1
|
Jang WB, Rethineswaran VK, Kwon SM. Targeting Mitochondrial Dysfunction to Prevent Endothelial Dysfunction and Atherosclerosis in Diabetes: Focus on the Novel Uncoupler BAM15. Int J Mol Sci 2025; 26:4603. [PMID: 40429748 PMCID: PMC12111197 DOI: 10.3390/ijms26104603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/02/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by persistent hyperglycemia, leading to endothelial dysfunction and accelerated atherosclerosis. Mitochondrial dysfunction, oxidative stress, and dysregulated lipid metabolism contribute to endothelial cell (EC) injury, promoting plaque formation and increasing cardiovascular disease risk. Current lipid-lowering therapies have limited effectiveness in restoring endothelial function, highlighting the need for novel strategies. Mitochondrial uncoupling has emerged as a promising approach, with BAM15-a newly identified mitochondrial uncoupler-showing potential therapeutic benefits. BAM15 enhances fatty acid oxidation (FAO), reduces reactive oxygen species, and protects ECs from hyperglycemia-induced apoptosis. Unlike conventional uncouplers, BAM15 demonstrates improved tolerability and efficacy without severe off-target effects. It restores mitochondrial function, improves endothelial survival, and supports metabolic homeostasis under hyperglycemic conditions. This review uniquely integrates emerging evidence on mitochondrial dysfunction, endothelial metabolism, and FAO to highlight the novel role of BAM15 in restoring vascular function in diabetes. We provide the first focused synthesis of BAM15's mechanistic impact on EC bioenergetics and position it within the broader landscape of mitochondrial-targeted therapies for diabetic vascular complications. Further research is needed to elucidate the molecular mechanism through which BAM15 modulates EC metabolism and to evaluate its long-term vascular effects in diabetic models.
Collapse
Affiliation(s)
- Woong Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (W.B.J.); (V.K.R.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Vinoth Kumar Rethineswaran
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (W.B.J.); (V.K.R.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (W.B.J.); (V.K.R.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
2
|
Raji A, Gantz I, Crutchlow M, Flynn H, Xu L, Rodgers AJ, Krishnan R, Rizk ML, Hu S, Kaufman KD, Engel SS, MK‐3655 P001 Study Group. Clinical Trial: A Phase 2b Study to Evaluate the Efficacy and Safety of MK-3655 in Individuals With Pre-Cirrhotic MASH. Aliment Pharmacol Ther 2025; 61:1152-1162. [PMID: 39984821 PMCID: PMC11908112 DOI: 10.1111/apt.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/04/2025] [Accepted: 02/08/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) is a metabolic regulator with demonstrated efficacy for the treatment of metabolic dysfunction-associated steatohepatitis (MASH). FGF21 signals through 'c' isoforms of the FGF receptors (FGFR) 1-3 and the co-receptor β-klotho. AIMS We report the safety and efficacy of MK-3655, a monoclonal antibody that binds β-klotho and selectively activates the FGFR1c/β-klotho co-receptor complex, in patients with pre-cirrhotic MASH. METHODS Phase 2b, randomised, multicenter, double-blind, placebo-controlled, parallel-group study in patients with pre-cirrhotic MASH (NAS ≥ 4 and MASH CRN fibrosis score Stage 2 or 3). Participants were randomised 1:1:1:1 to receive MK-3655 50 mg, 100 mg, 300 mg, or matching placebo subcutaneously every 4 weeks. The primary endpoint was MASH resolution without worsening of fibrosis by histology at Week 52. An interim analysis (IA) of liver fat content (LFC) was planned once ≥ 25 participants per treatment group completed an MRI-PDFF assessment at Week 24. RESULTS Among 183 participants, mean BMI was 33.4 kg/m2, mean LFC was 18.1%, and 52.5% had type 2 diabetes. At the IA, the differences from placebo in relative reduction from baseline in LFC were assessed as insufficient for continuation of the trial. Among participants with Week 24 LFC assessment, percent relative reductions from baseline (LS mean difference vs. placebo) for MK-3655 50 mg (N = 33), 100 mg (N = 36), and 300 mg (N = 31), were 19.1%, 19.0%, and 26.1%, respectively. MK-3655 was generally well tolerated. CONCLUSIONS In patients with pre-cirrhotic MASH, treatment with MK-3655 resulted in a modest reduction in LFC at 24 weeks. CLINICAL TRIAL NUMBER EudraCT: 2019-003048-63; NCT: 04583423.
Collapse
Affiliation(s)
| | - Ira Gantz
- Merck & Co., Inc.RahwayNew JerseyUSA
| | | | | | | | | | | | | | - Shuai Hu
- Merck & Co., Inc.RahwayNew JerseyUSA
| | | | | | | |
Collapse
|
3
|
Lai S, Tang D, Feng J. Mitochondrial targeted therapies in MAFLD. Biochem Biophys Res Commun 2025; 753:151498. [PMID: 39986088 DOI: 10.1016/j.bbrc.2025.151498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a clinical-pathological syndrome primarily characterized by excessive accumulation of fat in hepatocytes, independent of alcohol consumption and other well-established hepatotoxic agents. Mitochondrial dysfunction is widely acknowledged as a pivotal factor in the pathogenesis of various diseases, including cardiovascular diseases, cancer, neurodegenerative disorders, and metabolic diseases such as obesity and obesity-associated MAFLD. Mitochondria are dynamic cellular organelles capable of modifying their functions and structures to accommodate the metabolic demands of cells. In the context of MAFLD, the excess production of reactive oxygen species induces oxidative stress, leading to mitochondrial dysfunction, which subsequently promotes metabolic disorders, fat accumulation, and the infiltration of inflammatory cells in liver and adipose tissue. This review aims to systematically analyze the role of mitochondria-targeted therapies in MAFLD, evaluate current therapeutic strategies, and explore future directions in this rapidly evolving field. We specifically focus on the molecular mechanisms underlying mitochondrial dysfunction, emerging therapeutic approaches, and their clinical implications. This is of significant importance for the development of new therapeutic approaches for these metabolic disorders.
Collapse
Affiliation(s)
- Sien Lai
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medicine, Foshan University, 528000, Foshan, China.
| | - Dongsheng Tang
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medicine, Foshan University, 528000, Foshan, China.
| | - Juan Feng
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medicine, Foshan University, 528000, Foshan, China.
| |
Collapse
|
4
|
Steinberg GR, Valvano CM, De Nardo W, Watt MJ. Integrative metabolism in MASLD and MASH: Pathophysiology and emerging mechanisms. J Hepatol 2025:S0168-8278(25)00142-4. [PMID: 40032040 DOI: 10.1016/j.jhep.2025.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/09/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
The liver acts as a central metabolic hub, integrating signals from the gastrointestinal tract and adipose tissue to regulate carbohydrate, lipid, and amino acid metabolism. Gut-derived metabolites, such as acetate and ethanol and non-esterified fatty acids from white adipose tissue, influence hepatic processes, which rely on mitochondrial function to maintain systemic energy balance. Metabolic dysregulation caused by obesity, insulin resistance, and type 2 diabetes disrupts these pathways, leading to metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (MASH). In this review, we explore the metabolic fluxes within the gut-adipose tissue-liver axis, focusing on the pivotal role of de novo lipogenesis, dietary substrates like glucose and fructose, and changes in mitochondrial function during MASLD progression. We also highlight the contributions of white adipose tissue insulin resistance and impaired mitochondrial dynamics to hepatic lipid accumulation. Further understanding how the interplay between substrate flux from the gastro-intestinal tract integrates with adipose tissue and intersects with structural and functional alterations to liver mitochondria will be important to identify novel therapeutic targets and advance the treatment of MASLD and MASH.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - Celina M Valvano
- Centre for Metabolism, Obesity and Diabetes Research, Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - William De Nardo
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Meng D, Chang M, Dai X, Kuang Q, Wang G. GTPBP8 mitigates nonalcoholic steatohepatitis (NASH) by depressing hepatic oxidative stress and mitochondrial dysfunction via PGC-1α signaling. Free Radic Biol Med 2025; 229:312-332. [PMID: 39341301 DOI: 10.1016/j.freeradbiomed.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) is emerging as a major cause of liver transplantation and hepatocellular carcinoma (HCC). Regrettably, its pathological mechanisms are still not fully comprehended. GTP-binding protein 8 (GTPBP8), belonging to the GTP-binding protein superfamily, assumes a crucial role in RNA metabolism, cell proliferation, differentiation, and signal transduction. Its aberrant expression is associated with oxidative stress and mitochondrial dysfunctions. Nevertheless, its specific functions and mechanisms of action, particularly in NASH, remain elusive. In our current study, we initially discovered that human hepatocytes L02 displayed evident mitochondrial respiratory anomaly, mitochondrial damage, and dysfunction upon treatment with palmitic acids and oleic acids (PO), accompanied by significantly reduced GTPBP8 expression levels through RNA-Seq, RT-qPCR, western blotting, and immunofluorescence assays. We then demonstrated that GTPBP8 overexpression mediated by adenovirus vector (Ad-GTPBP8) markedly attenuate lipid accumulation, inflammatory response, and mitochondrial impair and dysfunction in hepatocytes stimulated by PO. Conversely, adenovirus vector-mediated GTPBP8 knockdown (Ad-shGTPBP8) significantly accelerated lipid deposition, inflammation and mitochondrial damage in PO-treated hepatocytes in vitro. Furthermore, we constructed an in vivo NASH murine model by giving a 16-week high fat high cholesterol diet (HFHC) diet to hepatocyte specific GTPBP8-knockout (GTPBP8HKO) mice. We firstly found that HFHC feeding led to metabolic disorder in mice, including high body weight, blood glucose and insulin levels, and liver dysfunctions, which were accelerated in these NASH mice with GTPBP8 deficiency in hepatocytes. Consistently, GTPBP8HKO remarkably exacerbated the progression of NASH phenotypes induced by HFHC, as proved by the anabatic lipid accumulation, inflammation, fibrosis and reactive oxygen species (ROS) production in liver tissues, which could be largely attributed to the severe mitochondrial damage and dysfunction. Mechanistically, we further identified that GTPBP8 interacted with peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in hepatocytes. Importantly, the hepaprotective effects of GTPBP8 against mitochondrial dysfunction, oxidative stress and inflammation was largely dependent on PGC-1α expression. Collectively, GTPBP8 may exert a protective role in the progression of NASH, and targeting the GTPBP8/PGC-1α axis may represent a potential strategy for NASH treatment by improving mitochondrial functions.
Collapse
Affiliation(s)
- Dongxiao Meng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, PR China
| | - Minghui Chang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, PR China
| | - Xianling Dai
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Qin Kuang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Guangchuan Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, PR China.
| |
Collapse
|
6
|
Chen J, Zhang L, Xie T, Zhang X, Pan C, Sun F, Li W, Sun Z, Dong D. Nitazoxanide protects against heart failure with preserved ejection and metabolic syndrome induced by high-fat diet (HFD) plus L-NAME "two-hit" in mice. Acta Pharm Sin B 2025; 15:1397-1414. [PMID: 40370562 PMCID: PMC12069241 DOI: 10.1016/j.apsb.2024.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 05/16/2025] Open
Abstract
The clinical antiprotozoal drug nitazoxanide has been demonstrated to improve the experimental diabetes mellitus, lipid metabolism disorders, atherosclerosis and inhibit inflammation. Since the pathogenesis of heart failure with preserved ejection (HFpEF) is multifactorial and closely associated with the aforementioned diseases, we aim to study the effect of nitazoxanide on high-fat diet (HFD) plus L-NAME (N ω-nitro-l-arginine methyl ester)-induced HFpEF and metabolic syndrome in mice. We found that oral nitazoxanide improved cardiac hypertrophy, cardiac fibrosis, cardiac diastolic dysfunction, increased blood pressure, impaired exercise tolerance, impaired glucose handling, serum lipid disorders, hepatic steatosis, increased weight of white adipose tissues and kidney fibrosis in HFD + L-NAME-treated mice. In the established HFD + L-NAME-induced HFpEF and metabolic syndrome mouse model, therapeutic treatment with nitazoxanide rescued HFD + L-NAME-induced pathological phenotypes as mentioned above. The in vitro experiments revealed that tizoxanide, the active metabolite of nitazoxanide, increased the basal mitochondria metabolism of cardiomyocytes, inhibited cardiomyocyte hypertrophy and collagen secretion from cardiac fibroblasts, and relaxed phenylephrine- and U46619-induced constriction of rat mesenteric arteries, indicating that the direct effect of tizoxanide might partly contribute to the protective effect of nitazoxanide against HFpEF in vivo. The present study suggests that nitazoxanide might be a potential drug for HFpEF and metabolic syndrome therapy.
Collapse
Affiliation(s)
- Jiahui Chen
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Liping Zhang
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Xie
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Xiao Zhang
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Congcong Pan
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Fangli Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Wenfeng Li
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Zhijie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Deli Dong
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
7
|
Guo P, Alhaskawi A, Adel Abdo Moqbel S, Pan Z. Recent development of mitochondrial metabolism and dysfunction in osteoarthritis. Front Pharmacol 2025; 16:1538662. [PMID: 40017603 PMCID: PMC11865096 DOI: 10.3389/fphar.2025.1538662] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
Osteoarthritis is a degenerative joint disorder characterized by cartilage degradation, synovial inflammation, and altered subchondral bone structure. Recent insights have identified mitochondrial dysfunction as a pivotal factor in OA pathogenesis, contributing to chondrocyte apoptosis, oxidative stress, and extracellular matrix degradation. Disruptions in mitochondrial dynamics, including impaired biogenesis, mitophagy, and metabolic shifts from oxidative phosphorylation to glycolysis, exacerbate cartilage damage by promoting the production of reactive oxygen species and matrix-degrading enzymes such as ADAMTS and MMPs. This review explores the molecular mechanisms underlying mitochondrial dysfunction in OA, emphasizing its role in cartilage homeostasis and inflammation. Furthermore, it highlights emerging therapeutic strategies targeting mitochondrial pathways, including antioxidants, mitophagy enhancers, and metabolic modulators, as potential interventions to mitigate disease progression, which offer promising avenues for advancing personalized and disease-modifying treatments in OA.
Collapse
Affiliation(s)
- Pengchao Guo
- Emergency Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Safwat Adel Abdo Moqbel
- Emergency Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijun Pan
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Pavlova EK, Samartsev VN, Dubinin MV. Nigericin modifies the mechanism of the uncoupling action of bile acids in rat liver mitochondria by converting ΔpH into Δψ. J Bioenerg Biomembr 2025; 57:39-48. [PMID: 39699620 DOI: 10.1007/s10863-024-10048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Cholestasis caused by impaired bile secretion in the liver is associated with the accumulation of primary bile acids (BA): cholic acid (CA) and chenodeoxycholic acid (CDCA) in the cells of this organ. The paper studies the uncoupling effect of the CA and CDCA on the succinate-fueled rat liver mitochondria under conditions of ΔpH to Δψ conversion by nigericin. It has been established that without nigericin, the dependence of the resting-state (state 4) respiration rate on the concentrations of these BA is nonlinear and is described by a parabolic equation. Under these conditions, the specific inhibitor of the ADP/ATP-antiporter - carboxyatractylate and the substrate of the aspartate/glutamate-antiporter - glutamate do not affect the state 4 respiration of mitochondria stimulated by these BA. It is suggested that without nigericin, the protonophore action of BA is due to the formation of a dimeric complex of their anion with the acid. In the presence of nigericin, the dependence of state 4 respiration rate on BA concentration is linear. Under these conditions, carboxyatractylate inhibits BA-stimulated respiration. Unlike the CDCA, the uncoupling action of CA is also suppressed by the substrates of the aspartate/glutamate-antiporter. The obtained results are considered as evidence that in the presence of nigericin, uncoupling action of CDCA is carried out primarily with the participation of ADP/ATP-antiporter. Both ADP/ATP-antiporter and aspartate/glutamate-antiporter are involved in the uncoupling action of CA. It is concluded that nigericin modifies the mechanism of the uncoupling action of BA in liver mitochondria by converting ΔpH to Δψ.
Collapse
Affiliation(s)
- Evgeniya K Pavlova
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Victor N Samartsev
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Mikhail V Dubinin
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia.
| |
Collapse
|
9
|
ÇETİN E, PEDERSEN B, BURAK MF. Paradigm shift in obesity treatment: an extensive review of current pipeline agents. Turk J Med Sci 2025; 55:1-16. [PMID: 40104296 PMCID: PMC11913498 DOI: 10.55730/1300-0144.5938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/18/2025] [Accepted: 01/15/2025] [Indexed: 03/20/2025] Open
Abstract
Obesity is a multifaceted disease that poses a significant public health challenge. Recent discoveries in understanding the biological pathways that regulate satiety and metabolism have led to a shift in the treatment paradigm for obesity. Thus, the gap between pharmacological and surgical interventions has diminished. The latest approved antiobesity medications help to achieve weight loss comparable to surgery. These GLP-1 analog-based therapies not only cause substantial weight loss but also improve obesity-associated comorbidities. However, there are still unmet needs in obesity care, and treatment options with alternative pathways are necessary. Whether achieved through lifestyle changes or medication, weight loss often leads to muscle mass loss and reduced energy expenditure, resulting in rebound weight gain. Moreover, addressing severe obesity and comorbidities, such as metabolic-associated fatty liver disease (MAFLD), metabolic dysfunction-associated steatohepatitis (MASH), heart failure with preserved ejection fraction, and obstructive sleep apnea, necessitates the development of additional therapeutic strategies. Various antiobesity medications with novel mechanisms of action are currently in the pipeline. Myostatin-activin pathway inhibitors are under development to preserve muscle mass, and combination therapies with glucagon agonists address MAFLD and MASH. Amylin agonists offer a promising alternative to those unable to tolerate GLP-1 analogs. Mitochondrial uncouplers are under investigation for enhancing energy expenditure, NLRP-3 inhibitors for reducing inflammation, and GWAS targets for additional weight loss benefits. Combination therapies, such as dual or triple hormonal receptor agonists, are being developed to maximize weight loss and optimize tolerability. These emerging medications in the clinical trial pipeline show promise for more tolerable and sustainable obesity management.
Collapse
Affiliation(s)
- Ecesu ÇETİN
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA,
United States
| | - Brian PEDERSEN
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA,
United States
| | - Mehmet Furkan BURAK
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA,
United States
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA,
United States
| |
Collapse
|
10
|
Dos Santos BG, Brisnovali NF, Goedeke L. Biochemical basis and therapeutic potential of mitochondrial uncoupling in cardiometabolic syndrome. Biochem J 2024; 481:1831-1854. [PMID: 39630236 DOI: 10.1042/bcj20240005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
Mild uncoupling of oxidative phosphorylation is an intrinsic property of all mitochondria, allowing for adjustments in cellular energy metabolism to maintain metabolic homeostasis. Small molecule uncouplers have been extensively studied for their potential to increase metabolic rate, and recent research has focused on developing safe and effective mitochondrial uncoupling agents for the treatment of obesity and cardiometabolic syndrome (CMS). Here, we provide a brief overview of CMS and cover the recent mechanisms by which chemical uncouplers regulate CMS-associated risk-factors and comorbidities, including dyslipidemia, insulin resistance, steatotic liver disease, type 2 diabetes, and atherosclerosis. Additionally, we review the current landscape of uncoupling agents, focusing on repurposed FDA-approved drugs and compounds in advanced preclinical or early-stage clinical development. Lastly, we discuss recent molecular insights by which chemical uncouplers enhance cellular energy expenditure, highlighting their potential as a new addition to the current CMS drug landscape, and outline several limitations that need to be addressed before these agents can successfully be introduced into clinical practice.
Collapse
Affiliation(s)
- Bernardo Gindri Dos Santos
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| | - Niki F Brisnovali
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| | - Leigh Goedeke
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
- Department of Medicine (Endocrinology), The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| |
Collapse
|
11
|
Jagtap UA, Rathod S, Shukla R, Paul AT. Computational insights into human UCP1 activators through molecular docking, MM-GBSA, and molecular dynamics simulation studies. Comput Biol Chem 2024; 113:108252. [PMID: 39461164 DOI: 10.1016/j.compbiolchem.2024.108252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024]
Abstract
The prevalence of obesity is rapidly increasing worldwide. Brown adipose tissue activates uncoupling protein 1 (UCP1) to generate heat through bypassing ATP synthesis, offering a potential target for obesity treatment. Targeting UCP1 activation to induce thermogenesis through small molecules presents a promising approach for obesity management. In this study, molecular docking of UCP1 activators, using 2,4-dinitrophenol (DNP) as a reference ligand (PDB ID: 8J1N, docking score: -5.343 kcal/mol), identified seven top-scoring compounds: naringin (-7.284 kcal/mol), quercetin (-6.661 kcal/mol), salsalate (-6.017 kcal/mol), rhein (-5.798 kcal/mol), mirabegron (-5.535 kcal/mol), curcumin (-5.479 kcal/mol), and formoterol (-5.451 kcal/mol). Prime MM-GBSA calculation of the top-scored molecule (i.e., naringin) in the docking study showed ΔGBind of -70.48 kcal/mol. Key interactions of these top 7 activators with UCP1 binding pocket residues Trp280, Arg276, Glu190, Arg83, and Arg91 were observed. Molecular dynamics simulations performed for 100 ns confirmed complex stability, with RMSD values below 6 Å. Additionally, most activators showed favorable intestinal absorption (>90 %) and lipophilicity (LogP 2-4), with pKa values supporting their pharmacological potential as UCP1-targeting therapeutics for obesity. These findings provide a foundation for designing potent UCP1 activators by integrating docking scores, interaction profiles, statistical profiles from MD simulations, and physicochemical assessments to develop effective anti-obesity therapies.
Collapse
Affiliation(s)
- Utkarsh A Jagtap
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani campus, Pilani, Rajasthan 333031, India
| | - Sanket Rathod
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani campus, Pilani, Rajasthan 333031, India; School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Ravi Shukla
- School of Science, RMIT University, Melbourne, VIC 3000, Australia; NanoBiotechnology Research Laboratory, Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, VIC 3001, Australia
| | - Atish T Paul
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani campus, Pilani, Rajasthan 333031, India.
| |
Collapse
|
12
|
Kirsanov RS, Khailova LS, Krasnov VS, Firsov AM, Lyamzaev KG, Panteleeva AA, Popova LB, Nazarov PA, Tashlitsky VN, Korshunova GA, Kotova EA, Antonenko YN. Spontaneous reversal of small molecule-induced mitochondrial uncoupling: the case of anilinothiophenes. FEBS J 2024; 291:5523-5539. [PMID: 39570682 DOI: 10.1111/febs.17329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/08/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024]
Abstract
Tissue specificity can render mitochondrial uncouplers more promising as leading compounds for creating drugs against serious diseases. In search of tissue-specific uncouplers, we address anilinothiophenes as possible glutathione-S-transferase substrates (GST). Earlier, 'cyclic' uncoupling activity was reported for 5-bromo-N-(4-chlorophenyl)-3,4-dinitro-2-thiophenamine (BDCT) in isolated rat liver mitochondria (RLM). The mechanism by which BDCT induced two-phase changes in mitochondrial respiration (stimulation followed by deceleration) was unknown. To clarify this issue, we synthesized BDCT and its two analogues. Among these, 5-bromo-3,4-dinitro-N-(4-nitrophenyl)-2-thiophenamine (BDNT) appeared to be the most effective as a mitochondrial uncoupler, decreasing membrane potential and stimulating respiration at submicromolar concentrations. Importantly, BDNT exerted two-phase changes in both mitochondrial membrane potential and respiration rate of RLM, which were enhanced by the addition of glutathione (GSH) but inhibited by the compounds capable of GSH depleting, such as 1-chloro-2,4-dinitrobenzene (CDNB). By contrast, the phase of recoupling was not observed in rat heart mitochondria (RHM). Remarkably, BDNT elicited mitochondrial depolarization in primary human fibroblasts but not in cultured human liver (HepG2) cells. By detecting proton-selective electrical current through planar bilayer lipid membranes, we demonstrated the ability of BDCT and BDNT to transfer protons across membranes. BDNT proved to be an anionic protonophore with a pKa of 7.38. By using LC-MS and capillary electrophoresis, we directly showed the formation of BDNT conjugates with GSH upon incubation with RLM but not RHM. Therefore, we hypothesize that GST is involved in the disappearance of the anilinothiophene uncoupling activity in RLM, ensuring the tissue-specific behavior of the uncoupler.
Collapse
Affiliation(s)
- Roman S Kirsanov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Ljudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Vladimir S Krasnov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
- Department of Chemistry, Lomonosov Moscow State University, Russia
| | - Alexander M Firsov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Konstantin G Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
- The "Russian Clinical Research Center for Gerontology" of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alisa A Panteleeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Lyudmila B Popova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Pavel A Nazarov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | | | - Galina A Korshunova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| |
Collapse
|
13
|
Petersen KF, Dufour S, Mehal WZ, Shulman GI. Glucagon promotes increased hepatic mitochondrial oxidation and pyruvate carboxylase flux in humans with fatty liver disease. Cell Metab 2024; 36:2359-2366.e3. [PMID: 39197461 PMCID: PMC11612994 DOI: 10.1016/j.cmet.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/23/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
We assessed in vivo rates of hepatic mitochondrial oxidation, gluconeogenesis, and β-hydroxybutyrate (β-OHB) turnover by positional isotopomer NMR tracer analysis (PINTA) in individuals with metabolic-dysfunction-associated steatotic liver (MASL) (fatty liver) and MASL disease (MASLD) (steatohepatitis) compared with BMI-matched control participants with no hepatic steatosis. Hepatic fat content was quantified by localized 1H magnetic resonance spectroscopy (MRS). We found that in vivo rates of hepatic mitochondrial oxidation were unaltered in the MASL and MASLD groups compared with the control group. A physiological increase in plasma glucagon concentrations increased in vivo rates of hepatic mitochondrial oxidation by 50%-75% in individuals with and without MASL and increased rates of glucose production by ∼50% in the MASL group, which could be attributed in part to an ∼30% increase in rates of mitochondrial pyruvate carboxylase flux. These results demonstrate that (1) rates of hepatic mitochondrial oxidation are not substantially altered in individuals with MASL and MASLD and (2) glucagon increases rates of hepatic mitochondrial oxidation.
Collapse
Affiliation(s)
- Kitt Falk Petersen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
| | - Sylvie Dufour
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Wajahat Z Mehal
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; West Haven Medical Center, West Haven, CT, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
14
|
Alvarez S, Vanasco V, Adán Areán JS, Magnani N, Evelson P. Mitochondrial Mechanisms in Immunity and Inflammatory Conditions: Beyond Energy Management. Antioxid Redox Signal 2024; 41:845-864. [PMID: 38062738 DOI: 10.1089/ars.2023.0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Significance: The growing importance of mitochondria in the immune response and inflammation is multifaceted. Unraveling the different mechanisms by which mitochondria have a relevant role in the inflammatory response beyond the energy management of the process is necessary for improving our understanding of the host immune defense and the pathogenesis of various inflammatory diseases and syndromes. Critical Issues: Mitochondria are relevant in the immune response at different levels, including releasing activation molecules, changing its structure and function to accompany the immune response, and serving as a structural base for activating intermediates as NLRP3 inflammasome. In this scientific journey of dissecting mitochondrial mechanisms, new questions and interesting aspects arise, such as the involvement of mitochondrial-derived vesicles in the immune response with the putative role of preventing uncontrolled situations. Recent Advances: Researchers are continuously rethinking the role of mitochondria in acute and chronic inflammation and related disorders. As such, mitochondria have important roles as centrally positioned signaling hubs in regulating inflammatory and immune responses. In this review, we present the current understanding of mitochondrial mechanisms involved, beyond the largely known mitochondrial dysfunction, in the onset and development of inflammatory situations. Future Directions: Mitochondria emerge as an interesting and multifaceted platform for studying and developing pharmaceutical and therapeutic approaches. There are many ongoing studies aimed to describe the effects of specific mitochondrial targeted molecules and treatments to ameliorate the consequences of exacerbated inflammatory components of pathologies and syndromes, resulting in an open area of increasing research interest.
Collapse
Affiliation(s)
- Silvia Alvarez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Fisicoquímica, CABA, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Química General e Inorgánica, CABA, Argentina
| | - Virginia Vanasco
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Fisicoquímica, CABA, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Química General e Inorgánica, CABA, Argentina
| | - Juan Santiago Adán Areán
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Fisicoquímica, CABA, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Química General e Inorgánica, CABA, Argentina
| | - Natalia Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Química General e Inorgánica, CABA, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, CABA, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Química General e Inorgánica, CABA, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, CABA, Argentina
| |
Collapse
|
15
|
Zhou M, Li C, Byrne FL, Vancuylenburg CS, Olzomer EM, Hargreaves A, Wu LE, Shackel NA, Santos WL, Hoehn KL. Beneficial effects of MGL-3196 and BAM15 combination in a mouse model of fatty liver disease. Acta Physiol (Oxf) 2024; 240:e14217. [PMID: 39152636 PMCID: PMC11421973 DOI: 10.1111/apha.14217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND AND AIM Metabolic dysfunction-associated steatohepatitis (MASH) is a metabolic disorder with limited treatment options. The thyroid hormone receptor (THR)-β agonist resmetirom/MGL-3196 (MGL) increases liver fat oxidation and has been approved for treating adult MASH. However, over 60% of patients receiving MGL treatment do not achieve MASH resolution. Therefore, we investigated the potential for combination therapy of MGL with the mitochondrial uncoupler BAM15 to improve fatty liver disease outcomes in the GAN mouse model of MASH. METHODS C57BL/6J male mice were fed GAN diet for 38 weeks before stratification and randomization to treatments including MGL, BAM15, MGL + BAM15, or no drug control for 8 weeks. Treatments were admixed in diet and mice were pair-fed to control for drug intake. Treatment effectiveness was assessed by body weight, body composition, energy expenditure, glucose tolerance, tissue lipid content, and histological analyses. RESULTS MGL + BAM15 treatment resulted in better efficacy versus GAN control mice than either monotherapy in the context of energy expenditure, liver fat loss, glucose control, and fatty liver disease activity score. Improvements in ALT, liver mass, and plasma cholesterol were primarily driven by MGL, while improvements in body fat were primarily driven by BAM15. No treatments altered liver fibrosis. CONCLUSIONS MGL + BAM15 treatment had overall better efficacy to improve metabolic outcomes in mice fed GAN diet than either monotherapy alone. These data warrant further investigation into combination therapies of THR-β agonists and mitochondrial uncouplers for the potential treatment of disorders related to fatty liver, obesity, and insulin resistance.
Collapse
Affiliation(s)
- Mingyan Zhou
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Catherine Li
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Frances L. Byrne
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Calum S. Vancuylenburg
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ellen M. Olzomer
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Adam Hargreaves
- PathCelerate Ltd, Goostrey, Crewe, Chesire CW4 8PW, United Kingdom
| | - Lindsay E. Wu
- School of Biomedical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicholas A. Shackel
- Northern Tasmania, Launceston General Hospital, Tasmania health Service, TAS 7250, Australia
| | - Webster L. Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Polytechnic Institute and State University, Virginia 2061, United States
| | - Kyle L. Hoehn
- School of Biotechnology & Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
16
|
Xie Z, Li Y, Cheng L, Huang Y, Rao W, Shi H, Li J. Potential therapeutic strategies for MASH: from preclinical to clinical development. LIFE METABOLISM 2024; 3:loae029. [PMID: 39872142 PMCID: PMC11749562 DOI: 10.1093/lifemeta/loae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 01/03/2025]
Abstract
Current treatment paradigms for metabolic dysfunction-associated steatohepatitis (MASH) are based primarily on dietary restrictions and the use of existing drugs, including anti-diabetic and anti-obesity medications. Given the limited number of approved drugs specifically for MASH, recent efforts have focused on promising strategies that specifically target hepatic lipid metabolism, inflammation, fibrosis, or a combination of these processes. In this review, we examined the pathophysiology underlying the development of MASH in relation to recent advances in effective MASH therapy. Particularly, we analyzed the effects of lipogenesis inhibitors, nuclear receptor agonists, glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists, fibroblast growth factor mimetics, and combinatorial therapeutic approaches. We summarize these targets along with their preclinical and clinical candidates with the ultimate goal of optimizing the therapeutic prospects for MASH.
Collapse
Affiliation(s)
- Zhifu Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yufeng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Long Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yidan Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanglin Rao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Honglu Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
17
|
Samartsev VN, Belosludtsev KN, Pavlova EK, Pavlova SI, Semenova AA, Dubinin MV. Theoretical and Experimental Study of the Interaction of Protonophore Uncouplers and Decoupling Agents with Functionally Active Mitochondria. Cell Biochem Biophys 2024; 82:2333-2345. [PMID: 38856833 DOI: 10.1007/s12013-024-01343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
The purpose of this work was to quantitatively characterize the effectiveness of oxidative phosphorylation uncouplers and decoupling agents in functionally active mitochondria, taking into account their content in the hydrophobic region of the inner membrane of these organelles. When conducting theoretical studies, it is accepted that uncouplers and decouplers occupy part of the volume of mitochondria to exhibit their activity, which is defined as the effective volume. The following quantities characterizing the action of these reagents are considered: (1) concentrations of reagents that cause double stimulation of mitochondrial respiration in state 4 (C 200 ); (2) effective distribution coefficient (E MW ) - the ratio of the amount of reagents in the effective volume of mitochondria and the water volume; (3) the relative amount of reagents associated with the effective volume of mitochondria (U M / U T ); (4) specific activity of reagents localized in the effective volume of mitochondria (A M ). We have developed methods for determining these values, based on an analysis of the dependence of the rate of mitochondrial respiration on the concentration of uncouplers and decoupling agents at two different concentrations of mitochondrial protein in the incubation medium. During experimental studies, we compared the effects of the classical protonophore uncouplers 2,4-dinitrophenol (DNP) and сarbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), the natural uncouplers lauric and palmitic acids, and the natural decouplers α,ω-tetradecanedioic (TDA) and α,ω-hexadecanedioic (HDA) acids that differ both in the structure of the molecule and in the degree of solubility in lipids. Using the developed methods, we have clarified the dependence of the degree of activity of these uncouplers and decoupling agents on the distribution of their molecules between the effective volume of mitochondria and the water volume.
Collapse
Affiliation(s)
- Victor N Samartsev
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Konstantin N Belosludtsev
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
- Institute of theoretical and experimental biophysics, Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Evgenia K Pavlova
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Svetlana I Pavlova
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Alena A Semenova
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Mikhail V Dubinin
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia.
| |
Collapse
|
18
|
Ferdous SE, Ferrell JM. Pathophysiological Relationship between Type 2 Diabetes Mellitus and Metabolic Dysfunction-Associated Steatotic Liver Disease: Novel Therapeutic Approaches. Int J Mol Sci 2024; 25:8731. [PMID: 39201418 PMCID: PMC11354927 DOI: 10.3390/ijms25168731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM), often featuring hyperglycemia or insulin resistance, is a global health concern that is increasing in prevalence in the United States and worldwide. A common complication is metabolic dysfunction-associated steatotic liver disease (MASLD), the hepatic manifestation of metabolic syndrome that is also rapidly increasing in prevalence. The majority of patients with T2DM will experience MASLD, and likewise, individuals with MASLD are at an increased risk for developing T2DM. These two disorders may act synergistically, in part due to increased lipotoxicity and inflammation within the liver, among other causes. However, the pathophysiological mechanisms by which this occurs are unclear, as is how the improvement of one disorder can ameliorate the other. This review aims to discuss the pathogenic interactions between T2D and MASLD, and will highlight novel therapeutic targets and ongoing clinical trials for the treatment of these diseases.
Collapse
Affiliation(s)
- Shifat-E Ferdous
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Jessica M. Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
19
|
Cardoso S, Carvalho C, Correia SC, Moreira PI. Protective effects of 2,4-dinitrophenol in okadaic acid-induced cellular model of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167222. [PMID: 38729530 DOI: 10.1016/j.bbadis.2024.167222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) research started several decades ago and despite the many efforts employed to develop new treatments or approaches to slow and/or revert disease progression, AD treatment remains an unsolved issue. Knowing that mitochondria loss of function is a central hub for many AD-associated pathophysiological processes, there has been renewed interest in exploring mitochondria as targets for intervention. In this perspective, the present study was aimed to investigate the possible beneficial effects of 2,4 dinitrophenol (DNP), a mitochondrial uncoupler agent, in an in vitro model of AD. Retinoic acid-induced differentiated SH-SY5Y cells were incubated with okadaic acid (OA), a neurotoxin often used as an AD experimental model, and/or with DNP. OA caused a decrease in neuronal cells viability, induced multiple mitochondrial anomalies including increased levels of reactive oxygen species, decreased bioenergetics and mitochondria content markers, and an altered mitochondria morphology. OA-treated cells also presented increased lipid peroxidation levels, and overactivation of tau related kinases (GSK3β, ERK1/2 and AMPK) alongside with a significant augment in tau protein phosphorylation levels. Interestingly, DNP co-treatment ameliorated and rescued OA-induced detrimental effects not only on mitochondria but also but also reinstated signaling pathways homeostasis and ameliorated tau pathology. Overall, our results show for the first time that DNP has the potential to preserve mitochondria homeostasis under a toxic insult, like OA exposure, as well as to reestablish cellular signaling homeostasis. These observations foster the idea that DNP, as a mitochondrial modulator, might represent a new avenue for treatment of AD.
Collapse
Affiliation(s)
- Susana Cardoso
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIU - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| | - Cristina Carvalho
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIU - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Sónia C Correia
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIU - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Paula I Moreira
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| |
Collapse
|
20
|
Zunica ERM, Axelrod CL, Gilmore LA, Gnaiger E, Kirwan JP. The bioenergetic landscape of cancer. Mol Metab 2024; 86:101966. [PMID: 38876266 PMCID: PMC11259816 DOI: 10.1016/j.molmet.2024.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Bioenergetic remodeling of core energy metabolism is essential to the initiation, survival, and progression of cancer cells through exergonic supply of adenosine triphosphate (ATP) and metabolic intermediates, as well as control of redox homeostasis. Mitochondria are evolutionarily conserved organelles that mediate cell survival by conferring energetic plasticity and adaptive potential. Mitochondrial ATP synthesis is coupled to the oxidation of a variety of substrates generated through diverse metabolic pathways. As such, inhibition of the mitochondrial bioenergetic system by restricting metabolite availability, direct inhibition of the respiratory Complexes, altering organelle structure, or coupling efficiency may restrict carcinogenic potential and cancer progression. SCOPE OF REVIEW Here, we review the role of bioenergetics as the principal conductor of energetic functions and carcinogenesis while highlighting the therapeutic potential of targeting mitochondrial functions. MAJOR CONCLUSIONS Mitochondrial bioenergetics significantly contribute to cancer initiation and survival. As a result, therapies designed to limit oxidative efficiency may reduce tumor burden and enhance the efficacy of currently available antineoplastic agents.
Collapse
Affiliation(s)
- Elizabeth R M Zunica
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - L Anne Gilmore
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
21
|
Ng MY, Song ZJ, Tan CH, Bassetto M, Hagen T. Structural investigations on the mitochondrial uncouplers niclosamide and FCCP. FEBS Open Bio 2024; 14:1057-1071. [PMID: 38750619 PMCID: PMC11216929 DOI: 10.1002/2211-5463.13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/26/2024] [Accepted: 05/02/2024] [Indexed: 07/03/2024] Open
Abstract
There has been renewed interest in using mitochondrial uncoupler compounds such as niclosamide and carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) for the treatment of obesity, hepatosteatosis and diseases where oxidative stress plays a role. However, both FCCP and niclosamide have undesirable effects that are not due to mitochondrial uncoupling, such as inhibition of mitochondrial oxygen consumption by FCCP and induction of DNA damage by niclosamide. Through structure-activity analysis, we identified FCCP analogues that do not inhibit mitochondrial oxygen consumption but still provided good, although less potent, uncoupling activity. We also characterized the functional role of the niclosamide 4'-nitro group, the phenolic hydroxy group and the anilide amino group in mediating uncoupling activity. Our structural investigations provide important information that will aid further drug development.
Collapse
Affiliation(s)
- Mei Ying Ng
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Present address:
Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMAUSA
| | - Zhi Jian Song
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological UniversitySingapore
| | - Choon Hong Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological UniversitySingapore
| | - Marcella Bassetto
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life SciencesCardiff UniversityUK
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| |
Collapse
|
22
|
Zhang R, Yan Z, Zhong H, Luo R, Liu W, Xiong S, Liu Q, Liu M. Gut microbial metabolites in MASLD: Implications of mitochondrial dysfunction in the pathogenesis and treatment. Hepatol Commun 2024; 8:e0484. [PMID: 38967596 PMCID: PMC11227362 DOI: 10.1097/hc9.0000000000000484] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/09/2024] [Indexed: 07/06/2024] Open
Abstract
With an increasing prevalence, metabolic dysfunction-associated steatotic liver disease (MASLD) has become a major global health problem. MASLD is well-known as a multifactorial disease. Mitochondrial dysfunction and alterations in the gut bacteria are 2 vital events in MASLD. Recent studies have highlighted the cross-talk between microbiota and mitochondria, and mitochondria are recognized as pivotal targets of the gut microbiota to modulate the host's physiological state. Mitochondrial dysfunction plays a vital role in MASLD and is associated with multiple pathological changes, including hepatocyte steatosis, oxidative stress, inflammation, and fibrosis. Metabolites are crucial mediators of the gut microbiota that influence extraintestinal organs. Additionally, regulation of the composition of gut bacteria may serve as a promising therapeutic strategy for MASLD. This study reviewed the potential roles of several common metabolites in MASLD, emphasizing their impact on mitochondrial function. Finally, we discuss the current treatments for MASLD, including probiotics, prebiotics, antibiotics, and fecal microbiota transplantation. These methods concentrate on restoring the gut microbiota to promote host health.
Collapse
Affiliation(s)
- Ruhan Zhang
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| | - Zhaobo Yan
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| | - Huan Zhong
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| | - Rong Luo
- Department of Acupuncture and Massage Rehabilitation, The First Affiliated Hospital of Hunan University of Chinese Medicine, Hunan, China
| | - Weiai Liu
- Department of Acupuncture and Massage Rehabilitation, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Hunan, China
| | - Shulin Xiong
- Department of Preventive Center, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Hunan, China
| | - Qianyan Liu
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| | - Mi Liu
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| |
Collapse
|
23
|
Dell'Anno I, Morani F, Patergnani S, Daga A, Pinton P, Giorgi C, Mutti L, Gemignani F, Landi S. Thonzonium bromide inhibits progression of malignant pleural mesothelioma through regulation of ERK1/2 and p38 pathways and mitochondrial uncoupling. Cancer Cell Int 2024; 24:226. [PMID: 38951927 PMCID: PMC11218145 DOI: 10.1186/s12935-024-03400-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/08/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Malignant Pleural Mesothelioma (MPM) is a rare malignancy with a poor prognosis. Current therapies are unsatisfactory and novel cures are urgently needed. In a previous drug screening, we identified thonzonium bromide (TB) as one of the most active compounds against MPM cells. Since the biological effects of TB are poorly known, in this work we departed from some hints of previous studies and investigated several hypotheses. Moreover, we evaluated the efficacy of TB in an in vivo xenograft rodent model. METHODS In vitro assessment was made on five MPM (Mero-14, Mero-25, Ren, NCI-H28, MSTO-211H) and one SV40-immortalized mesothelial cell line (MeT-5A). We evaluated TB ability to affect proliferation, apoptosis, mitochondrial functions and metabolism, and the mevalonate pathway. In vivo assay was carried out on MPM-xenograft NOD-SCID mice (4 mg/kg delivered intraperitoneally, twice a week for 4 weeks) and the overall survival was analysed with Kaplan-Meier curves. RESULTS After TB treatment, we observed the suppression of ERK 1/2 phosphorylation, the increase of BAX expression and p38 phosphorylation. TB affected Ca2+ homeostasis in both mitochondrial and cytosolic compartments, it regulated the mitochondrial functioning, respiration, and ATP production as well as the mevalonate pathway. The in vivo study showed an increased overall survival for TB treated group vs. vehicle control group (P = 0.0076). CONCLUSIONS Both in vitro and in vivo results confirmed the effect of TB on MPM and unravelled novel targets with translational potential.
Collapse
Affiliation(s)
| | | | - Simone Patergnani
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Advanced Therapies (LTTA), Technopole of Ferrara, Ferrara, Italy
| | - Antonio Daga
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Advanced Therapies (LTTA), Technopole of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Advanced Therapies (LTTA), Technopole of Ferrara, Ferrara, Italy
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, USA.
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | | | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
24
|
von Maydell D, Wright S, Bonner JM, Staab C, Spitaleri A, Liu L, Pao PC, Yu CJ, Scannail AN, Li M, Boix CA, Mathys H, Leclerc G, Menchaca GS, Welch G, Graziosi A, Leary N, Samaan G, Kellis M, Tsai LH. Single-cell atlas of ABCA7 loss-of-function reveals impaired neuronal respiration via choline-dependent lipid imbalances. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.05.556135. [PMID: 38979214 PMCID: PMC11230156 DOI: 10.1101/2023.09.05.556135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Loss-of-function (LoF) variants in the lipid transporter ABCA7 significantly increase the risk of Alzheimer's disease (odds ratio ∼2), yet the pathogenic mechanisms and the neural cell types affected by these variants remain largely unknown. Here, we performed single-nuclear RNA sequencing of 36 human post-mortem samples from the prefrontal cortex of 12 ABCA7 LoF carriers and 24 matched non-carrier control individuals. ABCA7 LoF was associated with gene expression changes in all major cell types. Excitatory neurons, which expressed the highest levels of ABCA7, showed transcriptional changes related to lipid metabolism, mitochondrial function, cell cycle-related pathways, and synaptic signaling. ABCA7 LoF-associated transcriptional changes in neurons were similarly perturbed in carriers of the common AD missense variant ABCA7 p.Ala1527Gly (n = 240 controls, 135 carriers), indicating that findings from our study may extend to large portions of the at-risk population. Consistent with ABCA7's function as a lipid exporter, lipidomic analysis of isogenic iPSC-derived neurons (iNs) revealed profound intracellular triglyceride accumulation in ABCA7 LoF, which was accompanied by a relative decrease in phosphatidylcholine abundance. Metabolomic and biochemical analyses of iNs further indicated that ABCA7 LoF was associated with disrupted mitochondrial bioenergetics that suggested impaired lipid breakdown by uncoupled respiration. Treatment of ABCA7 LoF iNs with CDP-choline (a rate-limiting precursor of phosphatidylcholine synthesis) reduced triglyceride accumulation and restored mitochondrial function, indicating that ABCA7 LoF-induced phosphatidylcholine dyshomeostasis may directly disrupt mitochondrial metabolism of lipids. Treatment with CDP-choline also rescued intracellular amyloid β -42 levels in ABCA7 LoF iNs, further suggesting a link between ABCA7 LoF metabolic disruptions in neurons and AD pathology. This study provides a detailed transcriptomic atlas of ABCA7 LoF in the human brain and mechanistically links ABCA7 LoF-induced lipid perturbations to neuronal energy dyshomeostasis. In line with a growing body of evidence, our study highlights the central role of lipid metabolism in the etiology of Alzheimer's disease.
Collapse
|
25
|
Sharma AK, Khandelwal R, Wolfrum C. Futile cycles: Emerging utility from apparent futility. Cell Metab 2024; 36:1184-1203. [PMID: 38565147 DOI: 10.1016/j.cmet.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Futile cycles are biological phenomena where two opposing biochemical reactions run simultaneously, resulting in a net energy loss without appreciable productivity. Such a state was presumed to be a biological aberration and thus deemed an energy-wasting "futile" cycle. However, multiple pieces of evidence suggest that biological utilities emerge from futile cycles. A few established functions of futile cycles are to control metabolic sensitivity, modulate energy homeostasis, and drive adaptive thermogenesis. Yet, the physiological regulation, implication, and pathological relevance of most futile cycles remain poorly studied. In this review, we highlight the abundance and versatility of futile cycles and propose a classification scheme. We further discuss the energetic implications of various futile cycles and their impact on basal metabolic rate, their bona fide and tentative pathophysiological implications, and putative drug interactions.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Radhika Khandelwal
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
26
|
Caggiano EG, Taniguchi CM. UCP2 and pancreatic cancer: conscious uncoupling for therapeutic effect. Cancer Metastasis Rev 2024; 43:777-794. [PMID: 38194152 PMCID: PMC11156755 DOI: 10.1007/s10555-023-10157-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/10/2024]
Abstract
Pancreatic cancer has an exaggerated dependence on mitochondrial metabolism, but methods to specifically target the mitochondria without off target effects in normal tissues that rely on these organelles is a significant challenge. The mitochondrial uncoupling protein 2 (UCP2) has potential as a cancer-specific drug target, and thus, we will review the known biology of UCP2 and discuss its potential role in the pathobiology and future therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Emily G Caggiano
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Cullen M Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
27
|
Bednarski TK, Rahim M, Hasenour CM, Banerjee DR, Trenary IA, Wasserman DH, Young JD. Pharmacological SERCA activation limits diet-induced steatohepatitis and restores liver metabolic function in mice. J Lipid Res 2024; 65:100558. [PMID: 38729350 PMCID: PMC11179628 DOI: 10.1016/j.jlr.2024.100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease is the most common form of liver disease and poses significant health risks to patients who progress to metabolic dysfunction-associated steatohepatitis. Fatty acid overload alters endoplasmic reticulum (ER) calcium stores and induces mitochondrial oxidative stress in hepatocytes, leading to hepatocellular inflammation and apoptosis. Obese mice have impaired liver sarco/ER Ca2+-ATPase (SERCA) function, which normally maintains intracellular calcium homeostasis by transporting Ca2+ ions from the cytoplasm to the ER. We hypothesized that restoration of SERCA activity would improve diet-induced steatohepatitis in mice by limiting ER stress and mitochondrial dysfunction. WT and melanocortin-4 receptor KO (Mc4r-/-) mice were placed on either chow or Western diet (WD) for 8 weeks. Half of the WD-fed mice were administered CDN1163 to activate SERCA, which reduced liver fibrosis and inflammation. SERCA activation also restored glucose tolerance and insulin sensitivity, improved histological markers of metabolic dysfunction-associated steatohepatitis, increased expression of antioxidant enzymes, and decreased expression of oxidative stress and ER stress genes. CDN1163 decreased hepatic citric acid cycle flux and liver pyruvate cycling, enhanced expression of mitochondrial respiratory genes, and shifted hepatocellular [NADH]/[NAD+] and [NADPH]/[NADP+] ratios to a less oxidized state, which was associated with elevated PUFA content of liver lipids. In sum, the data demonstrate that pharmacological SERCA activation limits metabolic dysfunction-associated steatotic liver disease progression and prevents metabolic dysfunction induced by WD feeding in mice.
Collapse
Affiliation(s)
- Tomasz K Bednarski
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Mohsin Rahim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Clinton M Hasenour
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Deveena R Banerjee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Irina A Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
28
|
Jokinen MJ, Luukkonen PK. Hepatic mitochondrial reductive stress in the pathogenesis and treatment of steatotic liver disease. Trends Pharmacol Sci 2024; 45:319-334. [PMID: 38471991 DOI: 10.1016/j.tips.2024.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
Steatotic liver diseases (SLDs) affect one-third of the population, but the pathogenesis underlying these diseases is not well understood, limiting the available treatments. A common factor in SLDs is increased hepatic mitochondrial reductive stress, which occurs as a result of excessive lipid and alcohol metabolism. Recent research has also shown that genetic risk factors contribute to this stress. This review aims to explore how these risk factors increase hepatic mitochondrial reductive stress and how it disrupts hepatic metabolism, leading to SLDs. Additionally, the review will discuss the latest clinical studies on pharmaceutical treatments for SLDs, specifically peroxisome proliferator-activated receptor gamma (PPAR-γ) agonists, thyroid hormone receptor (THR) agonists, acetyl-CoA carboxylase (ACC) inhibitors, and mitochondrial uncouplers. These treatments have a common effect of decreasing hepatic mitochondrial reductive stress, which has been largely overlooked.
Collapse
Affiliation(s)
- Mari J Jokinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Internal Medicine, University of Helsinki, Helsinki, Finland; Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Panu K Luukkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Internal Medicine, University of Helsinki, Helsinki, Finland; Abdominal Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
29
|
Toktogulova N, Breidert M, Eschbach J, Kudaibergenova I, Omurzakova U, Uvaidillaeva F, Tagaeva B, Sultanalieva R, Eftekhari P. Energy Metabolism in Residents in the Low- and Moderate Altitude Regions of Central Asia with MAFLD and Type 2 Diabetes Mellitus. Horm Metab Res 2024; 56:294-299. [PMID: 38373717 DOI: 10.1055/a-2256-6358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The knowledge about the features of energy metabolism in MAFLD in the population living at different climatic and geographic heights is lacking. The goal of this study is to explore the biochemical parameters of blood and erythrocyte energy consumption in patients with MAFLD with and without DM2 living in the low- and moderate-altitude regions of Central Asia. Our study was carried out on patients living in low-altitude mountains: Bishkek, altitude=750-800 m; n=67 (MAFLD with DM 2: n=24; MAFLD without DM2: n=25; control: n=18), and At-Bashy District, Naryn Region, altitude=2046-2300 m; n=58 (MAFLD with DM2: n=28; MAFLD without DM2: n=18; control: n=12). Non-alcoholic fatty liver disease was diagnosed according to history, laboratory tests, liver ultrasound, and exclusion of other liver diseases. The level of liver fibrosis was determined using the FIB-4 score. Blood adenosine 5'-triphosphate (ATP) was determined using the CellTiter-Glo method. Healthy residents living in moderate altitudes have significantly higher levels of cytosolic ATP in their blood (p+≤+0.05) than residents living in low mountains. MAFLD is characterized by an increase in the level of ATP concentration in their blood. ATP concentration decreased significantly in patients with MAFLD with DM2 living in moderate-altitude in comparison to those living in low-altitude mountains. The results suggest that chronic altitude hypoxia leads to a breakdown in adaptive mechanisms of energy metabolism of ATP in patients with MAFLD with type 2 DM.
Collapse
Affiliation(s)
- Nurgul Toktogulova
- Hospital Therapy, IK Akhunbaev Kyrgyz State Medical Academy Faculty of General Medicine, Bishkek, Kyrgyzstan
| | | | - Judith Eschbach
- Inoviem Scientific Research, Inoviem Scientific SAS, Illkirch, France
| | - Indira Kudaibergenova
- Kyrgyz State Medical Institute of Post-Graduate Training and Advanced Training named after S B Daniyarov, Bishkek, Kyrgyzstan
| | - Uulkan Omurzakova
- Hospital Therapy, IK Akhunbaev Kyrgyz State Medical Academy Faculty of General Medicine, Bishkek, Kyrgyzstan
| | - Feruzakhan Uvaidillaeva
- Hospital Therapy, IK Akhunbaev Kyrgyz State Medical Academy Faculty of General Medicine, Bishkek, Kyrgyzstan
| | - Bermet Tagaeva
- Hospital Therapy, IK Akhunbaev Kyrgyz State Medical Academy Faculty of General Medicine, Bishkek, Kyrgyzstan
| | - Roza Sultanalieva
- Therapy1, Kyrgyz-Russian Slavic University named after B N Yeltsin, Bishkek, Kyrgyzstan
| | | |
Collapse
|
30
|
Zhong Y, Liu H, Chen F, He Q, Zhang X, Lan L, Yang C. Design, synthesis and biological evaluation of thiazolyl-halogenated pyrroles or pyrazoles as novel antibacterial and antibiofilm agents. Eur J Med Chem 2024; 268:116221. [PMID: 38382392 DOI: 10.1016/j.ejmech.2024.116221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
The formation of biofilm is one of the important factors for bacteria to develop drug-resistant. A series of halogenated-pyrroles or pyrazoles containing thiazole groups as antibacterial agents were designed and synthesized to target biofilms. Among them, compound 8c showed antibacterial activity against various Gram-positive bacteria, particularly against vancomycin-resistant Enterococcus faecalis (MIC ≤0.125 μg/mL). Additionally, this compound significantly inhibited biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa at sub-MIC doses. Furthermore, compound 8c exhibited significantly lower mammalian cell toxicity compared to pyrrolomycin C and its hepatic microsomal metabolic stability in various species was also evaluated. Further experiment on the infection model of Galleria mellonella proved that the compound was effective in vivo.
Collapse
Affiliation(s)
- Yuanchen Zhong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Huan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Feifei Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Qian He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Xiaofei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Lefu Lan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Chunhao Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
31
|
Kirsanov R, Khailova LS, Rokitskaya TI, Lyamzaev KG, Panteleeva AA, Nazarov PA, Firsov AM, Iaubasarova IR, Korshunova GA, Kotova EA, Antonenko YN. Synthesis of Triphenylphosphonium-Linked Derivative of 3,5-Di tert-butyl-4-hydroxybenzylidene-malononitrile (SF6847) via Knoevenagel Reaction Yields an Effective Mitochondria-Targeted Protonophoric Uncoupler. ACS OMEGA 2024; 9:11551-11561. [PMID: 38496966 PMCID: PMC10938414 DOI: 10.1021/acsomega.3c08621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Mitochondrial uncouplers are actively sought as potential therapeutics. Here, we report the first successful synthesis of mitochondria-targeted derivatives of the highly potent uncoupler 3,5-ditert-butyl-4-hydroxybenzylidene-malononitrile (SF6847), bearing a cationic alkyl(triphenyl)phosphonium (TPP) group. As a key step of the synthesis, we used condensation of a ketophenol with malononitrile via the Knoevenagel reaction. SF-C5-TPP with a pentamethylene linker between SF6847 and TPP, stimulating respiration and collapsing membrane potential of rat liver mitochondria at submicromolar concentrations, proved to be the most effective uncoupler of the series. SF-C5-TPP showed pronounced protonophoric activity on a model planar bilayer lipid membrane. Importantly, SF-C5-TPP exhibited rather low toxicity in fibroblast cell culture, causing mitochondrial depolarization in cells at concentrations that only slightly affected cell viability. SF-C5-TPP was more effective in decreasing the mitochondrial membrane potential in the cell culture than SF6847, in contrast to the case of isolated mitochondria. Like other zwitterionic uncouplers, SF-C5-TPP inhibited the growth of Bacillus subtilis in the micromolar concentration range.
Collapse
Affiliation(s)
- Roman
S. Kirsanov
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
| | - Ljudmila S. Khailova
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
| | - Tatyana I. Rokitskaya
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
| | - Konstantin G. Lyamzaev
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
- The
“Russian Clinical Research Center for Gerontology” of
the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alisa A. Panteleeva
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
| | - Pavel A. Nazarov
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
| | - Alexander M. Firsov
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
| | - Iliuza R. Iaubasarova
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
| | - Galina A. Korshunova
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
| | - Elena A. Kotova
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
| | - Yuri N. Antonenko
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
32
|
Zheng LY, Da YX, Luo X, Zhang X, Sun ZJ, Dong DL. Sorafenib extends the lifespan of C. elegans through mitochondrial uncoupling mechanism. Free Radic Biol Med 2024; 214:101-113. [PMID: 38360276 DOI: 10.1016/j.freeradbiomed.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Sorafenib is a targeted anticancer drug in clinic. Low-dose sorafenib has been reported to activate AMPK through inducing mitochondrial uncoupling without detectable toxicities. AMPK activation has been the approach for extending lifespan, therefore, we investigated the effect of sorafenib on lifespan and physical activity of C. elegans and the underlying mechanisms. In the present study, we found that the effect of sorafenib on C. elegans lifespan was typically hermetic. Sorafenib treatment at higher concentrations (100 μM) was toxic but at lower concentrations (1, 2.5, 5 μM) was beneficial to C. elegans. Sorafenib (1 μM) treatment for whole-life period extended C. elegans lifespan and improved C. elegans physical activity as manifested by increasing pharyngeal pumping and body movement, preserving intestinal barrier integrity, muscle fibers organization and mitochondrial morphology. In addition, sorafenib (1 μM) treatment enhanced C. elegans stress resistance. Sorafenib activated AMPK through inducing mitochondrial uncoupling in C. elegans. Sorafenib treatment activated DAF-16, SKN-1, and increased SOD-3, HSP-16.2, GST-4 expression in C. elegans. Sorafenib treatment induced AMPK-dependent autophagy in C. elegans. We conclude that low-dose sorafenib protects C. elegans against aging through activating AMPK/DAF-16 dependent anti-oxidant pathways and stimulating autophagy responses. Low-dose sorafenib could be a strategy for treating aging and aging-related diseases.
Collapse
Affiliation(s)
- Lu-Yao Zheng
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yan-Xin Da
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiu Luo
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiao Zhang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zhi-Jie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| | - De-Li Dong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
33
|
Mahler CA, Snoke DB, Cole RM, Angelotti A, Sparagna GC, Baskin KK, Ni A, Belury MA. Consuming a Linoleate-Rich Diet Increases Concentrations of Tetralinoleoyl Cardiolipin in Mouse Liver and Alters Hepatic Mitochondrial Respiration. J Nutr 2024; 154:856-865. [PMID: 38160803 DOI: 10.1016/j.tjnut.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Hepatic mitochondrial dysfunction is a major cause of fat accumulation in the liver. Individuals with fatty liver conditions have hepatic mitochondrial structural abnormalities and a switch in the side chain composition of the mitochondrial phospholipid, cardiolipin, from poly- to monounsaturated fatty acids. Linoleic acid (LA), an essential dietary fatty acid, is required to remodel nascent cardiolipin (CL) to its tetralinoleoyl cardiolipin (L4CL, CL with 4 LA side chains) form, which is integral for mitochondrial membrane structure and function to promote fatty acid oxidation. It is unknown, however, whether increasing LA in the diet can increase hepatic L4CL concentrations and improve mitochondrial respiration in the liver compared with a diet rich in monounsaturated and saturated fatty acids. OBJECTIVES The main aim of this study was to test the ability of a diet fortified with LA-rich safflower oil (SO), compared with the one fortified with lard (LD), to increase concentrations of L4CL and improve mitochondrial respiration in the livers of mice. METHODS Twenty-four (9-wk-old) C57 BL/J6 male mice were fed either the SO or LD diets for ∼100 d, whereas food intake and body weight, fasting glucose, and glucose tolerance tests were performed to determine any changes in glycemic control. RESULTS Livers from mice fed SO diet had higher relative concentrations of hepatic L4CL species compared with LD diet-fed mice (P value = 0.004). Uncoupled mitochondria of mice fed the SO diet, compared with LD diet, had an increased baseline oxygen consumption rate (OCR) and succinate-driven respiration (P values = 0.03 and 0.01). SO diet-fed mice had increased LA content in all phospholipid classes compared with LD-fed mice (P < 0.05). CONCLUSIONS Our findings reveal that maintaining or increasing hepatic L4CL may result in increased OCR in uncoupled hepatic mitochondria in healthy mice whereas higher oleate content of CL reduced mitochondrial function shown by lower OCR in uncoupled mitochondria.
Collapse
Affiliation(s)
- Connor A Mahler
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
| | - Deena B Snoke
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, United States; Interdisciplinary PhD Program in Nutrition, The Ohio State University, Columbus, OH, United States
| | - Rachel M Cole
- Interdisciplinary PhD Program in Nutrition, The Ohio State University, Columbus, OH, United States; Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Austin Angelotti
- Interdisciplinary PhD Program in Nutrition, The Ohio State University, Columbus, OH, United States; Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Genevieve C Sparagna
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kedryn K Baskin
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, Diabetes and Metabolism Research Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ai Ni
- Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Martha A Belury
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
34
|
Sun YD, Zhang H, Li YM, Han JJ. Abnormal metabolism in hepatic stellate cells: Pandora's box of MAFLD related hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189086. [PMID: 38342420 DOI: 10.1016/j.bbcan.2024.189086] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/25/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Metabolic associated fatty liver disease (MAFLD) is a significant risk factor for the development of hepatocellular carcinoma (HCC). Hepatic stellate cells (HSCs), as key mediators in liver injury response, are believed to play a crucial role in the repair process of liver injury. However, in MAFLD patients, the normal metabolic and immunoregulatory mechanisms of HSCs become disrupted, leading to disturbances in the local microenvironment. Abnormally activated HSCs are heavily involved in the initiation and progression of HCC. The metabolic disorders and abnormal activation of HSCs not only initiate liver fibrosis but also contribute to carcinogenesis. In this review, we provide an overview of recent research progress on the relationship between the abnormal metabolism of HSCs and the local immune system in the liver, elucidating the mechanisms of immune imbalance caused by abnormally activated HSCs in MAFLD patients. Based on this understanding, we discuss the potential and challenges of metabolic-based and immunology-based mechanisms in the treatment of MAFLD-related HCC, with a specific focus on the role of HSCs in HCC progression and their potential as targets for anti-cancer therapy. This review aims to enhance researchers' understanding of the importance of HSCs in maintaining normal liver function and highlights the significance of HSCs in the progression of MAFLD-related HCC.
Collapse
Affiliation(s)
- Yuan-Dong Sun
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Hao Zhang
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Yuan-Min Li
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, China
| | - Jian-Jun Han
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China.
| |
Collapse
|
35
|
Luukkonen PK, Porthan K, Ahlholm N, Rosqvist F, Dufour S, Zhang XM, Lehtimäki TE, Seppänen W, Orho-Melander M, Hodson L, Petersen KF, Shulman GI, Yki-Järvinen H. The PNPLA3 I148M variant increases ketogenesis and decreases hepatic de novo lipogenesis and mitochondrial function in humans. Cell Metab 2023; 35:1887-1896.e5. [PMID: 37909034 DOI: 10.1016/j.cmet.2023.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/26/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023]
Abstract
The PNPLA3 I148M variant is the major genetic risk factor for all stages of fatty liver disease, but the underlying pathophysiology remains unclear. We studied the effect of this variant on hepatic metabolism in homozygous carriers and non-carriers under multiple physiological conditions with state-of-the-art stable isotope techniques. After an overnight fast, carriers had higher plasma β-hydroxybutyrate concentrations and lower hepatic de novo lipogenesis (DNL) compared to non-carriers. After a mixed meal, fatty acids were channeled toward ketogenesis in carriers, which was associated with an increase in hepatic mitochondrial redox state. During a ketogenic diet, carriers manifested increased rates of intrahepatic lipolysis, increased plasma β-hydroxybutyrate concentrations, and decreased rates of hepatic mitochondrial citrate synthase flux. These studies demonstrate that homozygous PNPLA3 I148M carriers have hepatic mitochondrial dysfunction leading to reduced DNL and channeling of carbons to ketogenesis. These findings have implications for understanding why the PNPLA3 variant predisposes to progressive liver disease.
Collapse
Affiliation(s)
- Panu K Luukkonen
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Abdominal Center, Helsinki University Hospital, Helsinki, Finland.
| | - Kimmo Porthan
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Noora Ahlholm
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Fredrik Rosqvist
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford & NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Foundation Trust, Oxford, UK; Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Sylvie Dufour
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Yale Diabetes Research Center, Yale School of Medicine, New Haven, CT, USA
| | - Xian-Man Zhang
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Yale Diabetes Research Center, Yale School of Medicine, New Haven, CT, USA
| | - Tiina E Lehtimäki
- Department of Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Wenla Seppänen
- Department of Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marju Orho-Melander
- Department of Clinical Sciences, Diabetes and Endocrinology, University Hospital Malmö, Lund University, Malmö, Sweden
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford & NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Foundation Trust, Oxford, UK
| | - Kitt Falk Petersen
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Yale Diabetes Research Center, Yale School of Medicine, New Haven, CT, USA
| | - Gerald I Shulman
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Yale Diabetes Research Center, Yale School of Medicine, New Haven, CT, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Hannele Yki-Järvinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
36
|
Samartsev VN, Semenova AA, Belosludtsev KN, Dubinin MV. Modulators reducing the efficiency of oxidative ATP synthesis in mitochondria: protonophore uncouplers, cyclic redox agents, and decouplers. Biophys Rev 2023; 15:851-857. [PMID: 37974985 PMCID: PMC10643702 DOI: 10.1007/s12551-023-01160-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023] Open
Abstract
This work considers the main indicators of the oxidative phosphorylation efficiency in mitochondria: the ADP/O and H+/O ratios. Three groups of modulators that reduce the efficiency of oxidative phosphorylation are compared: protonophore uncouplers, cyclic redox compounds, and decouplers. It is noted that some of them are considered effective therapeutic agents. The paper analyzes the authors' original data on the mechanism of action of natural decouplers, represented by long-chain α,ω-dioic acids, as antioxidants. In conclusion, we discuss the hypothesis of their participation in the rescue of hepatocytes in various disorders of carbohydrate and lipid metabolism.
Collapse
Affiliation(s)
| | - Alena A. Semenova
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001 Russia
| | - Konstantin N. Belosludtsev
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001 Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | | |
Collapse
|
37
|
Zhang T, Nie Y, Wang J. The emerging significance of mitochondrial targeted strategies in NAFLD treatment. Life Sci 2023; 329:121943. [PMID: 37454757 DOI: 10.1016/j.lfs.2023.121943] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide, ranging from liver steatosis to nonalcoholic steatohepatitis, which ultimately progresses to fibrosis, cirrhosis, and hepatocellular carcinoma. Individuals with NAFLD have a higher risk of developing cardiovascular and extrahepatic cancers. Despite the great progress being made in understanding the pathogenesis and the introduction of new pharmacological targets for NAFLD, no drug or intervention has been accepted for its management. Recent evidence suggests that NAFLD may be a mitochondrial disease, as mitochondrial dysfunction is involved in the pathological processes that lead to NAFLD. In this review, we describe the recent advances in our understanding of the mechanisms associated with mitochondrial dysfunction in NAFLD progression. Moreover, we discuss recent advances in the efficacy of mitochondria-targeted compounds (e.g., Mito-Q, MitoVit-E, MitoTEMPO, SS-31, mitochondrial uncouplers, and mitochondrial pyruvate carrier inhibitors) for treating NAFLD. Furthermore, we present some medications currently being tested in clinical trials for NAFLD treatment, such as exercise, mesenchymal stem cells, bile acids and their analogs, and antidiabetic drugs, with a focus on their efficacy in improving mitochondrial function. Based on this evidence, further investigations into the development of mitochondria-based agents may provide new and promising alternatives for NAFLD management.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yingli Nie
- Department of Dermatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
38
|
Khailova LS, Krasnov VS, Kirsanov RS, Popova LB, Tashlitsky VN, Kotova EA, Antonenko YN. The transient character of mitochondrial uncoupling by the popular fungicide fluazinam is specific for liver. Arch Biochem Biophys 2023; 746:109735. [PMID: 37652149 DOI: 10.1016/j.abb.2023.109735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/17/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
The popular fungicide fluazinam is known to exhibit an unusual cyclic pattern of the protonophoric uncoupling activity in isolated rat liver mitochondria (RLM), with membrane deenergization followed by spontaneous recoupling in the minute scale, which is associated with glutathione conjugation of fluazinam catalyzed by glutathione-S-transferase (GST). Here, we compare the fluazinam effect on RLM with that on rat kidney (RKM) and heart (RHM) mitochondria by monitoring three bioenergetic parameters: oxygen consumption rate, mitochondrial membrane potential and reduction of nucleotides. Only in RLM, the uncoupling activity of fluazinam was transient, i.e. disappeared in a few minutes, whereas in RKM and RHM it was stable in this time scale. We attribute this difference to the increased activity of mitochondrial GST in liver. We report data on the detection of glutathione-fluazinam conjugates by mass-spectrometry, thin layer chromatography and capillary electrophoresis after incubation of fluazinam with RLM but not with RKM, which supports the assumption of the tissue specificity of the conjugation.
Collapse
Affiliation(s)
- Ljudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Vladimir S Krasnov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia; Faculty of Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Roman S Kirsanov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Lyudmila B Popova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Vadim N Tashlitsky
- Faculty of Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
39
|
Arojojoye AS, Olelewe C, Gukathasan S, Kim JH, Vekaria H, Parkin S, Sullivan PG, Awuah SG. Serum-Stable Gold(III) Bisphosphine Complex Induces Mild Mitochondrial Uncoupling and In Vivo Antitumor Potency in Triple Negative Breast Cancer. J Med Chem 2023; 66:7868-7879. [PMID: 37279147 PMCID: PMC10317555 DOI: 10.1021/acs.jmedchem.3c00238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The preparation of cyclometalated complexes offers a path to stable materials, catalysts, and therapeutic agents. Here, we explore the anticancer potential of novel biphenyl organogold(III) cationic complexes supported by diverse bisphosphine ligands, Au-1-Au-5, toward aggressive glioblastoma and triple negative breast cancer cells (TNBCs). The [C^C] gold(III) complex, Au-3, exhibits significant tumor growth inhibition in a metastatic TNBC mouse model. Remarkably, Au-3 displays promising blood serum stability over a relevant therapeutic window of 24 h and alteration in the presence of excess L-GSH. The mechanism-of-action studies show that Au-3 induces mitochondrial uncoupling, membrane depolarization, and G1 cell cycle arrest and prompts apoptosis. To the best of our knowledge, Au-3 is the first biphenyl gold-phosphine complex to uncouple mitochondria and inhibit TNBC growth in vivo.
Collapse
Affiliation(s)
| | - Chibuzor Olelewe
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | | | - Jong H. Kim
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Hemendra Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington KY 40536, U.S.A
- Department of Neuroscience, University of Kentucky, Lexington KY 40536, U.S.A
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Patrick G. Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington KY 40536, U.S.A
- Department of Neuroscience, University of Kentucky, Lexington KY 40536, U.S.A
- Department of Neuroscience, University of Kentucky Lexington KY 40536, U.S.A
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
- Center for Pharmaceutical Research and Innovation and Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington KY 40536
| |
Collapse
|
40
|
Niranjan S, Phillips BE, Giannoukakis N. Uncoupling hepatic insulin resistance - hepatic inflammation to improve insulin sensitivity and to prevent impaired metabolism-associated fatty liver disease in type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1193373. [PMID: 37396181 PMCID: PMC10313404 DOI: 10.3389/fendo.2023.1193373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Diabetes mellitus is a metabolic disease clinically-characterized as acute and chronic hyperglycemia. It is emerging as one of the common conditions associated with incident liver disease in the US. The mechanism by which diabetes drives liver disease has become an intense topic of discussion and a highly sought-after therapeutic target. Insulin resistance (IR) appears early in the progression of type 2 diabetes (T2D), particularly in obese individuals. One of the co-morbid conditions of obesity-associated diabetes that is on the rise globally is referred to as non-alcoholic fatty liver disease (NAFLD). IR is one of a number of known and suspected mechanism that underlie the progression of NAFLD which concurrently exhibits hepatic inflammation, particularly enriched in cells of the innate arm of the immune system. In this review we focus on the known mechanisms that are suspected to play a role in the cause-effect relationship between hepatic IR and hepatic inflammation and its role in the progression of T2D-associated NAFLD. Uncoupling hepatic IR/hepatic inflammation may break an intra-hepatic vicious cycle, facilitating the attenuation or prevention of NAFLD with a concurrent restoration of physiologic glycemic control. As part of this review, we therefore also assess the potential of a number of existing and emerging therapeutic interventions that can target both conditions simultaneously as treatment options to break this cycle.
Collapse
Affiliation(s)
- Sitara Niranjan
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA, United States
| | - Brett E. Phillips
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA, United States
| | - Nick Giannoukakis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
41
|
Zhang J, Ji K, Ning Y, Sun L, Fan M, Shu C, Zhang Z, Tu T, Cao J, Gao F, Chen Y. Biological Hyperthermia-Inducing Nanoparticles for Specific Remodeling of the Extracellular Matrix Microenvironment Enhance Pro-Apoptotic Therapy in Fibrosis. ACS NANO 2023. [PMID: 37229569 DOI: 10.1021/acsnano.2c12831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The extracellular matrix (ECM) is a major driver of fibrotic diseases and forms a dense fibrous barrier that impedes nanodrug delivery. Because hyperthermia causes destruction of ECM components, we developed a nanoparticle preparation to induce fibrosis-specific biological hyperthermia (designated as GPQ-EL-DNP) to improve pro-apoptotic therapy against fibrotic diseases based on remodeling of the ECM microenvironment. GPQ-EL-DNP is a matrix metalloproteinase (MMP)-9-responsive peptide, (GPQ)-modified hybrid nanoparticle containing fibroblast-derived exosomes and liposomes (GPQ-EL) and is loaded with a mitochondrial uncoupling agent, 2,4-dinitrophenol (DNP). GPQ-EL-DNP can specifically accumulate and release DNP in the fibrotic focus, inducing collagen denaturation through biological hyperthermia. The preparation was able to remodel the ECM microenvironment, decrease stiffness, and suppress fibroblast activation, which further enhanced GPQ-EL-DNP delivery to fibroblasts and sensitized fibroblasts to simvastatin-induced apoptosis. Therefore, simvastatin-loaded GPQ-EL-DNP achieved an improved therapeutic effect on multiple types of murine fibrosis. Importantly, GPQ-EL-DNP did not induce systemic toxicity to the host. Therefore, the nanoparticle GPQ-EL-DNP for fibrosis-specific hyperthermia can be used as a potential strategy to enhance pro-apoptotic therapy in fibrotic diseases.
Collapse
Affiliation(s)
- Jinru Zhang
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Keqin Ji
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanmeng Ning
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lingna Sun
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mingrui Fan
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chunjie Shu
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ziqi Zhang
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Tianyu Tu
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jingyun Cao
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Gao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yanzuo Chen
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
42
|
Samartsev VN, Khoroshavina EI, Pavlova EK, Dubinin MV, Semenova AA. Bile Acids as Inducers of Protonophore and Ionophore Permeability of Biological and Artificial Membranes. MEMBRANES 2023; 13:membranes13050472. [PMID: 37233533 DOI: 10.3390/membranes13050472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
It is now generally accepted that the role of bile acids in the organism is not limited to their participation in the process of food digestion. Indeed, bile acids are signaling molecules and being amphiphilic compounds, are also capable of modifying the properties of cell membranes and their organelles. This review is devoted to the analysis of data on the interaction of bile acids with biological and artificial membranes, in particular, their protonophore and ionophore effects. The effects of bile acids were analyzed depending on their physicochemical properties: namely the structure of their molecules, indicators of the hydrophobic-hydrophilic balance, and the critical micelle concentration. Particular attention is paid to the interaction of bile acids with the powerhouse of cells, the mitochondria. It is of note that bile acids, in addition to their protonophore and ionophore actions, can also induce Ca2+-dependent nonspecific permeability of the inner mitochondrial membrane. We consider the unique action of ursodeoxycholic acid as an inducer of potassium conductivity of the inner mitochondrial membrane. We also discuss a possible relationship between this K+ ionophore action of ursodeoxycholic acid and its therapeutic effects.
Collapse
Affiliation(s)
- Victor N Samartsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Ekaterina I Khoroshavina
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Evgeniya K Pavlova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Mikhail V Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Alena A Semenova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| |
Collapse
|
43
|
Kirsanov RS, Khailova LS, Rokitskaya TI, Iaubasarova IR, Nazarov PA, Panteleeva AA, Lyamzaev KG, Popova LB, Korshunova GA, Kotova EA, Antonenko YN. Ester-stabilized phosphorus ylides as protonophores on bilayer lipid membranes, mitochondria and chloroplasts. Bioelectrochemistry 2023; 150:108369. [PMID: 36638678 DOI: 10.1016/j.bioelechem.2023.108369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Triphenylphosphonium ylides are commonly used as key intermediates in the Wittig reaction. Based on the known acidities of stabilized ylide precursors, we proposed that a methylene group adjacent to phosphorus in these compounds can ensure proton shuttling across lipid membranes. Here, we synthesized (decyloxycarbonylmethyl)triphenylphosphonium bromide (CMTPP-C10) by reaction of triphenylphosphine with decyl bromoacetate. This phosphonium salt precursor of the ester-stabilized phosphorus ylide along with its octyl (CMTPP-C8) and dodecyl (CMTPP-C12) analogues was found to be a carrier of protons in mitochondrial, chloroplast and artificial lipid membranes, suggesting that it can reversibly release hydrogen ions and diffuse through the membranes in both zwitterionic (ylide) and cationic forms. The CMTPP-C10-mediated electrical current across planar bilayer lipid membranes exhibited pronounced proton selectivity. Similar to conventional protonophores, known to uncouple electron transport and ATP synthesis, CMTPP-Cn (n = 8, 10, 12) stimulated mitochondrial respiration, while decreasing membrane potential, at micromolar concentrations, thereby showing the classical uncoupling activity in mitochondria. CMTPP-C12 also caused dissipation of transmembrane pH gradient on chloroplast membranes. Importantly, CMTPP-C10 exhibited substantially lower toxicity in cell culture, than C12TPP. Thus, we report the finding of a new class of ylide-type protonophores, which is of substantial interest due to promising therapeutic properties of uncouplers.
Collapse
Affiliation(s)
- Roman S Kirsanov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ljudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Iliuza R Iaubasarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Pavel A Nazarov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alisa A Panteleeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Konstantin G Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; The "Russian Clinical Research Center for Gerontology" of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Lyudmila B Popova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Galina A Korshunova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
44
|
Murray JH, Burgio AL, Beretta M, Hargett SR, Harris TE, Olzomer E, Grams RJ, Garcia CJ, Li C, Salamoun JM, Hoehn KL, Santos WL. Oxadiazolopyridine Derivatives as Efficacious Mitochondrial Uncouplers in the Prevention of Diet-Induced Obesity. J Med Chem 2023; 66:3876-3895. [PMID: 36882080 PMCID: PMC10167758 DOI: 10.1021/acs.jmedchem.2c01573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Small-molecule mitochondrial uncouplers are gaining recognition as potential therapeutics for metabolic diseases such as obesity, diabetes, and nonalcoholic steatohepatitis (NASH). Specifically, heterocycles derived from BAM15, a potent and mitochondria-selective uncoupler, have yielded promising preclinical candidates that are efficacious in animal models of obesity and NASH. In this study, we report the structure-activity relationship studies of 6-amino-[1,2,5]oxadiazolo[3,4-b]pyridin-5-ol derivatives. Using oxygen consumption rate as a readout of mitochondrial uncoupling, we established 5-hydroxyoxadiazolopyridines as mild uncouplers. In particular, SHM115, which contains a pentafluoro aniline, had an EC50 value of 17 μM and exhibited 75% oral bioavailability. SHM115 treatment increased the energy expenditure and lowered the body fat mass in two diet-induced obesity mouse models, including an obesity prevention model and an obesity reversal model. Taken together, our findings demonstrate the therapeutic potential of mild mitochondrial uncouplers for the prevention of diet-induced obesity.
Collapse
Affiliation(s)
- Jacob H Murray
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ariel L Burgio
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Martina Beretta
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales 2033, Australia
| | - Stefan R Hargett
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Ellen Olzomer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales 2033, Australia
| | - R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Christopher J Garcia
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Catherine Li
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales 2033, Australia
| | - Joseph M Salamoun
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales 2033, Australia
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
45
|
Chen SY, Beretta M, Olzomer EM, Shah DP, Wong DYH, Alexopoulos SJ, Aleksovska I, Salamoun JM, Garcia CJ, Cochran BJ, Rye KA, Smith GC, Byrne FL, Morris MJ, Santos WL, Cantley J, Hoehn KL. Targeting negative energy balance with calorie restriction and mitochondrial uncoupling in db/db mice. Mol Metab 2023; 69:101684. [PMID: 36731653 PMCID: PMC9932728 DOI: 10.1016/j.molmet.2023.101684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Calorie restriction is a first-line treatment for overweight individuals with metabolic impairments. However, few patients can adhere to long-term calorie restriction. An alternative approach to calorie restriction that also causes negative energy balance is mitochondrial uncoupling, which decreases the amount of energy that can be extracted from food. Herein we compare the metabolic effects of calorie restriction with the mitochondrial uncoupler BAM15 in the db/db mouse model of severe hyperglycemia, obesity, hypertriglyceridemia, and fatty liver. METHODS Male db/db mice were treated with ∼50% calorie restriction, BAM15 at two doses of 0.1% and 0.2% (w/w) admixed in diet, or 0.2% BAM15 with time-restricted feeding from 5 weeks of age. Mice were metabolically phenotyped over 4 weeks with assessment of key readouts including body weight, glucose tolerance, and liver steatosis. At termination, liver tissues were analysed by metabolomics and qPCR. RESULTS Calorie restriction and high-dose 0.2% BAM15 decreased body weight to a similar extent, but mice treated with BAM15 had far better improvement in glucose control. High-dose BAM15 treatment completely normalized fasting glucose and glucose tolerance to levels similar to lean db/+ control mice. Low-dose 0.1% BAM15 did not affect body mass but partially improved glucose tolerance to a similar degree as 50% calorie restriction. Both calorie restriction and high-dose BAM15 significantly improved hyperglucagonemia and liver and serum triglyceride levels. Combining high-dose BAM15 with time-restricted feeding to match the time that calorie restricted mice were fed resulted in the best metabolic phenotype most similar to lean db/+ controls. BAM15-mediated improvements in glucose control were associated with decreased glucagon levels and decreased expression of enzymes involved in hepatic gluconeogenesis. CONCLUSIONS BAM15 and calorie restriction treatments improved most metabolic disease phenotypes in db/db mice. However, mice fed BAM15 had superior effects on glucose control compared to the calorie restricted group that consumed half as much food. Submaximal dosing with BAM15 demonstrated that its beneficial effects on glucose control are independent of weight loss. These data highlight the potential for mitochondrial uncoupler pharmacotherapies in the treatment of metabolic disease.
Collapse
Affiliation(s)
- Sing-Young Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Martina Beretta
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ellen M Olzomer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Divya P Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Derek Y H Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Stephanie J Alexopoulos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Isabella Aleksovska
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Joseph M Salamoun
- Department of Chemistry and Virginia Tech Centre for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Christopher J Garcia
- Department of Chemistry and Virginia Tech Centre for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Blake J Cochran
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kerry-Anne Rye
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Greg C Smith
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Frances L Byrne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Margaret J Morris
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Centre for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA
| | - James Cantley
- School of Medicine, University of Dundee, Dundee DD1 4HN, UK
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
46
|
Fromenty B, Roden M. Mitochondrial alterations in fatty liver diseases. J Hepatol 2023; 78:415-429. [PMID: 36209983 DOI: 10.1016/j.jhep.2022.09.020] [Citation(s) in RCA: 174] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/29/2022] [Accepted: 09/17/2022] [Indexed: 11/07/2022]
Abstract
Fatty liver diseases can result from common metabolic diseases, as well as from xenobiotic exposure and excessive alcohol use, all of which have been shown to exert toxic effects on hepatic mitochondrial functionality and dynamics. Invasive or complex methodology limits large-scale investigations of mitochondria in human livers. Nevertheless, abnormal mitochondrial function, such as impaired fatty acid oxidation and oxidative phosphorylation, drives oxidative stress and has been identified as an important feature of human steatohepatitis. On the other hand, hepatic mitochondria can be flexible and adapt to the ambient metabolic condition to prevent triglyceride and lipotoxin accumulation in obesity. Experience from studies on xenobiotics has provided important insights into the regulation of hepatic mitochondria. Increasing awareness of the joint presence of metabolic disease-related (lipotoxic) and alcohol-related liver diseases further highlights the need to better understand their mutual interaction and potentiation in disease progression. Recent clinical studies have assessed the effects of diets or bariatric surgery on hepatic mitochondria, which are also evolving as an interesting therapeutic target in non-alcoholic fatty liver disease. This review summarises the current knowledge on hepatic mitochondria with a focus on fatty liver diseases linked to obesity, type 2 diabetes and xenobiotics.
Collapse
Affiliation(s)
- Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000, Rennes, France
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.
| |
Collapse
|
47
|
Ma MH, Li FF, Li WF, Zhao H, Jiang M, Yu YY, Dong YC, Zhang YX, Li P, Bu WJ, Sun ZJ, Dong DL. Repurposing nitazoxanide as a novel anti-atherosclerotic drug based on mitochondrial uncoupling mechanisms. Br J Pharmacol 2023; 180:62-79. [PMID: 36082580 DOI: 10.1111/bph.15949] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 08/03/2022] [Accepted: 08/28/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE The anthelmintic drug nitazoxanide has a mitochondrial uncoupling effect. Mitochondrial uncouplers have been proven to inhibit smooth muscle cell proliferation and migration, inhibit NLRP3 inflammasome activation of macrophages and improve dyslipidaemia. Therefore, we aimed to demonstrate that nitazoxanide would protect against atherosclerosis. EXPERIMENTAL APPROACH The mitochondrial oxygen consumption of cells was measured by using the high-resolution respirometry system, Oxygraph-2K. The proliferation and migration of A10 cells were measured by using Edu immunofluorescence staining, wound-induced migration and the Boyden chamber assay. Protein levels were measured by using the western blot technique. ApoE (-/-) mice were fed with a Western diet to establish an atherosclerotic model in vivo. KEY RESULTS The in vitro experiments showed that nitazoxanide and tizoxanide had a mitochondrial uncoupling effect and activated cellular AMPK. Nitazoxanide and tizoxanide inhibited serum- and PDGF-induced proliferation and migration of A10 cells. Nitazoxanide and tizoxanide inhibited NLRP3 inflammasome activation in RAW264.7 macrophages, the mechanism by which involved the AMPK/IκBα/NF-κB pathway. Nitazoxanide and tizoxanide also induced autophagy in A10 cells and RAW264.7 macrophages. The in vivo experiments demonstrated that oral administration of nitazoxanide reduced the increase in serum IL-1β and IL-6 levels and suppressed atherosclerosis in Western diet-fed ApoE (-/-) mice. CONCLUSION AND IMPLICATIONS Nitazoxanide inhibits the formation of atherosclerotic plaques in ApoE (-/-) mice fed on a Western diet. In view of nitazoxanide being an antiprotozoal drug already approved by the FDA, we propose it as a novel anti-atherosclerotic drug with clinical translational potential.
Collapse
Affiliation(s)
- Ming-Hui Ma
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Feng-Feng Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Wen-Feng Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Hui Zhao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Man Jiang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Yuan-Yuan Yu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Yan-Chao Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Yi-Xin Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Ping Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Wen-Jie Bu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Zhi-Jie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - De-Li Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, People's Republic of China.,Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
48
|
Wu L, Li W, Chen G, Yang Z, Lv X, Zheng L, Sun J, Ai L, Sun B, Ni L. Ameliorative effects of monascin from red mold rice on alcoholic liver injury and intestinal microbiota dysbiosis in mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Eslam M, El-Serag HB, Francque S, Sarin SK, Wei L, Bugianesi E, George J. Metabolic (dysfunction)-associated fatty liver disease in individuals of normal weight. Nat Rev Gastroenterol Hepatol 2022; 19:638-651. [PMID: 35710982 DOI: 10.1038/s41575-022-00635-5] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
Metabolic (dysfunction)-associated fatty liver disease (MAFLD) affects up to a third of the global population; its burden has grown in parallel with rising rates of type 2 diabetes mellitus and obesity. MAFLD increases the risk of end-stage liver disease, hepatocellular carcinoma, death and liver transplantation and has extrahepatic consequences, including cardiometabolic disease and cancers. Although typically associated with obesity, there is accumulating evidence that not all people with overweight or obesity develop fatty liver disease. On the other hand, a considerable proportion of patients with MAFLD are of normal weight, indicating the importance of metabolic health in the pathogenesis of the disease regardless of body mass index. The clinical profile, natural history and pathophysiology of patients with so-called lean MAFLD are not well characterized. In this Review, we provide epidemiological data on this group of patients and consider overall metabolic health and metabolic adaptation as a framework to best explain the pathogenesis of MAFLD and its heterogeneity in individuals of normal weight and in those who are above normal weight. This framework provides a conceptual schema for interrogating the MAFLD phenotype in individuals of normal weight that can translate to novel approaches for diagnosis and patient care.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| | - Hashem B El-Serag
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics (LEMP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Lai Wei
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology and Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
50
|
Dai Y, Santiago-Rivera JA, Hargett S, Salamoun JM, Hoehn KL, Santos WL. Conversion of oxadiazolo[3,4-b]pyrazines to imidazo[4,5-b]pyrazines via a tandem reduction-cyclization sequence generates new mitochondrial uncouplers. Bioorg Med Chem Lett 2022; 73:128912. [PMID: 35907607 DOI: 10.1016/j.bmcl.2022.128912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 11/02/2022]
Abstract
We report new mitochondrial uncouplers derived from the conversion of [1,2,5]oxadiazolo[3,4-b]pyrazines to 1H-imidazo[4,5-b]pyrazines. The in situ Fe-mediated reduction of the oxadiazole fragment followed by cyclization gave access to imidazopyrazines in moderate to good yields. A selection of orthoesters also allowed functionalization on the 2-position of the imidazole ring. This method afforded a variety of imidazopyrazine derivatives with varying substitution on the 2, 5 and 6 positions. Our studies suggest that both a 2-trifluoromethyl group and N-methylation are crucial for mitochondrial uncoupling capacity.
Collapse
Affiliation(s)
- Yumin Dai
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - José A Santiago-Rivera
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Stefan Hargett
- Departments of Pharmacology and Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | - Joseph M Salamoun
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kyle L Hoehn
- Departments of Pharmacology and Medicine, University of Virginia, Charlottesville, VA 22908, United States; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|