1
|
Cencer CS, Robinson KL, Tyska MJ. Loss of intermicrovillar adhesion factor CDHR2 impairs basolateral junctional complexes in transporting epithelia. Mol Biol Cell 2024; 35:br21. [PMID: 39292922 PMCID: PMC11617098 DOI: 10.1091/mbc.e24-03-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
Transporting epithelial cells in the gut and kidney rely on protocadherin-based apical adhesion complexes to organize microvilli that extend into luminal space. In these systems, CDHR2 and CDHR5 localize to the distal ends of microvilli, where they form an intermicrovillar adhesion complex (IMAC) that links the tips of these structures, promotes the formation of a well-ordered array of protrusions, and thus maximizes apical membrane surface area. Recently, we discovered that IMACs can also form between microvilli that extend from neighboring cells, across cell-cell junctions. As an additional point of physical contact between cells, transjunctional IMACs are well positioned to impact the integrity of canonical tight and adherens junctions that form more basolaterally. To begin to test this idea, we examined cell culture and mouse models that lacked CDHR2 expression and were unable to form IMACs. CDHR2 knockout perturbed cell and junction morphology, reduced key components from tight and adherens junctions, impaired barrier function, and increased the motility of single cells within established monolayers. These results support the hypothesis that, in addition to organizing apical microvilli, IMACs provide a layer of cell-cell contact that functions in parallel with canonical tight and adherens junctions to promote epithelial functions.
Collapse
Affiliation(s)
- Caroline S. Cencer
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kianna L. Robinson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Matthew J. Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
2
|
Stubler R, Dooley SA, Edens R, Nicholson MR, Engevik AC. Intestinal Tuft Cells Are Enriched With Protocadherins. J Histochem Cytochem 2024; 72:611-622. [PMID: 39360911 PMCID: PMC11471013 DOI: 10.1369/00221554241287267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/23/2024] [Indexed: 10/13/2024] Open
Abstract
Intestinal tuft cells are rare cells that regulate diverse functions. They harbor chemosensory receptors and signal to the mucosal immune system in response to external stimuli, though their full function and structure remain unclear. Named for their apical "tuft" of long actin-rich microvilli, tuft cells facilitate chemoreception and other physiological responses. In enterocytes, microvilli are stabilized by intermicrovillar adhesion complexes (IMACs) composed of several proteins, including cadherin-related family member-2 (CDHR2) and cadherin-related family member-5 (CDHR5), Myosin 7b, and Usher syndrome type 1 C (USH1C). We hypothesized that IMACs would be enriched in tuft cells to regulate microvillar organization. Immunostaining of murine intestinal tissue revealed that CDHR2 and CDHR5 colocalize with the tuft cell markers, DCLK1, phospho-EGFR, advillin, and cytokeratin 18. CDHR2 was dispersed throughout murine tuft cells, while CDHR5 was concentrated on the apical surface. USH1C and Myosin 7b were present in tuft cells, but at lower levels. Human single-cell RNA sequencing revealed robust CDHR2 and CDHR5 expression in tuft cells in the small intestine and colon. Immunostaining of human intestinal tissue confirmed CDHR2 and CDHR5 localization to the apical surface of tuft cells. Our findings demonstrate that protocadherins are key components of murine and human intestinal tuft cells.
Collapse
Affiliation(s)
- Rachel Stubler
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC
| | - Sarah A. Dooley
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC
| | - Rachel Edens
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC
| | - Maribeth R. Nicholson
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Monroe Carell Jr. Children’s Hospital at Vanderbilt, Nashville, TN
| | - Amy C. Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
3
|
Jacob R, Gorek LS. Intracellular galectin interactions in health and disease. Semin Immunopathol 2024; 46:4. [PMID: 38990375 PMCID: PMC11239732 DOI: 10.1007/s00281-024-01010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/07/2024] [Indexed: 07/12/2024]
Abstract
In the galectin family, a group of lectins is united by their evolutionarily conserved carbohydrate recognition domains. These polypeptides play a role in various cellular processes and are implicated in disease mechanisms such as cancer, fibrosis, infection, and inflammation. Following synthesis in the cytosol, manifold interactions of galectins have been described both extracellularly and intracellularly. Extracellular galectins frequently engage with glycoproteins or glycolipids in a carbohydrate-dependent manner. Intracellularly, galectins bind to non-glycosylated proteins situated in distinct cellular compartments, each with multiple cellular functions. This diversity complicates attempts to form a comprehensive understanding of the role of galectin molecules within the cell. This review enumerates intracellular galectin interaction partners and outlines their involvement in cellular processes. The intricate connections between galectin functions and pathomechanisms are illustrated through discussions of intracellular galectin assemblies in immune and cancer cells. This underscores the imperative need to fully comprehend the interplay of galectins with the cellular machinery and to devise therapeutic strategies aimed at counteracting the establishment of galectin-based disease mechanisms.
Collapse
Affiliation(s)
- Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Karl-von-Frisch-Str. 14, D-35043, Marburg, Germany.
| | - Lena-Sophie Gorek
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Karl-von-Frisch-Str. 14, D-35043, Marburg, Germany
| |
Collapse
|
4
|
房 锦, 刘 立, 林 俊, 陈 逢. [Overexpression of CDHR2 inhibits proliferation of breast cancer cells by inhibiting the PI3K/Akt pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1117-1125. [PMID: 38977341 PMCID: PMC11237307 DOI: 10.12122/j.issn.1673-4254.2024.06.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 07/10/2024]
Abstract
OBJECTIVE To investigate the mechanism by which CDHR2 overexpression inhibits breast cancer cell growth and cell cycle pragression via the PI3K/Akt signaling pathway. METHODS Bioinformatic analysis was performed to investigate CDHR2 expression in breast cancer and its correlation with survival outcomes of the patients. Immunohistochemistry was used to examine CDHR2 expressions in surgical specimens of tumor and adjacent tissues from 10 patients with breast cancer. CDHR2 expression levels were also detected in 5 breast cancer cell lines and a normal human mammary epithelial cell line using qRT-PCR and Western blotting. Breast cancer cell lines MDA-MB-231 and MCF7 with low CDHR2 expression were transfected with a CDHR2-overexpressing plasmid, and the changes in cell proliferation and cell cycle were evaluated using CCK-8 assay, EdU assay, and cell cycle assay; the changes in expressions of PI3K/Akt signaling pathway and cell cycle pathway proteins were detected with Western blotting. RESULTS Bioinformatic analysis showed low CDHR2 expression level in both breast cancer and adjacent tissues without significant difference between them (P > 0.05), but breast cancer patients with a high expression of CDHR2 had a more favorable prognosis. Immunohistochemistry, qRT-PCR and Western blotting showed that the expression of CDHR2 was significantly down-regulated in breast cancer tissues and breast cancer cells (P < 0.01), and its overexpression strongly inhibited cell proliferation, caused cell cycle arrest, and significantly inhibited PI3K and Akt phosphorylation and the expression of cyclin D1. CONCLUSION Overexpression of CDHR2 inhibits proliferation and causes cell cycle arrest in breast cancer cells possibly by inhibiting the PI3K/Akt signaling pathway.
Collapse
|
5
|
Cencer CS, Robinson KL, Tyska MJ. Loss of intermicrovillar adhesion impairs basolateral junctional complexes in transporting epithelia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585733. [PMID: 38562895 PMCID: PMC10983982 DOI: 10.1101/2024.03.19.585733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Transporting epithelial cells in the gut and kidney rely on protocadherin-based apical adhesion complexes to organize microvilli that extend into the luminal space. In these systems, CDHR2 and CDHR5 localize to the distal ends of microvilli, where they form an intermicrovillar adhesion complex (IMAC) that links the tips of these structures, promotes the formation of a well-ordered array of protrusions, and in turn maximizes apical membrane surface area. Recently, we discovered that IMACs can also form between microvilli that extend from neighboring cells, across cell-cell junctions. As an additional point of physical contact between cells, transjunctional IMACs are well positioned to impact the integrity of canonical tight and adherens junctions that form more basolaterally. Here, we sought to test this idea using cell culture and mouse models that lacked CDHR2 expression and were unable to form IMACs. CDHR2 knockout perturbed cell and junction morphology, led to loss of key components from tight and adherens junctions, and impaired barrier function and wound healing. These results indicate that, in addition to organizing apical microvilli, IMACs provide a layer of cell-cell contact that functions in parallel with canonical tight and adherens junctions to support the physiological functions of transporting epithelia.
Collapse
|
6
|
Zhang S, Jiang C, Jiang L, Chen H, Huang J, Gao X, Xia Z, Tran LJ, Zhang J, Chi H, Yang G, Tian G. Construction of a diagnostic model for hepatitis B-related hepatocellular carcinoma using machine learning and artificial neural networks and revealing the correlation by immunoassay. Tumour Virus Res 2023; 16:200271. [PMID: 37774952 PMCID: PMC10638043 DOI: 10.1016/j.tvr.2023.200271] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/21/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023] Open
Abstract
HBV infection profoundly escalates hepatocellular carcinoma (HCC) susceptibility, responsible for a majority of HCC cases. HBV-driven immune-mediated hepatocyte impairment significantly fuels HCC progression. Regrettably, inconspicuous early HCC symptoms often culminate in belated diagnoses. Nevertheless, surgically treated early-stage HCC patients relish augmented five-year survival rates. In contrast, advanced HCC exhibits feeble responses to conventional interventions like radiotherapy, chemotherapy, and surgery, leading to diminished survival rates. This investigation endeavors to unearth diagnostic hallmark genes for HBV-HCC leveraging a bioinformatics framework, thus refining early HBV-HCC detection. Candidate genes were sieved via differential analysis and Weighted Gene Co-Expression Network Analysis (WGCNA). Employing three distinct machine learning algorithms unearthed three feature genes (HHIP, CXCL14, and CDHR2). Melding these genes yielded an innovative Artificial Neural Network (ANN) diagnostic blueprint, portending to alleviate patient encumbrance and elevate life quality. Immunoassay scrutiny unveiled accentuated immune damage in HBV-HCC patients relative to solitary HCC. Through consensus clustering, HBV-HCC was stratified into two subtypes (C1 and C2), the latter potentially indicating milder immune impairment. The diagnostic model grounded in these feature genes showcased robust and transferrable prognostic potentialities, introducing a novel outlook for early HBV-HCC diagnosis. This exhaustive immunological odyssey stands poised to expedite immunotherapeutic curatives' emergence for HBV-HCC.
Collapse
Affiliation(s)
- Shengke Zhang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Chenglu Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Haiqing Chen
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Jinbang Huang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Xinrui Gao
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - Lisa Jia Tran
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - Jing Zhang
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, 57069, USA
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China.
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, 45701, USA.
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
7
|
Ko FCF, Yan S, Lee KW, Lam SK, Ho JCM. Chimera and Tandem-Repeat Type Galectins: The New Targets for Cancer Immunotherapy. Biomolecules 2023; 13:902. [PMID: 37371482 DOI: 10.3390/biom13060902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
In humans, a total of 12 galectins have been identified. Their intracellular and extracellular biological functions are explored and discussed in this review. These galectins play important roles in controlling immune responses within the tumour microenvironment (TME) and the infiltration of immune cells, including different subsets of T cells, macrophages, and neutrophils, to fight against cancer cells. However, these infiltrating cells also have repair roles and are hijacked by cancer cells for pro-tumorigenic activities. Upon a better understanding of the immunomodulating functions of galectin-3 and -9, their inhibitors, namely, GB1211 and LYT-200, have been selected as candidates for clinical trials. The use of these galectin inhibitors as combined treatments with current immune checkpoint inhibitors (ICIs) is also undergoing clinical trial investigations. Through their network of binding partners, inhibition of galectin have broad downstream effects acting on CD8+ cytotoxic T cells, regulatory T cells (Tregs), Natural Killer (NK) cells, and macrophages as well as playing pro-inflammatory roles, inhibiting T-cell exhaustion to support the fight against cancer cells. Other galectin members are also included in this review to provide insight into potential candidates for future treatment(s). The pitfalls and limitations of using galectins and their inhibitors are also discussed to cognise their clinical application.
Collapse
Affiliation(s)
- Frankie Chi Fat Ko
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Sheng Yan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Ka Wai Lee
- Pathology Department, Baptist Hospital, Waterloo Road, Kowloon, Hong Kong, China
| | - Sze Kwan Lam
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - James Chung Man Ho
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| |
Collapse
|
8
|
Bersuder E, Terciolo C, Lechevrel M, Martin E, Quesnelle C, Freund JN, Reimund JM, Gross I. Mesalazine initiates an anti-oncogenic β-catenin / MUCDHL negative feed-back loop in colon cancer cells by cell-specific mechanisms. Biomed Pharmacother 2021; 146:112543. [PMID: 34929577 DOI: 10.1016/j.biopha.2021.112543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
Chronic inflammation associated with intestinal architecture and barrier disruption puts patients with inflammatory bowel disease (IBD) at increased risk of developing colorectal cancer (CRC). Widely used to reduce flares of intestinal inflammation, 5-aminosalicylic acid derivatives (5-ASAs) such as mesalazine appear to also exert more direct mucosal healing and chemopreventive activities against CRC. The mechanisms underlying these activities are poorly understood and may involve the up-regulation of the cadherin-related gene MUCDHL (CDHR5). This atypical cadherin is emerging as a new actor of intestinal homeostasis and opposes colon tumorigenesis. Here, we showed that mesalazine increase mRNA levels of MUCDHL and of other genes involved in the intestinal barrier function in most intestinal cell lines. In addition, using gain / loss of function experiments (agonists, plasmid or siRNAs transfections), luciferase reporter genes and chromatin immunoprecipitation, we thoroughly investigated the molecular mechanisms triggered by mesalazine that lead to the up-regulation of MUCDHL expression. We found that basal transcription of MUCDHL in different CRC cell lines is regulated positively by CDX2 and negatively by β-catenin through a negative feed-back loop. However, mesalazine-stimulation of MUCDHL transcription is controlled by cell-specific mechanisms, involving either enhanced activation of CDX2 and PPAR-γ or repression of the β-catenin inhibitory effect. This work highlights the importance of the cellular and molecular context in the activity of mesalazine and suggests that its efficacy against CRC depends on the genetic alterations of transformed cells.
Collapse
Affiliation(s)
- Emilie Bersuder
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Chloe Terciolo
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Mathilde Lechevrel
- Université de Caen / Basse-Normandie, UFR de Médecine, EA 4652, F-14032 Caen, France
| | - Elisabeth Martin
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Celine Quesnelle
- Université de Caen / Basse-Normandie, UFR de Médecine, EA 4652, F-14032 Caen, France
| | - Jean-Noel Freund
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Jean-Marie Reimund
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France; Université de Caen / Basse-Normandie, UFR de Médecine, EA 4652, F-14032 Caen, France; Service Hépato-Gastroentérologie, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France; Institut Hospitalo-Universitaire de Strasbourg, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France.
| | - Isabelle Gross
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France.
| |
Collapse
|
9
|
Gray ME, Johnson ZR, Modak D, Tamilselvan E, Tyska MJ, Sotomayor M. Heterophilic and homophilic cadherin interactions in intestinal intermicrovillar links are species dependent. PLoS Biol 2021; 19:e3001463. [PMID: 34871294 PMCID: PMC8691648 DOI: 10.1371/journal.pbio.3001463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/21/2021] [Accepted: 10/30/2021] [Indexed: 11/19/2022] Open
Abstract
Enterocytes are specialized epithelial cells lining the luminal surface of the small intestine that build densely packed arrays of microvilli known as brush borders. These microvilli drive nutrient absorption and are arranged in a hexagonal pattern maintained by intermicrovillar links formed by 2 nonclassical members of the cadherin superfamily of calcium-dependent cell adhesion proteins: protocadherin-24 (PCDH24, also known as CDHR2) and the mucin-like protocadherin (CDHR5). The extracellular domains of these proteins are involved in heterophilic and homophilic interactions important for intermicrovillar function, yet the structural determinants of these interactions remain unresolved. Here, we present X-ray crystal structures of the PCDH24 and CDHR5 extracellular tips and analyze their species-specific features relevant for adhesive interactions. In parallel, we use binding assays to identify the PCDH24 and CDHR5 domains involved in both heterophilic and homophilic adhesion for human and mouse proteins. Our results suggest that homophilic and heterophilic interactions involving PCDH24 and CDHR5 are species dependent with unique and distinct minimal adhesive units.
Collapse
Affiliation(s)
- Michelle E. Gray
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Zachary R. Johnson
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Debadrita Modak
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Elakkiya Tamilselvan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
- Biophysics Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Matthew J. Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Marcos Sotomayor
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
- Biophysics Program, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
10
|
Li X, Huang C, Zhang X, Yang T, Zuo S, Fu C, Zhang Y, Yang C, Chen L. Discovery of bladder cancer biomarkers in paired pre- and postoperative urine samples. Transl Androl Urol 2021; 10:3402-3414. [PMID: 34532265 PMCID: PMC8421825 DOI: 10.21037/tau-21-562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Bladder cancer (BC), a common cancer of the urinary system, has a low mortality but an extremely high recurrence rate. Patients who have undergone initial surgical treatment often undergo frequent prognostic examinations with a substantial burden of discomfort and costs. Urine samples can reflect early disease processes in the urinary system and may be an excellent source of biomarkers. METHODS In the present study, we used the liquid chromatography with tandem mass spectrometry (LC-MS/MS) to perform proteomic analysis of pre- and postoperative urine samples from patients with stage III BC to identify biomarkers of cancer prognosis. Candidate biomarkers from proteomic analysis were simultaneously validated using western blotting in an independent cohort and immunohistochemical (IHC) staining, combined with gene expression data of BC samples in The Cancer Genome Atlas (TCGA). RESULTS The comparison of pre- and postoperative urine samples from the same patients led to the discovery of several significantly differentially expressed proteins, whose functions could be closely related to the occurrence and development of BC. We confirmed a representative group of candidate biomarker molecules, such as cadherin-related family member 2 (CDHR2), heat shock protein beta-1 (HSP27), and heterogeneous nuclear ribonucleoproteins A2/B1 (HNRNPA2B1). CONCLUSIONS The candidate biomarker molecules can distinguish between pre- and postoperative urine samples, and alterations in their expression levels are significantly associated with recurrence rates in patients with BC. Therefore, these molecules may become useful biomarkers for the monitoring and prognosis of BC.
Collapse
Affiliation(s)
- Xuechao Li
- Medical School of Chinese PLA, Beijing, China
- Department of Urology, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Chuanxi Huang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Xueli Zhang
- Department of pathology, the Fifth Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Tao Yang
- Department of Urology, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Shidong Zuo
- Department of Urology, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Chengwei Fu
- Department of Urology, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Yongjie Zhang
- Department of Urology, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Chunyuan Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Lijun Chen
- Department of Urology, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Losi L, Zanocco-Marani T, Grande A. Cadherins down-regulation: towards a better understanding of their relevance in colorectal cancer. Histol Histopathol 2020; 35:1391-1402. [PMID: 32567668 DOI: 10.14670/hh-18-236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The down-regulation of cadherin expression in colorectal cancer (CRC) has been widely studied. However, existing data on cadherin expression are highly variable and its relevance to CRC development has not been completely established. This review examines published studies on cadherins whose down-regulation has been already demonstrated in CRC, trying to establish a relationship with promoter methylation, the capacity to influence the Wnt / CTNNB1 (catenin beta 1, beta-catenin) signalling pathway and the clinical implications for disease outcome. Moreover, it also analyses factors that may explain data variability and highlights the importance of considering the altered subcellular localization of the examined cadherins. The results of this survey reveal that thirty of one hundred existing cadherins appear to be down-regulated in CRC. Among these, ten are cadherins, sixteen are protocadherins, equally divided between clustered and non clustered, and four are cadherin - related. These findings suggest that, to better define the role played by cadherin down-regulation in CRC pathogenesis, the expression of multiple rather than individual cadherins should be taken into account and further functional studies are necessary to clarify the relative ability of individual cadherins to inhibit CTNNB1 therefore acting as tumor suppressors.
Collapse
Affiliation(s)
- Lorena Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | - Alexis Grande
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
12
|
Xia Z, Huang M, Zhu Q, Li Y, Ma Q, Wang Y, Chen X, Li J, Qiu L, Zhang J, Zheng J, Lu B. Cadherin Related Family Member 2 Acts As A Tumor Suppressor By Inactivating AKT In Human Hepatocellular Carcinoma. J Cancer 2019; 10:864-873. [PMID: 30854092 PMCID: PMC6400803 DOI: 10.7150/jca.27663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Cadherin related family member 2 (CDHR2) belongs to the protocadherin family and is abundant in normal liver, kidney, and colon tissues, but weakly expressed in cancers arising from these tissues. In this study, we demonstrated that CDHR2 was highly expressed in para-cancer tissues of human hepatocellular carcinoma (HCC), but significantly downregulated or silenced in 85.7% (6/7) of HCC cell lines by both semi-quantitative PCR and western blot, and 79.1% (19/24) and 80.2% (89/111) of tumor tissues from patients with HCC by semi-quantitative PCR, and immunohistochemistry, respectively. Interestingly, CpG islands in the promoter of CDHR2 gene were hypermethylated in HCC cell lines and tissues compared with the para-cancer tissues by methylation-specific PCR analysis, leading to transcriptional repression and silencing of CDHR2 in HCC. In addition, CDHR2 overexpression by lentiviral vectors had suppressive effects on HCC cell growth and proliferation, as evidenced by prolonged cell doubling time and reduced colony-forming ability in vitro, as well as by decreased tumorigenicity in vivo. Mechanistically, CDHR2 overexpression resulted in AKT dephosphorylation along with downregulation of cyclooxygenase-2 (COX2), a downstream target of AKT. This effect was reversed by myristoylated AKT, a constitutively active form of AKT, suggesting an involvement of CDHR2-AKT-COX2 axis in the suppression of HCC growth. Taken together, our study identified CDHR2 as a novel tumor suppressor in HCC and provided a new therapeutic target for HCC.
Collapse
Affiliation(s)
- Ziyuan Xia
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Meijin Huang
- Department of Oncology, 920th Hospital of PLA Joint Logistics support Force, Yunnan, China
| | - Qiangqiang Zhu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yinghua Li
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qian Ma
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yang Wang
- Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Chen
- Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianzhong Li
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Lei Qiu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Junping Zhang
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jiaoyang Zheng
- Department of Endocrinology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bin Lu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
13
|
He Y, Wang Z, Liu C, Gong Z, Li Y, Lu T, Hu G. Protocadherin 17 is a tumor suppressor and is frequently methylated in nasopharyngeal carcinoma. Cancer Manag Res 2019; 11:1601-1613. [PMID: 30863170 PMCID: PMC6388982 DOI: 10.2147/cmar.s191102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Several PCDH genes were shown to be downregulated or silenced in carcinomas and act as candidate tumor suppressor genes. However, the functions of PCDH17 in nasopharyngeal carcinoma (NPC) remain unclear. Here, we investigated the PCDH17 promoter methylation status and its impact on the expression and functions of PCDH17 in NPC. Patients and methods To determine the mRNA levels and promoter methylation status of PCDH17 in NPC cell lines as well as 42 NPC patient specimens, we performed reverse transcription PCR, methylation-specific PCR, and bisulfite genome sequencing. The effects of ectopic PCDH17 expression in NPC cell lines were determined by colony formation, cell proliferation, wound healing, in vitro human umbilical vein endothelial cells tube formation, migration, invasion, cell cycle, and apoptosis assays and an in vivo subcutaneous tumor model. Results PCDH17 expression was almost absent or significantly reduced in 100% of the NPC cell lines (5/5). However, 5-aza-2′-deoxycytidine and trichostatin A treatment restored PCDH17 expression. Promoter methylation was involved in PCDH17 silencing. Ectopic expression of PCDH17 in silenced NPC cells reduced colony formation, cell migration, angiogenesis, VEGF secretion, and tumorigenicity. Conclusion PCDH17 plays a tumor suppressor role in NPC. PCDH17 methylation may be a tumor-specific event and can be used as an epigenetic biomarker for NPC.
Collapse
Affiliation(s)
- Ya He
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China, .,Department of Otolaryngology Head and Neck Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhihai Wang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| | - Chuan Liu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| | - Zhitao Gong
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| | - Yanshi Li
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| | - Tao Lu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| | - Guohua Hu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| |
Collapse
|
14
|
Pinette JA, Mao S, Millis BA, Krystofiak ES, Faust JJ, Tyska MJ. Brush border protocadherin CDHR2 promotes the elongation and maximized packing of microvilli in vivo. Mol Biol Cell 2018; 30:108-118. [PMID: 30403560 PMCID: PMC6337912 DOI: 10.1091/mbc.e18-09-0558] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Transporting epithelial cells optimize their morphology for solute uptake by building an apical specialization: a dense array of microvilli that serves to increase membrane surface area. In the intestinal tract, individual cells build thousands of microvilli, which pack tightly to form the brush border. Recent studies implicate adhesion molecule CDHR2 in the regulation of microvillar packing via the formation of adhesion complexes between the tips of adjacent protrusions. To gain insight on how CDHR2 contributes to brush border morphogenesis and enterocyte function under native in vivo conditions, we generated mice lacking CDHR2 expression in the intestinal tract. Although CDHR2 knockout (KO) mice are viable, body weight trends lower and careful examination of tissue, cell, and brush border morphology revealed several perturbations that likely contribute to reduced functional capacity of KO intestine. In the absence of CDHR2, microvilli are significantly shorter, and exhibit disordered packing and a 30% decrease in packing density. These structural perturbations are linked to decreased levels of key solute processing and transporting factors in the brush border. Thus, CDHR2 functions to elongate microvilli and maximize their numbers on the apical surface, which together serve to increase the functional capacity of enterocyte.
Collapse
Affiliation(s)
- Julia A Pinette
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Suli Mao
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Bryan A Millis
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Evan S Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - James J Faust
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
15
|
Loss of expression of μ-protocadherin and protocadherin-24 in sporadic and hereditary nonpolyposis colorectal cancers. Hum Pathol 2018; 84:299-308. [PMID: 30296522 DOI: 10.1016/j.humpath.2018.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/13/2018] [Accepted: 09/23/2018] [Indexed: 12/25/2022]
Abstract
Colorectal cancer (CRC) is a neoplastic disease in which normal mucosa undergoes a process of malignant transformation due to the progressive accumulation of molecular alterations affecting proto-oncogenes and oncosuppressor genes. Some of these modifications exert their carcinogenic potential by promoting a constitutive activation of the β-catenin signaling proliferation pathway, and when present, loss of cadherin expression also significantly contributes to the same effect. Using a combined approach of molecular and immunohistochemical analysis, we have previously demonstrated that most sporadic CRCs exhibit a down-regulated expression of a cadherin, named μ-protocadherin, that is generally observed in association with a higher proliferation rate and a worse prognosis. The aim of this report was to perform a comparative immunohistochemical assessment of μ-protocadherin and a similar cadherin, named protocadherin-24, in sporadic CRC and hereditary nonpolyposis colorectal cancer. The data obtained put in evidence that double-negative CRCs, lacking both the analyzed protocadherins, are more represented among sporadic tumors, whereas double-positive CRCs, maintaining their expression, exhibit an opposite trend. As expected, loss of protocadherin expression was accompanied by nuclear localization of β-catenin and increased positivity of the Ki-67 proliferation marker. This finding is consistent with the different clinical evolution of the 2 considered CRC sets according to which patients with hereditary nonpolyposis colorectal cancer experience a better prognosis as compared with those affected by a sporadic CRC.
Collapse
|
16
|
Zhang T, Guan G, Chen T, Jin J, Zhang L, Yao M, Qi X, Zou J, Chen J, Lu F, Chen X. Methylation of PCDH19 predicts poor prognosis of hepatocellular carcinoma. Asia Pac J Clin Oncol 2018; 14:e352-e358. [PMID: 29749051 DOI: 10.1111/ajco.12982] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 04/05/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Several members of protocadherins (PCDHs) have been identified as tumor suppressor genes in human carcinogenesis, but little is known about PCDH19. The aim of the present study was to assess the expression and methylation of PCDH19 in hepatocellular carcinoma (HCC). METHODS The RNA-seq data from The Cancer Genome Atlas Database were downloaded and used for analyzing PCDH19 expression in HCC patients and normal liver tissues. We collected 63 paired tumor and nontumor liver tissues from hepatitis B virus-related HCC patients. The expression of PCDH19 was detected by real-time quantitative RT-PCR assay. The methylation of PCDH19 gene was analyzed by DNA methylation-sensitive endonuclease digestion and the sequential quantitative PCR. The prognostic value of PCDH19 gene methylation was evaluated by Kaplan-Meier analyses. RESULTS PCDH19 expression was downregulated in HCC tissues and seven HCC cell lines compared to nontumor tissues. PCHD19 promoter was frequently hypermethylated in three (SMMC7721, Hep3B and SNU387) of seven HCC cell lines and 5-aza-dC treatment could significantly increased the PCDH19 expression in these methylated cells. In addition, HCC tumor tissues exhibited significantly increased PCDH19 hypermethylation both in frequency (30.15% vs 9.52%, P = 0.003) and in intensity (P = 0.002) compared to that in nontumor tissues. Kaplan-Meier survival analysis revealed that PCDH19 hypermethylation was correlated with the poor overall survival of HCC patients. CONCLUSION PCDH19 expression was downregulated in HCC, which was mediated at least in part by promoter hypermethylation. PCDH19 hypermethylation might present a potential prognostic marker in HCC patients.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Guiwen Guan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tingting Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jingling Jin
- Departments of Pediatrics-Oncology and Surgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Lichun Zhang
- Department of Liver Disease, Taiyuan Third People's Hospital, Taiyuan, China
| | - Mingjie Yao
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xuewei Qi
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jun Zou
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiacheng Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiangmei Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
17
|
Ye W, Ling S, Liu RY, Pan ZZ, Wang G, Gao S, Wu J, Cao L, Dong L, Li Y, Zhou Y, Du W, Meng X, Chen J, Guan X, He Y, Pan C, Zheng XS, Lu X, Chen S, Huang W. Exome sequencing reveals the genetic landscape and frequent inactivation of PCDHB3 in Chinese rectal cancers. J Pathol 2018. [PMID: 29537081 DOI: 10.1002/path.5073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, with more than 1.3 million new cases and 690 000 deaths each year. In China, the incidence of CRC has increased dramatically due to dietary and lifestyle changes, to become the fifth leading cause of cancer-related death. Here, we performed whole-exome sequencing in 50 rectal cancer cases among the Chinese population as part of the International Cancer Genome Consortium research project. Frequently mutated genes and enriched pathways were identified. Moreover, a previously unreported gene, PCDHB3, was found frequently mutated in 5.19% cases. Additionally, PCDHB3 expression was found decreased in 81.6% of CRC tissues and all eight CRC cell lines tested. Low expression and cytoplasmic localization of PCDHB3 predict poor prognosis in advanced CRC. Copy number decrease and/or CpG island hypermethylation contributes to the pervasive decreased expression of PCDHB3. PCDHB3 inhibits CRC cell proliferation, migration, and epithelial-mesenchymal transition. The tumor-suppressive effects of PCDHB3 are partially due to inhibition of NF-κB transcriptional activity through K63 deubiquitination of p50 at lysine 244/252, which increases the binding affinity of inactive p50 homodimer to κB DNA, resulting in competitive inhibition of the transcription of NF-κB target genes by p65 dimers. Our study identified PCDHB3 as a novel tumor suppressor in CRC via inhibition of the NF-κB pathway, and its expression and localization may serve as prognostic markers for advanced CRC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wen Ye
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Shaoping Ling
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China
| | - Ran-Yi Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Zhi-Zhong Pan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Gaoyuan Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Shijuan Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Jiangxue Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Lihua Cao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China
| | - Lili Dong
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China
| | - Yingchang Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Yi Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Wuying Du
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Xiangqi Meng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Jinna Chen
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Xinyuan Guan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China.,Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Yulong He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Changchuan Pan
- Medical Oncology, Sichuan Cancer Hospital and Institute, Second People's Hospital of Sichuan Province, Chengdu, PR China
| | - Xf Steven Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China.,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Xuemei Lu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China
| | - Shuai Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China
| | - Wenlin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, PR China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
18
|
Vanniya S P, Srisailapathy CRS, Kunka Mohanram R. The tip link protein Cadherin-23: From Hearing Loss to Cancer. Pharmacol Res 2018; 130:25-35. [PMID: 29421162 DOI: 10.1016/j.phrs.2018.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 11/26/2022]
Abstract
Cadherin-23 is an atypical member of the cadherin superfamily, with a distinctly long extracellular domain. It has been known to be a part of the tip links of the inner ear mechanosensory hair cells. Several studies have been carried out to understand the role of Cadherin-23 in the hearing mechanism and defects in the CDH23 have been associated with hearing impairment resulting from defective or absence of tip links. Recent studies have highlighted the role of Cadherin-23 in several pathological conditions, including cancer, suggesting the presence of several unknown functions. Initially, it was proposed that Cadherin-23 represents a yet unspecified subtype of Cadherins; however, no other proteins with similar characteristics have been identified, till date. It has a unique cytoplasmic domain that does not bear a β-catenin binding region, but has been demonstrated to mediate cell-cell adhesions. Several protein interacting partners have been identified for Cadherin-23 and the roles of their interactions in various cellular mechanisms are yet to be explored. This review summarizes the characteristics of Cadherin-23 and its roles in several pathologies including cancer.
Collapse
Affiliation(s)
- Paridhy Vanniya S
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Science, University of Madras, Taramani campus, Chennai, Tamilnadu, India
| | - C R Srikumari Srisailapathy
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Science, University of Madras, Taramani campus, Chennai, Tamilnadu, India
| | - Ramkumar Kunka Mohanram
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India.
| |
Collapse
|
19
|
Actomyosin contractility provokes contact inhibition in E-cadherin-ligated keratinocytes. Sci Rep 2017; 7:46326. [PMID: 28406163 PMCID: PMC5390311 DOI: 10.1038/srep46326] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 03/15/2017] [Indexed: 01/09/2023] Open
Abstract
Confluence-dependent inhibition of epithelial cell proliferation, termed contact inhibition, is crucial for epithelial homeostasis and organ size control. Here we report that among epithelial cells, keratinocytes, which compose the stratified epithelium in the skin, possess a unique, actomyosin-dependent mechanism for contact inhibition. We have observed that under actomyosin-inhibited conditions, cell-cell contact itself through E-cadherin promotes proliferation of keratinocytes. Actomyosin activity in confluent keratinocytes, however, inhibits nuclear localization of β-catenin and YAP, and causes attenuation of β-catenin- and YAP-driven cell proliferation. Confluent keratinocytes develop E-cadherin-mediated punctate adhesion complexes, to which radial actin cables are connected. Eliminating the actin-to-E-cadherin linkage by depleting α-catenin increases proliferation of confluent keratinocytes. By contrast, enforced activation of RhoA-regulated actomyosin or external application of pulling force to ligated E-cadherin attenuates their proliferation, suggesting that tensile stress at E-cadherin-mediated adhesion complexes inhibits proliferation of confluent keratinocytes. Our results highlight actomyosin contractility as a crucial factor that provokes confluence-dependent inhibition of keratinocyte proliferation.
Collapse
|
20
|
Montorsi L, Parenti S, Losi L, Ferrarini F, Gemelli C, Rossi A, Manco G, Ferrari S, Calabretta B, Tagliafico E, Zanocco-Marani T, Grande A. Expression of μ-protocadherin is negatively regulated by the activation of the β-catenin signaling pathway in normal and cancer colorectal enterocytes. Cell Death Dis 2016; 7:e2263. [PMID: 27310872 PMCID: PMC5143391 DOI: 10.1038/cddis.2016.163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 01/11/2023]
Abstract
Mu-protocadherin (MUCDHL) is an adhesion molecule predominantly expressed by colorectal epithelial cells which is markedly downregulated upon malignant transformation. Notably, treatment of colorectal cancer (CRC) cells with mesalazine lead to increased expression of MUCDHL, and is associated with sequestration of β-catenin on the plasma membrane and inhibition of its transcriptional activity. To better characterize the causal relationship between β-catenin and MUCDHL expression, we performed various experiments in which CRC cell lines and normal colonic organoids were subjected to culture conditions inhibiting (FH535 treatment, transcription factor 7-like 2 siRNA inactivation, Wnt withdrawal) or stimulating (LiCl treatment) β-catenin activity. We show here that expression of MUCDHL is negatively regulated by functional activation of the β-catenin signaling pathway. This finding was observed in cell culture systems representing conditions of physiological stimulation and upon constitutive activation of β-catenin in CRC. The ability of MUCDHL to sequester and inhibit β-catenin appears to provide a positive feedback enforcing the effect of β-catenin inhibitors rather than serving as the primary mechanism responsible for β-catenin inhibition. Moreover, MUCDHL might have a role as biomarker in the development of CRC chemoprevention drugs endowed with β-catenin inhibitory activity.
Collapse
Affiliation(s)
- L Montorsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - S Parenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - L Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - C Gemelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A Rossi
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - G Manco
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - S Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - B Calabretta
- Department of Clinical and Diagnostic Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy.,Department of Cancer Biology and SKKC, Thomas Jefferson University, Philadelphia, PA, USA
| | - E Tagliafico
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - T Zanocco-Marani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A Grande
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
21
|
Chen T, Long B, Ren G, Xiang T, Li L, Wang Z, He Y, Zeng Q, Hong S, Hu G. Protocadherin20 Acts as a Tumor Suppressor Gene: Epigenetic Inactivation in Nasopharyngeal Carcinoma. J Cell Biochem 2016; 116:1766-75. [PMID: 25736877 DOI: 10.1002/jcb.25135] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 02/06/2015] [Indexed: 11/12/2022]
Abstract
Genetic alterations of 13q21 (PCDH 8,9,17, and 20) are frequently observed in multiple tumors, suggesting the presence of critical tumor suppressor genes (TSGs). Protocadherin20 (PCDH20), located at 13q21.2, belongs to the δ1-protocadherins, which constitutes one of the largest subgroup within the adherin superfamily. Frequent downregulation/silencing of PCDH20 was found in NPC cell lines using semiquantitative PCR. PCDH20 mRNA was broadly expressed in normal nasopharyngeal tissues and cell lines. Promoter methylation of PCDH20 was observed in 80% (4/5) of NPC cell lines and 78.4% (40 of 51) of primary tumors by methylation-specific PCR, but rarely in normal nasopharygeal tissues and nasopharyngeal epithelial cell line (NP69). The silencing of PCDH20 can be reversed by pharmacological demethylation, indicating an epigenetic mechanism. Restoration of PCDH20 expression in NPC cells strongly suppressed cell numbers and colony formation. Overexpression of PCDH20 antagonized Wnt/β-catenin signaling pathway and promoted β-catenin to translocate from nucleus to cytoplasm and membrane. PCDH20 significantly inhibited the migration and invasion ability of NPC cells. PCDH20 also inhibited epithelial-mesenchymal transition (EMT) through enhanced expression of E-cadherin. Our study identified PCDH20 as a functional tumor suppressor and an important antagonist of Wnt/β-catenin signaling and EMT, with frequent epigenetic inactivation in NPC.
Collapse
Affiliation(s)
- Tao Chen
- Department of Otolaryngology, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Biaoli Long
- Department of Otolaryngology, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Guosheng Ren
- Molecular Oncology and Epigenetics Laboratory, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Tingxiu Xiang
- Molecular Oncology and Epigenetics Laboratory, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Lili Li
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Zhaohui Wang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Ya He
- Department of Otolaryngology, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Quan Zeng
- Department of Otolaryngology, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Suling Hong
- Department of Otolaryngology, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Guohua Hu
- Department of Otolaryngology, The first Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
22
|
Gralinski LE, Ferris MT, Aylor DL, Whitmore AC, Green R, Frieman MB, Deming D, Menachery VD, Miller DR, Buus RJ, Bell TA, Churchill GA, Threadgill DW, Katze MG, McMillan L, Valdar W, Heise MT, Pardo-Manuel de Villena F, Baric RS. Genome Wide Identification of SARS-CoV Susceptibility Loci Using the Collaborative Cross. PLoS Genet 2015; 11:e1005504. [PMID: 26452100 PMCID: PMC4599853 DOI: 10.1371/journal.pgen.1005504] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/15/2015] [Indexed: 01/21/2023] Open
Abstract
New systems genetics approaches are needed to rapidly identify host genes and genetic networks that regulate complex disease outcomes. Using genetically diverse animals from incipient lines of the Collaborative Cross mouse panel, we demonstrate a greatly expanded range of phenotypes relative to classical mouse models of SARS-CoV infection including lung pathology, weight loss and viral titer. Genetic mapping revealed several loci contributing to differential disease responses, including an 8.5Mb locus associated with vascular cuffing on chromosome 3 that contained 23 genes and 13 noncoding RNAs. Integrating phenotypic and genetic data narrowed this region to a single gene, Trim55, an E3 ubiquitin ligase with a role in muscle fiber maintenance. Lung pathology and transcriptomic data from mice genetically deficient in Trim55 were used to validate its role in SARS-CoV-induced vascular cuffing and inflammation. These data establish the Collaborative Cross platform as a powerful genetic resource for uncovering genetic contributions of complex traits in microbial disease severity, inflammation and virus replication in models of outbred populations.
Collapse
Affiliation(s)
- Lisa E. Gralinski
- Department of Epidemiology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David L. Aylor
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alan C. Whitmore
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Richard Green
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Matthew B. Frieman
- Department of Epidemiology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Damon Deming
- Department of Epidemiology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Vineet D. Menachery
- Department of Epidemiology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Darla R. Miller
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ryan J. Buus
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Timothy A. Bell
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | | | - David W. Threadgill
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Michael G. Katze
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Leonard McMillan
- Department of Computer Science, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - William Valdar
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark T. Heise
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
23
|
Lv J, Zhu P, Yang Z, Li M, Zhang X, Cheng J, Chen X, Lu F. PCDH20 functions as a tumour-suppressor gene through antagonizing the Wnt/β-catenin signalling pathway in hepatocellular carcinoma. J Viral Hepat 2015; 22:201-211. [PMID: 24910204 PMCID: PMC4344823 DOI: 10.1111/jvh.12265] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/22/2014] [Indexed: 12/13/2022]
Abstract
Several members of protocadherins have been found involved in human carcinogenesis, but little is known about PCDH20 in HCC. Here in this study, using quantitative real-time RT-PCR assay, we demonstrated the downregulation of PCDH20 expression in 6 of 7 HCC cell lines tested. Similarly, PCDH20 expression in primary HCC tissues was also significantly downregulated in comparison with that in either disease-free normal liver tissues or the adjacent nontumour liver tissues (P < 0.001, respectively). Among HCC tumour tissues studied, about 48% (51/107) of them showed reduced PCDH20 mRNA level. Further statistic analysis revealed that the reduced PCDH20 mRNA level in tumour tissues was much more common in younger patients group (aged <50 years) than that in older group (≥50 years) (60% vs 33%, P = 0.0303). Loss of heterozygosity (LOH) and promoter hypermethylation analysis revealed that deletion and/or aberrant epigenetic modulation of PCDH20 gene account for its downregulation, at least in a fraction of tumour specimens. Moreover, ectopic expression of PCDH20 in HCC cells significantly suppressed cell proliferation, clonogenicity, migration and tumour formation. Notably, we proved for the first time that, via activating GSK-3β, PCDH20 could inhibit Wnt/β-catenin signalling pathway. Furthermore, our data suggest that PCDH20 may conduct its Wnt/β-catenin signalling antagonizing function through suppressing Akt and Erk activities and promoting GSK-3β signalling activities. However, the detailed mechanism remained undiscovered. In conclusion, our data here strongly suggested that PCDH20 may act as a candidate tumour suppressor in HCC.
Collapse
Affiliation(s)
- J Lv
- Department of Microbiology & infectious Disease Center, Peking University Health Science Center, Beijing, China; Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
The human gastrointestinal tract-specific transcriptome and proteome as defined by RNA sequencing and antibody-based profiling. J Gastroenterol 2015; 50:46-57. [PMID: 24789573 DOI: 10.1007/s00535-014-0958-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/07/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND The gastrointestinal tract (GIT) is subdivided into different anatomical organs with many shared functions and characteristics, but also distinct differences. We have combined a genome-wide transcriptomics analysis with immunohistochemistry-based protein profiling to describe the gene and protein expression patterns that define the human GIT. METHODS RNA sequencing data derived from stomach, duodenum, jejunum/ileum and colon specimens were compared to gene expression levels in 23 other normal human tissues analysed with the same method. Protein profiling based on immunohistochemistry and tissue microarrays was used to sub-localize the corresponding proteins with GIT-specific expression into sub-cellular compartments and cell types. RESULTS Approximately 75% of all human protein-coding genes were expressed in at least one of the GIT tissues. Only 51 genes showed enriched expression in either one of the GIT tissues and an additional 83 genes were enriched in two or more GIT tissues. The list of GIT-enriched genes with validated protein expression patterns included various well-known but also previously uncharacterised or poorly studied genes. For instance, the colon-enriched expression of NXPE family member 1 (NXPE1) was established, while NLR family, pyrin domain-containing 6 (NLRP6) expression was primarily found in the human small intestine. CONCLUSIONS We have applied a genome-wide analysis based on transcriptomics and antibody-based protein profiling to identify genes that are expressed in a specific manner within the human GIT. These genes and proteins constitute important starting points for an improved understanding of the normal function and the different states of disease associated with the GIT.
Collapse
|
25
|
Characterizing the role of PCDH9 in the regulation of glioma cell apoptosis and invasion. J Mol Neurosci 2013; 52:250-60. [PMID: 24214103 DOI: 10.1007/s12031-013-0133-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 09/30/2013] [Indexed: 01/09/2023]
Abstract
PCDH9, a member of the protocadherin superfamily, is frequently lost in many different cancer types. This study aimed to detect PCDH9 expression in glioma tissues. This study also assessed the effects of PCDH9 expression in two different glioma cell lines. This was accomplished by manipulating PCDH9 expression in these glioma cell lines. The data showed that the expression of PCDH9 mRNA and protein was significantly decreased in gliomas compared to normal brain tissues. Lentivirus carrying PCDH9 cDNA restored PCDH9 expression in the U87 and U251 glioma cell lines. PCDH9 restoration in these cell lines reduced tumor cell viability, induced apoptosis, and caused G0/G1 cell cycle arrest. PCDH9 expression also suppressed the colony formation ability and invasion capacity of U87 and U251 cells. Molecularly, the restoration of PCDH9 expression upregulated Bax protein expression, but downregulated Bcl-2 and cyclin D1 expression. These data from the current study suggest that the loss of PCDH9 expression could contribute to glioma development and/or progression. Further studies will evaluate PCDH9 expression as a biomarker for the early detection of gliomas and as a prognostic indicator for this cancer type.
Collapse
|
26
|
Forn M, Muñoz M, Tauriello DVF, Merlos-Suárez A, Rodilla V, Bigas A, Batlle E, Jordà M, Peinado MA. Long range epigenetic silencing is a trans-species mechanism that results in cancer specific deregulation by overriding the chromatin domains of normal cells. Mol Oncol 2013; 7:1129-41. [PMID: 24035705 DOI: 10.1016/j.molonc.2013.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 01/08/2023] Open
Abstract
DNA methylation and chromatin remodeling are frequently implicated in the silencing of genes involved in carcinogenesis. Long Range Epigenetic Silencing (LRES) is a mechanism of gene inactivation that affects multiple contiguous CpG islands and has been described in different human cancer types. However, it is unknown whether there is a coordinated regulation of the genes embedded in these regions in normal cells and in early stages of tumor progression. To better characterize the molecular events associated with the regulation and remodeling of these regions we analyzed two regions undergoing LRES in human colon cancer in the mouse model. We demonstrate that LRES also occurs in murine cancer in vivo and mimics the molecular features of the human phenomenon, namely, downregulation of gene expression, acquisition of inactive histone marks, and DNA hypermethylation of specific CpG islands. The genes embedded in these regions showed a dynamic and autonomous regulation during mouse intestinal cell differentiation, indicating that, in the framework considered here, the coordinated regulation in LRES is restricted to cancer. Unexpectedly, benign adenomas in Apc(Min/+) mice showed overexpression of most of the genes affected by LRES in cancer, which suggests that the repressive remodeling of the region is a late event. Chromatin immunoprecipitation analysis of the transcriptional insulator CTCF in mouse colon cancer cells revealed disrupted chromatin domain boundaries as compared with normal cells. Malignant regression of cancer cells by in vitro differentiation resulted in partial reversion of LRES and gain of CTCF binding. We conclude that genes in LRES regions are plastically regulated in cell differentiation and hyperproliferation, but are constrained to a coordinated repression by abolishing boundaries and the autonomous regulation of chromatin domains in cancer cells.
Collapse
Affiliation(s)
- Marta Forn
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), 08916 Badalona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen Y, Londraville R, Brickner S, El-Shaar L, Fankhauser K, Dearth C, Fulton L, Sochacka A, Bhattarai S, Marrs JA, Liu Q. Protocadherin-17 function in Zebrafish retinal development. Dev Neurobiol 2013; 73:259-73. [PMID: 22927092 DOI: 10.1002/dneu.22053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/16/2012] [Accepted: 08/22/2012] [Indexed: 11/11/2022]
Abstract
Cadherin cell adhesion molecules play crucial roles in vertebrate development including the development of the retina. Most studies have focused on examining functions of classic cadherins (e.g. N-cadherin) in retinal development. There is little information on the function of protocadherins in the development of the vertebrate visual system. We previously showed that protocadherin-17 mRNA was expressed in developing zebrafish retina during critical stages of the retinal development. To gain insight into protocadherin-17 function in the formation of the retina, we analyzed eye development and differentiation of retinal cells in zebrafish embryos injected with protocadherin-17 specific antisense morpholino oligonucleotides (MOs). Protocadherin-17 knockdown embryos (pcdh17 morphants) had significantly reduced eyes due mainly to decreased cell proliferation. Differentiation of several retinal cell types (e.g. retinal ganglion cells) was also disrupted in the pcdh17 morphants. Phenotypic rescue was achieved by injection of protocadherin-17 mRNA. Injection of a vivo-protocadherin-17 MO into one eye of embryonic zebrafish resulted in similar eye defects. Our results suggest that protocadherin-17 plays an important role in the normal formation of the zebrafish retina.
Collapse
Affiliation(s)
- Yun Chen
- Department of Biology and Integrated Bioscience Program, University of Akron, Akron, Ohio 44325, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ose R, Oharaa O, Nagase T. Galectin-1 and Galectin-3 Mediate Protocadherin-24-Dependent Membrane Localization of β-catenin in Colon Cancer Cell Line HCT116. CURRENT CHEMICAL GENOMICS 2012; 6:18-26. [PMID: 23115611 PMCID: PMC3480823 DOI: 10.2174/1875397301206010018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 12/21/2022]
Abstract
Protocadherin-24 (PCDH24) is linked to the suppression of tumor growth and the inhibition of cell proliferation in the colon cancer cell line HCT116. We previously observed that β-catenin is localized to the plasma membrane when PCDH24 is expressed in these cells, but the molecular mechanisms by which PCDH24 induces the membrane localization of β-catenin remain largely unknown. To clarify these mechanisms, we identified molecules that interact with ectopically expressed PCDH24 in HCT116 cells using a HaloTag® pull-down assay. We found that galectin-1 and galectin-3 physically interact with PCDH24 and are retained at the plasma membrane in association with PCDH24 expression. A luciferase-based pull-down assay using HaloTag-fused galectins revealed that an intracellular region of PCDH24 (amino acids 1186–1280) is essential for this interaction. Furthermore, the over-expression of galectin-1 or -3, or the depletion of endogenous galectins by small interfering RNA modulates β-catenin translocation. We also revealed that the retention of galectin-1 and -3 at the plasma membrane results in the inactivation of PI3K activity. From these findings, we propose a model in which the galectin-anchoring activity of PCDH24 leads to the suppression of β-catenin signaling by the localization of β-catenin at the plasma membrane in PCDH24-expressing HCT116 colon cancer cells.
Collapse
Affiliation(s)
- Rui Ose
- Department of Human Genome Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan ; Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | | | | |
Collapse
|
29
|
Li C, Sun SY, Khuri FR, Li R. Pleiotropic functions of EAPII/TTRAP/TDP2: cancer development, chemoresistance and beyond. Cell Cycle 2011; 10:3274-83. [PMID: 21926483 DOI: 10.4161/cc.10.19.17763] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
EAPII (also called TTRAP, TDP2), a protein identified a decade ago, has recently been shown to function as an oncogenic factor. This protein was also proven to be the first 5'- tyrosyl-DNA phosphodiesterase. EAPII has been demonstrated to have promiscuous protein associations, broad responsiveness to various extracellular signals, and pleiotropic functions in the development of human diseases including cancer and neurodegenerative disease. Emerging data suggest that EAPII is a multi-functional protein: EAPII repairs enzyme (topoisomerase)-mediated DNA damage by removing phosphotyrosine from DNA adducts; EAPII is involved in multiple signal transduction pathways such as TNF-TNFR, TGFβ and MAPK, and EAPII is responsive to immune defense, inflammatory response, virus infection and DNA toxins (chemo or radiation therapy). This review focuses on the current understanding of EAPII biology and its potential relations to many aspects of cancer development, including chromosome instability, tumorigenesis, tumor metastasis and chemoresistance, suggesting it as a potential target for intervention in cancer and other human diseases.
Collapse
Affiliation(s)
- Chunyang Li
- Winship Cancer Institute, Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
30
|
Haruki S, Imoto I, Kozaki KI, Matsui T, Kawachi H, Komatsu S, Muramatsu T, Shimada Y, Kawano T, Inazawa J. Frequent silencing of protocadherin 17 , a candidate tumour suppressor for esophageal squamous cell carcinoma. Carcinogenesis 2010; 31:1027-1036. [DOI: 10.1093/carcin/bgq053] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
31
|
Krahn MP, Rizk S, Alfalah M, Behrendt M, Naim HY. Protocadherin of the liver, kidney, and colon associates with detergent-resistant membranes during cellular differentiation. J Biol Chem 2010; 285:13193-200. [PMID: 20159971 DOI: 10.1074/jbc.m109.080051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Protocadherin LKC (PLKC) is a member of the heterogeneous subgroup of protocadherins that was identified and described as a potential tumor-suppressor gene involved in contact inhibition (Okazaki, N., Takahashi, N., Kojima, S., Masuho, Y., and Koga, H. (2002) Carcinogenesis 23, 1139-1148 and Ose, R., Yanagawa, T., Ikeda, S., Ohara, O., and Koga, H. (2009) Mol. Oncol. 3, 54-66). Several aspects of the structure, posttranslational processing, targeting, and function of this new protocadherin are still not known. Here, we demonstrate that the expression of PLKC at the apical membrane domain and its concentration at regions of cell-cell contacts occur concomitantly with significant elevation of PLKC-mRNA levels. Furthermore, it can be found within the adherens junctions, but it does not colocalize with tight junctions proteins ZO-1 and occludin, respectively. Additionally, unlike E-cadherin, PLKC is not redistributed upon Ca(2+) removal. Biosynthetic labeling revealed N- and O-glycosylation as posttranslational modifications as well as a fast transport to the cell surface and a low turnover rate. During differentiation, PLKC associates with detergent-resistant membranes that trigger its redistribution from intracellular membranes to the cell surface. This association occurs concomitant with alterations in the glycosylation pattern. We propose a role for PLKC in the establishment of a proper epithelial cell polarity that requires O-linked glycosylation and association of the protein with detergent-resistant membranes.
Collapse
Affiliation(s)
- Michael P Krahn
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover D-30559, Germany
| | | | | | | | | |
Collapse
|