1
|
Ganguly K, Metkari SM, Biswas B, Subedi R, Madan T. Intra-tumoral delivery of 5'ppp-dsRNA induces a robust antitumor response via RIG-I activation and Bcl-2 gene downregulation in a murine model of prostate cancer. Int Immunol 2024; 37:109-129. [PMID: 39387130 DOI: 10.1093/intimm/dxae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
Onco-immunotherapy via blocking checkpoint inhibitors has revolutionized the treatment-landscape of several malignancies, though not in the metastatic castration-resistant prostate cancer (PCa) owing to an immunosuppressive and poorly immunogenic "cold" tumor microenvironment (TME). Turning up the heat of such a cold TME via triggering innate immunity is now of increasing interest to restore immune-surveillance. Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) are cytosolic innate-sensors that can detect exogenous RNAs and induce type-I interferons and other pro-inflammatory signaling. RIG-I activation is suggested to be a valuable addition to the treatment approaches for several cancers. However, the knowledge about RIG-I signaling in PCa remains elusive. The present study evaluated the expression of two important RLRs, RIG-I and melanoma differentiation-associated protein 5 (MDA5), along with their downstream partners, mitochondrial antiviral-signaling protein (MAVS) and ERA G-protein-like 1 (ERAL1), during PCa progression in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. The early stage of PCa revealed a significant increment in the expression of RLRs but not MAVS. However, the advanced stage showed downregulated RLR signaling. Further, the therapeutic implication of 5'ppp-dsRNA, a synthetic RIG-I agonist and Bcl2 gene silencer, has been investigated in vitro and in vivo. Intra-tumoral delivery of 5'ppp-dsRNA regressed tumor growth via triggering tumor cell apoptosis, immunomodulation, and inducing phagocytic "eat me" signals. These findings highlight that, for the first time, RIG-I activation and Bcl-2 silencing with 5'ppp-dsRNA can serve as a potent tumor-suppressor strategy in PCa and has a significant clinical implication in transforming a "cold" TME into an immunogenic "hot" TME of PCa.
Collapse
Affiliation(s)
- Kasturi Ganguly
- Department of Innate Immunity, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Siddhanath M Metkari
- Experimental Animal Facility, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Barnali Biswas
- Department of Innate Immunity, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Rambhadur Subedi
- Department of Innate Immunity, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Taruna Madan
- Department of Innate Immunity, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
- Division of Development Research, Indian Council of Medical Research (ICMR), New Delhi, India
| |
Collapse
|
2
|
Rodarte KE, Heyman SN, Guo L, Flores L, Savage TK, Villarreal J, Deng S, Xu L, Shah RB, Oliver TG, Johnson JE. Neuroendocrine Differentiation in Prostate Cancer Requires ASCL1. Cancer Res 2024; 84:3522-3537. [PMID: 39264686 PMCID: PMC11534540 DOI: 10.1158/0008-5472.can-24-1388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Most patients with prostate adenocarcinoma develop resistance to therapies targeting the androgen receptor (AR). Consequently, a portion of these patients develop AR-independent neuroendocrine (NE) prostate cancer (NEPC), a rapidly progressing cancer with limited therapies and poor survival outcomes. Current research to understand the progression to NEPC suggests a model of lineage plasticity whereby AR-dependent luminal-like tumors progress toward an AR-independent NEPC state. Genetic analysis of human NEPC identified frequent loss of RB1 and TP53, and the loss of both genes in experimental models mediates the transition to a NE lineage. Transcriptomics studies have shown that lineage transcription factors ASCL1 and NEUROD1 are present in NEPC. In this study, we modeled the progression of prostate adenocarcinoma to NEPC by establishing prostate organoids and subsequently generating subcutaneous allograft tumors from genetically engineered mouse models harboring Cre-induced loss of Rb1 and Trp53 with Myc overexpression (RPM). These tumors were heterogeneous and displayed adenocarcinoma, squamous, and NE features. ASCL1 and NEUROD1 were expressed within NE-defined regions, with ASCL1 being predominant. Genetic loss of Ascl1 in this model did not decrease tumor incidence, growth, or metastasis; however, there was a notable decrease in NE identity and an increase in basal-like identity. This study provides an in vivo model to study progression to NEPC and establishes the requirement for ASCL1 in driving NE differentiation in prostate cancer. Significance: Modeling lineage transitions in prostate cancer and testing dependencies of lineage transcription factors have therapeutic implications, given the emergence of treatment-resistant, aggressive forms of neuroendocrine prostate cancer. See related commentary by McQuillen and Brady, p. 3499.
Collapse
Affiliation(s)
- Kathia E. Rodarte
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shaked Nir Heyman
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lydia Flores
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Trisha K. Savage
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan Villarreal
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Su Deng
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rajal B. Shah
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Trudy G. Oliver
- Department of Pharmacology and Cancer Biology, Duke University, NC 27708, USA
| | - Jane E. Johnson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
3
|
Nelson BJ, Krol V, Bansal A, Andersson JD, Wuest F, Pandey MK. Aspects and prospects of preclinical theranostic radiopharmaceutical development. Theranostics 2024; 14:6446-6470. [PMID: 39479448 PMCID: PMC11519794 DOI: 10.7150/thno.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 11/02/2024] Open
Abstract
This article provides an overview of preclinical theranostic radiopharmaceutical development, highlighting aspects of the preclinical development stages that can lead towards a clinical trial. The key stages of theranostic radiopharmaceutical development are outlined, including target selection, tracer development, radiopharmaceutical synthesis, automation and quality control, in vitro radiopharmaceutical analysis, selecting a suitable in vivo model, preclinical imaging and pharmacokinetic analysis, preclinical therapeutic analysis, dosimetry, toxicity, and preparing for clinical translation. Each stage is described and augmented with examples from the literature. Finally, an outlook on the prospects for the radiopharmaceutical theranostics field is provided.
Collapse
Affiliation(s)
- Bryce J.B. Nelson
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
| | - Viktoria Krol
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Aditya Bansal
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jan D. Andersson
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
- Edmonton Radiopharmaceutical Center, Alberta Health Services, Edmonton, Alberta, T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Mukesh K. Pandey
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Comprehensive Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Pachimsawat P, Tammayan M, Do TKA, Jantaratnotai N. The Use of Coffee Aroma for Stress Reduction in Postgraduate Dental Students. Int Dent J 2024; 74:1102-1109. [PMID: 38677970 PMCID: PMC11561488 DOI: 10.1016/j.identj.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/29/2024] Open
Abstract
OBJECTIVES This study aimed to investigate the potential reduction of academic stress related to a graded oral presentation in postgraduate dental students using coffee aromatherapy. METHODS Healthy postgraduate dental students in a seminar class were divided into coffee (n = 32) and control (n = 26) groups. There were 3 modes of aroma distribution: personal distribution with a coffee pad attached to a lanyard, a lanyard plus a personal fan for ventilation of the aroma, and the typical method of the diffuser to spread the aroma in the ambient air. Stress markers comprised levels of salivary alpha-amylase (sAA), cortisol (sCort), and chromogranin A (sCgA). Pulse rates were also measured. RESULTS Levels of sAA increased 176.62% ± 30.26% between pre- and postpresentation in the control group. Inhaling coffee aroma during the presentation period significantly ameliorated sAA increase at 81.02% ± 14.90% (P = .015). sCort levels tended to decrease in the coffee group, but not significantly. Surprisingly, sCgA levels increased more in the coffee group. Also, pulse rates decreased in the coffee group (-2.07 ± 2.81 bpm) and increased in the control group (6.90 ± 3.22 bpm; P = .035). Subgroup analysis did not reveal differences in salivary markers amongst the 3 aroma distribution modes. CONCLUSIONS Coffee aroma could have an anxiolytic effect on postgraduate dental students, as evidenced by changes in sAA levels and pulse rates. Personal aroma distribution was also a useful and effective mode of aromatherapy.
Collapse
Affiliation(s)
- Praewpat Pachimsawat
- Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Manita Tammayan
- Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Thi Kim Anh Do
- Department of Advanced General Dentistry, Faculty of Dentistry, Mahidol University, Bangkok, Thailand; Department of Prosthodontic, Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at HCM City, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
5
|
Kaushal JB, Takkar S, Batra SK, Siddiqui JA. Diverse landscape of genetically engineered mouse models: Genomic and molecular insights into prostate cancer. Cancer Lett 2024; 593:216954. [PMID: 38735382 PMCID: PMC11799897 DOI: 10.1016/j.canlet.2024.216954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Prostate cancer (PCa) is a significant health concern for men worldwide and is particularly prevalent in the United States. It is a complex disease presenting different molecular subtypes and varying degrees of aggressiveness. Transgenic/genetically engineered mouse models (GEMMs) greatly enhanced our understanding of the intricate molecular processes that underlie PCa progression and have offered valuable insights into potential therapeutic targets for this disease. The integration of whole-exome and whole-genome sequencing, along with expression profiling, has played a pivotal role in advancing GEMMs by facilitating the identification of genetic alterations driving PCa development. This review focuses on genetically modified mice classified into the first and second generations of PCa models. We summarize whether models created by manipulating the function of specific genes replicate the consequences of genomic alterations observed in human PCa, including early and later disease stages. We discuss cases where GEMMs did not fully exhibit the expected human PCa phenotypes and possible causes of the failure. Here, we summarize the comprehensive understanding, recent advances, strengths and limitations of the GEMMs in advancing our insights into PCa, offering genetic and molecular perspectives for developing novel GEMM models.
Collapse
Affiliation(s)
- Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Simran Takkar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| |
Collapse
|
6
|
Dos Santos L, Carbone F, Pacreau E, Diarra S, Luka M, Pigat N, Baures M, Navarro E, Anract J, Barry Delongchamps N, Cagnard N, Bost F, Nemazanyy I, Petitjean O, Hamaï A, Ménager M, Palea S, Guidotti JE, Goffin V. Cell Plasticity in a Mouse Model of Benign Prostate Hyperplasia Drives Amplification of Androgen-Independent Epithelial Cell Populations Sensitive to Antioxidant Therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:30-51. [PMID: 37827216 DOI: 10.1016/j.ajpath.2023.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Benign prostate hyperplasia (BPH) is caused by the nonmalignant enlargement of the transition zone of the prostate gland, leading to lower urinary tract symptoms. Although current medical treatments are unsatisfactory in many patients, the limited understanding of the mechanisms driving disease progression prevents the development of alternative therapeutic strategies. The probasin-prolactin (Pb-PRL) transgenic mouse recapitulates many histopathological features of human BPH. Herein, these alterations parallel urodynamic disturbance reminiscent of lower urinary tract symptoms. Single-cell RNA-sequencing analysis of Pb-PRL mouse prostates revealed that their epithelium mainly includes low-androgen signaling cell populations analogous to Club/Hillock cells enriched in the aged human prostate. These intermediate cells are predicted to result from the reprogramming of androgen-dependent luminal cells. Pb-PRL mouse prostates exhibited increased vulnerability to oxidative stress due to reduction of antioxidant enzyme expression. One-month treatment of Pb-PRL mice with anethole trithione (ATT), a specific inhibitor of mitochondrial ROS production, reduced prostate weight and voiding frequency. In human BPH-1 epithelial cells, ATT decreased mitochondrial metabolism, cell proliferation, and stemness features. ATT prevented the growth of organoids generated by sorted Pb-PRL basal and LSCmed cells, the two major BPH-associated, androgen-independent epithelial cell compartments. Taken together, these results support cell plasticity as a driver of BPH progression and therapeutic resistance to androgen signaling inhibition, and identify antioxidant therapy as a promising treatment of BPH.
Collapse
Affiliation(s)
- Leïla Dos Santos
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Francesco Carbone
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Imagine Institute, Université Paris Cité, Atip-Avenir Team, INSERM UMR 1163, Paris, France; Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Emeline Pacreau
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Sekou Diarra
- Humana Biosciences SAS, Prologue Biotech, Labège, France
| | - Marine Luka
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France; Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Imagine Institute, Université Paris Cité, Atip-Avenir Team, INSERM UMR 1163, Paris, France
| | - Natascha Pigat
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Manon Baures
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Emilie Navarro
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Julien Anract
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France; Urology Department, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Nicolas Barry Delongchamps
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France; Urology Department, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Nicolas Cagnard
- Bioinformatics Core Platform, Université Paris Cité, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France
| | - Frédéric Bost
- C3M, INSERM U1065, Université Côte d'Azur, Equipe Labélisée Ligue Nationale contre le Cancer, Nice, France
| | - Ivan Nemazanyy
- Metabolomics Core Facility, Université de Paris-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France
| | | | - Ahmed Hamaï
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Mickaël Ménager
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Imagine Institute, Université Paris Cité, Atip-Avenir Team, INSERM UMR 1163, Paris, France; Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Stefano Palea
- Humana Biosciences SAS, Prologue Biotech, Labège, France
| | - Jacques-Emmanuel Guidotti
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Vincent Goffin
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France.
| |
Collapse
|
7
|
Let’s Go 3D! New Generation of Models for Evaluating Drug Response and Resistance in Prostate Cancer. Int J Mol Sci 2023; 24:ijms24065293. [PMID: 36982368 PMCID: PMC10049142 DOI: 10.3390/ijms24065293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Prostate cancer (PC) is the third most frequently diagnosed cancer worldwide and the second most frequent in men. Several risk factors can contribute to the development of PC, and those include age, family history, and specific genetic mutations. So far, drug testing in PC, as well as in cancer research in general, has been performed on 2D cell cultures. This is mainly because of the vast benefits these models provide, including simplicity and cost effectiveness. However, it is now known that these models are exposed to much higher stiffness; lose physiological extracellular matrix on artificial plastic surfaces; and show changes in differentiation, polarization, and cell–cell communication. This leads to the loss of crucial cellular signaling pathways and changes in cell responses to stimuli when compared to in vivo conditions. Here, we emphasize the importance of a diverse collection of 3D PC models and their benefits over 2D models in drug discovery and screening from the studies done so far, outlining their benefits and limitations. We highlight the differences between the diverse types of 3D models, with the focus on tumor–stroma interactions, cell populations, and extracellular matrix composition, and we summarize various standard and novel therapies tested on 3D models of PC for the purpose of raising awareness of the possibilities for a personalized approach in PC therapy.
Collapse
|
8
|
Mejía-Hernández JO, Keam SP, Saleh R, Muntz F, Fox SB, Byrne D, Kogan A, Pang L, Huynh J, Litchfield C, Caramia F, Lozano G, He H, You JM, Sandhu S, Williams SG, Haupt Y, Haupt S. Modelling aggressive prostate cancers of young men in immune-competent mice, driven by isogenic Trp53 alterations and Pten loss. Cell Death Dis 2022; 13:777. [PMID: 36075907 PMCID: PMC9465983 DOI: 10.1038/s41419-022-05211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 01/21/2023]
Abstract
Understanding prostate cancer onset and progression in order to rationally treat this disease has been critically limited by a dire lack of relevant pre-clinical animal models. We have generated a set of genetically engineered mice that mimic human prostate cancer, initiated from the gland epithelia. We chose driver gene mutations that are specifically relevant to cancers of young men, where aggressive disease poses accentuated survival risks. An outstanding advantage of our models are their intact repertoires of immune cells. These mice provide invaluable insight into the importance of immune responses in prostate cancer and offer scope for studying treatments, including immunotherapies. Our prostate cancer models strongly support the role of tumour suppressor p53 in functioning to critically restrain the emergence of cancer pathways that drive cell cycle progression; alter metabolism and vasculature to fuel tumour growth; and mediate epithelial to mesenchymal-transition, as vital to invasion. Importantly, we also discovered that the type of p53 alteration dictates the specific immune cell profiles most significantly disrupted, in a temporal manner, with ramifications for disease progression. These new orthotopic mouse models demonstrate that each of the isogenic hotspot p53 amino acid mutations studied (R172H and R245W, the mouse equivalents of human R175H and R248W respectively), drive unique cellular changes affecting pathways of proliferation and immunity. Our findings support the hypothesis that individual p53 mutations confer their own particular oncogenic gain of function in prostate cancer.
Collapse
Affiliation(s)
- Javier Octavio Mejía-Hernández
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,Present Address: Telix Pharmaceuticals Ltd, Melbourne, VIC 3051 Australia
| | - Simon P. Keam
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1135.60000 0001 1512 2287Present Address: CSL Innovation, CSL Ltd, Melbourne, VIC 3052 Australia
| | - Reem Saleh
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Fenella Muntz
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Stephen B. Fox
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Pathology Department, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - David Byrne
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1055.10000000403978434Pathology Department, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Arielle Kogan
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Lokman Pang
- grid.1018.80000 0001 2342 0938Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084 Australia
| | - Jennifer Huynh
- grid.1018.80000 0001 2342 0938Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084 Australia
| | - Cassandra Litchfield
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Franco Caramia
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Guillermina Lozano
- grid.240145.60000 0001 2291 4776Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.267308.80000 0000 9206 2401University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX USA
| | - Hua He
- grid.240145.60000 0001 2291 4776Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX USA
| | - James M. You
- grid.267308.80000 0000 9206 2401University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX USA
| | - Shahneen Sandhu
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000 Australia
| | - Scott G. Williams
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Division of Radiation Oncology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Ygal Haupt
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,Present Address: Vittail Ltd, Melbourne, VIC 3146 Australia
| | - Sue Haupt
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| |
Collapse
|
9
|
Zhou L, Zhang C, Zhang Y, Shi C. Application of Organoid Models in Prostate Cancer Research. Front Oncol 2021; 11:736431. [PMID: 34646778 PMCID: PMC8504437 DOI: 10.3389/fonc.2021.736431] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/09/2021] [Indexed: 11/24/2022] Open
Abstract
Complex heterogeneity is an important characteristic in the development of prostate cancer (PCa), which further leads to the failure of known therapeutic options. PCa research has been hampered by the current in vitro model systems that cannot fully reflect the biological characteristics and clinical diversity of PCa. The tumor organoid model in three-dimensional culture retains the heterogeneity of primary tumor tissues in vitro well and enables high-throughput screening and genome editing. Therefore, the establishment of a PCa organoid model that recapitulates the diverse heterogeneity observed in clinical settings is of great significance for the study of PCa. In this review, we summarize the culture conditions, establishments, and limitations of PCa organoids and further review their application for the study of pathogenesis, drug screening, mechanism of drug resistance, and individualized treatment for PCa. Additionally, we look forward to other potential developmental directions of PCa organoids, such as the interaction between prostate cancer tumor cells and their microenvironment, clinical individualized treatments, heterogeneous transformation model, tumor immunotherapy, and organoid models combined with liquid biopsy. Through this, we provide more effective preclinical experimental schemes using the PCa organoid model.
Collapse
Affiliation(s)
- Ligui Zhou
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an, China
| | - Caiqin Zhang
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an, China
| | - Yongbin Zhang
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
10
|
Riedel M, Cai H, Stoltze IC, Vendelbo MH, Wagner EF, Bakiri L, Thomsen MK. Targeting AP-1 transcription factors by CRISPR in the prostate. Oncotarget 2021; 12:1956-1961. [PMID: 34548912 PMCID: PMC8448511 DOI: 10.18632/oncotarget.27997] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is the second most diagnosed cancer in men. It is a slow progressing cancer, but when the disease reaches an advanced stage, treatment options are limited. Sequencing analyses of cancer samples have identified genes that can potentially drive disease progression. We implemented the CRISPR/Cas9 technology to simultaneously manipulate multiple genes in the murine prostate and thus to functionally test putative cancer driver genes in vivo. The activating protein-1 (AP-1) transcription factor is associated with many different cancer types, with the proto-oncogenes JUN and FOS being the two most intensely studied subunits. We analyzed expression of FOS and JUNB in human prostate cancer datasets and observed decreased expression in advanced stages. By applying CRISPR/Cas9 technology, the role of these two transcription factors in prostate cancer progression was functionally tested. Our data revealed that loss of either JunB or Fos in the context of Pten loss drives prostate cancer progression to invasive disease. Furthermore, loss of Fos increases Jun expression, and CRISPR inactivation of Jun in this context decreases cell proliferation. Overall, these in vivo studies reveal that JunB and Fos exhibit a tumor suppressor function by repressing invasive disease, whereas Jun is oncogenic and increases cell proliferation. This demonstrates that AP-1 factors are implicated in prostate cancer progression at different stages and display a dual function as tumor suppressor and as an oncogene in cancer progression.
Collapse
Affiliation(s)
- Maria Riedel
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Huiqiang Cai
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Iben C Stoltze
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mikkel H Vendelbo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Erwin F Wagner
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna (MUV), Vienna, Austria.,Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUV), Vienna, Austria
| | - Latifa Bakiri
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUV), Vienna, Austria
| | - Martin K Thomsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Transcriptomic Analysis of LNCaP Tumor Xenograft to Elucidate the Components and Mechanisms Contributed by Tumor Environment as Targets for Dietary Prostate Cancer Prevention Studies. Nutrients 2021; 13:nu13031000. [PMID: 33808801 PMCID: PMC8003580 DOI: 10.3390/nu13031000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022] Open
Abstract
LNCaP athymic xenograft model has been widely used to allow researchers to examine the effects and mechanisms of experimental treatments such as diet and diet-derived cancer preventive and therapeutic compounds on prostate cancer. However, the biological characteristics of human LNCaP cells before/after implanting in athymic mouse and its relevance to clinical human prostate outcomes remain unclear and may dictate interpretation of biological efficacies/mechanisms of diet/diet-derived experimental treatments. In this study, transcriptome profiles and pathways of human prostate LNCaP cells before (in vitro) and after (in vivo) implanting into xenograft mouse were compared using RNA-sequencing technology (RNA-seq) followed by bioinformatic analysis. A shift from androgen-responsive to androgen nonresponsive status was observed when comparing LNCaP xenograft tumor to culture cells. Androgen receptor and aryl-hydrocarbon pathway were found to be inhibited and interleukin-1 (IL-1) mediated pathways contributed to these changes. Coupled with in vitro experiments modeling for androgen exposure, cell-matrix interaction, inflammation, and hypoxia, we identified specific mechanisms that may contribute to the observed changes in genes and pathways. Our results provide critical baseline transcriptomic information for a tumor xenograft model and the tumor environments that might be associated with regulating the progression of the xenograft tumor, which may influence interpretation of diet/diet-derived experimental treatments.
Collapse
|
12
|
In vivo CRISPR inactivation of Fos promotes prostate cancer progression by altering the associated AP-1 subunit Jun. Oncogene 2021; 40:2437-2447. [PMID: 33674748 PMCID: PMC7610543 DOI: 10.1038/s41388-021-01724-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/22/2022]
Abstract
Prostate cancer is a major global health concern with limited treatment options for advanced disease. Its heterogeneity challenges the identification of crucial driver genes implicated in disease progression. Activating protein-1 (AP-1) transcription factor is associated with cancer since the first identification of its subunits, the proto-oncogenes JUN and FOS. Whereas both JUN and FOS, have been implicated in prostate cancer, this study provides the first functional evidence that FOS acts as a tumor suppressor during prostate cancer progression and invasion. Data mining revealed decreased FOS expression in prostate cancer and a further downregulation in metastatic disease, consistent with FOS expression in cell lines derived from different prostate cancer stages. FOS deficiency in prostate cancer cell lines increases cell proliferation and induces oncogenic pathway alterations. Importantly, in vivo CRISPR/Cas9-mediated Fos and Pten double mutation in murine prostate epithelium results in increased proliferation and invasiveness compared to the abrogation of Pten alone. Interestingly, enhanced Jun expression is observed in the murine prostatic intraepithelial neoplasia lacking Fos. CRISPR/Cas9-mediated knockout of Jun combined with Fos and Pten deficiency diminishes the increased proliferation rate in vivo, but not the ability to form invasive disease. Overall, we demonstrate that loss of Fos promotes disease progression from clinical latent prostate cancer to advanced disease through accelerated proliferation and invasiveness, partly through Jun.
Collapse
|
13
|
Fagerland SMT, Berg S, Hill DK, Snipstad S, Sulheim E, Hyldbakk A, Kim J, Davies CDL. Ultrasound-Mediated Delivery of Chemotherapy into the Transgenic Adenocarcinoma of the Mouse Prostate Model. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:3032-3045. [PMID: 32800470 DOI: 10.1016/j.ultrasmedbio.2020.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Ultrasound (US) in combination with microbubbles (MB) has had promising results in improving delivery of chemotherapeutic agents. However, most studies are done in immunodeficient mice with xenografted tumors. We used two phenotypes of the spontaneous transgenic adenocarcinoma of the mouse prostate (TRAMP) model to evaluate if US + MB could enhance the therapeutic efficacy of cabazitaxel (Cab). Cab was either injected intravenously as free drug or encapsulated into nanoparticles. In both cases, Cab transiently reduced tumor and prostate volume in the TRAMP model. No additional therapeutic efficacy was observed combining Cab with US + MB, except for one tumor. Additionally, histology grading and immunostaining of Ki67 did not reveal differences between treatment groups. Mass spectrometry revealed that nanoparticle encapsulation of Cab increased the circulation time and enhanced the accumulation in liver and spleen compared with free Cab. The therapeutic results in this spontaneous, clinically relevant tumor model differ from the improved therapeutic response observed in xenografts combining US + MB and chemotherapy.
Collapse
Affiliation(s)
- Stein-Martin T Fagerland
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sigrid Berg
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Health Research, SINTEF Digital, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway
| | - Deborah K Hill
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sofie Snipstad
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Einar Sulheim
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Astrid Hyldbakk
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Jana Kim
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
14
|
Thorkelsson A, Merlino G, Michael H. Build-a-Mouse: Melanoma Modeling Picks up Speed. Cancer Res 2020; 80:655-656. [PMID: 32060226 DOI: 10.1158/0008-5472.can-19-3869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/16/2022]
Abstract
The study by Bok and colleagues in this issue introduces a new paradigm for generating new mouse models for melanoma research. Genetically engineered mouse models (GEMM) have been crucial for understanding tumor initiation and modeling potential therapies, but are time consuming to create. Bok and colleagues generated and validated high-contribution chimeric GEMM models using common melanoma GEMMs as a starting point and added additional CRISPR, Cre-inducible, and Dox-inducible alleles. This rapid method for generating new models has the potential to revolutionize mouse modeling for melanoma.See related article by Bok et al., p. 912.
Collapse
Affiliation(s)
- Andres Thorkelsson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Helen Michael
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, Bethesda, Maryland.
| |
Collapse
|
15
|
Liu TT, Ewald JA, Ricke EA, Bell R, Collins C, Ricke WA. Modeling human prostate cancer progression in vitro. Carcinogenesis 2020; 40:893-902. [PMID: 30590461 DOI: 10.1093/carcin/bgy185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/10/2018] [Indexed: 01/24/2023] Open
Abstract
Detailed mechanisms involved in prostate cancer (CaP) development and progression are not well understood. Current experimental models used to study CaP are not well suited to address this issue. Previously, we have described the hormonal progression of non-tumorigenic human prostate epithelial cells (BPH1) into malignant cells via tissue recombination. Here, we describe a method to derive human cell lines from distinct stages of CaP that parallel cellular, genetic and epigenetic changes found in patients with cancers. This BPH1-derived Cancer Progression (BCaP) model represents different stages of cancer. Using diverse analytical strategies, we show that the BCaP model reproduces molecular characteristics of CaP in human patients. Furthermore, we demonstrate that BCaP cells have altered gene expression of shared pathways with human and transgenic mouse CaP data, as well as, increasing genomic instability with TMPRSS2-ERG fusion in advanced tumor cells. Together, these cell lines represent a unique model of human CaP progression providing a novel tool that will allow the discovery and experimental validation of mechanisms regulating human CaP development and progression. This BPH1-derived Cancer Progression (BCaP) model represents different stages of cancer. The BCaP model reproduces molecular characteristics of prostate cancer. The cells have altered gene expression with TMPRSS2-ERG fusion representing a unique model for prostate cancer progression.
Collapse
Affiliation(s)
- Teresa T Liu
- Department of Urology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jonathan A Ewald
- Department of Urology, University of Wisconsin-Madison, Madison, WI, USA
| | - Emily A Ricke
- Department of Urology, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert Bell
- Vancouver Prostate Center, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Colin Collins
- Vancouver Prostate Center, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - William A Ricke
- Department of Urology, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- George M. O'Brien Center of Research Excellence, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
16
|
Wegner KA, Mueller BR, Unterberger CJ, Avila EJ, Ruetten H, Turco AE, Oakes SR, Girardi NM, Halberg RB, Swanson SM, Marker PC, Vezina CM. Prostate epithelial-specific expression of activated PI3K drives stromal collagen production and accumulation. J Pathol 2019; 250:231-242. [PMID: 31674011 DOI: 10.1002/path.5363] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 10/27/2019] [Indexed: 01/01/2023]
Abstract
We genetically engineered expression of an activated form of P110 alpha, the catalytic subunit of PI3K, in mouse prostate epithelium to create a mouse model of direct PI3K activation (Pbsn-cre4Prb;PI3KGOF/+ ). We hypothesized that direct activation would cause rapid neoplasia and cancer progression. Pbsn-cre4Prb;PI3KGOF/+ mice developed widespread prostate intraepithelial hyperplasia, but stromal invasion was limited and overall progression was slower than anticipated. However, the model produced profound and progressive stromal remodeling prior to explicit epithelial neoplasia. Increased stromal cellularity and inflammatory infiltrate were evident as early as 4 months of age and progressively increased through 12 months of age, the terminal endpoint of this study. Prostatic collagen density and phosphorylated SMAD2-positive prostatic stromal cells were expansive and accumulated with age, consistent with pro-fibrotic TGF-β pathway activation. Few reported mouse models accumulate prostate-specific collagen to the degree observed in Pbsn-cre4Prb;PI3KGOF/+ . Our results indicate a signaling process beginning with prostatic epithelial PI3K and TGF-β signaling that drives prostatic stromal hypertrophy and collagen accumulation. These mice afford a unique opportunity to explore molecular mechanisms of prostatic collagen accumulation that is relevant to cancer progression, metastasis, inflammation and urinary dysfunction. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kyle A Wegner
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Brett R Mueller
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher J Unterberger
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Enrique J Avila
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Hannah Ruetten
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Anne E Turco
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Steven R Oakes
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicholas M Girardi
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard B Halberg
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Steven M Swanson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul C Marker
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Chad M Vezina
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
17
|
Zhang J, Larrocha PSL, Zhang B, Wainwright D, Dhar P, Wu JD. Antibody targeting tumor-derived soluble NKG2D ligand sMIC provides dual co-stimulation of CD8 T cells and enables sMIC + tumors respond to PD1/PD-L1 blockade therapy. J Immunother Cancer 2019; 7:223. [PMID: 31446896 PMCID: PMC6709558 DOI: 10.1186/s40425-019-0693-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/24/2019] [Indexed: 02/21/2023] Open
Abstract
Background Insufficient co-stimulation accounts for a great deal of the suboptimal activation of cytotoxic CD8 T cells (CTLs) and presumably unsatisfactory clinical expectation of PD1/PD-L1 therapy. Tumor-derived soluble NKG2D ligands are associated with poor clinical response to PD1/PD-L1 blockade therapy in cancer patients. One of the mostly occurring tumor-derived soluble NKG2D ligands, the soluble MHC I chain related molecule (sMIC) can impair co-stimulation to CD8 T cells. We investigated whether co-targeting sMIC can provide optimal co-stimulation to CTLs and enhance the therapeutic effect of PD1/PD-L1 blockades. Methods Single agent therapy of a PD1/PD-L1 blockade antibody or a sMIC-targeting non-blocking antibody or a combination therapy of the two antibodies were implied to well-characterized pre-clinical MIC/sMIC+ tumor models that closely resemble the NKG2D-mediated oncoimmune dynamics of MIC+ cancer patients. Therapeutic efficacy and associated effector mechanisms were evaluated. Results We show that antibody co-targeting sMIC enables or enhances the response of sMIC+ tumors to PD1/PD-L1 blockade therapy. The therapy response of the combination therapy was associated with enhanced antigen-specific CD8 T cell enrichment and function in tumors. We show that co-targeting sMIC with a nonblocking antibody provides antigen-specific CD8 T cells with NKG2D and CD28 dual co-stimulation, in addition to elimination of inhibitory signals, and thus amplifies antigen-specific CD8 T cell anti-tumor responses. Conclusion Our findings provide the proof-of-concept rationale and previously undiscovered mechanisms for co-targeting sMIC to enable and enhance the response to PD1/PD-L1 blockade therapy in sMIC+ cancer patients. Electronic supplementary material The online version of this article (10.1186/s40425-019-0693-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinyu Zhang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Bin Zhang
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Derek Wainwright
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Payal Dhar
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jennifer D Wu
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
18
|
STAT5a/b Deficiency Delays, but does not Prevent, Prolactin-Driven Prostate Tumorigenesis in Mice. Cancers (Basel) 2019; 11:cancers11070929. [PMID: 31269779 PMCID: PMC6678910 DOI: 10.3390/cancers11070929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 11/28/2022] Open
Abstract
The canonical prolactin (PRL) Signal Transducer and Activator of Transcription (STAT) 5 pathway has been suggested to contribute to human prostate tumorigenesis via an autocrine/paracrine mechanism. The probasin (Pb)-PRL transgenic mouse models this mechanism by overexpressing PRL specifically in the prostate epithelium leading to strong STAT5 activation in luminal cells. These mice exhibit hypertrophic prostates harboring various pre-neoplastic lesions that aggravate with age and accumulation of castration-resistant stem/progenitor cells. As STAT5 signaling is largely predominant over other classical PRL-triggered pathways in Pb-PRL prostates, we reasoned that Pb-Cre recombinase-driven genetic deletion of a floxed Stat5a/b locus should prevent prostate tumorigenesis in so-called Pb-PRLΔSTAT5 mice. Anterior and dorsal prostate lobes displayed the highest Stat5a/b deletion efficiency with no overt compensatory activation of other PRLR signaling cascade at 6 months of age; hence the development of tumor hallmarks was markedly reduced. Stat5a/b deletion also reversed the accumulation of stem/progenitor cells, indicating that STAT5 signaling regulates prostate epithelial cell hierarchy. Interestingly, ERK1/2 and AKT, but not STAT3 and androgen signaling, emerged as escape mechanisms leading to delayed tumor development in aged Pb-PRLΔSTAT5 mice. Unexpectedly, we found that Pb-PRL prostates spontaneously exhibited age-dependent decline of STAT5 signaling, also to the benefit of AKT and ERK1/2 signaling. As a consequence, both Pb-PRL and Pb-PRLΔSTAT5 mice ultimately displayed similar pathological prostate phenotypes at 18 months of age. This preclinical study provides insight on STAT5-dependent mechanisms of PRL-induced prostate tumorigenesis and alternative pathways bypassing STAT5 signaling down-regulation upon prostate neoplasia progression.
Collapse
|
19
|
Saloman JL, Albers KM, Cruz-Monserrate Z, Davis BM, Edderkaoui M, Eibl G, Epouhe AY, Gedeon JY, Gorelick FS, Grippo PJ, Groblewski GE, Husain SZ, Lai KK, Pandol SJ, Uc A, Wen L, Whitcomb DC. Animal Models: Challenges and Opportunities to Determine Optimal Experimental Models of Pancreatitis and Pancreatic Cancer. Pancreas 2019; 48:759-779. [PMID: 31206467 PMCID: PMC6581211 DOI: 10.1097/mpa.0000000000001335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At the 2018 PancreasFest meeting, experts participating in basic research met to discuss the plethora of available animal models for studying exocrine pancreatic disease. In particular, the discussion focused on the challenges currently facing the field and potential solutions. That meeting culminated in this review, which describes the advantages and limitations of both common and infrequently used models of exocrine pancreatic disease, namely, pancreatitis and exocrine pancreatic cancer. The objective is to provide a comprehensive description of the available models but also to provide investigators with guidance in the application of these models to investigate both environmental and genetic contributions to exocrine pancreatic disease. The content covers both nongenic and genetically engineered models across multiple species (large and small). Recommendations for choosing the appropriate model as well as how to conduct and present results are provided.
Collapse
Affiliation(s)
- Jami L. Saloman
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Kathryn M. Albers
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition; Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Brian M. Davis
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Mouad Edderkaoui
- Basic and Translational Pancreas Research, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Ariel Y. Epouhe
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Jeremy Y. Gedeon
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Fred S. Gorelick
- Department of Internal Medicine, Section of Digestive Diseases & Department of Cell Biology Yale University School of Medicine; Veterans Affairs Connecticut Healthcare, West Haven, CT
| | - Paul J. Grippo
- Department of Medicine, Division of Gastroenterology and Hepatology, UI Cancer Center, University of Illinois at Chicago, Chicago, IL
| | - Guy E. Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | | | - Keane K.Y. Lai
- Department of Pathology (National Medical Center), Department of Molecular Medicine (Beckman Research Institute), and Comprehensive Cancer Center, City of Hope, Duarte, CA
| | - Stephen J. Pandol
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Aliye Uc
- Stead Family Department of Pediatrics, University of Iowa, Stead Family Children’s Hospital, Iowa City, IA
| | - Li Wen
- Department of Pediatrics, Stanford University, Palo Alto, CA
| | | |
Collapse
|
20
|
Pigat N, Reyes-Gomez E, Boutillon F, Palea S, Barry Delongchamps N, Koch E, Goffin V. Combined Sabal and Urtica Extracts (WS ® 1541) Exert Anti-proliferative and Anti-inflammatory Effects in a Mouse Model of Benign Prostate Hyperplasia. Front Pharmacol 2019; 10:311. [PMID: 30984003 PMCID: PMC6450068 DOI: 10.3389/fphar.2019.00311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/14/2019] [Indexed: 12/19/2022] Open
Abstract
WS® 1541 is a phytopharmaceutical drug combination containing a lipophilic extract from fruits of Sabal serrulata (WS® 1473) and an aqueous ethanolic extract from roots of Urtica dioica (WS® 1031). It is approved in several countries worldwide for the treatment of lower urinary tract syndrome (LUTS) linked to benign prostate hyperplasia (BPH). Clinical studies have demonstrated the efficacy of this unique combination in the treatment of BPH-related LUTS. However, its mechanisms of action in vivo remain partly uncharacterized. The aim of this study was to take advantage of a validated mouse model of BPH to better characterize its growth-inhibitory and anti-inflammatory properties. We used the probasin–prolactin (Pb-PRL) transgenic mouse model in which prostate-specific overexpression of PRL results in several features of the human disease including tissue hypertrophy, epithelial hyperplasia, increased stromal cellularity, inflammation, and LUTS. Six-month-old heterozygous Pb-PRL male mice were randomly distributed to five groups (11–12 animals/group) orally treated for 28 consecutive days with WS® 1541 (300, 600, or 900 mg/kg/day), the 5α-reductase inhibitor finasteride used as reference (5 mg/kg/day) or vehicle (olive oil 5 ml/kg/day). Administration of WS® 1541 was well tolerated and caused a dose-dependent reduction of prostate weight (vs. vehicle) that was statistically significant at the two highest doses. This effect was accompanied by a reduction in prostate cell proliferation as assessed by lower Ki-67 expression (qPCR and immunohistochemistry). In contrast, finasteride had no or only a mild effect on these parameters. The growth-inhibitory activity of WS® 1541 was accompanied by a strong anti-inflammatory effect as evidenced by the reduced infiltration of cells expressing the leukocyte common antigen CD45. In sharp contrast, finasteride significantly increased the prostate inflammatory status according to this readout. Molecular profiling (qPCR) of 23 selected pro-inflammatory genes confirmed the strong anti-inflammatory potency of WS® 1541 compared to finasteride. Since treatment of WS® 1541 did not interfere with transgene expression and activity in the prostate of Pb-PRL mice, the effects observed in this study are entirely attributable to the intrinsic pharmacological action of the drug combination.
Collapse
Affiliation(s)
- Natascha Pigat
- PRL/GH Pathophysiology Laboratory, Institut Necker Enfants Malades, Unit 1151, Inserm, Paris, France.,Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Edouard Reyes-Gomez
- Unité d'Histologie et d'Anatomie Pathologique, Laboratoire d'Anatomo-Cytopathologie, Biopôle Alfort, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France.,Inserm, U955 - IMRB, Ecole Nationale Vétérinaire d'Alfort, UPEC, Maisons-Alfort, France
| | - Florence Boutillon
- PRL/GH Pathophysiology Laboratory, Institut Necker Enfants Malades, Unit 1151, Inserm, Paris, France.,Faculté de Médecine, Université Paris Descartes, Paris, France
| | | | - Nicolas Barry Delongchamps
- PRL/GH Pathophysiology Laboratory, Institut Necker Enfants Malades, Unit 1151, Inserm, Paris, France.,Faculté de Médecine, Université Paris Descartes, Paris, France.,Urology Department, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Egon Koch
- Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany
| | - Vincent Goffin
- PRL/GH Pathophysiology Laboratory, Institut Necker Enfants Malades, Unit 1151, Inserm, Paris, France.,Faculté de Médecine, Université Paris Descartes, Paris, France
| |
Collapse
|
21
|
Arriaga JM, Abate-Shen C. Genetically Engineered Mouse Models of Prostate Cancer in the Postgenomic Era. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a030528. [PMID: 29661807 DOI: 10.1101/cshperspect.a030528] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent genomic sequencing analyses have unveiled the spectrum of genomic alterations that occur in primary and advanced prostate cancer, raising the question of whether the corresponding genes are functionally relevant for prostate tumorigenesis, and whether such functions are associated with particular disease stages. In this review, we describe genetically engineered mouse models (GEMMs) of prostate cancer, focusing on those that model genomic alterations known to occur in human prostate cancer. We consider whether the phenotypes of GEMMs based on gain or loss of function of the relevant genes provide reliable counterparts to study the predicted consequences of the corresponding genomic alterations as occur in human prostate cancer, and we discuss exceptions in which the GEMMs do not fully emulate the expected phenotypes. Last, we highlight future directions for the generation of new GEMMs of prostate cancer and consider how we can use GEMMs most effectively to decipher the biological and molecular mechanisms of disease progression, as well as to tackle clinically relevant questions.
Collapse
Affiliation(s)
- Juan M Arriaga
- Departments of Urology, Medicine, Systems Biology, and Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| | - Cory Abate-Shen
- Departments of Urology, Medicine, Systems Biology, and Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
22
|
Kido LA, de Almeida Lamas C, Maróstica MR, Cagnon VHA. Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model: A good alternative to study PCa progression and chemoprevention approaches. Life Sci 2019; 217:141-147. [DOI: 10.1016/j.lfs.2018.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/26/2018] [Accepted: 12/02/2018] [Indexed: 12/15/2022]
|
23
|
Beshiri ML, Tice CM, Tran C, Nguyen HM, Sowalsky AG, Agarwal S, Jansson KH, Yang Q, McGowen KM, Yin J, Alilin AN, Karzai FH, Dahut WL, Corey E, Kelly K. A PDX/Organoid Biobank of Advanced Prostate Cancers Captures Genomic and Phenotypic Heterogeneity for Disease Modeling and Therapeutic Screening. Clin Cancer Res 2018; 24:4332-4345. [PMID: 29748182 PMCID: PMC6125202 DOI: 10.1158/1078-0432.ccr-18-0409] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/06/2018] [Accepted: 05/07/2018] [Indexed: 12/22/2022]
Abstract
Purpose: Prostate cancer translational research has been hampered by the lack of comprehensive and tractable models that represent the genomic landscape of clinical disease. Metastatic castrate-resistant prostate cancer (mCRPC) patient-derived xenografts (PDXs) recapitulate the genetic and phenotypic diversity of the disease. We sought to establish a representative, preclinical platform of PDX-derived organoids that is experimentally facile for high-throughput and mechanistic analysis.Experimental Design: Using 20 models from the LuCaP mCRPC PDX cohort, including adenocarcinoma and neuroendocrine lineages, we systematically tested >20 modifications to prostate organoid conditions. Organoids were evaluated for genomic and phenotypic stability and continued reliance on the AR signaling pathway. The utility of the platform as a genotype-dependent model of drug sensitivity was tested with olaparib and carboplatin.Results: All PDX models proliferated as organoids in culture. Greater than 50% could be continuously cultured long-term in modified conditions; however, none of the PDXs could be established long-term as organoids under previously reported conditions. In addition, the modified conditions improved the establishment of patient biopsies over current methods. The genomic heterogeneity of the PDXs was conserved in organoids. Lineage markers and transcriptomes were maintained between PDXs and organoids. Dependence on AR signaling was preserved in adenocarcinoma organoids, replicating a dominant characteristic of CRPC. Finally, we observed maximum cytotoxicity to the PARP inhibitor olaparib in BRCA2-/- organoids, similar to responses observed in patients.Conclusions: The LuCaP PDX/organoid models provide an expansive, genetically characterized platform to investigate the mechanisms of pathogenesis as well as therapeutic responses and their molecular correlates in mCRPC. Clin Cancer Res; 24(17); 4332-45. ©2018 AACR.
Collapse
Affiliation(s)
- Michael L Beshiri
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Caitlin M Tice
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Crystal Tran
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Holly M Nguyen
- Department of Urology, University of Washington, Seattle, Washington
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Supreet Agarwal
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Keith H Jansson
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Qi Yang
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Kerry M McGowen
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - JuanJuan Yin
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Aian Neil Alilin
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Fatima H Karzai
- Genitourinary Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - William L Dahut
- Genitourinary Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
24
|
Zhang Y, Wang D, Li M, Wei X, Liu S, Zhao M, Liu C, Wang X, Jiang X, Li X, Zhang S, Bergquist J, Wang B, Yang C, Mi J, Tian G. Quantitative Proteomics of TRAMP Mice Combined with Bioinformatics Analysis Reveals That PDGF-B Regulatory Network Plays a Key Role in Prostate Cancer Progression. J Proteome Res 2018; 17:2401-2411. [PMID: 29863873 DOI: 10.1021/acs.jproteome.8b00158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transgenic adenocarcinoma of the mouse prostate (TRAMP) mice is a widely used transgenic animal model of prostate cancer (PCa). We performed a label-free quantitative proteomics analysis combined with a bioinformatics analysis on the entire prostate protein extraction from TRAMP mice and compared it with WT littermates. From 2379 total identified proteins, we presented a modest mice prostate reference proteome containing 919 proteins. 61 proteins presented a significant expression difference between two groups. The integrative bioinformatics analysis predicted the overexpression of platelet-derived growth factor B (PDGF-B) in tumor tissues and supports the hypothesis of the PDGF-B signaling network as a key upstream regulator in PCa progression. Furthermore, we demonstrated that Crenolanib, a novel PDGF receptor inhibitor, inhibited PCa cell proliferation in a dose-dependent manner. Finally, we revealed the importance of PDGF-B regulatory network in PCa progression, which will assist us in understanding the role and mechanisms of PDGF-B in promoting cancer growth and provide valuable knowledge for future research on anti-PDGF therapy.
Collapse
Affiliation(s)
- Yuan Zhang
- Medicine and Pharmacy Research Center , Binzhou Medical University , Laishan District, No. 346, Guanhai Road , Yantai , Shandong Province 264003 , China
| | - Dan Wang
- Medicine and Pharmacy Research Center , Binzhou Medical University , Laishan District, No. 346, Guanhai Road , Yantai , Shandong Province 264003 , China.,Department of Radiology , Affiliated Hospital of Binzhou Medical University , 661 Second Huanghe Road , Binzhou , Shandong Province 256603 , China
| | - Min Li
- Medicine and Pharmacy Research Center , Binzhou Medical University , Laishan District, No. 346, Guanhai Road , Yantai , Shandong Province 264003 , China
| | - Xiaodan Wei
- Medicine and Pharmacy Research Center , Binzhou Medical University , Laishan District, No. 346, Guanhai Road , Yantai , Shandong Province 264003 , China
| | - Shuang Liu
- College of Enology , Binzhou Medical University , Laishan District, No. 346, Guanhai Road , Yantai , Shandong Province 264003 , China
| | - Miaoqing Zhao
- Department of Pathology , Provincial Hospital Affiliated to Shandong University , No. 324 Jingwu Weiqi Road , Jinan , Shandong Province 250021 , China
| | - Chu Liu
- Department of Urology , Yantai Yuhuangding Hospital , Zhifu District, No. 20, Yuhuangding East Road , Yantai , Shandong Province 264000 , China
| | - Xizhen Wang
- Imaging Center , Affiliated Hospital of Weifang Medical University , Kuiwen District, No. 465, Yuhe Road , Weifang , Shandong Province 256603 , China
| | - Xingyue Jiang
- Department of Radiology , Affiliated Hospital of Binzhou Medical University , 661 Second Huanghe Road , Binzhou , Shandong Province 256603 , China
| | - Xuri Li
- Medicine and Pharmacy Research Center , Binzhou Medical University , Laishan District, No. 346, Guanhai Road , Yantai , Shandong Province 264003 , China
| | - Shuping Zhang
- Medicine and Pharmacy Research Center , Binzhou Medical University , Laishan District, No. 346, Guanhai Road , Yantai , Shandong Province 264003 , China
| | - Jonas Bergquist
- Medicine and Pharmacy Research Center , Binzhou Medical University , Laishan District, No. 346, Guanhai Road , Yantai , Shandong Province 264003 , China.,Department of Chemistry - BMC , Uppsala University , P.O. Box 599, Husargatan 3 , Uppsala 75124 , Sweden
| | - Bin Wang
- Medicine and Pharmacy Research Center , Binzhou Medical University , Laishan District, No. 346, Guanhai Road , Yantai , Shandong Province 264003 , China
| | - Chunhua Yang
- Medicine and Pharmacy Research Center , Binzhou Medical University , Laishan District, No. 346, Guanhai Road , Yantai , Shandong Province 264003 , China
| | - Jia Mi
- Medicine and Pharmacy Research Center , Binzhou Medical University , Laishan District, No. 346, Guanhai Road , Yantai , Shandong Province 264003 , China.,Department of Chemistry - BMC , Uppsala University , P.O. Box 599, Husargatan 3 , Uppsala 75124 , Sweden
| | - Geng Tian
- Medicine and Pharmacy Research Center , Binzhou Medical University , Laishan District, No. 346, Guanhai Road , Yantai , Shandong Province 264003 , China
| |
Collapse
|
25
|
Beaver LM, Lӧhr CV, Clarke JD, Glasser ST, Watson GW, Wong CP, Zhang Z, Williams DE, Dashwood RH, Shannon J, Thuillier P, Ho E. Broccoli Sprouts Delay Prostate Cancer Formation and Decrease Prostate Cancer Severity with a Concurrent Decrease in HDAC3 Protein Expression in Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) Mice. Curr Dev Nutr 2018; 2:nzy002. [PMID: 30019025 PMCID: PMC6041877 DOI: 10.1093/cdn/nzy002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cruciferous vegetables have been associated with the chemoprevention of cancer. Epigenetic regulators have been identified as important targets for prostate cancer chemoprevention. Treatment of human prostate cancer cells with sulforaphane (SFN), a chemical from broccoli and broccoli sprouts, inhibits epigenetic regulators such as histone deacetylase (HDAC) enzymes, but it is not known whether consumption of a diet high in broccoli sprouts impacts epigenetic mechanisms in an in vivo model of prostate cancer. OBJECTIVE In the transgenic adenocarcinoma of the mouse prostate (TRAMP) model, we tested the hypothesis that a broccoli sprout diet suppresses prostate cancer, inhibits HDAC expression, alters histone modifications, and changes the expression of genes regulated by HDACs. METHODS TRAMP mice were fed a 15% broccoli sprout or control AIN93G diet; tissue samples were collected at 12 and 28 wk of age. RESULTS Mice fed broccoli sprouts had detectable amounts of SFN metabolites in liver, kidney, colon, and prostate tissues. Broccoli sprouts reduced prostate cancer incidence and progression to invasive cancer by 11- and 2.4-fold at 12 and 28 wk of age, respectively. There was a significant decline in HDAC3 protein expression in the epithelial cells of prostate ventral and anterior lobes at age 12 wk. Broccoli sprout consumption also decreased histone H3 lysine 9 trimethylation in the ventral lobe (age 12 wk), and decreased histone H3 lysine 18 acetylation in all prostate lobes (age 28 wk). A decline in p16 mRNA levels, a gene regulated by HDAC3, was associated with broccoli sprout consumption, but no significant changes were noted at the protein level. CONCLUSIONS Broccoli sprout intake was associated with a decline in prostate cancer occurrence and HDAC3 protein expression in the prostate, extending prior work that implicated loss of HDAC3/ corepressor interactions as a key preventive mechanism by SFN in vivo.
Collapse
Affiliation(s)
- Laura M Beaver
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR
- Linus Pauling Institute, Oregon State University, Corvallis, OR
| | - Christiane V Lӧhr
- Linus Pauling Institute, Oregon State University, Corvallis, OR
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - John D Clarke
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR
- Linus Pauling Institute, Oregon State University, Corvallis, OR
| | - Sarah T Glasser
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR
| | - Greg W Watson
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR
- Linus Pauling Institute, Oregon State University, Corvallis, OR
| | - Carmen P Wong
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR
- Linus Pauling Institute, Oregon State University, Corvallis, OR
| | - Zhenzhen Zhang
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR
| | - David E Williams
- Linus Pauling Institute, Oregon State University, Corvallis, OR
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR
| | - Roderick H Dashwood
- Linus Pauling Institute, Oregon State University, Corvallis, OR
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR
| | - Jackilen Shannon
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR
| | - Philippe Thuillier
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR
- Department of Dermatology, Oregon Health & Science University, Portland, OR
| | - Emily Ho
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR
- Linus Pauling Institute, Oregon State University, Corvallis, OR
- Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, Oregon State University, Corvallis, OR
| |
Collapse
|
26
|
Gupta S, Gupta PK, Dharanivasan G, Verma RS. Current prospects and challenges of nanomedicine delivery in prostate cancer therapy. Nanomedicine (Lond) 2017; 12:2675-2692. [DOI: 10.2217/nnm-2017-0236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Management of prostate cancer is currently being pursued by systemic delivery of anticancer drugs, but it has drawbacks like nonspecific distribution, decreased bioavailability, coupled with adverse side effects. These problems have been resolved using nanomedicine-based anticancer drug delivery to improve the therapeutic index with higher drug dose and reduced nonspecific distribution. Targeting prostate tumor by delivering nanomedicine through locoregional route is more effective, than the systemic delivery, which can decrease systemic exposure of the therapeutics significantly. Therefore, in this article, we have reviewed the current prospects and challenges of prostate cancer therapy using nanomedicine, by providing a comprehensive description of advantages and limitations of the systemic route and locoregional route. Eventually, we have emphasized on the need for localized prostate cancer therapy developments using nanomedicines.
Collapse
Affiliation(s)
- Santosh Gupta
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai-600036, Tamilnadu, India
| | - Piyush Kumar Gupta
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai-600036, Tamilnadu, India
| | - Gunasekaren Dharanivasan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai-600036, Tamilnadu, India
| | - Rama Shanker Verma
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai-600036, Tamilnadu, India
| |
Collapse
|
27
|
Moselhy J, Suman S, Alghamdi M, Chandarasekharan B, Das TP, Houda A, Ankem M, Damodaran C. Withaferin A Inhibits Prostate Carcinogenesis in a PTEN-deficient Mouse Model of Prostate Cancer. Neoplasia 2017; 19:451-459. [PMID: 28494348 PMCID: PMC5421823 DOI: 10.1016/j.neo.2017.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 11/27/2022] Open
Abstract
We recently demonstrated that AKT activation plays a role in prostate cancer progression and inhibits the pro-apoptotic function of FOXO3a and Par-4. AKT inhibition and Par-4 induction suppressed prostate cancer progression in preclinical models. Here, we investigate the chemopreventive effect of the phytonutrient Withaferin A (WA) on AKT-driven prostate tumorigenesis in a Pten conditional knockout (Pten-KO) mouse model of prostate cancer. Oral WA treatment was carried out at two different doses (3 and 5 mg/kg) and compared to vehicle over 45 weeks. Oral administration of WA for 45 weeks effectively inhibited primary tumor growth in comparison to vehicle controls. Pathological analysis showed the complete absence of metastatic lesions in organs from WA-treated mice, whereas discrete metastasis to the lungs was observed in control tumors. Immunohistochemical analysis revealed the down-regulation of pAKT expression and epithelial-to-mesenchymal transition markers, such as β-catenin and N-cadherin, in WA-treated tumors in comparison to controls. This result corroborates our previous findings from both cell culture and xenograft models of prostate cancer. Our findings demonstrate that the daily administration of a phytonutrient that targets AKT activation provides a safe and effective treatment for prostate cancer in a mouse model with strong potential for translation to human disease.
Collapse
Affiliation(s)
- Jim Moselhy
- Department of Urology, University of Louisville, KY, USA
| | - Suman Suman
- Department of Urology, University of Louisville, KY, USA
| | | | | | - Trinath P Das
- Department of Urology, University of Louisville, KY, USA
| | - Alatassi Houda
- Department of Pathology, University of Louisville, KY, USA
| | - Murali Ankem
- Department of Urology, University of Louisville, KY, USA
| | | |
Collapse
|
28
|
Karampelas T, Skavatsou E, Argyros O, Fokas D, Tamvakopoulos C. Gemcitabine Based Peptide Conjugate with Improved Metabolic Properties and Dual Mode of Efficacy. Mol Pharm 2017; 14:674-685. [PMID: 28099809 DOI: 10.1021/acs.molpharmaceut.6b00961] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gemcitabine is a clinically established anticancer agent potent in various solid tumors but limited by its rapid metabolic inactivation and off-target toxicity. We have previously generated a metabolically superior to gemcitabine molecule (GSG) by conjugating gemcitabine to a gonadotropin releasing hormone receptor (GnRH-R) ligand peptide and showed that GSG was efficacious in a castration resistant prostate cancer (CRPC) animal model. The current article provides an in-depth metabolic and mechanistic study of GSG, coupled with toxicity assays that strengthen the potential role of GSG in the clinic. LC-MS/MS based approaches were employed to delineate the metabolism of GSG, its mechanistic cellular uptake, and release of gemcitabine and to quantitate the intracellular levels of gemcitabine and its metabolites (active dFdCTP and inactive dFdU) resulting from GSG. The GnRH-R agonistic potential of GSG was investigated by quantifying the testosterone levels in animals dosed daily with GSG, while an in vitro colony forming assay together with in vivo whole blood measurements were performed to elucidate the hematotoxicity profile of GSG. Stability showed that the major metabolite of GSG is a more stable nonapeptide that could prolong gemcitabine's bioavailability. GSG acted as a prodrug and offered a metabolic advantage compared to gemcitabine by generating higher and steadier levels of dFdCTP/dFdU ratio, while intracellular release of gemcitabine from GSG in DU145 CRPC cells depended on nucleoside transporters. Daily administrations in mice showed that GSG is a potent GnRH-R agonist that can also cause testosterone ablation without any observed hematotoxicity. In summary, GSG could offer a powerful and unique pharmacological approach to prostate cancer treatment: a single nontoxic molecule that can be used to reach the tumor site selectively with superior to gemcitabine metabolism, biodistribution, and safety while also agonistically ablating testosterone levels.
Collapse
Affiliation(s)
- Theodoros Karampelas
- Division of Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens , 4 Soranou Ephessiou Street, 11527 Athens, Greece
| | - Eleni Skavatsou
- Division of Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens , 4 Soranou Ephessiou Street, 11527 Athens, Greece
| | - Orestis Argyros
- Division of Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens , 4 Soranou Ephessiou Street, 11527 Athens, Greece
| | - Demosthenes Fokas
- Laboratory of Medicinal Chemistry, Department of Materials Science and Engineering, University of Ioannina , 45110 Ioannina, Greece
| | - Constantin Tamvakopoulos
- Division of Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens , 4 Soranou Ephessiou Street, 11527 Athens, Greece
| |
Collapse
|
29
|
Percy AJ, Michaud SA, Jardim A, Sinclair NJ, Zhang S, Mohammed Y, Palmer AL, Hardie DB, Yang J, LeBlanc AM, Borchers CH. Multiplexed MRM-based assays for the quantitation of proteins in mouse plasma and heart tissue. Proteomics 2016; 17. [DOI: 10.1002/pmic.201600097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 08/14/2016] [Accepted: 09/28/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Andrew J. Percy
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
| | - Sarah A. Michaud
- MRM Proteomics; , Vancouver Island Technology Park; Victoria BC Canada
| | - Armando Jardim
- Institute of Parasitology; McGill University; Montreal QC Canada
| | - Nicholas J. Sinclair
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
| | - Suping Zhang
- MRM Proteomics; , Vancouver Island Technology Park; Victoria BC Canada
| | - Yassene Mohammed
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
- Center for Proteomics and Metabolomics; Leiden University Medical Center; ZA Leiden Netherlands
| | - Andrea L. Palmer
- MRM Proteomics; , Vancouver Island Technology Park; Victoria BC Canada
| | - Darryl B. Hardie
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
| | - Juncong Yang
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
| | - Andre M. LeBlanc
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
| | - Christoph H. Borchers
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
- Department of Biochemistry and Microbiology; University of Victoria; Victoria BC Canada
| |
Collapse
|
30
|
Gao D, Zhan Y, Di W, Moore AR, Sher JJ, Guan Y, Wang S, Zhang Z, Murphy DA, Sawyers CL, Chi P, Chen Y. A Tmprss2-CreERT2 Knock-In Mouse Model for Cancer Genetic Studies on Prostate and Colon. PLoS One 2016; 11:e0161084. [PMID: 27536883 PMCID: PMC4990297 DOI: 10.1371/journal.pone.0161084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/31/2016] [Indexed: 01/29/2023] Open
Abstract
Fusion between TMPRSS2 and ERG, placing ERG under the control of the TMPRSS2 promoter, is the most frequent genetic alteration in prostate cancer, present in 40–50% of cases. The fusion event is an early, if not initiating, event in prostate cancer, implicating the TMPRSS2-positive prostate epithelial cell as the cancer cell of origin in fusion-positive prostate cancer. To introduce genetic alterations into Tmprss2-positive cells in mice in a temporal-specific manner, we generated a Tmprss2-CreERT2 knock-in mouse. We found robust tamoxifen-dependent Cre activation in the prostate luminal cells but not basal epithelial cells, as well as epithelial cells of the bladder and gastrointestinal (GI) tract. The knock-in allele on the Tmprss2 locus does not noticeably impact prostate, bladder, or gastrointestinal function. Deletion of Pten in Tmprss2-positive cells of adult mice generated neoplasia only in the prostate, while deletion of Apc in these cells generated neoplasia only in the GI tract. These results suggest that this new Tmprss2-CreERT2 mouse model will be a useful resource for genetic studies on prostate and colon.
Collapse
Affiliation(s)
- Dong Gao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
- * E-mail: (DG); (YC)
| | - Yu Zhan
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
| | - Wei Di
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
| | - Amanda R. Moore
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, United States of America
| | - Jessica J. Sher
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
| | - Youxin Guan
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
| | - Shangqian Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
| | - Zeda Zhang
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
| | - Devan A. Murphy
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
- Department of Medicine, Weill Cornell Medical College and New York–Presbyterian Hospital, New York, New York, 10065, United States of America
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
- Department of Medicine, Weill Cornell Medical College and New York–Presbyterian Hospital, New York, New York, 10065, United States of America
- * E-mail: (DG); (YC)
| |
Collapse
|
31
|
Menezes ME, Das SK, Minn I, Emdad L, Wang XY, Sarkar D, Pomper MG, Fisher PB. Detecting Tumor Metastases: The Road to Therapy Starts Here. Adv Cancer Res 2016; 132:1-44. [PMID: 27613128 DOI: 10.1016/bs.acr.2016.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metastasis is the complex process by which primary tumor cells migrate and establish secondary tumors in an adjacent or distant location in the body. Early detection of metastatic disease and effective therapeutic options for targeting these detected metastases remain impediments to effectively treating patients with advanced cancers. If metastatic lesions are identified early, patients might maximally benefit from effective early therapeutic interventions. Further, monitoring patients whose primary tumors are effectively treated for potential metastatic disease onset is also highly valuable. Finally, patients with metastatic disease can be monitored for efficacy of specific therapeutic interventions through effective metastatic detection techniques. Thus, being able to detect and visualize metastatic lesions is key and provides potential to greatly improve overall patient outcomes. In order to achieve these objectives, researchers have endeavored to mechanistically define the steps involved in the metastatic process as well as ways to effectively detect metastatic progression. We presently overview various preclinical and clinical in vitro and in vivo assays developed to more efficiently detect tumor metastases, which provides the foundation for developing more effective therapies for this invariably fatal component of the cancerous process.
Collapse
Affiliation(s)
- M E Menezes
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - S K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - I Minn
- The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - L Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - X-Y Wang
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - D Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - M G Pomper
- The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - P B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
32
|
Koike H, Nozawa M, De Velasco MA, Kura Y, Ando N, Fukushima E, Yamamoto Y, Hatanaka Y, Yoshikawa K, Nishio K, Uemura H. Conditional PTEN-deficient mice as a prostate cancer chemoprevention model. Asian Pac J Cancer Prev 2016; 16:1827-31. [PMID: 25773832 DOI: 10.7314/apjcp.2015.16.5.1827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We generated a mouse model of prostate cancer based on the adult-prostate-specific inactivation of phosphatase and tensin homolog (PTEN) using the Cre-loxP system. The potential of our mice as a useful animal model was examined by evaluating the chemopreventive efficacy of the anti-androgen, chlormadinone acetate (CMA). MATERIALS AND METHODS Six-week-old mice were treated subcutaneously with 50 μg/g of CMA three times a week for 9 or 14 weeks and sacrificed at weeks 15 and 20. Macroscopic change of the entire genitourinary tract (GUT) and histologically evident prostate gland tumor development were evaluated. Proliferation and apoptosis status in the prostate were examined by immunohistochemistry. RESULTS CMA triggered significant shrinkage of not only the GUT but also prostate glands at 15 weeks compared to the control (p=0.017 and p=0.010, respectively), and the trend became more marked after a further five-weeks of treatment. The onset of prostate adenocarcinoma was not prevented but the proliferation of cancer cells was inhibited by CMA, which suggested the androgen axis is critical for cancer growth in these mice. CONCLUSIONS Conditional PTEN-deficient mice are useful as a preclinical model for chemoprevention studies and serve as a valuable tool for the future screening of potential chemopreventive agents.
Collapse
Affiliation(s)
- Hiroyuki Koike
- Department of Urology, Kinki University Faculty of Medicine, Osaka, Japan E-mail :
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Davey RA, Grossmann M. Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin Biochem Rev 2016; 37:3-15. [PMID: 27057074 PMCID: PMC4810760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The actions of androgens such as testosterone and dihydrotestosterone are mediated via the androgen receptor (AR), a ligand-dependent nuclear transcription factor and member of the steroid hormone nuclear receptor family. Given its widespread expression in many cells and tissues, the AR has a diverse range of biological actions including important roles in the development and maintenance of the reproductive, musculoskeletal, cardiovascular, immune, neural and haemopoietic systems. AR signalling may also be involved in the development of tumours in the prostate, bladder, liver, kidney and lung. Androgens can exert their actions via the AR in a DNA binding-dependent manner to regulate target gene transcription, or in a non-DNA binding-dependent manner to initiate rapid, cellular events such as the phosphorylation of 2(nd) messenger signalling cascades. More recently, ligand-independent actions of the AR have also been identified. Given the large volume of studies relating to androgens and the AR, this review is not intended as an extensive review of all studies investigating the AR, but rather as an overview of the structure, function, signalling pathways and biology of the AR as well as its important role in clinical medicine, with emphasis on recent developments in this field.
Collapse
Affiliation(s)
- Rachel A Davey
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, 3084, Australia
| | - Mathis Grossmann
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, 3084, Australia
| |
Collapse
|
34
|
Birner P, Egger G, Merkel O, Kenner L. JunB and PTEN in prostate cancer: 'loss is nothing else than change'. Cell Death Differ 2015; 22:522-3. [PMID: 25747853 DOI: 10.1038/cdd.2014.232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- P Birner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - G Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - O Merkel
- 1] Department of Pathology, Medical University of Vienna, Vienna, Austria [2] Unit of Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, Vienna, Austria
| | - L Kenner
- 1] Department of Pathology, Medical University of Vienna, Vienna, Austria [2] Unit of Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, Vienna, Austria [3] Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| |
Collapse
|
35
|
Chappell WH, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Martelli AM, Cocco L, Rakus D, Gizak A, Terrian D, Steelman LS, McCubrey JA. Novel roles of androgen receptor, epidermal growth factor receptor, TP53, regulatory RNAs, NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, and matrix metalloproteinase-9 in prostate cancer and prostate cancer stem cells. Adv Biol Regul 2015; 60:64-87. [PMID: 26525204 DOI: 10.1016/j.jbior.2015.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 12/19/2022]
Abstract
Approximately one in six men will be diagnosed with some form of prostate cancer in their lifetime. Over 250,000 men worldwide die annually due to complications from prostate cancer. While advancements in prostate cancer screening and therapies have helped in lowering this statistic, better tests and more effective therapies are still needed. This review will summarize the novel roles of the androgen receptor (AR), epidermal growth factor receptor (EGFR), the EGFRvIII variant, TP53, long-non-coding RNAs (lncRNAs), microRNAs (miRs), NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, (NGAL), matrix metalloproteinase-9 (MMP-9), the tumor microenvironment and cancer stem cells (CSC) have on the diagnosis, development and treatment of prostate cancer.
Collapse
Affiliation(s)
- William H Chappell
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - David Terrian
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
36
|
Singh S, Pan C, Wood R, Yeh CR, Yeh S, Sha K, Krolewski JJ, Nastiuk KL. Quantitative volumetric imaging of normal, neoplastic and hyperplastic mouse prostate using ultrasound. BMC Urol 2015; 15:97. [PMID: 26391476 PMCID: PMC4578765 DOI: 10.1186/s12894-015-0091-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022] Open
Abstract
Background Genetically engineered mouse models are essential to the investigation of the molecular mechanisms underlying human prostate pathology and the effects of therapy on the diseased prostate. Serial in vivo volumetric imaging expands the scope and accuracy of experimental investigations of models of normal prostate physiology, benign prostatic hyperplasia and prostate cancer, which are otherwise limited by the anatomy of the mouse prostate. Moreover, accurate imaging of hyperplastic and tumorigenic prostates is now recognized as essential to rigorous pre-clinical trials of new therapies. Bioluminescent imaging has been widely used to determine prostate tumor size, but is semi-quantitative at best. Magnetic resonance imaging can determine prostate volume very accurately, but is expensive and has low throughput. We therefore sought to develop and implement a high throughput, low cost, and accurate serial imaging protocol for the mouse prostate. Methods We developed a high frequency ultrasound imaging technique employing 3D reconstruction that allows rapid and precise assessment of mouse prostate volume. Wild-type mouse prostates were examined (n = 4) for reproducible baseline imaging, and treatment effects on volume were compared, and blinded data analyzed for intra- and inter-operator assessments of reproducibility by correlation and for Bland-Altman analysis. Examples of benign prostatic hyperplasia mouse model prostate (n = 2) and mouse prostate implantation of orthotopic human prostate cancer tumor and its growth (n = 6) are also demonstrated. Results Serial measurement volume of the mouse prostate revealed that high frequency ultrasound was very precise. Following endocrine manipulation, regression and regrowth of the prostate could be monitored with very low intra- and interobserver variability. This technique was also valuable to monitor the development of prostate growth in a model of benign prostatic hyperplasia. Additionally, we demonstrate accurate ultrasound image-guided implantation of orthotopic tumor xenografts and monitoring of subsequent tumor growth from ~10 to ~750 mm3 volume. Discussion High frequency ultrasound imaging allows precise determination of normal, neoplastic and hyperplastic mouse prostate. Low cost and small image size allows incorporation of this imaging modality inside clean animal facilities, and thereby imaging of immunocompromised models. 3D reconstruction for volume determination is easily mastered, and both small and large relative changes in volume are accurately visualized. Ultrasound imaging does not rely on penetration of exogenous imaging agents, and so may therefore better measure poorly vascularized or necrotic diseased tissue, relative to bioluminescent imaging (IVIS). Conclusions Our method is precise and reproducible with very low inter- and intra-observer variability. Because it is non-invasive, mouse models of prostatic disease states can be imaged serially, reducing inter-animal variability, and enhancing the power to detect small volume changes following therapeutic intervention.
Collapse
Affiliation(s)
- Shalini Singh
- Departments of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA. .,Current address: Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, 14263, NY, USA.
| | - Chunliu Pan
- Departments of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA. .,Current address: Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, 14263, NY, USA.
| | - Ronald Wood
- Departments of Neurobiology and Anatomy and Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA. .,Department of Urology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Chiuan-Ren Yeh
- Department of Urology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Shuyuan Yeh
- Departments of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA. .,Department of Urology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Kai Sha
- Departments of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA. .,Current address: Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, 14263, NY, USA.
| | - John J Krolewski
- Departments of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA. .,Current address: Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, 14263, NY, USA.
| | - Kent L Nastiuk
- Departments of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA. .,Current address: Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, 14263, NY, USA.
| |
Collapse
|
37
|
Lehman HL, Stairs DB. Single and Multiple Gene Manipulations in Mouse Models of Human Cancer. CANCER GROWTH AND METASTASIS 2015; 8:1-15. [PMID: 26380553 PMCID: PMC4558888 DOI: 10.4137/cgm.s21217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/17/2015] [Accepted: 06/20/2015] [Indexed: 12/14/2022]
Abstract
Mouse models of human cancer play a critical role in understanding the molecular and cellular mechanisms of tumorigenesis. Advances continue to be made in modeling human disease in a mouse, though the relevance of a mouse model often relies on how closely it is able to mimic the histologic, molecular, and physiologic characteristics of the respective human cancer. A classic use of a genetically engineered mouse in studying cancer is through the overexpression or deletion of a gene. However, the manipulation of a single gene often falls short of mimicking all the characteristics of the carcinoma in humans; thus a multiple gene approach is needed. Here we review genetic mouse models of cancers and their abilities to recapitulate human carcinoma with single versus combinatorial approaches with genes commonly involved in cancer.
Collapse
Affiliation(s)
- Heather L Lehman
- Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Douglas B Stairs
- Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
38
|
Abstract
New incidence of prostate cancer is a major public health issue in the Western world, and has been rising in other areas of the globe in recent years. In an effort to understanding the molecular pathogenesis of this disease, numerous cell models have been developed, arising mostly from patient biopsies. The introduction of the genetically engineered mouse in biomedical research has allowed the development of murine models that allow for the investigation of tumorigenic and metastatic processes. Current challenges to the field include lack of an animal model that faithfully recapitulates bone metastasis of prostate cancer.
Collapse
Affiliation(s)
- David Cunningham
- Department of Structural & Cellular Biology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Zongbing You
- Department of Structural & Cellular Biology, Tulane University Health Sciences Center, New Orleans, LA, USA
- Department of Orthopaedic Surgery, Tulane University Health Sciences Center, New Orleans, LA, USA
- Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane University Health Sciences Center, New Orleans, LA, USA
- Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
- Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
39
|
Bernichtein S, Pigat N, Camparo P, Latil A, Viltard M, Friedlander G, Goffin V. Anti-inflammatory properties of Lipidosterolic extract of Serenoa repens (Permixon®) in a mouse model of prostate hyperplasia. Prostate 2015; 75:706-22. [PMID: 25683150 DOI: 10.1002/pros.22953] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Permixon®, the hexanic lipidosterolic extract of saw palmetto Serenoa repens (LSESr), has shown properties that highlight its benefit in the management of benign prostate hyperplasia (BPH). To address its actual anti-inflammatory potency, we used a unique pro-inflammatory mouse model of prostate hyperplasia involving prostate-specific over-expression of prolactin transgene (Pb-Prl). METHODS Six month-old Pb-Prl males were administered with Permixon® per os at the daily dose of 100 mg/kg for 28 days. Body and prostate weights were measured weekly and at sacrifice, respectively. Prostate histology was carefully assessed by a pathologist and detailed quantifications of epithelial and stromal compartments were performed using image analysis software. Luminal cell proliferation index was determined using Ki-67 immunostaining, and apoptosis using Bax/Bcl2 mRNA ratio. Tissue inflammation and fibrosis were assessed by histological analyses then quantified using CD45 immunostaining and picrosirius staining, respectively. Expression profiling of selected pro-inflammatory cytokines, chemokines, and chemokine receptors was performed by quantitative RT-PCR. RESULTS In this model, Permixon® significantly decreased tissue weight and proliferation index specifically in the ventral lobe. Although treatment had no noticeable effect on epithelial histology of any lobe, it markedly reduced the histological hallmarks of inflammation in all lobes. This was confirmed by the global down-regulation of prostate pro-inflammatory cytokine profile, with significant reduction of CCR7, CXCL6, IL-6, and IL-17 expression. CONCLUSIONS In this mouse model of prostate hyperplasia, Permixon® exerted potent anti-inflammatory properties in the whole prostate while anti-androgenic effects were lobe-specific, suggesting that distinct LSESr components may be involved in these effects. Our results support the beneficial role of Permixon® treatment for BPH. The relevance of CCR7, CXCL6, IL-6, and IL-17 as potential biomarkers to follow up BPH inflammatory status needs to be assessed.
Collapse
|
40
|
Thomsen MK, Bakiri L, Hasenfuss SC, Wu H, Morente M, Wagner EF. Loss of JUNB/AP-1 promotes invasive prostate cancer. Cell Death Differ 2014; 22:574-82. [PMID: 25526087 DOI: 10.1038/cdd.2014.213] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is a frequent cause of male death in the Western world. Relatively few genetic alterations have been identified, likely owing to disease heterogeneity. Here, we show that the transcription factor JUNB/AP-1 limits prostate cancer progression. JUNB expression is increased in low-grade prostate cancer compared with normal human prostate, but downregulated in high-grade samples and further decreased in all metastatic samples. To model the hypothesis that this downregulation is functionally significant, we genetically inactivated Junb in the prostate epithelium of mice. When combined with Pten (phosphatase and tensin homologue) loss, double-mutant mice were prone to invasive cancer development. Importantly, invasive tumours also developed when Junb and Pten were inactivated in a small cell population of the adult anterior prostate by topical Cre recombinase delivery. The resulting tumours displayed strong histological similarity with human prostate cancer. Loss of JunB expression led to increased proliferation and decreased senescence, likely owing to decreased p16(Ink4a) and p21(CIP1) in epithelial cells. Furthermore, the tumour stroma was altered with increased osteopontin and S100 calcium-binding protein A8/9 expression, which correlated with poor prognoses in patients. These data demonstrate that JUNB/AP-1 cooperates with PTEN signalling as barriers to invasive prostate cancer, whose concomitant genetic or epigenetic suppression induce malignant progression.
Collapse
Affiliation(s)
- M K Thomsen
- Genes, Development and Disease Group, F-BBVA Cancer Cell Biology Programme, National Cancer Research Centre (CNIO), Madrid, Spain
| | - L Bakiri
- Genes, Development and Disease Group, F-BBVA Cancer Cell Biology Programme, National Cancer Research Centre (CNIO), Madrid, Spain
| | - S C Hasenfuss
- Genes, Development and Disease Group, F-BBVA Cancer Cell Biology Programme, National Cancer Research Centre (CNIO), Madrid, Spain
| | - H Wu
- Genes, Development and Disease Group, F-BBVA Cancer Cell Biology Programme, National Cancer Research Centre (CNIO), Madrid, Spain
| | - M Morente
- Biobank, National Cancer Research Centre (CNIO), Madrid, Spain
| | - E F Wagner
- Genes, Development and Disease Group, F-BBVA Cancer Cell Biology Programme, National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
41
|
Terp MG, Ditzel HJ. Application of proteomics in the study of rodent models of cancer. Proteomics Clin Appl 2014; 8:640-52. [DOI: 10.1002/prca.201300084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/25/2013] [Accepted: 11/27/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Mikkel G. Terp
- Department of Cancer and Inflammation Research; Institute of Molecular Medicine, University of Southern Denmark; Odense Denmark
| | - Henrik J. Ditzel
- Department of Cancer and Inflammation Research; Institute of Molecular Medicine, University of Southern Denmark; Odense Denmark
- Department of Oncology; Odense University Hospital; Odense Denmark
| |
Collapse
|
42
|
De Velasco MA, Tanaka M, Yamamoto Y, Hatanaka Y, Koike H, Nishio K, Yoshikawa K, Uemura H. Androgen deprivation induces phenotypic plasticity and promotes resistance to molecular targeted therapy in a PTEN-deficient mouse model of prostate cancer. Carcinogenesis 2014; 35:2142-53. [PMID: 24986896 PMCID: PMC4146423 DOI: 10.1093/carcin/bgu143] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The transformation to castration-resistant prostate cancer drives cell plasticity that promotes intra-tumor heterogeneity and contributes to therapeutic resistance. Castration-resistant prostate cancer is an incurable heterogeneous disease that is characterized by a complex multistep process involving different cellular and biochemical changes brought on by genetic and epigenetic alterations. These changes lead to the activation or overexpression of key survival pathways that also serve as potential therapeutic targets. Despite promising preclinical results, molecular targeted therapies aimed at such signaling pathways have so far been dismal. In the present study, we used a PTEN-deficient mouse model of prostate cancer to show that plasticity in castration-resistant tumors promotes therapeutic escape. Unlike castration-naïve tumors which depend on androgen receptor and PI3K/AKT signal activation for growth and survival, castration-resistant tumors undergo phenotypic plasticity leading to increased intratumoral heterogeneity. These tumors attain highly heterogeneous phenotypes that are characterized by cancer cells relying on alternate signal transduction pathways for growth and survival, such as mitogen-activated protein kinase and janus kinase/signal transducer and activator of transcription, and losing their dependence on PI3K signaling. These features thus enabled castration-resistant tumors to become insensitive to the therapeutic effects of PI3K/AKT targeted therapy. Overall, our findings provide evidence that androgen deprivation drives phenotypic plasticity in prostate cancer cells and implicate it as a crucial contributor to therapeutic resistance in castration-resistant prostate cancer. Therefore, incorporating intratumoral heterogeneity in a dynamic tumor model as a part of preclinical efficacy determination could improve prediction for response and provide better rationale for the development of more effective therapies.
Collapse
Affiliation(s)
- Marco A De Velasco
- Department of Urology and Department of Genome Biology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan,
| | - Motoyoshi Tanaka
- Department of Urology, Iga City General Hospital, Iga, Mie 518-0823, Japan and
| | | | | | | | - Kazuto Nishio
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kazuhiro Yoshikawa
- Promoting Center for Clinical Research, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | | |
Collapse
|
43
|
Colvin EK, Weir C, Ikin RJ, Hudson AL. SV40 TAg mouse models of cancer. Semin Cell Dev Biol 2014; 27:61-73. [PMID: 24583142 DOI: 10.1016/j.semcdb.2014.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 02/09/2023]
Abstract
The discovery of a number of viruses with the ability to induce tumours in animals and transform human cells has vastly impacted cancer research. Much of what is known about tumorigenesis today regarding tumour drivers and tumour suppressors has been discovered through experiments using viruses. The SV40 virus has proven extremely successful in generating transgenic models of many human cancer types and this review provides an overview of these models and seeks to give evidence as to their relevance in this modern era of personalised medicine and technological advancements.
Collapse
Affiliation(s)
- Emily K Colvin
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia.
| | - Chris Weir
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia.
| | - Rowan J Ikin
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia.
| | - Amanda L Hudson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia.
| |
Collapse
|
44
|
Genetically engineered mouse models of prostate cancer. Mol Oncol 2013; 7:190-205. [PMID: 23481269 DOI: 10.1016/j.molonc.2013.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 11/24/2022] Open
Abstract
Despite major improvement in treatment of early stage localised prostate cancer, the distinction between indolent tumors and those that will become aggressive, as well as the lack of efficient therapies of advanced prostate cancer, remain major health problems. Genetically engineered mice (GEM) have been extensively used to investigate the molecular and cellular mechanisms underlying prostate tumor initiation and progression, and to evaluate new therapies. Moreover, the recent development of conditional somatic mutagenesis in the mouse prostate offers the possibility to generate new models that more faithfully reproduce the human disease, and thus should contribute to improve diagnosis and treatments. The strengths and weaknesses of various models will be discussed, as well as future opportunities.
Collapse
|