1
|
Kamath HS, Shukla R, Shah U, Patel S, Das S, Chordia A, Satish P, Ghosh D. Role of Gut Microbiota in Predisposition to Colon Cancer: A Narrative Review. Indian J Microbiol 2024; 64:1-13. [PMID: 39282181 PMCID: PMC11399513 DOI: 10.1007/s12088-024-01242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/28/2024] [Indexed: 09/18/2024] Open
Abstract
Globally, colorectal cancer (CRC) is a leading cause of cancer-related mortality. Dietary habits, inflammation, hereditary characteristics, and gut microbiota are some of its causes. The gut microbiota, a diverse population of bacteria living in the digestive system, has an impact on a variety of parameters, including inflammation, DNA damage, and immune response. The gut microbiome has a significant role in colon cancer susceptibility. Many studies have highlighted dysbiosis, an imbalance in the gut microbiota's makeup, as a major factor in colon cancer susceptibility. Dysbiosis has the potential to produce toxic metabolites and pro-inflammatory substances, which can hasten the growth of tumours. The ability of the gut microbiota to affect the host's immune system can also influence whether cancer develops or not. By better comprehending these complex interactions between colon cancer predisposition and gut flora, new preventive and therapeutic techniques might be developed. Targeting the gut microbiome with dietary modifications, probiotics, or faecal microbiota transplantation may offer cutting-edge approaches to reducing the risk of colon cancer and improving patient outcomes. The complex connection between the makeup of the gut microbiota and the emergence of colorectal cancer is explored in this narrative review.
Collapse
Affiliation(s)
- Hattiangadi Shruthi Kamath
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Rushikesh Shukla
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Urmil Shah
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Siddhi Patel
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Soumyajit Das
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Ayush Chordia
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Poorvikha Satish
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Dibyankita Ghosh
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| |
Collapse
|
2
|
Fang H, Xu H, Yu J, Cao H, Li L. Human Hepatobiliary Organoids: Recent Advances in Drug Toxicity Verification and Drug Screening. Biomolecules 2024; 14:794. [PMID: 39062508 PMCID: PMC11274902 DOI: 10.3390/biom14070794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Many drug and therapeutic modalities have emerged over the past few years. However, successful commercialization is dependent on their safety and efficacy evaluations. Several preclinical models are available for drug-screening and safety evaluations, including cellular- and molecular-level models, tissue and organoid models, and animal models. Organoids are three-dimensional cell cultures derived from primary tissues or stem cells that are structurally and functionally similar to the original organs and can self-renew, and they are used to establish various disease models. Human hepatobiliary organoids have been used to study the pathogenesis of diseases, such as hepatitis, liver fibrosis, hepatocellular carcinoma, primary sclerosing cholangitis and biliary tract cancer, as they retain the physiological and histological characteristics of the liver and bile ducts. Here, we review recent research progress in validating drug toxicity, drug screening and personalized therapy for hepatobiliary-related diseases using human hepatobiliary organoid models, discuss the challenges encountered in current research and evaluate the possible solutions.
Collapse
Affiliation(s)
- Haoyu Fang
- Department of Pathology and Pathophysiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China;
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
| | - Haoying Xu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
| | - Jiong Yu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging-Related Injuries, 79 Qingchun Rd., Hangzhou 310003, China
| | - Hongcui Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging-Related Injuries, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lanjuan Li
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; (J.Y.); (L.L.)
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China;
| |
Collapse
|
3
|
Zhang Y, Li QS, Liu HL, Tang HT, Yang HL, Wu DQ, Huang YY, Li LC, Liu LH, Li MX. MKRN1 promotes colorectal cancer metastasis by activating the TGF-β signalling pathway through SNIP1 protein degradation. J Exp Clin Cancer Res 2023; 42:219. [PMID: 37620897 PMCID: PMC10464235 DOI: 10.1186/s13046-023-02788-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND The Makorin ring finger protein 1 (MKRN1) gene, also called RNF61, is located on the long arm of chromosome 7 and is a member of the RING finger protein family. The E3 ubiquitin ligase MKRN1 is closely linked to tumour development, but the exact mechanism needs to be elucidated. In this study, we aimed to investigate the specific mechanism and role of MKRN1 in colorectal cancer (CRC) development. METHODS MKRN1 expression in CRC was analysed using the Cancer Cell Line Encyclopaedia and the Cancer Genome Atlas (TCGA) databases. Rectal tumour tissues were frozen to explore the MKRN1 expression in CRC and its clinical significance. The impact of MKRN1 on CRC cell proliferation and migration was observed using CCK8, colony formation, wound healing, and transwell assays. A combination of MKRN1 quantitative proteomics, ubiquitination modification omics analysis, and a string of in vitro and in vivo experiments revealed the potential mechanisms by which MKRN1 regulates CRC metastasis. RESULTS MKRN1 expression was significantly elevated in CRC tissues compared to paracancerous tissues and was positively linked with prognosis (P < 0.01). MKRN1 downregulation inhibits CRC cell proliferation, migration, and invasion. Conversely, MKRN1 overexpression promotes the proliferation, migration, and invasion of CRC cells. Mechanistically, MKRN1 induces epithelial-mesenchymal transition (EMT) in CRC cells via ubiquitination and degradation of Smad nuclear-interacting protein 1 (SNIP1). Furthermore, SNIP1 inhibits transforming growth factor-β (TGF-β) signalling, and MKRN1 promotes TGF-β signalling by degrading SNIP1 to induce EMT in CRC cells. Finally, using conditional knockout mice, intestinal lesions and metastatic liver microlesions were greatly reduced in the intestinal knockout MKRN1 group compared to that in the control group. CONCLUSIONS High MKRN1 levels promote TGF-β signalling through ubiquitination and degradation of SNIP1, thereby facilitating CRC metastasis, and supporting MKRN1 as a CRC pro-cancer factor. The MKRN1/SNIP1/TGF-β axis may be a potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Yi Zhang
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China
| | - Qin-Shan Li
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China.
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China.
| | - Hong-Lin Liu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100000, People's Republic of China
| | - Hong-Ting Tang
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China
| | - Han-Lin Yang
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China
| | - Dao-Qiu Wu
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China
| | - Yu-Ying Huang
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China
| | - Li-Cheng Li
- Clinical Medical College, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China
- Department of HematologyGuizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou, Guiyang, People's Republic of China
| | - Li-Hong Liu
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Meng-Xing Li
- Clinical Medical College, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China.
- Department of HematologyGuizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou, Guiyang, People's Republic of China.
- Department of Pathophysiology, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China.
| |
Collapse
|
4
|
Biondi A, Basile F, Vacante M. Familial adenomatous polyposis and changes in the gut microbiota: New insights into colorectal cancer carcinogenesis. World J Gastrointest Oncol 2021; 13:495-508. [PMID: 34163569 PMCID: PMC8204352 DOI: 10.4251/wjgo.v13.i6.495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/15/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with familial adenomatous polyposis (FAP), an autosomal dominant hereditary colorectal cancer syndrome, have a lifetime risk of developing cancer of nearly 100%. Recent studies have pointed out that the gut microbiota could play a crucial role in the development of colorectal adenomas and the consequent progression to colorectal cancer. Some gut bacteria, such as Fusobacterium nucleatum, Escherichia coli, Clostridium difficile, Peptostreptococcus, and enterotoxigenic Bacteroides fragilis, could be implicated in colorectal carcinogenesis through different mechanisms, including the maintenance of a chronic inflammatory state, production of bioactive tumorigenic metabolites, and DNA damage. Studies using the adenomatous polyposis coliMin/+ mouse model, which resembles FAP in most respects, have shown that specific changes in the intestinal microbial community could influence a multistep progression, the intestinal "adenoma-carcinoma sequence", which involves mucosal barrier injury, low-grade inflammation, activation of the Wnt pathway. Therefore, modulation of gut microbiota might represent a novel therapeutic target for patients with FAP. Administration of probiotics, prebiotics, antibiotics, and nonsteroidal anti-inflammatory drugs could potentially prevent the progression of the adenoma-carcinoma sequence in FAP. The aim of this review was to summarize the best available knowledge on the role of gut microbiota in colorectal carcinogenesis in patients with FAP.
Collapse
Affiliation(s)
- Antonio Biondi
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
- Multidisciplinary Research Center for Rare Diseases, University of Catania, Catania 95123, Italy
| | - Francesco Basile
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
- Multidisciplinary Research Center for Rare Diseases, University of Catania, Catania 95123, Italy
| | - Marco Vacante
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
- Multidisciplinary Research Center for Rare Diseases, University of Catania, Catania 95123, Italy
| |
Collapse
|
5
|
Sayed IM, El-Hafeez AAA, Maity PP, Das S, Ghosh P. Modeling colorectal cancers using multidimensional organoids. Adv Cancer Res 2021; 151:345-383. [PMID: 34148617 PMCID: PMC8221168 DOI: 10.1016/bs.acr.2021.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Organoids have revolutionized cancer research as highly adaptable models that enable an array of experimental techniques to interrogate tissue morphology and function. Because they preserve the genetic, phenotypic, and behavioral traits of their source tissue, organoids have gained traction as the most relevant models for drug discovery, tracking therapeutic response and for personalized medicine. As organoids are indisputably becoming a mainstay of cancer research, this review specifically addresses how colon-derived organoids can be perfected as multidimensional, scalable, reproducible models of healthy, pre-neoplastic and neoplastic conditions of the colon and for use in high-throughput "Phase-0" human clinical trials-in-a-dish.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Pathology, University of California, San Diego, CA, United States
| | - Amer Ali Abd El-Hafeez
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, United States
| | - Priti P Maity
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, United States
| | - Soumita Das
- Department of Pathology, University of California, San Diego, CA, United States; Rebecca and John Moore Comprehensive Cancer Center, University of California, San Diego, CA, United States; HUMANOID Center of Research Excellence (CoRE), University of California, San Diego, CA, United States.
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, United States; Rebecca and John Moore Comprehensive Cancer Center, University of California, San Diego, CA, United States; Department of Medicine, University of California, San Diego, CA, United States; Veterans Affairs Medical Center, San Diego, CA, United States; HUMANOID Center of Research Excellence (CoRE), University of California, San Diego, CA, United States.
| |
Collapse
|
6
|
Preisler L, Habib A, Shapira G, Kuznitsov-Yanovsky L, Mayshar Y, Carmel-Gross I, Malcov M, Azem F, Shomron N, Kariv R, Hershkovitz D, Ben-Yosef D. Heterozygous APC germline mutations impart predisposition to colorectal cancer. Sci Rep 2021; 11:5113. [PMID: 33664379 PMCID: PMC7933349 DOI: 10.1038/s41598-021-84564-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/04/2021] [Indexed: 12/24/2022] Open
Abstract
Familial adenomatous polyposis (FAP) is an inherited syndrome caused by a heterozygous adenomatous polyposis coli (APC) germline mutation, associated with a profound lifetime risk for colorectal cancer. While it is well accepted that tumorigenic transformation is initiated following acquisition of a second mutation and loss of function of the APC gene, the role of heterozygous APC mutation in this process is yet to be discovered. This work aimed to explore whether a heterozygous APC mutation induces molecular defects underlying tumorigenic transformation and how different APC germline mutations predict disease severity. Three FAP-human embryonic stem cell lines (FAP1/2/3-hESC lines) carrying germline mutations at different locations of the APC gene, and two control hESC lines free of the APC mutation, were differentiated into colon organoids and analyzed by immunohistochemistry and RNA sequencing. In addition, data regarding the genotype and clinical phenotype of the embryo donor parents were collected from medical records. FAP-hESCs carrying a complete loss-of-function of a single APC allele (FAP3) generated complex and molecularly mature colon organoids, which were similar to controls. In contrast, FAP-hESCs carrying APC truncation mutations (FAP1 and FAP2) generated only few cyst-like structures and cell aggregates of various shape, occasionally with luminal parts, which aligned with their failure to upregulate critical differentiation genes early in the process, as shown by RNA sequencing. Abnormal disease phenotype was shown also in non-pathological colon of FAP patients by the randomly distribution of proliferating cells throughout the crypts, compared to their focused localization in the lower part of the crypt in healthy/non-FAP patients. Genotype/phenotype analysis revealed correlations between the colon organoid maturation potential and FAP severity in the carrier parents. In conclusion, this study suggest that a single truncated APC allele is sufficient to initiate early molecular tumorigenic activity. In addition, the results hint that patient-specific hESC-derived colon organoids can probably predict disease severity among FAP patients.
Collapse
Affiliation(s)
- Livia Preisler
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel.,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Aline Habib
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel.,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Guy Shapira
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Liron Kuznitsov-Yanovsky
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel.,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Yoav Mayshar
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Carmel-Gross
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel
| | - Mira Malcov
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel
| | - Foad Azem
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Revital Kariv
- Department of Gastroenterology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Dov Hershkovitz
- Institute of Pathology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Dalit Ben-Yosef
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel. .,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
7
|
Yarla NS, Madka V, Pathuri G, Rao CV. Molecular Targets in Precision Chemoprevention of Colorectal Cancer: An Update from Pre-Clinical to Clinical Trials. Int J Mol Sci 2020; 21:ijms21249609. [PMID: 33348563 PMCID: PMC7765969 DOI: 10.3390/ijms21249609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer deaths worldwide. The initiation and progression of CRC is a multi-step process that proceeds via precursor lesions to carcinoma, with each stage characterized by its distinct molecular and tissue microenvironment changes. Precursor lesions of CRC, aberrant crypt foci, and adenoma exhibit drastic changes in genetic, transcriptomic, and proteomic profiles compared to normal tissue. The identification of these changes is essential and provides further validation as an initiator or promoter of CRC and, more so, as lesion-specific druggable molecular targets for the precision chemoprevention of CRC. Mutated/dysregulated signaling (adenomatous polyposis coli, β-catenin, epidermal growth factor receptor, V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS), tumor protein53, Akt, etc.), inflammatory (cyclooxygenase-2, microsomal prostaglandin E synthase-1, inducible nitric oxide synthase, and other pro-inflammatory mediators), and metabolic/growth factor (fatty acid synthase, β-Hydroxy β-methylglutaryl-CoA reductase, and ornithine decarboxylase) related targets are some of the well-characterized molecular targets in the precision chemoprevention of CRC. In this review, we discuss precursor-lesion specific targets of CRC and the current status of pre-clinical studies regarding clinical interventions and combinations for better efficacy and safety toward future precision clinical chemoprevention. In addition, we provide a brief discussion on the usefulness of secondary precision chemopreventive targets for tertiary precision chemoprevention to improve the disease-free and overall survival of advanced stage CRC patients.
Collapse
Affiliation(s)
- Nagendra S. Yarla
- Center for Cancer Prevention and Drug Development, Medical Oncology, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (N.S.Y.); (V.M.); (G.P.)
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Medical Oncology, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (N.S.Y.); (V.M.); (G.P.)
| | - Gopal Pathuri
- Center for Cancer Prevention and Drug Development, Medical Oncology, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (N.S.Y.); (V.M.); (G.P.)
| | - Chinthalapally V. Rao
- Center for Cancer Prevention and Drug Development, Medical Oncology, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (N.S.Y.); (V.M.); (G.P.)
- VA Medical Center, Oklahoma City, OK 73104, USA
- Correspondence: ; Tel.: +1-405-271-3224; Fax: +1-405-271-3225
| |
Collapse
|
8
|
Gomez CL, Neufeld KL. Elevated adenomatous polyposis coli in goblet cells is associated with inflammation in mouse and human colon. Exp Physiol 2020; 105:2154-2167. [PMID: 33150708 DOI: 10.1113/ep088970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/21/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the localization and distribution pattern of adenomatous polyposis coli (APC) in intestinal epithelial cells? Does this distribution change in different regions of the colon or in the condition of inflammation? What is the main finding and its importance? Colonic epithelia from mice and humans contain a subset of goblet cells displaying high APC levels. The number of APChigh goblet cells increases in inflamed tissue, which also displays increased GRP78, indicating potential stress from mucin production. In cultured human colon cells, expression of interleukin 1 pathway components (inducers of MUC2 expression) is reduced upon APC depletion raising the potential for APC participation in an inflammatory response. ABSTRACT Adenomatous polyposis coli (APC) serves as a gatekeeper of intestinal homeostasis by promoting cellular differentiation and maintaining crypt architecture. Although appreciated as a critical colon tumour suppressor, roles for APC in disease states such as inflammation have yet to be fully delineated. This study aimed to characterize the localization of APC protein in gastrointestinal tissues from human patients with active inflammatory bowel disease and mice with dextran sodium sulfate (DSS)-induced colitis. Fluorescence immunohistochemistry revealed a subset of goblet cells with elevated Apc staining intensity in the small intestines and proximal/medial colons of mice. Upon induction of colitis with DSS, these 'APChigh ' goblet cells remained in the proximal and medial colon, but now were also observed in the distal colon. This phenotype was recapitulated in humans, with APChigh goblet cells observed only in the descending colons of patients with active ulcerative colitis. In cultured human colon cells derived from normal tissue, APC depletion reduced expression of mRNAs encoding the interleukin 1 (IL1) signalling pathway components IL1β and interleukin-1 receptor (IL1R), known regulators of Muc2 expression. Treating cancer cells lacking wild-type APC with IL1β, or induction of full-length APC in these cells led to increases in IL1R and MUC2 expression. Combining IL1β treatment with APC induction led to an increase of MUC2 expression greater than expected for additive affects, suggesting that APC sensitizes cells to IL1 signalling. These findings suggest that APC has novel roles in maintaining proper goblet cell function, thus providing further evidence for APC as an important factor in intestinal tissue homeostasis and disease.
Collapse
Affiliation(s)
- Christian L Gomez
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Kristi L Neufeld
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
9
|
Establishment of an Endoscopy-Guided Minimally Invasive Orthotopic Mouse Model of Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12103007. [PMID: 33081354 PMCID: PMC7650778 DOI: 10.3390/cancers12103007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Open orthotopic mouse models of colorectal cancer have disadvantages such as the requirement for advanced surgical skills or the trauma caused by laparotomy. To overcome these limitations, this study aimed to evaluate the establishment of an endoscopy-guided minimally invasive model without laparotomy. Different concentrations of the murine CRC cell lines CT26 and MC38 were endoscopically injected into the colorectal wall of BALB/C and C57BL/6J mice, respectively. Consistent tumor growth with the presence of tumor-infiltrating lymphocytes, lympho-vascular invasion, and early spontaneous lymph node, peritoneal, and hepatic metastases were observed. Analysis of the learning curve demonstrated that this model is easy to learn and quick to establish. It enables intra-individual follow-up endoscopies, and features tumors to study mechanisms of metastasis and the interaction with the immune system. The application of specific cell lines and concentrations enables a controlled local tumor growth and metastatic formation within short observation periods. Abstract Open orthotopic mouse models of colorectal cancer have disadvantages such as the requirement for advanced surgical skills or the trauma caused by laparotomy. To overcome these drawbacks, this study aimed to evaluate the establishment of a minimally invasive model using murine colonoscopy. CT26 and MC38 CRC cells of different concentrations were injected into BALB/C and C57BL/6J mice, respectively. Follow-up endoscopies were performed to assign an endoscopic score to tumor growth. Gross autopsy, histologic and immuno-histochemical evaluation, and immune scoring were performed. To describe the learning curve of the procedures, a performance score was given. Local tumor growth with colorectal wall infiltration, luminal ulceration, the presence of tumor-infiltrating lymphocytes, lympho-vascular invasion, and early spontaneous lymph node, peritoneal, and hepatic metastases were observed. The tumors showed cytoplasmic immuno-staining for CK20. Compared to the MC38/C57BL/6J model, tumorigenicity and immunogenicity of the CT26/BALB/C model were higher. Tumor volume correlated with the endoscopic score. This endoscopy-guided orthotopic mouse model is easy to learn and quick to establish. It features early metastasis and enables the study of interactions with the immune system. When specific cell concentrations and cell lines are applied, controlled local tumor growth and metastasis can be achieved within short observation periods.
Collapse
|
10
|
Hamm A, Hidding S, Mokry T, Radeleff B, Mehrabi A, Büchler MW, Schneider M, Schmidt T. Postoperative liver regeneration does not elicit recurrence of colorectal cancer liver metastases after major hepatectomy. Surg Oncol 2020; 35:24-33. [PMID: 32818879 DOI: 10.1016/j.suronc.2020.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Recurrence is a frequent concern in curatively resected CRC liver metastases. Translational research suggests that regeneration upon hepatectomy may also alleviate metastatic recurrence; however, the significance in patients is unclear. We therefore sought to study the effect of liver regeneration on tumor recurrence in patients. METHODS In this retrospective cohort study, we included 58 out of 186 potentially eligible patients from our prospectively maintained database of CRC liver metastasis patients between 2001 and 2012 with a median follow-up of 42 months who underwent a formal right or left hemihepatectomy. Liver regeneration in CT volumetry was correlated with recurrence of CRC liver metastases and overall survival. RESULTS Liver regeneration increased up to 14 months to 21.0% for left and 122.6% for right hemihepatectomy, respectively, with comparable final volumes. Regeneration was independent of initial tumor stage, number of metastases, and preoperative chemotherapy. Patients with lower liver regeneration showed earlier recurrence of CRC liver metastases (p = 0.006). Overall survival did not differ in patients with weak versus strong liver regeneration. CONCLUSIONS The extent of liver regeneration after major hepatectomy does not impede overall survival. Therefore, our data encourage aggressive therapeutical regimes for CRC liver metastases involving major hepatectomies as part of a curative approach.
Collapse
Affiliation(s)
- Alexander Hamm
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Sarah Hidding
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Theresa Mokry
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Boris Radeleff
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus W Büchler
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
11
|
Ramzy GM, Koessler T, Ducrey E, McKee T, Ris F, Buchs N, Rubbia-Brandt L, Dietrich PY, Nowak-Sliwinska P. Patient-Derived In Vitro Models for Drug Discovery in Colorectal Carcinoma. Cancers (Basel) 2020; 12:cancers12061423. [PMID: 32486365 PMCID: PMC7352800 DOI: 10.3390/cancers12061423] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Lack of relevant preclinical models that reliably recapitulate the complexity and heterogeneity of human cancer has slowed down the development and approval of new anti-cancer therapies. Even though two-dimensional in vitro culture models remain widely used, they allow only partial cell-to-cell and cell-to-matrix interactions and therefore do not represent the complex nature of the tumor microenvironment. Therefore, better models reflecting intra-tumor heterogeneity need to be incorporated in the drug screening process to more reliably predict the efficacy of drug candidates. Classic methods of modelling colorectal carcinoma (CRC), while useful for many applications, carry numerous limitations. In this review, we address the recent advances in in vitro CRC model systems, ranging from conventional CRC patient-derived models, such as conditional reprogramming-based cell cultures, to more experimental and state-of-the-art models, such as cancer-on-chip platforms or liquid biopsy.
Collapse
Affiliation(s)
- George M. Ramzy
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland; (G.M.R.); (E.D.)
- Translational Research Center in Oncohaematology, University of Geneva, 1211 Geneva, Switzerland
| | - Thibaud Koessler
- Department of Oncology, Geneva University Hospitals, 1211 Geneva, Switzerland; (T.K.); (P.-Y.D.)
| | - Eloise Ducrey
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland; (G.M.R.); (E.D.)
- Translational Research Center in Oncohaematology, University of Geneva, 1211 Geneva, Switzerland
| | - Thomas McKee
- Division of Clinical Pathology, Diagnostic Department, University Hospitals of Geneva (HUG), 1211 Geneva, Switzerland; (T.M.); (L.R.-B.)
| | - Frédéric Ris
- Translational Department of Digestive and Transplant Surgery, Faculty of Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland; (F.R.); (N.B.)
| | - Nicolas Buchs
- Translational Department of Digestive and Transplant Surgery, Faculty of Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland; (F.R.); (N.B.)
| | - Laura Rubbia-Brandt
- Division of Clinical Pathology, Diagnostic Department, University Hospitals of Geneva (HUG), 1211 Geneva, Switzerland; (T.M.); (L.R.-B.)
| | - Pierre-Yves Dietrich
- Department of Oncology, Geneva University Hospitals, 1211 Geneva, Switzerland; (T.K.); (P.-Y.D.)
| | - Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland; (G.M.R.); (E.D.)
- Translational Research Center in Oncohaematology, University of Geneva, 1211 Geneva, Switzerland
- Correspondence: ; Tel.: +41-22-379-3352
| |
Collapse
|
12
|
Oliveira RC, Abrantes AM, Tralhão JG, Botelho MF. The role of mouse models in colorectal cancer research-The need and the importance of the orthotopic models. Animal Model Exp Med 2020; 3:1-8. [PMID: 32318654 PMCID: PMC7167241 DOI: 10.1002/ame2.12102] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/06/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer is a worldwide health burden, with high incidence and mortality, especially in the advanced stages of the disease. Preclinical models are very important and valuable to discover and validate early and specific biomarkers as well as new therapeutic targets. In order to accomplish that, the animal models must replicate the clinical evolution of the disease in all of its phases. In this article, we review the existent mouse models, with their strengths and weaknesses in the replication of human cancer disease progression, with major focus on orthotopic models.
Collapse
Affiliation(s)
- Rui C. Oliveira
- Biophysics UnitFaculty of MedicineUniversity of CoimbraCoimbraPortugal
- Pathology DepartmentUniversity Hospital (CHUC)CoimbraPortugal
| | - Ana Margarida Abrantes
- Biophysics UnitFaculty of MedicineUniversity of CoimbraCoimbraPortugal
- Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO)CoimbraPortugal
| | - José Guilherme Tralhão
- Biophysics UnitFaculty of MedicineUniversity of CoimbraCoimbraPortugal
- Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO)CoimbraPortugal
- Surgery A DepartmentFaculty of MedicineUniversity Hospital (CHUC)CoimbraPortugal
| | - Maria Filomena Botelho
- Biophysics UnitFaculty of MedicineUniversity of CoimbraCoimbraPortugal
- Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO)CoimbraPortugal
| |
Collapse
|
13
|
Ward D, Montes Olivas S, Fletcher A, Homer M, Marucci L. Cross-talk between Hippo and Wnt signalling pathways in intestinal crypts: Insights from an agent-based model. Comput Struct Biotechnol J 2020; 18:230-240. [PMID: 33489001 PMCID: PMC7790739 DOI: 10.1016/j.csbj.2019.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 12/01/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023] Open
Abstract
Intestinal crypts are responsible for the total cell renewal of the lining of the intestines; this turnover is governed by the interplay between signalling pathways and the cell cycle. The role of Wnt signalling in cell proliferation and differentiation in the intestinal crypt has been extensively studied, with increased signalling found towards the lower regions of the crypt. Recent studies have shown that the Wnt signalling gradient found within the crypt may arise as a result of division-based spreading from a Wnt ‘reservoir’ at the crypt base. The discovery of the Hippo pathway’s involvement in maintaining crypt homeostasis is more recent; a mechanistic understanding of Hippo pathway dynamics, and its possible cross-talk with the Wnt pathway, remains lacking. To explore how the interplay between these pathways may control crypt homeostasis, we extended an ordinary differential equation model of the Wnt signalling pathway to include a phenomenological description of Hippo signalling in single cells, and then coupled it to a cell-based description of cell movement, proliferation and contact inhibition in agent-based simulations. Furthermore, we compared an imposed Wnt gradient with a division-based Wnt gradient model. Our results suggest that Hippo signalling affects the Wnt pathway by reducing the presence of free cytoplasmic β-catenin, causing cell cycle arrest. We also show that a division-based spreading of Wnt can form a Wnt gradient, resulting in proliferative dynamics comparable to imposed-gradient models. Finally, a simulated APC double mutant, with misregulated Wnt and Hippo signalling activity, is predicted to cause monoclonal conversion of the crypt.
Collapse
Affiliation(s)
- Daniel Ward
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - Sandra Montes Olivas
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - Alexander Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK.,Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Martin Homer
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK.,School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK.,BrisSynBio, Bristol BS8 1TQ, UK
| |
Collapse
|
14
|
Rogalla S, Flisikowski K, Gorpas D, Mayer AT, Flisikowska T, Mandella MJ, Ma X, Casey KM, Felt SA, Saur D, Ntziachristos V, Schnieke A, Contag CH, Gambhir SS, Harmsen S. Biodegradable fluorescent nanoparticles for endoscopic detection of colorectal carcinogenesis. ADVANCED FUNCTIONAL MATERIALS 2019; 29:1904992. [PMID: 33041743 PMCID: PMC7546531 DOI: 10.1002/adfm.201904992] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Early and comprehensive endoscopic detection of colonic dysplasia - the most clinically significant precursor lesion to colorectal adenocarcinoma - provides an opportunity for timely, minimally-invasive intervention to prevent malignant transformation. Here, the development and evaluation of biodegradable near-infrared fluorescent silica nanoparticles (FSN) is described that have the potential to improve adenoma detection during fluorescence-assisted white-light colonoscopic surveillance in rodent and human-scale models of colorectal carcinogenesis. FSNs are biodegradable (t1/2 of 2.7 weeks), well-tolerated, and enable detection and delineation of adenomas as small as 0.5 mm2 with high tumor-to-background ratios. Furthermore, in the human-scale, APC 1311/+ porcine model, the clinical feasibility and benefit of using FSN-guided detection of colorectal adenomas using video-rate fluorescence-assisted white-light endoscopy is demonstrated. Since nanoparticles of similar size (e.g., 100-150-nm) or composition (i.e., silica, silica/gold hybrid) have already been successfully translated to the clinic, and, clinical fluorescent/white light endoscopy systems are becoming more readily available, there is a viable path towards clinical translation of the proposed strategy for early colorectal cancer detection and prevention in high-risk patients.
Collapse
Affiliation(s)
- Stephan Rogalla
- Molecular Imaging Program at Stanford University (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine (Gastroenterology & Hepatology), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Krzysztof Flisikowski
- Chair of Livestock Biotechnology, Technische Universität München, Liesel-Beckmann Str. 1, D-85354 Freising, Germany
| | - Dimitris Gorpas
- Helmholtz Zentrum München, German Researcg Center for Environmental Health, Institute of Biological and Medical Imaging, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Chair of Biological Imaging, TranslaTUM, Technische Universität München, Einsteinstr. 25, 81675, München, Germany
| | - Aaron T. Mayer
- Molecular Imaging Program at Stanford University (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Tatiana Flisikowska
- Chair of Livestock Biotechnology, Technische Universität München, Liesel-Beckmann Str. 1, D-85354 Freising, Germany
| | - Michael J. Mandella
- Molecular Imaging Program at Stanford University (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Quantitative Health Science and Engineering, Department of Biomedical Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, MI 48824, USA
| | - Xiaopeng Ma
- Helmholtz Zentrum München, German Researcg Center for Environmental Health, Institute of Biological and Medical Imaging, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Chair of Biological Imaging, TranslaTUM, Technische Universität München, Einsteinstr. 25, 81675, München, Germany
| | - Kerriann M. Casey
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephen A. Felt
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dieter Saur
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
| | - Vasilis Ntziachristos
- Helmholtz Zentrum München, German Researcg Center for Environmental Health, Institute of Biological and Medical Imaging, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Chair of Biological Imaging, TranslaTUM, Technische Universität München, Einsteinstr. 25, 81675, München, Germany
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, Technische Universität München, Liesel-Beckmann Str. 1, D-85354 Freising, Germany
| | - Christopher H. Contag
- Corresponding Authors: Prof. C. H. Contag , Prof. S. S. Gambhir , and Dr. S. Harmsen
| | - Sanjiv S. Gambhir
- Corresponding Authors: Prof. C. H. Contag , Prof. S. S. Gambhir , and Dr. S. Harmsen
| | - Stefan Harmsen
- Corresponding Authors: Prof. C. H. Contag , Prof. S. S. Gambhir , and Dr. S. Harmsen
| |
Collapse
|
15
|
van Neerven SM, Vermeulen L. The interplay between intrinsic and extrinsic Wnt signaling in controlling intestinal transformation. Differentiation 2019; 108:17-23. [PMID: 30799131 PMCID: PMC6717105 DOI: 10.1016/j.diff.2019.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/17/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
The intestinal epithelial layer is the fastest renewing tissue in the human body. Due to its incredible turnover rate, the intestine is especially prone to develop cancer, in particular in the colon. Colorectal cancer (CRC) development is characterized by the stepwise accumulation of mutations over time, of which mutations in the tumor suppressor APC are often very early to occur. Generally, mutations in this gene lead to truncated APC proteins that cannot bind to β-catenin to promote its degradation, resulting in a constant overstimulation of the Wnt pathway. The level of intrinsic Wnt activation is dependent on the number of functional β-catenin binding sites remaining within the APC proteins, and the right amount of Wnt signaling is rate-limiting in the formation of polyps. In addition, the intestinal niche provides an extensive spectrum of Wnt ligands, amplifiers and antagonists that locally regulate basal Wnt levels and consequently influence polyp formation propensity. Here we will discuss the crosstalk between transforming epithelial cells and their regional niche in the development of intestinal cancer.
Collapse
Affiliation(s)
- Sanne M van Neerven
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| | - Louis Vermeulen
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Meibergdreef 9, 1105AZ Amsterdam, Netherlands.
| |
Collapse
|
16
|
Greenhalgh K, Ramiro-Garcia J, Heinken A, Ullmann P, Bintener T, Pacheco MP, Baginska J, Shah P, Frachet A, Halder R, Fritz JV, Sauter T, Thiele I, Haan S, Letellier E, Wilmes P. Integrated In Vitro and In Silico Modeling Delineates the Molecular Effects of a Synbiotic Regimen on Colorectal-Cancer-Derived Cells. Cell Rep 2019; 27:1621-1632.e9. [DOI: 10.1016/j.celrep.2019.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 02/08/2023] Open
|
17
|
Chandrasekaran B, Pal D, Kolluru V, Tyagi A, Baby B, Dahiya NR, Youssef K, Alatassi H, Ankem MK, Sharma AK, Damodaran C. The chemopreventive effect of withaferin A on spontaneous and inflammation-associated colon carcinogenesis models. Carcinogenesis 2018; 39:1537-1547. [PMID: 30124785 PMCID: PMC6314334 DOI: 10.1093/carcin/bgy109] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/06/2018] [Accepted: 08/09/2018] [Indexed: 02/05/2023] Open
Abstract
Chemopreventive effects and associated mechanisms of withaferin A (WA) against intestinal and colon carcinogenesis remain unknown. We investigated the chemopreventive effect of WA on transgenic adenomatous polyposis coli (APCMin/+) mouse and chemically induced azoxymethane/dextran sodium sulfate (AOM/DSS) models of intestinal and colon carcinogenesis. Oral WA administration (4 and 3 mg/kg) inhibited tumor initiation and progression of intestinal polyps formation in APCMin/+ mice and colon carcinogenesis in the AOM/DSS mouse model. WA-administered mice showed a significant reduction in both number [duodenum, 33% (P > 0.05); jejunum, 32% (P < 0.025); ileum, 43% ( P < 0.001); and colon 59% (P < 0.01] and size of polyps in APCMin/+ mice compared with the respective controls. Similarly, tumor multiplicity was significantly reduced (P < 0.05) in the colon of WA-administered AOM/DSS mice. Pathological analysis showed reduced adenomas and tissue inflammation in WA-administered mouse models. Molecular studies suggested that WA inhibited the expression of inflammatory (interluekin-6, tumor necrosis factor-alpha and cyclooxygenase-2), pro-survival (pAKT, Notch1 and NF-κB) markers in APCMin/+ and AOM/DSS models. The results suggest that WA is a potent agent for preventing colon carcinogenesis and further investigation is required to show clinical utility of the agent.
Collapse
Affiliation(s)
| | - Deeksha Pal
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Venkatesh Kolluru
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Ashish Tyagi
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Becca Baby
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Nisha R Dahiya
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Khafateh Youssef
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA
| | - Houda Alatassi
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA
| | - Murali K Ankem
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA
| | - Chendil Damodaran
- Department of Urology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
18
|
Aleman J, Skardal A. A multi-site metastasis-on-a-chip microphysiological system for assessing metastatic preference of cancer cells. Biotechnol Bioeng 2018; 116:936-944. [PMID: 30450540 DOI: 10.1002/bit.26871] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/12/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022]
Abstract
Metastatic disease remains one of the primary reasons for cancer-related deaths, yet the majority of in vitro cancer models focus on the primary tumor sites. Here, we describe a metastasis-on-a-chip device that houses multiple bioengineered three-dimensional (3D) organoids, established by a 3D photopatterning technique employing extracellular matrix-derived hydrogel biomaterials. Specifically, cancer cells begin in colorectal cancer (CRC) organoid, which resides in a single microfluidic chamber connected to multiple downstream chambers in which liver, lung, and endothelial constructs are housed. Under recirculating fluid flow, tumor cells grow in the primary site, eventually enter circulation, and can be tracked via fluorescent imaging. Importantly, we describe that in the current version of this platform, HCT116 CRC cells preferentially home to the liver and lung constructs; the corresponding organs of which CRC metastases arise the most in human patients. We believe that in subsequent studies this platform can be implemented to better understand the mechanisms underlying metastasis, perhaps resulting in the identification of targets for intervention.
Collapse
Affiliation(s)
- Julio Aleman
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center, Winston-Salem, North Carolina
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center, Winston-Salem, North Carolina.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina.,Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina.,Department of Molecular Medicine and Translational Science, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina.,Comprehensive Cancer Center at Wake Forest Baptist Medical, Medical Center Boulevard, Winston-Salem, North Carolina
| |
Collapse
|
19
|
Mebarki M, Bennaceur A, Bonhomme-Faivre L. Human-cell-derived organoids as a new ex vivo model for drug assays in oncology. Drug Discov Today 2018; 23:857-863. [DOI: 10.1016/j.drudis.2018.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/19/2018] [Accepted: 02/04/2018] [Indexed: 12/13/2022]
|
20
|
Romano G, Santi L, Bianco MR, Giuffrè MR, Pettinato M, Bugarin C, Garanzini C, Savarese L, Leoni S, Cerrito MG, Leone BE, Gaipa G, Grassilli E, Papa M, Lavitrano M, Giovannoni R. The TGF-β pathway is activated by 5-fluorouracil treatment in drug resistant colorectal carcinoma cells. Oncotarget 2017; 7:22077-91. [PMID: 26956045 PMCID: PMC5008345 DOI: 10.18632/oncotarget.7895] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/20/2016] [Indexed: 12/12/2022] Open
Abstract
TGF-β pathway is generally associated with the processes of metastasis, angiogenesis and EMT in cancer. Very little is known, however, about the role of TGF-β in cancer drug resistance. In this work, we show a specific activation of the TGF-β pathway in consequence of chemotherapeutic treatment in in vivo and in vitro models of colorectal carcinoma. 5-Fluorouracil (5FU) was able to stimulate the activation of SMAD3 and the transcription of specific genes such as ACVRL1, FN1 and TGFB1. On the other hand, the specific inhibition of TGF-βRI was able to repress the 5FU-induced genes transcription and to restore the sensitivity of chemoresistant cells to the toxic action of the drug, by decreasing the expression of BCL2L1 and ID1 genes. The role of the TGF-β molecule in the chemoresistant colon carcinoma cells' response to 5FU was further demonstrated by conditioned medium (CM) experiments: CM from 5FU-treated chemoresistant cells was able to protect chemosensitive cells against the toxic action of 5FU. In conclusion, these findings showed the pivotal role of TGF-β pathway in colon cancer mechanisms of drug resistance suggesting new possible approaches in diagnosis and treatment of colon cancer patients.
Collapse
Affiliation(s)
- Gabriele Romano
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900, Monza, Italy
| | - Ludovica Santi
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900, Monza, Italy
| | - Maria Rosaria Bianco
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Department of Mental and Physical Health and Preventive Medicine, Second University of Naples, 80138, Naples, Italy
| | - Maria Rita Giuffrè
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900, Monza, Italy
| | - Mariateresa Pettinato
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900, Monza, Italy
| | - Cristina Bugarin
- M. Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca, 20900, Monza, Italy
| | - Cristina Garanzini
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900, Monza, Italy
| | - Leonilde Savarese
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, Second University of Naples, 80138, Naples, Italy
| | - Silvia Leoni
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900, Monza, Italy
| | - Maria Grazia Cerrito
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900, Monza, Italy
| | - Biagio Eugenio Leone
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900, Monza, Italy
| | - Giuseppe Gaipa
- M. Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca, 20900, Monza, Italy
| | - Emanuela Grassilli
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900, Monza, Italy
| | - Michele Papa
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, Second University of Naples, 80138, Naples, Italy
| | - Marialuisa Lavitrano
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900, Monza, Italy
| | - Roberto Giovannoni
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900, Monza, Italy
| |
Collapse
|
21
|
Abstract
Preclinical studies are an essential stage for any pharmacological agent hoping to make its way into clinical trials. An ideal preclinical model that can accurately predict clinical response does not exist and the best that the scientific community have at the moment is to select the most relevant study model pertaining to the disease of interest from those available, which includes: cell lines, animal models, and even in-silico methodology. Currently, there is a huge gap between preclinical and clinical trial results, indicating that there is much room for improvement in developing a better model to bridge the translational gap.
Collapse
|
22
|
Callesen MM, Árnadóttir SS, Lyskjaer I, Ørntoft MBW, Høyer S, Dagnaes-Hansen F, Liu Y, Li R, Callesen H, Rasmussen MH, Berthelsen MF, Thomsen MK, Schweiger PJ, Jensen KB, Laurberg S, Ørntoft TF, Elverløv-Jakobsen JE, Andersen CL. A genetically inducible porcine model of intestinal cancer. Mol Oncol 2017; 11:1616-1629. [PMID: 28881081 PMCID: PMC5664002 DOI: 10.1002/1878-0261.12136] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/15/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
Transgenic porcine cancer models bring novel possibilities for research. Their physical similarities with humans enable the use of surgical procedures and treatment approaches used for patients, which facilitates clinical translation. Here, we aimed to develop an inducible oncopig model of intestinal cancer. Transgenic (TG) minipigs were generated using somatic cell nuclear transfer by handmade cloning. The pigs encode two TG cassettes: (a) an Flp recombinase‐inducible oncogene cassette containing KRAS‐G12D, cMYC, SV40LT – which inhibits p53 – and pRB and (b) a 4‐hydroxytamoxifen (4‐OHT)‐inducible Flp recombinase activator cassette controlled by the intestinal epithelium‐specific villin promoter. Thirteen viable transgenic minipigs were born. The ability of 4‐OHT to activate the oncogene cassette was confirmed in vitro in TG colonic organoids and ex vivo in tissue biopsies obtained by colonoscopy. In order to provide proof of principle that the oncogene cassette could also successfully be activated in vivo, three pigs were perorally treated with 400 mg tamoxifen for 2 × 5 days. After two months, one pig developed a duodenal neuroendocrine carcinoma with a lymph node metastasis. Molecular analysis of the carcinoma and metastasis confirmed activation of the oncogene cassette. No tumor formation was observed in untreated TG pigs or in the remaining two treated pigs. The latter indicates that tamoxifen delivery can probably be improved. In summary, we have generated a novel inducible oncopig model of intestinal cancer, which has the ability to form metastatic disease already two months after induction. The model may be helpful in bridging the gap between basic research and clinical usage. It opens new venues for longitudinal studies of tumor development and evolution, for preclinical assessment of new anticancer regimens, for pharmacology and toxicology assessments, as well as for studies into biological mechanisms of tumor formation and metastasis.
Collapse
Affiliation(s)
- Morten M Callesen
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
| | | | - Iben Lyskjaer
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
| | | | - Søren Høyer
- Department of Pathology, Aarhus University Hospital, Denmark
| | | | - Ying Liu
- Department of Animal Science, Aarhus University, Denmark
| | - Rong Li
- Department of Animal Science, Aarhus University, Denmark
| | | | - Mads H Rasmussen
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
| | | | | | - Pawel J Schweiger
- Biotech Research and Innovation Centre, University of Copenhagen, Denmark
| | - Kim B Jensen
- Biotech Research and Innovation Centre, University of Copenhagen, Denmark
| | - Søren Laurberg
- Surgical Department P, Aarhus University Hospital, Denmark
| | - Torben F Ørntoft
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
| | | | - Claus L Andersen
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
| |
Collapse
|
23
|
Devarasetty M, Wang E, Soker S, Skardal A. Mesenchymal stem cells support growth and organization of host-liver colorectal-tumor organoids and possibly resistance to chemotherapy. Biofabrication 2017; 9:021002. [PMID: 28589925 DOI: 10.1088/1758-5090/aa7484] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Despite having yielded extensive breakthroughs in cancer research, traditional 2D cell cultures have limitations in studying cancer progression and metastasis and screening therapeutic candidates. 3D systems can allow cells to grow, migrate, and interact with each other and the surrounding matrix, resulting in more realistic constructs. Furthermore, interactions between host tissue and developing tumors influence the susceptibility of tumors to drug treatments. Host-liver colorectal-tumor spheroids composed of primary human hepatocytes, mesenchymal stem cells (MSC) and colon carcinoma HCT116 cells were created in simulated microgravity rotating wall vessel (RWV) bioreactors. The cells were seeded on hyaluronic acid-based microcarriers, loaded with liver-specific growth factors and ECM components. Only in the presence of MSC, large tumor foci rapidly formed inside the spheroids and increased in size steadily over time, while not greatly impacting albumin secretion from hepatocytes. The presence of MSC appeared to drive self-organization and formation of a stroma-like tissue surrounding the tumor foci and hepatocytes. Exposure to a commonly used chemotherapeutic 5-FU showed a dose-dependent cytotoxicity. However, if tumor organoids were allowed to mature in the RWV, they were less sensitive to the drug treatment. These data demonstrate the potential utility of liver tumor organoids for cancer progression and drug response modeling.
Collapse
Affiliation(s)
- Mahesh Devarasetty
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States of America. Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, NC, United States of America
| | | | | | | |
Collapse
|
24
|
Dietary fat overcomes the protective activity of thrombospondin-1 signaling in the Apc(Min/+) model of colon cancer. Oncogenesis 2016; 5:e230. [PMID: 27239962 PMCID: PMC4945754 DOI: 10.1038/oncsis.2016.37] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/14/2016] [Accepted: 04/16/2016] [Indexed: 12/17/2022] Open
Abstract
Thrombospondin 1 is a glycoprotein that regulates cellular phenotype through interactions with its cellular receptors and extracellular matrix-binding partners. Thrombospondin 1 locally regulates angiogenesis and inflammatory responses that contribute to colorectal carcinogenesis in ApcMin/+ mice. The ability of thrombospondin 1 to regulate responses of cells and tissues to a variety of stresses suggested that loss of thrombospondin 1 may also have broader systemic effects on metabolism to modulate carcinogenesis. ApcMin/+:Thbs1−/− mice exhibited decreased survival and higher tumor multiplicities in the small and large intestine relative to ApcMin/+ mice when fed a low (5%) fat western diet. However, the protective effect of endogenous thrombospondin 1 was lost when the mice were fed a western diet containing 21% fat. Biochemical profiles of liver tissue identified systemic metabolic changes accompanying the effects of thrombospondin 1 and dietary lipid intake on tumorigenesis. A high-fat western diet differentially regulated elements of amino acid, energy and lipid metabolism in ApcMin/+:Thbs1−/− mice relative to ApcMin/+:Thbs1+/+mice. Metabolic changes in ketone body and tricarboxylic acid cycle intermediates indicate functional interactions between Apc and thrombospondin 1 signaling that control mitochondrial function. The cumulative diet-dependent differential changes observed in ApcMin/+:Thbs1−/− versus ApcMin/+ mice include altered amino acid and lipid metabolism, mitochondrial dysfunction, eicosanoids and ketone body formation. This metabolic profile suggests that the protective role of thrombospondin 1 to decrease adenoma formation in ApcMin/+ mice results in part from improved mitochondrial function.
Collapse
|
25
|
Mouse model of proximal colon-specific tumorigenesis driven by microsatellite instability-induced Cre-mediated inactivation of Apc and activation of Kras. J Gastroenterol 2016; 51:447-57. [PMID: 26361962 DOI: 10.1007/s00535-015-1121-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/30/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND KRAS gene mutations are found in 40-50% of colorectal cancer cases, but their functional contribution is not fully understood. To address this issue, we generated genetically engineered mice with colon tumors expressing an oncogenic Kras(G12D) allele in the context of the Adenomatous polyposis coli (Apc) deficiency to compare them to tumors harboring Apc deficiency alone. METHODS CDX2P9.5-G22Cre (referred to as G22Cre) mice showing inducible Cre recombinase transgene expression in the proximal colon controlled under the CDX2 gene promoter were intercrossed with Apc (flox/flox) mice and LSL-Kras (G12D) mice carrying loxP-flanked Apc and Lox-Stop-Lox oncogenic Kras(G12D) alleles, respectively, to generate G22Cre; Apc(flox/flox); Kras(G12D) and G22Cre; Apc(flox/flox); KrasWT mice. Gene expression profiles of the tumors were analyzed using high-density oligonucleotide arrays. RESULTS Morphologically, minimal difference in proximal colon tumor was observed between the two mouse models. Consistent with previous findings in vitro, Glut1 transcript and protein expression was up-regulated in the tumors of G22Cre;Apc (flox/flox) ; Kras(G12D) mice. Immunohistochemical staining analysis revealed that GLUT1 protein expression correlated with KRAS mutations in human colorectal cancer. Microarray analysis identified 11 candidate genes upregulated more than fivefold and quantitative PCR analysis confirmed that Aqp8, Ttr, Qpct, and Slc26a3 genes were upregulated 3.7- to 30.2-fold in tumors with mutant Kras. CONCLUSIONS These results demonstrated the validity of the G22Cre; Apc(flox/flox) ;Kras (G12D) mice as a new mouse model with oncogenic Kras activation. We believe that this model can facilitate efforts to define novel factors that contribute to the pathogenesis of human colorectal cancer with KRAS mutations.
Collapse
|
26
|
Jackstadt R, Sansom OJ. Mouse models of intestinal cancer. J Pathol 2016; 238:141-51. [PMID: 26414675 PMCID: PMC4832380 DOI: 10.1002/path.4645] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/19/2022]
Abstract
Murine models of intestinal cancer are powerful tools to recapitulate human intestinal cancer, understand its biology and test therapies. With recent developments identifying the importance of the tumour microenvironment and the potential for immunotherapy, autochthonous genetically engineered mouse models (GEMMs) will remain an important part of preclinical studies for the foreseeable future. This review will provide an overview of the current mouse models of intestinal cancer, from the Apc(Min/+) mouse, which has been used for over 25 years, to the latest 'state-of-the-art' organoid models. We discuss here how these models have been used to define fundamental processes involved in tumour initiation and the attempts to generate metastatic models, which is the ultimate cause of cancer mortality. Together these models will provide key insights to understand this complex disease and hopefully will lead to the discovery of new therapeutic strategies.
Collapse
|
27
|
Parry L, Young M, El Marjou F, Clarke AR. Protocols for Analyzing the Role of Paneth Cells in Regenerating the Murine Intestine using Conditional Cre-lox Mouse Models. J Vis Exp 2015. [PMID: 26649885 PMCID: PMC4755722 DOI: 10.3791/53429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The epithelial surface of the mammalian intestine is a dynamic tissue that renews every 3 - 7 days. Understanding this renewal process identified a population of rapidly cycling intestinal stem cells (ISCs) characterized by their expression of the Lgr5 gene. These are supported by a quiescent stem cell population, marked by Bmi-1 expression, capable of replacing them in the event of injury. Investigating the interactions between these populations is crucial to understanding their roles in disease and cancer. The ISCs exist within crypts on the intestinal surface, these niches support the ISC in replenishing the epithelia. The interaction between active and quiescent ISCs likely involves other differentiated cells within the niche, as it has previously been demonstrated that the ‘‘stemness’’ of the Lgr5 ISC is closely tied to the presence of their neighboring Paneth cells. Using conditional cre-lox mouse models we tested the effect of deleting the majority of active ISCs in the presence or absence of the Paneth cells. Here we describe the techniques and analysis undertaken to characterize the intestine and demonstrate that the Paneth cells play a crucial role within the ISC niche in aiding recovery following substantial insult.
Collapse
Affiliation(s)
- Lee Parry
- European Cancer Stem Cell Research Institute, Cardiff University;
| | - Madeleine Young
- European Cancer Stem Cell Research Institute, Cardiff University
| | | | | |
Collapse
|
28
|
Skardal A, Devarasetty M, Rodman C, Atala A, Soker S. Liver-Tumor Hybrid Organoids for Modeling Tumor Growth and Drug Response In Vitro. Ann Biomed Eng 2015; 43:2361-73. [PMID: 25777294 DOI: 10.1007/s10439-015-1298-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/10/2015] [Indexed: 12/27/2022]
Abstract
Current in vitro models for tumor growth and metastasis are poor facsimiles of in vivo cancer physiology and thus, are not optimal for anti-cancer drug development. Three dimensional (3D) tissue organoid systems, which utilize human cells in a tailored microenvironment, have the potential to recapitulate in vivo conditions and address the drawbacks of current tissue culture dish 2D models. In this study, we created liver-based cell organoids in a rotating wall vessel bioreactor. The organoids were further inoculated with colon carcinoma cells in order to create liver-tumor organoids for in vitro modeling of liver metastasis. Immunofluorescent staining revealed notable phenotypic differences between tumor cells in 2D and inside the organoids. In 2D they displayed an epithelial phenotype, and only after transition to the organoids did the cells present with a mesenchymal phenotype. The cell surface marker expression results suggested that WNT pathway might be involved in the phenotypic changes observed between cells in 2D and organoid conditions, and may lead to changes in cell proliferation. Manipulating the WNT pathway with an agonist and antagonist showed significant changes in sensitivity to the anti-proliferative drug 5-fluoruracil. Collectively, the results show the potential of in vitro 3D liver-tumor organoids to serve as a model for metastasis growth and for testing the response of tumor cells to current and newly discovered drugs.
Collapse
Affiliation(s)
- Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA
| | - Mahesh Devarasetty
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA
| | - Christopher Rodman
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA.
| |
Collapse
|
29
|
Rytelewski M, Buensuceso A, Leong HS, Deroo BJ, Chambers AF, Koropatnick J. Evaluating the effectiveness of cancer drug sensitization in vitro and in vivo. J Vis Exp 2015. [PMID: 25741641 DOI: 10.3791/52388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Due to the high level of heterogeneity and mutations inherent in human cancers, single agent therapies, or combination regimens which target the same pathway, are likely to fail. Emphasis must be placed upon the inhibition of pathways that are responsible for intrinsic and/or adaptive resistance to therapy. An active field of investigation is the development and testing of DNA repair inhibitors that promote the action of, and prevent resistance to, commonly used chemotherapy and radiotherapy. We used a novel protocol to evaluate the effectiveness of BRCA2 inhibition as a means to sensitize tumor cells to the DNA damaging drug cisplatin. Tumor cell metabolism (acidification and respiration) was monitored in real-time for a period of 72 hr to delineate treatment effectiveness on a minute by minute basis. In combination, we performed an assessment of metastatic frequency using a chicken embryo chorioallantoic membrane (CAM) model of extravasation and invasion. This protocol addresses some of the weaknesses of commonly used in vitro and in vivo methods to evaluate novel cancer therapy regimens. It can be used in addition to common methods such as cell proliferation assays, cell death assays, and in vivo murine xenograft studies, to more closely discriminate amongst candidate targets and agents, and select only the most promising candidates for further development.
Collapse
|
30
|
Lee SL, Dempsey-Hibbert NC, Vimalachandran D, Wardle TD, Sutton P, Williams JHH. Targeting Heat Shock Proteins in Colorectal Cancer. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-17211-8_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Adams JC. Fascin-1 as a biomarker and prospective therapeutic target in colorectal cancer. Expert Rev Mol Diagn 2014; 15:41-8. [DOI: 10.1586/14737159.2015.976557] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Irving AA, Yoshimi K, Hart ML, Parker T, Clipson L, Ford MR, Kuramoto T, Dove WF, Amos-Landgraf JM. The utility of Apc-mutant rats in modeling human colon cancer. Dis Model Mech 2014; 7:1215-25. [PMID: 25288683 PMCID: PMC4213726 DOI: 10.1242/dmm.016980] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Prior to the advent of genetic engineering in the mouse, the rat was the model of choice for investigating the etiology of cancer. Now, recent advances in the manipulation of the rat genome, combined with a growing recognition of the physiological differences between mice and rats, have reignited interest in the rat as a model of human cancer. Two recently developed rat models, the polyposis in the rat colon (Pirc) and Kyoto Apc Delta (KAD) strains, each carry mutations in the intestinal-cancer-associated adenomatous polyposis coli (Apc) gene. In contrast to mouse models carrying Apc mutations, in which cancers develop mainly in the small intestine rather than in the colon and there is no gender bias, these rat models exhibit colonic predisposition and gender-specific susceptibility, as seen in human colon cancer. The rat also provides other experimental resources as a model organism that are not provided by the mouse: the structure of its chromosomes facilitates the analysis of genomic events, the size of its colon permits longitudinal analysis of tumor growth, and the size of biological samples from the animal facilitates multiplexed molecular analyses of the tumor and its host. Thus, the underlying biology and experimental resources of these rat models provide important avenues for investigation. We anticipate that advances in disease modeling in the rat will synergize with resources that are being developed in the mouse to provide a deeper understanding of human colon cancer.
Collapse
Affiliation(s)
- Amy A Irving
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Kazuto Yoshimi
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Marcia L Hart
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Taybor Parker
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Madeline R Ford
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - William F Dove
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - James M Amos-Landgraf
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA. Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
33
|
Terp MG, Ditzel HJ. Application of proteomics in the study of rodent models of cancer. Proteomics Clin Appl 2014; 8:640-52. [DOI: 10.1002/prca.201300084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/25/2013] [Accepted: 11/27/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Mikkel G. Terp
- Department of Cancer and Inflammation Research; Institute of Molecular Medicine, University of Southern Denmark; Odense Denmark
| | - Henrik J. Ditzel
- Department of Cancer and Inflammation Research; Institute of Molecular Medicine, University of Southern Denmark; Odense Denmark
- Department of Oncology; Odense University Hospital; Odense Denmark
| |
Collapse
|
34
|
Ward JM, Treuting PM. Rodent intestinal epithelial carcinogenesis: pathology and preclinical models. Toxicol Pathol 2013; 42:148-61. [PMID: 24178574 DOI: 10.1177/0192623313505156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Colon cancer is a major human malignancy that afflicts millions of people throughout the world each year. Genetics and diet play large roles in colon carcinogenesis although chemicals may also contribute. For the past 40 years, scientists have studied experimentally induced intestinal carcinogenesis in rodents in order to elucidate the etiology and mechanisms involved. Comparative histopathology has revealed many similarities of rodent and human intestinal cancers. Comparative molecular pathology has also shown genetic similarities. More recently, genetically engineered mice and inflammatory colon cancer models have been used for investigating mechanisms and potential chemopreventive and treatment modalities. This review will focus on comparative histopathology and nonclinical models.
Collapse
|
35
|
Young M, Ordonez L, Clarke AR. What are the best routes to effectively model human colorectal cancer? Mol Oncol 2013; 7:178-89. [PMID: 23465602 PMCID: PMC5528414 DOI: 10.1016/j.molonc.2013.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/06/2013] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in the UK, with over 37,500 people being diagnosed every year. Survival rates for CRC have doubled in the last 30 years and it is now curable if diagnosed early, but still over half of all sufferers do not survive for longer than 5 years after diagnosis. The major complication to treating this disease is that of metastasis, specifically to the liver, which is associated with a 5 year survival of less than 5%. These statistics highlight the importance of the development of earlier detection techniques and more targeted therapeutics. The future of treating this disease therefore lies in increasing understanding of the mutations which cause tumourigenesis, and insight into the development and progression of this complex disease. This can only be achieved through the use of functional models which recapitulate all aspects of the human disease. There is a wide range of models of CRC available to researchers, but all have their own strengths and weaknesses. Here we review how CRC can be modelled and discuss the future of modelling this complex disease, with a particular focus on how genetically engineered mouse models have revolutionised this area of research.
Collapse
Affiliation(s)
- Madeleine Young
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| | | | | |
Collapse
|