observed in the adipose tissue of SMAD family member 3 knockout mice or upon systemic TGF-β neutralization, with significant reductions in both ECM remodeling and lipogenesis-related genes. Mechanistically, we found that insulin-induced TGF-β1 and cell-autonomous action remodels the ECM of adipocytes, which controls the downstream focal adhesion kinase–AKT signaling cascades and enhances the lipogenic pathway. Of note, destruction of collagens or matrix metalloproteinase/a disintegrin and metalloprotease activities, critical components of ECM remodeling, blocked TGF-β1-mediated focal adhesion kinase–AKT signaling and the lipogenic pathway. Taken together, this study identifies a previously unknown lipogenic role of TGF-β1 by which adipocytes can expand to adapt to physiological feeding events.
Collapse
Affiliation(s)
- Shinichiro Toyoda
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jihoon Shin
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Diabetes Care Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Atsunori Fukuhara
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Adipose Management, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Michio Otsuki
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
12
|
Cautivo KM, Matatia PR, Lizama CO, Mroz NM, Dahlgren MW, Yu X, Sbierski-Kind J, Taruselli MT, Brooks JF, Wade-Vallance A, Caryotakis SE, Chang AA, Liang HE, Zikherman J, Locksley RM, Molofsky AB. Interferon gamma constrains type 2 lymphocyte niche boundaries during mixed inflammation. Immunity 2022; 55:254-271.e7. [PMID: 35139352 PMCID: PMC8852844 DOI: 10.1016/j.immuni.2021.12.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 09/20/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
Allergic immunity is orchestrated by group 2 innate lymphoid cells (ILC2s) and type 2 helper T (Th2) cells prominently arrayed at epithelial- and microbial-rich barriers. However, ILC2s and Th2 cells are also present in fibroblast-rich niches within the adventitial layer of larger vessels and similar boundary structures in sterile deep tissues, and it remains unclear whether they undergo dynamic repositioning during immune perturbations. Here, we used thick-section quantitative imaging to show that allergic inflammation drives invasion of lung and liver non-adventitial parenchyma by ILC2s and Th2 cells. However, during concurrent type 1 and type 2 mixed inflammation, IFNγ from broadly distributed type 1 lymphocytes directly blocked both ILC2 parenchymal trafficking and subsequent cell survival. ILC2 and Th2 cell confinement to adventitia limited mortality by the type 1 pathogen Listeria monocytogenes. Our results suggest that the topography of tissue lymphocyte subsets is tightly regulated to promote appropriately timed and balanced immunity.
Collapse
Affiliation(s)
- Kelly M Cautivo
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Peri R Matatia
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Carlos O Lizama
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas M Mroz
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Madelene W Dahlgren
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Xiaofei Yu
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Julia Sbierski-Kind
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Marcela T Taruselli
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jeremy F Brooks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Adam Wade-Vallance
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Sofia E Caryotakis
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Anthony A Chang
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Hong-Erh Liang
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Julie Zikherman
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Richard M Locksley
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Karagiota A, Chachami G, Paraskeva E. Lipid Metabolism in Cancer: The Role of Acylglycerolphosphate Acyltransferases (AGPATs). Cancers (Basel) 2022; 14:cancers14010228. [PMID: 35008394 PMCID: PMC8750616 DOI: 10.3390/cancers14010228] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Rapidly proliferating cancer cells reprogram lipid metabolism to keep the balance between fatty acid uptake, synthesis, consumption, and storage as triacylglycerides (TAG). Acylglycerolphosphate acyltransferases (AGPATs)/lysophosphatidic acid acyltransferases (LPAATs) are a family of enzymes that catalyze the synthesis of phosphatidic acid (PA), an intermediate in TAG synthesis, a signaling molecule, and a precursor of phospholipids. Importantly, the expression of AGPATs has been linked to diverse physiological and pathological phenotypes, including cancer. In this review, we present an overview of lipid metabolism reprogramming in cancer cells and give insight into the expression of AGPAT isoforms as well as their association with cancers, parameters of tumor biology, patient classification, and prognosis. Abstract Altered lipid metabolism is an emerging hallmark of aggressive tumors, as rapidly proliferating cancer cells reprogram fatty acid (FA) uptake, synthesis, storage, and usage to meet their increased energy demands. Central to these adaptive changes, is the conversion of excess FA to neutral triacylglycerides (TAG) and their storage in lipid droplets (LDs). Acylglycerolphosphate acyltransferases (AGPATs), also known as lysophosphatidic acid acyltransferases (LPAATs), are a family of five enzymes that catalyze the conversion of lysophosphatidic acid (LPA) to phosphatidic acid (PA), the second step of the TAG biosynthesis pathway. PA, apart from its role as an intermediate in TAG synthesis, is also a precursor of glycerophospholipids and a cell signaling molecule. Although the different AGPAT isoforms catalyze the same reaction, they appear to have unique non-overlapping roles possibly determined by their distinct tissue expression and substrate specificity. This is best exemplified by the role of AGPAT2 in the development of type 1 congenital generalized lipodystrophy (CGL) and is also manifested by recent studies highlighting the involvement of AGPATs in the physiology and pathology of various tissues and organs. Importantly, AGPAT isoform expression has been shown to enhance proliferation and chemoresistance of cancer cells and correlates with increased risk of tumor development or aggressive phenotypes of several types of tumors.
Collapse
Affiliation(s)
- Angeliki Karagiota
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.K.); (G.C.)
- Laboratory of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.K.); (G.C.)
| | - Efrosyni Paraskeva
- Laboratory of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece
- Correspondence:
| |
Collapse
|
14
|
Le Lay S, Magré J, Prieur X. Not Enough Fat: Mouse Models of Inherited Lipodystrophy. Front Endocrinol (Lausanne) 2022; 13:785819. [PMID: 35250856 PMCID: PMC8895270 DOI: 10.3389/fendo.2022.785819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Lipodystrophies belong to the heterogenous group of syndromes in which the primary defect is a generalized or partial absence of adipose tissue, which may be congenital or acquired in origin. Lipodystrophy should be considered in patients manifesting the combination of insulin resistance (with or without overt diabetes), dyslipidemia and fatty liver. Lipodystrophies are classified according to the etiology of the disease (genetic or acquired) and to the anatomical distribution of adipose tissue (generalized or partial). The mechanism of adipose tissue loss is specific to each syndrome, depending on the biological function of the mutated gene. Mice models, together with cellular studies have permitted clarification of the mechanisms by which human mutations deeply compromise adipocyte homeostasis. In addition, rodent models have proven to be crucial in deciphering the cardiometabolic consequences of the lack of adipose tissue such as NAFLD, muscle insulin resistance and cardiomyopathy. More precisely, tissue-specific transgenic and knockout mice have brought new tools to distinguish phenotypic traits that are the consequences of lipodystrophy from those that are cell-autonomous. In this review, we discuss the mice models of lipodystrophy including those of inherited human syndromes of generalized and partial lipodystrophy. We present how these models have demonstrated the central role of white adipose tissue in energetic homeostasis in general, including insulin sensitivity and lipid handling in particular. We underscore the differences reported with the human phenotype and discuss the limit of rodent models in recapitulating adipose tissue primary default. Finally, we present how these mice models have highlighted the function of the causative-genes and brought new insights into the pathophysiology of the cardiometabolic complications associated with lipodystrophy.
Collapse
Affiliation(s)
- Soazig Le Lay
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
- Univ Angers, SFR ICAT, Angers, France
| | - Jocelyne Magré
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
| | - Xavier Prieur
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
- *Correspondence: Xavier Prieur,
| |
Collapse
|
15
|
Tabata K, Prasad V, Paul D, Lee JY, Pham MT, Twu WI, Neufeldt CJ, Cortese M, Cerikan B, Stahl Y, Joecks S, Tran CS, Lüchtenborg C, V'kovski P, Hörmann K, Müller AC, Zitzmann C, Haselmann U, Beneke J, Kaderali L, Erfle H, Thiel V, Lohmann V, Superti-Furga G, Brügger B, Bartenschlager R. Convergent use of phosphatidic acid for hepatitis C virus and SARS-CoV-2 replication organelle formation. Nat Commun 2021; 12:7276. [PMID: 34907161 PMCID: PMC8671429 DOI: 10.1038/s41467-021-27511-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022] Open
Abstract
Double membrane vesicles (DMVs) serve as replication organelles of plus-strand RNA viruses such as hepatitis C virus (HCV) and SARS-CoV-2. Viral DMVs are morphologically analogous to DMVs formed during autophagy, but lipids driving their biogenesis are largely unknown. Here we show that production of the lipid phosphatidic acid (PA) by acylglycerolphosphate acyltransferase (AGPAT) 1 and 2 in the ER is important for DMV biogenesis in viral replication and autophagy. Using DMVs in HCV-replicating cells as model, we found that AGPATs are recruited to and critically contribute to HCV and SARS-CoV-2 replication and proper DMV formation. An intracellular PA sensor accumulated at viral DMV formation sites, consistent with elevated levels of PA in fractions of purified DMVs analyzed by lipidomics. Apart from AGPATs, PA is generated by alternative pathways and their pharmacological inhibition also impaired HCV and SARS-CoV-2 replication as well as formation of autophagosome-like DMVs. These data identify PA as host cell lipid involved in proper replication organelle formation by HCV and SARS-CoV-2, two phylogenetically disparate viruses causing very different diseases, i.e. chronic liver disease and COVID-19, respectively. Host-targeting therapy aiming at PA synthesis pathways might be suitable to attenuate replication of these viruses.
Collapse
Affiliation(s)
- Keisuke Tabata
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Vibhu Prasad
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - David Paul
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ji-Young Lee
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Minh-Tu Pham
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Woan-Ing Twu
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Yannick Stahl
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Sebastian Joecks
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- LI-COR Biosciences GmbH, Siemensstrasse 25A, Bad Homburg, Germany
| | - Cong Si Tran
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | | | - Philip V'kovski
- Institute of Virology and Immunology IVI, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Katrin Hörmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Carolin Zitzmann
- Institute of Bioinformatics and Center for Functional Genomics of Microbes, University Medicine Greifswald, Greifswald, Germany
- Los Alamos National Laboratory, Theoretical Biology and Biophysics, Los Alamos, NM, USA
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Jürgen Beneke
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Lars Kaderali
- Institute of Bioinformatics and Center for Functional Genomics of Microbes, University Medicine Greifswald, Greifswald, Germany
| | - Holger Erfle
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Volker Thiel
- Institute of Virology and Immunology IVI, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Britta Brügger
- Biochemistry Center Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany.
- Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany.
- German Center for Infection Research, Heidelberg Partner Site, Heidelberg, Germany.
| |
Collapse
|
16
|
Mak HY, Ouyang Q, Tumanov S, Xu J, Rong P, Dong F, Lam SM, Wang X, Lukmantara I, Du X, Gao M, Brown AJ, Gong X, Shui G, Stocker R, Huang X, Chen S, Yang H. AGPAT2 interaction with CDP-diacylglycerol synthases promotes the flux of fatty acids through the CDP-diacylglycerol pathway. Nat Commun 2021; 12:6877. [PMID: 34824276 PMCID: PMC8616899 DOI: 10.1038/s41467-021-27279-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
AGPATs (1-acylglycerol-3-phosphate O-acyltransferases) catalyze the acylation of lysophosphatidic acid to form phosphatidic acid (PA), a key step in the glycerol-3-phosphate pathway for the synthesis of phospholipids and triacylglycerols. AGPAT2 is the only AGPAT isoform whose loss-of-function mutations cause a severe form of human congenital generalized lipodystrophy. Paradoxically, AGPAT2 deficiency is known to dramatically increase the level of its product, PA. Here, we find that AGPAT2 deficiency impairs the biogenesis and growth of lipid droplets. We show that AGPAT2 deficiency compromises the stability of CDP-diacylglycerol (DAG) synthases (CDSs) and decreases CDS activity in both cell lines and mouse liver. Moreover, AGPAT2 and CDS1/2 can directly interact and form functional complexes, which promote the metabolism of PA along the CDP-DAG pathway of phospholipid synthesis. Our results provide key insights into the regulation of metabolic flux during lipid synthesis and suggest substrate channelling at a major branch point of the glycerol-3-phosphate pathway.
Collapse
Affiliation(s)
- Hoi Yin Mak
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, 2052, Australia
| | - Qian Ouyang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China
| | - Sergey Tumanov
- Heart Research Institute, The University of Sydney, Newtown, NSW, 2042, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Jiesi Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ping Rong
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China
| | - Feitong Dong
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.,Lipidall Technologies Company Limited, 213022, Changzhou, Jiangsu Province, China
| | - Xiaowei Wang
- Laboratory of Lipid Metabolism, Hebei Medical University, 050017, Shijiazhuang, Hebei, China
| | - Ivan Lukmantara
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Hebei Medical University, 050017, Shijiazhuang, Hebei, China
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xin Gong
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, Newtown, NSW, 2042, Australia.,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shuai Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
17
|
González-Hódar L, McDonald JG, Vale G, Thompson BM, Figueroa AM, Tapia PJ, Robledo F, Agarwal AK, Garg A, Horton JD, Cortés V. Decreased caveolae in AGPAT2 lacking adipocytes is independent of changes in cholesterol or sphingolipid levels: A whole cell and plasma membrane lipidomic analysis of adipogenesis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166167. [PMID: 33989739 DOI: 10.1016/j.bbadis.2021.166167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Adipocytes from lipodystrophic Agpat2-/- mice have impaired adipogenesis and fewer caveolae. Herein, we examined whether these defects are associated with changes in lipid composition or abnormal levels of caveolae-associated proteins. Lipidome changes were quantified in differentiated Agpat2-/- adipocytes to identify lipids with potential adipogenic roles. METHODS Agpat2-/- and wild type brown preadipocytes were differentiated in vitro. Plasma membrane was purified by ultracentrifugation. Number of caveolae and caveolae-associated proteins, as well as sterol, sphingolipid, and phospholipid lipidome were determined across differentiation. RESULTS Differentiated Agpat2-/- adipocytes had decreased caveolae number but conserved insulin signaling. Caveolin-1 and cavin-1 levels were equivalent between Agpat2-/- and wild type adipocytes. No differences in PM cholesterol and sphingolipids abundance were detected between genotypes. Levels of phosphatidylserine at day 10 of differentiation were increased in Agpat2-/- adipocytes. Wild type adipocytes had increased whole cell triglyceride, diacylglycerol, phosphatidylglycerol, phosphatidic acid, lysophosphatidylcholine, lysophosphatidylethanolamine, and trihexosyl ceramide, and decreased 24,25-dihydrolanosterol and sitosterol, as a result of adipogenic differentiation. By contrast, adipogenesis did not modify whole cell neutral lipids but increased lysophosphatidylcholine, sphingomyelin, and trihexosyl ceramide levels in Agpat2-/- adipocytes. Unexpectedly, adipogenesis decreased PM levels of main phospholipids in both genotypes. CONCLUSION In Agpat2-/- adipocytes, decreased caveolae is not associated with changes in PM cholesterol nor sphingolipid levels; however, increased PM phosphatidylserine content may be implicated. Abnormal lipid composition is associated with the adipogenic abnormalities of Agpat2 -/- adipocytes but does not prevent insulin signaling.
Collapse
Affiliation(s)
- Lila González-Hódar
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, 8331150, Chile
| | - Jeffrey G McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, United States
| | - Goncalo Vale
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Bonne M Thompson
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Ana-María Figueroa
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, 8331150, Chile
| | - Pablo J Tapia
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, 8331150, Chile
| | - Fermín Robledo
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, 8331150, Chile
| | - Anil K Agarwal
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, TX 75390, United States
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, TX 75390, United States
| | - Jay D Horton
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, United States; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, United States.
| | - Víctor Cortés
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, 8331150, Chile.
| |
Collapse
|
18
|
Keogh K, Kelly AK, Kenny DA. Effect of plane of nutrition in early life on the transcriptome of visceral adipose tissue in Angus heifer calves. Sci Rep 2021; 11:9716. [PMID: 33958675 PMCID: PMC8102595 DOI: 10.1038/s41598-021-89252-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/15/2021] [Indexed: 02/03/2023] Open
Abstract
Adipose tissue represents not only an important energy storage tissue but also a major endocrine organ within the body, influencing many biochemical systems including metabolic status, immune function and energy homeostasis. The objective of this study was to evaluate the effect of an enhanced dietary intake during the early calfhood period on the transcriptome of visceral adipose tissue. Artificially reared Angus × Holstein-Friesian heifer calves were offered either a high (HI, n = 15) or moderate (MOD, n = 15) plane of nutrition from 3 to 21 weeks of life. At 21 weeks of age all calves were euthanized, visceral adipose harvested and samples subsequently subjected to mRNA sequencing. Plane of nutrition resulted in the differential expression of 1214 genes within visceral adipose tissue (adj. p < 0.05; fold change > 1.5). Differentially expressed genes were involved in processes related to metabolism and energy production. Biochemical pathways including Sirtuin signalling (adj. p < 0.0001) and the adipogenesis pathways (adj. p = 0.009) were also significantly enriched, indicating greater metabolic processing and adipogenesis in the calves on the high plane of nutrition. Results from this study identify novel genes regulating the molecular response of visceral adipose tissue to an improved plane of nutrition during early calfhood.
Collapse
Affiliation(s)
- Kate Keogh
- Teagasc Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co Meath, Ireland
| | - Alan K. Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - David A. Kenny
- Teagasc Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co Meath, Ireland ,School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
19
|
Ito K, Schneeberger M, Gerber A, Jishage M, Marchildon F, Maganti AV, Cohen P, Friedman JM, Roeder RG. Critical roles of transcriptional coactivator MED1 in the formation and function of mouse adipose tissues. Genes Dev 2021; 35:729-748. [PMID: 33888560 PMCID: PMC8091968 DOI: 10.1101/gad.346791.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/16/2021] [Indexed: 01/12/2023]
Abstract
In this study, Ito et al. sought to understand the precise roles of MED1, and its various domains, at various stages of adipogenesis and in adipose tissue. Using multiple genetic approaches to assess requirements for MED1 in adipocyte formation and function in mice, they show that MED1 is indeed essential for the differentiation and/or function of both brown and white adipocytes, as its absence in these cells leads to, respectively, defective brown fat function and lipodystrophy. The MED1 subunit has been shown to mediate ligand-dependent binding of the Mediator coactivator complex to multiple nuclear receptors, including the adipogenic PPARγ, and to play an essential role in ectopic PPARγ-induced adipogenesis of mouse embryonic fibroblasts. However, the precise roles of MED1, and its various domains, at various stages of adipogenesis and in adipose tissue have been unclear. Here, after establishing requirements for MED1, including specific domains, for differentiation of 3T3L1 cells and both primary white and brown preadipocytes, we used multiple genetic approaches to assess requirements for MED1 in adipocyte formation, maintenance, and function in mice. We show that MED1 is indeed essential for the differentiation and/or function of both brown and white adipocytes, as its absence in these cells leads to, respectively, defective brown fat function and lipodystrophy. This work establishes MED1 as an essential transcriptional coactivator that ensures homeostatic functions of adipocytes.
Collapse
Affiliation(s)
- Keiichi Ito
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Marc Schneeberger
- Laboratory of Molecular Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Alan Gerber
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Miki Jishage
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Francois Marchildon
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York 10065, USA
| | - Aarthi V Maganti
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York 10065, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York 10065, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
20
|
Araújo de Melo Campos JT, Dantas de Medeiros JL, Cardoso de Melo ME, Alvares da Silva M, Oliveira de Sena M, Sales Craveiro Sarmento A, Fassarella Agnez Lima L, de Freitas Fregonezi GA, Gomes Lima J. Endoplasmic reticulum stress and muscle dysfunction in congenital lipodystrophies. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166120. [PMID: 33713793 DOI: 10.1016/j.bbadis.2021.166120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/17/2023]
Abstract
Lipodystrophy syndromes are a group of rare diseases related to the pathological impairment of adipose tissue and metabolic comorbidities, including dyslipidemia, diabetes, insulin resistance, hypoleptinemia, and hypoadiponectinemia. They can be categorized as partial or generalized according to the degree of fat loss, and inherited or acquired disorders, if they are associated with genetic mutations or are related to autoimmunity, respectively. Some types of lipodystrophies have been associated with changes in both redox and endoplasmic reticulum (ER) homeostasis as well as muscle dysfunction (MD). Although ER stress (ERS) has been related to muscle dysfunction (MD) in many diseases, there is no data concerning its role in lipodystrophies' muscle physiopathology. Here we focused on congenital lipodystrophies associated with ERS and MD. We also described recent advances in our understanding of the relationships among ERS, MD, and genetic lipodystrophies, highlighting the adiponectin-protective roles.
Collapse
Affiliation(s)
- Julliane Tamara Araújo de Melo Campos
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| | - Jorge Luiz Dantas de Medeiros
- PneumoCardioVascular Lab/HUOL, Hospital Universitário Onofre Lopes, Empresa Brasileira de Serviços Hospitalares and Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| | - Maria Eduarda Cardoso de Melo
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Monique Alvares da Silva
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Matheus Oliveira de Sena
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Aquiles Sales Craveiro Sarmento
- Unidade de Laboratório de Análises Clínicas e Anatomia Patológica, Hospital Universitário de Lagarto (HUL)/UFS, Lagarto, SE, Brazil
| | - Lucymara Fassarella Agnez Lima
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Guilherme Augusto de Freitas Fregonezi
- PneumoCardioVascular Lab/HUOL, Hospital Universitário Onofre Lopes, Empresa Brasileira de Serviços Hospitalares and Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil; Laboratório de Inovação Tecnológica em Reabilitação, Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Josivan Gomes Lima
- Departamento de Medicina Clínica, Hospital Universitário Onofre Lopes (HUOL)/UFRN, Natal, RN, Brazil
| |
Collapse
|
21
|
Zhang Y, Gao Y, Li Y, Zhang X, Xie H. Characterization of the Relationship Between the Expression of Aspartate β-Hydroxylase and the Pathological Characteristics of Breast Cancer. Med Sci Monit 2020; 26:e926752. [PMID: 33380715 PMCID: PMC7784592 DOI: 10.12659/msm.926752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background This study aimed to investigate the relationship between the expression of aspartate β-hydroxylase (ASPH) and the molecular mechanisms of ASPH-related genes in breast cancer (BC). Material/Methods ASPH expression was determined by immunohistochemistry and western blot analysis in samples of BC tissues and adjacent normal tissues. ASPH mRNA expression data and their clinical significance in BC were retrieved from the Oncomine and GEPIA datasets. Enrichment analysis of genes coexpressed with ASPH and annotation of potential pathways were performed with Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) analysis. Hub genes were shown in an ASPH coexpression gene-interaction network. The expression of the hub genes associated with patient survival were analyzed to determine the role of ASPH in the progression of BC. Results ASPH levels were overexpressed in BC and correlated with cancer type, lymph node involvement, and TNM stage. Conversely, ASPH levels did not correlate with patient age, invasive carcinoma types, or molecular subtypes. Enrichment analysis showed the involvement of multiple pathways, including lipid metabolism and oxidation-reduction processes. Six hub genes, PPARG, LEP, PLIN1, AGPAT2, CAV1, and PNPLA2, were related to ASPH expression and had functional roles in the occurrence and progression of BC. Conclusions ASPH may be involved in the development of BC and may have utility as a prognostic biomarker in BC. The coexpression of ASPH-associated genes may also be beneficial in improving BC prognosis.
Collapse
Affiliation(s)
- Yanan Zhang
- School of Chemical and Biomedical Engineering, Qilu Institute of Technology, Jinan, Shandong, China (mainland).,Department of Pathology, Liaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical University, Liaocheng, Shandong, China (mainland)
| | - Yimeng Gao
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical University, Liaocheng, Shandong, China (mainland)
| | - Yingxue Li
- Department of Pathology, Liaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical University, Liaocheng, Shandong, China (mainland)
| | - Xuedong Zhang
- Department of Pathology, Liaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical University, Liaocheng, Shandong, China (mainland)
| | - Haitao Xie
- Centre for Research, Xiankangda Bio-Tech Corporation, Dongguan, Guangdong, China (mainland)
| |
Collapse
|
22
|
Lim K, Haider A, Adams C, Sleigh A, Savage DB. Lipodistrophy: a paradigm for understanding the consequences of "overloading" adipose tissue. Physiol Rev 2020; 101:907-993. [PMID: 33356916 DOI: 10.1152/physrev.00032.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lipodystrophies have been recognized since at least the nineteenth century and, despite their rarity, tended to attract considerable medical attention because of the severity and somewhat paradoxical nature of the associated metabolic disease that so closely mimics that of obesity. Within the last 20 yr most of the monogenic subtypes have been characterized, facilitating family genetic screening and earlier disease detection as well as providing important insights into adipocyte biology and the systemic consequences of impaired adipocyte function. Even more recently, compelling genetic studies have suggested that subtle partial lipodystrophy is likely to be a major factor in prevalent insulin-resistant type 2 diabetes mellitus (T2DM), justifying the longstanding interest in these disorders. This progress has also underpinned novel approaches to treatment that, in at least some patients, can be of considerable therapeutic benefit.
Collapse
Affiliation(s)
- Koini Lim
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Afreen Haider
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Claire Adams
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Alison Sleigh
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David B Savage
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
23
|
Tapia PJ, Figueroa AM, Eisner V, González-Hódar L, Robledo F, Agarwal AK, Garg A, Cortés V. Absence of AGPAT2 impairs brown adipogenesis, increases IFN stimulated gene expression and alters mitochondrial morphology. Metabolism 2020; 111:154341. [PMID: 32810486 DOI: 10.1016/j.metabol.2020.154341] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Biallelic loss of function variants in AGPAT2, encoding 1-acylglycerol-3-phosphate O-acyltransferase 2, cause congenital generalized lipodystrophy type 1, a disease characterized by near total loss of white adipose tissue and metabolic complications. Agpat2 deficient (Agpat2-/-) mice completely lacks both white and interscapular brown adipose tissue (iBAT). The objective of the present study was to characterize the effects of AGPAT2 deficiency in brown adipocyte differentiation. METHODS Preadipocytes obtained from newborn (P0.5) Agpat2-/- and wild type mice iBAT were differentiated into brown adipocytes, compared by RNA microarray, RT-qPCR, High-Content Screening (HCS), western blotting and electron microscopy. RESULTS 1) Differentiated Agpat2-/- brown adipocytes have fewer lipid-laden cells and lower abundance of Pparγ, Pparα, C/ebpα and Pgc1α, both at the mRNA and protein levels, compared those to wild type cells. Prmd16 levels were equivalent in both, Agpat2-/- and wild type, while Ucp1 was only induced in wild type cells, 2) These differences were not due to lower abundance of preadipocytes, 3) Differentiated Agpat2-/- brown adipocytes are enriched in the mRNA abundance of genes participating in interferon (IFN) type I response, whereas genes involved in mitochondrial homeostasis were decreased, 4) Mitochondria in differentiated Agpat2-/- brown adipocytes had altered morphology and lower mass and contacting sites with lipid droplets concomitant with lower levels of Mitofusin 2 and Perlipin 5. CONCLUSION AGPAT2 is necessary for normal brown adipose differentiation. Its absence results in a lower proportion of lipid-laden cells, increased expression of interferon-stimulated genes (ISGs) and alterations in mitochondrial morphology, mass and fewer mitochondria to lipid droplets contacting sites in differentiated brown adipocytes.
Collapse
Affiliation(s)
- Pablo J Tapia
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Ana-María Figueroa
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Verónica Eisner
- Department of Cellular and Molecular Biology, School of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile.
| | - Lila González-Hódar
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Fermín Robledo
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Anil K Agarwal
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America.
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America.
| | - Víctor Cortés
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| |
Collapse
|
24
|
Guo DD, Liu XF, Duan YD. [Multiple subcutaneous nodules for 46 days in an infant aged 66 days]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:903-908. [PMID: 32800040 PMCID: PMC7441506 DOI: 10.7499/j.issn.1008-8830.2003240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
A boy, aged 66 days, was admitted to the hospital due to subcutaneous nodules for 46 days and abdominal distension for 10 days. The main clinical manifestations were loss of adipose tissue, subcutaneous nodules, insulin-resistant diabetes, hypertriglyceridemia, and hepatic steatosis. The boy was diagnosed with congenital generalized lipodystrophy type 1 (CGL1). His condition was improved after administration of middle-chain fatty acid formula milk and insulin injection or oral metformin. Gene testing revealed a homozygous mutation, c.646A>T, in the AGPAT2 gene, and both his parents were carriers of this mutation. This case of CGL1 has the youngest age of onset ever reported in China and multiple subcutaneous nodules as the initial symptom.
Collapse
Affiliation(s)
- Dan-Dan Guo
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China.
| | | | | |
Collapse
|
25
|
Hoa Chung L, Qi Y. Lipodystrophy - A Rare Condition with Serious Metabolic Abnormalities. Rare Dis 2020. [DOI: 10.5772/intechopen.88667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
26
|
Fathzadeh M, Li J, Rao A, Cook N, Chennamsetty I, Seldin M, Zhou X, Sangwung P, Gloudemans MJ, Keller M, Attie A, Yang J, Wabitsch M, Carcamo-Orive I, Tada Y, Lusis AJ, Shin MK, Molony CM, McLaughlin T, Reaven G, Montgomery SB, Reilly D, Quertermous T, Ingelsson E, Knowles JW. FAM13A affects body fat distribution and adipocyte function. Nat Commun 2020; 11:1465. [PMID: 32193374 PMCID: PMC7081215 DOI: 10.1038/s41467-020-15291-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
Genetic variation in the FAM13A (Family with Sequence Similarity 13 Member A) locus has been associated with several glycemic and metabolic traits in genome-wide association studies (GWAS). Here, we demonstrate that in humans, FAM13A alleles are associated with increased FAM13A expression in subcutaneous adipose tissue (SAT) and an insulin resistance-related phenotype (e.g. higher waist-to-hip ratio and fasting insulin levels, but lower body fat). In human adipocyte models, knockdown of FAM13A in preadipocytes accelerates adipocyte differentiation. In mice, Fam13a knockout (KO) have a lower visceral to subcutaneous fat (VAT/SAT) ratio after high-fat diet challenge, in comparison to their wild-type counterparts. Subcutaneous adipocytes in KO mice show a size distribution shift toward an increased number of smaller adipocytes, along with an improved adipogenic potential. Our results indicate that GWAS-associated variants within the FAM13A locus alter adipose FAM13A expression, which in turn, regulates adipocyte differentiation and contribute to changes in body fat distribution.
Collapse
Affiliation(s)
- Mohsen Fathzadeh
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Jiehan Li
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Abhiram Rao
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Bioengineering Department, School of Engineering and Medicine, Stanford, CA, USA
| | - Naomi Cook
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Indumathi Chennamsetty
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Marcus Seldin
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Xiang Zhou
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Panjamaporn Sangwung
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | | | - Mark Keller
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Allan Attie
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Jing Yang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Martin Wabitsch
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Ivan Carcamo-Orive
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Yuko Tada
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Aldons J Lusis
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Myung Kyun Shin
- Genetics and Pharmacogenomics, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Cliona M Molony
- Genetics and Pharmacogenomics, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Tracey McLaughlin
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gerald Reaven
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Stephen B Montgomery
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, California, CA, USA
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, California, CA, USA
| | - Dermot Reilly
- Genetics and Pharmacogenomics, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA.
| | - Joshua W Knowles
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA.
| |
Collapse
|
27
|
Bruder-Nascimento T, Kress TC, Belin de Chantemele EJ. Recent advances in understanding lipodystrophy: a focus on lipodystrophy-associated cardiovascular disease and potential effects of leptin therapy on cardiovascular function. F1000Res 2019; 8:F1000 Faculty Rev-1756. [PMID: 31656583 PMCID: PMC6798323 DOI: 10.12688/f1000research.20150.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2019] [Indexed: 01/09/2023] Open
Abstract
Lipodystrophy is a disease characterized by a partial or total absence of adipose tissue leading to severe metabolic derangements including marked insulin resistance, type 2 diabetes, hypertriglyceridemia, and steatohepatitis. Lipodystrophy is also a source of major cardiovascular disorders which, in addition to hepatic failure and infection, contribute to a significant reduction in life expectancy. Metreleptin, the synthetic analog of the adipocyte-derived hormone leptin and current therapy of choice for patients with lipodystrophy, successfully improves metabolic function. However, while leptin has been associated with hypertension, vascular diseases, and inflammation in the context of obesity, it remains unknown whether its daily administration could further impair cardiovascular function in patients with lipodystrophy. The goal of this short review is to describe the cardiovascular phenotype of patients with lipodystrophy, speculate on the etiology of the disorders, and discuss how the use of murine models of lipodystrophy could be beneficial to address the question of the contribution of leptin to lipodystrophy-associated cardiovascular disease.
Collapse
Affiliation(s)
- Thiago Bruder-Nascimento
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Pediatrics, Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Taylor C. Kress
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Eric J. Belin de Chantemele
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Medicine, Section of Cardiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
28
|
Sivasami P, Poudel N, Munteanu MC, Hudson J, Lovern P, Liu L, Griffin T, Hinsdale ME. Adipose tissue loss and lipodystrophy in xylosyltransferase II deficient mice. Int J Obes (Lond) 2019; 43:1783-1794. [PMID: 30778123 PMCID: PMC7067554 DOI: 10.1038/s41366-019-0324-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/21/2018] [Accepted: 11/22/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND/OBJECTIVES The cellular and extracellular matrix (ECM) interactions that regulate adipose tissue homeostasis are incompletely understood. Proteoglycans (PGs) and their sulfated glycosaminoglycans (GAGs) provide spatial and temporal signals for ECM organization and interactions with resident cells by impacting growth factor and cytokine activity. Therefore, PGs and their GAGs could be significant to adipose tissue homeostasis. The purpose of this study was to determine the role of ECM sulfated GAGs in adipose tissue homeostasis. METHODS Adipose tissue and metabolic homeostasis in mice deficient in xylosyltransferase 2 (Xylt2-/-) were examined by histologic analyses, gene expression analyses, whole body fat composition measurements, and glucose tolerance test. Adipose tissue inflammation and adipocyte precursors were characterized by flow cytometry and in vitro culture of mesenchymal stem cells. RESULTS Xylt2-/- mice have low body weight due to overall reductions in abdominal fat deposition. Histologically, the adipocytes are reduced in size and number in both gonadal and mesenteric fat depots of Xylt2-/- mice. In addition, these mice are glucose intolerant, insulin resistant, and have increased serum triglycerides as compared to Xylt2 + / + control mice. Furthermore, the adipose tissue niche has increased inflammatory cells and enrichment of proinflammatory factors IL6 and IL1β, and these mice also have a loss of adipose tissue vascular endothelial cells. Lastly, xylosyltransferease-2 (XylT2) deficient mesenchymal stem cells from gonadal adipose tissue and bone marrow exhibit impaired adipogenic differentiation in vitro. CONCLUSIONS Decreased GAGs due to the loss of the key GAG assembly enzyme XylT2 causes reduced steady state adipose tissue stores leading to a unique lipodystrophic model. Accumulation of an adipocytic precursor pool of cells is discovered indicating an interruption in differentiation. Therefore, adipose tissue GAGs are important in the homeostasis of adipose tissue by mediating control of adipose precursor development, tissue inflammation, and vascular development.
Collapse
Affiliation(s)
- Pulavendran Sivasami
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Nabin Poudel
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | | | - Joanna Hudson
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Pamela Lovern
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Lin Liu
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Tim Griffin
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Myron E Hinsdale
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
29
|
Abstract
Lipodystrophies are the result of a range of inherited and acquired causes, but all are characterized by perturbations in white adipose tissue function and, in many instances, its mass or distribution. Though patients are often nonobese, they typically manifest a severe form of the metabolic syndrome, highlighting the importance of white fat in the "safe" storage of surplus energy. Understanding the molecular pathophysiology of congenital lipodystrophies has yielded useful insights into the biology of adipocytes and informed therapeutic strategies. More recently, genome-wide association studies focused on insulin resistance have linked common variants to genes implicated in adipose biology and suggested that subtle forms of lipodystrophy contribute to cardiometabolic disease risk at a population level. These observations underpin the use of aligned treatment strategies in insulin-resistant obese and lipodystrophic patients, the major goal being to alleviate the energetic burden on adipose tissue.
Collapse
|
30
|
Jo Y, Hamilton JS, Hwang S, Garland K, Smith GA, Su S, Fuentes I, Neelam S, Thompson BM, McDonald JG, DeBose-Boyd RA. Schnyder corneal dystrophy-associated UBIAD1 inhibits ER-associated degradation of HMG CoA reductase in mice. eLife 2019; 8:44396. [PMID: 30785396 PMCID: PMC6402834 DOI: 10.7554/elife.44396] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Autosomal-dominant Schnyder corneal dystrophy (SCD) is characterized by corneal opacification owing to overaccumulation of cholesterol. SCD is caused by mutations in UBIAD1, which utilizes geranylgeranyl pyrophosphate (GGpp) to synthesize vitamin K2. Using cultured cells, we previously showed that sterols trigger binding of UBIAD1 to the cholesterol biosynthetic enzyme HMG CoA reductase (HMGCR), thereby inhibiting its endoplasmic reticulum (ER)-associated degradation (ERAD) (Schumacher et al. 2015). GGpp triggers release of UBIAD1 from HMGCR, allowing maximal ERAD and ER-to-Golgi transport of UBIAD1. SCD-associated UBIAD1 resists GGpp-induced release and is sequestered in ER to inhibit ERAD. We now report knockin mice expressing SCD-associated UBIAD1 accumulate HMGCR in several tissues resulting from ER sequestration of mutant UBIAD1 and inhibition of HMGCR ERAD. Corneas from aged knockin mice exhibit signs of opacification and sterol overaccumulation. These results establish the physiological significance of UBIAD1 in cholesterol homeostasis and indicate inhibition of HMGCR ERAD contributes to SCD pathogenesis.
Collapse
Affiliation(s)
- Youngah Jo
- Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jason S Hamilton
- Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| | - Seonghwan Hwang
- Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kristina Garland
- Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| | - Gennipher A Smith
- Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| | - Shan Su
- Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| | - Iris Fuentes
- Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sudha Neelam
- Department of Ophthalmology, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| | - Bonne M Thompson
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jeffrey G McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| | - Russell A DeBose-Boyd
- Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
31
|
Bradley RM, Duncan RE. The lysophosphatidic acid acyltransferases (acylglycerophosphate acyltransferases) family: one reaction, five enzymes, many roles. Curr Opin Lipidol 2018; 29:110-115. [PMID: 29373329 DOI: 10.1097/mol.0000000000000492] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Lysophosphatidic acid acyltransferases (LPAATs)/acylglycerophosphate acyltransferases (AGPATs) are a homologous group of enzymes that all catalyze the de novo formation of phosphatidic acid from lysophosphatidic acid (LPA) and a fatty acyl-CoA. This review seeks to resolve the apparent redundancy of LPAATs through examination of recent literature. RECENT FINDINGS Recent molecular studies suggest that individual LPAAT homologues produce functionally distinct pools of phosphatidic acid, whereas gene ablation studies demonstrate unique roles despite a similar biochemical function. Loss of the individual enzymes not only causes diverse effects on down-stream lipid metabolism, which can vary even for a single enzyme from one tissue to the next, but also results in a wide array of physiological consequences, ranging from cognitive impairment, to lipodystrophy, to embryonic lethality. SUMMARY LPAATs are critical mediators of cell membrane phospholipid synthesis, regulating the production of specific down-stream glycerophospholipid species through generation of distinct pools of phosphatidic acid that feed into dedicated biosynthetic pathways. Loss of any specific LPAAT can lead to alterations in cellular and organellar membrane phospholipid composition that can vary for a single enzyme in different tissues, with unique pathophysiological implications.
Collapse
Affiliation(s)
- Ryan M Bradley
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
32
|
Tapia P, Fernández-Galilea M, Robledo F, Mardones P, Galgani JE, Cortés VA. Biology and pathological implications of brown adipose tissue: promises and caveats for the control of obesity and its associated complications. Biol Rev Camb Philos Soc 2017; 93:1145-1164. [DOI: 10.1111/brv.12389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Pablo Tapia
- Department of Nutrition, Diabetes and Metabolism, School of Medicine; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| | - Marta Fernández-Galilea
- Department of Nutrition, Diabetes and Metabolism, School of Medicine; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| | - Fermín Robledo
- Department of Nutrition, Diabetes and Metabolism, School of Medicine; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| | - Pablo Mardones
- Research and Innovation Office, School of Engineering; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| | - José E. Galgani
- Department of Nutrition, Diabetes and Metabolism, School of Medicine; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
- Departamento Ciencias de la Salud; Carrera de Nutrición y Dietética, Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| | - Víctor A. Cortés
- Department of Nutrition, Diabetes and Metabolism, School of Medicine; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| |
Collapse
|
33
|
Wang H, Airola MV, Reue K. How lipid droplets "TAG" along: Glycerolipid synthetic enzymes and lipid storage. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1131-1145. [PMID: 28642195 PMCID: PMC5688854 DOI: 10.1016/j.bbalip.2017.06.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 02/06/2023]
Abstract
Triacylglycerols (TAG) serve as the predominant form of energy storage in mammalian cells, and TAG synthesis influences conditions such as obesity, fatty liver, and insulin resistance. In most tissues, the glycerol 3-phosphate pathway enzymes are responsible for TAG synthesis, and the regulation and function of these enzymes is therefore important for metabolic homeostasis. Here we review the sites and regulation of glycerol-3-phosphate acyltransferase (GPAT), acylglycerol-3-phosphate acyltransferase (AGPAT), lipin phosphatidic acid phosphatase (PAP), and diacylglycerol acyltransferase (DGAT) enzyme action. We highlight the critical roles that these enzymes play in human health by reviewing Mendelian disorders that result from mutation in the corresponding genes. We also summarize the valuable insights that genetically engineered mouse models have provided into the cellular and physiological roles of GPATs, AGPATs, lipins and DGATs. Finally, we comment on the status and feasibility of therapeutic approaches to metabolic disease that target enzymes of the glycerol 3-phosphate pathway. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Huan Wang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, CA, United States.
| |
Collapse
|
34
|
Shipp SL, Wang G, Cline MA, Gilbert ER. Chick subcutaneous and abdominal adipose tissue depots respond differently in lipolytic and adipogenic activity to α-melanocyte stimulating hormone (α-MSH). Comp Biochem Physiol A Mol Integr Physiol 2017; 209:56-64. [PMID: 28438719 DOI: 10.1016/j.cbpa.2017.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 12/12/2022]
Abstract
In birds, α-MSH is anorexigenic, but effects on adipose tissue are unknown. Four day-old chicks were intraperitoneally injected with 0 (vehicle), 5, 10, or 50μg of α-MSH and subcutaneous and abdominal adipose tissue collected at 60min for RNA isolation (n=10). Plasma was collected post-euthanasia at 60 and 180min for measuring non-esterified fatty acids (NEFA) and α-MSH (n=10). Relative to the vehicle, food intake was reduced in the 50μg-treated group. Plasma NEFAs were greater in 10μg than vehicle-treated chicks at 3h. Plasma α-MSH was 3.06±0.57ng/ml. In subcutaneous tissue, melanocortin receptor 5 (MC5R) mRNA was increased in 10μg, MC2R and CCAAT-enhancer-binding protein β (C/EBPβ) mRNAs increased in 50μg, peroxisome proliferator-activated receptor γ and C/EBPα decreased in 5, 10 and 50μg, and Ki67 mRNA decreased in 50μg α-MSH-injected chicks, compared to vehicle-injected chicks. In abdominal tissue, adipose triglyceride lipase mRNA was greater in 10μg α-MSH- than vehicle-treated chicks. Cells isolated from abdominal fat that were treated with 10 and 100nM α-MSH for 4h expressed more MC5R and perilipin-1 than control cells (n=6). Cells that received 100nM α-MSH expressed more fatty acid binding protein 4 and comparative gene identification-58 mRNA than control cells. Glycerol-3-phosphate dehydrogenase (G3PDH) activity was greater in cells at 9days post-differentiation that were treated with 1 and 100nM α-MSH for 4h than in control cells (n=3). Results suggest that α-MSH increases lipolysis and reduces adipogenesis in adipose tissue.
Collapse
Affiliation(s)
- Steven L Shipp
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Guoqing Wang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|