1
|
Westcott GP, Emont MP, Gulko A, Zhou Z, Kim C, Varma G, Tsai LL, O'Donnell E, Loureiro ZY, Liang W, Jacobs C, Tsai LT, Padera TP, Singhal D, Rosen ED. Single-nuclear transcriptomics of lymphedema-associated adipose reveals a pro-lymphangiogenic stromal cell population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638907. [PMID: 40027673 PMCID: PMC11870541 DOI: 10.1101/2025.02.18.638907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Chronic lymphedema is a progressive, disfiguring disease that results from dysfunction of the lymphatic vasculature, causing distal accumulation of interstitial fluid, localized development of tissue edema, and expansion of subcutaneous adipose tissue (SAT). As the molecular mechanisms governing SAT remodeling in this disease are unclear, we performed single-nucleus RNA sequencing on paired control and affected SAT biopsies from patients with unilateral lymphedema. Lymphedema samples were characterized by expansion of SAA + adipocytes, pro-adipogenic stem cells, and proliferation of lymphatic capillaries. A GRIA1 + lymphedema-enriched stromal cell population expressing VEGFC , ADAMTS3 , and CCBE1 was identified, suggesting an enhanced axis of communication between adipose stem and progenitor cells (ASPCs) and lymphatic endothelial cells. Furthermore, lymphedema ASPC-conditioned media promoted lymphatic endothelial tube elongation in vitro . These findings indicate a critical role for ASPCs in regulating adipocyte differentiation and lymphatic vascular remodeling in lymphedema, and provide a valuable resource for better understanding this disease.
Collapse
|
2
|
Song S, Gan J, Long Q, Gao Z, Zheng Y. Decoding NAD+ Metabolism in COVID-19: Implications for Immune Modulation and Therapy. Vaccines (Basel) 2024; 13:1. [PMID: 39852780 PMCID: PMC11768799 DOI: 10.3390/vaccines13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/26/2025] Open
Abstract
The persistent threat of COVID-19, particularly with the emergence of new variants, underscores the urgency for innovative therapeutic strategies beyond conventional antiviral treatments. Current immunotherapies, including IL-6/IL-6R monoclonal antibodies and JAK inhibitors, exhibit suboptimal efficacy, necessitating alternative approaches. Our review delves into the significance of NAD+ metabolism in COVID-19 pathology, marked by decreased NAD+ levels and upregulated NAD+-consuming enzymes such as CD38 and poly (ADP-ribose) polymerases (PARPs). Recognizing NAD+'s pivotal role in energy metabolism and immune modulation, we propose modulating NAD+ homeostasis could bolster the host's defensive capabilities against the virus. The article reviews the scientific rationale behind targeting NAD+ pathways for therapeutic benefit, utilizing strategies such as NAD+ precursor supplementation and enzyme inhibition to modulate immune function. While preliminary data are encouraging, the challenge lies in optimizing these interventions for clinical use. Future research should aim to unravel the intricate roles of key metabolites and enzymes in NAD+ metabolism and to elucidate their specific mechanisms of action. This will be essential for developing targeted NAD+ therapies, potentially transforming the management of COVID-19 and setting a precedent for addressing other infectious diseases.
Collapse
Affiliation(s)
- Shixu Song
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Jialing Gan
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Qiuyue Long
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Zhancheng Gao
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing 100044, China
| | - Yali Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| |
Collapse
|
3
|
González-Sánchez GD, Martínez-Pérez LA, Pérez-Reyes Á, Guzmán-Flores JM, Garcia-Robles MJ. Prevalence of the genetic variant rs61330082 and serum levels of the visfatin gene in Mexican individuals with metabolic syndrome: a clinical and bioinformatics approach. NUTR HOSP 2024; 41:1194-1201. [PMID: 39446118 DOI: 10.20960/nh.05183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Introduction Background: metabolic syndrome (MetS) is a group of clinical anomalies that share an inflammatory component of multifactorial etiology. Objectives: the present study aims to relate the genetic variant (rs61330082 C/T) with dietary patterns in the presence of MetS and the application of molecular docking according to the genotype and associated transcription factors. Methods: 197 individuals aged 18 to 65 were included, from whom anthropometric measurements were taken, and a blood sample from the forearm. DNA extraction and enzymatic digestion were performed to determine the genotype of each participant by PCR-RFLP. Dietary patterns were analyzed using a nutritional questionnaire validated for the Mexican population. Serum levels of the protein visfatin were assessed by ELISA. Finally, bioinformatics tools were used for molecular docking to infer the binding of transcriptional factors in the polymorphic region. Results: the TT genotype was present in only 10 % of the population. Women carrying the CT+TT genotype, according to the dominant genetic model, had higher serum levels of triglycerides and VDLD-C. Statistical analysis did not show a significant association between the presence of MetS and the dominant CT+TT model (OR = 1.41, 95 % CI = 0.61-3.44, p = 0.53). We identified PAX5 as a transcription factor binding to the polymorphic site of this genetic variant. Conclusions: this study demonstrated a significant association between the genetic variant (rs61330082 C/T) and lipid parameters. Women carrying the T allele have a higher risk of high triglyceride levels, a criterion for metabolic syndrome.
Collapse
Affiliation(s)
| | | | - Ángel Pérez-Reyes
- Biosciences. Centro Universitario de Los Altos. Universidad de Guadalajara
| | - Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias. Department of Health Sciences. Centro Universitario de Los Altos. Universidad de Guadalajara
| | | |
Collapse
|
4
|
Kwon SY, Park YJ. Function of NAD metabolism in white adipose tissue: lessons from mouse models. Adipocyte 2024; 13:2313297. [PMID: 38316756 PMCID: PMC10877972 DOI: 10.1080/21623945.2024.2313297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Nicotinamide Adenine Dinucleotide (NAD) is an endogenous substance in redox reactions and regulates various functions in metabolism. NAD and its precursors are known for their anti-ageing and anti-obesity properties and are mainly active in the liver and muscle. Boosting NAD+ through supplementation with the precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), enhances insulin sensitivity and circadian rhythm in the liver, and improves mitochondrial function in the muscle. Recent evidence has revealed that the adipose tissue could be another direct target of NAD supplementation by attenuating inflammation and fat accumulation. Moreover, murine studies with genetically modified models demonstrated that nicotinamide phosphoribosyltransferase (NAMPT), a NAD regulatory enzyme that synthesizes NMN, played a critical role in lipogenesis and lipolysis in an adipocyte-specific manner. The tissue-specific effects of NAD+ metabolic pathways indicate a potential of the NAD precursors to control metabolic stress particularly via focusing on adipose tissue. Therefore, this narrative review raises an importance of NAD metabolism in white adipose tissue (WAT) through a variety of studies using different mouse models.
Collapse
Affiliation(s)
- So Young Kwon
- Graduate Program in System Health and Engineering, Ewha Womans University, Seoul, Republic of Korea
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| | - Yoon Jung Park
- Graduate Program in System Health and Engineering, Ewha Womans University, Seoul, Republic of Korea
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Hattori K, Kobayashi K, Azuma-Suzuki R, Iwasa K, Higashi S, Hamaguchi T, Saito Y, Morifuji M, Nabeshima YI. Nicotinamide phosphoribosyl transferase in mammary gland epithelial cells is required for nicotinamide mononucleotide production in mouse milk. Biochem Biophys Res Commun 2024; 728:150346. [PMID: 38972085 DOI: 10.1016/j.bbrc.2024.150346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Tissue-specific deficiency of nicotinamide phosphoribosyl transferase (NAMPT), the rate-limiting enzyme of the nicotinamide adenine dinucleotide (NAD+)-salvage pathway, causes a decrease of NAD+ in the tissue, resulting in functional abnormalities. The NAD+-salvage pathway is drastically activated in the mammary gland during lactation, but the significance of this has not been established. To investigate the impact of NAD+ perturbation in the mammary gland, we generated two new lines of mammary gland epithelial-cell-specific Nampt-knockout mice (MGKO). LC-MS/MS analyses confirmed that the levels of NAD+ and its precursor nicotinamide mononucleotide (NMN) were significantly increased in lactating mammary glands. We found that murine milk contained a remarkably high level of NMN. MGKO exhibited a significant decrease in tissue NAD+ and milk NMN levels in the mammary gland during lactation periods. Despite the decline in NAD+ levels, the mammary glands of MGKO appeared to develop normally. Transcriptome analysis revealed that the gene profiles of MGKO were indistinguishable from those of their wild-type counterparts, except for Nampt. Although the NMN levels in milk from MGKO were decreased, the metabolomic profile of milk was otherwise unaltered. The mammary gland also contains adipocytes, but adipocyte-specific deficiency of Nampt did not affect mammary gland NAD+ metabolism or mammary gland development. These results demonstrate that the NAD+ -salvage pathway is activated in mammary epithelial cells during lactation and suggest that this activation is required for production of milk NMN rather than mammary gland development. Our MGKO mice could be a suitable model for exploring the potential roles of NMN in milk.
Collapse
Affiliation(s)
- Kouya Hattori
- Department of Aging Science and Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan; Wellness Science Labs, Meiji Holdings Co., Ltd., Tokyo, 192-0919, Japan
| | - Kanako Kobayashi
- Department of Aging Science and Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Rika Azuma-Suzuki
- Department of Aging Science and Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan; Wellness Science Labs, Meiji Holdings Co., Ltd., Tokyo, 192-0919, Japan
| | - Kazuko Iwasa
- Department of Aging Science and Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Seiichiro Higashi
- Wellness Science Labs, Meiji Holdings Co., Ltd., Tokyo, 192-0919, Japan
| | | | - Yoshie Saito
- Wellness Science Labs, Meiji Holdings Co., Ltd., Tokyo, 192-0919, Japan
| | - Masashi Morifuji
- Wellness Science Labs, Meiji Holdings Co., Ltd., Tokyo, 192-0919, Japan
| | - Yo-Ichi Nabeshima
- Department of Aging Science and Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
6
|
Silva MGFR, Luchiari AC, Medeiros I, de Souza AM, Serquiz AC, Martins FF, de Moura SAB, Camillo CS, de Medeiros SRB, Pais TDS, Passos TS, Galeno DML, Morais AHDA. Evaluation of the Effects of Diet-Induced Obesity in Zebrafish ( Danio rerio): A Comparative Study. Nutrients 2024; 16:3398. [PMID: 39408365 PMCID: PMC11479130 DOI: 10.3390/nu16193398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
OBJECTIVES This study aimed to compare diet-induced obesity (DIO) models in zebrafish and investigate the complications and differences between sexes in biochemical and inflammatory parameters. METHODS Adult animals of both sexes were divided into four groups (n = 50) and fed for eight weeks: control group 1: Artemia sp. (15-30 mg/day/fish); control group 2: commercial fish food (3.5% of average weight); obesity group 1: pasteurized egg yolk powder + soybean oil (5% of average weight); obesity group 2: Artemia sp. (60-120 mg/day/fish). Dietary intake, caloric intake and efficiency, body mass index, biochemical, inflammatory, behavioral, histopathological, and stereological parameters, and inflammation-related gene expression were investigated. RESULTS Obesity group 1 was the most indicated to investigate changes in the anxious behavioral profile (p < 0.05), triglyceride elevation [52.67 (1.2) mg/dL], adipocyte hypertrophy [67.8 (18.1) µm2; p = 0.0004], and intestinal inflammation. Obesity group 2 was interesting to investigate in terms of weight gain [167 mg; p < 0.0001), changes in fasting glucose [48.33 (4.14) mg/dL; p = 0.003), and inflammatory parameters [IL-6: 4.24 (0.18) pg/mL; p = 0.0015]. CONCLUSIONS Furthermore, both DIO models evaluated in the present study were effective in investigating hepatic steatosis. The data also highlighted that sex influences inflammatory changes and fasting blood glucose levels, which were higher in males (p > 0.05). The results show new metabolic routes to be explored in relation to DIO in zebrafish.
Collapse
Affiliation(s)
- Maria Gabriela F. R. Silva
- Nutrition Postgraduate Program, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (M.G.F.R.S.); (T.S.P.)
| | - Ana Carolina Luchiari
- Psychobiology Postgraduate Program, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Isaiane Medeiros
- Biochemistry and Molecular Biology Postgraduate Program, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (I.M.); (S.R.B.d.M.); (T.d.S.P.)
| | - Augusto M. de Souza
- Biotechnology Program—Northeast Biotechnology Network (RENORBIO), Technology Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Alexandre C. Serquiz
- Department of Nutrition, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil;
| | - Fabiane F. Martins
- Department of Morphology, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (F.F.M.); (S.A.B.d.M.); (C.S.C.)
| | - Sérgio A. B. de Moura
- Department of Morphology, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (F.F.M.); (S.A.B.d.M.); (C.S.C.)
| | - Christina S. Camillo
- Department of Morphology, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (F.F.M.); (S.A.B.d.M.); (C.S.C.)
| | - Silvia Regina B. de Medeiros
- Biochemistry and Molecular Biology Postgraduate Program, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (I.M.); (S.R.B.d.M.); (T.d.S.P.)
- Department of Cell Biology and Genetics, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Tatiana dos S. Pais
- Biochemistry and Molecular Biology Postgraduate Program, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (I.M.); (S.R.B.d.M.); (T.d.S.P.)
| | - Thaís S. Passos
- Nutrition Postgraduate Program, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (M.G.F.R.S.); (T.S.P.)
- Department of Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Denise M. L. Galeno
- Multicenter Postgraduate Program in Physiological Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Ana Heloneida de A. Morais
- Nutrition Postgraduate Program, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (M.G.F.R.S.); (T.S.P.)
- Biochemistry and Molecular Biology Postgraduate Program, Center of Biosciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil; (I.M.); (S.R.B.d.M.); (T.d.S.P.)
- Department of Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| |
Collapse
|
7
|
Shen J, Li Z, Liu X, Zheng M, Zhang P, Chen Y, Tian Q, Tian W, Kou G, Cui Y, Xu B, Zhai Y, Li W, Guo X, Qiu J, Li C, He R, Li L, Ma C, Li Y, Zuo X, Yuan D, Li S. Sensing of Liver-Derived Nicotinamide by Intestinal Group 2 Innate Lymphoid Cells Links Liver Cirrhosis and Ulcerative Colitis Susceptibility. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404274. [PMID: 39119946 PMCID: PMC11481183 DOI: 10.1002/advs.202404274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/30/2024] [Indexed: 08/10/2024]
Abstract
The correlation between liver disease and the progression of ulcerative colitis (UC) has remained elusive. In this study, it demonstrates that liver injury is intricately linked to the heightened severity of UC in patients, and causes more profound intestinal damage during DSS-induced colitis in mice. Metabolomics analysis of plasma from liver cirrhosis patients shows liver injury compromising nicotinamide supply for NAD+ biosynthesis in the intestine. Subsequent investigation identifies intestinal group 2 innate lymphoid cells (ILC2s) are responsible for liver injury-exacerbated colitis. Reconstitution of ILC2s or the restoration of NAD+ metabolism proves effective in relieving liver injury-aggravated experimental colitis. Mechanistically, the NAD+ salvage pathway regulates gut ILC2s in a cell-intrinsic manner by supporting the generation of succinate, which fuels the electron transport chain to sustaining ILC2s function. This research deepens the understanding of cellular and molecular mechanisms in liver disease-UC interplay, identifying a metabolic target for innovative treatments in liver injury-complicated colitis.
Collapse
Affiliation(s)
- Jing Shen
- Department of GastroenterologyQilu Hospital of Shandong UniversityJinan250012China
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Zhen Li
- Department of GastroenterologyQilu Hospital of Shandong UniversityJinan250012China
| | - Xiaoyu Liu
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Mengqi Zheng
- Department of GastroenterologyQilu Hospital of Shandong UniversityJinan250012China
- Shandong Provincial Clinical Research Center for Digestive diseasesJinan250012China
| | - Peng Zhang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesShandong UniversityJinan250012China
| | - Yatai Chen
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Qiuheng Tian
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Wenyu Tian
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Guanjun Kou
- Department of GastroenterologyQilu Hospital of Shandong UniversityJinan250012China
| | - Yanyan Cui
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Bowen Xu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesShandong UniversityJinan250012China
| | - Yunjiao Zhai
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Weijia Li
- Department of GastroenterologyQilu Hospital of Shandong UniversityJinan250012China
- Shandong Provincial Clinical Research Center for Digestive diseasesJinan250012China
| | - Xiaohuan Guo
- Institute for ImmunologySchool of MedicineTsinghua UniversityBeijing100084China
- Beijing Key Lab for Immunological Research on Chronic DiseasesTsinghua UniversityBeijing100084China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Histology and EmbryologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinan250012China
| | - Ran He
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan43003China
| | - Lixiang Li
- Department of GastroenterologyQilu Hospital of Shandong UniversityJinan250012China
- Shandong Provincial Clinical Research Center for Digestive diseasesJinan250012China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Histology and EmbryologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinan250012China
- Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical College of Shandong UniversityJinan250012China
| | - Yanqing Li
- Department of GastroenterologyQilu Hospital of Shandong UniversityJinan250012China
- Shandong Provincial Clinical Research Center for Digestive diseasesJinan250012China
| | - Xiuli Zuo
- Department of GastroenterologyQilu Hospital of Shandong UniversityJinan250012China
- Shandong Provincial Clinical Research Center for Digestive diseasesJinan250012China
| | - Detian Yuan
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesShandong UniversityJinan250012China
| | - Shiyang Li
- Department of GastroenterologyQilu Hospital of Shandong UniversityJinan250012China
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| |
Collapse
|
8
|
Mączka K, Stasiak O, Przybysz P, Grymowicz M, Smolarczyk R. The Impact of the Endocrine and Immunological Function of Adipose Tissue on Reproduction in Women with Obesity. Int J Mol Sci 2024; 25:9391. [PMID: 39273337 PMCID: PMC11395521 DOI: 10.3390/ijms25179391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Obesity, which leads to metabolic dysregulation and body function impairment, emerges as one of the pressing health challenges worldwide. Excessive body fat deposits comprise a dynamic and biologically active organ possessing its own endocrine function. One of the mechanisms underlying the pathophysiology of obesity is low-grade systemic inflammation mediated by pro-inflammatory factors such as free fatty acids, lipopolysaccharides, adipokines (including leptin, resistin and visfatin) and cytokines (TNF-α, IL-1β, Il-6), which are secreted by adipose tissue. Together with obesity-induced insulin resistance and hyperandrogenism, the exacerbated immune response has a negative impact on the hypothalamic-pituitary-gonadal axis at all levels and directly affects reproduction. In women, it results in disrupted ovarian function, irregular menstrual cycles and anovulation, contributing to infertility. This review focuses on the abnormal intracellular communication, altered gene expression and signaling pathways activated in obesity, underscoring its multifactorial character and consequences at a molecular level. Extensive presentation of the complex interplay between adipokines, cytokines, immune cells and neurons may serve as a foundation for future studies in search of potential sites for more targeted treatment of reproductive disorders related to obesity.
Collapse
Affiliation(s)
- Katarzyna Mączka
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Olga Stasiak
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Paulina Przybysz
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Monika Grymowicz
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| |
Collapse
|
9
|
Lugtmeijer C, Bowtell JL, O’Leary M. Tissue-Level Effect of Andrographis and Ashwagandha Metabolites on Metabolic and Inflammatory Gene Expression in Skeletal Muscle and Adipose Tissue: An Ex Vivo/In Vitro Investigation. Nutrients 2024; 16:2291. [PMID: 39064738 PMCID: PMC11279956 DOI: 10.3390/nu16142291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Adipose tissue and skeletal muscle dysfunction play a central role in cardiometabolic morbidity. Ashwagandha and Andrographis are purported to have anti-inflammatory and antioxidant activity, but this is based on exposure of cells to the parent compounds ignoring phytochemical absorption and metabolism. We explored the anti-inflammatory/antioxidant effects of ashwagandha and Andrographis in ex vivo human models of skeletal muscle and adipose tissue. Healthy participants supplemented with 2000 mg/day Andrographis (n = 10) or 1100 mg/day ashwagandha (n = 10) for 28 days. Sera collected pre (D0) and post (D28) supplementation were pooled by timepoint and added to adipose explant (AT) and primary human myotube (SKMC) culture media (15% v/v) for treatment. A Taqman panel of 56 genes was used to quantify these. In AT, treatment with ashwagandha sera decreased the expression of genes involved in antioxidant defence and inflammatory response (CCL5, CD36, IL6, IL10, ADIPOQ, NFEL2, UCP2, GPX3, GPX4; geometric 95% CI for fold change > 1) and altered the expression of genes involved in fatty acid metabolism. In SKMC, ashwagandha sera altered FOXO1 and SREBF1 expression. Andrographis sera decreased IL18 and SERPINEA3 expression in AT. This physiologically relevant in vitro screening characterises the effects of ashwagandha in AT to guide future clinical trials.
Collapse
Affiliation(s)
| | | | - Mary O’Leary
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter EX1 2LU, UK; (C.L.); (J.L.B.)
| |
Collapse
|
10
|
Qi N, Franczyk MP, Yamaguchi S, Kojima D, Hayashi K, Satoh A, Ogiso N, Kanda T, Sasaki Y, Finck BN, DeBosch BJ, Yoshino J. Adipocyte-specific inactivation of NAMPT, a key NAD + biosynthetic enzyme, causes a metabolically unhealthy lean phenotype in female mice during aging. Am J Physiol Endocrinol Metab 2024; 327:E81-E88. [PMID: 38809511 PMCID: PMC11390120 DOI: 10.1152/ajpendo.00313.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a universal coenzyme regulating cellular energy metabolism in many cell types. Recent studies have demonstrated the close relationships between defective NAD+ metabolism and aging and age-associated metabolic diseases. The major purpose of the present study was to test the hypothesis that NAD+ biosynthesis, mediated by a rate-limiting NAD+ biosynthetic enzyme, nicotinamide phosphoribosyltransferase (NAMPT), is essential for maintaining normal adipose tissue function and whole body metabolic health during the aging process. To this end, we provided in-depth and comprehensive metabolic assessments for female adipocyte-specific Nampt knockout (ANKO) mice during aging. We first evaluated body fat mass in young (≤4-mo-old), middle aged (10-14-mo-old), and old (≥18-mo-old) mice. Intriguingly, adipocyte-specific Nampt deletion protected against age-induced obesity without changing energy balance. However, data obtained from the hyperinsulinemic-euglycemic clamp procedure (HECP) demonstrated that, despite the lean phenotype, old ANKO mice had severe insulin resistance in skeletal muscle, heart, and white adipose tissue (WAT). Old ANKO mice also exhibited hyperinsulinemia and hypoadiponectinemia. Mechanistically, loss of Nampt caused marked decreases in WAT gene expression of lipogenic targets of peroxisome proliferator-activated receptor gamma (PPAR-γ) in an age-dependent manner. In addition, administration of a PPAR-γ agonist rosiglitazone restored fat mass and improved metabolic abnormalities in old ANKO mice. In conclusion, these findings highlight the importance of the NAMPT-NAD+-PPAR-γ axis in maintaining functional integrity and quantity of adipose tissue, and whole body metabolic function in female mice during aging.NEW & NOTEWORTHY Defective NAD+ metabolism is associated with aging and age-associated metabolic diseases. In the present study, we provided in-depth metabolic assessments in female mice with adipocyte-specific inactivation of a key NAD+ biosynthetic enzyme NAMPT and revealed an unexpected role of adipose tissue NAMPT-NAD+-PPAR-γ axis in maintaining functional integrity and quantity of adipose tissue and whole body metabolic health during the aging process.
Collapse
Affiliation(s)
- Nathan Qi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Michael P Franczyk
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Shintaro Yamaguchi
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, United States
- Division of Endocrinology, Metabolism and Nephrology Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Daiki Kojima
- Division of Endocrinology, Metabolism and Nephrology Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kaori Hayashi
- Division of Endocrinology, Metabolism and Nephrology Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akiko Satoh
- Department of Integrative Physiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Noboru Ogiso
- Laboratory of Experimental Animals, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takeshi Kanda
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Shimane University, Izumo, Japan
- The Center for Integrated Kidney Research and Advance (IKRA), Faculty of Medicine, Shimane University, Izumo, Japan
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Brian N Finck
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Brian J DeBosch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jun Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, United States
- Division of Endocrinology, Metabolism and Nephrology Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Shimane University, Izumo, Japan
- The Center for Integrated Kidney Research and Advance (IKRA), Faculty of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
11
|
Park J, Hu R, Qian Y, Xiong S, El-Sabbagh AS, Ibrahim M, Wang J, Xu Z, Chen Z, Song Q, Song Z, Yan G, Mahmoud AM, He Y, Layden BT, Chen J, Ong SG, Xu P, Jiang Y. Estrogen counteracts age-related decline in beige adipogenesis through the NAMPT-regulated ER stress response. NATURE AGING 2024; 4:839-853. [PMID: 38858606 PMCID: PMC11829733 DOI: 10.1038/s43587-024-00633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/17/2024] [Indexed: 06/12/2024]
Abstract
Thermogenic beige adipocytes are recognized as potential therapeutic targets for combating metabolic diseases. However, the metabolic advantages that they offer are compromised with aging. Here we show that treating mice with estrogen (E2), a hormone that decreases with age, can counteract the age-related decline in beige adipogenesis when exposed to cold temperature while concurrently enhancing energy expenditure and improving glucose tolerance in mice. Mechanistically, we found that nicotinamide phosphoribosyl transferase (NAMPT) plays a pivotal role in facilitating the formation of E2-induced beige adipocytes, which subsequently suppresses the onset of age-related endoplasmic reticulum (ER) stress. Furthermore, we found that targeting NAMPT signaling, either genetically or pharmacologically, can restore the formation of beige adipocytes by increasing the number of perivascular adipocyte progenitor cells. Conversely, the absence of NAMPT signaling prevents this process. Together, our findings shed light on the mechanisms regulating the age-dependent impairment of beige adipocyte formation and underscore the E2-NAMPT-controlled ER stress pathway as a key regulator of this process.
Collapse
Affiliation(s)
- Jooman Park
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Ruoci Hu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Yanyu Qian
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Shaolei Xiong
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Asma Sana El-Sabbagh
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Meram Ibrahim
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Jaden Wang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Ziqiao Xu
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL, USA
| | - Zhengjia Chen
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL, USA
- Biostatistics Shared Resource, University of Illinois Cancer Center, Chicago, IL, USA
| | - Qing Song
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Gege Yan
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Abeer M Mahmoud
- Division of Endocrinology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Brian T Layden
- Division of Endocrinology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Jesse Brown Medical VA Medical Center, Chicago, IL, USA
| | - Jiwang Chen
- Division of Pulmonary, Critical Care, Sleep & Allergy, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Sang-Ging Ong
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA.
- Division of Endocrinology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Suzuki M, Funasaka N, Yoshimura K, Inamori D, Watanabe Y, Ozaki M, Hosono M, Shindo H, Kawamura K, Tatsukawa T, Yoshioka M. Comprehensive expression analysis of hormone-like substances in the subcutaneous adipose tissue of the common bottlenose dolphin Tursiops truncatus. Sci Rep 2024; 14:12515. [PMID: 38822022 PMCID: PMC11143283 DOI: 10.1038/s41598-024-63018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
Marine mammals possess a specific subcutaneous fat layer called blubber that not only insulates and stores energy but also secretes bioactive substances. However, our understanding of its role as a secretory organ in cetaceans is incomplete. To exhaustively explore the hormone-like substances produced in dolphin subcutaneous adipose tissue, we performed seasonal blubber biopsies from captive female common bottlenose dolphins (Tursiops truncatus; N = 8, n = 32) and analyzed gene expression via transcriptomics. Analysis of 186 hormone-like substances revealed the expression of 58 substances involved in regulating energy metabolism, tissue growth/differentiation, vascular regulation, immunity, and ion/mineral homeostasis. Adiponectin was the most abundantly expressed gene, followed by angiopoietin protein like 4 and insulin-like growth factor 2. To investigate the endocrine/secretory responses of subcutaneous adipose tissue to the surrounding temperature, we subsequently compared the mean expression levels of the genes during the colder and warmer seasons. In the colder season, molecules associated with appetite suppression, vasodilation, and tissue proliferation were relatively highly expressed. In contrast, warmer seasons enhanced the expression of substances involved in tissue remodeling, immunity, metabolism, and vasoconstriction. These findings suggest that dolphin blubber may function as an active secretory organ involved in the regulation of metabolism, appetite, and tissue reorganization in response to changes in the surrounding environment, providing a basis for elucidating the function of hormone-like substances in group-specific evolved subcutaneous adipose tissue.
Collapse
Affiliation(s)
- Miwa Suzuki
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Noriko Funasaka
- Cetacean Research Center, Graduate School of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan
| | - Kazuma Yoshimura
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Daiki Inamori
- Taiji Whale Museum, Higashimuro, Wakayama, 649-5171, Japan
| | - Yurie Watanabe
- Taiji Whale Museum, Higashimuro, Wakayama, 649-5171, Japan
| | - Miki Ozaki
- Adventure World, Nishimuro, Wakayama, 649-2201, Japan
| | | | - Hideaki Shindo
- Shimonoseki Marine Science Museum, Shimonoseki, Yamaguchi, 750-0036, Japan
| | - Keiko Kawamura
- Shimonoseki Marine Science Museum, Shimonoseki, Yamaguchi, 750-0036, Japan
| | | | - Motoi Yoshioka
- Cetacean Research Center, Graduate School of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
13
|
Zhang Q, Lu C, Lu F, Liao Y, Cai J, Gao J. Challenges and opportunities in obesity: the role of adipocytes during tissue fibrosis. Front Endocrinol (Lausanne) 2024; 15:1365156. [PMID: 38686209 PMCID: PMC11056552 DOI: 10.3389/fendo.2024.1365156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Obesity is a chronic disease that affects the energy balance of the whole body. In addition to increasing fat mass, tissue fibrosis occurred in white adipose tissue in obese condition. Fibrosis is the over-activation of fibroblasts leading to excessive accumulation of extracellular matrix, which could be caused by various factors, including the status of adipocytes. The morphology of adipocytes responds rapidly and dynamically to nutrient fluctuations. Adaptive hypertrophy of normal adipocytes protects peripheral organs from damage from lipotoxicity. However, the biological behavior of hypertrophic adipocytes in chronic obesity is abnormally altered. Adipocytes lead to fibrotic remodeling of the extracellular matrix by inducing unresolved chronic inflammation, persistent hypoxia, and increasing myofibroblast numbers. Moreover, adipocyte-induced fibrosis not only restricts the flexible expansion and contraction of adipose tissue but also initiates the development of various diseases through cellular autonomic and paracrine effects. Regarding anti-fibrotic therapy, dysregulated intracellular signaling and epigenetic changes represent potential candidate targets. Thus, modulation of adipocytes may provide potential therapeutic avenues for reversing pathological fibrosis in adipose tissue and achieving the anti-obesity purpose.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chongxuan Lu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junrong Cai
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Park S, Shimokawa I. Influence of Adipokines on Metabolic Dysfunction and Aging. Biomedicines 2024; 12:873. [PMID: 38672227 PMCID: PMC11048512 DOI: 10.3390/biomedicines12040873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, 30% of the global population is overweight or obese, with projections from the World Obesity Federation suggesting that this figure will surpass 50% by 2035. Adipose tissue dysfunction, a primary characteristic of obesity, is closely associated with an increased risk of metabolic abnormalities, such as hypertension, hyperglycemia, and dyslipidemia, collectively termed metabolic syndrome. In particular, visceral fat accretion is considered as a hallmark of aging and is strongly linked to higher mortality rates in humans. Adipokines, bioactive peptides secreted by adipose tissue, play crucial roles in regulating appetite, satiety, adiposity, and metabolic balance, thereby rendering them key players in alleviating metabolic diseases and potentially extending health span. In this review, we elucidated the role of adipokines in the development of obesity and related metabolic disorders while also exploring the potential of certain adipokines as candidates for longevity interventions.
Collapse
Affiliation(s)
- Seongjoon Park
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
| | - Isao Shimokawa
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- SAGL, Limited Liability Company, 1-4-34, Kusagae, Chuo-ku, Fukuoka 810-0045, Japan
| |
Collapse
|
15
|
Štefánik P, Morová M, Herichová I. Impact of Long-Lasting Environmental Factors on Regulation Mediated by the miR-34 Family. Biomedicines 2024; 12:424. [PMID: 38398026 PMCID: PMC10887245 DOI: 10.3390/biomedicines12020424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The present review focuses on the interactions of newly emerging environmental factors with miRNA-mediated regulation. In particular, we draw attention to the effects of phthalates, electromagnetic fields (EMFs) and a disrupted light/dark cycle. miRNAs are small non-coding RNA molecules with a tremendous regulatory impact, which is usually executed via gene expression inhibition. To address the capacity of environmental factors to influence miRNA-mediated regulation, the miR-34 family was selected for its well-described oncostatic and neuro-modulatory properties. The expression of miR-34 is in a tissue-dependent manner to some extent under the control of the circadian system. There is experimental evidence implicating that phthalates, EMFs and the circadian system interact with the miR-34 family, in both lines of its physiological functioning. The inhibition of miR-34 expression in response to phthalates, EMFs and light contamination has been described in cancer tissue and cell lines and was associated with a decline in oncostatic miR-34a signalling (decrease in p21 expression) and a promotion of tumorigenesis (increases in Noth1, cyclin D1 and cry1 expressions). The effects of miR-34 on neural functions have also been influenced by phthalates, EMFs and a disrupted light/dark cycle. Environmental factors shifted the effects of miR-34 from beneficial to the promotion of neurodegeneration and decreased cognition. Moreover, the apoptogenic capacity of miR-34 induced via phthalate administration in the testes has been shown to negatively influence germ cell proliferation. To conclude, as the oncostatic and positive neuromodulatory functions of the miR-34 family can be strongly influenced by environmental factors, their interactions should be taken into consideration in translational medicine.
Collapse
Affiliation(s)
- Peter Štefánik
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Martina Morová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Iveta Herichová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
16
|
Chini CCS, Cordeiro HS, Tran NLK, Chini EN. NAD metabolism: Role in senescence regulation and aging. Aging Cell 2024; 23:e13920. [PMID: 37424179 PMCID: PMC10776128 DOI: 10.1111/acel.13920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
The geroscience hypothesis proposes that addressing the biology of aging could directly prevent the onset or mitigate the severity of multiple chronic diseases. Understanding the interplay between key aspects of the biological hallmarks of aging is essential in delivering the promises of the geroscience hypothesis. Notably, the nucleotide nicotinamide adenine dinucleotide (NAD) interfaces with several biological hallmarks of aging, including cellular senescence, and changes in NAD metabolism have been shown to be involved in the aging process. The relationship between NAD metabolism and cellular senescence appears to be complex. On the one hand, the accumulation of DNA damage and mitochondrial dysfunction induced by low NAD+ can promote the development of senescence. On the other hand, the low NAD+ state that occurs during aging may inhibit SASP development as this secretory phenotype and the development of cellular senescence are both highly metabolically demanding. However, to date, the impact of NAD+ metabolism on the progression of the cellular senescence phenotype has not been fully characterized. Therefore, to explore the implications of NAD metabolism and NAD replacement therapies, it is essential to consider their interactions with other hallmarks of aging, including cellular senescence. We propose that a comprehensive understanding of the interplay between NAD boosting strategies and senolytic agents is necessary to advance the field.
Collapse
Affiliation(s)
- Claudia Christiano Silva Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Heidi Soares Cordeiro
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Ngan Le Kim Tran
- Center for Clinical and Translational Science and Mayo Clinic Graduate School of Biomedical SciencesMayo ClinicJacksonvilleFloridaUSA
| | - Eduardo Nunes Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| |
Collapse
|
17
|
Watanabe S, Haruyama R, Umezawa K, Tomioka I, Nakamura S, Katayama S, Mitani T. Genistein enhances NAD + biosynthesis by upregulating nicotinamide phosphoribosyltransferase in adipocytes. J Nutr Biochem 2023; 121:109433. [PMID: 37648097 DOI: 10.1016/j.jnutbio.2023.109433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
A decrease in the NAD+ level in adipocytes causes adipose-tissue dysfunction, leading to systemic glucose, and lipid metabolism failure. Therefore, it is necessary to develop small molecules and nutraceuticals that can increase NAD+ levels in adipocytes. Genistein, a nutraceutical derived from soybeans, has various physiological activities and improves glucose and lipid metabolism. In this study, we aimed to unravel the effects of genistein on the NAD+ level in adipocytes and the underlying molecular mechanisms. Genistein enhanced NAD+ biosynthesis by increasing the expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in NAD+ biosynthesis. A pull-down assay using genistein-immobilized beads revealed prohibitin 1 (PHB1) as a target protein of genistein. The knockdown of Phb1 suppressed the genistein-induced increase in NAMPT expression and NAD+ level in adipocytes. Genistein-bound PHB1 contributed to the stabilization of the transcription factor CCAAT/enhancer-binding protein β through the activation of extracellular signal-regulated kinase, resulting in increased NAMPT expression at the transcriptional level. Genistein induced the dephosphorylation of peroxisome proliferator-activated receptor at serine 273 and increased the level of the insulin-sensitizing adipokine adiponectin in adipocytes, whereas the knockdown of Nampt and Phb1 abolished these genistein-mediated effects. Our results proved the potential efficacy of genistein in increasing the NAD+ level and restoring metabolic function in adipocytes. Furthermore, we identified PHB1, localized to the plasma membrane, as a novel candidate target protein for increased expression of NAMPT in adipocytes. Overall, these findings will assist in developing NAD+-boosting nutraceuticals to alleviate metabolic dysfunctions in adipose tissues.
Collapse
Affiliation(s)
- Shun Watanabe
- Division of Food Science and Biotechnology, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Riki Haruyama
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Koji Umezawa
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Ikuo Tomioka
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan; Division of Biotechnology, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Soichiro Nakamura
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Shigeru Katayama
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Takakazu Mitani
- Division of Food Science and Biotechnology, Graduate School of Science and Technology, Shinshu University, Nagano, Japan; Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan.
| |
Collapse
|
18
|
Park J, Hu R, Xiong S, Qian Y, El-Sabbagh AS, Ibrahim M, Song Q, Yan G, Song Z, Mahmoud AM, He Y, Layden BT, Chen J, Ong SG, Xu P, Jiang Y. Estrogen prevents age-dependent beige adipogenesis failure through NAMPT-controlled ER stress pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555821. [PMID: 37693431 PMCID: PMC10491185 DOI: 10.1101/2023.08.31.555821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Thermogenic beige adipocytes are recognized as potential therapeutic targets for combating metabolic diseases. However, the metabolic advantages they offer are compromised with aging. Here, we show that treating mice with estrogen (E2), a hormone that decreases with age, to mice can counteract the aging- related decline in beige adipocyte formation when subjected to cold, while concurrently enhancing energy expenditure and improving glucose tolerance. Mechanistically, we find that nicotinamide phosphoribosyltranferase (NAMPT) plays a pivotal role in facilitating the formation of E2-induced beige adipocytes, which subsequently suppresses the onset of age-related ER stress. Furthermore, we found that targeting NAMPT signaling, either genetically or pharmacologically, can restore the formation of beige adipocytes by increasing the number of perivascular adipocyte progenitor cells. Conversely, the absence of NAMPT signaling prevents this process. In conclusion, our findings shed light on the mechanisms governing the age-dependent impairment of beige adipocyte formation and underscore the E2-NAMPT controlled ER stress as a key regulator of this process. Highlights Estrogen restores beige adipocyte failure along with improved energy metabolism in old mice.Estrogen enhances the thermogenic gene program by mitigating age-induced ER stress.Estrogen enhances the beige adipogenesis derived from SMA+ APCs.Inhibiting the NAMPT signaling pathway abolishes estrogen-promoted beige adipogenesis.
Collapse
|
19
|
Poljšak B, Kovač V, Špalj S, Milisav I. The Central Role of the NAD+ Molecule in the Development of Aging and the Prevention of Chronic Age-Related Diseases: Strategies for NAD+ Modulation. Int J Mol Sci 2023; 24:2959. [PMID: 36769283 PMCID: PMC9917998 DOI: 10.3390/ijms24032959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The molecule NAD+ is a coenzyme for enzymes catalyzing cellular redox reactions in several metabolic pathways, encompassing glycolysis, TCA cycle, and oxidative phosphorylation, and is a substrate for NAD+-dependent enzymes. In addition to a hydride and electron transfer in redox reactions, NAD+ is a substrate for sirtuins and poly(adenosine diphosphate-ribose) polymerases and even moderate decreases in its cellular concentrations modify signaling of NAD+-consuming enzymes. Age-related reduction in cellular NAD+ concentrations results in metabolic and aging-associated disorders, while the consequences of increased NAD+ production or decreased degradation seem beneficial. This article reviews the NAD+ molecule in the development of aging and the prevention of chronic age-related diseases and discusses the strategies of NAD+ modulation for healthy aging and longevity.
Collapse
Affiliation(s)
- Borut Poljšak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vito Kovač
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Stjepan Špalj
- Department of Orthodontics, Faculty of Dental Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Irina Milisav
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
20
|
Butler MJ, Volkoff H. The role of visfatin/ NAMPT in the regulation of feeding in goldfish (Carassius auratus). Peptides 2023; 160:170919. [PMID: 36503895 DOI: 10.1016/j.peptides.2022.170919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
The protein NAMPT (nicotinamide phosphoribosyltransferase, encoded by the NAPMT gene) is present in two forms. The intracellular form of NAMPT (iNAMPT) is the rate-limiting enzyme in a major nicotinamide adenine dinucleotide (NAD) biosynthetic pathway and regulates cellular metabolism. NAMPT is also secreted by cells in the extracellular milieu, and referred to as extracellular NAMPT (eNAMPT or visfatin). In mammals, visfatin has been linked to various metabolic disorders. However, the role of visfatin in regulating energy homeostasis in fish is not known. In this study, we assessed the effects of nutritional status on NAMPT mRNA expression and the effects of visfatin peripheral injections on food intake and the expression of appetite regulators in goldfish. Our results show that NAMPT is widely expressed in peripheral tissues and brain. Fasting induced increases in NAMPT expression in liver but had no effect on either brain or intestine NAMPT expression levels. Intraperitoneal injections of visfatin (400 ng/g) induced an increase in food intake and in expression levels of hepatic leptin and sirtuin1. Visfatin injections decreased intestine CCK and PYY, and telencephalon (but not hypothalamic) orexin and NPY expression levels. Visfatin did not affect plasma glucose levels, intestine ghrelin or brain CART, POMC and AgRP expressions. These data suggest that visfatin/NAMPT might be involved in the regulation of feeding and energy homeostasis in goldfish.
Collapse
Affiliation(s)
- Maggie J Butler
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B3X9, Canada
| | - Helene Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B3X9, Canada.
| |
Collapse
|
21
|
Helman T, Braidy N. Importance of NAD+ Anabolism in Metabolic, Cardiovascular and Neurodegenerative Disorders. Drugs Aging 2023; 40:33-48. [PMID: 36510042 DOI: 10.1007/s40266-022-00989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 12/14/2022]
Abstract
The role of nicotinamide adenine dinucleotide (NAD+) in ageing has emerged as a critical factor in understanding links to a wide range of chronic diseases. Depletion of NAD+, a central redox cofactor and substrate of numerous metabolic enzymes, has been detected in many major age-related diseases. However, the mechanisms behind age-associated NAD+ decline remains poorly understood. Despite limited conclusive evidence, supplements aimed at increasing NAD+ levels are becoming increasingly popular. This review provides renewed insights regarding the clinical utility and benefits of NAD+ precursors, namely nicotinamide (NAM), nicotinic acid (NA), nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), in attenuating NAD+ decline and phenotypic characterization of age-related disorders, including metabolic, cardiovascular and neurodegenerative diseases. While it is anticipated that NAD+ precursors can play beneficial protective roles in several conditions, they vary in their ability to promote NAD+ anabolism with differing adverse effects. Careful evaluation of the role of NAD+, whether friend or foe in ageing, should be considered.
Collapse
Affiliation(s)
- Tessa Helman
- Centre for Healthy Brain Ageing, School of Psychiatry, NPI, Euroa Centre, Prince of Wales Hospital, University of New South Wales, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, NPI, Euroa Centre, Prince of Wales Hospital, University of New South Wales, Barker Street, Randwick, Sydney, NSW, 2031, Australia.
| |
Collapse
|
22
|
Chen J, Lou R, Zhou F, Li D, Peng C, Lin L. Sirtuins: Key players in obesity-associated adipose tissue remodeling. Front Immunol 2022; 13:1068986. [PMID: 36505468 PMCID: PMC9730827 DOI: 10.3389/fimmu.2022.1068986] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Obesity, a complex disease involving an excessive amount of body fat and a major threat to public health all over the world, is the determining factor of the onset and development of metabolic disorders, including type 2 diabetes, cardiovascular diseases, and non-alcoholic fatty liver disease. Long-term overnutrition results in excessive expansion and dysfunction of adipose tissue, inflammatory responses and over-accumulation of extracellular matrix in adipose tissue, and ectopic lipid deposit in other organs, termed adipose tissue remodeling. The mammalian Sirtuins (SIRT1-7) are a family of conserved NAD+-dependent protein deacetylases. Mounting evidence has disclosed that Sirtuins and their prominent substrates participate in a variety of physiological and pathological processes, including cell cycle regulation, mitochondrial biogenesis and function, glucose and lipid metabolism, insulin action, inflammatory responses, and energy homeostasis. In this review, we provided up-to-date and comprehensive knowledge about the roles of Sirtuins in adipose tissue remodeling, focusing on the fate of adipocytes, lipid mobilization, adipose tissue inflammation and fibrosis, and browning of adipose tissue, and we summarized the clinical trials of Sirtuin activators and inhibitors in treating metabolic diseases, which might shed light on new therapeutic strategies for obesity and its associated metabolic diseases.
Collapse
Affiliation(s)
- Jiali Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Ruohan Lou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Fei Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Cheng Peng, ; Ligen Lin,
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China,Department of Pharmaceutical Sciences and Technology, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China,*Correspondence: Cheng Peng, ; Ligen Lin,
| |
Collapse
|
23
|
Poljšak B, Kovač V, Milisav I. Current Uncertainties and Future Challenges Regarding NAD+ Boosting Strategies. Antioxidants (Basel) 2022; 11:1637. [PMID: 36139711 PMCID: PMC9495723 DOI: 10.3390/antiox11091637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Precursors of nicotinamide adenine dinucleotide (NAD+), modulators of enzymes of the NAD+ biosynthesis pathways and inhibitors of NAD+ consuming enzymes, are the main boosters of NAD+. Increasing public awareness and interest in anti-ageing strategies and health-promoting lifestyles have grown the interest in the use of NAD+ boosters as dietary supplements, both in scientific circles and among the general population. Here, we discuss the current trends in NAD+ precursor usage as well as the uncertainties in dosage, timing, safety, and side effects. There are many unknowns regarding pharmacokinetics and pharmacodynamics, particularly bioavailability, metabolism, and tissue specificity of NAD+ boosters. Given the lack of long-term safety studies, there is a need for more clinical trials to determine the proper dose of NAD+ boosters and treatment duration for aging prevention and as disease therapy. Further research will also need to address the long-term consequences of increased NAD+ and the best approaches and combinations to increase NAD+ levels. The answers to the above questions will contribute to the more efficient and safer use of NAD+ boosters.
Collapse
Affiliation(s)
- Borut Poljšak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Vito Kovač
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Irina Milisav
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
24
|
Zhang F, Zhu X, Yu P, Sheng T, Wang Y, Ye Y. Crocin ameliorates depressive-like behaviors induced by chronic restraint stress via the NAMPT-NAD+-SIRT1 pathway in mice. Neurochem Int 2022; 157:105343. [DOI: 10.1016/j.neuint.2022.105343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/16/2022] [Accepted: 04/15/2022] [Indexed: 12/22/2022]
|
25
|
Chakraborty A, Minor KE, Nizami HL, Chiao YA, Lee CF. Harnessing NAD + Metabolism as Therapy for Cardiometabolic Diseases. Curr Heart Fail Rep 2022; 19:157-169. [PMID: 35556214 PMCID: PMC9339518 DOI: 10.1007/s11897-022-00550-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE OF THE REVIEW This review summarizes current understanding on the roles of nicotinamide adenine dinucleotide (NAD+) metabolism in the pathogeneses and treatment development of metabolic and cardiac diseases. RECENT FINDINGS NAD+ was identified as a redox cofactor in metabolism and a co-substrate for a wide range of NAD+-dependent enzymes. NAD+ redox imbalance and depletion are associated with many pathologies where metabolism plays a key role, for example cardiometabolic diseases. This review is to delineate the current knowledge about harnessing NAD+ metabolism as potential therapy for cardiometabolic diseases. The review has summarized how NAD+ redox imbalance and depletion contribute to the pathogeneses of cardiometabolic diseases. Therapeutic evidence involving activation of NAD+ synthesis in pre-clinical and clinical studies was discussed. While activation of NAD+ synthesis shows great promise for therapy, the field of NAD+ metabolism is rapidly evolving. Therefore, it is expected that new mechanisms will be discovered as therapeutic targets for cardiometabolic diseases.
Collapse
Affiliation(s)
- Akash Chakraborty
- Cardiovascular Biology Research Program, MS 45, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Keaton E Minor
- Cardiovascular Biology Research Program, MS 45, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hina Lateef Nizami
- Cardiovascular Biology Research Program, MS 45, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Chi Fung Lee
- Cardiovascular Biology Research Program, MS 45, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
26
|
Nagahisa T, Yamaguchi S, Kosugi S, Homma K, Miyashita K, Irie J, Yoshino J, Itoh H. Intestinal Epithelial NAD+ Biosynthesis Regulates GLP-1 Production and Postprandial Glucose Metabolism in Mice. Endocrinology 2022; 163:6537596. [PMID: 35218657 DOI: 10.1210/endocr/bqac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 11/19/2022]
Abstract
Obesity is associated with perturbations in incretin production and whole-body glucose metabolism, but the precise underlying mechanism remains unclear. Here, we tested the hypothesis that nicotinamide phosphoribosyltransferase (NAMPT), which mediates the biosynthesis of nicotinamide adenine dinucleotide (NAD+), a key regulator of cellular energy metabolism, plays a critical role in obesity-associated intestinal pathophysiology and systemic metabolic complications. To this end, we generated a novel mouse model, namely intestinal epithelial cell-specific Nampt knockout (INKO) mice. INKO mice displayed diminished glucagon-like peptide-1 (GLP-1) production, at least partly contributing to reduced early-phase insulin secretion and postprandial hyperglycemia. Mechanistically, loss of NAMPT attenuated the Wnt signaling pathway, resulting in insufficient GLP-1 production. We also found that diet-induced obese mice had compromised intestinal NAMPT-mediated NAD+ biosynthesis and Wnt signaling pathway, associated with impaired GLP-1 production and whole-body glucose metabolism, resembling the INKO mice. Finally, administration of a key NAD+ intermediate, nicotinamide mononucleotide (NMN), restored intestinal NAD+ levels and obesity-associated metabolic derangements, manifested by a decrease in ileal Proglucagon expression and GLP-1 production as well as postprandial hyperglycemia in INKO and diet-induced obese mice. Collectively, our study provides mechanistic and therapeutic insights into intestinal NAD+ biology related to obesity-associated dysregulation of GLP-1 production and postprandial hyperglycemia.
Collapse
Affiliation(s)
- Taichi Nagahisa
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shintaro Yamaguchi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shotaro Kosugi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Koichiro Homma
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazutoshi Miyashita
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Junichiro Irie
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Jun Yoshino
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
27
|
Higgins CB, Mayer AL, Zhang Y, Franczyk M, Ballentine S, Yoshino J, DeBosch BJ. SIRT1 selectively exerts the metabolic protective effects of hepatocyte nicotinamide phosphoribosyltransferase. Nat Commun 2022; 13:1074. [PMID: 35228549 PMCID: PMC8885655 DOI: 10.1038/s41467-022-28717-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/07/2022] [Indexed: 12/30/2022] Open
Abstract
Calorie restriction abates aging and cardiometabolic disease by activating metabolic signaling pathways, including nicotinamide adenine dinucleotide (NAD+) biosynthesis and salvage. Nicotinamide phosphoribosyltransferase (NAMPT) is rate-limiting in NAD+ salvage, yet hepatocyte NAMPT actions during fasting and metabolic duress remain unclear. We demonstrate that hepatocyte NAMPT is upregulated in fasting mice, and in isolated hepatocytes subjected to nutrient withdrawal. Mice lacking hepatocyte NAMPT exhibit defective FGF21 activation and thermal regulation during fasting, and are sensitized to diet-induced glucose intolerance. Hepatocyte NAMPT overexpression induced FGF21 and adipose browning, improved glucose homeostasis, and attenuated dyslipidemia in obese mice. Hepatocyte SIRT1 deletion reversed hepatocyte NAMPT effects on dark-cycle thermogenesis, and hepatic FGF21 expression, but SIRT1 was dispensable for NAMPT insulin-sensitizing, anti-dyslipidemic, and light-cycle thermogenic effects. Hepatocyte NAMPT thus conveys key aspects of the fasting response, which selectively dissociate through hepatocyte SIRT1. Modulating hepatocyte NAD+ is thus a potential mechanism through which to attenuate fasting-responsive disease.
Collapse
Affiliation(s)
- Cassandra B. Higgins
- grid.4367.60000 0001 2355 7002Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | | | - Yiming Zhang
- grid.4367.60000 0001 2355 7002Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Michael Franczyk
- grid.26091.3c0000 0004 1936 9959Department of Medicine, Keio University School of Medicine, Minato, Tokyo, Japan
| | - Samuel Ballentine
- grid.4367.60000 0001 2355 7002Department of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Jun Yoshino
- grid.26091.3c0000 0004 1936 9959Department of Medicine, Keio University School of Medicine, Minato, Tokyo, Japan
| | - Brian J. DeBosch
- grid.4367.60000 0001 2355 7002Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
28
|
Wang H, Zhu S, Wu X, Liu Y, Ge J, Wang Q, Gu L. NAMPT reduction-induced NAD + insufficiency contributes to the compromised oocyte quality from obese mice. Aging Cell 2021; 20:e13496. [PMID: 34662475 PMCID: PMC8590097 DOI: 10.1111/acel.13496] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/14/2021] [Accepted: 09/12/2021] [Indexed: 12/27/2022] Open
Abstract
Maternal obesity is associated with multiple adverse reproductive outcomes, whereas the underlying molecular mechanisms are still not fully understood. Here, we found the reduced nicotinamide phosphoribosyl transferase (NAMPT) expression and lowered nicotinamide adenine dinucleotide (NAD+) content in oocytes from obese mice. Next, by performing morpholino knockdown assay and pharmacological inhibition, we revealed that NAMPT deficiency not only severely disrupts maturational progression and meiotic apparatus, but also induces the metabolic dysfunction in oocytes. Furthermore, overexpression analysis demonstrated that NAMPT insufficiency induced NAD+ loss contributes to the compromised developmental potential of oocytes and early embryos from obese mice. Importantly, in vitro supplement and in vivo administration of nicotinic acid (NA) was able to ameliorate the obesity‐associated meiotic defects and oxidative stress in oocytes. Our results indicate a role of NAMPT in modulating oocyte meiosis and metabolism, and uncover the beneficial effects of NA treatment on oocyte quality from obese mice.
Collapse
Affiliation(s)
- Hengjie Wang
- College of Animal Science & Technology Nanjing Agricultural University Nanjing China
| | - Shuai Zhu
- State Key Laboratory of Reproductive Medicine Suzhou Municipal Hospital Nanjing Medical University Nanjing China
| | - Xinghan Wu
- Department of Medical Genetics Maternal and Child Health Hospital of Hunan Province Changsha China
| | - Yuan Liu
- College of Animal Science & Technology Nanjing Agricultural University Nanjing China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine Suzhou Municipal Hospital Nanjing Medical University Nanjing China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine Suzhou Municipal Hospital Nanjing Medical University Nanjing China
| | - Ling Gu
- College of Animal Science & Technology Nanjing Agricultural University Nanjing China
| |
Collapse
|
29
|
Jahan F, Bagchi RA. Enhancing NAD + Metabolome in Cardiovascular Diseases: Promises and Considerations. Front Cardiovasc Med 2021; 8:716989. [PMID: 34513955 PMCID: PMC8429781 DOI: 10.3389/fcvm.2021.716989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fahmida Jahan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Rushita A Bagchi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
30
|
Shen JX, Couchet M, Dufau J, de Castro Barbosa T, Ulbrich MH, Helmstädter M, Kemas AM, Zandi Shafagh R, Marques M, Hansen JB, Mejhert N, Langin D, Rydén M, Lauschke VM. 3D Adipose Tissue Culture Links the Organotypic Microenvironment to Improved Adipogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100106. [PMID: 34165908 PMCID: PMC8373086 DOI: 10.1002/advs.202100106] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/06/2021] [Indexed: 05/15/2023]
Abstract
Obesity and type 2 diabetes are strongly associated with adipose tissue dysfunction and impaired adipogenesis. Understanding the molecular underpinnings that control adipogenesis is thus of fundamental importance for the development of novel therapeutics against metabolic disorders. However, translational approaches are hampered as current models do not accurately recapitulate adipogenesis. Here, a scaffold-free versatile 3D adipocyte culture platform with chemically defined conditions is presented in which primary human preadipocytes accurately recapitulate adipogenesis. Following differentiation, multi-omics profiling and functional tests demonstrate that 3D adipocyte cultures feature mature molecular and cellular phenotypes similar to freshly isolated mature adipocytes. Spheroids exhibit physiologically relevant gene expression signatures with 4704 differentially expressed genes compared to conventional 2D cultures (false discovery rate < 0.05), including the concerted expression of factors shaping the adipogenic niche. Furthermore, lipid profiles of >1000 lipid species closely resemble patterns of the corresponding isogenic mature adipocytes in vivo (R2 = 0.97). Integration of multi-omics signatures with analyses of the activity profiles of 503 transcription factors using global promoter motif inference reveals a complex signaling network, involving YAP, Hedgehog, and TGFβ signaling, that links the organotypic microenvironment in 3D culture to the activation and reinforcement of PPARγ and CEBP activity resulting in improved adipogenesis.
Collapse
Affiliation(s)
- Joanne X. Shen
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Morgane Couchet
- Department of MedicineHuddingeKarolinska InstitutetKarolinska University HospitalStockholm141 86Sweden
| | - Jérémy Dufau
- InsermInstitute of Metabolic and Cardiovascular Diseases (I2MC)UMR1297Toulouse31432France
- Université de ToulouseUniversité Paul SabatierFaculté de Médecine, I2MCUMR1297Toulouse31432France
| | - Thais de Castro Barbosa
- Department of MedicineHuddingeKarolinska InstitutetKarolinska University HospitalStockholm141 86Sweden
| | - Maximilian H. Ulbrich
- Renal DivisionDepartment of MedicineUniversity Hospital Freiburg and Faculty of MedicineUniversity of FreiburgFreiburg79106Germany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgFreiburg79104Germany
| | - Martin Helmstädter
- Renal DivisionDepartment of MedicineUniversity Hospital Freiburg and Faculty of MedicineUniversity of FreiburgFreiburg79106Germany
| | - Aurino M. Kemas
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Reza Zandi Shafagh
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
- Division of Micro‐ and NanosystemsKTH Royal Institute of TechnologyStockholm100 44Sweden
| | - Marie‐Adeline Marques
- InsermInstitute of Metabolic and Cardiovascular Diseases (I2MC)UMR1297Toulouse31432France
- Université de ToulouseUniversité Paul SabatierFaculté de Médecine, I2MCUMR1297Toulouse31432France
| | - Jacob B. Hansen
- Department of BiologyUniversity of CopenhagenCopenhagen2100Denmark
| | - Niklas Mejhert
- Department of MedicineHuddingeKarolinska InstitutetKarolinska University HospitalStockholm141 86Sweden
| | - Dominique Langin
- InsermInstitute of Metabolic and Cardiovascular Diseases (I2MC)UMR1297Toulouse31432France
- Université de ToulouseUniversité Paul SabatierFaculté de Médecine, I2MCUMR1297Toulouse31432France
- Toulouse University HospitalsDepartment of BiochemistryToulouse31079France
| | - Mikael Rydén
- Department of MedicineHuddingeKarolinska InstitutetKarolinska University HospitalStockholm141 86Sweden
| | - Volker M. Lauschke
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| |
Collapse
|
31
|
de Guia RM, Hassing AS, Ma T, Plucinska K, Holst B, Gerhart-Hines Z, Emanuelli B, Treebak JT. Ablation of Nampt in AgRP neurons leads to neurodegeneration and impairs fasting- and ghrelin-mediated food intake. FASEB J 2021; 35:e21450. [PMID: 33788980 DOI: 10.1096/fj.202002740r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Agouti-related protein (AgRP) neurons in the arcuate nucleus of the hypothalamus regulates food intake and whole-body metabolism. NAD+ regulates multiple cellular processes controlling energy metabolism. Yet, its role in hypothalamic AgRP neurons to control food intake is poorly understood. Here, we aimed to assess whether genetic deletion of nicotinamide phosphoribosyltransferase (Nampt), a rate-limiting enzyme in NAD+ production, affects AgRP neuronal function to impact whole-body metabolism and food intake. Metabolic parameters during fed and fasted states, and upon systemic ghrelin and leptin administration were studied in AgRP-specific Nampt knockout (ARNKO) mice. We monitored neuropeptide expression levels and density of AgRP neurons in ARNKO mice from embryonic to adult age. NPY cells were used to determine effects of NAMPT inhibition on neuronal viability, energy status, and oxidative stress in vitro. In these cells, NAD+ depletion reduced ATP levels, increased oxidative stress, and promoted cell death. Agrp expression in the hypothalamus of ARNKO mice gradually decreased after weaning due to progressive AgRP neuron degeneration. Adult ARNKO mice had normal glucose and insulin tolerance, but exhibited an elevated respiratory exchange ratio (RER) when fasted. Remarkably, fasting-induced food intake was unaffected in ARNKO mice when evaluated in metabolic cages, but fasting- and ghrelin-induced feeding and body weight gain decreased in ARNKO mice when evaluated outside metabolic cages. Collectively, deletion of Nampt in AgRP neurons causes progressive neurodegeneration and impairs fasting and ghrelin responses in a context-dependent manner. Our data highlight an essential role of Nampt in AgRP neuron function and viability.
Collapse
Affiliation(s)
- Roldan Medina de Guia
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna S Hassing
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tao Ma
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaja Plucinska
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zach Gerhart-Hines
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brice Emanuelli
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Abstract
Adipose is a key tissue regulating energy homeostasis. In states of obesity, caloric intake exceeds energy expenditure, thereby accelerating lipid accumulation with ongoing extracellular matrix (ECM) remodeling. Excess deposition of lipids and expansion of adipocytes potentially decrease ECM flexibility with local hypoxia and inflammation. Hypoxia and chronic low-grade inflammation accelerate the development of adipose tissue fibrosis and related metabolic dysfunctions. Recent research investigated that some cytokines and proteins are functional in regulating energy homeostasis, meanwhile, are potential targets to fight against adipose tissue fibrosis and insulin resistance. In this review, we focused on the regulatory mechanisms and mediators in remodeling of adipose tissue fibrosis, along with their relevance to clinical manifestations.
Collapse
Affiliation(s)
- Siqi Li
- School of Life Science, Changchun Normal University, Changchun, China
- School of Medical Technology, Beihua University, Jilin, China
- Diagnostic Research Center, Jilin Province People's Hospital, Changchun, China
| | - Hongxia Gao
- School of Medical Technology, Beihua University, Jilin, China
| | - Yutaka Hasegawa
- Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Xiaodan Lu
- School of Life Science, Changchun Normal University, Changchun, China
- School of Medical Technology, Beihua University, Jilin, China
- Diagnostic Research Center, Jilin Province People's Hospital, Changchun, China
| |
Collapse
|
33
|
New Crystalline Salts of Nicotinamide Riboside as Food Additives. Molecules 2021; 26:molecules26092729. [PMID: 34066468 PMCID: PMC8125264 DOI: 10.3390/molecules26092729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
NR+ is a highly effective vitamin B3 type supplement due to its unique ability to replenish NAD+ levels. While NR+ chloride is already on the market as a nutritional supplement, its synthesis is challenging, expensive, and low yielding, making it cumbersome for large-scale industrial production. Here we report the novel crystalline NR+ salts, d/l/dl-hydrogen tartrate and d/l/dl-hydrogen malate. Their high-yielding, one-pot manufacture does not require specific equipment and is suitable for multi-ton scale production. These new NR+ salts seem ideal for nutritional applications due to their bio-equivalence compared to the approved NR+ chloride. In addition, the crystal structures of all stereoisomers of NR+ hydrogen tartrate and NR+ hydrogen malate and a comparison to the known NR+ halogenides are presented.
Collapse
|
34
|
Montégut L, Lopez-Otin C, Magnan C, Kroemer G. Old Paradoxes and New Opportunities for Appetite Control in Obesity. Trends Endocrinol Metab 2021; 32:264-294. [PMID: 33707095 DOI: 10.1016/j.tem.2021.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
Human obesity is accompanied by alterations in the blood concentrations of multiple circulating appetite regulators. Paradoxically, most of the appetite-inhibitory hormones are elevated in nonsyndromic obesity, while most of the appetite stimulatory hormones are reduced, perhaps reflecting vain attempts of regulation by inefficient feedback circuitries. In this context, it is important to understand which appetite regulators exhibit a convergent rather than paradoxical behavior and hence are likely to contribute to the maintenance of the obese state. Pharmacological interventions in obesity should preferentially consist of the supplementation of deficient appetite inhibitors or the neutralization of excessive appetite stimulators. Here, we critically analyze the current literature on appetite-regulatory peptide hormones. We propose a short-list of appetite modulators that may constitute the best candidates for therapeutic interventions.
Collapse
Affiliation(s)
- Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Carlos Lopez-Otin
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR8251, Université Paris Diderot, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-, HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
35
|
Dall M, Hassing AS, Treebak JT. NAD + and NAFLD - caution, causality and careful optimism. J Physiol 2021; 600:1135-1154. [PMID: 33932956 DOI: 10.1113/jp280908] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing worldwide, and new treatments are sorely needed. Nicotinamide adenine dinucleotide (NAD+ ) has been proposed as a potential target to prevent and reverse NAFLD. NAD+ is an important redox factor for energy metabolism and is used as a substrate by a range of enzymes, including sirtuins (SIRT), which regulates histone acetylation, transcription factor activity and mitochondrial function. NAD+ is also a precursor for reduced nicotinamide adenine dinucleotide phosphate (NADPH), which is an important component of the antioxidant defense system. NAD+ precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) are available as over-the-counter dietary supplements, and oral supplementation with these precursors increases hepatic NAD+ levels and prevents hepatic lipid accumulation in pre-clinical models of NAFLD. NAD+ precursors have also been found to improve hepatic mitochondrial function and decrease oxidative stress in pre-clinical NAFLD models. NAD+ repletion also prevents NAFLD progression to non-alcoholic steatohepatitis (NASH), as NAD+ precursor supplementation is associated with decreased hepatic stellate cell activation, and decreased fibrosis. However, initial clinical trials have only shown modest effects when NAD+ precursors were administrated to people with obesity. We review the available pre-clinical investigations of NAD+ supplementation for targeting NAFLD, and discuss how data from the first clinical trials can be reconciled with observations from preclinical research.
Collapse
Affiliation(s)
- Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna S Hassing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Lima NCGC, Souza SARD, Vieira BDS, Rizzi JS, Andrade TAMD, Oliveira CAD, Corezola do Amaral ME. Short-term effects induced by nicotinamide in ovariectomized females. Can J Physiol Pharmacol 2021; 99:439-447. [PMID: 32853529 DOI: 10.1139/cjpp-2020-0195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD)+ precursors such as nicotinamide activate sirtuins and enhance energy metabolism. The aim of this study was to evaluate the metabolic effects of nicotinamide in ovariectomized (OVX) female rats to establish molecular targets against obesity, which support the safe therapeutic application of nicotinamide. The OVX animals were divided into groups: SHAM (simulated surgery), SHAMn (two weeks of 35 mg·kg-1 nicotinamide per day, by gavage), OVX, and OVXn (two weeks of 35 mg·kg-1 nicotinamide per day, by gavage). The results indicated that nicotinamide favored lipolysis, as evidenced by an increase in free fatty acid and hepatic triglyceride levels, which were not fully normalized during the treatment period. The lipolysis appeared to be due to increased SIRT1 and mitochondrial oxidative phosphorylation in muscle and adipose tissue. There were decreases in muscle and fat nicotinamide N-methyltransferase (NNMT), which were associated with decreases in mass and triglyceride, low-density lipoprotein cholesterol (LDLc), and total cholesterol content. Nicotinamide appeared to be beneficial for the glycemic profile, with normal hepatic glycogen storage and a tendency towards insulin sensitivity in the OVXn. In the SHAMn group, nicotinamide led to glucose intolerance, together with reduced muscle expressions of nicotinamide phosphoribosyltransferase (NAMPT) and SIRT3, suggesting that there were no short-term benefits. Supplementation with nicotinamide led to tissue-specific adaptive lipid and molecular changes in OVX rats.
Collapse
Affiliation(s)
| | | | | | - Joyce Santana Rizzi
- Biomedicine College, Hermínio Ometto Foundation University Center (FHO), Araras, SP, Brazil
| | | | - Camila Andrea de Oliveira
- Biomedical Sciences Graduate Program, Hermínio Ometto Foundation University Center (FHO), Araras, SP, Brazil
| | | |
Collapse
|
37
|
Li Y, Yu C, Deng W. Roles and mechanisms of adipokines in drug resistance of tumor cells. Eur J Pharmacol 2021; 899:174019. [PMID: 33722588 DOI: 10.1016/j.ejphar.2021.174019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 02/06/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
The drug resistance of cancer cells has become one of the biggest obstacles of effective anticancer treatments. Adipocytes produce plenty of cytokines (also known as adipokines), which remarkably affect the drug resistance exhibited by cancer cells. Different adipokines (leptin, visfatin, resistin, adiponectin, Interleukin 6, and tumor necrosis factor α) can induce drug resistance in different cancer cells by various functional mechanisms. This phenomenon is of great interest in pharmacological anti-cancer studies since it indicates that in the cancers with adipocyte-rich microenvironment, all adipokines join together to assist cancer cells to survive by facilitating drug resistance. Studies on adipokines contribute to the development of novel pharmacological strategies for cancer therapy if their roles and molecular targets are better understood. The review will elucidate the roles and the underlying mechanisms of adipokines in drug resistance, which may be of great significance for revealing new strategies for cancer treatment.
Collapse
Affiliation(s)
- Yan Li
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, China
| | - Chunyan Yu
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, China
| | - Weimin Deng
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
38
|
Franczyk MP, Qi N, Stromsdorfer KL, Li C, Yamaguchi S, Itoh H, Yoshino M, Sasaki Y, Brookheart RT, Finck BN, DeBosch BJ, Klein S, Yoshino J. Importance of Adipose Tissue NAD+ Biology in Regulating Metabolic Flexibility. Endocrinology 2021; 162:6128705. [PMID: 33543238 PMCID: PMC7853299 DOI: 10.1210/endocr/bqab006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Indexed: 12/17/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme that regulates cellular energy metabolism in many cell types. The major purpose of the present study was to test the hypothesis that NAD+ in white adipose tissue (WAT) is a regulator of whole-body metabolic flexibility in response to changes in insulin sensitivity and with respect to substrate availability and use during feeding and fasting conditions. To this end, we first evaluated the relationship between WAT NAD+ concentration and metabolic flexibility in mice and humans. We found that WAT NAD+ concentration was increased in mice after calorie restriction and exercise, 2 enhancers of metabolic flexibility. Bariatric surgery-induced 20% weight loss increased plasma adiponectin concentration, skeletal muscle insulin sensitivity, and WAT NAD+ concentration in people with obesity. We next analyzed adipocyte-specific nicotinamide phosphoribosyltransferase (Nampt) knockout (ANKO) mice, which have markedly decreased NAD+ concentrations in WAT. ANKO mice oxidized more glucose during the light period and after fasting than control mice. In contrast, the normal postprandial stimulation of glucose oxidation and suppression of fat oxidation were impaired in ANKO mice. Data obtained from RNA-sequencing of WAT suggest that loss of NAMPT increases inflammation, and impairs insulin sensitivity, glucose oxidation, lipolysis, branched-chain amino acid catabolism, and mitochondrial function in WAT, which are features of metabolic inflexibility. These results demonstrate a novel function of WAT NAMPT-mediated NAD+ biosynthesis in regulating whole-body metabolic flexibility, and provide new insights into the role of adipose tissue NAD+ biology in metabolic health.
Collapse
Affiliation(s)
- Michael P Franczyk
- Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri, USA
| | - Nathan Qi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelly L Stromsdorfer
- Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri, USA
| | - Chengcheng Li
- Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri, USA
| | - Shintaro Yamaguchi
- Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri, USA
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Mihoko Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Rita T Brookheart
- Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri, USA
| | - Brian N Finck
- Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri, USA
| | - Brian J DeBosch
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jun Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, USA
- Correspondence: Jun Yoshino, MD, PhD, Center for Human Nutrition, Division of Geriatrics & Nutritional Science, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8031, St Louis, MO 63110, USA.
| |
Collapse
|
39
|
Role of NAD + in regulating cellular and metabolic signaling pathways. Mol Metab 2021; 49:101195. [PMID: 33609766 PMCID: PMC7973386 DOI: 10.1016/j.molmet.2021.101195] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Background Nicotinamide adenine dinucleotide (NAD+), a critical coenzyme present in every living cell, is involved in a myriad of metabolic processes associated with cellular bioenergetics. For this reason, NAD+ is often studied in the context of aging, cancer, and neurodegenerative and metabolic disorders. Scope of review Cellular NAD+ depletion is associated with compromised adaptive cellular stress responses, impaired neuronal plasticity, impaired DNA repair, and cellular senescence. Increasing evidence has shown the efficacy of boosting NAD+ levels using NAD+ precursors in various diseases. This review provides a comprehensive understanding into the role of NAD+ in aging and other pathologies and discusses potential therapeutic targets. Major conclusions An alteration in the NAD+/NADH ratio or the NAD+ pool size can lead to derailment of the biological system and contribute to various neurodegenerative disorders, aging, and tumorigenesis. Due to the varied distribution of NAD+/NADH in different locations within cells, the direct role of impaired NAD+-dependent processes in humans remains unestablished. In this regard, longitudinal studies are needed to quantify NAD+ and its related metabolites. Future research should focus on measuring the fluxes through pathways associated with NAD+ synthesis and degradation. NAD+ regulates energy metabolism, DNA damage repair, gene expression, and stress response. NAD+ deterioration contributes to the progression of multiple metabolic disorders, cancers, and neurodegenerative diseases. Nicotinamide mononucleotide and nicotinamide riboside raise NAD+ levels in different tissues in preclinical models. Imaging studies on genetic models can illustrate the pathways of NAD+metabolism and their downstream functional effects. Human clinical trials to determine benefits of restoration of NAD+ by using NAD precursors are in progress.
Collapse
|
40
|
Insulin receptor substrate 1 gene expression is strongly up-regulated by HSPB8 silencing in U87 glioma cells. Endocr Regul 2020; 54:231-243. [PMID: 33885248 DOI: 10.2478/enr-2020-0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective. The aim of the present investigation was to study the expression of genes encoding IRS1 (insulin receptor substrate 1) and some other functionally active proteins in U87 glioma cells under silencing of polyfunctional chaperone HSPB8 for evaluation of the possible significance of this protein in intergenic interactions.Methods. Silencing of HSPB8 mRNA was introduced by HSPB8 specific siRNA. The expression level of HSPB8, IRS1, HK2, GLO1, HOMER3, MYL9, NAMPT, PER2, PERP, GADD45A, and DEK genes was studied in U87 glioma cells by quantitative polymerase chain reaction.Results. It was shown that silencing of HSPB8 mRNA by specific to HSPB8 siRNA led to a strong down-regulation of this mRNA and significant modification of the expression of IRS1 and many other genes in glioma cells: strong up-regulated of HOMER3, GLO1, and PERP and down-regulated of MYL9, NAMPT, PER2, GADD45A, and DEK gene expressions. At the same time, no significant changes were detected in the expression of HK2 gene in glioma cells treated by siRNA, specific to HSPB8. Moreover, the silencing of HSPB8 mRNA enhanced the glioma cells proliferation rate.Conclusions. Results of this investigation demonstrated that silencing of HSPB8 mRNA affected the expression of IRS1 gene as well as many other genes encoding tumor growth related proteins. It is possible that the dysregulation of most of the studied genes in glioma cells after silencing of HSPB8 is reflected by a complex of intergenic interactions and that this polyfunctional chaperone is an important factor for the stability of genome function and regulatory mechanisms contributing to the tumorigenesis control.
Collapse
|
41
|
Okabe K, Nawaz A, Nishida Y, Yaku K, Usui I, Tobe K, Nakagawa T. NAD+ Metabolism Regulates Preadipocyte Differentiation by Enhancing α-Ketoglutarate-Mediated Histone H3K9 Demethylation at the PPARγ Promoter. Front Cell Dev Biol 2020; 8:586179. [PMID: 33330464 PMCID: PMC7732485 DOI: 10.3389/fcell.2020.586179] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/03/2020] [Indexed: 01/07/2023] Open
Abstract
Obesity has become a serious problem in public health worldwide, causing numerous metabolic diseases. Once the differentiation to mature adipocytes is disrupted, adipocyte hypertrophy and ectopic lipid accumulation leads to the inflammation in adipose tissue and systemic metabolic disorders. Intracellular metabolic state is known to change during cell differentiation and it affects the cell fate or the differentiation through epigenetic mechanism. Although the mechanism of preadipocyte differentiation has been well established, it is unknown how metabolic state changes and how it affects the differentiation in predipocyte differentiation. Nicotinamide adenine dinucleotide (NAD+) plays crucial roles in energy metabolism as a coenzyme in multiple redox reactions in major catabolic pathways and as a substrate of sirtuins or poly(ADP-ribose)polymerases. NAD+ is mainly synthesized from salvage pathway mediated by two enzymes, Nampt and Nmnat. The manipulation to NAD+ metabolism causes metabolic change in each tissue and changes in systemic metabolism. However, the role of NAD+ and Nampt in adipocyte differentiation remains unknown. In this study, we employed liquid chromatography-mass spectrometry (LC-MS)- and gas chromatography-mass spectrometry (GC-MS)-based targeted metabolomics to elucidate the metabolic reprogramming events that occur during 3T3-L1 preadipocyte differentiation. We found that the tricarboxylic acid (TCA) cycle was enhanced, which correlated with upregulated NAD+ synthesis. Additionally, increased alpha-ketoglutarate (αKG) contributed to histone H3K9 demethylation in the promoter region of PPARγ, leading to its transcriptional activation. Thus, we concluded that NAD+-centered metabolic reprogramming is necessary for the differentiation of 3T3-L1 preadipocytes.
Collapse
Affiliation(s)
- Keisuke Okabe
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan.,First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Allah Nawaz
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan.,First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yasuhiro Nishida
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Isao Usui
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan.,Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan.,Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
| |
Collapse
|
42
|
Kong H, Yu L, Gu Z, Li C, Ban X, Cheng L, Hong Y, Li Z. Novel Short-Clustered Maltodextrin as a Dietary Starch Substitute Attenuates Metabolic Dysregulation and Restructures Gut Microbiota in db/ db Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12400-12412. [PMID: 33084325 DOI: 10.1021/acs.jafc.0c05798] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Molecular structure of starch in daily diet is closely associated with diabetes management. By enzymatically reassembling α-1,4 and α-1,6 glycosidic bonds in starch molecules, we have synthesized an innovative short-clustered maltodextrin (SCMD) which slowly releases glucose during digestion. Here, we investigated the potential benefits of the SCMD-containing diet using diabetic db/db mice. As compared to a diet with normal starch, this dietary style greatly attenuated hyperglycemia and repaired symptoms associated with diabetes. Additionally, in comparison with acarbose (an α-glucosidase inhibitor) administration, the SCMD-containing diet more effectively accelerated brown adipose activation and improved energy metabolism of db/db mice. Furthermore, the SCMD-containing diet was a more suitable approach to improving the intestinal microflora than acarbose administration, especially the proliferation of Mucispirillum, Akkermansia, and Bifidobacterium. These results reveal a novel strategy for diabetes management based on enzymatically rebuilding starch molecules in the daily diet.
Collapse
Affiliation(s)
- Haocun Kong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luxi Yu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
43
|
Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, Li C, Shen G, Zou B. NAD + metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target Ther 2020; 5:227. [PMID: 33028824 PMCID: PMC7539288 DOI: 10.1038/s41392-020-00311-7] [Citation(s) in RCA: 502] [Impact Index Per Article: 100.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) and its metabolites function as critical regulators to maintain physiologic processes, enabling the plastic cells to adapt to environmental changes including nutrient perturbation, genotoxic factors, circadian disorder, infection, inflammation and xenobiotics. These effects are mainly achieved by the driving effect of NAD+ on metabolic pathways as enzyme cofactors transferring hydrogen in oxidation-reduction reactions. Besides, multiple NAD+-dependent enzymes are involved in physiology either by post-synthesis chemical modification of DNA, RNA and proteins, or releasing second messenger cyclic ADP-ribose (cADPR) and NAADP+. Prolonged disequilibrium of NAD+ metabolism disturbs the physiological functions, resulting in diseases including metabolic diseases, cancer, aging and neurodegeneration disorder. In this review, we summarize recent advances in our understanding of the molecular mechanisms of NAD+-regulated physiological responses to stresses, the contribution of NAD+ deficiency to various diseases via manipulating cellular communication networks and the potential new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lu Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Wei Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Peter Ernst Huber
- CCU Molecular and Radiation Oncology, German Cancer Research Center; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Xiaobo Zhou
- First Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Bingwen Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- CCU Molecular and Radiation Oncology, German Cancer Research Center; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
44
|
Su X, Peng D. Emerging functions of adipokines in linking the development of obesity and cardiovascular diseases. Mol Biol Rep 2020; 47:7991-8006. [PMID: 32888125 DOI: 10.1007/s11033-020-05732-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
Increasing evidence shows that obesity is the critical factor in shaping cardio-metabolic phenotypes. However, the pathogenic mechanisms remain incompletely clarified. According to the published reports, adipose tissue communicates with several diverse organs, such as heart, lungs, and kidneys through the secretion of various cytokines named adipokines. The adipocytes isolated from obese mice or humans are dysfunctional with aberrant production of pro-inflammatory adipokines, which subsequently induce both acute and chronic inflammatory reaction and facilitate the process of cardio-metabolic disorder complications. Furthermore, the microenvironment within adipose tissue under obese status also influence the secretion of adipokines. Recently, given that several important adipokines have been completely researched and causally involved in various diseases, we could make a conclusion that adipokines play an essential role in modulating the development of cardio-metabolic disorder diseases, whereas several novel adipokines continue to be explored and elucidated. In the present review, we summarized the current knowledge of the microenvironment of adipose tissue and the published mechanisms whereby adipocytes affects obesity and cardiovascular diseases. On the other hand, we also provide the evidence to elucidate the functions of adipokines in controlling and regulating the inflammatory reactions which contribute to obesity and cardiovascular disease.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China.,Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
45
|
Feng D, Xu D, Murakoshi N, Tajiri K, Qin R, Yonebayashi S, Okabe Y, Li S, Yuan Z, Aonuma K, Ieda M. Nicotinamide Phosphoribosyltransferase (Nampt)/Nicotinamide Adenine Dinucleotide (NAD) Axis Suppresses Atrial Fibrillation by Modulating the Calcium Handling Pathway. Int J Mol Sci 2020; 21:ijms21134655. [PMID: 32629939 PMCID: PMC7370160 DOI: 10.3390/ijms21134655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/18/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022] Open
Abstract
Aging and obesity are the most prominent risk factors for onset of atrial fibrillation (AF). Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme that catalyzes nicotinamide adenine dinucleotide (NAD) activity. Nampt and NAD are essential for maintenance of cellular redox homeostasis and modulation of cellular metabolism, and their expression levels decrease with aging and obesity. However, a role for Nampt in AF is unknown. The present study aims to test whether there is a role of Nampt/NAD axis in the pathogenesis of obesity-induced AF. Male C57BL/6J (WT) mice and heterozygous Nampt knockout (NKO) mice were fed with a normal chow diet (ND) or a high-fat diet (HFD). Electrophysiological study showed that AF inducibility was significantly increased in WT+HFD, NKO+ND, and NKO+HFD mice compared with WT+ND mice. AF duration was significantly longer in WT+HFD and NKO+ND mice and further prolonged in NKO+HFD mice compared with WT+ND mice and the calcium handling pathway was altered on molecular level. Also, treatment with nicotinamide riboside, a NAD precursor, partially restored the HFD-induced AF perpetuation. Overall, this work demonstrates that partially deletion of Nampt facilitated HFD-induced AF through increased diastolic calcium leaks. The Nampt/NAD axis may be a potent therapeutic target for AF.
Collapse
Affiliation(s)
| | - DongZhu Xu
- Correspondence: ; Tel.: +81-29-853-3142; Fax: +81-29-853-3143
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
de Guia RM, Agerholm M, Nielsen TS, Consitt LA, Søgaard D, Helge JW, Larsen S, Brandauer J, Houmard JA, Treebak JT. Aerobic and resistance exercise training reverses age-dependent decline in NAD + salvage capacity in human skeletal muscle. Physiol Rep 2020; 7:e14139. [PMID: 31207144 PMCID: PMC6577427 DOI: 10.14814/phy2.14139] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
Aging decreases skeletal muscle mass and strength, but aerobic and resistance exercise training maintains skeletal muscle function. NAD+ is a coenzyme for ATP production and a required substrate for enzymes regulating cellular homeostasis. In skeletal muscle, NAD+ is mainly generated by the NAD+ salvage pathway in which nicotinamide phosphoribosyltransferase (NAMPT) is rate‐limiting. NAMPT decreases with age in human skeletal muscle, and aerobic exercise training increases NAMPT levels in young men. However, whether distinct modes of exercise training increase NAMPT levels in both young and old people is unknown. We assessed the effects of 12 weeks of aerobic and resistance exercise training on skeletal muscle abundance of NAMPT, nicotinamide riboside kinase 2 (NRK2), and nicotinamide mononucleotide adenylyltransferase (NMNAT) 1 and 3 in young (≤35 years) and older (≥55 years) individuals. NAMPT in skeletal muscle correlated negatively with age (r2 = 0.297, P < 0.001, n = 57), and VO2peak was the best predictor of NAMPT levels. Moreover, aerobic exercise training increased NAMPT abundance 12% and 28% in young and older individuals, respectively, whereas resistance exercise training increased NAMPT abundance 25% and 30% in young and in older individuals, respectively. None of the other proteins changed with exercise training. In a separate cohort of young and old people, levels of NAMPT, NRK1, and NMNAT1/2 in abdominal subcutaneous adipose tissue were not affected by either age or 6 weeks of high‐intensity interval training. Collectively, exercise training reverses the age‐dependent decline in skeletal muscle NAMPT abundance, and our findings highlight the value of exercise training in ameliorating age‐associated deterioration of skeletal muscle function.
Collapse
Affiliation(s)
- Roldan M de Guia
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Agerholm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas S Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leslie A Consitt
- Department of Biomedical Sciences, Ohio Musculoskeletal and Neurological Institute, Diabetes Institute, Ohio University, Athens, Ohio
| | - Ditte Søgaard
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørn W Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Josef Brandauer
- Department of Health Sciences, Gettysburg College, Gettysburg, Pennsylvania
| | - Joseph A Houmard
- Department of Kinesiology, Human Performance Laboratory, East Carolina University, Greenville, North Carolina.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Hong W, Mo F, Zhang Z, Huang M, Wei X. Nicotinamide Mononucleotide: A Promising Molecule for Therapy of Diverse Diseases by Targeting NAD+ Metabolism. Front Cell Dev Biol 2020; 8:246. [PMID: 32411700 PMCID: PMC7198709 DOI: 10.3389/fcell.2020.00246] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/24/2020] [Indexed: 02/05/2023] Open
Abstract
NAD+, a co-enzyme involved in a great deal of biochemical reactions, has been found to be a network node of diverse biological processes. In mammalian cells, NAD+ is synthetized, predominantly through NMN, to replenish the consumption by NADase participating in physiologic processes including DNA repair, metabolism, and cell death. Correspondingly, aberrant NAD+ metabolism is observed in many diseases. In this review, we discuss how the homeostasis of NAD+ is maintained in healthy condition and provide several age-related pathological examples related with NAD+ unbalance. The sirtuins family, whose functions are NAD-dependent, is also reviewed. Administration of NMN surprisingly demonstrated amelioration of the pathological conditions in some age-related disease mouse models. Further clinical trials have been launched to investigate the safety and benefits of NMN. The NAD+ production and consumption pathways including NMN are essential for more precise understanding and therapy of age-related pathological processes such as diabetes, ischemia–reperfusion injury, heart failure, Alzheimer’s disease, and retinal degeneration.
Collapse
Affiliation(s)
- Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Department of Biotherapy, Chengdu, China
| | - Ziqi Zhang
- West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Department of Biotherapy, Chengdu, China
| | - Mengyuan Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Guia RM, Hassing AS, Skov LJ, Ratner C, Plucińska K, Madsen S, Diep TA, Dela Cruz GV, Trammell SA, Sustarsic EG, Emanuelli B, Gillum MP, Gerhart‐Hines Z, Holst B, Treebak JT. Fasting- and ghrelin-induced food intake is regulated by NAMPT in the hypothalamus. Acta Physiol (Oxf) 2020; 228:e13437. [PMID: 31900990 DOI: 10.1111/apha.13437] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/18/2019] [Accepted: 12/29/2019] [Indexed: 12/13/2022]
Abstract
AIM Neurons in the arcuate nucleus of the hypothalamus are involved in regulation of food intake and energy expenditure, and dysregulation of signalling in these neurons promotes development of obesity. The role of the rate-limiting enzyme in the NAD+ salvage pathway, nicotinamide phosphoribosyltransferase (NAMPT), for regulation energy homeostasis by the hypothalamus has not been extensively studied. METHODS We determined whether Nampt mRNA or protein levels in the hypothalamus of mice were affected by diet-induced obesity, by fasting and re-feeding, and by leptin and ghrelin treatment. Primary hypothalamic neurons were treated with FK866, a selective inhibitor of NAMPT, or rAAV carrying shRNA directed against Nampt, and levels of reactive oxygen species (ROS) and mitochondrial respiration were assessed. Fasting and ghrelin-induced food intake was measured in mice in metabolic cages after intracerebroventricular (ICV)-mediated FK866 administration. RESULTS NAMPT levels in the hypothalamus were elevated by administration of ghrelin and leptin. In diet-induced obese mice, both protein and mRNA levels of NAMPT decreased in the hypothalamus. NAMPT inhibition in primary hypothalamic neurons significantly reduced levels of NAD+ , increased levels of ROS, and affected the expression of Agrp, Pomc and genes related to mitochondrial function. Finally, ICV-induced NAMPT inhibition by FK866 did not cause malaise or anhedonia, but completely ablated fasting- and ghrelin-induced increases in food intake. CONCLUSION Our findings indicate that regulation of NAMPT levels in hypothalamic neurons is important for the control of fasting- and ghrelin-induced food intake.
Collapse
Affiliation(s)
- Roldan M. Guia
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Anna S. Hassing
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Louise J. Skov
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Cecilia Ratner
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Kaja Plucińska
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Søren Madsen
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Thi A. Diep
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Gelo V. Dela Cruz
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Stem Cell Biology University of Copenhagen Copenhagen Denmark
| | - Samuel A.J. Trammell
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Elahu G. Sustarsic
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Brice Emanuelli
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Matthew P. Gillum
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Zach Gerhart‐Hines
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Birgitte Holst
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Jonas T. Treebak
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| |
Collapse
|
49
|
Wei X, Jia R, Wang G, Hong S, Song L, Sun B, Chen K, Wang N, Wang Q, Luo X, Yan J. Depot-specific regulation of NAD +/SIRTs metabolism identified in adipose tissue of mice in response to high-fat diet feeding or calorie restriction. J Nutr Biochem 2020; 80:108377. [PMID: 32278117 DOI: 10.1016/j.jnutbio.2020.108377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
Abstract
Deteriorated nicotinamide adenine dinucleotide (NAD+)/sirtuins (SIRTs) metabolism in adipose tissue is implicated in diet-induced obesity, while calorie restriction (CR)-induced beneficial effects require sufficient NAD+ biosynthesis. Mechanistic links have not been defined. This study aims to identify changes of specific components of NAD+/SIRTs system in white adipose tissue (WAT) and brown adipose tissue (BAT) of mice upon energy imbalance, focusing on key enzymes in NAD+ salvage (Nampt, Nmnat1, Nrk1), clearance (Nnmt, Aox1, Cyp2e1) and consumption pathways (Sirt1, Sirt2, Sirt3, Sirt6, Parp1). Male C57BL/6J mice were fed ad libitum with the standard laboratory chow diet, high-fat diet (HFD) or 40% CR diet, respectively. The epididymal and inguinal WAT (eWAT and iWAT) and interscapular BAT (iBAT) were harvested for histological, NAD+ assay, gene and protein expression analysis after 16 weeks of dietary regimen. HFD decreased, while CR increased, the NAD+ and NADH levels in eWAT, iWAT and iBAT. NAD+ content negatively correlated with plasma cholesterol, TNF-α levels and calorie intake, while it positively correlated with plasma adiponectin level. The change trend of SIRT1 is quite the same as that of NAD+/NADH ratio. Nmnat1 gene is sensitive to energy imbalance in WAT but not in BAT. Nrk1 gene expression was decreased in eWAT and iWAT but increased in iBAT of HFD mice. Nnmt mRNA and protein abundance was increased in iWAT of HFD mice. Nampt, Cyp2e1 and Sirt3 were the most robust genes responding to energy imbalance. In summary, adipose tissue responds to long-term energy excess or shortage with depot-specific transcriptional activation or repression of NAD+/SIRTs metabolic components.
Collapse
Affiliation(s)
- Xiaojing Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Ru Jia
- Department of Prosthodontics, College of Stomatology, Stomatological Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Guan Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Lin Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Bo Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Ke Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Nan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Qiqi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| | - Jianqun Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| |
Collapse
|
50
|
Audrito V, Messana VG, Deaglio S. NAMPT and NAPRT: Two Metabolic Enzymes With Key Roles in Inflammation. Front Oncol 2020; 10:358. [PMID: 32266141 PMCID: PMC7096376 DOI: 10.3389/fonc.2020.00358] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT) are two intracellular enzymes that catalyze the first step in the biosynthesis of NAD from nicotinamide and nicotinic acid, respectively. By fine tuning intracellular NAD levels, they are involved in the regulation/reprogramming of cellular metabolism and in the control of the activity of NAD-dependent enzymes, including sirtuins, PARPs, and NADases. However, during evolution they both acquired novel functions as extracellular endogenous mediators of inflammation. It is well-known that cellular stress and/or damage induce release in the extracellular milieu of endogenous molecules, called alarmins or damage-associated molecular patterns (DAMPs), which modulate immune functions through binding pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), and activate inflammatory responses. Increasing evidence suggests that extracellular (e)NAMPT and eNAPRT are novel soluble factors with cytokine/adipokine/DAMP-like actions. Elevated eNAMPT were reported in several metabolic and inflammatory disorders, including obesity, diabetes, and cancer, while eNAPRT is emerging as a biomarker of sepsis and septic shock. This review will discuss available data concerning the dual role of this unique family of enzymes.
Collapse
Affiliation(s)
- Valentina Audrito
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Vincenzo Gianluca Messana
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|