1
|
Miao M, Chen Y, Wang X, Li S, Hu R. The critical role of ferroptosis in virus-associated hematologic malignancies and its potential value in antiviral-antitumor therapy. Virulence 2025; 16:2497908. [PMID: 40302035 PMCID: PMC12045570 DOI: 10.1080/21505594.2025.2497908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/06/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025] Open
Abstract
Epstein-Barr Virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and human T-cell leukemia virus type 1 (HTLV-1) are key infectious agents linked to the development of various hematological malignancies, including Hodgkin's lymphoma, non-Hodgkin's lymphoma, and adult T-cell leukemia/lymphoma. This review highlights the critical knowledge gaps in understanding the role of ferroptosis, a novel form of cell death, in virus-related tumors. We focus on how ferroptosis influences the host cell response to these viral infections, revealing groundbreaking mechanisms by which the three viruses differentially regulate core pathways of ferroptosis, such as iron homeostasis, lipid peroxidation, and antioxidant systems, thereby promoting malignant transformation of host cells. Additionally, we explore the potential of antiviral drugs and ferroptosis modulators in the treatment of virus-associated hematological malignancies.
Collapse
Affiliation(s)
- Miao Miao
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuelei Chen
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xuehan Wang
- Shenyang Shenhua Institute Test Technology, Shenyang, Liaoning, China
| | - Shengyang Li
- Publishing Department, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Rong Hu
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Patil N, Bhatt LK. Targeting Acyl-CoA synthetase long-chain family member 4: a potential approach for the treatment of cerebral ischemia/reperfusion injury. Metab Brain Dis 2025; 40:212. [PMID: 40418418 DOI: 10.1007/s11011-025-01638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 05/13/2025] [Indexed: 05/27/2025]
Abstract
Cerebral ischemia/reperfusion injury causes high rates of morbidity and death. Recent studies have shown that ferroptosis, a type of controlled cell death brought on by lipid peroxidation, worsens cerebral ischemia/reperfusion injury. Acyl-CoA synthetase long-chain family member 4 (ACSL4) has emerged as a crucial enzyme in lipid metabolism and ferroptosis in the context of ischemia/reperfusion injury, influencing neuronal cell death. Increased vulnerability to ferroptosis and worsening ischemia/reperfusion injury outcomes are linked to elevated ACSL4 levels. Comprehending the molecular processes underlying ACSL4-mediated ferroptosis may result in novel approaches to treating cerebral ischemia/reperfusion injury. The present review discusses ACSL4 as a potential target for treating cerebral ischemia/reperfusion injury, focusing on ACSL4-mediated ferroptosis and signal transduction.
Collapse
Affiliation(s)
- Nikita Patil
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
3
|
Zheng J, Conrad M. Ferroptosis: when metabolism meets cell death. Physiol Rev 2025; 105:651-706. [PMID: 39661331 DOI: 10.1152/physrev.00031.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
We present here a comprehensive update on recent advancements in the field of ferroptosis, with a particular emphasis on its metabolic underpinnings and physiological impacts. After briefly introducing landmark studies that have helped to shape the concept of ferroptosis as a distinct form of cell death, we critically evaluate the key metabolic determinants involved in its regulation. These include the metabolism of essential trace elements such as selenium and iron; amino acids such as cyst(e)ine, methionine, glutamine/glutamate, and tryptophan; and carbohydrates, covering glycolysis, the citric acid cycle, the electron transport chain, and the pentose phosphate pathway. We also delve into the mevalonate pathway and subsequent cholesterol biosynthesis, including intermediate metabolites like dimethylallyl pyrophosphate, squalene, coenzyme Q (CoQ), vitamin K, and 7-dehydrocholesterol, as well as fatty acid and phospholipid metabolism, including the biosynthesis and remodeling of ester and ether phospholipids and lipid peroxidation. Next, we highlight major ferroptosis surveillance systems, specifically the cyst(e)ine/glutathione/glutathione peroxidase 4 axis, the NAD(P)H/ferroptosis suppressor protein 1/CoQ/vitamin K system, and the guanosine triphosphate cyclohydrolase 1/tetrahydrobiopterin/dihydrofolate reductase axis. We also discuss other potential anti- and proferroptotic systems, including glutathione S-transferase P1, peroxiredoxin 6, dihydroorotate dehydrogenase, glycerol-3-phosphate dehydrogenase 2, vitamin K epoxide reductase complex subunit 1 like 1, nitric oxide, and acyl-CoA synthetase long-chain family member 4. Finally, we explore ferroptosis's physiological roles in aging, tumor suppression, and infection control, its pathological implications in tissue ischemia-reperfusion injury and neurodegeneration, and its potential therapeutic applications in cancer treatment. Existing drugs and compounds that may regulate ferroptosis in vivo are enumerated.
Collapse
Affiliation(s)
- Jiashuo Zheng
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
- Translational Redox Biology, Technical University of Munich (TUM), TUM Natural School of Sciences, Garching, Germany
| |
Collapse
|
4
|
Zhuo B, Qin C, Deng S, Jiang H, Si S, Tao F, Cai F, Meng Z. The role of ACSL4 in stroke: mechanisms and potential therapeutic target. Mol Cell Biochem 2025; 480:2223-2246. [PMID: 39496916 PMCID: PMC11961533 DOI: 10.1007/s11010-024-05150-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024]
Abstract
Stroke, as a neurological disorder with a poor overall prognosis, has long plagued the patients. Current stroke therapy lacks effective treatments. Ferroptosis has emerged as a prominent subject of discourse across various maladies in recent years. As an emerging therapeutic target, notwithstanding its initial identification in tumor cells associated with brain diseases, it has lately been recognized as a pivotal factor in the pathological progression of stroke. Acyl-CoA synthetase long-chain family member 4 (ACSL4) is a potential target and biomarker of catalytic unsaturated fatty acids mediating ferroptosis in stroke. Specifically, the upregulation of ACSL4 leads to heightened accumulation of lipid peroxidation products and reactive oxygen species (ROS), thereby exacerbating the progression of ferroptosis in neuronal cells. ACSL4 is present in various tissues and involved in multiple pathways of ferroptosis. At present, the pharmacological mechanisms of targeting ACSL4 to inhibit ferroptosis have been found in many drugs, but the molecular mechanisms of targeting ACSL4 are still in the exploratory stage. This paper introduces the physiopathological mechanism of ACSL4 and the current status of the research involved in ferroptosis crosstalk and epigenetics, and summarizes the application status of ACSL4 in modern pharmacology research, and discusses the potential application value of ACSL4 in the field of stroke.
Collapse
Affiliation(s)
- Bifang Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chenyang Qin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shizhe Deng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hailun Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shangkun Si
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Feng Tao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fei Cai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Zhihong Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
5
|
Xiao D, Chang W, Ao X, Ye L, Wu W, Song L, Yuan X, Feng L, Wang P, Wang Y, Jia Y, Tang X, Wang J. Parkin inhibits iron overload-induced cardiomyocyte ferroptosis by ubiquitinating ACSL4 and modulating PUFA-phospholipids metabolism. Acta Pharm Sin B 2025; 15:1589-1607. [PMID: 40370554 PMCID: PMC12069115 DOI: 10.1016/j.apsb.2024.12.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/21/2024] [Accepted: 11/26/2024] [Indexed: 05/16/2025] Open
Abstract
Iron overload is strongly associated with heart disease. Ferroptosis is a new form of regulated cell death indicated in cardiac ischemia-reperfusion (I/R) injury. However, the specific molecular mechanism of myocardial injury caused by iron overload in the heart is still unclear, and the involvement of ferroptosis in iron overload-induced myocardial injury is not fully understood. In this study, we observed that ferroptosis participated in developing of iron overload and I/R-induced cardiomyopathy. Mechanistically, we discovered that Parkin inhibited iron overload-induced ferroptosis in cardiomyocytes by promoting the ubiquitination of long-chain acyl-CoA synthetase 4 (ACSL4), a crucial protein involved in ferroptosis-related lipid metabolism pathways. Additionally, we identified p53 as a transcription factor that transcriptionally suppressed Parkin expression in iron-overloaded cardiomyocytes, thereby regulating iron overload-induced ferroptosis. In animal studies, cardiac-specific Parkin knockout mice (Myh6-CreER T2 /Parkin fl/fl ) fed a high-iron diet presented more severe myocardial damage, and the high iron levels exacerbated myocardial I/R injury. However, the ferroptosis inhibitor Fer-1 significantly suppressed iron overload-induced ferroptosis and myocardial I/R injury. Moreover, Parkin effectively protected against impaired mitochondrial function and prevented iron overload-induced mitochondrial lipid peroxidation. These findings unveil a novel regulatory pathway involving p53-Parkin-ACSL4 in heart disease by inhibiting of ferroptosis.
Collapse
Affiliation(s)
- Dandan Xiao
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266021, China
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Wenguang Chang
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266021, China
| | - Xiang Ao
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266021, China
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Lin Ye
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266021, China
| | - Weiwei Wu
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Lin Song
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Xiaosu Yuan
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266021, China
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Luxin Feng
- Department of Cardiovascular Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Peiyan Wang
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266021, China
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Yu Wang
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266021, China
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Yi Jia
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266021, China
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Xiaopeng Tang
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Jianxun Wang
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266021, China
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Yu J, Yang H, Wang J, Huang Z, Chen S, Zhao H, Wang J, Wang Z. Comprehensive analysis of histophysiology, transcriptomics and metabolomics in goslings exposed to gossypol acetate: unraveling hepatotoxic mechanisms. Front Vet Sci 2025; 12:1527284. [PMID: 39906302 PMCID: PMC11792171 DOI: 10.3389/fvets.2025.1527284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025] Open
Abstract
Cottonseed meal is a promising alternative to soybean meal in poultry feed, but concerns over free gossypol limit its use. Although the general toxicity of free gossypol is well-known, its specific effects on the liver-the primary site where it accumulates-are less thoroughly studied, particularly at the molecular level. This study investigated the hepatotoxic effects of gossypol acetate (GA) on goslings through a comprehensive analysis combining morphology, transcriptomics, and metabolomics. Forty-eight 7-day-old male goslings with similar body weight (BW) were randomly assigned to two groups: a control group, receiving a saline solution (0.9%, 2.5 mL/kg BW), and a GA-treated group, administered GA at 50 mg/kg BW orally for 14 days. Histological analysis revealed signs of liver damage, including granular degeneration, hepatocyte enlargement, necrosis, and mitochondrial injury. Transcriptomic analysis identified 1,137 differentially expressed genes, with 702 upregulated and 435 downregulated. Key affected pathways included carbon metabolism, glycolysis/gluconeogenesis, pyruvate metabolism, propanoate metabolism, TCA cycle, fatty acid degradation, primary bile acid biosynthesis, tryptophan metabolism, cysteine and methionine metabolism, focal adhesion, and the PPAR signaling pathway. Metabolomic analysis revealed 109 differential metabolites, 82 upregulated and 27 downregulated, implicating disruptions in linoleic acid metabolism, arachidonic acid metabolism, cAMP signaling, and serotonergic synapse pathways. Overall, GA-induced hepatotoxicity involves impaired energy production, disrupted lipid metabolism, and abnormal liver focal adhesion, leading to liver cell dysfunction. These findings highlight the vulnerability of mitochondria and critical metabolic pathways, providing insights into the molecular mechanisms of GA toxicity and guiding future studies on mitigating GA-induced liver damage in goslings.
Collapse
Affiliation(s)
- Jun Yu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haiming Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jian Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Zixin Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hongchang Zhao
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Jun Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Zhiyue Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Li X, Chen Q, Zhao D, Tan J, Liao R, Gu Y, Zhu J, Zhang H, Xie J, Chen L. ACSL4 accelerates osteosarcoma progression via modulating TGF-β/Smad2 signaling pathway. Mol Cell Biochem 2025; 480:549-562. [PMID: 38564125 PMCID: PMC11695466 DOI: 10.1007/s11010-024-04975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/24/2024] [Indexed: 04/04/2024]
Abstract
Osteosarcoma (OS) is a malignant bone sarcoma arising from mesenchymal stem cells. The biological role of Acyl-CoA synthetase long-chain family member 4 (ACSL4), recently identified as an oncogene in numerous tumor types, remains largely unclear in OS. In this study, we investigated the expression of ACSL4 in OS tissues using immunohistochemistry staining (IHC) staining of a human tissue microarray and in OS cells by qPCR assay. Our findings revealed a significant up-regulation of ACSL4 in both OS tissues and cells. To further understand its biological effects, we conducted a series of loss-of-function experiments using ACSL4-depleted MNNG/HOS and U-2OS cell lines, focusing on OS cell proliferation, migration, and apoptosis in vitro. Our results demonstrated that ACSL4 knockdown remarkably suppressed OS cell proliferation, arrested cells in the G2 phase, induced cell apoptosis, and inhibited cell migration. Additionally, a subcutaneous xenograft mice model was established to validate the in vivo impact of ACSL4, revealing ACSL4 silencing impaired tumor growth in the OS xenograft mice. Additionally, we discovered that ACSL4 could regulate the phosphorylation level of Smad2 through cooperative interactions, and treatment with a TGF-β inhibitor weakened the promoting effects of ACSL4 overexpression. In short, ACSL4 regulated OS progression by modulating TGF-β/Smad2 signaling pathway. These findings underscore ACSL4 as a promising therapeutic target for OS patients and contribute novel insights into the pathogenesis of OS.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Spine and Osteopathy Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Qianfen Chen
- Department of Spine and Osteopathy Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Duo Zhao
- Department of Spine and Osteopathy Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Jianshi Tan
- Department of Spine and Osteopathy Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Rongbo Liao
- Department of Spine and Osteopathy Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Yurong Gu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang City, 330006, Jiangxi Province, China
| | - Jinwei Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang City, 330006, Jiangxi Province, China
| | - Huying Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang City, 330006, Jiangxi Province, China
| | - Jian Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang City, 330006, Jiangxi Province, China
| | - Lu Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang City, 330006, Jiangxi Province, China.
| |
Collapse
|
8
|
Liu MX, Gu YY, Nie WY, Zhu XM, Qi MJ, Zhao RM, Zhu WZ, Zhang XL. Formononetin Induces Ferroptosis in Activated Hepatic Stellate Cells to Attenuate Liver Fibrosis by Targeting NADPH Oxidase 4. Phytother Res 2024; 38:5988-6003. [PMID: 39475496 DOI: 10.1002/ptr.8338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 12/13/2024]
Abstract
Ferroptosis is a newly discovered type of cell death that exerts a crucial role in hepatic fibrosis. Formononetin (FMN), a natural isoflavone compound mainly isolated from Spatholobus suberectus Dunn, shows multiple biological activities, including antioxidant, anti-inflammatory, and hepatoprotection. This research aims to explore the regulatory mechanism of FMN in liver fibrosis and the relationship between NADPH oxidase 4 (NOX4) and ferroptosis. The effects of FMN on HSC ferroptosis were evaluated in rat model of CCl4-induced hepatic fibrosis. In vitro, N-acetyl-L-cysteine (NAC) and deferoxamine (DFO) were used to block ferroptosis and then explored the anti-fibrotic effect of FMN. The target protein of FMN was identified by bio-orthogonal click chemistry reaction as well as drug affinity responsive target stability (DARTS), cellular thermal shift (CETSA), surface plasmon resonance (SPR) assays, and isothermal titration calorimetry (ITC) analysis. Here, we found that FMN exerted anti-fibrotic effects via inducing ferroptosis in activated HSCs. NAC and DFO prevented FMN-induced ferroptotic cell death and collagen reduction. Furthermore, FMN bound directly to NOX4 through possible active amino acid residues sites, and increased NOX4-based NADPH oxidase activity to enhance levels of NADP+/NADPH, thus promoting ferroptosis of activated HSCs and relieving liver fibrosis. These results demonstrate that the direct target and mechanism by which FMN improves liver fibrosis, suggesting that FMN may be a natural candidate for further development of liver fibrosis therapy.
Collapse
Affiliation(s)
- Ming-Xuan Liu
- College of Pharmacy, Nantong University, Nantong, People's Republic of China
| | - Ying-Ying Gu
- College of Pharmacy, Nantong University, Nantong, People's Republic of China
| | - Wen-Yuan Nie
- College of Pharmacy, Nantong University, Nantong, People's Republic of China
| | - Xiao-Ming Zhu
- College of Pharmacy, Nantong University, Nantong, People's Republic of China
| | - Meng-Jing Qi
- College of Pharmacy, Nantong University, Nantong, People's Republic of China
| | - Rui-Min Zhao
- College of Pharmacy, Nantong University, Nantong, People's Republic of China
| | - Wei-Zhong Zhu
- College of Pharmacy, Nantong University, Nantong, People's Republic of China
| | - Xiao-Ling Zhang
- College of Pharmacy, Nantong University, Nantong, People's Republic of China
| |
Collapse
|
9
|
Wang J, Li Q, Huo Y, Liu X, Shi Y, Xie B. ASPP2 deficiency promotes the progression of metabolic dysfunction-associated steatohepatitis via ACSL4 upregulation. Sci Rep 2024; 14:29177. [PMID: 39587161 PMCID: PMC11589572 DOI: 10.1038/s41598-024-80415-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
As a member of the p53-binding protein family, apoptosis-stimulating protein p53 2 (ASPP2) is closely related to autophagy and apoptosis. However, the mechanistic role of ASPP2 in the development of metabolic dysfunction-associated steatohepatitis (MASH) remains elusive. Therefore, we investigated the role and underlying mechanisms of ASPP2 in MASH progression in a mouse model of MASH and a cellular model of metabolic dysfunction-associated fatty liver disease. ASPP2 deficiency significantly promoted the inflammatory response, steatosis, and MASH progression in mice. Through transcriptomic analysis, increased ACSL4 expression was identified as a potential key factor. Further elucidation of the underlying mechanisms demonstrated that ASPP2 deficiency increased lipid accumulation and inhibited mitochondrial respiration capacity in HepG2 cells induced by oleic acid. However, silencing of ACSL4 reversed these effects. Thus, our study indicates that ASPP2 is an important regulator of MASH progression through ACSL4 upregulation, highlighting its potential as an alternative approach to MASH treatment.
Collapse
Affiliation(s)
- Jinming Wang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Quanwei Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Yunfei Huo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xiaoni Liu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Ying Shi
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Bangxiang Xie
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
10
|
Li S, Zhang G, Hu J, Tian Y, Fu X. Ferroptosis at the nexus of metabolism and metabolic diseases. Theranostics 2024; 14:5826-5852. [PMID: 39346540 PMCID: PMC11426249 DOI: 10.7150/thno.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, is emerging as a crucial regulator of human physiology and pathology. Increasing evidence showcases a reciprocal relationship between ferroptosis and dysregulated metabolism, propagating a pathogenic vicious cycle that exacerbates pathology and human diseases, particularly metabolic disorders. Consequently, there is a rapidly growing interest in developing ferroptosis-based therapeutics. Therefore, a comprehensive understanding of the intricate interplay between ferroptosis and metabolism could provide an invaluable resource for mechanistic insight and therapeutic development. In this review, we summarize the important metabolic substances and associated pathways in ferroptosis initiation and progression, outline the cascade responses of ferroptosis in disease development, overview the roles and mechanisms of ferroptosis in metabolic diseases, introduce the methods for ferroptosis detection, and discuss the therapeutic perspectives of ferroptosis, which collectively aim to illustrate a comprehensive view of ferroptosis in basic, translational, and clinical science.
Collapse
Affiliation(s)
- Shuangwen Li
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guixiang Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiankun Hu
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
11
|
Chen W, Xu H, Guo L, Zheng F, Yao J, Wang L. Role of ACSL4 in modulating farnesoid X receptor expression and M2 macrophage polarization in HBV-induced hepatocellular carcinoma. MedComm (Beijing) 2024; 5:e706. [PMID: 39268355 PMCID: PMC11391271 DOI: 10.1002/mco2.706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/15/2024] Open
Abstract
The intricate relationship between bile acid (BA) metabolism, M2 macrophage polarization, and hepatitis B virus-hepatocellular carcinoma (HBV-HCC) necessitates a thorough investigation of ACSL4's (acyl-CoA synthetase long-chain family member 4) role. This study combines advanced bioinformatics and experimental methods to elucidate ACSL4's significance in HBV-HCC development. Using bioinformatics, we identified differentially expressed genes in HBV-HCC. STRING and gene set enrichment analysis analyses were employed to pinpoint critical genes and pathways. Immunoinfiltration analysis, along with in vitro and in vivo experiments, assessed M2 macrophage polarization and related factors. ACSL4 emerged as a pivotal gene influencing HBV-HCC. In HBV-HCC liver tissues, ACSL4 exhibited upregulation, along with increased levels of M2 macrophage markers and BA. Silencing ACSL4 led to heightened farnesoid X receptor (FXR) expression, reduced BA levels, and hindered M2 macrophage polarization, thereby improving HBV-HCC conditions. This study underscores ACSL4's significant role in HBV-HCC progression. ACSL4 modulates BA-mediated M2 macrophage polarization and FXR expression, shedding light on potential therapeutic targets and novel insights into HBV-HCC pathogenesis.
Collapse
Affiliation(s)
- Wenbiao Chen
- Department of Gastroenterology Shenzhen People's Hospital The Second Clinical Medical College Jinan University The First Affiliated Hospital Southern University of Science and Technology Shenzhen China
| | - Huixuan Xu
- Department of Rheumatology and Immunology The Second Clinical Medical College Jinan University (Shenzhen People's Hospital) Shenzhen China
| | - Liliangzi Guo
- Department of Gastroenterology Shenzhen People's Hospital The Second Clinical Medical College Jinan University The First Affiliated Hospital Southern University of Science and Technology Shenzhen China
| | - Fengping Zheng
- Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center Peking University Shenzhen Hospital Shenzhen Guangdong China
| | - Jun Yao
- Department of Gastroenterology Shenzhen People's Hospital The Second Clinical Medical College Jinan University The First Affiliated Hospital Southern University of Science and Technology Shenzhen China
| | - Lisheng Wang
- Department of Gastroenterology Shenzhen People's Hospital The Second Clinical Medical College Jinan University The First Affiliated Hospital Southern University of Science and Technology Shenzhen China
| |
Collapse
|
12
|
Rao Y, Li J, Shi L, Chen X, Hu Y, Mao Y, Zhang X, Liu X. Silencing CK19 regulates ferroptosis by affecting the expression of GPX4 and ACSL4 in oral squamous cell carcinoma in vivo and in vitro. Sci Rep 2024; 14:15968. [PMID: 38987531 PMCID: PMC11237079 DOI: 10.1038/s41598-024-65079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
To analyze the mechanism of how interfering with the cytokeratin 19 (CK19) pathway via the ferroptosis pathway affects tumor biological behaviors in the process of oral squamous cell carcinoma (OSCC) development. TCGA was used to analyze the expression of CK19 in pan-cancer and head and neck squamous cell carcinoma (HNSC) and to explore the ferroptosis-related genes related to HNSC. The effect of silencing CK19 on the migration ability of HSC-4 cells was verified by wound healing and migration assay. HSC-4 cells with silencing of CK19 and tumor-bearing nude mouse model were constructed. RT-qPCR, immunofluorescence and western blot were used to analyze the expression of ferroptosis-related genes. CK19 is highly expressed in human OSCC and nude mice. The migration ability of cells in the CK19-silenced group was lower than that of the control group. In vivo and in vitro, CK19 was negatively correlated with the expression of ACSL4 and positively correlated with the expression of GPX4. Compared with the control group, GPX4 expression was down-regulated and ACSL4 expression was up-regulated in the CK19-silenced group. Silencing CK19 also increased intracellular Fe2+ content and MDA content. Silencing CK19 can affect the expression of GPX4 and ACSL4 to regulate ferroptosis and at the same time increase the content of MDA, Fe2+ and ROS levels, thereby activating the regulation of ferroptosis pathway in the development of OSCC.
Collapse
Affiliation(s)
- Yong Rao
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, Sichuan, China
| | - Jingying Li
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, Sichuan, China
| | - Lijuan Shi
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, Sichuan, China
| | - Xiao Chen
- Department of Oral Medicine, Sichuan Vocational College of Traditional Chinese Medicine, Mianyang, 621000, Sichuan, China
- Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, 621000, Sichuan, China
| | - Yun Hu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, Sichuan, China
| | - Yalin Mao
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, Sichuan, China
| | - Xiaoyan Zhang
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, Sichuan, China.
| | - Xuqian Liu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, Sichuan, China.
| |
Collapse
|
13
|
James K, Oluwole OG. Leveraging human-mouse studies to advance the genetics of hearing impairment in Africa. J Gene Med 2024; 26:e3714. [PMID: 38949079 DOI: 10.1002/jgm.3714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/10/2024] [Accepted: 06/02/2024] [Indexed: 07/02/2024] Open
Abstract
Mouse models are used extensively to understand human pathobiology and mechanistic functions of disease-associated loci. However, in this review, we investigate the potential of using genetic mouse models to identify genetic markers that can disrupt hearing thresholds in mice and then target the hearing-enriched orthologues and loci in humans. Currently, little is known about the real prevalence of genes that cause hearing impairment (HI) in Africa. Pre-screening mouse cell lines to identify orthologues of interest has the potential to improve the genetic diagnosis for HI in Africa to a significant percentage, for example, 10-20%. Furthermore, the functionality of a candidate gene derived from mouse screening with heterogeneous genetic backgrounds and multi-omic approaches can shed light on the molecular, genetic heterogeneity and plausible mode of inheritance of a gene in hearing-impaired individuals especially in the absence of large families to investigate.
Collapse
Affiliation(s)
- Kili James
- Department of Pathology, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Oluwafemi G Oluwole
- Department of Pathology, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biomedical Research Centre, Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Wu Y, Zhang J, Wang W, Wu D, Kang Y, Fu L. MARK4 aggravates cardiac dysfunction in mice with STZ-induced diabetic cardiomyopathy by regulating ACSL4-mediated myocardial lipid metabolism. Sci Rep 2024; 14:12978. [PMID: 38839927 PMCID: PMC11153581 DOI: 10.1038/s41598-024-64006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024] Open
Abstract
Diabetic cardiomyopathy is a specific type of cardiomyopathy. In DCM, glucose uptake and utilization are impaired due to insulin deficiency or resistance, and the heart relies more heavily on fatty acid oxidation for energy, resulting in myocardial lipid toxicity-related injury. MARK4 is a member of the AMPK-related kinase family, and improves ischaemic heart failure through microtubule detyrosination. However, the role of MARK4 in cardiac regulation of metabolism is unclear. In this study, after successful establishment of a diabetic cardiomyopathy model induced by streptozotocin and a high-fat diet, MARK4 expression was found to be significantly increased in STZ-induced DCM mice. After AAV9-shMARK4 was administered through the tail vein, decreased expression of MARK4 alleviated diabetic myocardial damage, reduced oxidative stress and apoptosis, and facilitated cardiomyocyte mitochondrial fusion, and promoted myocardial lipid oxidation metabolism. In addition, through the RNA-seq analysis of differentially expressed genes, we found that MARK4 deficiency promoted lipid decomposition and oxidative metabolism by downregulating the expression of ACSL4, thus reducing myocardial lipid accumulation in the STZ-induced DCM model.
Collapse
Affiliation(s)
- Yi Wu
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Jingqi Zhang
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Weiyi Wang
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Dongdong Wu
- The First Affiliated Hospital of Jinzhou Medical University, 157 Renmin Street, Guta District, Jinzhou, 121000, China
| | - Yang Kang
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Lu Fu
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
15
|
Wu D, Zuo Z, Sun X, Li X, Yin F, Yin W. ACSL4 promotes malignant progression of Hepatocellular carcinoma by targeting PAK2 transcription. Biochem Pharmacol 2024; 224:116206. [PMID: 38615921 DOI: 10.1016/j.bcp.2024.116206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Long-chain fatty acyl-Coa ligase 4 (ACSL4) is an important enzyme that converts fatty acids to fatty acyl-Coa esters, there is increasing evidence for its role in carcinogenesis. However, the precise role of ACLS4 in hepatocellular carcinoma (HCC) is not clearly understood. In the present study, we provide evidence that ACSL4 expression was specifically elevated in HCC and is associated with poor clinical outcomes. ACSL4 significantly promotes the growth and metastasis of HCC both in vitro and in vivo. RNA sequencing and functional experiments showed that the effect of ACSL4 on HCC development was heavily dependent on PAK2. ACSL4 expression is well correlated with PAK2 in HCC, and ACSL4 even transcriptionally increased PAK2 gene expression mediated by Sp1. In addition, emodin, a naturally occurring anthraquinone derivative, inhibited HCC cell growth and tumor progression by targeting ACSL4. In summary, ACSL4 plays a novel oncogene in HCC development by regulating PAK2 transcription. Targeting ACSL4 could be useful in drug development and therapy for HCC.
Collapse
Affiliation(s)
- Dandan Wu
- College of Life Sciences in Nanjing University (Xianlin Campus), State Key lab of Pharmaceutical Biotechnology (SKLPB), Nanjing University, Nanjing 210046, China
| | - Zongchao Zuo
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xinning Sun
- College of Life Sciences in Nanjing University (Xianlin Campus), State Key lab of Pharmaceutical Biotechnology (SKLPB), Nanjing University, Nanjing 210046, China
| | - Xin Li
- College of Life Sciences in Nanjing University (Xianlin Campus), State Key lab of Pharmaceutical Biotechnology (SKLPB), Nanjing University, Nanjing 210046, China
| | - Fangzhou Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Wu Yin
- College of Life Sciences in Nanjing University (Xianlin Campus), State Key lab of Pharmaceutical Biotechnology (SKLPB), Nanjing University, Nanjing 210046, China.
| |
Collapse
|
16
|
Ashraf AA, Aljuhani M, Hubens CJ, Jeandriens J, Parkes HG, Geraki K, Mahmood A, Herlihy AH, So PW. Inflammation subsequent to mild iron excess differentially alters regional brain iron metabolism, oxidation and neuroinflammation status in mice. Front Aging Neurosci 2024; 16:1393351. [PMID: 38836051 PMCID: PMC11148467 DOI: 10.3389/fnagi.2024.1393351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/26/2024] [Indexed: 06/06/2024] Open
Abstract
Iron dyshomeostasis and neuroinflammation, characteristic features of the aged brain, and exacerbated in neurodegenerative disease, may induce oxidative stress-mediated neurodegeneration. In this study, the effects of potential priming with mild systemic iron injections on subsequent lipopolysaccharide (LPS)-induced inflammation in adult C57Bl/6J mice were examined. After cognitive testing, regional brain tissues were dissected for iron (metal) measurements by total reflection X-ray fluorescence and synchrotron radiation X-Ray fluorescence-based elemental mapping; and iron regulatory, ferroptosis-related, and glia-specific protein analysis, and lipid peroxidation by western blotting. Microglial morphology and astrogliosis were assessed by immunohistochemistry. Iron only treatment enhanced cognitive performance on the novel object location task compared with iron priming and subsequent LPS-induced inflammation. LPS-induced inflammation, with or without iron treatment, attenuated hippocampal heme oxygenase-1 and augmented 4-hydroxynonenal levels. Conversely, in the cortex, elevated ferritin light chain and xCT (light chain of System Xc-) were observed in response to LPS-induced inflammation, without and with iron-priming. Increased microglial branch/process lengths and astrocyte immunoreactivity were also increased by combined iron and LPS in both the hippocampus and cortex. Here, we demonstrate iron priming and subsequent LPS-induced inflammation led to iron dyshomeostasis, compromised antioxidant function, increased lipid peroxidation and altered neuroinflammatory state in a brain region-dependent manner.
Collapse
Affiliation(s)
- Azhaar Ahmad Ashraf
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Manal Aljuhani
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Chantal J Hubens
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jérôme Jeandriens
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Human Biology and Toxicology, Faculty of Medicine, University of Mons, Mons, Belgium
| | - Harold G Parkes
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Ayesha Mahmood
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Po-Wah So
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
17
|
Li Y, Fu W, Xiang J, Ren Y, Li Y, Zhou M, Yu J, Luo Z, Liu E, Fu Z, Liu B, Ding F. Long-chain acyl-CoA synthetase 4-mediated mitochondrial fatty acid metabolism and dendritic cell antigen presentation. Inflamm Res 2024; 73:819-839. [PMID: 38472395 DOI: 10.1007/s00011-024-01868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
OBJECTIVE This study aims to investigate the role of Acyl-CoA synthetase 4 (ACSL4) in mediating mitochondrial fatty acid metabolism and dendritic cell (DC) antigen presentation in the immune response associated with asthma. METHODS RNA sequencing was employed to identify key genes associated with mitochondrial function and fatty acid metabolism in DCs. ELISA was employed to assess the levels of fatty acid metabolism in DCs. Mitochondrial morphology was evaluated using laser confocal microscopy, structured illumination microscopy, and transmission electron microscopy. Flow cytometry and immunofluorescence were utilized to detect changes in mitochondrial superoxide generation in DCs, followed by immunofluorescence co-localization analysis of ACSL4 and the mitochondrial marker protein COXIV. Subsequently, pathological changes and immune responses in mouse lung tissue were observed. ELISA was conducted to measure the levels of fatty acid metabolism in lung tissue DCs. qRT-PCR and western blotting were employed to respectively assess the expression levels of mitochondrial-associated genes (ATP5F1A, VDAC1, COXIV, TFAM, iNOS) and proteins (ATP5F1A, VDAC1, COXIV, TOMM20, iNOS) in lung tissue DCs. Flow cytometry was utilized to analyze changes in the expression of surface antigens presented by DCs in lung tissue, specifically the MHCII molecule and the co-stimulatory molecules CD80/86. RESULTS The sequencing results reveal that ACSL4 is a crucial gene regulating mitochondrial function and fatty acid metabolism in DCs. Inhibiting ACSL4 reduces the levels of fatty acid oxidases in DCs, increases arachidonic acid levels, and decreases A-CoA synthesis. Simultaneously, ACSL4 inhibition leads to an increase in mitochondrial superoxide production (MitoSOX) in DCs, causing mitochondrial rupture, vacuolization, and sparse mitochondrial cristae. In mice, ACSL4 inhibition exacerbates pulmonary pathological changes and immune responses, reducing the fatty acid metabolism levels within lung tissue DCs and the expression of mitochondria-associated genes and proteins. This inhibition induces an increase in the expression of MHCII antigen presentation molecules and co-stimulatory molecules CD80/86 in DCs. CONCLUSIONS The research findings indicate that ACSL4-mediated mitochondrial fatty acid metabolism and dendritic cell antigen presentation play a crucial regulatory role in the immune response of asthma. This discovery holds promise for enhancing our understanding of the mechanisms underlying asthma pathogenesis and potentially identifying novel targets for its prevention and treatment.
Collapse
Affiliation(s)
- Yan Li
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong Dis, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Wenlong Fu
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong Dis, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People's Republic of China
| | - JinYing Xiang
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong Dis, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yinying Ren
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong Dis, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yuehan Li
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong Dis, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Mi Zhou
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong Dis, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jinyue Yu
- Bristol Medical School, University of Bristol, Bristol, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong Dis, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Enmei Liu
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong Dis, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhou Fu
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong Dis, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Bo Liu
- Department of Cardiothoracic Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong Dis, Chongqing, 400014, People's Republic of China.
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People's Republic of China.
| | - Fengxia Ding
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2 Road, Yuzhong Dis, Chongqing, 400014, People's Republic of China.
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
18
|
Chen Y, Zhao W, Hu A, Lin S, Chen P, Yang B, Fan Z, Qi J, Zhang W, Gao H, Yu X, Chen H, Chen L, Wang H. Type 2 diabetic mellitus related osteoporosis: focusing on ferroptosis. J Transl Med 2024; 22:409. [PMID: 38693581 PMCID: PMC11064363 DOI: 10.1186/s12967-024-05191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024] Open
Abstract
With the aging global population, type 2 diabetes mellitus (T2DM) and osteoporosis(OP) are becoming increasingly prevalent. Diabetic osteoporosis (DOP) is a metabolic bone disorder characterized by abnormal bone tissue structure and reduced bone strength in patients with diabetes. Studies have revealed a close association among diabetes, increased fracture risk, and disturbances in iron metabolism. This review explores the concept of ferroptosis, a non-apoptotic cell death process dependent on intracellular iron, focusing on its role in DOP. Iron-dependent lipid peroxidation, particularly impacting pancreatic β-cells, osteoblasts (OBs) and osteoclasts (OCs), contributes to DOP. The intricate interplay between iron dysregulation, which comprises deficiency and overload, and DOP has been discussed, emphasizing how excessive iron accumulation triggers ferroptosis in DOP. This concise overview highlights the need to understand the complex relationship between T2DM and OP, particularly ferroptosis. This review aimed to elucidate the pathogenesis of ferroptosis in DOP and provide a prospective for future research targeting interventions in the field of ferroptosis.
Collapse
Affiliation(s)
- Yili Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wen Zhao
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - An Hu
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Shi Lin
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Ping Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bing Yang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhirong Fan
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ji Qi
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenhui Zhang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huanhuan Gao
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiubing Yu
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Haiyun Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Luyuan Chen
- Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 510086, China.
| | - Haizhou Wang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Dai Y, Wei X, Jiang T, Wang Q, Li Y, Ruan N, Luo P, Huang J, Yang Y, Yan Q, Zhang C, Liu Y. Ferroptosis in age-related vascular diseases: Molecular mechanisms and innovative therapeutic strategies. Biomed Pharmacother 2024; 173:116356. [PMID: 38428313 DOI: 10.1016/j.biopha.2024.116356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
Aging, an inevitable aspect of human existence, serves as one of the predominant risk factors for vascular diseases. Delving into the mystery of vascular disease's pathophysiology, the profound involvement of programmed cell death (PCD) has been extensively demonstrated. PCD is a fundamental biological process that plays a crucial role in both normal physiology and pathology, including a recently discovered form, ferroptosis. Ferroptosis is characterized by its reliance on iron and lipid peroxidation, and its significant involvement in vascular disease pathophysiology has been increasingly acknowledged. This phenomenon not only offers a promising therapeutic target but also deepens our understanding of the complex relationship between ferroptosis and age-related vascular diseases. Consequently, this article aims to thoroughly review the mechanisms that enable the effective control and inhibition of ferroptosis. It focuses on genetic and pharmacological interventions, with the goal of developing innovative therapeutic strategies to combat age-related vascular diseases.
Collapse
Affiliation(s)
- Yue Dai
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiuxian Wei
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Jiang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Li
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Nan Ruan
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengcheng Luo
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingwen Huang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Nursing, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Yang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Yan
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Liu
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
20
|
Kao YR, Chen J, Kumari R, Ng A, Zintiridou A, Tatiparthy M, Ma Y, Aivalioti MM, Moulik D, Sundaravel S, Sun D, Reisz JA, Grimm J, Martinez-Lopez N, Stransky S, Sidoli S, Steidl U, Singh R, D'Alessandro A, Will B. An iron rheostat controls hematopoietic stem cell fate. Cell Stem Cell 2024; 31:378-397.e12. [PMID: 38402617 PMCID: PMC10939794 DOI: 10.1016/j.stem.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/20/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Mechanisms governing the maintenance of blood-producing hematopoietic stem and multipotent progenitor cells (HSPCs) are incompletely understood, particularly those regulating fate, ensuring long-term maintenance, and preventing aging-associated stem cell dysfunction. We uncovered a role for transitory free cytoplasmic iron as a rheostat for adult stem cell fate control. We found that HSPCs harbor comparatively small amounts of free iron and show the activation of a conserved molecular response to limited iron-particularly during mitosis. To study the functional and molecular consequences of iron restriction, we developed models allowing for transient iron bioavailability limitation and combined single-molecule RNA quantification, metabolomics, and single-cell transcriptomic analyses with functional studies. Our data reveal that the activation of the limited iron response triggers coordinated metabolic and epigenetic events, establishing stemness-conferring gene regulation. Notably, we find that aging-associated cytoplasmic iron loading reversibly attenuates iron-dependent cell fate control, explicating intervention strategies for dysfunctional aged stem cells.
Collapse
Affiliation(s)
- Yun-Ruei Kao
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA.
| | - Jiahao Chen
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Rajni Kumari
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Anita Ng
- Karches Center for Oncology Research, the Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Aliona Zintiridou
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Madhuri Tatiparthy
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Yuhong Ma
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Maria M Aivalioti
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Deeposree Moulik
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Sriram Sundaravel
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Daqian Sun
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Juliane Grimm
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Nuria Martinez-Lopez
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California Los Angeles, CA, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Ulrich Steidl
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, New York, NY, USA; Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajat Singh
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California Los Angeles, CA, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Britta Will
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, New York, NY, USA; Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
21
|
Teramayi F, Bons J, Scott M, Scott GK, Loureiro A, Lopez-Ramirez A, Schilling B, Ellerby LM, Benz CC. Brain transcriptomic, metabolic and mitohormesis properties associated with N-propargylglycine treatment: A prevention strategy against neurodegeneration. Brain Res 2024; 1826:148733. [PMID: 38128812 PMCID: PMC11283822 DOI: 10.1016/j.brainres.2023.148733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/10/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION There is an urgent need for new or repurposed therapeutics that protect against or significantly delay the clinical progression of neurodegenerative diseases, such as Huntington's disease (HD), Parkinson's disease and Alzheimer's disease. In particular, preclinical studies are needed for well tolerated and brain-penetrating small molecules capable of mitigating the proteotoxic mitochondrial processes that are hallmarks of these diseases. We identified a unique suicide inhibitor of mitochondrial proline dehydrogenase (Prodh), N-propargylglycine (N-PPG), which has anticancer and brain-enhancing mitohormesis properties, and we hypothesize that induction of mitohormesis by N-PPG protects against neurodegenerative diseases. We carried out a series of mouse studies designed to: i) compare brain and metabolic responses while on oral N-PPG treatment (50 mg/kg, 9-14 days) of B6CBA wildtype (WT) and short-lived transgenic R6/2 (HD) mice; and ii) evaluate potential brain and systemwide stress rebound responses in WT mice 2 months after cessation of extended mitohormesis induction by well-tolerated higher doses of N-PPG (100-200 mg/kg x 60 days). WT and HD mice showed comparable global evidence of N-PPG induced brain mitohormesis characterized by Prodh protein decay and increased mitochondrial expression of chaperone and Yme1l1 protease proteins. Interestingly, transcriptional analysis (RNAseq) showed partial normalization of HD whole brain transcriptomes toward those of WT mice. Comprehensive metabolomic profiles performed on control and N-PPG treated blood, brain, and kidney samples revealed expected N-PPG-induced tissue increases in proline levels in both WT and HD mice, accompanied by surprising parallel increases in hydroxyproline and sarcosine. Two months after cessation of the higher dose N-PPG stress treatments, WT mouse brains showed robust rebound increases in Prodh protein levels and mitochondrial transcriptome responses, as well as altered profiles of blood amino acid-related metabolites. Our HD and WT mouse preclinical findings point to the brain penetrating and mitohormesis-inducing potential of the drug candidate, N-PPG, and provide new rationale and application insights supporting its further preclinical testing in various models of neurodegenerative diseases characterized by loss of mitochondrial proteostasis.
Collapse
Affiliation(s)
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Madeleine Scott
- Center for Biomedical Informatics, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary K Scott
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | | | | | | | | |
Collapse
|
22
|
Zhou D, Lu P, Mo X, Yang B, Chen T, Yao Y, Xiong T, Yue L, Yang X. Ferroptosis and metabolic syndrome and complications: association, mechanism, and translational applications. Front Endocrinol (Lausanne) 2024; 14:1248934. [PMID: 38260171 PMCID: PMC10800994 DOI: 10.3389/fendo.2023.1248934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic syndrome is a medical condition characterized by several metabolic disorders in the body. Long-term metabolic disorders raise the risk of cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM). Therefore, it is essential to actively explore the aetiology of metabolic syndrome (MetS) and its comorbidities to provide effective treatment options. Ferroptosis is a new form of cell death that is characterized by iron overload, lipid peroxide accumulation, and decreased glutathione peroxidase 4(GPX4) activity, and it involves the pathological processes of a variety of diseases. Lipid deposition caused by lipid diseases and iron overload is significant in metabolic syndrome, providing the theoretical conditions for developing ferroptosis. Recent studies have found that the major molecules of ferroptosis are linked to common metabolic syndrome consequences, such as T2DM and atherosclerosis. In this review, we first discussed the mechanics of ferroptosis, the regulatory function of inducers and inhibitors of ferroptosis, and the significance of iron loading in MetS. Next, we summarized the role of ferroptosis in the pathogenesis of MetS, such as obesity, type 2 diabetes, and atherosclerosis. Finally, we discussed relevant ferroptosis-targeted therapies and raised some crucial issues of concern to provide directions for future Mets-related treatments and research.
Collapse
Affiliation(s)
- Dongmei Zhou
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Peipei Lu
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xianglai Mo
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Bing Yang
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Ting Chen
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - You Yao
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Tian Xiong
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Lin Yue
- School of Nursing, Hunan University of Medicine, Huaihua, China
| | - Xi Yang
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
23
|
Lan T, Ren S, Hu H, Wang R, Chen Q, Wu F, Xu Q, Li Y, Shao L, Wang L, Liu X, Cao H, Li J. Integrated Single-cell and Bulk RNA Sequencing Analysis Cross Talk between Ferroptosis-related Genes and Prognosis in Oral Cavity Squamous Cell Carcinoma. Recent Pat Anticancer Drug Discov 2024; 19:354-372. [PMID: 38214321 DOI: 10.2174/1574892818666230602112042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/09/2023] [Accepted: 05/03/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Ferroptosis is a new type of programmed apoptosis and plays an important role in tumour inhibition and immunotherapy. OBJECTIVE In this study, we aimed to explore the potential role of ferroptosis-related genes (FRGs) and the potential therapeutic targets in oral cavity squamous cell carcinoma (OCSCC). METHODS The transcription data of OCSCC samples were obtained from the Cancer Genome Atlas (TCGA) database as a training dataset. The prognostic FRGs were extracted by univariate Cox regression analysis. Then, we constructed a prognostic model using the least absolute shrinkage and selection operator (LASSO) and Cox analysis to determine the independent prognosis FRGs. Based on this model, risk scores were calculated for the OCSCC samples. The model's capability was further evaluated by the receiver operating characteristic curve (ROC). Then, we used the GSE41613 dataset as an external validation cohort to confirm the model's predictive capability. Next, the immune infiltration and somatic mutation analysis were applied. Lastly, single-cell transcriptomic analysis was used to identify the key cells. RESULTS A total of 12 prognostic FRGs were identified. Eventually, 6 FRGs were screened as independent predictors and a prognostic model was constructed in the training dataset, which significantly stratified OCSCC samples into high-risk and low-risk groups based on overall survival. The external validation of the model using the GSE41613 dataset demonstrated a satisfactory predictive capability for the prognosis of OCSCC. Further analysis revealed that patients in the highrisk group had distinct immune infiltration and somatic mutation patterns from low-risk patients. Mast cell infiltrations were identified as prognostic immune cells and played a role in OCSCC partly through ferroptosis. CONCLUSION We successfully constructed a novel 6 FRGs model and identified a prognostic immune cell, which can serve to predict clinical prognoses for OCSCC. Ferroptosis may be a new direction for immunotherapy of OCSCC.
Collapse
Affiliation(s)
- Tianjun Lan
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510010, China
| | - Siqi Ren
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510010, China
| | - Huijun Hu
- Department of Radiology, Sun Yat-Sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510010, China
| | - Ruixin Wang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510010, China
| | - Qian Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510010, China
| | - Fan Wu
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510010, China
| | - Qiuping Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yatsen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yanyan Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510010, China
| | - Libin Shao
- Department of Endodontics, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510010, China
| | - Liansheng Wang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510010, China
| | - Xin Liu
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528308, China
| | - Haotian Cao
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510010, China
| | - Jinsong Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510010, China
| |
Collapse
|
24
|
Huang Z, Ma Y, Sun Z, Cheng L, Wang G. Ferroptosis: potential targets and emerging roles in pancreatic diseases. Arch Toxicol 2024; 98:75-94. [PMID: 37934210 DOI: 10.1007/s00204-023-03625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
Ferroptosis is a newly discovered form of regulatory cell death characterized by excessive iron-dependent lipid peroxidation. In the past decade, significant breakthroughs have been made in comprehending the features and regulatory mechanisms of ferroptosis, and it has been confirmed that ferroptosis plays a pivotal role in the pathophysiological processes of various diseases, including tumors, inflammation, neurodegenerative diseases, and infectious diseases. The pancreas, which is the second largest digestive gland in the human body and has both endocrine and exocrine functions, is a vital organ for controlling digestion and metabolism. In recent years, numerous studies have confirmed that ferroptosis is closely related to pancreatic diseases, which is attributed to abnormal iron accumulation, as an essential biochemical feature of ferroptosis, is often present in the pathological processes of various pancreatic exocrine and endocrine diseases and the vulnerability of the pancreas to oxidative stress stimulation and damage. Therefore, comprehending the regulatory mechanism of ferroptosis in pancreatic diseases may provide valuable new insights into treatment strategies. In this review, we first summarize the hallmark features of ferroptosis and then analyze the exact mechanisms by which ferroptosis is precisely regulated at multiple levels and links, including iron metabolism, lipid metabolism, the GPX4-mediated ferroptosis defense system, the GPX4-independent ferroptosis defense system, and the regulation of autophagy on ferroptosis. Finally, we discuss the role of ferroptosis in the occurrence and development of pancreatic diseases and summarize the feasibility and limitations of ferroptosis as a therapeutic target for pancreatic diseases.
Collapse
Affiliation(s)
- Zijian Huang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yuan Ma
- Medical Department, The First Affifiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zhiguo Sun
- Department of General Surgery, The Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Long Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
25
|
Yu W, Wang L, Ren WY, Xu HX, Wu NN, Yu DH, Reiter RJ, Zha WL, Guo QD, Ren J. SGLT2 inhibitor empagliflozin alleviates cardiac remodeling and contractile anomalies in a FUNDC1-dependent manner in experimental Parkinson's disease. Acta Pharmacol Sin 2024; 45:87-97. [PMID: 37679644 PMCID: PMC10770167 DOI: 10.1038/s41401-023-01144-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/25/2023] [Indexed: 09/09/2023]
Abstract
Recent evidence shows a close link between Parkinson's disease (PD) and cardiac dysfunction with limited treatment options. Mitophagy plays a crucial role in the control of mitochondrial quantity, metabolic reprogramming and cell differentiation. Mutation of the mitophagy protein Parkin is directly associated with the onset of PD. Parkin-independent receptor-mediated mitophagy is also documented such as BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) and FUN14 domain containing 1 (FUNDC1) for receptor-mediated mitophagy. In this study we investigated cardiac function and mitophagy including FUNDC1 in PD patients and mouse models, and evaluated the therapeutic potential of a SGLT2 inhibitor empagliflozin. MPTP-induced PD model was established. PD patients and MPTP mice not only displayed pronounced motor defects, but also low plasma FUNDC1 levels, as well as cardiac ultrastructural and geometric anomalies (cardiac atrophy, interstitial fibrosis), functional anomalies (reduced E/A ratio, fractional shortening, ejection fraction, cardiomyocyte contraction) and mitochondrial injury (ultrastructural damage, UCP2, PGC1α, elevated mitochondrial Ca2+ uptake proteins MCU and VDAC1, and mitochondrial apoptotic protein calpain), dampened autophagy, FUNDC1 mitophagy and apoptosis. By Gene set enrichment analysis (GSEA), we found overtly altered glucose transmembrane transport in the midbrains of MPTP-treated mice. Intriguingly, administration of SGLT2 inhibitor empagliflozin (10 mg/kg, i.p., twice per week for 2 weeks) in MPTP-treated mice significantly ameliorated myocardial anomalies (with exception of VDAC1), but did not reconcile the motor defects or plasma FUNDC1. FUNDC1 global knockout (FUNDC1-/- mice) did not elicit any phenotype on cardiac geometry or function in the absence or presence of MPTP insult, but it nullified empagliflozin-caused cardioprotection against MPTP-induced cardiac anomalies including remodeling (atrophy and fibrosis), contractile dysfunction, Ca2+ homeostasis, mitochondrial (including MCU, mitochondrial Ca2+ overload, calpain, PARP1) and apoptotic anomalies. In neonatal and adult cardiomyocytes, treatment with PD neurotoxin preformed fibrils of α-synuclein (PFF) caused cytochrome c release and cardiomyocyte mechanical defects. These effects were mitigated by empagliflozin (10 μM) or MCU inhibitor Ru360 (10 μM). MCU activator kaempferol (10 μM) or calpain activator dibucaine (500 μM) nullified the empagliflozin-induced beneficial effects. These results suggest that empagliflozin protects against PD-induced cardiac anomalies, likely through FUNDC1-mediated regulation of mitochondrial integrity.
Collapse
Affiliation(s)
- Wei Yu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning, 437100, China
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, the Air Force Military Medical University, Xi'an, 710032, China
| | - Wei-Ying Ren
- Department of Geriatrics, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Hai-Xia Xu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ne N Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Dong-Hui Yu
- Xianning Central Hospital, Xianning, 437100, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Wen-Liang Zha
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
- Second Affiliated Hospital, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Qing-Dong Guo
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| | - Jun Ren
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| |
Collapse
|
26
|
Wang M, Xuan T, Li H, An J, Hao T, Cheng J. Protective effect of FXN overexpression on ferroptosis in L-Glu-induced SH-SY5Y cells. Acta Histochem 2024; 126:152135. [PMID: 38266318 DOI: 10.1016/j.acthis.2024.152135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a complex, multifactorial neurodegenerative disease. However, the pathogenesis remains unclear. Recently, an increasing number of studies have demonstrated that ferroptosis is a new type of iron-dependent programmed cell death, contributes to the death of nerve cells in AD. By controlling iron homeostasis and mitochondrial function, the particular protein called frataxin (FXN), which is situated in the mitochondrial matrix, is a critical regulator of ferroptosis disease. It is encoded by the nuclear gene FXN. Here, we identified a novel underlying mechanism through which ferroptosis mediated by FXN contributes to AD. METHODS Human neuroblastoma cells (SH-SY5Y) were injured by L-glutamate (L-Glu). Overexpression of FXN by lentiviral transfection. In each experimental group, we assessed the ultrastructure of the mitochondria, the presence of iron and intracellular Fe2 + , the levels of reactive oxygen species, the mitochondrial membrane potential (MMP), and lipid peroxidation. Quantification was done for malondialdehyde (MDA) and reduced glutathione (GSH), as well as reactive oxygen species (ROS). Western blot and cellular immunofluorescence assays were used to detect the expression of xCT and GPX4 proteins which in System Xc-/GPX4 pathway, and the protein expressions of ACSL4 and TfR1 were investigated by Western blot. RESULTS The present work showed: (1) The expression of FXN was reduced in the L-Glu group; (2) Compared with the Control group, MMP was reduced in the L-Glu group, and mitochondria were observed to shrink and cristae were deformed, reduced or disappeared by transmission electron microscopy, and after FXN overexpression and ferrostatin-1 (Fer-1) (10 μmol/L) intervened, MMP was increased and mitochondrial morphology was significantly improved, suggesting that mitochondrial function was impaired in the L-Glu group, and overexpression of FXN could improve the manifestation of mitochondrial function impairment. (3) In the L-Glu group, ROS, MDA, iron ion concentration and Fe2+ levels were increased, GSH was decreased. Elevated expression of ACSL4 and TfR1, important regulatory proteins of ferroptosis, was detected by Western blot, and the expression of xCT and GPX4 in the System Xc-/GPX4 pathway was reduced by Western blot and cellular immunofluorescence. However, the above results were reversed when FXN overexpression and Fer-1 intervened. CONCLUSION To conclude, our research demonstrates that an elevated expression of FXN effectively demonstrates a robust neuroprotective effect against oxidative damage induced by L-Glu. Moreover, it mitigates mitochondrial dysfunction and lipid metabolic dysregulation associated with ferroptosis. FXN overexpression holds promise in potential therapeutic strategies for AD by inhibiting ferroptosis in nerve cells and fostering their protection.
Collapse
Affiliation(s)
- Mengran Wang
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China; School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Tingting Xuan
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China; School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Haining Li
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China; Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jing An
- Department of Neurology, People Hospital of Zhong wei, Zhongwei, China
| | - Tianhui Hao
- Department of Neurology, People Hospital of Zhong wei, Zhongwei, China.
| | - Jiang Cheng
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China; Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia Hui Autonomous Region, Yinchuan, China.
| |
Collapse
|
27
|
Zhang J, Song J, Liu S, Zhang Y, Qiu T, Jiang L, Bai J, Yao X, Wang N, Yang G, Sun X. m 6A methylation-mediated PGC-1α contributes to ferroptosis via regulating GSTK1 in arsenic-induced hepatic insulin resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167202. [PMID: 37730054 DOI: 10.1016/j.scitotenv.2023.167202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Arsenic exposure has been closely linked to hepatic insulin resistance (IR) and ferroptosis with the mechanism elusive. Peroxisome proliferator γ-activated receptor coactivator 1-α (PGC-1α) is essential for glucose metabolism as well as for the production of reactive oxygen species (ROS). However, it was unclear whether there is a regulatory connection between PGC-1α and ferroptosis. Besides, the definitive mechanism of arsenic-induced hepatic IR progression remains to be determined. Here, we found that hepatic insulin sensitivity impaired by sodium arsenite (NaAsO2) could be reversed by inhibiting ferroptosis. Mechanistically, we found that PGC-1α suppression inhibited the protein expression of glutathione s-transferase kappa 1 (GSTK1) via nuclear respiratory factor 1 (NRF1), thereby increasing ROS accumulation and promoting ferroptosis. Furthermore, we showed that NaAsO2 induced hepatic IR and ferroptosis via methyltransferase-like 14 (METTL14) and YTH domain-containing family protein 2 (YTHDF2)-mediated N6-methyladenosine (m6A) of PGC-1α mRNA. In conclusion, NaAsO2-mediated PGC-1α suppression was m6A methylation-dependent and induced ferroptosis via the PGC-1α/NRF1/GSTK1 pathway in hepatic IR. The data might provide insight into potential targets for diabetes prevention and treatment.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Jinwei Song
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Shuang Liu
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Yuhan Zhang
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Tianming Qiu
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Liping Jiang
- Experimental Teaching Center of Public Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Jie Bai
- Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Xiaofeng Yao
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Ningning Wang
- Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Guang Yang
- Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Xiance Sun
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
28
|
Cao W, Lan J, Zeng Z, Yu W, Lei S. Gastrodin Induces Ferroptosis of Glioma Cells via Upregulation of Homeobox D10. Molecules 2023; 28:8062. [PMID: 38138552 PMCID: PMC10745471 DOI: 10.3390/molecules28248062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Gastrodin, the primary bioactive compound found in Gastrodia elata, has been shown to exhibit neuroprotective properties in a range of neurological disorders. However, the precise mechanisms through which gastrodin influences glioma cells remain unclear, and there is a scarcity of data regarding its specific effects. To ascertain the viability of glioma cell lines LN229, U251, and T98, the CCK-8 assay, a colony formation assay, and a 3D culture model were employed, utilizing varying concentrations of gastrodin (0, 5, 10, and 20 μM). Gastrodin exhibited a notable inhibitory effect on the growth of glioma cells, as evidenced by its ability to suppress colony formation and spheroid formation. Additionally, gastrodin induced ferroptosis in glioma cells, as it can increase the levels of reactive oxygen species (ROS) and peroxidized lipids, and reduced the levels of glutathione. Using a subcutaneous tumor model, gastrodin was found to significantly inhibit the growth of the T98 glioma cell line in vivo. Using high-throughput sequencing, PPI analysis, and RT-qPCR, we successfully identified Homeobox D10 (HOXD10) as the principal target of gastrodin. Gastrodin administration significantly enhanced the expression of HOXD10 in glioma cells. Furthermore, treatment with gastrodin facilitated the transcription of ACSL4 via HOXD10. Notably, the inhibition of HOXD10 expression impeded ferroptosis in the cells, which was subsequently restored upon rescue with gastrodin treatment. Overall, our findings suggest that gastrodin acts as an anti-cancer agent by inducing ferroptosis and inhibiting cell proliferation in HOXD10/ACSL4-dependent pathways. As a prospective treatment for gliomas, gastrodin will hopefully be effective.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China;
- Key Laboratory of Human Brain Bank for Functions and Diseases, Guizhou Medical University, Guiyang 550025, China
| | - Jinzhi Lan
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (J.L.); (Z.Z.)
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (J.L.); (Z.Z.)
| | - Wenfeng Yu
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China;
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (J.L.); (Z.Z.)
| |
Collapse
|
29
|
Feng S, Rao Z, Zhang J, She X, Chen Y, Wan K, Li H, Zhao C, Feng Y, Wang G, Hu J, Luo X. Inhibition of CARM1-Mediated Methylation of ACSL4 Promotes Ferroptosis in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303484. [PMID: 37946697 PMCID: PMC10754121 DOI: 10.1002/advs.202303484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/15/2023] [Indexed: 11/12/2023]
Abstract
Ferroptosis, which is caused by iron-dependent accumulation of lipid peroxides, is an emerging form of regulated cell death and is considered a potential target for cancer therapy. However, the regulatory mechanisms underlying ferroptosis remain unclear. This study defines a distinctive role of ferroptosis. Inhibition of CARM1 can increase the sensitivity of tumor cells to ferroptosis inducers in vitro and in vivo. Mechanistically, it is found that ACSL4 is methylated by CARM1 at arginine 339 (R339). Furthermore, ACSL4 R339 methylation promotes RNF25 binding to ACSL4, which contributes to the ubiquitylation of ACSL4. The blockade of CARM1 facilitates ferroptosis and effectively enhances ferroptosis-associated cancer immunotherapy. Overall, this study demonstrates that CARM1 is a critical contributor to ferroptosis resistance and highlights CARM1 as a candidate therapeutic target for improving the effects of ferroptosis-based antitumor therapy.
Collapse
Affiliation(s)
- Shengjie Feng
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Zejun Rao
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Jiakun Zhang
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Xiaowei She
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Yaqi Chen
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Kairui Wan
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Haijie Li
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Chongchong Zhao
- The HIT Center for Life SciencesHarbin Institute of TechnologyHarbin150001China
| | - Yongdong Feng
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Guihua Wang
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Junbo Hu
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Xuelai Luo
- GI Cancer Research InstituteTongji HospitalHuazhong University of Science and TechnologyWuhan430030P. R. China
| |
Collapse
|
30
|
Gao J, Zhang Z, Dong X, Zhao J, Peng Z, Zhang L, Xu Z, Xu L, Wang X, Guo X. Traumatic acid inhibits ACSL4 associated lipid accumulation in adipocytes to attenuate high-fat diet-induced obesity. FASEB J 2023; 37:e23278. [PMID: 37902573 DOI: 10.1096/fj.202301166r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/31/2023]
Abstract
Obesity is a major health concern that lacks effective intervention strategies. Traumatic acid (TA) is a potent wound-healing agent in plants, considered an antioxidant food ingredient. This study demonstrated that TA treatment significantly reduced lipid accumulation in human adipocytes and prevented high-fat diet induced obesity in zebrafish. Transcriptome sequencing revealed TA-activated fatty acid (FA) degradation and FA metabolism signaling pathways. Moreover, western blotting and quantitative polymerase chain reaction showed that TA inhibited the expression of long-chain acyl-CoA synthetase-4 (ACSL4). Overexpression of ACSL4 resulted in the reversal of TA beneficiary effects, indicating that the attenuated lipid accumulation of TA was regulated by ACSL4 expression. Limited proteolysis-mass spectrometry and microscale thermophoresis were then used to confirm hexokinase 2 (HK2) as a direct molecular target of TA. Thus, we demonstrated the molecular basis of TA in regulating lipid accumulation and gave the first evidence that TA may function through the HK2-ACSL4 axis.
Collapse
Affiliation(s)
- Jianfang Gao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of General Practice, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongxiao Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Dong
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou Peng
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongqing Xu
- Department of General Practice, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liling Xu
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyun Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xirong Guo
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Wang Z, Li Y, Wu L, Guo Y, Yang G, Li X, Shi X. Rosiglitazone-induced PPARγ activation promotes intramuscular adipocyte adipogenesis of pig. Anim Biotechnol 2023; 34:3708-3717. [PMID: 37149785 DOI: 10.1080/10495398.2023.2206872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Intramuscular fat (IMF) positively influences various aspects of meat quality, while the subcutaneous fat (SF) has negative effect on carcass characteristics and fattening efficiency. Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of adipocyte differentiation, herein, through bioinformatic screen for the potential regulators of adipogenesis from two independent microarray datasets, we identified that PPARγ is a potentially regulator between porcine IMF and SF adipogenesis. Then we treated subcutaneous preadipocytes (SA) and intramuscular preadipocytes (IMA) of pig with RSG (1 µmol/L), and we found that RSG treatment promoted the differentiation of IMA via differentially activating PPARγ transcriptional activity. Besides, RSG treatment promoted apoptosis and lipolysis of SA. Meanwhile, by the treatment of conditioned medium, we excluded the possibility of indirect regulation of RSG from myocyte to adipocyte and proposed that AMPK may mediate the RSG-induced differential activation of PPARγ. Collectively, the RSG treatment promotes IMA adipogenesis, and advances SA lipolysis, this effect may be associated with AMPK-mediated PPARγ differential activation. Our data indicates that targeting PPARγ might be an effective strategy to promote intramuscular fat deposition while reduce subcutaneous fat mass of pig.
Collapse
Affiliation(s)
- Zhaolu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Youlei Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Lingling Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Yuan Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Xiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Xin'e Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| |
Collapse
|
32
|
Kuwata H, Nakatani E, Tomitsuka Y, Ochiai T, Sasaki Y, Yoda E, Hara S. Deficiency of long-chain acyl-CoA synthetase 4 leads to lipopolysaccharide-induced mortality in a mouse model of septic shock. FASEB J 2023; 37:e23330. [PMID: 37983658 DOI: 10.1096/fj.202301314r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/05/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
Long-chain acyl-CoA synthetase 4 (ACSL4) converts free highly unsaturated fatty acids (HUFAs) into their acyl-CoA esters and is important for HUFA utilization. HUFA-containing phospholipids produced via ACSL4-dependent reactions are involved in pathophysiological events such as inflammatory responses and ferroptosis as a source for lipid mediators and/or a target of oxidative stress, respectively. However, the in vivo role of ACSL4 in inflammatory responses is not fully understood. This study sought to define the effects of ACSL4 deficiency on lipopolysaccharide (LPS)-induced systemic inflammatory responses using global Acsl4 knockout (Acsl4 KO) mice. Intraperitoneal injection of LPS-induced more severe symptoms, including diarrhea, hypothermia, and higher mortality, in Acsl4 KO mice within 24 h compared with symptoms in wild-type (WT) mice. Intestinal permeability induced 3 h after LPS challenge was also enhanced in Acsl4 KO mice compared with that in WT mice. In addition, plasma levels of some eicosanoids in Acsl4 KO mice 6 h post-LPS injection were 2- to 9-fold higher than those in WT mice. The increased mortality observed in LPS-treated Acsl4 KO mice was significantly improved by treatment with the general cyclooxygenase inhibitor indomethacin with a partial reduction in the severity of illness index for hypothermia, diarrhea score, and intestinal permeability. These results suggest that ACSL4 deficiency enhances susceptibility to endotoxin at least partly through the overproduction of cyclooxygenase-derived eicosanoids.
Collapse
Affiliation(s)
- Hiroshi Kuwata
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| | - Eriko Nakatani
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| | - Yuki Tomitsuka
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| | - Tsubasa Ochiai
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| | - Yuka Sasaki
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| | - Emiko Yoda
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| |
Collapse
|
33
|
Zhu B, Wei Y, Zhang M, Yang S, Tong R, Li W, Long E. Metabolic dysfunction-associated steatotic liver disease: ferroptosis related mechanisms and potential drugs. Front Pharmacol 2023; 14:1286449. [PMID: 38027027 PMCID: PMC10665502 DOI: 10.3389/fphar.2023.1286449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is considered a "multisystem" disease that simultaneously suffers from metabolic diseases and hepatic steatosis. Some may develop into liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Given the close connection between metabolic diseases and fatty liver, it is urgent to identify drugs that can control metabolic diseases and fatty liver as a whole and delay disease progression. Ferroptosis, characterized by iron overload and lipid peroxidation resulting from abnormal iron metabolism, is a programmed cell death mechanism. It is an important pathogenic mechanism in metabolic diseases or fatty liver, and may become a key direction for improving MASLD. In this article, we have summarized the physiological and pathological mechanisms of iron metabolism and ferroptosis, as well as the connections established between metabolic diseases and fatty liver through ferroptosis. We have also summarized MASLD therapeutic drugs and potential active substances targeting ferroptosis, in order to provide readers with new insights. At the same time, in future clinical trials involving subjects with MASLD (especially with the intervention of the therapeutic drugs), the detection of serum iron metabolism levels and ferroptosis markers in patients should be increased to further explore the efficacy of potential drugs on ferroptosis.
Collapse
Affiliation(s)
- Baoqiang Zhu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuankui Wei
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingming Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shiyu Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenyuan Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Enwu Long
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
34
|
Ding K, Liu C, Li L, Yang M, Jiang N, Luo S, Sun L. Acyl-CoA synthase ACSL4: an essential target in ferroptosis and fatty acid metabolism. Chin Med J (Engl) 2023; 136:2521-2537. [PMID: 37442770 PMCID: PMC10617883 DOI: 10.1097/cm9.0000000000002533] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Indexed: 07/15/2023] Open
Abstract
ABSTRACT Long-chain acyl-coenzyme A (CoA) synthase 4 (ACSL4) is an enzyme that esterifies CoA into specific polyunsaturated fatty acids, such as arachidonic acid and adrenic acid. Based on accumulated evidence, the ACSL4-catalyzed biosynthesis of arachidonoyl-CoA contributes to the execution of ferroptosis by triggering phospholipid peroxidation. Ferroptosis is a type of programmed cell death caused by iron-dependent peroxidation of lipids; ACSL4 and glutathione peroxidase 4 positively and negatively regulate ferroptosis, respectively. In addition, ACSL4 is an essential regulator of fatty acid (FA) metabolism. ACSL4 remodels the phospholipid composition of cell membranes, regulates steroidogenesis, and balances eicosanoid biosynthesis. In addition, ACSL4-mediated metabolic reprogramming and antitumor immunity have attracted much attention in cancer biology. Because it facilitates the cross-talk between ferroptosis and FA metabolism, ACSL4 is also a research hotspot in metabolic diseases and ischemia/reperfusion injuries. In this review, we focus on the structure, biological function, and unique role of ASCL4 in various human diseases. Finally, we propose that ACSL4 might be a potential therapeutic target.
Collapse
Affiliation(s)
- Kaiyue Ding
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| |
Collapse
|
35
|
Feng C, Bai H, Chang X, Wu Z, Dong W, Ma Q, Yang J. Aflatoxin B1-induced early developmental hepatotoxicity in larvae zebrafish. CHEMOSPHERE 2023; 340:139940. [PMID: 37634582 DOI: 10.1016/j.chemosphere.2023.139940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Aflatoxin B1 (AFB1) is a ubiquitous mycotoxin that causes oxidative damage in various organs. At present, the research studies on AFB1 are primarily focused on its effects on the terrestrial environment and animals. However, its toxicity mechanism in aquatic environments and aquatic animals has not been largely explored. Thus, in this study, zebrafish was used as a model to study the toxicity mechanism of AFB1 on the liver of developing larvae. The results showed that AFB1 exposure inhibited liver development and promoted fat accumulation in the liver. Transcriptome sequencing analysis showed that AFB1 affected liver redox metabolism and oxidoreductase activity. KEGG analysis showed that AFB1 inhibited the expression of gsto1, gpx4a, mgst3a, and idh1 in the glutathione metabolizing enzyme gene pathway, resulting in hepatic oxidative stress. At the same time, AFB1 also inhibited the expression of acox1, acsl1b, pparα, fabp2, and cpt1 genes in peroxidase and PPAR metabolic pathways, inducing hepatic steatosis and lipid droplet accumulation. Antioxidant N-Acetyl-l-cysteine (NAC) preconditioning up-regulated gsto1, gpx4a and idh1 genes, and improved the AFB1-induced lipid droplet accumulation in the liver. In summary, AFB1 induced hepatic oxidative stress and steatosis, resulting in abnormal liver fat metabolism and accumulation of cellular lipid droplets. NAC could be used as a potential preventative drug to improve AFB1-induced fat accumulation.
Collapse
Affiliation(s)
- Chi Feng
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology,Tongliao,Inner Mongolia, 028000, China; Department of Chemistry and Chemical Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongxia Bai
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology,Tongliao,Inner Mongolia, 028000, China; Inner Mongolia Minzu Univ, Coll Anim Sci & Technol, Tongliao,Inner Mongolia, 028000, China
| | - Xu Chang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology,Tongliao,Inner Mongolia, 028000, China; Inner Mongolia Minzu Univ, Coll Anim Sci & Technol, Tongliao,Inner Mongolia, 028000, China
| | - Zhixuan Wu
- Inner Mongolia Minzu Univ, Coll Anim Sci & Technol, Tongliao,Inner Mongolia, 028000, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology,Tongliao,Inner Mongolia, 028000, China; Inner Mongolia Minzu Univ, Coll Anim Sci & Technol, Tongliao,Inner Mongolia, 028000, China
| | - Qianqian Ma
- Inner Mongolia Minzu Univ, Inst Pharmaceut Chem & Pharmacol, Tongliao, Inner Mongolia, 028000, China
| | - Jingfeng Yang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology,Tongliao,Inner Mongolia, 028000, China; Inner Mongolia Minzu Univ, Coll Anim Sci & Technol, Tongliao,Inner Mongolia, 028000, China.
| |
Collapse
|
36
|
Jin ZL, Gao WY, Guo F, Liao SJ, Hu MZ, Yu T, Yu SZ, Shi Q. Ring Finger Protein 146-mediated Long-chain Fatty-acid-Coenzyme a Ligase 4 Ubiquitination Regulates Ferroptosis-induced Neuronal Damage in Ischemic Stroke. Neuroscience 2023; 529:148-161. [PMID: 37591333 DOI: 10.1016/j.neuroscience.2023.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Ischemic stroke (IS) is one of the leading causes of disability and death worldwide. Long-chain fatty-acid-coenzyme A ligase 4 (ACSL4) is a critical isozyme for ferroptosis that participates in the progression of IS. RING finger protein 146 (RNF146) is an E3 ligase predicted to interact with ACSL4 and regulated by activating transcription factor 3 (ATF3). The molecular mechanism of the RNF146/ACSL4 axis in IS is still unclear. Oxygen-glucose deprivation/reperfusion (OGD/R) treatment was used as the in vitro model, and middle cerebral artery occlusion (MCAO) mice were established for the in vivo model for IS. The protein level of ACSL4 was monitored by Western blot during ischemic injury. RNF146 was overexpressed in vitro and in vivo. The interaction of RNF146 and ACSL4 was determined by co-immunoprecipitation (Co-IP) assay. Chromatin immunoprecipitation (ChIP) assay and luciferase assay were utilized to determine the regulation of ATF3 on RNF146. Ferroptosis was evaluated by the levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), Fe2+, and protein levels of related genes including ACSL4, SLC7A11, and GPX4. ACSL4 was downregulated upon OGD treatment and then increased by re-oxygenation. RNF146 was responsible for the ubiquitination and degradation of ACSL4 protein. RNF146 overexpression could prevent the stimulation of OGD/R-induced LDH, MDA, and Fe2+ levels and ferroptosis-related gene expression. ATF3 could activate the transcription and expression of RNF146, leading to the inhibition of OGD/R-induced neuron ferroptosis. The ATF3-mediated RNF146 could alleviate neuronal damage in IS by regulating ACSL4 ubiquitination and ferroptosis, providing a novel theoretical basis for exploring therapeutic targets and strategies.
Collapse
Affiliation(s)
- Zheng-Long Jin
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen 529000, Guangdong Province, PR China
| | - Wen-Ying Gao
- Department of TCM Pediatrics, Jiangmen Maternal and Child Health Hospital, Jiangmen 529030, Guangdong Province, PR China
| | - Fu Guo
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen 529000, Guangdong Province, PR China
| | - Shao-Jun Liao
- Department of Spine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong Province, PR China
| | - Ming-Zhe Hu
- Department of Neurology, The Affiliated Hospital of Shandong University of TCM, Jinan 250000, Shandong Province, PR China
| | - Tao Yu
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen 529000, Guangdong Province, PR China
| | - Shang-Zhen Yu
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen 529000, Guangdong Province, PR China
| | - Qing Shi
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen 529000, Guangdong Province, PR China.
| |
Collapse
|
37
|
Zhang Y, Liu Y, Sun J, Zhang W, Guo Z, Ma Q. Arachidonic acid metabolism in health and disease. MedComm (Beijing) 2023; 4:e363. [PMID: 37746665 PMCID: PMC10511835 DOI: 10.1002/mco2.363] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Arachidonic acid (AA), an n-6 essential fatty acid, is a major component of mammalian cells and can be released by phospholipase A2. Accumulating evidence indicates that AA plays essential biochemical roles, as it is the direct precursor of bioactive lipid metabolites of eicosanoids such as prostaglandins, leukotrienes, and epoxyeicosatrienoic acid obtained from three distinct enzymatic metabolic pathways: the cyclooxygenase pathway, lipoxygenase pathway, and cytochrome P450 pathway. AA metabolism is involved not only in cell differentiation, tissue development, and organ function but also in the progression of diseases, such as hepatic fibrosis, neurodegeneration, obesity, diabetes, and cancers. These eicosanoids are generally considered proinflammatory molecules, as they can trigger oxidative stress and stimulate the immune response. Therefore, interventions in AA metabolic pathways are effective ways to manage inflammatory-related diseases in the clinic. Currently, inhibitors targeting enzymes related to AA metabolic pathways are an important area of drug discovery. Moreover, many advances have also been made in clinical studies of AA metabolic inhibitors in combination with chemotherapy and immunotherapy. Herein, we review the discovery of AA and focus on AA metabolism in relation to health and diseases. Furthermore, inhibitors targeting AA metabolism are summarized, and potential clinical applications are discussed.
Collapse
Affiliation(s)
- Yiran Zhang
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Yingxiang Liu
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Jin Sun
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Wei Zhang
- Department of PathologyThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Zheng Guo
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Qiong Ma
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
- Department of PathologyThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| |
Collapse
|
38
|
Tomitsuka Y, Imaeda H, Ito H, Asou I, Ohbayashi M, Ishikawa F, Kuwata H, Hara S. Gene deletion of long-chain acyl-CoA synthetase 4 attenuates xenobiotic chemical-induced lung injury via the suppression of lipid peroxidation. Redox Biol 2023; 66:102850. [PMID: 37586249 PMCID: PMC10450978 DOI: 10.1016/j.redox.2023.102850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023] Open
Abstract
Long-chain acyl-CoA synthetase (ACSL) 4 converts polyunsaturated fatty acids (PUFAs) into their acyl-CoAs and plays an important role in maintaining PUFA-containing membrane phospholipids. Here we demonstrated decreases in various kinds of PUFA-containing phospholipid species in ACSL4-deficient murine lung. We then examined the effects of ACSL4 gene deletion on lung injury by treating mice with two pulmonary toxic chemicals: paraquat (PQ) and methotrexate (MTX). The results showed that ACSL4 deficiency attenuated PQ-induced acute lung lesion and decreased mortality. PQ-induced lung inflammation and neutrophil migration were also suppressed in ACSL4-deficient mice. PQ administration increased the levels of phospholipid hydroperoxides in the lung, but ACSL4 gene deletion suppressed their increment. We further found that ACSL4 deficiency attenuated MTX-induced pulmonary fibrosis. These results suggested that ACSL4 gene deletion might confer protection against pulmonary toxic chemical-induced lung injury by reducing PUFA-containing membrane phospholipids, leading to the suppression of lipid peroxidation. Inhibition of ACSL4 may be promising for the prevention and treatment of chemical-induced lung injury.
Collapse
Affiliation(s)
- Yuki Tomitsuka
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Hiroki Imaeda
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Haruka Ito
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Isaki Asou
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Masayuki Ohbayashi
- Division of Pharmacotherapeutics, Department of Clinical Pharmacy, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Fumihiro Ishikawa
- Center for Biotechnology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Hiroshi Kuwata
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| |
Collapse
|
39
|
Qi Z, Liu R, Ju H, Huang M, Li Z, Li W, Wang Y. microRNA-130b-3p Attenuates Septic Cardiomyopathy by Regulating the AMPK/mTOR Signaling Pathways and Directly Targeting ACSL4 against Ferroptosis. Int J Biol Sci 2023; 19:4223-4241. [PMID: 37705752 PMCID: PMC10496507 DOI: 10.7150/ijbs.82287] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/01/2023] [Indexed: 09/15/2023] Open
Abstract
Ferroptosis is a newly identified type of programmed cell death that has been shown to contribute to the progression of septic cardiomyopathy. Although the role of miR-130b-3p as an oncogene that accelerates cancer progression by suppressing ferroptosis has been demonstrated, its role in the regulation of ferroptosis and cardiac injury in Lipopolysaccharide (LPS)-induced cardiomyopathy has not been fully clarified. In this study, we demonstrated that miR-130b-3p remarkably improved cardiac function and ameliorated morphological damage to heart tissue in LPS-induced mice. miR-130b-3p also improved cell viability and mitochondrial function and reduced the production of lipid ROS and ferroptosis in LPS-treated H9c2 cells. In addition, miR-130b-3p significantly upregulated GPX4 expression and suppressed ACSL4 activity in LPS-induced mouse heart tissue and H9c2 cells. Mechanistically, we used database analysis to locate miR-130b-3p and confirmed its inhibitory effects on the ferroptosis-related gene ACSL4 and autophagy-related gene PRKAA1 using a dual-luciferase reporter assay. In addition, we found that miR-130b-3p inhibited the activation of autophagy by downregulating the expression of the AMPK/mTOR signaling pathway. Meanwhile, our results show that RAPA (an autophagy activator) reverses the protective effect of miR-130b-3p mimic against LPS-induced ferroptosis, while CQ (an autophagy inhibitor) plays a facilitative role, suggesting that miR-130b-3p plays an important role in the development of ferroptosis by regulating autophagy in vitro. The findings reveal a novel function of miR-130b-3p in attenuating ferroptosis in cardiomyocytes, providing a new therapeutic target for ameliorating septic cardiomyopathy injury.
Collapse
Affiliation(s)
- Zhen Qi
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruhui Liu
- Department of Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Cardiology Department of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Haining Ju
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengxi Huang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhe Li
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Li
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongyi Wang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Al-Rashed F, Haddad D, Al Madhoun A, Sindhu S, Jacob T, Kochumon S, Obeid LM, Al-Mulla F, Hannun YA, Ahmad R. ACSL1 is a key regulator of inflammatory and macrophage foaming induced by short-term palmitate exposure or acute high-fat feeding. iScience 2023; 26:107145. [PMID: 37416456 PMCID: PMC10320618 DOI: 10.1016/j.isci.2023.107145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/29/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Foamy and inflammatory macrophages play pathogenic roles in metabolic disorders. However, the mechanisms that promote foamy and inflammatory macrophage phenotypes under acute-high-fat feeding (AHFF) remain elusive. Herein, we investigated the role of acyl-CoA synthetase-1 (ACSL1) in favoring the foamy/inflammatory phenotype of monocytes/macrophages upon short-term exposure to palmitate or AHFF. Palmitate exposure induced a foamy/inflammatory phenotype in macrophages which was associated with increased ACSL1 expression. Inhibition/knockdown of ACSL1 in macrophages suppressed the foamy/inflammatory phenotype through the inhibition of the CD36-FABP4-p38-PPARδ signaling axis. ACSL1 inhibition/knockdown suppressed macrophage foaming/inflammation after palmitate stimulation by downregulating the FABP4 expression. Similar results were obtained using primary human monocytes. As expected, oral administration of ACSL1 inhibitor triacsin-C in mice before AHFF normalized the inflammatory/foamy phenotype of the circulatory monocytes by suppressing FABP4 expression. Our results reveal that targeting ACSL1 leads to the attenuation of the CD36-FABP4-p38-PPARδ signaling axis, providing a therapeutic strategy to prevent the AHFF-induced macrophage foaming and inflammation.
Collapse
Affiliation(s)
- Fatema Al-Rashed
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| | - Dania Haddad
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| | - Ashraf Al Madhoun
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| | - Sardar Sindhu
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| | - Texy Jacob
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| | - Shihab Kochumon
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| | - Lina M. Obeid
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| | - Yusuf A. Hannun
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| |
Collapse
|
41
|
Chen F, Kang R, Liu J, Tang D. The ACSL4 Network Regulates Cell Death and Autophagy in Diseases. BIOLOGY 2023; 12:864. [PMID: 37372148 DOI: 10.3390/biology12060864] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
Lipid metabolism, cell death, and autophagy are interconnected processes in cells. Dysregulation of lipid metabolism can lead to cell death, such as via ferroptosis and apoptosis, while lipids also play a crucial role in the regulation of autophagosome formation. An increased autophagic response not only promotes cell survival but also causes cell death depending on the context, especially when selectively degrading antioxidant proteins or organelles that promote ferroptosis. ACSL4 is an enzyme that catalyzes the formation of long-chain acyl-CoA molecules, which are important intermediates in the biosynthesis of various types of lipids. ACSL4 is found in many tissues and is particularly abundant in the brain, liver, and adipose tissue. Dysregulation of ACSL4 is linked to a variety of diseases, including cancer, neurodegenerative disorders, cardiovascular disease, acute kidney injury, and metabolic disorders (such as obesity and non-alcoholic fatty liver disease). In this review, we introduce the structure, function, and regulation of ACSL4; discuss its role in apoptosis, ferroptosis, and autophagy; summarize its pathological function; and explore the potential implications of targeting ACSL4 in the treatment of various diseases.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
42
|
Jia B, Li J, Song Y, Luo C. ACSL4-Mediated Ferroptosis and Its Potential Role in Central Nervous System Diseases and Injuries. Int J Mol Sci 2023; 24:10021. [PMID: 37373168 DOI: 10.3390/ijms241210021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
As an iron-dependent regulated form of cell death, ferroptosis is characterized by iron-dependent lipid peroxidation and has been implicated in the occurrence and development of various diseases, including nervous system diseases and injuries. Ferroptosis has become a potential target for intervention in these diseases or injuries in relevant preclinical models. As a member of the Acyl-CoA synthetase long-chain family (ACSLs) that can convert saturated and unsaturated fatty acids, Acyl-CoA synthetase long-chain familymember4 (ACSL4) is involved in the regulation of arachidonic acid and eicosapentaenoic acid, thus leading to ferroptosis. The underlying molecular mechanisms of ACSL4-mediated ferroptosis will promote additional treatment strategies for these diseases or injury conditions. Our review article provides a current view of ACSL4-mediated ferroptosis, mainly including the structure and function of ACSL4, as well as the role of ACSL4 in ferroptosis. We also summarize the latest research progress of ACSL4-mediated ferroptosis in central nervous system injuries and diseases, further proving that ACSL4-medicated ferroptosis is an important target for intervention in these diseases or injuries.
Collapse
Affiliation(s)
- Bowen Jia
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Yiting Song
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
43
|
Ruiz M, Devkota R, Kaper D, Ruhanen H, Busayavalasa K, Radović U, Henricsson M, Käkelä R, Borén J, Pilon M. AdipoR2 recruits protein interactors to promote fatty acid elongation and membrane fluidity. J Biol Chem 2023:104799. [PMID: 37164154 DOI: 10.1016/j.jbc.2023.104799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023] Open
Abstract
The human AdipoR2 and its C. elegans homolog PAQR-2 are multi-pass plasma membrane proteins that protect cells against membrane rigidification. However, how AdipoR2 promotes membrane fluidity mechanistically is not clear. Using 13C-labelled fatty acids, we show that AdipoR2 can promote the elongation and incorporation of membrane-fluidizing polyunsaturated fatty acids into phospholipids. To elucidate the molecular basis of these activities, we performed immunoprecipitations of tagged AdipoR2 and PAQR-2 expressed in HEK293 cells or whole C. elegans, respectively, and identified co-immunoprecipitated proteins using mass spectroscopy. We found that several of the evolutionarily conserved AdipoR2/PAQR-2 interactors are important for fatty acid elongation and incorporation into phospholipids. We experimentally verified some of these interactions, namely with the dehydratase HACD3 that is essential for the third of four steps in long-chain fatty acid elongation, and ACSL4 that is important for activation of unsaturated fatty acids and their channeling into phospholipids. We conclude that AdipoR2 and PAQR-2 can recruit protein interactors to promote the production and incorporation of unsaturated fatty acids into phospholipids.
Collapse
Affiliation(s)
- Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Delaney Kaper
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Hanna Ruhanen
- Helsinki University Lipidomics Unit, Helsinki Institute of Life Science, Biocenter Finland, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kiran Busayavalasa
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Uroš Radović
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit, Helsinki Institute of Life Science, Biocenter Finland, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
44
|
Wang X, Zhou Y, Min J, Wang F. Zooming in and out of ferroptosis in human disease. Front Med 2023; 17:173-206. [PMID: 37121959 DOI: 10.1007/s11684-023-0992-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/12/2023] [Indexed: 05/02/2023]
Abstract
Ferroptosis is defined as an iron-dependent regulated form of cell death driven by lipid peroxidation. In the past decade, it has been implicated in the pathogenesis of various diseases that together involve almost every organ of the body, including various cancers, neurodegenerative diseases, cardiovascular diseases, lung diseases, liver diseases, kidney diseases, endocrine metabolic diseases, iron-overload-related diseases, orthopedic diseases and autoimmune diseases. Understanding the underlying molecular mechanisms of ferroptosis and its regulatory pathways could provide additional strategies for the management of these disease conditions. Indeed, there are an expanding number of studies suggesting that ferroptosis serves as a bona-fide target for the prevention and treatment of these diseases in relevant pre-clinical models. In this review, we summarize the progress in the research into ferroptosis and its regulatory mechanisms in human disease, while providing evidence in support of ferroptosis as a target for the treatment of these diseases. We also discuss our perspectives on the future directions in the targeting of ferroptosis in human disease.
Collapse
Affiliation(s)
- Xue Wang
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, 315000, China
| | - Junxia Min
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Fudi Wang
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
45
|
Shi H, Xiong L, Yan G, Du S, Liu J, Shi Y. Susceptibility of cervical cancer to dihydroartemisinin-induced ferritinophagy-dependent ferroptosis. Front Mol Biosci 2023; 10:1156062. [PMID: 37065442 PMCID: PMC10102504 DOI: 10.3389/fmolb.2023.1156062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
The clinical therapeutics of cervical cancer is limited due to the drug resistance and metastasis of tumor. As a novel target for antitumor therapy, ferroptosis is deemed to be more susceptible for those cancer cells with resistance to apoptosis and chemotherapy. Dihydroartemisinin (DHA), the primary active metabolites of artemisinin and its derivatives, has exhibited a variety of anticancer properties with low toxicity. However, the role of DHA and ferroptosis in cervical cancer remained unclear. Here, we showed that DHA could time-dependently and dose-dependently inhibit the proliferation of cervical cancer cells, which could be alleviated by the inhibitors of ferroptosis rather than apoptosis. Further investigation confirmed that DHA treatment initiated ferroptosis, as evidenced by the accumulation of reactive oxygen species (ROS), malondialdehyde (MDA) and liquid peroxidation (LPO) levels and simultaneously depletion of glutathione peroxidase 4 (GPX4) and glutathione (GSH). Moreover, nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy was also induced by DHA leading to subsequent increases of intracellular labile iron pool (LIP), exacerbated the Fenton reaction resulting in excessive ROS production, and enhanced cervical cancer ferroptosis. Among them, we unexpectedly found that heme oxygenase-1 (HO-1) played an antioxidant role in DHA-induced cell death. In addition, the results of synergy analysis showed that the combination of DHA and doxorubicin (DOX) emerged a highly synergistic lethal effect for cervical cancer cells, which was related also to ferroptosis. Overall, our data revealed the molecular mechanisms that DHA triggered ferritinophagy-dependent ferroptosis and sensitized to DOX in cervical cancer, which may provide novel avenues for future therapy development.
Collapse
Affiliation(s)
- Hanqiang Shi
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Jiaxing, China
- Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing, China
| | - Lie Xiong
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Jiaxing, China
- Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing, China
| | - Guang Yan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuqin Du
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Jiaxing, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Jie Liu
- Oncology Department, Jiaxing Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Jiaxing, China
| | - Yanbo Shi
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Jiaxing, China
- Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing, China
- *Correspondence: Yanbo Shi,
| |
Collapse
|
46
|
Harrison SA, Thang C, Bolze S, Dewitt S, Hallakou-Bozec S, Dubourg J, Bedossa P, Cusi K, Ratziu V, Grouin JM, Moller DE, Fouqueray P. Evaluation of PXL065 - deuterium-stabilized (R)-pioglitazone in patients with NASH: A phase II randomized placebo-controlled trial (DESTINY-1). J Hepatol 2023; 78:914-925. [PMID: 36804402 DOI: 10.1016/j.jhep.2023.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND & AIMS Pioglitazone (Pio) is efficacious in NASH, but its utility is limited by PPARγ-driven side effects. Pio is a mixture of two enantiomers (R, S). PXL065, deuterium-stabilized R-Pio, lacks PPARγ activity but retains non-genomic activity. We tested the hypothesis that PXL065 would have similar efficacy but a better safety profile than Pio in patients with NASH. METHODS Patients (≥8% liver fat, NAFLD activity score [NAS] ≥4, F1-F3) received daily doses of PXL065 (7.5, 15, 22.5 mg) or placebo 1:1:1:1 for 36 weeks. The primary endpoint was relative % change in liver fat content (LFC) on MRI-proton density fat fraction; liver histology, non-invasive tests, safety-tolerability, and pharmacokinetics were also assessed. RESULTS One hundred and seventeen patients were evaluated. All PXL065 groups met the primary endpoint (-21 to (-25% LFC, p = 0.008-0.02 vs. placebo); 40% (22.5 mg) achieved a ≥30% LFC reduction. Favorable trends in non-invasive tests including reductions in PIIINP (p = 0.02, 22.5 mg) and NAFLD fibrosis score (p = 0.04, 22.5 mg) were observed. On histology (n = 92), a ≥1 stage fibrosis improvement occurred in 40% (7.5 mg), 50% (15 mg, p = 0.06), and 35% (22.5 mg) vs. 17% for placebo; up to 50% of PXL065-treated patients achieved a ≥2 point NAS improvement without fibrosis worsening vs. 30% with placebo. Metabolic improvements included: HbA1c (-0.41% p = 0.003) and insulin sensitivity (HOMA-IR, p = 0.04; Adipo-IR, p = 0.002). Adiponectin increased (+114%, 22.5 mg, p <0.0001) vs. placebo. There was no dose-dependent effect on body weight or PXL065-related peripheral oedema signal. Overall, PXL065 was safe and well tolerated. Pharmacokinetics confirmed dose-proportional and higher steady state R- vs. S-Pio exposure. IMPACT AND IMPLICATIONS Pioglitazone (Pio) is an approved diabetes medicine with proven efficacy in non-alcoholic steatohepatitis (NASH); PXL065 is a novel related oral agent which has been shown to retain Pio's efficacy in preclinical NASH models, with reduced potential for PPARγ-driven side effects. Results of this phase II study are important as PXL065 improved several key NASH disease features with a favorable safety profile - these findings can be applied by researchers seeking to understand pathophysiology and to develop new therapies. These results also indicate that PXL065 warrants further clinical testing in a pivotal NASH trial. Other implications include the potential future availability of a distinct oral therapy for NASH that may be relevant for patients, providers and caregivers seeking to prevent the progression and complications of this disease. CONCLUSIONS PXL065 is a novel molecule which retains an efficacy profile in NASH similar to Pio with reduced potential for PPARγ-driven side effects. A pivotal clinical trial is warranted to confirm the histological benefits reported herein. IMPACT AND IMPLICATIONS Pioglitazone (Pio) is an approved diabetes medicine with proven efficacy in non-alcoholic steatohepatitis (NASH); PXL065 is a novel related oral agent which has been shown to retain Pio's efficacy in preclinical NASH models, with reduced potential for PPARγ-driven side effects. Results of this phase II study are important as PXL065 improved several key NASH disease features with a favorable safety profile - these findings can be applied by researchers seeking to understand pathophysiology and to develop new therapies. These results also indicate that PXL065 warrants further clinical testing in a pivotal NASH trial. Other implications include the potential future availability of a distinct oral therapy for NASH that may be relevant for patients, providers and caregivers seeking to prevent the progression and complications of this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA
| | - Vlad Ratziu
- Sorbonne Université, ICAN, Hospital Pitié-Salpêtrière, INSERM UMRS 1138 CRC, Paris, France
| | | | | | | |
Collapse
|
47
|
Quan Y, Dai J, Zhou S, Zhao L, Jin L, Long Y, Liu S, Hu Y, Liu Y, Zhao J, Ding Z. HIF2α-induced upregulation of RNASET2 promotes triglyceride synthesis and enhances cell migration in clear cell renal cell carcinoma. FEBS Open Bio 2023; 13:638-654. [PMID: 36728187 PMCID: PMC10068329 DOI: 10.1002/2211-5463.13570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/06/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC), the most common malignant subtype of renal cell carcinoma, is characterized by the accumulation of lipid droplets in the cytoplasm. RNASET2 is a protein coding gene with a low expression level in ovarian cancers, but it is overexpressed in poorly differentiated neuroendocrine carcinomas. There is a correlation between RNASET2 upregulation and triglyceride expression levels in human serum but is unknown whether such an association is a factor contributing to lipid accumulation in ccRCC. Herein, we show that RNASET2 expression levels in ccRCC tissues and cell lines are significantly higher than those in both normal adjacent tissues and renal tubular epithelial cells. Furthermore, its upregulation is associated with increases in ccRCC malignancy and declines in patient survival. We also show that an association exists between increases in both cytoplasmic lipid accumulation and HIF-2α transcription factor upregulation, and increases in both RNASET2 and triglyceride expression levels in ccRCC tissues. In addition, DGAT1 and DGAT2, two key enzymes involved in triglyceride synthesis, are highly expressed in ccRCC tissues. By contrast, RNASET2 knockdown inhibited their expression levels and lowered lipid droplet accumulation, as well as suppressing in vitro cell proliferation, cell invasion, and migration. In conclusion, our data suggest HIF2α upregulates RNASET2 transcription in ccRCC cells, which promotes both the synthesis of triglycerides and ccRCC migration. As such, RNASET2 may have the potential as a biomarker or target for the diagnosis and treatment of ccRCC.
Collapse
Affiliation(s)
- Yanmei Quan
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Jun Dai
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Sian Zhou
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Lingyi Zhao
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Lixing Jin
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Yijing Long
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Siwei Liu
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Yanqin Hu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Juping Zhao
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
48
|
Luo Q, Das A, Oldoni F, Wu P, Wang J, Luo F, Fang Z. Role of ACSL5 in fatty acid metabolism. Heliyon 2023; 9:e13316. [PMID: 36816310 PMCID: PMC9932481 DOI: 10.1016/j.heliyon.2023.e13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/07/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Free fatty acids (FFAs) are essential energy sources for most body tissues. A fatty acid must be converted to fatty acyl-CoA to oxidize or be incorporated into new lipids. Acyl-CoA synthetase long-chain family member 5 (ACSL5) is localized in the endoplasmic reticulum and mitochondrial outer membrane, where it catalyzes the formation of fatty acyl-CoAs from long-chain fatty acids (C16-C20). Fatty acyl-CoAs are then used in lipid synthesis or β-oxidation mediated pathways. ACSL5 plays a pleiotropic role in lipid metabolism depending on substrate preferences, subcellular localization and tissue specificity. Here, we review the role of ACSL5 in fatty acid metabolism in multiple metabolic tissues, including the liver, small intestine, adipose tissue, and skeletal muscle. Given the increasing number of studies suggesting the role of ACSL5 in glucose and lipid metabolism, we also summarized the effects of ACSL5 on circulating lipids and insulin resistance.
Collapse
Affiliation(s)
- Qin Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Hunan, 410011, China
| | - Avash Das
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Federico Oldoni
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Panyun Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Hunan, 410011, China
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jiangang Wang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Fei Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Hunan, 410011, China
| | - Zhenfei Fang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Hunan, 410011, China
| |
Collapse
|
49
|
Kim R, Hashimoto A, Markosyan N, Tyurin VA, Tyurina YY, Kar G, Fu S, Sehgal M, Garcia-Gerique L, Kossenkov A, Gebregziabher BA, Tobias JW, Hicks K, Halpin RA, Cvetesic N, Deng H, Donthireddy L, Greenberg A, Nam B, Vonderheide RH, Nefedova Y, Kagan VE, Gabrilovich DI. Ferroptosis of tumour neutrophils causes immune suppression in cancer. Nature 2022; 612:338-346. [PMID: 36385526 PMCID: PMC9875862 DOI: 10.1038/s41586-022-05443-0] [Citation(s) in RCA: 273] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 10/13/2022] [Indexed: 11/17/2022]
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death that is triggered by the discoordination of regulatory redox mechanisms culminating in massive peroxidation of polyunsaturated phospholipids. Ferroptosis inducers have shown considerable effectiveness in killing tumour cells in vitro, yet there has been no obvious success in experimental animal models, with the notable exception of immunodeficient mice1,2. This suggests that the effect of ferroptosis on immune cells remains poorly understood. Pathologically activated neutrophils (PMNs), termed myeloid-derived suppressor cells (PMN-MDSCs), are major negative regulators of anti-tumour immunity3-5. Here we found that PMN-MDSCs in the tumour microenvironment spontaneously die by ferroptosis. Although decreasing the presence of PMN-MDSCs, ferroptosis induces the release of oxygenated lipids and limits the activity of human and mouse T cells. In immunocompetent mice, genetic and pharmacological inhibition of ferroptosis abrogates suppressive activity of PMN-MDSCs, reduces tumour progression and synergizes with immune checkpoint blockade to suppress the tumour growth. By contrast, induction of ferroptosis in immunocompetent mice promotes tumour growth. Thus, ferroptosis is a unique and targetable immunosuppressive mechanism of PMN-MDSCs in the tumour microenvironment that can be pharmacologically modulated to limit tumour progression.
Collapse
Affiliation(s)
- Rina Kim
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Wistar Institute, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Nune Markosyan
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vladimir A Tyurin
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gozde Kar
- Oncology R&D, Research and Early Development, Translational Medicine, AstraZeneca, Cambridge, UK
| | - Shuyu Fu
- Wistar Institute, Philadelphia, PA, USA
| | - Mohit Sehgal
- Wistar Institute, Philadelphia, PA, USA
- Center of Cell and Gene Therapy, Biopharma Division, Intas Pharmaceuticals, Ahmedabad, India
| | | | | | | | - John W Tobias
- Penn Genomic Analysis Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristin Hicks
- Early Oncology R&D, ICC, AstraZeneca, Gaithersburg, MD, USA
| | | | | | - Hui Deng
- Wistar Institute, Philadelphia, PA, USA
| | | | - Andrew Greenberg
- Human Nutrition Research Center, Tufts University, Boston, MA, USA
| | - Brian Nam
- Helen F. Graham Cancer Center and Research Institute, Christiana Care, Newark, DE, USA
| | - Robert H Vonderheide
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
50
|
Puthenveetil R, Gómez-Navarro N, Banerjee A. Access and utilization of long chain fatty acyl-CoA by zDHHC protein acyltransferases. Curr Opin Struct Biol 2022; 77:102463. [PMID: 36183446 PMCID: PMC9772126 DOI: 10.1016/j.sbi.2022.102463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 12/24/2022]
Abstract
S-acylation is a reversible posttranslational modification, where a long-chain fatty acid is attached to a protein through a thioester linkage. Being the most abundant form of lipidation in humans, a family of twenty-three human zDHHC integral membrane enzymes catalyze this reaction. Previous structures of the apo and lipid bound zDHHCs shed light into the molecular details of the active site and binding pocket. Here, we delve further into the details of fatty acyl-CoA recognition by zDHHC acyltransferases using insights from the recent structure. We additionally review indirect evidence that suggests acyl-CoAs do not diffuse freely in the cytosol, but are channeled into specific pathways, and comment on the suggested mechanisms for fatty acyl-CoA compartmentalization and intracellular transport, to finally speculate about the potential mechanisms that underlie fatty acyl-CoA delivery to zDHHC enzymes.
Collapse
Affiliation(s)
- Robbins Puthenveetil
- Section on Structural and Chemical Biology of Membrane Proteins, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA. https://twitter.com/RoVeetil
| | - Natalia Gómez-Navarro
- Section on Structural and Chemical Biology of Membrane Proteins, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA. https://twitter.com/NataliaGmez10
| | - Anirban Banerjee
- Section on Structural and Chemical Biology of Membrane Proteins, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|